Sample records for surface co2 fluxes

  1. Soil surface CO2 fluxes on the Konza Prairie (United States)

    Norman, J. M.; Garcia, R.; Verma, Shoshi B.


    The utilization of a soil chamber to measure fluxes of soil-surface CO2 fluxes is described in terms of equipment, analytical methods, and estimate quality. A soil chamber attached to a gas-exchange system measures the fluxes every 5-15 min, and the data are compared to measurements of the CO2 fluxes from the canopy and from the soil + canopy. The soil chamber yields good measurements when operated in a closed system that is ported to the free atmosphere, and the CO2 flux is found to have a diurnal component.

  2. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint (United States)

    Chen, J. M.; Mo, G.; Deng, F.


    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  3. Atmosphere–Surface Fluxes of CO2 using Spectral Techniques

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Larsen, Søren Ejling


    Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2...... fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal......-to-noise ratio can be used for flux estimations....

  4. High-frequency pressure variations in the vicinity of a surface CO2 flux chamber (United States)

    Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice


    We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...

  5. Soil surface CO2 fluxes and the carbon budget of a grassland (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.


    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  6. Soil surface CO2 fluxes in a Norway spruce stand

    Czech Academy of Sciences Publication Activity Database

    Acosta, Manuel; Janouš, Dalibor; Marek, Michal V.


    Roč. 12, č. 50 (2004), s. 573-578 ISSN 1212-4834 R&D Projects: GA AV ČR(CZ) KJB3087301 Institutional research plan: CEZ:AV0Z6087904 Keywords : Norway spruce * Soil CO2 efflux * Q10 Subject RIV: EH - Ecology, Behaviour

  7. Soil surface CO2 flux in a boreal black spruce fire chronosequence (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.


    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  8. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.


    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  9. Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    S. Dance


    Full Text Available We have developed an ensemble Kalman Filter (EnKF to estimate 8-day regional surface fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2 and evaluate the approach using a series of synthetic experiments, in preparation for data from the NASA Orbiting Carbon Observatory (OCO. The 32-day duty cycle of OCO alternates every 16 days between nadir and glint measurements of backscattered solar radiation at short-wave infrared wavelengths. The EnKF uses an ensemble of states to represent the error covariances to estimate 8-day CO2 surface fluxes over 144 geographical regions. We use a 12×8-day lag window, recognising that XCO2 measurements include surface flux information from prior time windows. The observation operator that relates surface CO2 fluxes to atmospheric distributions of XCO2 includes: a the GEOS-Chem transport model that relates surface fluxes to global 3-D distributions of CO2 concentrations, which are sampled at the time and location of OCO measurements that are cloud-free and have aerosol optical depths 2 profiles to XCO2, accounting for differences between nadir and glint measurements, and the associated scene-dependent observation errors. We show that OCO XCO2 measurements significantly reduce the uncertainties of surface CO2 flux estimates. Glint measurements are generally better at constraining ocean CO2 flux estimates. Nadir XCO2 measurements over the terrestrial tropics are sparse throughout the year because of either clouds or smoke. Glint measurements provide the most effective constraint for estimating tropical terrestrial CO2 fluxes by accurately sampling fresh continental outflow over neighbouring oceans. We also present results from sensitivity experiments that investigate how flux estimates change with 1 bias and unbiased errors, 2 alternative duty cycles, 3 measurement density and correlations, 4 the spatial resolution of estimated flux estimates, and 5 reducing the length of the lag window and the

  10. Controls of evapotranspiration and CO2 fluxes from scots pine by surface conductance and abiotic factors.

    Directory of Open Access Journals (Sweden)

    Tianshan Zha

    Full Text Available Evapotranspiration (E and CO2 flux (Fc in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc , surface conductance (gc , and decoupling coefficient (Ω, showing similar trends to those in radiation (PAR and vapour pressure deficit (δ. The maximum mean daily values (24-h average for E, Fc , gc , and Ω were 1.78 mmol m(-2 s(-1, -11.18 µmol m(-2 s(-1, 6.27 mm s(-1, and 0.31, respectively, with seasonal averages of 0.71 mmol m(-2 s(-1, -4.61 µmol m(-2 s(-1, 3.3 mm s(-1, and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc . Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc , while vapour pressure deficit was the most important environmental factor affecting gc . Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 μmol CO2 (mmol H2O(-1 and a seasonal average of 7.06 μmol CO2 (μmol H2O(-1. Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition.

  11. Human Effects and Soil Surface CO2 fluxes in Tropical Urban Green Areas, Singapore (United States)

    Ng, Bernard; Gandois, Laure; Kai, Fuu Ming; Chua, Amy; Cobb, Alex; Harvey, Charles; Hutyra, Lucy


    Urban green spaces are appreciated for their amenity value, with increasing interest in the ecosystem services they could provide (e.g. climate amelioration and increasingly as possible sites for carbon sequestration). In Singapore, turfgrass occupies approximately 20% of the total land area and is readily found on both planned and residual spaces. This project aims at understanding carbon fluxes in tropical urban green areas, including controls of soil environmental factors and the effect of urban management techniques. Given the large pool of potentially labile carbon, management regimes are recognised to have an influence on soil environmental factors (temperature and moisture), this would affect soil respiration and feedbacks to the greenhouse effect. A modified closed dynamic chamber method was employed to measure total soil respiration fluxes. In addition to soil respiration rates, environmental factors such as soil moisture and temperature, and ambient air temperature were monitored for the site in an attempt to evaluate their control on the observed fluxes. Measurements of soil-atmosphere CO2 exchanges are reported for four experimental plots within the Singtel-Kranji Radio Transmission Station (103o43'49E, 1o25'53N), an area dominated by Axonopus compressus. Different treatments such as the removal of turf, and application of clippings were effected as a means to determine the fluxes from the various components (respiration of soil and turf, and decomposition of clippings), and to explore the effects of human intervention on observed effluxes. The soil surface CO2 fluxes observed during the daylight hours ranges from 2.835 + 0.772 umol m-2 s-1 for the bare plot as compared to 6.654 + 1.134 umol m-2 s-1 for the turfed plot; this could be attributed to both autotrophic and heterotrophic respiration. Strong controls of both soil temperature and soil moisture are observed on measured soil fluxes. On the base soils, fluxes were positively correlated to soil

  12. Modelling land surface fluxes of CO2 in response to climate change and nitrogen deposition

    DEFF Research Database (Denmark)

    Hansen, Kristina; Ambelas Skjøth, Carsten; Geels, Camilla

    Climate change, land use variations, and impacts of atmospheric nitrogen (N) deposition represent uncertainties for the prediction of future greenhouse gas exchange between land surfaces and the atmosphere as the mechanisms describing nutritional effects are not well developed in climate...... climate feedback mechanisms of CO2 between changes in management, land use practise, and climate change....

  13. [Characteristics of CO2 flux before and in the heating period at urban complex underlying surface area]. (United States)

    Jia, Qing-yu; Zhou, Guang-sheng; Wang, Yu; Liu, Xiao-mei


    Urban areas were significant contributors to global carbon dioxide emissions. The eddy covariance (EC) was used to measure carbon dioxide (CO2) concentration and flux data at urban area in Shenyang. This research analyzed the characteristics of atmospheric CO2 concentration and flux in October 2008 to November 2008 period before and in the heating period. The results showed that the daily variation of CO2 concentration was two-peak curve. The first peak time appeared as same as sunrise time, while the second peak time impacted by vehicles and heating. The result of CO2 flux showed that urban atmospheric CO2 was net emissions, vegetation photosynthesis absorbed CO2 of traffic, the CO2 flux peak appeared at 17:15-18:15 in the heating period, CO2 emission increased 29.37 g x (m2 x d)(-1) in the heating period than that before the heating period; there was corresponding relationship between CO2 flux and the time when temperature peak and sensible heating flux (Hc) turn positive. The results also indicated that atmospheric CO2 concentration and its flux were affected seriously by both wind direction and carbon sources.

  14. Modelling regional scale surface fluxes, meteorology and CO2 mixing ratios for the Cabauw tower in the Netherlands

    NARCIS (Netherlands)

    Tolk, L.F.; Peters, W.; Meesters, A.G.C.A.; Groenendijk, M.; Vermeulen, A.T.; Steeneveld, G.J.; Dolman, A.J.


    We simulated meteorology and atmospheric CO2 transport over the Netherlands with the mesoscale model RAMS-Leaf3 coupled to the biospheric CO2 flux model 5PM. The results were compared with meteorological and CO2 observations, with emphasis on the tall tower of Cabauw. An analysis of the coupled

  15. CO2 flux from Javanese mud volcanism. (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A


    Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.

  16. Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions

    NARCIS (Netherlands)

    Babenhauserheide, A.; Basu, S.; Peters, W.


    Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on assimilation of more than one

  17. Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions

    NARCIS (Netherlands)

    Babenhauserheide, A.; Basu, S.; Houweling, S.; Peters, W.; Butz, A.


    Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on the assimilation of more than

  18. Comparison of regional and ecosystem CO2 fluxes

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Søgaard, Henrik; Batchvarova, Ekaterina


    A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio-soundings......A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio...

  19. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu


    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  20. Application of Relaxed Eddy Accumulation (REA) method to estimate CO2 and CH4 surface fluxes in the city of Krakow, southern Poland. (United States)

    Zimnoch, Miroslaw; Gorczyca, Zbigniew; Pieniazek, Katarzyna; Jasek, Alina; Chmura, Lukasz; Rozanski, Kazimierz


    There is a growing interest in the recent years in studies aimed at quantifying carbon cycling in urban centres. Worldwide migration of human population from rural to urban areas and corresponding growth of extensive urban agglomerations and megacities leads to intensification of anthropogenic emissions of carbon and strong disruption of natural carbon cycle on these areas. Therefore, a deeper understanding of the carbon "metabolism" of such regions is required. Apart of better quantification of surface carbon fluxes, also a thorough understanding of the functioning of biosphere under strong anthropogenic influence is needed. Nowadays, covariance methods are widely applied for studying gas exchange between the atmosphere and the Earth's surface. Relaxed Eddy Accumulation method (REA), combined with the CO2 and CH4 CRDS analyser allows simultaneous measurements of surface fluxes of carbon dioxide and methane within the chosen footprint of the detection system, thus making possible thorough characterisation of the overall exchange of those gases between the atmosphere and the urban surface across diverse spatial and temporal scales. Here we present preliminary results of the study aimed at quantifying surface fluxes of CO2 and CH4 in Krakow, southern Poland. The REA system for CO2 and CH4 flux measurements has been installed on top of a 20m high tower mounted on the roof of the faculty building, close to the city centre of Krakow. The sensors were installed ca 42 m above the local ground. Gill Windmaster-Pro sonic anemometer was coupled with self-made system, designed by the Poznan University of Life Sciences, Poland, for collecting air samples in two pairs of 10-liter Tedlar bags, and with Picarro G2101-i CRDS analyser. The air was collected in 30-min intervals. The CO2 and CH4 mixing ratios in these cumulative downdraft and updraft air samples were determined by the CRDS analyser after each sampling interval. Based on the measured mixing ratios difference and the

  1. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng


    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  2. Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data

    Directory of Open Access Journals (Sweden)

    J. D. Shutler


    Full Text Available Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3. These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50% and their calcification can affect the atmosphere-to-ocean (air-sea uptake of carbon dioxide (CO2 through increasing the seawater partial pressure of CO2 (pCO2. Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007, using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS. We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C production of 0.14–1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production can fluctuate inter-annually by −54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO climate oscillation index (r=0.75, pE. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3–28%.

  3. Evaluation of Deep Learning Models for Predicting CO2 Flux (United States)

    Halem, M.; Nguyen, P.; Frankel, D.


    Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.

  4. Soil-surface CO2 flux and growth in a boreal Norway spruce stand: Effects of soil warming and nutrition

    International Nuclear Information System (INIS)

    Stroemgren, M.


    Global warming is predicted to affect the carbon balance of forests. A change in the carbon balance would give a positive or negative feedback to the greenhouse effect, which would affect global warming. The effects of long-term soil warming on growth, nutrient and soil-surface CO 2 flux (R) dynamics were studied in irrigated (I) and irrigated-fertilised (IL) stands of Norway spruce in northern Sweden. Soil temperature on heated plots (Ih and ILh) was maintained 5 deg C above that on unheated plots (Ic and ILc) from May to October, by heating cables. After six years' soil warming, stemwood production increased by 100% and 50% in the I and IL treatment, respectively. The main production increase occurred at the beginning of the season, probably as an effect of the earlier increase in soil temperature. In the 1h treatment, however, the growth increase was evident during the entire season. The effect of increased nitrogen (N) mineralisation on annual growth appeared to be stronger than the direct effect of warming. From 1995-2000, the total amount of N stored in aboveground tree parts increased by 100 and 475 kg N/ha on Ic and ILc plots, respectively. During the same period, 450 kg N fertiliser was added to the ILc plot. Soil warming increased the total amount of N stored in aboveground tree parts by 50 kg N/ha, independently of nutrient treatment. Soil warming did not significantly increase R, except in early spring, when R was 30-50% higher on heated compared to unheated plots. The extended growing season, however, increased annual respiration (RA) by 12-30% throughout. RA losses were estimated to be 0.6-0.7 kg C/ha/year. Use of relationships between R and soil temperature, derived from unheated plots, overestimated RA on heated plots by 50-80%. These results suggest that acclimation of root or microbial respiration or both to temperature had occurred, but the exact process(es) and their relative contribution are still unclear. In conclusion, the study showed that

  5. Quantifying the drivers of ocean-atmosphere CO2 fluxes (United States)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.


    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  6. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.


    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution

  7. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems (United States)

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize

  8. A three-dimensional synthesis study of delta O-18 in atmospheric CO2 .1. Surface fluxes

    NARCIS (Netherlands)

    Ciais, P; Denning, AS; Tans, PP; Berry, JA; Randall, DA; Collatz, GJ; Sellers, PJ; White, JWC; Trolier, M; Meijer, HAJ; Francey, RJ; Monfray, P; Heimann, M


    The isotope O-18 in CO2 is of particular interest in studying the global carbon cycle because it is sensitive to the processes by which the global land biosphere absorbs and respires CO2. Carbon dioxide and water exchange isotopically both in leaves and in soils, and the O-18 character of

  9. The use of fair-weather cases from the ACT-America Summer 2016 field campaign to better constrain regional biogenic CO2 surface fluxes (United States)

    Gaudet, B. J.; Davis, K. J.; DiGangi, J. P.; Feng, S.; Hoffman, K.; Jacobson, A. R.; Lauvaux, T.; McGill, M. J.; Miles, N.; Pal, S.; Pauly, R.; Richardson, S.


    The Atmospheric Carbon and Transport - America (ACT-America) study is a multi-year NASA-funded project designed to increase our understanding of regional-scale greenhouse gas (GHG) fluxes over North America through aircraft, satellite, and tower-based observations. This is being accomplished through a series of field campaigns that cover three focus regions (Mid-Atlantic, Gulf Coast, and Midwest), and all four seasons (summer, winter, fall, and spring), as well as a variety of meteorological conditions. While constraints on GHG fluxes can be derived on the global scale (through remote-site concentration measurements and global flux inversion models) and the local scale (through eddy-covariance flux tower measurements), observational constraints on the intermediate scales are not as readily available. Biogenic CO2 fluxes are particularly challenging because of their strong seasonal and diurnal cycles and large spatial variability. During the summer 2016 ACT field campaign, fair weather days were targeted for special flight patterns designed to estimate surface fluxes at scales on the order of 105 km2 using a modified mass-balance approach. For some onshore flow cases in the Gulf Coast, atmospheric boundary layer (ABL) flight transects were performed both inland and offshore when it could be reasonably inferred that the homogeneous Gulf air provided the background GHG field for the inland transect. On other days, two-day flight sequences were performed, where the second-day location of the flight patterns was designed to encompass the air mass that was sampled on the first day. With these flight patterns, the average regional flux can be estimated from the ABL CO2 concentration change. Direct measurements of ABL depth from both aircraft profiles and high-resolution airborne lidar will be used, while winds and free-tropospheric CO2 can be determined from model output and in situ aircraft observations. Here we will present examples of this flux estimation for both Gulf

  10. Preliminary estimation of Vulcano of CO2 budget and continuous monitoring of summit soil CO2 flux


    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rouwet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.


    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eru...

  11. Increasing CO2 flux at Pisciarelli, Campi Flegrei, Italy

    Directory of Open Access Journals (Sweden)

    M. Queißer


    Full Text Available The Campi Flegrei caldera is located in the metropolitan area of Naples (Italy and has been undergoing different stages of unrest since 1950, evidenced by episodes of significant ground uplift followed by minor subsidence, increasing and fluctuating emission strengths of water vapor and CO2 from fumaroles, and periodic seismic crises. We deployed a scanning laser remote-sensing spectrometer (LARSS that measured path-integrated CO2 concentrations in the Pisciarelli area in May 2017. The resulting mean CO2 flux is 578 ± 246 t d−1. Our data suggest a significant increase in CO2 flux at this site since 2015. Together with recent geophysical observations, this suggests a greater contribution of the magmatic source to the degassing and/or an increase in permeability at shallow levels. Thanks to the integrated path soundings, LARSS may help to give representative measurements from large regions containing different CO2 sources, including fumaroles, low-temperature vents, and degassing soils, helping to constrain the contribution of deep gases and their migration mechanisms towards the surface.

  12. Surface CO2 leakage during the first shallow subsurface CO2 release experiment


    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.


    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  13. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen


    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  14. Air-ice CO2 fluxes and pCO2 dynamics in the Arctic coastal area (Amundsen Gulf, Canada) (United States)

    Geilfus, Nicolas-Xavier; Tison, Jean Louis; Carnat, Gauthier; Else, Brent; Borges, Alberto V.; Thomas, Helmuth; Shadwick, Elizabeth; Delille, Bruno


    Sea ice covers about 7% of the Earth surface at its maximum seasonal extent. For decades sea ice was assumed to be an impermeable and inert barrier for air - sea exchange of CO2 so that global climate models do not include CO2 exchange between the oceans and the atmosphere in the polar regions. However, uptake of atmospheric CO2 by sea ice cover was recently reported raising the need to further investigate pCO2 dynamics in the marine cryosphere realm and related air-ice CO2 fluxes. In addition, budget of CO2 fluxes are poorly constrained in high latitudes continental shelves [Borges et al., 2006]. We report measurements of air-ice CO2 fluxes above the Canadian continental shelf and compare them to previous measurements carried out in Antarctica. We carried out measurements of pCO2 within brines and bulk ice, and related air-ice CO2 fluxes (chamber method) in Antarctic first year pack ice ("Sea Ice Mass Balance in Antarctica -SIMBA" drifting station experiment September - October 2007) and in Arctic first year land fast ice ("Circumpolar Flaw Lead" - CFL, April - June 2008). These 2 experiments were carried out in contrasted sites. SIMBA was carried out on sea ice in early spring while CFL was carried out in from the middle of the winter to the late spring while sea ice was melting. Both in Arctic and Antarctic, no air-ice CO2 fluxes were detected when sea ice interface was below -10°C. Slightly above -10°C, fluxes toward the atmosphere were observed. In contrast, at -7°C fluxes from the atmosphere to the ice were significant. The pCO2 of the brine exhibits a same trend in both hemispheres with a strong decrease of the pCO2 anti-correlated with the increase of sea ice temperature. The pCO2 shifted from a large over-saturation at low temperature to a marked under-saturation at high temperature. These air-ice CO2 fluxes are partly controlled by the permeability of the air-ice interface, which depends of the temperature of this one. Moreover, air-ice CO2 fluxes are

  15. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes (United States)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.


    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  16. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor (United States)

    Osuna, J. L.; Bora, M.; Bond, T.


    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  17. Isotopic versus micrometeorologic ocean CO2 fluxes: A serious conflict

    International Nuclear Information System (INIS)

    Broecker, W.S.; Ledwell, J.R.; Takahashi, T.; Weiss, R.; Merlivat, L.; Memery, L.; Tsung-Hung Peng; Jahne, B.; Otto Munnich, K.


    Eddy correlation measurements over the ocean give CO 2 fluxes an order of magnitude or more larger than expected from mass balance or more larger than expected from mass balance measurements using radiocarbon and radon 222. In particular, Smith and Jones (1985) reported large upward and downward fluxes in a surf zone at supersaturations of 15% and attributed them to the equilibration of bubbles at elevated pressures. They argue that even on the open ocean such bubble injection may create steady state CO 2 supersaturations and that inferences of fluxes based on air-sea pCO 2 differences and radon exchange velocities must be made with caution. We defend the global average CO 2 exchange rate determined by three independent radioisotopic means: prebomb radiocarbon inventories; global surveys of mixed layer radon deficits; and oceanic uptake of bomb-produced radiocarbon. We argue that laboratory and lake data do not lead one to expect fluxes as large as reported from the eddy correlation technique; that the radon method of determining exchange velocities is indeed useful for estimating CO 2 fluxes; that supersaturations of CO 2 due to bubble injection on the open ocean are negligible; that the hypothesis that Smith and Jones advance cannot account for the fluxes that they report; and that the pCO 2 values reported by Smith and Jones are likely to be systematically much too high. The CO 2 fluxes for the ocean measured to data by the micrometeorological method can be reconciled with neither the observed concentrations of radioisotopes of radon and carbon in the oceans nor the tracer experiments carried out in lakes and in wind/wave tunnels

  18. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016: a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Directory of Open Access Journals (Sweden)

    T. Oda


    Full Text Available The Open-source Data Inventory for Anthropogenic CO2 (ODIAC is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2 emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1  ×  1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016 and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1 the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC at the Oak Ridge National Laboratory (ORNL by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers; (2 the use of multiple spatial emissions proxies by fuel type such as (a nighttime light data specific to gas flaring and (b ship/aircraft fleet tracks; and (3 the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000–2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data

  19. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions (United States)

    Oda, Tomohiro; Maksyutov, Shamil; Andres, Robert J.


    The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2) emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1 × 1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location) and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016) and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1) the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers); (2) the use of multiple spatial emissions proxies by fuel type such as (a) nighttime light data specific to gas flaring and (b) ship/aircraft fleet tracks; and (3) the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000-2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data product could play an important

  20. Nocturnal soil CO2 uptake and its relationship to sub-surface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland (United States)

    Despite their prevalence, little attention has been given to quantifying aridland soil and ecosystem carbon fluxes over prolonged, annually occurring dry periods. We measured surface soil respiration (Rsoil), volumetric soil moisture and temperature in inter- and under-canopy soils, sub-surface soi...

  1. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.


    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  2. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions (United States)

    Vincent Jerald. Pacific


    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  3. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil (United States)

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  4. Nitrous oxide flux under changing temperature and CO2 (United States)

    We are investigating nitrous oxide flux seasonal trends and response to temperature and CO2 increases in a boreal peatland. Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climat...

  5. The role of metabolism in modulating CO2 fluxes in boreal lakes (United States)

    Bogard, Matthew J.; del Giorgio, Paul A.


    Lake CO2 emissions are increasingly recognized as an important component of the global CO2 cycle, yet the origin of these emissions is not clear, as specific contributions from metabolism and in-lake cycling, versus external inputs, are not well defined. To assess the coupling of lake metabolism with CO2 concentrations and fluxes, we estimated steady state ratios of gross primary production to respiration (GPP:R) and rates of net ecosystem production (NEP = GPP-R) from surface water O2 dynamics (concentration and stable isotopes) in 187 boreal lakes spanning long environmental gradients. Our findings suggest that internal metabolism plays a dominant role in regulating CO2 fluxes in most lakes, but this pattern only emerges when examined at a resolution that accounts for the vastly differing relationships between lake metabolism and CO2 fluxes. Fluxes of CO2 exceeded those from NEP in over half the lakes, but unexpectedly, these effects were most common and typically largest in a subset ( 30% of total) of net autotrophic lakes that nevertheless emitted CO2. Equally surprising, we found no environmental characteristics that distinguished this category from the more common net heterotrophic, CO2 outgassing lakes. Excess CO2 fluxes relative to NEP were best predicted by catchment structure and hydrologic properties, and we infer from a combination of methods that both catchment inputs and internal anaerobic processes may have contributed this excess CO2. Together, our findings show that the link between lake metabolism and CO2 fluxes is often strong but can vary widely across the boreal biome, having important implications for catchment-wide C budgets.

  6. Grain Yield Observations Constrain Cropland CO2 Fluxes Over Europe (United States)

    Combe, M.; de Wit, A. J. W.; Vilà-Guerau de Arellano, J.; van der Molen, M. K.; Magliulo, V.; Peters, W.


    Carbon exchange over croplands plays an important role in the European carbon cycle over daily to seasonal time scales. A better description of this exchange in terrestrial biosphere models—most of which currently treat crops as unmanaged grasslands—is needed to improve atmospheric CO2 simulations. In the framework we present here, we model gross European cropland CO2 fluxes with a crop growth model constrained by grain yield observations. Our approach follows a two-step procedure. In the first step, we calculate day-to-day crop carbon fluxes and pools with the WOrld FOod STudies (WOFOST) model. A scaling factor of crop growth is optimized regionally by minimizing the final grain carbon pool difference to crop yield observations from the Statistical Office of the European Union. In a second step, we re-run our WOFOST model for the full European 25 × 25 km gridded domain using the optimized scaling factors. We combine our optimized crop CO2 fluxes with a simple soil respiration model to obtain the net cropland CO2 exchange. We assess our model's ability to represent cropland CO2 exchange using 40 years of observations at seven European FluxNet sites and compare it with carbon fluxes produced by a typical terrestrial biosphere model. We conclude that our new model framework provides a more realistic and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal and serve as a new cropland component in the CarbonTracker Europe inverse model.

  7. CO2 fluxes from a tropical neighborhood: sources and sinks (United States)

    Velasco, E.; Roth, M.; Tan, S.; Quak, M.; Britter, R.; Norford, L.


    Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance method with emissions estimated by emissions factors and activity data for a residential neighborhood of Singapore, a highly populated and urbanized tropical city. The flux measurements were conducted during one year. No seasonal variability was found as a consequence of the constant climate conditions of tropical places; but a clear diurnal pattern with morning and late afternoon peaks in phase with the rush-hour traffic was observed. The magnitude of the fluxes throughout daylight hours is modulated by the urban vegetation, which is abundant in terms of biomass but not of land-cover (15%). Even though the carbon uptake by vegetation is significant, it does not exceed the anthropogenic emissions and the monitored district is a net CO2 source of 20.3 ton km-2 day-1 on average. The carbon uptake by vegetation is investigated as the difference between the estimated emissions and the measured fluxes during daytime.

  8. Assessing the Importance of Prior Biospheric Fluxes on Inverse Model Estimates of CO2 (United States)

    Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.


    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric sources/sinks. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in models having significant differences in the quantification of biospheric CO2 fluxes. Currently, atmospheric chemical transport models (CTM) and global climate models (GCM) use multiple different biospheric CO2 flux models resulting in large differences in simulating the global carbon cycle. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission was designed to allow for the improved understanding of the processes involved in the exchange of carbon between terrestrial ecosystems and the atmosphere, and therefore allowing for more accurate assessment of the seasonal/inter-annual variability of CO2. OCO-2 provides much-needed CO2 observations in data-limited regions allowing for the evaluation of model simulations of greenhouse gases (GHG) and facilitating global/regional estimates of "top-down" CO2 fluxes. We conduct a 4-D Variation (4D-Var) data assimilation with the GEOS-Chem (Goddard Earth Observation System-Chemistry) CTM using 1) OCO-2 land nadir and land glint retrievals and 2) global in situ surface flask observations to constrain biospheric CO2 fluxes. We apply different state-of-the-science year-specific CO2 flux models (e.g., NASA-CASA (NASA-Carnegie Ames Stanford Approach), CASA-GFED (Global Fire Emissions Database), Simple Biosphere Model version 4 (SiB-4), and LPJ (Lund-Postdam-Jena)) to assess the impact of "a priori" flux predictions to "a posteriori" estimates. We will present the "top-down" CO2 flux estimates for the year 2015 using OCO-2 and in situ observations, and a complete indirect evaluation of the a priori and a posteriori flux estimates using independent in situ observations. We will also present our assessment of the variability of "top-down" CO2 flux estimates when using different

  9. Grazing effects on ecosystem CO2 fluxes differ among temperate steppe types in Eurasia. (United States)

    Hou, Longyu; Liu, Yan; Du, Jiancai; Wang, Mingya; Wang, Hui; Mao, Peisheng


    Grassland ecosystems play a critical role in regulating CO2 fluxes into and out of the Earth's surface. Whereas previous studies have often addressed single fluxes of CO2 separately, few have addressed the relation among and controls of multiple CO2 sub-fluxes simultaneously. In this study, we examined the relation among and controls of individual CO2 fluxes (i.e., GEP, NEP, SR, ER, CR) in three contrasting temperate steppes of north China, as affected by livestock grazing. Our findings show that climatic controls of the seasonal patterns in CO2 fluxes were both individual flux- and steppe type-specific, with significant grazing impacts observed for canopy respiration only. In contrast, climatic controls of the annual patterns were only individual flux-specific, with minor grazing impacts on the individual fluxes. Grazing significantly reduced the mean annual soil respiration rate in the typical and desert steppes, but significantly enhanced both soil and canopy respiration in the meadow steppe. Our study suggests that a reassessment of the role of livestock grazing in regulating GHG exchanges is imperative in future studies.

  10. An updated observation-based global monthly gridded sea surface pCO2 and air-sea CO2 flux product from 1982 through 2015 and its monthly climatology (NCEI Accession 0160558) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The observation-based pCO2 fields were created using a 2-step neural network method extensively described and validated in Landschützer et al. 2013, 2014, 2016. The...

  11. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations (United States)

    Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.


    We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.

  12. The role of vegetation in the CO2 flux from a tropical urban neighbourhood (United States)

    Velasco, E.; Roth, M.; Tan, S. H.; Quak, M.; Nabarro, S. D. A.; Norford, L.


    Urban surfaces are usually net sources of CO2. Vegetation can potentially have an important role in reducing the CO2 emitted by anthropogenic activities in cities, particularly when vegetation is extensive and/or evergreen. Negative daytime CO2 fluxes, for example have been observed during the growing season at suburban sites characterized by abundant vegetation and low population density. A direct and accurate estimation of carbon uptake by urban vegetation is difficult due to the particular characteristics of the urban ecosystem and high variability in tree distribution and species. Here, we investigate the role of urban vegetation in the CO2 flux from a residential neighbourhood in Singapore using two different approaches. CO2 fluxes measured directly by eddy covariance are compared with emissions estimated from emissions factors and activity data. The latter includes contributions from vehicular traffic, household combustion, soil respiration and human breathing. The difference between estimated emissions and measured fluxes should approximate the biogenic flux. In addition, a tree survey was conducted to estimate the annual CO2 sequestration using allometric equations and an alternative model of the metabolic theory of ecology for tropical forests. Palm trees, banana plants and turfgrass were also included in the survey with their annual CO2 uptake obtained from published growth rates. Both approaches agree within 2% and suggest that vegetation captures 8% of the total emitted CO2 in the residential neighbourhood studied. A net uptake of 1.4 ton km-2 day-1 (510 ton km-2 yr-1 ) was estimated from the difference between the daily CO2 uptake by photosynthesis (3.95 ton km-2 ) and release by respiration (2.55 ton km-2). The study shows the importance of urban vegetation at the local scale for climate change mitigation in the tropics.

  13. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion (United States)

    Saeki, Tazu; Patra, Prabir K.


    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  14. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in th Greenland Sea and the Barents Sea

    International Nuclear Information System (INIS)

    Nakaoka, Shin-Ichiro; Aoki, Shuji; Nakazawa, Takakiyo; Yoshikawa-Inoue, Hisayuki


    In order to elucidate the seasonal and inter annual variations of oceanic CO 2 uptake in the Greenland Sea and the Barents Sea, the partial pressure of CO 2 in the surface ocean (pCO 2 sea ) was measured in all seasons between 1992 and 2001. We derived monthly varying relationships between pCO 2 sea and sea surface temperature (SST) and combined them with the SST data from the NCEP/NCAR reanalysis to determine pCO 2 sea and air-sea CO 2 flux in these seas. The pCO 2 sea values were normalized to the year 1995 by assuming that pCO 2 sea increased at the same growth rate (1.5 μatm/yr) of the pCO 2 in the air (pCO 2 air ) between 1992 and 2001. In 1995, the annual net air-sea CO 2 fluxes were evaluated to be 52 ± 20 gC/m 2 /yr in the Greenland Sea and 46 ± 18 gC/m 2 /yr in the Barents Sea. The CO 2 flux into the ocean reached its maximum in winter and minimum in summer. The wind speed and (delta)pCO 2 (=pCO 2 air -pCO 2 sea ) exerted a greater influence on the seasonal variation than the sea ice coverage. The annual CO 2 uptake examined in this study (70-80 deg N, 20 deg W-40 deg E) was estimated to be 0.050 ± 0.020 GtC/yr in 1995. The inter annual variation in the annual CO 2 uptake was found to be positively correlated with the North Atlantic Oscillation Index (NAOI) via wind strength but negatively correlated with (delta)pCO 2 and the sea ice coverage. The present results indicate that the variability in wind speed and sea ice coverage play a major role, while that in (delta)pCO 2 plays a minor role, in determining the interannual variation of CO 2 uptake in this area

  15. The Effect of Breaking Waves on CO_2 Air-Sea Fluxes in the Coastal Zone (United States)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.; García-Nava, Héctor


    The influence of wave-associated parameters controlling turbulent CO_2 fluxes through the air-sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air-sea CO_2 fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of CO_2 with a mean flux of -1.3 μmol m^{-2}s^{-1} (-41.6 mol m^{-2}yr^{-1} ). The results of a quantile-regression analysis computed between the CO_2 flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.

  16. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. (United States)

    Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo; Hutchings, Jack; Natali, Susan M; Pegoraro, Elaine; Salmon, Verity G; Schädel, Christina; Webb, Elizabeth E; Schuur, Edward A G


    Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO 2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (R eco ), gross primary productivity (GPP), and net summer CO 2 storage (NEE). Over 7 years R eco , GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, R eco , GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed R eco , GPP, and NEE. However R eco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher R eco in deeply thawed areas during summer months was balanced by GPP. Summer CO 2 flux across treatments fit a single quadratic relationship that captured the functional response of CO 2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO 2 flux: plant growth and water table dynamics. Nonsummer R eco models estimated that the area was an annual CO 2 source during all years of observation. Nonsummer CO 2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO 2 source. © 2017 John Wiley & Sons Ltd.

  17. Evaluating Humidity and Sea Salt Disturbances on CO2 Flux Measurements

    DEFF Research Database (Denmark)

    Nilsson, Erik; Bergström, Hans; Rutgersson, Anna


    Global oceans are an important sink of atmospheric carbon dioxide (CO2). Therefore, understanding the air–sea flux of CO2 is a vital part in describing the global carbon balance. Eddy covariance (EC) measurements are often used to study CO2 fluxes from both land and ocean. Values of CO2 are usual...

  18. Land use and rainfall effect on soil CO2 fluxes in a Mediterranean agroforestry system (United States)

    Quijano, Laura; Álvaro-Fuentes, Jorge; Lizaga, Iván; Navas, Ana


    (60.8 mg CO2-C m-2 h-1) than before (65.4 mg CO2-C m-2 h-1). The mean of topsoil water content before rainfall events was 19.7% and after was 28.9%. Soil CO2 fluxes increased on the following days after the rainfall event as the soil dried out but with lower emissions just after the events. This pattern was attributed to the control of soil moisture on microbial activity that affects CO2 production via soil respiration. CO2 measurements from soil surface are useful to evaluate the potential for soil respiration and soil carbon dioxide production capacity under different land use and environmental conditions for a better understanding of C cycling.

  19. Diffuse CO2 fluxes from Santiago and Congro volcanic lakes (São Miguel, Azores archipelago) (United States)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael


    Diffuse CO2 degassing occurring in Santiago and Congro lakes, both located in depressions associated to maars from São Miguel Island (Azores, Portugal), was studied through detailed flux measurements. Four sampling campaigns were developed between 2013 and 2016 in each water body, split by the cold and wet seasons. São Miguel has an area of 744.6 km2, being the largest island of the archipelago. The geology of the island is dominated by three quiescent central volcanoes (Sete Cidades, Fogo and Furnas), linked by volcanic fissural zones (Picos and Congro Fissural Volcanic systems). The oldest volcanic systems of the island are located in its eastern part (Povoação-Nordeste). Santiago lake, with a surface area of 0.26 km2 and a depth of 30.5 m, is located inside a maar crater in the Sete Cidades volcano at an altitude of 355 m. The watershed of the lake has an area of 0.97 km2 and a surface flow estimated as 1.54x10 m3/a. A total of 1612 CO2 flux measurements using the accumulation chamber method were made at Santiago lake, 253 in the first campaign (November 2013), and 462, 475 and 422 in the three other campaigns, respectively, in April 2014, September 2016 and December 2016. The total CO2 flux estimated for this lake varies between 0.4 t d-1 and 0.59 t d-1, for the surveys performed, respectively, in November 2013 and September 2016; higher CO2 outputs of 1.57 and 5.87 t d-1 were calculated for the surveys carried out in April 2014 and December 2016. These higher CO2 emissions were associated with a period without water column stratification. Similarly to Santiago lake, Congro lake is located inside a maar, in the Congro Fissural Volcanic system, and has a surface area of 0.04 km2 with 18.5 m depth and a storage of about 2.4x105 m3/a. The lake, located at an altitude of 420 m, is fed by a watershed with an area of 0.33 km2 and a runoff estimated as about 8x104 m3/a. In Congro lake a total of 713 CO2 flux measurements were performed during four surveys from

  20. Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study

    Directory of Open Access Journals (Sweden)

    A. M. Michalak


    Full Text Available A series of synthetic data experiments is performed to investigate the ability of a regional atmospheric inversion to estimate grid-scale CO2 fluxes during the growing season over North America. The inversions are performed within a geostatistical framework without the use of any prior flux estimates or auxiliary variables, in order to focus on the atmospheric constraint provided by the nine towers collecting continuous, calibrated CO2 measurements in 2004. Using synthetic measurements and their associated concentration footprints, flux and model-data mismatch covariance parameters are first optimized, and then fluxes and their uncertainties are estimated at three different temporal resolutions. These temporal resolutions, which include a four-day average, a four-day-average diurnal cycle with 3-hourly increments, and 3-hourly fluxes, are chosen to help assess the impact of temporal aggregation errors on the estimated fluxes and covariance parameters. Estimating fluxes at a temporal resolution that can adjust the diurnal variability is found to be critical both for recovering covariance parameters directly from the atmospheric data, and for inferring accurate ecoregion-scale fluxes. Accounting for both spatial and temporal a priori covariance in the flux distribution is also found to be necessary for recovering accurate a posteriori uncertainty bounds on the estimated fluxes. Overall, the results suggest that even a fairly sparse network of 9 towers collecting continuous CO2 measurements across the continent, used with no auxiliary information or prior estimates of the flux distribution in time or space, can be used to infer relatively accurate monthly ecoregion scale CO2 surface fluxes over North America within estimated uncertainty bounds. Simulated random transport error is shown to decrease the quality of flux estimates in under-constrained areas at the ecoregion scale, although the uncertainty bounds remain realistic. While these synthetic

  1. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan


    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  2. Climatic sensitivity of dryland soil CO2 fluxes differs dramatically with biological soil crust successional state (United States)

    Tucker, Colin; Ferrenberg, Scott; Reed, Sasha C.


    Arid and semiarid ecosystems make up approximately 41% of Earth’s terrestrial surface and are suggested to regulate the trend and interannual variability of the global terrestrial carbon (C) sink. Biological soil crusts (biocrusts) are common dryland soil surface communities of bryophytes, lichens, and/or cyanobacteria that bind the soil surface together and that may play an important role in regulating the climatic sensitivity of the dryland C cycle. Major uncertainties exist in our understanding of the interacting effects of changing temperature and moisture on CO2 uptake (photosynthesis) and loss (respiration) from biocrust and sub-crust soil, particularly as related to biocrust successional state. Here, we used a mesocosm approach to assess how biocrust successional states related to climate treatments. We subjected bare soil (Bare), early successional lightly pigmented cyanobacterial biocrust (Early), and late successional darkly pigmented moss-lichen biocrust (Late) to either ambient or + 5°C above ambient soil temperature for 84 days. Under ambient temperatures, Late biocrust mesocosms showed frequent net uptake of CO2, whereas Bare soil, Early biocrust, and warmed Late biocrust mesocosms mostly lost CO2 to the atmosphere. The inhibiting effect of warming on CO2 exchange was a result of accelerated drying of biocrust and soil. We used these data to parameterize, via Bayesian methods, a model of ecosystem CO2 fluxes, and evaluated the model with data from an autochamber CO2 system at our field site on the Colorado Plateau in SE Utah. In the context of the field experiment, the data underscore the negative effect of warming on fluxes both biocrust CO2 uptake and loss—which, because biocrusts are a dominant land cover type in this ecosystem, may extend to ecosystem-scale C cycling.

  3. Quantitative comparison of in situ soil CO2 flux measurement methods (United States)

    Jennifer D. Knoepp; James M. Vose


    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  4. Ocean-Atmosphere CO2 Fluxes in the North Atlantic Subtropical Gyre: Association with Biochemical and Physical Factors during Spring

    Directory of Open Access Journals (Sweden)

    Macarena Burgos


    Full Text Available Sea surface partial pressure of CO2 (pCO2 was measured continuously in a transect of the North Atlantic subtropical gyre between Santo Domingo, Dominican Republic (18.1° N, 68.5° W and Vigo, Spain (41.9° N, 11.8° W during spring 2011. Additional biogeochemical and physical variables measured to identify factors controlling the surface pCO2 were analyzed in discrete samples collected at 16 sites along the transect at the surface and to a depth of 200 m. Sea surface pCO2 varied between 309 and 662 μatm, and showed differences between the western and eastern subtropical gyre. The subtropical gyre acted as a net CO2 sink, with a mean flux of −5.5 ± 2.2 mmol m−2 day−1. The eastern part of the transect, close to the North Atlantic Iberian upwelling off the Galician coast, was a CO2 source with an average flux of 33.5 ± 9.0 mmol m−2 day−1. Our results highlight the importance of making more surface pCO2 observations in the area located east of the Azores Islands since air-sea CO2 fluxes there are poorly studied.

  5. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. (United States)

    Burkart, S; Manderscheid, R; Wittich, K-P; Löpmeier, F J; Weigel, H-J


    An arable crop rotation (winter barley-sugar beet-winter wheat) was exposed to elevated atmospheric CO(2) concentrations ([CO(2) ]) using a FACE facility (Free-Air CO(2) Enrichment) during two rotation periods. The atmospheric [CO(2) ] of the treatment plots was elevated to 550 ppm during daylight hours (T>5°C). Canopy transpiration (E(C) ) and conductance (G(C) ) were measured at selected intervals (>10% of total growing season) using a dynamic CO(2) /H(2) O chamber measuring system. Plant available soil water content (gravimetry and TDR probes) and canopy microclimate conditions were recorded in parallel. Averaged across both growing seasons, elevated [CO(2) ] reduced E(C) by 9%, 18% and 12%, and G(C) by 9%, 17% and 12% in barley, sugar beet and wheat, respectively. Both global radiation (Rg) and vapour pressure deficit (VPD) were the main driving forces of E(C) , whereas G(C) was mostly related to Rg. The responses of E(C) and especially G(C) to [CO(2) ] enrichment were insensitive to weather conditions and leaf area index. However, differences in LAI between plots counteracted the [CO(2) ] impact on E(C) and thus, at least in part, explained the variability of seasonal [CO(2) ] responses between crops and years. As a consequence of lower transpirational canopy water loss, [CO(2) ] enrichment increased plant available soil water content in the course of the season by ca. 15 mm. This was true for all crops and years. Lower transpirational cooling due to a [CO(2) ]-induced reduction of E(C) increased canopy surface and air temperature by up to 2 °C and 0.5 °C, respectively. This is the first study to address effects of FACE on both water fluxes at canopy scale and water status of a European crop rotation. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Comparing inversion techniques for constraining CO2 fluxes in the Brazilian Amazon Basin with aircraft observations (United States)

    Chow, V. Y.; Gerbig, C.; Longo, M.; Koch, F.; Nehrkorn, T.; Eluszkiewicz, J.; Ceballos, J. C.; Longo, K.; Wofsy, S. C.


    The Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program spanned the dry to wet and wet to dry transition seasons in November 2008 & May 2009 respectively. It resulted in ~150 vertical profiles covering the Brazilian Amazon Basin (BAB). With the data we attempt to estimate a carbon budget for the BAB, to determine if regional aircraft experiments can provide strong constraints for a budget, and to compare inversion frameworks when optimizing flux estimates. We use a LPDM to integrate satellite-, aircraft-, & surface-data with mesoscale meteorological fields to link bottom-up and top-down models to provide constraints and error bounds for regional fluxes. The Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by meteorological fields from BRAMS, ECMWF, and WRF are coupled to a biosphere model, the Vegetation Photosynthesis Respiration Model (VPRM), to determine regional CO2 fluxes for the BAB. The VPRM is a prognostic biosphere model driven by MODIS 8-day EVI and LSWI indices along with shortwave radiation and temperature from tower measurements and mesoscale meteorological data. VPRM parameters are tuned using eddy flux tower data from the Large-Scale Biosphere Atmosphere experiment. VPRM computes hourly CO2 fluxes by calculating Gross Ecosystem Exchange (GEE) and Respiration (R) for 8 different vegetation types. The VPRM fluxes are scaled up to the BAB by using time-averaged drivers (shortwave radiation & temperature) from high-temporal resolution runs of BRAMS, ECMWF, and WRF and vegetation maps from SYNMAP and IGBP2007. Shortwave radiation from each mesoscale model is validated using surface data and output from GL 1.2, a global radiation model based on GOES 8 visible imagery. The vegetation maps are updated to 2008 and 2009 using landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil. A priori fluxes modeled by STILT-VPRM are optimized using data from BARCA, eddy covariance sites, and flask measurements. The

  7. Soil methane and CO2 fluxes in rainforest and rubber plantations (United States)

    Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu


    Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old

  8. [Periodic characteristics of soil CO2 flux in mangrove wetland of Quanzhou Bay, China]. (United States)

    Wang, Zong-Lin; Wu, Yan-You; Xing, De-Ke; Liu, Rong-Cheng; Zhou Gui-Yao; Zhao, Kuan


    Mangrove wetland ecosystem in Quanzhou Bay in Fujian Province is newly restored with a regular semidiurnal tide. Soil CO2 concentration in the mangrove soil was determined by Li-840 portable gas analyzer, and periodic characteristics of soil CO2 emission was investigated. The soil CO2 flux in the wetland soil was relatively small because the mangrove was young. The change trends of soil CO2 concentration and flux with time were consistent in Kandelia obovate and Aegiceras corniculatum communities in the intertidal periods. The CO2 concentration and flux in the wetland soil were 557.08-2211.50 μmol · mol(-1) and -0.21-0.40 μmol · m(-2) · s(-1), respectively. The average CO2 flux in the wetland soil was 0.26 μmol · mol(-1) · s(-1) in the intertidal of morning and evening tides (early intertidal) and -0.01 μmol · m(-2) · s(-1) in the intertidal of evening and morning tides (late intertidal), respectively. At the same time after the tide, the concentration and flux of CO2 in the mangrove soil in early intertidal was higher than that in late intertidal. In early intertidal, the relationship between the flux and instantaneous concentration of CO2 in the wetland soil was expressed as a bell-shaped curve, and CO2 flux increased first and then decreased with the increasing CO2 concentration, which was in conformity with Gaussian distribution.

  9. Effects of climate factors and vegetation on the CO2 fluxes and δ13C from re-established grassland (United States)

    Bezyk, Yaroslav; Dorodnikov, Maxim; Sówka, Izabela


    The relationship between stable carbon isotope composition (δ13C -CO2) of soil CO2 flux, vegetation cover and weather conditions was investigated in a short-term campaign at a temperate re-established grassland in Germany. During August-September 2016, we measured surface CO2 flux with a closed-chamber method at high and low soil moisture content (`wet', `dry'), with and without above ground vegetation (`planted', `clear-cut') and estimated the effects of treatments on respective δ13C -CO2 values. The concentration and stable carbon isotope composition of CO2 were determined using the gas chromatography and mass spectrometry analyses. The δ13C -CO2 of the soil fluxes decreased over sampling time for the `dry-warm' conditions and canopy manipulation. The ecosystem-derived δ13C -CO2 values (corrected for the atmospheric δ13C -CO2) which included predominately soil-and rhizosphere respiration were -26.2 ± 0.8‰ for the `dry-warm' conditions and decreased down to -28.1 ± 1.4‰ over a period of 28 days from late August to the end of September. The decrease coincided with the lowering of CO2 flux and could be attributed to changes in plant physiological processes at the end of the vegetation season. Though the removal of shoots did not significantly affect the δ13C -CO2 values as compared with the control, the pattern of further δ13C -CO2 decrease (down to -28.8 ± 0.8‰) supported the role of living vegetation in a contribution of 13C-enriched CO2 to the ecosystem respiration.

  10. CO2 Fluxes and Concentrations in a Residential Area in the Southern Hemisphere (United States)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.


    While cities are generally major sources of anthropogenic carbon dioxide (CO2) emissions, recent research has shown that parts of urban areas may also act as CO2 sinks due to CO2 uptake by vegetation. However, currently available results are related to a large degree of uncertainty due to the limitations of the applied methods and the limited number of studies available from urban areas, particularly from the southern hemisphere. In this study, we explore the potential of eddy covariance and tracer measurements (13C and 14C isotopes of CO2) to quantify and partition CO2 fluxes and concentrations in a residential urban area in Auckland, New Zealand. Based on preliminary results from autumn and winter (March to July 2014) the residential area is a small source of CO2 (0.11 mol CO2 m-2 day-1). CO2 fluxes and concentrations follow a distinct diurnal cycle with a morning peak between 7:00 and 9:00 (max: 0.25 mol CO2 m-2 day-1/412 ppm) and midday low with negative CO2 fluxes (min: -0.17 mol CO2 m-2 day-1/392 ppm) between 10:00 and 15:00 local time, likely due to photosynthetic CO2 uptake by local vegetation. Soil CO2 efflux may explain that CO2 concentrations increase and remain high (401 ppm) throughout the night. Mean diurnal winter δ13C values are in anti-phase with CO2 concentrations and vary between -9.0 - -9.7‰. The depletion of δ13C compared to clean atmospheric air (-8.2‰) is likely a result of local CO2 sources dominated by gasoline combustion (appr. 60%) during daytime. A sector analysis (based on prevailing wind) of CO2 fluxes and concentrations indicates lower CO2 fluxes and concentrations from the vegetation-dominated sector, further demonstrating the influence of vegetation on local CO2 concentrations. These results provide an insight into the temporal and spatial variability CO2 fluxes/concentrations and potential CO2 sinks and sources from a city in the southern hemisphere and add valuable information to the global database of urban CO2 fluxes.

  11. On the use of satellite-derived CH4 : CO2 columns in a joint inversion of CH4 and CO2 fluxes

    NARCIS (Netherlands)

    Pandey, S.


    We present a method for assimilating total column CH4 : CO2 ratio measurements from satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach. Unlike conventional approaches, in which retrieved CH4 : CO2 are multiplied by model-derived total column CO2 and only the

  12. Comparisons of a Quantum Annealing and Classical Computer Neural Net Approach for Inferring Global Annual CO2 Fluxes over Land (United States)

    Halem, M.; Radov, A.; Singh, D.


    Investigations of mid to high latitude atmospheric CO2 show growing amplitudes in seasonal variations over the past several decades. Recent high-resolution satellite measurements of CO2 concentration are now available for three years from the Orbiting Carbon Observatory-2. The Atmospheric Radiation Measurement (ARM) program of DOE has been making long-term CO2-flux measurements (in addition to CO2 concentration and an array of other meteorological quantities) at several towers and mobile sites located around the globe at half-hour frequencies. Recent papers have shown CO2 fluxes inferred by assimilating CO2 observations into ecosystem models are largely inconsistent with station observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. Thus, new approaches for calculating CO2-flux for assimilation into land surface models are necessary for improving the prediction of annual carbon uptake. In this study, we calculate and compare the predicted CO2 fluxes results employing a Feed Forward Backward Propagation Neural Network model on two architectures, (i) an IBM Minsky Computer node and (ii) a hybrid version of the ARC D-Wave quantum annealing computer. We compare the neural net results of predictions of CO2 flux from ARM station data for three different DOE ecosystem sites; an arid plains near Oklahoma City, a northern arctic site at Barrows AL, and a tropical rainforest site in the Amazon. Training times and predictive results for the calculating annual CO2 flux for the two architectures for each of the three sites are presented. Comparative results of predictions as measured by RMSE and MAE are discussed. Plots and correlations of observed vs predicted CO2 flux are also presented for all three sites. We show the estimated training times for quantum and classical calculations when extended to calculating global annual Carbon Uptake over land. We also

  13. Soil CO2 flux in response to wheel traffic in a no-till system (United States)

    Measurements of soil CO2 flux in the absence of living plants can be used to evaluate the effectiveness of soil management practices for C sequestration, but field CO2 flux is spatially variable and may be affected by soil compaction and percentage of total pore space filled with water (%WFPS). The ...

  14. Seasonal soil CO2 flux under big sagebrush (Artemisia tridentata Nutt.) (United States)

    Michael C. Amacher; Cheryl L. Mackowiak


    Soil respiration is a major contributor to atmospheric CO2, but accurate landscape-scale estimates of soil CO2 flux for many ecosystems including shrublands have yet to be established. We began a project to measure, with high spatial and temporal resolution, soil CO2 flux in a stand (11 x 25 m area) of big sagebrush (Artemisia tridentata Nutt.) at the Logan, Utah,...

  15. Retrieval of average CO2 fluxes by combining in situ CO2 measurements and backscatter lidar information (United States)

    Gibert, Fabien; Schmidt, Martina; Cuesta, Juan; Ciais, Philippe; Ramonet, Michel; Xueref, IrèNe; Larmanou, Eric; Flamant, Pierre Henri


    The present paper deals with a boundary layer budgeting method which makes use of observations from various in situ and remote sensing instruments to infer regional average net ecosystem exchange (NEE) of CO2. Measurements of CO2 within and above the atmospheric boundary layer (ABL) by in situ sensors, in conjunction with a precise knowledge of the change in ABL height by lidar and radiosoundings, enable to infer diurnal and seasonal NEE variations. Near-ground in situ CO measurements are used to discriminate natural and anthropogenic contributions of CO2 diurnal variations in the ABL. The method yields mean NEE that amounts to 5 μmol m-2 s-1 during the night and -20 μmol m-2 s-1 in the middle of the day between May and July. A good agreement is found with the expected NEE accounting for a mixed wheat field and forest area during winter season, representative of the mesoscale ecosystems in the Paris area according to the trajectory of an air column crossing the landscape. Daytime NEE is seen to follow the vegetation growth and the change in the ratio diffuse/direct radiation. The CO2 vertical mixing flux during the rise of the atmospheric boundary layer is also estimated and seems to be the main cause of the large decrease of CO2 mixing ratio in the morning. The outcomes on CO2 flux estimate are compared to eddy-covariance measurements on a barley field. The importance of various sources of error and uncertainty on the retrieval is discussed. These errors are estimated to be less than 15%; the main error resulted from anthropogenic emissions.

  16. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska (United States)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.


    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  17. Coastal upwelling fluxes of O2, N2O, and CO2 assessed from continuous atmospheric observations at Trinidad, California

    Directory of Open Access Journals (Sweden)

    T. J. Lueker


    Full Text Available Continuous atmospheric records of O2/N2, CO2 and N2O obtained at Trinidad, California document the effects of air-sea exchange during coastal upwelling and plankton bloom events. The atmospheric records provide continuous observations of air-sea fluxes related to synoptic scale upwelling events over several upwelling seasons. Combined with satellite, buoy and local meteorology data, calculated anomalies in O2/N2 and N2O were utilized in a simple atmospheric transport model to compute air-sea fluxes during coastal upwelling. CO2 fluxes were linked to the oceanic component of the O2 fluxes through local hydrographic data and estimated as a function of upwelling intensity (surface ocean temperature and wind speed. Regional air-sea fluxes of O2/N2, N2O, and CO2 during coastal upwelling were estimated with the aid of satellite wind and SST data. Upwelling CO2 fluxes were found to represent ~10% of export production along the northwest coast of North America. Synoptic scale upwelling events impact the net exchange of atmospheric CO2 along the coastal margin, and will vary in response to the frequency and duration of alongshore winds that are subject to climate change.

  18. Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn

    Directory of Open Access Journals (Sweden)

    A. F. Ríos


    Full Text Available A total of fourteen hydrographic cruises from 2000 to 2008 were conducted during the spring and autumn seasons between Spain and the Southern Ocean under the framework of the Spanish research project FICARAM. The underway measurements were processed and analysed to describe the meridional air-sea CO2 fluxes (FCO2 in the covered sector of the Atlantic Ocean. The data has been grouped into different biogeochemical oceanographic provinces based on thermohaline characteristics. The spatial and temporal distributions of FCO2 followed expected distributions and annual trends reproducing the recent climatological ΔfCO2 estimations with a mean difference of −3 ± 18 μatm (Takahashi et al., 2009. The reduction in the CO2 saturation along the meridional FICARAM cruises represented an increase of 0.02 ± 0.14 mol m−2 yr−1 in the ocean uptake of atmospheric CO2. The subtropical waters in both Hemispheres acted as a sink of atmospheric CO2 during the successive spring seasons and as a source in autumn. The coarse reduction of the ocean uptake of atmospheric CO2 observed in the North Atlantic Ocean was linked to conditions of negative phase of the North Atlantic Oscillation that prevailed during the FICARAM period. Surface waters in the North Equatorial Counter Current revealed a significant long-term decrease of sea surface salinity of −0.16 ± 0.01 yr−1 coinciding with a declination of −3.5 ± 0.9 μatm yr−1 in the air–sea disequilibrium of CO2 fugacity and a rise of oceanic CO2 uptake of −0.09 ± 0.03 mol m−2 yr−1. The largest CO2 source was located in the equatorial upwelling system. These tropical waters that reached emissions of 0.7 ± 0.5 and 1.0 ± 0.7 mol m−2 y−1 in spring and autumn, respectively, showed an interannual warming of 0.11 ± 0.03 °C yr−1 and a wind speed decrease of −0.58 ± 0.14 m s−1 yr−1 in spring cruises which suggest the weakening of upwelling events associated with warm El Niño – Southern

  19. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?


    Couldrey, Matthew; Oliver, Kevin; Yool, Andrew; Halloran, Paul; Achterberg, Eric


    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual...

  20. BOREAS TF-3 Automated Chamber CO2 Flux Data from the NSA-OBS (United States)

    Goulden, Michael L.; Crill, Patrick M.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)


    The BOReal Ecosystem Atmosphere Study Tower Flux (BOREAS TF-3) and Trace Gas Biogeochemistry (TGB-1) teams collected automated CO2 chamber flux data in their efforts to fully describe the CO2 flux at the Northern Study Area-Old Black Spruce (NSA-OBS) site. This data set contains fluxes of CO2 at the NSA-OBS site measured using automated chambers. In addition to reporting the CO2 flux, it reports chamber air temperature, moss temperature, and light levels during each measurement. The data set covers the period from 23-Sep-1995 through 26-Oct-1995 and from 28-May-1996 through 21-Oct-1996. The data are stored in tabular ASCII files.

  1. Kinetics of CO(2) fluxes outgassing from champagne glasses in tasting conditions: the role of temperature. (United States)

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe


    Measurements of CO(2) fluxes outgassing from a flute poured with a standard Champagne wine initially holding about 11 g L(-1) of dissolved CO(2) were presented, in tasting conditions, all along the first 10 min following the pouring process. Experiments were performed at three sets of temperature, namely, 4 degrees C, 12 degrees C, and 20 degrees C, respectively. It was demonstrated that the lower the champagne temperature, the lower CO(2) volume fluxes outgassing from the flute. Therefore, the lower the champagne temperature, the lower its progressive loss of dissolved CO(2) concentration with time, which constitutes the first analytical proof that low champagne temperatures prolong the drink's chill and helps retains its effervescence. A correlation was also proposed between CO(2) volume fluxes outgassing from the flute poured with champagne and its continuously decreasing dissolved CO(2) concentration. Finally, the contribution of effervescence to the global kinetics of CO(2) release was discussed and modeled by the use of results developed over recent years. The temperature dependence of the champagne viscosity was found to play a major role in the kinetics of CO(2) outgassing from a flute. On the basis of this bubbling model, the theoretical influence of champagne temperature on CO(2) volume fluxes outgassing from a flute was discussed and found to be in quite good accordance with our experimental results.

  2. Diurnal variability of CO2 flux at coastal zone of Taiwan based on eddy covariance observation (United States)

    Chien, Hwa; Zhong, Yao-Zhao; Yang, Kang-Hung; Cheng, Hao-Yuan


    In this study, we employed shore-based eddy covariance systems for a continuous measurement of the coastal CO2 flux near the northwestern coast of Taiwan from 2011 to 2015. To ensure the validity of the analysis, the data was selected and filtered with a footprint model and an empirical mode decomposition method. The results indicate that the nearshore air-sea and air-land CO2 fluxes exhibited a significant diurnal variability and a substantial day-night difference. The net air-sea CO2 flux was -1.75 ± 0.98 μmol-C m-2 s-1, whereas the net air-land CO2 flux was 0.54 ± 7.35 μmol-C m-2 s-1, which indicated that in northwestern Taiwan, the coastal water acts as a sink of atmospheric CO2 but the coastal land acts as a source. The Random Forest Method was applied to hierarchize the influence of Chl-a, SST, DO, pH and U10 on air-sea CO2 fluxes. The result suggests that the strength of the diurnal air-sea CO2 flux is strongly influenced by the local wind speed.

  3. Innovative CO2 Analyzer Technology for the Eddy Covariance Flux Monitor, Phase I (United States)

    National Aeronautics and Space Administration — We propose to build and evaluate NDIR Analyzers that can observe eddy covariance flux of CO2 from unmanned airborne platforms. For both phases, a total of four...

  4. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals (United States)

    Philip, Sajeev; Johnson, Matthew S.


    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  5. Transpiration and CO2 fluxes of a pine forest: modelling the undergrowth effect

    Directory of Open Access Journals (Sweden)

    V. Rivalland


    Full Text Available A modelling study is performed in order to quantify the relative effect of allowing for the physiological properties of an undergrowth grass sward on total canopy water and carbon fluxes of the Le-Bray forest (Les-Landes, South-western France. The Le-Bray forest consists of maritime pine and an herbaceous undergrowth (purple moor-grass, which is characterised by a low stomatal control of transpiration, in contrast to maritime pine. A CO2-responsive land surface model is used that includes responses of woody and herbaceous species to water stress. An attempt is made to represent the properties of the undergrowth vegetation in the land surface model Interactions between Soil, Biosphere, and Atmosphere, CO2-responsive, ISBA-A-gs. The new adjustment allows for a fairly different environmental response between the forest canopy and the understory in a simple manner. The model's simulations are compared with long term (1997 and 1998 micro-meteorological measurements over the Le-Bray site. The fluxes of energy, water and CO2, are simulated with and without the improved representation of the undergrowth vegetation, and the two simulations are compared with the observations. Accounting for the undergrowth permits one to improve the model's scores. A simple sensitivity experiment shows the behaviour of the model in response to climate change conditions, and the understory effect on the water balance and carbon storage of the forest. Accounting for the distinct characteristics of the undergrowth has a substantial and positive effect on the model accuracy and leads to a different response to climate change scenarios.

  6. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology (United States)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.


    Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.

  7. Soil CO 2 fluxes from direct seeding rice fields under two tillage practices in central China (United States)

    Li, Cheng-fang; Kou, Zhi-kui; Yang, Jin-hua; Cai, Ming-li; Wang, Jin-ping; Cao, Cou-gui


    Agricultural practices affect the production and emission of carbon dioxide (CO 2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO 2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha -1) on soil CO 2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO 2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO 2 emissions while tillage affected soil CO 2 emissions, where NT had similar soil CO 2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO 2 emissions. Cumulative CO 2 emissions were 2079-2245 kg CO 2-C ha -1 from NT treatments, and 2084-2141 kg CO 2-C ha -1 from CT treatments in 2008, and were 1257-1401 kg CO 2-C ha -1 from NT treatments, and 1003-1034 kg CO 2-C ha -1 from CT treatments in 2009, respectively. Cumulative CO 2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO 2 fluxes were significantly related to soil temperature with correlation coefficients ( R) of 0.67-0.87 in 2008 and 0.69-0.85 in 2009; moreover, the Q 10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO 2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.

  8. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models (United States)

    Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.


    The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.

  9. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes (United States)

    Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian


    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.

  10. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Melling, Lulie; Hatano, Ryusuke


    Soil CO 2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO 2 flux ranged from 100 to 533 mg C/m 2 /h for the forest ecosystem, 63 to 245 mg C/m 2 /h for the sago and 46 to 335 mg C/m 2 /h for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO 2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO 2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C/m 2 /yr followed by oil palm at 1.5 kg C/m 2 /yr and sago at 1.1 kg C/m 2 /yr. The different dominant controlling factors in CO 2 flux among the studied ecosystems suggested that land use affected the exchange of CO 2 between tropical peatland and the atmosphere

  11. Eddy covariance observations of surface leakage during shallow subsurface CO2 releases (United States)

    Lewicki, Jennifer L.; Hilley, George E.; Fischer, Marc L.; Pan, Lehua; Oldenburg, Curtis M.; Dobeck, Laura; Spangler, Lee


    We tested the ability of eddy covariance (EC) to detect, locate, and quantify surface CO2 flux leakage signals within a background ecosystem. For 10 days starting on 9 July 2007, and for 7 days starting on 3 August 2007, 0.1 (Release 1) and 0.3 (Release 2) t CO2 d-1, respectively, were released from a horizontal well ˜100 m in length and ˜2.5 m in depth located in an agricultural field in Bozeman, Montana. An EC station measured net CO2 flux (Fc) from 8 June 2006 to 4 September 2006 (mean and standard deviation = -12.4 and 28.1 g m-2 d-1, respectively) and from 28 May 2007 to 4 September 2007 (mean and standard deviation = -12.0 and 28.1 g m-2 d-1, respectively). The Release 2 leakage signal was visible in the Fc time series, whereas the Release 1 signal was difficult to detect within variability of ecosystem fluxes. To improve detection ability, we calculated residual fluxes (Fcr) by subtracting fluxes corresponding to a model for net ecosystem exchange from Fc. Fcr had reduced variability and lacked the negative bias seen in corresponding Fc distributions. Plotting the upper 90th percentile Fcr versus time enhanced the Release 2 leakage signal. However, values measured during Release 1 fell within the variability assumed to be related to unmodeled natural processes. Fcr measurements and corresponding footprint functions were inverted using a least squares approach to infer the spatial distribution of surface CO2 fluxes during Release 2. When combined with flux source area evaluation, inversion results roughly located the CO2 leak, while resolution was insufficient to quantify leakage rate.

  12. Quantifying the magnitude and spatiotemporal variation of aquatic CO2 fluxes in a sub-tropical karst catchment, Southwest China (United States)

    Ding, Hu; Waldron, Susan; Newton, Jason; Garnett, Mark H.


    The role played by rivers in regional and global C budgets is receiving increasing attention. A large portion of the carbon transported via inland waters is returned to the atmosphere by carbon dioxide evasion from rivers and lakes. Karst landscapes represent an important C store on land, and are also considered to play an important role in climate regulation by consuming atmospheric CO2 during chemical weathering. However, we cannot be certain how effective this sink is if we do not know how efficiently the rivers draining karst landscapes remobilise weathered C to the atmosphere as CO2. pCO2 in karst waters is generally greater than atmospheric equilibrium, indicating that there can be a net CO2 efflux to the atmosphere. However, measurement confirming this and quantifying flux rates has been rarely conducted. Using a floating chamber method, in 2016 we directly measured CO2 fluxes from spatially distributed freshwaters (springs, sinkholes, streams and reservoirs/ponds) in the Houzhai Catchment, a karst region in SW China. Fluxes ranged from -0.5 to +267.4 μmol CO2 m-2s-1, and most sites showed seasonal variations with higher CO2 efflux rates in the wet (April - September) than dry season (October - March). There was a significant positive relationship between CO2 efflux and flow velocity, indicating that hydraulic controls on CO2 efflux from flowing water are important, while for water with little movement (sinkholes and reservoirs/ponds), pCO2 appears a more important control on efflux rates. Conditions similar to this study area may exist in many sub-tropical rivers that drain karst landscapes in South China. These waters are rich in DIC which can be an order of magnitude greater than some non-karst catchments. The large DIC pool has the potential to be a considerable source of free CO2 to the atmosphere. Considering that carbonate lithology covers a significant part of the Earth's surface, CO2 evasion in fluvial water from these regions is expected to

  13. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations (United States)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.


    As we enter the new era of satellite remote sensing for CO2 and other carbon cyclerelated quantities, advanced modeling and analysis capabilities are required to fully capitalize on the new observations. Model estimates of CO2 surface flux and atmospheric transport are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, and ultimately for future projections of carbon-climate interactions. For application to current, planned, and future remotely sensed CO2 data, it is desirable that these models are accurate and unbiased at time scales from less than daily to multi-annual and at spatial scales from several kilometers or finer to global. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 1998 through 2006. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at lxi degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-2), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to in situ observations at sites in Northern mid latitudes and the continental tropics. The influence of key process representations is inferred. We find that the model can resolve much of the hourly to synoptic variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The seasonal cycle and its

  14. A new disjunct eddy-covariance system for BVOC flux measurements - validation on CO2 and H2O fluxes (United States)

    Baghi, R.; Durand, P.; Jambert, C.; Jarnot, C.; Delon, C.; Serça, D.; Striebig, N.; Ferlicoq, M.; Keravec, P.


    The disjunct eddy covariance (DEC) method is an interesting alternative to the conventional eddy covariance (EC) method because it allows the estimation of turbulent fluxes of species for which fast sensors are not available. We have developed and validated a new disjunct sampling system (called MEDEE). This system is built with chemically inert materials. Air samples are taken quickly and alternately in two cylindrical reservoirs, the internal pressures of which are regulated by a moving piston. The MEDEE system was designed to be operated either on the ground or aboard an aircraft. It is also compatible with most analysers since it transfers the air samples at a regulated pressure. To validate the system, DEC and EC measurements of CO2 and latent heat fluxes were performed concurrently during a field campaign. EC fluxes were first compared to simulated DEC (SDEC) fluxes and then to actual DEC fluxes. Both the simulated and actual DEC fluxes showed a good agreement with EC fluxes in terms of correlation. The determination coefficients (R2) were 0.93 and 0.91 for DEC and SDEC latent heat fluxes, respectively. For DEC and SDEC CO2 fluxes R2 was 0.69 in both cases. The conditions of low fluxes experienced during the campaign impaired the comparison of the different techniques especially for CO2 flux measurements. Linear regression analysis showed an 14% underestimation of DEC fluxes for both CO2 and latent heat compared to EC fluxes. A first field campaign, focusing on biogenic volatile organic compound (BVOC) emissions, was carried out to measure isoprene fluxes above a downy oak (Quercus Pubescens) forest in the south-east of France. The measured standard emission rate was in the lower range of reported values in earlier studies. Further analysis will be conducted through ground-based and airborne campaigns in the coming years.

  15. Remote sensing algorithm for sea surface CO2 in the Baltic Sea (United States)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.


    Studies of coastal seas in Europe have brought forth the high variability in the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes makes their accurate estimation an arduous task. This is more pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been as highly detailed as in the open oceans. In adition, the joint availability of in-situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, a combination of two existing methods (Self-Organizing-Maps and Multiple Linear regression) is used to estimate ocean surface pCO2 in the Baltic Sea from remotely sensed surface temperature, chlorophyll, coloured dissolved organic matter, net primary production and mixed layer depth. The outputs of this research have an horizontal resolution of 4 km, and cover the period from 1998 to 2011. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in-situ measurements, and a root mean square error is of 38 μatm. The removal of any of the satellite parameters degraded this reconstruction of the CO2 flux, and we chose therefore to complete any missing data through statistical imputation. The CO2 maps produced by this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data and we expect to be able to produce even more accurate reconstructions in the coming years, in view of the predicted acquisitions of new data.

  16. CO2 volume fluxes outgassing from champagne glasses: the impact of champagne ageing. (United States)

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe


    It was demonstrated that CO(2) volume fluxes outgassing from a flute poured with a young champagne (elaborated in 2007) are much higher than those outgassing from the same flute poured with an older champagne (elaborated in the early 1990s). The difference in dissolved-CO(2) concentrations between the two types of champagne samples was found to be a crucial parameter responsible for differences in CO(2) volume fluxes outgassing from one champagne to another. Nevertheless, it was shown that, for a given identical dissolved-CO(2) concentration in both champagne types, the CO(2) volume flux outgassing from the flute poured with the old champagne is, in average, significantly lower than that outgassing from the flute poured with the young one. Therefore, CO(2) seems to "escape" more easily from the young champagne than from the older one. The diffusion coefficient of CO(2) in both champagne types was pointed as a key parameter to thoroughly determine in the future, in order to unravel our experimental observation. Copyright 2009 Elsevier B.V. All rights reserved.

  17. When CO2 kills: effects of magmatic CO2 flux on belowground biota at Mammoth Mountain, CA (United States)

    McFarland, J.; Waldrop, M. P.; Mangan, M.


    The biomass, composition, and activity of the soil microbial community is tightly linked to the composition of the aboveground plant community. Microorganisms in aerobic surface soils, both free-living and plant-associated are largely structured by the availability of growth limiting carbon (C) substrates derived from plant inputs. When C availability declines following a catastrophic event such as the death of large swaths of trees, the number and composition of microorganisms in soil would be expected to decline and/or shift to unique microorganisms that have better survival strategies under starvation conditions. High concentrations of volcanic cold CO2 emanating from Mammoth Mountain near Horseshoe Lake on the southwestern edge of Long Valley Caldera, CA has resulted in a large kill zone of tree species, and associated soil microbial species. In July 2010, we assessed belowground microbial community structure in response to disturbance of the plant community along a gradient of soil CO2 concentrations grading from 80% (no plant life). We employed a microbial community fingerprinting technique (automated ribosomal intergenic spacer analysis) to determine changes in overall community composition for three broad functional groups: fungi, bacteria, and archaea. To evaluate changes in ectomycorrhizal fungal associates along the CO2 gradient, we harvested root tips from lodgepole pine seedlings collected in unaffected forest as well as at the leading edge of colonization into the kill zone. We also measured soil C fractions (dissolved organic C, microbial biomass C, and non-extractable C) at 10 and 30 cm depth, as well as NH4+. Not surprisingly, our results indicate a precipitous decline in soil C, and microbial C with increasing soil CO2; phospholipid fatty acid analysis in conjunction with community fingerprinting indicate both a loss of fungal diversity as well as a dramatic decrease in biomass as one proceeds further into the kill zone. This observation was

  18. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. (United States)

    Favaro, Marco; Xiao, Hai; Cheng, Tao; Goddard, William A; Yano, Junko; Crumlin, Ethan J


    A national priority is to convert CO 2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO 2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO 2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO 2 in the presence of water as the first step toward CO 2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.

  19. How can mountaintop CO2 observations be used to constrain regional carbon fluxes? (United States)

    Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.


    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.

  20. Conditional CO2 flux analysis of a managed grassland with the aid of stable isotopes (United States)

    Zeeman, M. J.; Tuzson, B.; Emmenegger, L.; Knohl, A.; Buchmann, N.; Eugster, W.


    Short statured managed ecosystems, such as agricultural grasslands, exhibit high temporal changes in carbon dioxide assimilation and respiration fluxes for which measurements of the net CO2 flux, e.g. by using the eddy covariance (EC) method, give only limited insight. We have therefore adopted a recently proposed concept for conditional EC flux analysis of forest to grasslands, in order to identify and quantify daytime sub-canopy respiration fluxes. To validate the concept, high frequency (≈5 Hz) stable carbon isotope analyis of CO2 was used. We made eddy covariance measurements of CO2 and its isotopologues during four days in August 2007, using a novel quantum cascade laser absorption spectrometer, capable of high time resolution stable isotope analysis. The effects of a grass cut during the measurement period could be detected and resulted in a sub-canopy source conditional flux classification, for which the isotope composition of the CO2 could be confirmed to be of a respiration source. However, the conditional flux method did not work for an undisturbed grassland canopy. We attribute this to the flux measurement height that was chosen well above the roughness sublayer, where the natural isotopic tracer (δ13C) of respiration was too well mixed with background air.

  1. Measurements and models of CO2 and CH4 Flux in the Baltimore/Washington area. (United States)

    Dickerson, R. R.; Ren, X.; Salawitch, R. J.; Ahn, D.; Karion, A.; Shepson, P. B.; Whetstone, J. R.; Martin, C.


    Direct measurements of concentrations of pollutants such as CO2 and CH4 can be combined with wind fields to determine the flux of these species and to evaluate emissions inventories or models. The mass balance approach, assumng linear flow into and out of a volume set over a city, works best where wind fields are simplest. Over typical American east coast cities, upwind sources and complex circulation (e.g., the sea breeze) complicate such analyses. We will present findings from a coupled measurement and modeling project involving a network of surface-based tower measurements, aircraft observations, and remote sensing that constrain model calculations. Summer and winter scenarios are contrasted, and results help evaluate the emissions of short-lived pollutants. Determinations are compared to several emissions inventories and are being used to help States evaluate evaluate plans for pollution control.

  2. Comparison of Surface and Column Variations of CO2 Over Urban Areas for Future Active Remote CO2 Sensors (United States)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan; Browell, Edward


    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. This campaign includes, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). Each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 km). In this study, surface (0 - 1 km) and column-averaged (0 - 3.5 km) CO2 mixing ratio values from the vertical soundings in the four geographically different urban areas are used to investigate the temporal and spatial variability of CO2 within the different urban atmospheric emission environments. Tracers such as CO, CH2O, NOx, and NMHCs are used to identify the source of CO2 variations in the urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-microns and 2.05-microns measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we investigate the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to the urban surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  3. Gully hotspot contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a northern peatland

    International Nuclear Information System (INIS)

    McNamara, N.P.; Plant, T.; Oakley, S.; Ward, S.; Wood, C.; Ostle, N.


    Peatlands are long term carbon catchments that sink atmospheric carbon dioxide (CO 2 ) and source methane (CH 4 ). In the uplands of the United Kingdom ombrotrophic blanket peatlands commonly exist within Calluna vulgaris (L.) dominated moorland ecosystems. These landscapes contain a range of topographical features that influence local hydrology, climate and plant community composition. In this study we examined the variation in ecosystem CO 2 respiration and net CH 4 fluxes from typical plant-soil systems in dendritic drainage gullies and adjacent blanket peat during the growing season. Typically, Eriophorum spp., Sphagnum spp. and mixed grasses occupied gullies while C. vulgaris dominated in adjacent blanket peat. Gross CO 2 respiration was highest in the areas of Eriophorum spp. (650 ± 140 mg CO 2 m -2 h -1 ) compared to those with Sphagnum spp. (338 ± 49 mg CO 2 m -2 h -1 ), mixed grasses (342 ± 91 mg CO 2 m -2 h -1 ) and C. vulgaris (174 ± 63 mg CO 2 m -2 h -1 ). Measurements of the net CH 4 flux showed higher fluxes from the Eriophorum spp (2.2 ± 0.6 mg CH 4 m -2 h -1 ) locations compared to the Sphagnum spp. (0.6 ± 0.4 mg CH 4 m -2 h -1 ), mixed grasses (0.1 ±0.1 mg CH 4 m -2 h -1 ) and a negligible flux detected from C. vulgaris (0.0 ± 0.0 mg CH 4 m -2 h -1 ) locations. A GIS approach was applied to calculate the contribution of gullies to landscape scale greenhouse gas fluxes. Findings from the Moor House National Nature Reserve in the UK showed that although gullies occupied only 9.3% of the total land surface, gullies accounted for 95.8% and 21.6% of the peatland net CH 4 and CO 2 respiratory fluxes, respectively. The implication of these findings is that the relative contribution of characteristic gully systems need to be considered in estimates of landscape scale peatland greenhouse gas fluxes

  4. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability? (United States)

    Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.


    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.

  5. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand (United States)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan


    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  6. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir. (United States)

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain


    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Inferring 222Rn soil fluxes from ambient 222Rn activity and eddy covariance measurements of CO2

    Directory of Open Access Journals (Sweden)

    S. van der Laan


    Full Text Available We present a new methodology, which we call Single Pair of Observations Technique with Eddy Covariance (SPOT-EC, to estimate regional-scale surface fluxes of 222Rn from tower-based observations of 222Rn activity concentration, CO2 mole fractions and direct CO2 flux measurements from eddy covariance. For specific events, the regional (222Rn surface flux is calculated from short-term changes in ambient (222Rn activity concentration scaled by the ratio of the mean CO2 surface flux for the specific event to the change in its observed mole fraction. The resulting 222Rn surface emissions are integrated in time (between the moment of observation and the last prior background levels and space (i.e. over the footprint of the observations. The measurement uncertainty obtained is about ±15 % for diurnal events and about ±10 % for longer-term (e.g. seasonal or annual means. The method does not provide continuous observations, but reliable daily averages can be obtained. We applied our method to in situ observations from two sites in the Netherlands: Cabauw station (CBW and Lutjewad station (LUT. For LUT, which is an intensive agricultural site, we estimated a mean 222Rn surface flux of (0.29 ± 0.02 atoms cm−2 s−1 with values  > 0.5 atoms cm−2 s−1 to the south and south-east. For CBW we estimated a mean 222Rn surface flux of (0.63 ± 0.04 atoms cm−2 s−1. The highest values were observed to the south-west, where the soil type is mainly river clay. For both stations good agreement was found between our results and those from measurements with soil chambers and two recently published 222Rn soil flux maps for Europe. At both sites, large spatial and temporal variability of 222Rn surface fluxes were observed which would be impractical to measure with a soil chamber. SPOT-EC, therefore, offers an important new tool for estimating regional-scale 222Rn surface fluxes. Practical applications furthermore include

  8. CO2 consumption and bicarbonate fluxes by chemical weathering in North America. (United States)

    Jansen, Nils; Hartmann, Jens; Lauerwald, Ronny


    Cations released by chemical weathering are mainly counterbalanced by atmospheric/soil CO2 dissolved in water. Existing approaches to quantify CO2 consumption by chemical weathering are mostly based on the parameters runoff and lithology. Land cover is not implemented as predictor in existing regional or global scale models for atmospheric/soil CO2 consumption. Here, bicarbonate fluxes in North American rivers are quantified by an empirical forward model using the predictors runoff, lithology and land cover. The model was calibrated on chemical data from 338 river monitoring stations throughout North America. It was extrapolated to the entire North American continent by applying the model equation spatially explicitly to the geodata used for model calibration. Because silicate mineral weathering derived bicarbonate in rivers originates entirely from atmospheric/soil CO2, but carbonate mineral weathering additionally releases lithogenic bicarbonate, those source minerals are distinguished to quantify the CO2 consumption by chemical weathering. Extrapolation of the model results in a total bicarbonate flux of 51 Mt C a-1 in North America; 70% of which originate from atmospheric/soil CO2. On average, chemical weathering consumes 2.64 t atmospheric/soil C km-2 a-1 (~ 30%-40% above published world average values). For a given runoff and land cover, carbonate-rich sedimentary rocks export the most bicarbonate. However, half of this is assumed to be of lithogenic origin. Thus, the most atmospheric/soil CO2 per runoff is modeled to be consumed by basic plutonics. The least bicarbonate is exported and the least CO2 is consumed per runoff by weathering of metamorphic rocks. Of the distinguished different land cover classes of which urban areas export the most bicarbonate for a given lithology and runoff, followed by shrubs, grasslands and managed lands. For a given runoff and lithology, the least bicarbonate is exported from areas with forested land cover. The model shows 1

  9. Annual and seasonal CO2 fluxes from Russian southern taiga soils

    International Nuclear Information System (INIS)

    Kurganova, I.; Lopes De Gerenyu, V.; Rozanova, L.; Sapronov, D.; Myakshina, T.; Kudeyarov, V.


    Annual and seasonal characteristics of CO 2 emission from five different ecosystems were studied in situ (Russia, Moscow Region) from November 1997 through October 2000. The annual behaviour of the soil respiration rate is influenced by weather conditions during a particular year. Annual CO 2 fluxes from the soils depend on land use of the soils and averaged 684 and 906 g C/m 2 from sandy Albeluvisols (sod-podzolic soils) under forest and grassland, respectively. Annual emission from clay Phaeozems (grey forest soils) was lower and ranged from 422 to 660 g C/m 2 ; the order of precedence was arable 2 fluxes caused by weather conditions ranged from 18% (forest ecosystem on Phaeozems) to 31% (agro-ecosystem). The contribution from the cold period (with snow, November-April) to the annual CO 2 flux was substantial and averaged 21% and 14% for natural and agricultural ecosystems, respectively. The CO 2 fluxes comprised approximately 48-51% in summer, 23-24% in autumn, 18-20% in spring and 7-10% in winter of the total annual carbon dioxide flux

  10. Concurrent CO2 and COS fluxes across major biomes in Europe (United States)

    Spielmann, Felix M.; Kitz, Florian; Hammerle, Albin; Gerdel, Katharina; Ibrom, Andreas; Kolle, Olaf; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg


    The trace gas carbonyl sulfide (COS) has been proposed as a tracer for canopy gross primary production (GPP), canopy transpiration and stomatal conductance of plant canopies in the last few years. COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like carbon dioxide (CO2). It is then catalyzed by the enzyme carbonic anhydrase in a one-way reaction to hydrogen sulfide and CO2. This one-way flux into the leaf makes COS a promising tracer for the GPP. However, this approach assumes that the ratio of the deposition velocities between COS and CO2 is constant, which must be determined in field experiments covering a wide variety of ecosystems. The overarching objective of this study was to quantify the relationship between the ecosystem-scale exchange of COS and CO2 and thus, to test for the potential of COS to be used as a universal tracer for the plant canopy CO2 exchange. Between spring 2015 and summer 2016 we set up our quantum cascade laser at different field sites across Europe. These sites included a managed temperate mountain grassland (AUT), a savanna (ESP), a temperate beech forest (DEN) and a hemiboreal forest (EST). On each of these sites, we conducted ecosystem scale eddy covariance and soil chamber measurements. Since the soil COS flux contribution, especially in grass dominated ecosystems, could not be neglected, we had to derive the actual canopy COS fluxes for all the measurement sites. Using these fluxes we compared the ecosystem relative uptake (ERU) of the sites and searched for factors affecting its variability. We then used the influential factors to scale the ERU to be comparable under different field sites and conditions. Furthermore we also calculated the GPP using conventional CO2 flux partitioning and compared the results with the approach of using the leaf relative uptake.

  11. A Spatial-Temporal Comparison of Lake Mendota CO2 Fluxes and Collection Methods (United States)

    Baldocchi, A. K.; Reed, D. E.; Desai, A. R.; Loken, L. C.; Schramm, P.; Stanley, E. H.


    Monitoring of carbon fluxes at the lake/atmosphere interface can help us determine baselines from which to understand responses in both space and time that may result from our warming climate or increasing nutrient inputs. Since recent research has shown lakes to be hotspots of global carbon cycling, it is important to quantify carbon sink and source dynamics as well as to verify observations between multiple methods in the context of long-term data collection efforts. Here we evaluate a new method for measuring space and time variation in CO2 fluxes based on novel speedboat-based collection method of aquatic greenhouse gas concentrations and a flux computation and interpolation algorithm. Two-hundred and forty-nine consecutive days of spatial flux maps over the 2016 open ice period were compared to ongoing eddy covariance tower flux measurements on the shore of Lake Mendota, Wisconsin US using a flux footprint analysis. Spatial and temporal alignments of the fluxes from these two observational datasets revealed both similar trends from daily to seasonal timescales as well as biases between methods. For example, throughout the Spring carbon fluxes showed strong correlation although off by an order of magnitude. Isolating physical patterns of agreement between the two methods of the lake/atmosphere CO2 fluxes allows us to pinpoint where biology and physical drivers contribute to the global carbon cycle and help improve modelling of lakes and utilize lakes as leading indicators of climate change.

  12. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland. (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Smula, Ewa; Rozanski, Kazimierz


    As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.

  13. Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland. (United States)

    Lai, Liming; Kumar, Sandeep; Chintala, Rajesh; Owens, Vance N; Clay, David; Schumacher, Joseph; Nizami, Abdul-Sattar; Lee, Sang Soo; Rafique, Rashad


    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America and successfully adapted to diverse environmental conditions. It offers the potential to reduce soil surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information on how these CO2 fluxes respond to changing climate is still lacking. In this study, CO2 fluxes were monitored continuously from 2011 through 2014 using high frequency measurements from Switchgrass land seeded in 2008 on an experimental site that has been previously used for soybean (Glycine max L.) in South Dakota, USA. DAYCENT, a process-based model, was used to simulate CO2 fluxes. An improved methodology CPTE [Combining Parameter estimation (PEST) with "Trial and Error" method] was used to calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO2 emissions based on different climate change scenarios. This study showed that: (i) the measured soil CO2 fluxes from Switchgrass land were higher for 2012 which was a drought year, and these fluxes when simulated using DAYCENT for long-term (2015-2070) provided a pattern of polynomial curve; (ii) the simulated CO2 fluxes provided different patterns with temperature and precipitation changes in a long-term, (iii) the future CO2 fluxes from Switchgrass land under different changing climate scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown for longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and precipitation changes to some extent. Copyright © 2015. Published by Elsevier B.V.

  14. Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach

    Directory of Open Access Journals (Sweden)

    Rose Luiza Moraes Tavares

    Full Text Available ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80 for predicted and observed values.

  15. Subsurface oxide plays a critical role in CO_2 activation by Cu(111) surfaces to form chemisorbed CO_2 , the first step in reduction of CO_2


    Favaro, Marco; Xiao, Hai; Cheng, Tao; Goddard, William A.; Yano, Junko; Crumlin, Ethan J.


    A national priority is to convert CO_2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO_2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide s...

  16. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2


    Favaro, M; Xiao, H; Cheng, T; Goddard, WA; Crumlin, EJ


    A national priority is to convert CO2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide str...

  17. Potentials and challenges associated with automated closed dynamic chamber measurements of soil CO2 fluxes (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart


    Soil respiration fluxes are influenced by natural factors such as climate and soil type, but also by anthropogenic activities in managed ecosystems. As a result, soil CO2 fluxes show a large intra- and interannual as well as intra- and intersite variability. Most of the available soil CO2 flux data giving insights into this variability have been measured with manually closed static chambers, but technological advances in the past 15 years have also led to an increased use of automated closed chamber systems. The great advantage of automated chambers in comparison to manually operated chambers is the higher temporal resolution of the flux data. This is especially important if we want to better understand the effects of short-term events, e.g. fertilization or heavy rainfall, on soil CO2 flux variability. However, the chamber method is an invasive measurement method which can potentially alter soil CO2 fluxes and lead to biased measurement results. In the peer-reviewed literature, many papers compare the field performance and results of different closed static chamber designs, or compare manual chambers with automated chamber systems, to identify potential biases in CO2 flux measurements, and thus help to reduce uncertainties in the flux data. However, inter-comparisons of different automated closed dynamic chamber systems are still lacking. Here we are going to present a field comparison of the most-cited automated chamber system, the LI-8100A Automated Soil Flux System, with the also commercially available Greenhouse Gas Monitoring System AGPS. Both measurement systems were installed side by side at a recently harvested poplar bioenergy plantation (POPFULL, from April 2014 until August 2014. The plantation provided optimal comparison conditions with a bare field situation after the harvest and a regrowing canopy resulting in a broad variety of microclimates. Furthermore, the plantation was planted in a double-row system with

  18. Human impact on the historical change of CO2 degassing flux in River Changjiang

    Directory of Open Access Journals (Sweden)

    Zhang Jing


    Full Text Available Abstract The impact of water quality changes in River Changjiang (formally known as the Yangtze River on dissolved CO2 and silicate concentrations and seasonal carbon flux in the past several decades (1960s–2000 was evaluated, based on monitoring data from hydrographic gauge. It was found that dissolved CO2 and silicate in Changjiang decreased dramatically during this decades, as opposed to a marked increase in nutrient (e.g. NO3- concentrations. Our analyses revealed that dissolved CO2 in Changjiang was over-saturated with the atmosphere CO2, and its concentration had showed a declining trend since the 1960s, despite that fluvial DIC flux had maintained stable. Analysis results also suggested that the decrease in dissolved CO2 concentration was attributed to changes on the riverine trophic level and river damming activities in the Changjiang drainage basin. Due to the economic innovation (e.g. agriculture and industry development across the Changjiang watershed, fertilizers application and river regulations have significantly altered the original state of the river. Its ecosystem and hydrological condition have been evolving toward the "lacustrine/reservoir" autotrophic type prevailing with plankton. Accordingly, average CO2 diffusing flux to the atmosphere from the river had been reduced by three-fourth from the 1960s to 1990s, with the flux value being down to 14.2 mol.m-2.yr-1 in the 1990s. For a rough estimate, approximately 15.3 Mt of carbon was degassed annually into the atmosphere from the entire Changjiang drainage basin in the 1990s.

  19. [Effects of fertilization on soil CO2 flux in Castanea mollissima stand]. (United States)

    Zhang, Jiao-Jiao; Li, Yong-Fu; Jiang, Pei-Kun; Zhou, Guo-Mo; Shen, Zhen-Ming; Liu, Juan; Wang, Zhan-Lei


    In June 2011-June 2012, a fertilization experiment was conducted in a typical Castanea mollissima stand in Lin' an of Zhejiang Province, East China to study the effects of inorganic and organic fertilization on the soil CO2 flux and the relationships between the soil CO2 flux and environmental factors. Four treatments were installed, i. e., no fertilization (CK), inorganic fertilization (IF), organic fertilization (OF), half organic plus half inorganic fertilization (OIF). The soil CO2 emission rate was determined by the method of static closed chamber/GC technique, and the soil temperature, soil moisture content, and soil water-soluble organic carbon (WSOC) concentration were determined by routine methods. The soil CO2 emission exhibited a strong seasonal pattern, with the highest rate in July or August and the lowest rate in February. The annual accumulative soil CO2 emission in CK was 27.7 t CO2 x hm(-2) x a(-1), and that in treatments IF, OF, and OIF was 29.5%, 47.0%, and 50.7% higher than the CK, respectively. The soil WSOC concentration in treatment IF (105.1 mg kg(-1)) was significantly higher than that in CK (76.6 mg x kg(-1)), but was obviously lower than that in treatments OF (133.0 mg x kg(-1)) and OIF (121.2 mg x kg(-1)). The temperature sensitivity of respiration (Q10) in treatments CK, IF, OF, and OIF was 1.47, 1.75, 1.49, and 1.57, respectively. The soil CO2 emission rate had significant positive correlations with the soil temperature at the depth of 5 cm and the soil WSOC concentration, but no significant correlation with soil moisture content. The increase of the soil WSOC concentration caused by fertilization was probably one of the reasons for the increase of soil CO2 emission from the C. mollissima stand.

  20. Global CO2 flux inversions from remote-sensing data with systematic errors using hierarchical statistical models (United States)

    Zammit-Mangion, Andrew; Stavert, Ann; Rigby, Matthew; Ganesan, Anita; Rayner, Peter; Cressie, Noel


    The Orbiting Carbon Observatory-2 (OCO-2) satellite was launched on 2 July 2014, and it has been a source of atmospheric CO2 data since September 2014. The OCO-2 dataset contains a number of variables, but the one of most interest for flux inversion has been the column-averaged dry-air mole fraction (in units of ppm). These global level-2 data offer the possibility of inferring CO2 fluxes at Earth's surface and tracking those fluxes over time. However, as well as having a component of random error, the OCO-2 data have a component of systematic error that is dependent on the instrument's mode, namely land nadir, land glint, and ocean glint. Our statistical approach to CO2-flux inversion starts with constructing a statistical model for the random and systematic errors with parameters that can be estimated from the OCO-2 data and possibly in situ sources from flasks, towers, and the Total Column Carbon Observing Network (TCCON). Dimension reduction of the flux field is achieved through the use of physical basis functions, while temporal evolution of the flux is captured by modelling the basis-function coefficients as a vector autoregressive process. For computational efficiency, flux inversion uses only three months of sensitivities of mole fraction to changes in flux, computed using MOZART; any residual variation is captured through the modelling of a stochastic process that varies smoothly as a function of latitude. The second stage of our statistical approach is to simulate from the posterior distribution of the basis-function coefficients and all unknown parameters given the data using a fully Bayesian Markov chain Monte Carlo (MCMC) algorithm. Estimates and posterior variances of the flux field can then be obtained straightforwardly from this distribution. Our statistical approach is different than others, as it simultaneously makes inference (and quantifies uncertainty) on both the error components' parameters and the CO2 fluxes. We compare it to more classical

  1. Rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest of China. (United States)

    Deng, Qi; Hui, Dafeng; Chu, Guowei; Han, Xi; Zhang, Quanfa


    Rain-induced soil CO 2 pulse, a rapid excitation in soil CO 2 flux after rain, is ubiquitously observed in terrestrial ecosystems, yet the underlying mechanisms in tropical forests are still not clear. We conducted a rain simulation experiment to quantify rain-induced changes in soil CO 2 flux and microbial community composition in a tropical forest. Soil CO 2 flux rapidly increased by ~83% after rains, accompanied by increases in both bacterial (~51%) and fungal (~58%) Phospholipid Fatty Acids (PLFA) biomass. However, soil CO 2 flux and microbial community in the plots without litters showed limited response to rains. Direct releases of CO 2 from litter layer only accounted for ~19% increases in soil CO 2 flux, suggesting that the leaching of dissolved organic carbon (DOC) from litter layer to the topsoil is the major cause of rain-induced soil CO 2 pulse. In addition, rain-induced changes in soil CO 2 flux and microbial PLFA biomass decreased with increasing rain sizes, but they were positively correlated with litter-leached DOC concentration rather than total DOC flux. Our findings reveal an important role of litter-leached DOC input in regulating rain-induced soil CO 2 pulses and microbial community composition, and may have significant implications for CO 2 losses from tropical forest soils under future rainfall changes.

  2. Effect of recent observations on Asian CO2 flux estimates by transport model inversions

    International Nuclear Information System (INIS)

    Maksyutov, Shamil; Patra, Prabir K.; Machida, Toshinobu; Mukai, Hitoshi; Nakazawa, Takakiyo; Inoue, Gen


    We use an inverse model to evaluate the effects of the recent CO 2 observations over Asia on estimates of regional CO 2 sources and sinks. Global CO 2 flux distribution is evaluated using several atmospheric transport models, atmospheric CO 2 observations and a 'time-independent' inversion procedure adopted in the basic synthesis inversion by the Transcom-3 inverse model intercomparison project. In our analysis we include airborne and tower observations in Siberia, continuous monitoring and airborne observations over Japan, and airborne monitoring on regular flights on Tokyo-Sydney route. The inclusion of the new data reduces the uncertainty of the estimated regional CO 2 fluxes for Boreal Asia (Siberia), Temperate Asia and South-East Asia. The largest effect is observed for the emission/sink estimate for the Boreal Asia region, where introducing the observations in Siberia reduces the source uncertainty by almost half. It also produces an uncertainty reduction for Boreal North America. Addition of the Siberian airborne observations leads to projecting extra sinks in Boreal Asia of 0.2 Pg C/yr, and a smaller change for Europe. The Tokyo-Sydney observations reduce and constrain the Southeast Asian source

  3. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling (United States)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.


    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).

  4. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements. Reliability of the uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)


    The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than

  5. Hybrid inversions of CO2 fluxes at regional scale applied to network design (United States)

    Kountouris, Panagiotis; Gerbig, Christoph; -Thomas Koch, Frank


    Long term observations of atmospheric greenhouse gas measuring stations, located at representative regions over the continent, improve our understanding of greenhouse gas sources and sinks. These mixing ratio measurements can be linked to surface fluxes by atmospheric transport inversions. Within the upcoming years new stations are to be deployed, which requires decision making tools with respect to the location and the density of the network. We are developing a method to assess potential greenhouse gas observing networks in terms of their ability to recover specific target quantities. As target quantities we use CO2 fluxes aggregated to specific spatial and temporal scales. We introduce a high resolution inverse modeling framework, which attempts to combine advantages from pixel based inversions with those of a carbon cycle data assimilation system (CCDAS). The hybrid inversion system consists of the Lagrangian transport model STILT, the diagnostic biosphere model VPRM and a Bayesian inversion scheme. We aim to retrieve the spatiotemporal distribution of net ecosystem exchange (NEE) at a high spatial resolution (10 km x 10 km) by inverting for spatially and temporally varying scaling factors for gross ecosystem exchange (GEE) and respiration (R) rather than solving for the fluxes themselves. Thus the state space includes parameters for controlling photosynthesis and respiration, but unlike in a CCDAS it allows for spatial and temporal variations, which can be expressed as NEE(x,y,t) = λG(x,y,t) GEE(x,y,t) + λR(x,y,t) R(x,y,t) . We apply spatially and temporally correlated uncertainties by using error covariance matrices with non-zero off-diagonal elements. Synthetic experiments will test our system and select the optimal a priori error covariance by using different spatial and temporal correlation lengths on the error statistics of the a priori covariance and comparing the optimized fluxes against the 'known truth'. As 'known truth' we use independent fluxes

  6. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context (United States)

    P. J. Hanson; A. L. Gill; X. Xu; J. R. Phillips; D. J. Weston; Randy Kolka; J. S. Riggs; L. A. Hook


    Peatland measurements of CO2 and CH4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path...

  7. Interannual variability of Net Ecosystem CO2 Exchange and its component fluxes in a subalpine Mediterranean ecosystem (SE Spain) (United States)

    Chamizo, Sonia; Serrano-Ortiz, Penélope; Sánchez-Cañete, Enrique P.; Domingo, Francisco; Arnau-Rosalén, Eva; Oyonarte, Cecilio; Pérez-Priego, Óscar; López-Ballesteros, Ana; Kowalski, Andrew S.


    Recent decades under climate change have seen increasing interest in quantifying the carbon (C) balance of different terrestrial ecosystems, and their behavior as sources or sinks of C. Both CO2 exchange between terrestrial ecosystems and the atmosphere and identification of its drivers are key to understanding land-surface feedbacks to climate change. The eddy covariance (EC) technique allows measurements of net ecosystem C exchange (NEE) from short to long time scales. In addition, flux partitioning models can extract the components of net CO2 fluxes, including both biological processes of photosynthesis or gross primary production (GPP) and respiration (Reco), and also abiotic drivers like subsoil CO2 ventilation (VE), which is of particular relevance in semiarid environments. The importance of abiotic processes together with the strong interannual variability of precipitation, which strongly affects CO2 fluxes, complicates the accurate characterization of the C balance in semiarid landscapes. In this study, we examine 10 years of interannual variability of NEE and its components at a subalpine karstic plateau, El Llano de los Juanes, in the Sierra de Gádor (Almería, SE Spain). Results show annual NEE ranging from 55 g C m-2 (net emission) to -54 g C m-2 (net uptake). Among C flux components, GPP was the greatest contributing 42-57% of summed component magnitudes, while contributions by Reco and VE ranged from 27 to 46% and from 3 to 18%, respectively. Annual precipitation during the studied period exhibited high interannual variability, ranging from 210 mm to 1374 mm. Annual precipitation explained 50% of the variance in Reco, 59% of that in GPP, and 56% for VE. While Reco and GPP were positively correlated with annual precipitation (correlation coefficient, R, of 0.71 and 0.77, respectively), VE showed negative correlation with this driver (R = -0.74). During the driest year (2004-2005), annual GPP and Reco reached their lowest values, while contribution of

  8. Elevated CO2 and nitrogen effects on soil CO2 flux from a pasture upon return to cultivation (United States)

    Soil CO2 efflux patterns associated with converting pastures back to row crop production remain understudied in the Southeastern U.S. A 10-year study of bahiagrass (Paspalum notatum Flüggé) response to elevated CO2 was conducted using open top field chambers on a Blanton loamy sand (loamy siliceous,...

  9. CO2 Fluxes Monitoring at the Level of Field Agroecosystem in Moscow Region of Russia (United States)

    Meshalkina, Joulia; Mazirov, Ilya; Samardzic, Miljan; Yaroslavtsev, Alexis; Valentini, Riccardo; Vasenev, Ivan


    The Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. The eddy covariance technique is a statistical method to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The major assumption of the metod is that measurements at a point can represent an entire upwind area. Eddy covariance researches, which could be considered as repeated for the same area, are very rare. The research has been carried out on the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow, Russia) in 2013 under the support of RF Government grant No. 11.G34.31.0079. Arable derno-podzoluvisls have around 1 The results have shown high daily and seasonal dynamic of agroecosystem CO2 emission. Sowing activates soil microbiological activity and the average soil CO2 emission and adsorption are rising at the same time. CO2 streams are intensified after crop emerging from values of 3 to 7 μmol/s-m2 for emission, and from values of 5 to 20 μmol/s-m2 for adsorption. Stabilization of the flow has come at achieving plants height of 10-12 cm. The vegetation period is characterized by high average soil CO2 emission and adsorption at the same time, but the adsorption is significantly higher. The resulted CO2 absorption during the day is approximately 2-5 times higher than emissions at night. For example, in mid-June, the absorption value was about 0.45 mol/m2 during the day-time, and the emission value was about 0.1 mol/m2 at night. After harvesting CO2 emission is becoming essentially higher than adsorption. Autumn and winter data are fluctuate around zero, but for some periods a small predominance of CO2 emissions over the absorption may be observed. The daily dynamics of CO2 emissions depends on the air temperature with the correlation coefficient changes between 0.4 and 0.8. Crop stage, agrotechnological

  10. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata


    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  11. CO2 and CH4 fluxes and carbon balance in the atmospheric interaction of boreal peatlands

    International Nuclear Information System (INIS)

    Alm, J.


    Release of CO 2 from peat was studied using IR analyzer in a range of boreal peatlands under varying nutrient status and moisture conditions. Root associated CO 2 efflux was separated from the total release by experiments both in the field and in a greenhouse. Emissions of CO 2 and CH 4 (the latter by gas chromatography) were measured during the snow-covered period and their contribution to the annual fluxes of these gases was inspected. Ecosystem exchange of CO 2 under varying irradiation, temperature and moisture conditions was measured at different microsites at two peatland sites with different nutrient ecology. One site represented minerotrophic conditions during a wet growing season and the other site ombrotrophic conditions during an exceptionally dry growing season. Annual carbon balances were compiled for the two sites, and the role of the microsites in the annual carbon balance and CH 4 release was studied. The Holocene history of CO 2 sequestration and CH 4 emission dynamics in a raised mire were simulated using lateral and vertical growth rates derived from radiocarbon ages of peat samples from mire bottom and vertical cores. The model was formulated for a geographic information system (GIS). Artificial or natural lowering of water table increased CO 2 release from peat. A drought lasting from late May to July caused a 90 g C m 2 net loss in the annual C balance of a natural ombrotrophic bog. In drained forested sites the increase in peat CO 2 release could be even 100 %, but the development of the tree layer at least partially compensated for these losses. Wet conditions induced a net accumulation of 67 g C m -2 a -1 in the minerotrophic fen site, while the long term average accumulation rate is estimated to be only 15 g C m -2 a -1 for Finnish fens. Carbon balance in boreal peatlands is thus extremely sensitive to year-to-year climatic variations. Root activity of vascular plants contributed to the total peat CO 2 efflux by 10-40 % as root respiration

  12. The Martian hydrologic cycle - Effects of CO2 mass flux on global water distribution (United States)

    James, P. B.


    The Martian CO2 cycle, which includes the seasonal condensation and subsequent sublimation of up to 30 percent of the planet's atmosphere, produces meridional winds due to the consequent mass flux of CO2. These winds currently display strong seasonal and hemispheric asymmetries due to the large asymmetries in the distribution of insolation on Mars. It is proposed that asymmetric meridional advection of water vapor on the planet due to these CO2 condensation winds is capable of explaining the observed dessication of Mars' south polar region at the current time. A simple model for water vapor transport is used to verify this hypothesis and to speculate on the effects of changes in orbital parameters on the seasonal water cycle.

  13. Geoelectric Monitoring of geological CO2 storage at Ketzin, Germany (CO2SINK project): Downhole and Surface-Downhole measurements (United States)

    Kiessling, D.; Schuett, H.; Schoebel, B.; Krueger, K.; Schmidt-Hattenberger, C.; Schilling, F.


    Numerical models of the CO2 storage experiment CO2SINK (CO2 Storage by Injection into a Natural Saline Aquifer at Ketzin), where CO2 is injected into a deep saline aquifer at roughly 650 m depth, yield a CO2 saturation of approximately 50% for large parts of the plume. Archie's equation predicts an increase of the resistivity by a factor of approximately 3 to 4 for the reservoir sandstone, and laboratory tests on Ketzin reservoir samples support this prediction. Modeling results show that tracking the CO2 plume may be doable with crosshole resistivity surveys under these conditions. One injection well and two observation wells were drilled in 2007 to a depth of about 800 m and were completed with "smart" casings, arranged L-shaped with distances of 50 m and 100 m. 45 permanent ring-shaped steel electrodes were attached to the electrically insulated casings of the three Ketzin wells at 590 m to 735 m depth with a spacing of about 10 m. It is to our knowledge the deepest permanent vertical electrical resistivity array (VERA) worldwide. The electrodes are connected to the current power supply and data registration units at the surface through custom-made cables. This deep electrode array allows for the registration of electrical resistivity tomography (ERT) data sets at basically any desired repetition rate and at very low cost, without interrupting the injection operations. The installation of all 45 electrodes succeeded. The electrodes are connected to the electrical cable, and the insulated casing stood undamaged. Even after 2-odd years under underground conditions only 6 electrodes are in a critical state now, caused by corrosion effects. In the framework of the COSMOS project (CO2-Storage, Monitoring and Safety Technology), supported by the German "Geotechnologien" program, the geoelectric monitoring has been performed. The 3D crosshole time-laps measurements are taken using dipole-dipole configurations. The data was inverted using AGI EarthImager 3D to obtain 3D

  14. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin


    quantify leakages from the subsurface, to improve storage efficiency, and for other storage characterizations [5-8]. In this presentation, the latest regulatory and methodological updates are provided regarding atmospheric monitoring of the injected CO2 behavior using flux stations. These include 2013 improvements in methodology, as well as the latest literature, including regulatory documents for using the method and step-by-step instructions on implementing it in the field. Updates also include 2013 development of a fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CO2 emission rates in a similar manner as a standard weather station outputs weather parameters. References: [1] Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences; 2013. [2] International Energy Agency. Quantification techniques for CO2 leakage. IEA-GHG; 2012. [3] US Department of Energy. Best Practices for Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations. US DOE; 2012. [4] Liu G. (Ed.). Greenhouse Gases: Capturing, Utilization and Reduction. Intech; 2012. [5] Finley R. et al. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin - Phase III. DOE-MGSC; DE-FC26-05NT42588; 2012. [6] LI-COR Biosciences. Surface Monitoring for Geologic Carbon Sequestration. LI-COR, 980-11916, 2011. [7] Eggleston H., et al. (Eds). IPCC Guidelines for National Greenhouse Gas Inventories, IPCC NGGI P, WMO/UNEP; 2006-2011. [8] Burba G., Madsen R., Feese K. Eddy Covariance Method for CO2 Emission Measurements in CCUS Applications: Principles, Instrumentation and Software. Energy Procedia, 40C: 329-336; 2013.

  15. Tactile communication using a CO(2) flux stimulation for blind or deafblind people. (United States)

    da Cunha, Jose Carlos; Bordignon, Luiz Alberto; Nohama, Percy


    This paper describes a tactile stimulation system for producing nonvisual image patterns to blind or deafblind people. The stimulator yields a CO(2) pulsatile flux directed to the user's skin throughout a needle that is coupled to a 2-D tactile plotter. The fluxtactile plotter operates with two step motor mounted on a wood structure, controlled by a program developed to produce alphanumerical characters and geometric figures of different size and speed, which will be used to investigate the psychophysical properties of this kind of tactile communication. CO(2) is provided by a cylinder that delivers a stable flux, which is converted to a pulsatile mode through a high frequency solenoid valve that can chop it up to 1 kHz. Also, system temperature is controlled by a Peltier based device. Tests on the prototype indicate that the system is a valuable tool to investigate the psychophysical properties of the skin in response to stimulation by CO(2) jet, allowing a quantitative and qualitative analysis as a function of stimulation parameters. With the system developed, it was possible to plot the geometric figures proposed: triangles, rectangles and octagons, in different sizes and speeds, and verify the control of the frequency of CO(2) jet stimuli.

  16. BOREAS TGB-1 NSA CH4 and CO2 Chamber Flux Data (United States)

    Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.


    The BOREAS TGB-1 team made methane (CH4) and carbon dioxide (CO2) dark chamber flux measurements at the NSA-OJP, NSA-OBS, NSA-BP, and NSA-YJP sites from 16-May-1994 through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  17. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage (United States)

    Grant, Richard H.; Omonode, Rex A.


    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  18. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary (United States)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.


    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  19. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Boston Univ., MA (United States); Wehr, Richdard [Harvard Univ., Cambridge, MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States)


    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem photosynthesis (by ~25%) and

  20. Effects of a holiday week on urban soil CO2 flux: an intensive study in Xiamen, southeastern China (United States)

    Ye, H.; Wang, K.; Chen, F.


    To study the effects of a holiday period on urban soil CO2 flux, CO2 efflux from grassland soil in a traditional park in the city of Xiamen was measured hourly from 28th Sep to 11th Oct, a period that included China's National Day holiday week in 2009. The results of this study revealed that: a) The urban soil CO2 emissions were higher before and after the holiday week and lower during the National Day holiday reflecting changes in the traffic cycles; b) A diurnal cycle where the soil CO2 flux decreased from early morning to noon was associated with CO2 uptake by vegetation which strongly offset vehicle CO2 emissions. The soil CO2 flux increased from night to early morning, associated with reduced CO2 uptake by vegetation; c) During the National Day holiday week in 2009, lower rates of soil respiration were measured after Mid-Autumn Day than earlier in the week, and this was related to a reduced level of human activities and vehicle traffic, reducing the CO2 concentration in the air. Urban holidays have a clear effect on soil CO2 flux through the interactions between vehicle, visitor and vegetation CO2 emissions which indirectly control the use of carbon by plant roots, the rhizosphere and soil microorganisms. Consequently, appropriate traffic controls and tourism travel plans can have positive effects on the soil carbon store and may improve local air quality.

  1. Surface radiation fluxes in transient climate simulations (United States)

    Garratt, J. R.; O'Brien, D. M.; Dix, M. R.; Murphy, J. M.; Stephens, G. L.; Wild, M.


    Transient CO 2 experiments from five coupled climate models, in which the CO 2 concentration increases at rates of 0.6-1.1% per annum for periods of 75-200 years, are used to document the responses of surface radiation fluxes, and associated atmospheric properties, to the CO 2 increase. In all five models, the responses of global surface temperature and column water vapour are non-linear and fairly tightly constrained. Thus, global warming lies between 1.9 and 2.7 K at doubled, and between 3.1 and 4.1 K at tripled, CO 2, whilst column water vapour increases by between 3.5 and 4.5 mm at doubled, and between 7 and 8 mm at tripled, CO 2. Global cloud fraction tends to decrease by 1-2% out to tripled CO 2, mainly the result of decreases in low cloud. Global increases in column water, and differences in these increases between models, are mainly determined by the warming of the tropical oceans relative to the middle and high latitudes; these links are emphasised in the zonal profiles of warming and column water vapour increase, with strong water vapour maxima in the tropics. In all models the all-sky shortwave flux to the surface S↓ (global, annual average) changes by less than 5 W m -2 out to tripled CO 2, in some cases being essentially invariant in time. In contrast, the longwave flux to the surface L↓ increases significantly, by 25 W m -2 typically at tripled CO 2. The variations of S↓ and L↓ (clear-sky and all-sky fluxes) with increase in CO 2 concentration are generally non-linear, reflecting the effects of ocean thermal inertia, but as functions of global warming are close to linear in all five models. This is best illustrated for the clear-sky downwelling fluxes, and the net radiation. Regionally, as illustrated in zonal profiles and global distributions, greatest changes in both S↓ and L↓ are the result primarily of local maxima in warming and column water vapour increases.

  2. Estimation of mesophyll conductance to CO2 flux by three different methods

    International Nuclear Information System (INIS)

    Loreto, F.; Harley, P.C.; Di Marco, G.; Sharkey, T.D.


    The resistance to diffusion of CO2 from the intercellular airspaces within the leaf through the mesophyll to the sites of carboxylation during photosynthesis was measured using three different techniques, The three techniques include a method based on discrimination against the heavy stable isotope of carbon, 13C, and two modeling methods. The methods rely upon different assumptions, but the estimates of mesophyll conductance were similar with all three methods. The mesophyll conductance of leaves from a number of species was about 1.4 times the stomatal conductance for CO2 diffusion determined in unstressed plants at high light. The relatively low CO2 partial pressure inside chloroplasts of plants with a low mesophyll conductance did not lead to enhanced O2 sensitivity of photosynthesis because the low conductance caused a significant drop in the chloroplast CO2 Partial pressure upon switching to low O2. We found no correlation between mesophyll conductance and the ratio of internal leaf area to leaf surface area and only a weak correlation between mesophyll conductance and the proportion of leaf volume occupied by air. Mesophyll conductance was independent of CO2 and O2 partial pressure during the measurement, indicating that a true physical parameter, independent of biochemical effects, was being measured. No evidence for accumulating mechanisms was found. Some plants, notably Citrus aurantium and Simmondsia chinensis, had very low conductances that limit the rate of photosynthesis these plants can attain at atmospheric CO2 level

  3. Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA (United States)

    Locke, R.A.; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.


    The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June

  4. Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland. (United States)

    Wright, Emma L; Black, Colin R; Turner, Benjamin L; Sjögersten, Sofie


    Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long-term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. -1.0 to 12.6 mg m(-2) h(-1) in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300-400 mg m(-2) h(-1)) and lowest during the wet period (60-132 mg m(-2) h(-1)) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within-site variability in gas release but the effect was site-specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model. © 2013 John Wiley & Sons Ltd.

  5. Variation in salt marsh CO2 fluxes across a latitudinal gradient along the US Atlantic coast (United States)

    Forbrich, I.; Nahrawi, H. B.; Leclerc, M.; O'Connell, J. L.; Mishra, D. R.; Fogarty, M. C.; Edson, J. B.; Lule, A. V.; Vargas, R.; Giblin, A. E.; Alber, M.


    Salt marshes occur at the dynamic interface of land and ocean, where they play an important role as sink and source of nutrients, carbon (C) and sediment. They often are strong carbon sinks, because they continuously accumulate soil organic matter and sediment to keep their position relative to sea level. Decadal average C sequestration rates can be inferred from soil carbon density and mass accumulation rates, but little information about biological and climatic controls on C cycling and storage in these systems exists. In this study, we report measurements of atmospheric CO2 exchange from salt marshes along the US Atlantic coast from Massachusetts to Georgia. These measurements were made over periods from one to five years. Spartina alterniflora is the dominant vegetation at all sites. At the northern most site, Plum Island Ecosystems (PIE) LTER, and the southern most site, Georgia Coastal Ecosystems (GCE) LTER, flux measurements over several years have shown variations in the net CO2 flux influenced by the local climate. For example, annual net C uptake at the PIE LTER over 5 years (2013-2017) depends on rainfall in the growing season (June-August) which modulates soil salinity levels. This pattern is not as evident at the GCE LTER (2014-2015). Furthermore, the growing season length differs between both sites. Based on the CO2 flux measurements, a temperature threshold of 15o C limits the net C uptake at both sites and daily rates of net C uptake are generally smaller during the longer growing season in Georgia. Nevertheless, gross primary production (GPP) is similar for both sites. We will extend this analysis to include sites from Delaware and North Carolina to assess controls (e.g. leaf area using MODIS vegetation indices, temperature, photoperiod) on Spartina phenology and CO2 exchange.

  6. Soil CO2 flux in response to elevated atmospheric CO2 and nitrogen fertilization: patterns and methods (United States)

    James M. Vose; Katherine J. Elliott; D.W. Johnson


    The evolution of carbon dioxide (CO2) from soils is due to the metabolic activity of roots, mycorrhizae, and soil micro- and macro-organisms. Although precise estimates of carbon (C) recycled to the atmosphere from belowground sources are unavailable, Musselman and Fox (1991) propose that the belowground contribution exceeds 100 Pg y-1...

  7. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand (United States)

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.


    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (99% of the original CO 2

  8. Site-specific global warming potentials of biogenic CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M; Strømman, Anders H


    Production of biomass for bioenergy can alter biogeochemical and biogeophysical mechanisms, thus affecting local and global climate. Recent scientific developments have mainly embraced impacts from land use changes resulting from area-expanded biomass production, with several extensive insights available. Comparably less attention, however, has been given to the assessment of direct land surface–atmosphere climate impacts of bioenergy systems under rotation such as in plantations and forested ecosystems, whereby land use disturbances are only temporary. Here, following IPCC climate metrics, we assess bioenergy systems in light of two important dynamic land use climate factors, namely, the perturbation in atmospheric carbon dioxide (CO 2 ) concentration caused by the timing of biogenic CO 2 fluxes, and temporary perturbations to surface reflectivity (albedo). Existing radiative forcing-based metrics can be adapted to include such dynamic mechanisms, but high spatial and temporal modeling resolution is required. Results show the importance of specifically addressing the climate forcings from biogenic CO 2 fluxes and changes in albedo, especially when biomass is sourced from forested areas affected by seasonal snow cover. The climate performance of bioenergy systems is highly dependent on biomass species, local climate variables, time horizons, and the climate metric considered. Bioenergy climate impact studies and accounting mechanisms should rapidly adapt to cover both biogeochemical and biogeophysical impacts, so that policy makers can rely on scientifically robust analyses and promote the most effective global climate mitigation options. (letter)

  9. Detectability of CO2 Flux Signals by a Space-Based Lidar Mission (United States)

    Hammerling, Dorit M.; Kawa, S. Randolph; Schaefer, Kevin; Doney, Scott; Michalak, Anna M.


    Satellite observations of carbon dioxide (CO2) offer novel and distinctive opportunities for improving our quantitative understanding of the carbon cycle. Prospective observations include those from space-based lidar such as the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. Here we explore the ability of such a mission to detect regional changes in CO2 fluxes. We investigate these using three prototypical case studies, namely the thawing of permafrost in the Northern High Latitudes, the shifting of fossil fuel emissions from Europe to China, and changes in the source-sink characteristics of the Southern Ocean. These three scenarios were used to design signal detection studies to investigate the ability to detect the unfolding of these scenarios compared to a baseline scenario. Results indicate that the ASCENDS mission could detect the types of signals investigated in this study, with the caveat that the study is based on some simplifying assumptions. The permafrost thawing flux perturbation is readily detectable at a high level of significance. The fossil fuel emission detectability is directly related to the strength of the signal and the level of measurement noise. For a nominal (lower) fossil fuel emission signal, only the idealized noise-free instrument test case produces a clearly detectable signal, while experiments with more realistic noise levels capture the signal only in the higher (exaggerated) signal case. For the Southern Ocean scenario, differences due to the natural variability in the ENSO climatic mode are primarily detectable as a zonal increase.

  10. Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: Discrete surface chambers and continuous soil CO2 concentration probes (United States)

    Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch


    Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....

  11. Trends in land surface phenology and atmospheric CO2 seasonality in the Northern Hemisphere terrestrial ecosystems (United States)

    Gonsamo, A.; Chen, J. M.


    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystems on the atmospheric CO2 concentration and 13C/12C isotope ratio seasonality. Atmospheric CO2 and 13C/12C seasonality is controlled by vegetation phenology, but is not identical because growth will typically commence some time before and terminate some time after the net carbon exchange changes sign in spring and autumn, respectively. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations to determine how changes in vegetation productivity and phenology affect both the atmospheric CO2 and 13C/12C seasonality. Differences and similarities in recent trends of CO2 and 13C/12C seasonality and vegetation phenology will be discussed. Furthermore, we use the NDVI observations, and atmospheric CO2 and 13C/12C data to show the trends and variability of the timing of peak season plant activity. Preliminary results show that the peak season plant activity of the Northern Hemisphere extra-tropical terrestrial ecosystems is shifting towards spring, largely in response to the warming-induced advance of the start of growing season. Besides, the spring-ward shift of the peak plant activity is contributing the most to the increasing peak season productivity. In other words, earlier start of growing season is highly linked to earlier arrival of peak of season and higher NDVI. Changes in the timing of peak season plant activity are expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.

  12. [Effects of biological soil crust at different succession stages in hilly region of Loess Plateau on soil CO2 flux]. (United States)

    Wang, Ai-Guo; Zhao, Yun-Ge; Xu, Ming-Xiang; Yang, Li-Na; Ming, Jiao


    Biological soil crust (biocrust) is a compact complex layer of soil, which has photosynthetic activity and is one of the factors affecting the CO2flux of soil-atmosphere interface. In this paper, the soil CO, flux under the effects of biocrust at different succession stages on the re-vegetated grassland in the hilly region of Loess Plateau was measured by a modified LI-8100 automated CO, flux system. Under light condition, the soil CO2 flux under effects of cyanobacteria crust and moss crust was significantly decreased by 92% and 305%, respectively, as compared with the flux without the effects of the biocrusts. The decrement of the soil CO, flux by the biocrusts was related to the biocrusts components and their biomass. Under the effects of dark colored cyanobacteria crust and moss crust, the soil CO2 flux was decreased by 141% and 484%, respectively, as compared with that in bare land. The diurnal curve of soil CO2 flux under effects of biocrusts presented a trend of 'drop-rise-drop' , with the maximum carbon uptake under effects of cyanobacteria crust and moss crust being 0.13 and -1.02 micromol CO2.m-2.s-1 and occurred at about 8:00 and 9:00 am, respectively, while that in bare land was unimodal. In a day (24 h) , the total CO2 flux under effects of cyanobacteria crust was increased by 7.7% , while that under effects of moss crust was decreased by 29.6%, as compared with the total CO2 flux in bare land. This study suggested that in the hilly region of Loess Plateau, biocrust had significant effects on soil CO2 flux, which should be taken into consideration when assessing the carbon budget of the 'Grain for Green' eco-project.

  13. Estimates of evapotranspiration and CO2 fluxes in a biofiltration system (United States)

    Daly, E.; Niculescu, A.; Beringer, J.; Deletic, A.


    Biofiltration systems (or biofilters, bioretention systems or rain gardens) have been adopted to improve the quality of urban aquatic ecosystems and to reduce volumes and peaks of stormwater runoff. Given their good performances, it is likely that the implementation of such systems in urban areas will greatly increase in the future. As an example, the city of Melbourne (Australia) is planning to install 10,000 biofiltration systems within its area by 2013. Because biofiltration systems are commonly installed in urban areas, along roads and highways, their vegetation is often under atmospheric CO2 concentrations higher than average ambient conditions (i.e., above 380 ppm). Additionally, since these systems are designed to receive runoff from large catchment areas (typically around 50-100 times the area of the biofilter), their vegetation rarely experiences water and nitrogen limitations. These surrounding environmental conditions suggest that biofilters might experience high evapotranspiration (ET) rates and CO2 assimilation via photosynthesis, which could potentially provide benefits to the local microclimate in terms of temperature reduction (cooling due to enhanced ET) and CO2 uptake from the atmosphere, in addition to the benefit related to stormwater treatment. These hypotheses have been strengthen by preliminary tests based on laboratory experiments with soil columns vegetated with C.appressa, in which ET has been estimated to be as high as 0.7-0.8 cm per day. To further study these processes, several measurements are being performed in a biofiltration system installed at Monash University, Clayton Campus (Melbourne, VIC). This biofilter receives runoff diverted from a 100% impervious car park and discharges the treated stormwater to an adjacent pond. A chamber that encloses part of the vegetation in the biofilter has been constructed to monitor water and greenhouse gas fluxes. Preliminary results on daily patterns of water and CO2 fluxes within the system in

  14. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  15. Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method

    Directory of Open Access Journals (Sweden)

    Joulia Meshalkina


    Full Text Available The eddy covariance (EC technique as a powerful statistics-based method of measurement and calculation the vertical turbulent fluxes of greenhouses gases within atmospheric boundary layers provides the continuous, long-term flux information integrated at the ecosystem scale. An attractive way to compare the agricultural practices influences on GHG fluxes is to divide a crop area into subplots managed in different ways. The research has been carried out in the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (RTSAU, Moscow in 2013 under the support of RF Government grant # 11.G34.31.0079, EU grant # 603542 LUС4С (7FP and RF Ministry of education and science grant # 14-120-14-4266-ScSh. Arable Umbric Albeluvisols have around 1% of SOC, 5.4 pH (KCl and NPK medium-enhanced contents in sandy loam topsoil. The CO2 flux seasonal monitoring has been done by two eddy covariance stations located at the distance of 108 m. The LI-COR instrumental equipment was the same for the both stations. The stations differ only by current crop version: barley or vetch and oats. At both sites, diurnal patterns of NEE among different months were very similar in shape but varied slightly in amplitude. NEE values were about zero during spring time. CO2 fluxes have been intensified after crop emerging from values of 3 to 7 µmol/s∙m2 for emission, and from 5 to 20 µmol/s∙m2 for sink. Stabilization of the fluxes has come at achieving plants height of 10-12 cm. Average NEE was negative only in June and July. Maximum uptake was observed in June with average values about 8 µmol CO2 m−2 s−1. Although different kind of crops were planted on the fields A and B, GPP dynamics was quite similar for both sites: after reaching the peak values at the mid of June, GPP decreased from 4 to 0.5 g C CO2 m-2 d-1 at the end of July. The difference in crops harvesting time that was equal two weeks did not significantly influence the daily

  16. Effect of Wildfire on Sequoiadendron giganteum Growth and CO2 Flux (United States)

    Barwegen, S.


    Due to global warming, parts of the United States are becoming drier than ever before. In 2015, we surpassed 9 million acres burned by wildfires nationally (Rice 2015). Wildfires are most common in the Western United States due to drought, and the fact that the summer months are drier than other areas such as the East Coast, so there is a higher risk for wildland fires (Donegan 2016). These high-growth forests that are more frequently burned by wildfires each year are located near mountain ranges on the west side of the United States. They are important to tourism, contain many endangered species, and need to maintain the natural cycle of fire and regrowth for the continued success of the native plant life. This project investigated the effect of burnt soil on Sequoiadendron giganteum trees. Three were grown in burnt potting soil that had been roasted over a grill for 45 minutes (which is the average destructive fire time), and the other three were the control group in unburned potting soil. We assessed growth by measuring height, color, photosynthetically active radiation (PAR), and CO2 flux to evaluate the health of the trees in the two soil conditions. We noted that after two weeks the trunks of the trees growing in burnt soil began to brown in color, and they lost leaves. Over the course of the experiment, the trees growing in burnt soil had reduced levels of photosynthesis as compared to the unburned soil (as measured by the net change in CO2 concentration in a sealed chamber over the course of fifteen minutes intervals). On average, the trees growing in burnt soil had flux rates that were 19.59 ppm CO2 /min. more than those growing in unburned soil. In the dark reactions, the burnt soil flux was 54.5 ppm CO2/min., while the unburned soil averaged 40.5 ppm CO2/min. Our results help quantify the impact of fire on delicate ecosystems that are experiencing an increase in fire activity caused by global warming.

  17. Comparative CO2 flux measurements by eddy covariance technique using open- and closed-path gas analysers over the equatorial Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Fumiyoshi Kondo


    Full Text Available Direct comparison of air–sea CO2 fluxes by open-path eddy covariance (OPEC and closed-path eddy covariance (CPEC techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO2 flux by OPEC was larger than the bulk CO2 flux using the gas transfer velocity estimated by the mass balance technique, while the CO2 flux by CPEC agreed with the bulk CO2 flux. We investigated a traditional conflict between the CO2 flux by the eddy covariance technique and the bulk CO2 flux, and whether the CO2 fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO2 flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO2 fluctuation over the ocean. Further, the underestimated CO2 flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H2O flux. The CO2 flux by CPEC agreed with the total CO2 flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO2 flux.

  18. BOREAS TGB-3 CH4 and CO2 Chamber Flux Data over NSA Upland Sites (United States)

    Savage, Kathleen; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.


    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected methane and carbon dioxide (CH4, CO2) chamber flux measurements at the Northern Study Area (NSA) Fen, Old Black Spruce (OBS), Young Jack Pine (YJP), and auxiliary sites along Gillam Road and the 1989 burn site. Gas samples were extracted from chambers and analyzed at the NSA lab facility approximately every 7 days during May to September 1994 and June to October 1996. The data are provided in tabular ASCII files.

  19. Regional variability of grassland CO2 fluxes in Tyrol/Austria (United States)

    Irschick, Christoph; Hammerle, Albin; Haslwanter, Alois; Wohlfahrt, Georg


    The FLUXNET project [1] aims at quantifying the magnitude and controls on the CO2, H2O and energy exchange of terrestrial ecosystems. Ideally, the various biomes of the Earth would be sampled in proportion to their spatial extent - in reality, however, study site selection is usually based on other (more practical) criteria so that a bias exists towards certain biomes and ecosystem types. This may be problematic because FLUXNET data are used to calibrate/parameterize models at various scales - if certain ecosystems are poorly replicated this may bias model predictions. Here we present data from a project in Tyrol/Austria where we have been investigating the CO2, H2O and energy exchange of five grassland sites during 2005-2007. The five permanent grassland sites were exposed to similar climate, but differed slightly in management. In a FLUXNET style approach, any of these sites might have been selected for making long-term flux measurements - the aim of this project was to examine the representativeness of these sites and, if evident, elucidate the causes for and controls on differences between sites. To this end we conducted continuous eddy covariance flux measurements at one (anchor) site [2, 3], and episodic, month long flux measurements at the four additional sites using a roving eddy covariance tower. These data were complemented by measurements of environmental drivers, the amount of above ground phytomass and basic data on vegetation and soil type, as well as management. Data are subject to a rigorous statistical analysis in order to quantify significant differences in the CO2, H2O and energy exchange between the sites and to identify the factors which are responsible for these differences. In the present contribution we report results on CO2 fluxes. Our major findings are that (i) site-identity of the surveyed grassland ecosystems was a significant factor for the net ecosystem CO2 exchange (NEE), somewhat less for gross primary production (GPP) and not for

  20. Expanding Spatial and Temporal Coverage of Arctic CH4 and CO2 Fluxes (United States)

    Murphy, P.; Oechel, W. C.; Moreaux, V.; Losacco, S.; Zona, D.


    Carbon storage and exchange in Arctic ecosystems is the subject of intensive study focused on determining rates, controls, and mechanisms of CH4 and CO2 fluxes. The Arctic contains more than 1 Gt of Carbon in the upper meter of soil, both in the active layer and permafrost (Schuur et al., 2008; Tarnocai et al., 2009). However, the annual pattern and controls on the release of CH4 is inadequately understood in Arctic tundra ecosystems. Annual methane budgets are poorly understood, and very few studies measure fluxes through the freeze-up cycle during autumn months (Mastepanov et al., 2008; Mastepanov et al., 2010; Sturtevant et al., 2012). There is no known, relatively continuous, CH4 flux record for the Arctic. Clearly, the datasets that currently exist for budget calculations and model parameterization and verification are inadequate. This is likely due to the difficult nature of flux measurements in the Arctic. In September 2012, we initiated a research project towards continuous methane flux measurements along a latitudinal transect in Northern Alaska. The eddy-covariance (EC) technique is challenging in such extreme weather conditions due to the effects of ice formation and precipitation on instrumentation, including gas analyzers and sonic anemometers. The challenge is greater in remote areas of the Arctic, when low power availability and limited communication can lead to delays in data retrieval or data loss. For these reasons, a combination of open- and closed-path gas analyzers, and several sonic anemometers (including one with heating), have been installed on EC towers to allow for cross-comparison and cross-referencing of calculated fluxes. Newer instruments for fast CH4 flux determination include: the Los Gatos Research Fast Greenhouse Gas Analyzer and the Li-Cor LI-7700. We also included the self-heated Metek Class-A uSonic-3 Anemometer as a new instrument. Previously existing instruments used for comparison include the Li-Cor LI-7500; Li-Cor LI-7200

  1. BOREAS TGB-5 CO2, CH4 and CO Chamber Flux Data Over the NSA (United States)

    Burke, Roger; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Zepp, Richard


    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected a variety of trace gas concentration and flux measurements at several NSA sites. This data set contains carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) chamber flux measurements conducted in 1994 at upland forest sites that experienced stand-replacement fires. These measurements were acquired to understand the impact of fires on soil biogeochemistry and related changes in trace gas exchange in boreal forest soils. Relevant ancillary data, including data concerning the soil temperature, solar irradiance, and information from nearby un-burned control sites, are included to provide a basis for modeling the regional impacts of fire and climate changes on trace gas biogeochemistry. The data are provided in tabular ASCII files.

  2. Sensitivity of spectral indices to CO2 fluxes for several plant communities in a Sphagnum-dominated peatland

    International Nuclear Information System (INIS)

    Letendre, J.; Poulin, M.; Rochefort, L.


    A study was conducted in which the relationship between spectral indices and carbon dioxide (CO 2 ) fluxes was tested for different communities in a Sphagnum-dominated peatland. This paper focused on the remote sensing approach that was used to directly link spectral indices to CO 2 fluxes to highlight the potential of remote sensing for mapping the spatial distribution of CO 2 fluxes. Carbon exchange in these ecosystems has become an environmental concern since peatlands play a key role in the global carbon cycle. A portable climate-controlled chamber was used to measure fluxes while simultaneously recording reflectance with a hand-held spectroradiometer. A laboratory experiment was also conducted to find a water-related index that most correlated with Sphagnum water content in order to regulate the normalized difference vegetation index (NDVI) values obtained in the field. The laboratory experiment showed a strong correlation between Sphagnum water content and all spectral indices, notably the water index (WI), normalized difference water index (NDWI), and relative depth index (RDI). The water index was chosen to regulate NDVI values. This paper described the indices that were tested in the field for CO 2 flux estimations. NDVI alone was found to be a poor predictor of net ecosystem exchange. The relationship between CO 2 fluxes and narrow band chlorophyll indices was reasonably well adjusted. It was concluded that the chlorophyll indices may be the most promising for mapping the spatial distribution of CO 2 fluxes in the future. 62 refs., 2 tabs., 4 figs

  3. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet. (United States)

    Lu, Xuyang; Fan, Jihui; Yan, Yan; Wang, Xiaodan


    Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m(-2) for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.

  4. CO2 and CH4 fluxes in a Spartina salt marsh and brackish Phragmites marsh in Massachusetts (United States)

    Tang, J.; Wang, F.; Kroeger, K. D.; Gonneea, M. E.


    Coastal salt marshes play an important role in global and regional carbon cycling. Tidally restricted marshes reduce salinity and provide a habitat suitable for Phragmites invasion. We measured greenhouse gas (GHG) emissions (CO2 and CH4) continuously with the eddy covariance method and biweekly with the static chamber method in a Spartina salt marsh and a Phragmites marsh on Cape Cod, Massachusetts, USA. We did not find significant difference in CO2 fluxes between the two sites, but the CH4 fluxes were much higher in the Phragmites site than the Spartina marsh. Temporally, tidal cycles influence the CO2 and CH4 fluxes in both sites. We found that the salt marsh was a significant carbon sink when CO2 and CH4 fluxes were combined. Restoring tidally restricted marshes will significantly reduce CH4 emissions and provide a strong ecosystem carbon service.

  5. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee H.; Dobeck, Laura M.; Repasky, Kevin S.; Nehrir, Amin R.; Humphries, Seth D.; Barr, Jamie L.; Keith, Charlie J.; Shaw, Joseph A.; Rouse, Joshua H.; Cunningham, Alfred B.; Benson, Sally M.; Oldenburg, Curtis M.; Lewicki, Jennifer L.; Wells, Arthur W.; Diehl, J. R.; Strazisar, Brian; Fessenden, Julianna; Rahn, Thom A.; Amonette, James E.; Barr, Jonathan L.; Pickles, William L.; Jacobson, James D.; Silver, Eli A.; Male, Erin J.; Rauch, Henry W.; Gullickson, Kadie; Trautz, Robert; Kharaka, Yousif; Birkholzer, Jens; Wielopolski, Lucien


    A facility has been constructed to perform controlled shallow releases of CO2 at flow rates that challenge near surface detection techniques and can be scalable to desired retention rates of large scale CO2 storage projects. Preinjection measurements were made to determine background conditions and characterize natural variability at the site. Modeling of CO2 transport and concentration in saturated soil and the vadose zone was also performed to inform decisions about CO2 release rates and sampling strategies. Four releases of CO2 were carried out over the summer field seasons of 2007 and 2008. Transport of CO2 through soil, water, plants, and air was studied using near surface detection techniques. Soil CO2 flux, soil gas concentration, total carbon in soil, water chemistry, plant health, net CO2 flux, atmospheric CO2 concentration, movement of tracers, and stable isotope ratios were among the quantities measured. Even at relatively low fluxes, most techniques were able to detect elevated levels of CO2 in the soil, atmosphere, or water. Plant stress induced by CO2 was detectable above natural seasonal variations.

  6. Global monthly CO2 flux inversion with a focus over North America

    International Nuclear Information System (INIS)

    Feng Deng; Chen, Jing M.; Ishizawa, Misa; Chiu-Wai Yuen; Gang Mo; Higuchi, Kaz; Chan, Douglas; Maksyutov, Shamil


    A nested inverse modelling system was developed for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Monthly inverse modelling was conducted using CO 2 concentration measurements of 3 yr (2001-2003) at 88 sites. Inversion results show that in 2003 the global carbon sink is -2.76 ± 0.55 Pg C. Oceans and lands are responsible for 88.5% and 11.5% of the sink, respectively. Northern lands are the largest sinks with North America contributing a sink of -0.97 ± 0.21 Pg C in 2003, of which Canada's sink is -0.34 ± 0.14 Pg C. For Canada, the inverse results show a spatial pattern in agreement, for the most part, with a carbon source and sink distribution map previously derived through ecosystem modelling. However, discrepancies in the spatial pattern and in flux magnitude between these two estimates exist in certain regions. Numerical experiments with a full covariance matrix, with the consideration of the error structure of the a priori flux field based on meteorological variables among the 30 North America regions, resulted in a small but meaningful improvement in the inverted fluxes. Uncertainty reduction analysis suggests that new observation sites are still needed to further improve the inversion for these 30 regions in North America

  7. LBA-ECO TG-07 Soil CO2 Flux by Automated Chamber, Para, Brazil: 2001-2003 (United States)

    R.K. Varner; M.M. Keller


    Measurements of the soil-atmosphere flux of CO2 were made at the km 67 flux tower site in the Tapajos National Forest, Santarem, Para, Brazil. Eight chambers were set up to measure trace gas exchange between the soil and atmosphere about 5 times a day (during daylight and night) at this undisturbed forest site from April 2001 to April 2003. CO2 soil efflux data are...

  8. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest? (United States)

    J.L.M. van Haren; R.C. de Oliveira; N. Restrepo-Coupe; L. Hutyra; P. B. de Camargo; Michael Keller; S.R. Saleska


    [1] To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO2 and N2O fluxes close to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay‐rich forest sites in central Amazonia. We found that soil CO2 fluxes were 38% higher near large trees than at control sites >10...

  9. Ground-Based Remote Sensing of Volcanic CO2 Fluxes at Solfatara (Italy—Direct Versus Inverse Bayesian Retrieval

    Directory of Open Access Journals (Sweden)

    Manuel Queißer


    Full Text Available CO2 is the second most abundant volatile species of degassing magma. CO2 fluxes carry information of incredible value, such as periods of volcanic unrest. Ground-based laser remote sensing is a powerful technique to measure CO2 fluxes in a spatially integrated manner, quickly and from a safe distance, but it needs accurate knowledge of the plume speed. The latter is often difficult to estimate, particularly for complex topographies. So, a supplementary or even alternative way of retrieving fluxes would be beneficial. Here, we assess Bayesian inversion as a potential technique for the case of the volcanic crater of Solfatara (Italy, a complex terrain hosting two major CO2 degassing fumarolic vents close to a steep slope. Direct integration of remotely sensed CO2 concentrations of these vents using plume speed derived from optical flow analysis yielded a flux of 717 ± 121 t day−1, in agreement with independent measurements. The flux from Bayesian inversion based on a simple Gaussian plume model was in excellent agreement under certain conditions. In conclusion, Bayesian inversion is a promising retrieval tool for CO2 fluxes, especially in situations where plume speed estimation methods fail, e.g., optical flow for transparent plumes. The results have implications beyond volcanology, including ground-based remote sensing of greenhouse gases and verification of satellite soundings.

  10. Spatio-temporal Variability in Surface Ocean pCO2 Inferred from Observations


    Jones, Steve


    The variability of surface ocean pCO2 is examined on multiple spatial and temporal scales. Temporal autocorrelation analysis is used to examine pCO2 variability over multiple years. Spatial autocorrelation analysis describes pCO2 variability over multiple spatial scales. Spatial autocorrelation lengths range between

  11. Reactivity of dissolved- vs. supercritical-CO2 phase toward muscovite basal surfaces (United States)

    Wan, J.; Tokunaga, T. K.; Kim, Y.; Wang, S.; Altoe, M. V. P.; Ashby, P. D.; DePaolo, D.


    The current understanding of geochemical reactions in reservoirs for geological carbon sequestration (GCS) is largely based on aqueous chemistry (CO2 dissolves in reservoir brine and brine reacts with rocks). However, only a portion of the injected supercritical (sc) CO2 dissolves before the buoyant plume contacts caprock, where it is expected to reside for a long time. Although numerous studies have addressed scCO2-mineral reactions occurring within adsorbed aqueous films, possible reactions resulting from direct CO2-rock contact remain less understood. Does CO2 as a supercritical phase react with reservoir rocks? Do mineral react differently with scCO2 than with dissolved CO2? We selected muscovite, one of the more stable and common rock-forming silicate minerals, to react with scCO2 phase (both water-saturated and water-free) and compared with CO2-saturated-brine. The reacted basal surfaces were analyzed using atomic force microscopy and X-ray photoelectron spectroscopy for examining the changes in surface morphology and chemistry. The results show that scCO2 (regardless of its water content) altered muscovite considerably more than CO2-saturated brine; suggest CO2 diffusion into mica interlayers and localized mica dissolution into scCO2 phase. The mechanisms underlying these observations and their implications for GCS need further exploration.

  12. Enceladus' near-surface CO2 gas pockets and surface frost deposits (United States)

    Matson, Dennis L.; Davies, Ashley Gerard; Johnson, Torrence V.; Combe, Jean-Philippe; McCord, Thomas B.; Radebaugh, Jani; Singh, Sandeep


    Solid CO2 surface deposits were reported in Enceladus' South Polar Region by Brown et al. (2006). They noted that such volatile deposits are temporary and posited ongoing replenishment. We present a model for this replenishment by expanding on the Matson et al. (2012) model of subsurface heat and chemical transport in Enceladus. Our model explains the distributions of both CO2 frost and complexed CO2 clathrate hydrate as seen in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. We trace the journey of CO2 from a subsurface ocean. The ocean-water circulation model of Matson et al. (2012) brings water up to near the surface where gas exsolves to form bubbles. Some of the CO2 bubbles are trapped and form pockets of gas in recesses at the bottom of the uppermost ice layer. When fissures break open these pockets, the CO2 gas is vented. Gas pocket venting is episodic compared to the more or less continuous eruptive plumes, emanating from the "tiger stripes", that are supported by plume chambers. Two styles of gas pocket venting are considered: (1) seeps, and (2) blowouts. The presence of CO2 frost patches suggests that the pocket gas slowly seeped through fractured, cold ice and when some of the gas reached the surface it was cold enough to condense (i.e., T ∼70 to ∼119 K). If the fissure opening is large, a blowout occurs. The rapid escape of gas and drop in pocket pressure causes water in the pocket to boil and create many small aerosol droplets of seawater. These may be carried along by the erupting gas. Electrically charged droplets can couple to the magnetosphere, and be dragged away from Enceladus. Most of the CO2 blowout gas escapes from Enceladus and the remainder is distributed globally. However, CO2 trapped in a clathrate structure does not escape. It is much heavier and slower moving than the CO2 gas. Its motion is ballistic and has an average range of about 17 km. Thus, it contributes to deposits in the vicinity of the vent. Local heat

  13. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China. (United States)

    Wang, Jianbo; Zhu, Tingcheng; Ni, Hongwei; Zhong, Haixiu; Fu, Xiaoling; Wang, Jifeng


    Increasing atmospheric CO2 and nitrogen (N) deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP) was higher than ecosystem respiration (ER), leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE) in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.

  14. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China.

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    Full Text Available BACKGROUND: Increasing atmospheric CO2 and nitrogen (N deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. METHODOLOGY/PRINCIPAL FINDINGS: Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP was higher than ecosystem respiration (ER, leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. CONCLUSION/SIGNIFICANCE: In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.

  15. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX) (United States)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.


    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  16. Productivity and CO2 exchange of Great Plains ecoregions. I. Shortgrass steppe: Flux tower estimates (United States)

    Gilmanov, Tagir G.; Morgan, Jack A.; Hanan, Niall P.; Wylie, Bruce K.; Rajan, Nithya; Smith, David P.; Howard, Daniel M.


    The shortgrass steppe (SGS) occupies the southwestern part of the Great Plains. Half of the land is cultivated, but significant areas remain under natural vegetation. Despite previous studies of the SGS carbon cycle, not all aspects have been completely addressed, including gross productivity, ecosystem respiration, and ecophysiological parameters. Our analysis of 1998 − 2007 flux tower measurements at five Bowen ratio–energy balance (BREB) and three eddy covariance (EC) sites characterized seasonal and interannual variability of gross photosynthesis and ecosystem respiration. Identification of the nonrectangular hyperbolic equation for the diurnal CO2 exchange, with vapor pressure deficit (VPD) limitation and exponential temperature response, quantified quantum yield α, photosynthetic capacity Amax, and respiration rate rd with variation ranges (19 \\production from − 900 to + 700 g CO2 m− 2 yr− 1, indicating that SGS may switch from a sink to a source depending on weather. Comparison of the 2004 − 2006 measurements at two BREB and two parallel EC flux towers located at comparable SGS sites showed moderately higher photosynthesis, lower respiration, and higher net production at the BREB than EC sites. However, the difference was not related only to methodologies, as the normalized difference vegetation index at the BREB sites was higher than at the EC sites. Overall magnitudes and seasonal patterns at the BREB and the EC sites during the 3-yr period were similar, with trajectories within the ± 1.5 standard deviation around the mean of the four sites and mostly reflecting the effects of meteorology.

  17. [Temperature sensitivity of CO2 fluxes from rhizosphere soil mineralization and root decomposition in Pinus massoniana and Castanopsis sclerophylla forests]. (United States)

    Liu, Yu; Hu, Xiao-Fei; Chen, Fu-Sheng; Yuan, Ping-Cheng


    Rhizospheric and non-rhizospheric soils and the absorption, transition, and storage roots were sampled from the mid-subtropical Pinus massoniana and Castanopsis sclerophylla forests to study the CO2 fluxes from soil mineralization and root decomposition in the forests. The samples were incubated in closed jars at 15 degrees C, 25 degrees C, 35 degrees C, and 45 degrees C, respectively, and alkali absorption method was applied to measure the CO2 fluxes during 53 days incubation. For the two forests, the rhizospheric effect (ratio of rhizospheric to non-rhizospheric soil) on the CO2 flux from soil mineralization across all incubation temperature ranged from 1.12 to 3.09, with a decreasing trend along incubation days. There was no significant difference in the CO2 flux from soil mineralization between the two forests at 15 degrees C, but the CO2 flux was significantly higher in P. massoniana forest than in C. sclerophylla forest at 25 degrees C and 35 degrees C, and in an opposite pattern at 45 degrees C. At all incubation temperature, the CO2 release from the absorption root decomposition was higher than that from the transition and storage roots decomposition, and was smaller in P. massoniana than in C. sclerophylla forest for all the root functional types. The Q10 values of the CO2 fluxes from the two forests were higher for soils (1.21-1.83) than for roots (0.96-1.36). No significant differences were observed in the Q10 values of the CO2 flux from soil mineralization between the two forests, but the Q10 value of the CO2 flux from root decomposition was significantly higher in P. massoniana than in C. sclerophylla forest. It was suggested that the increment of CO2 flux from soil mineralization under global warming was far higher than that from root decomposition, and for P. massoniana than for C. sclerophylla forest. In subtropics of China, the adaptability of zonal climax community to global warming would be stronger than that of pioneer community.

  18. Contribution of tropical cyclones to the air-sea CO2 flux: A global view

    Digital Repository Service at National Institute of Oceanography (India)

    Levy, M.; Lengaigne, M.; Bopp, L.; Vincent, E.M.; Madec, G.; Ethe, C.; DileepKumar, M.; Sarma, V.V.S.S.

    .ocemod.2006.11.003.501 D’Asaro, E. (2003), The ocean boundary layer below hurricane dennis, Journal of physical502 oceanography, 33(3), 561–579.503 D’Asaro,E.,andC.McNeil(2007),Air-seagasexchangeatextremewindspeedsmeasured504 by autonomous oceanographic floats... at high wind speed [Liss and Merlivat, 1986; Wanninkhof, 1992; D’Asaro and McNeil,55 2007; McNeil and D’Asaro, 2007]. TCs also impact F CO 2 because their intense surface56 winds increase vertical entrainment of subsurface waters (hereafter referred...

  19. Air-sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice

    DEFF Research Database (Denmark)

    Sejr, Mikael Kristian; Krause-Jensen, Dorte; Rysgaard, Søren


    Annual air–sea exchange ofCO2 inYoung Sound,NEGreenlandwas estimated using pCO2 surface-water measurements during summer (2006–2009) and during an ice-covered winter 2008. All surface pCO2 values were below atmospheric levels indicating an uptake of atmospheric CO2. During sea ice formation...... and thereby efficiently blocked air–sea CO2 exchange. During sea ice melt, dissolution of CaCO3 combined with primary production and strong stratification of the water column acted to lower surface-water pCO2 levels in the fjord. Also, a large input of glacial melt water containing geochemically reactive...... year-to-year variation in annual gas exchange....

  20. Analysis of the microclimate and CO2 flux characteristics in arid ...

    Indian Academy of Sciences (India)

    Field site and methods. 2.1 Field site. The study was .... cal wind velocities were positive at the field site. (figure 2a). ..... micrometeorology: A guide for surface flux measurements; ... Zhang G S 2000 Research progress on trees and shrub.

  1. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4 : XCO2 retrievals, 2010-2014 (United States)

    Feng, Liang; Palmer, Paul I.; Bösch, Hartmut; Parker, Robert J.; Webb, Alex J.; Correia, Caio S. C.; Deutscher, Nicholas M.; Domingues, Lucas G.; Feist, Dietrich G.; Gatti, Luciana V.; Gloor, Emanuel; Hase, Frank; Kivi, Rigel; Liu, Yi; Miller, John B.; Morino, Isamu; Sussmann, Ralf; Strong, Kimberly; Uchino, Osamu; Wang, Jing; Zahn, Andreas


    We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4 : XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. This work builds on the previously reported theory that takes into account that (1) these ratios are less prone to systematic error than either the full-physics data products or the proxy CH4 data products; and (2) the resulting CH4 and CO2 fluxes are self-consistent. We show that a posteriori fluxes inferred from the GOSAT data generally outperform the fluxes inferred only from in situ data, as expected. GOSAT CH4 and CO2 fluxes are consistent with global growth rates for CO2 and CH4 reported by NOAA and have a range of independent data including new profile measurements (0-7 km) over the Amazon Basin that were collected specifically to help validate GOSAT over this geographical region. We find that large-scale multi-year annual a posteriori CO2 fluxes inferred from GOSAT data are similar to those inferred from the in situ surface data but with smaller uncertainties, particularly over the tropics. GOSAT data are consistent with smaller peak-to-peak seasonal amplitudes of CO2 than either the a priori or in situ inversion, particularly over the tropics and the southern extratropics. Over the northern extratropics, GOSAT data show larger uptake than the a priori but less than the in situ inversion, resulting in small net emissions over the year. We also find evidence that the carbon balance of tropical South America was perturbed following the droughts of 2010 and 2012 with net annual fluxes not returning to an approximate annual balance until 2013. In contrast, GOSAT data significantly changed the a priori spatial distribution of CH4 emission with a 40 % increase over tropical South America and tropical Asia and a smaller decrease over Eurasia and temperate

  2. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico (United States)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.


    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  3. Searching Sinks and Sources: CO2 Fluxes Before and After Partial Deforestation of a Spruce Forest (United States)

    Ney, P.; Graf, A.; Druee, C.; Esser, O.; Klosterhalfen, A.; Valler, V.; Pick, K.; Vereecken, H.


    Forest ecosystems in the northern mid-latitudes act as a sink for atmospheric carbon dioxide (CO2) and hence play an important role in the terrestrial carbon cycle. Disturbances of these landscapes may have a significant impact on their ecosystem carbon budget. We present seven years of eddy covariance (EC) measurements (September 2013 to September 2017) over a 70 year old spruce stock, including three years prior to and four years after partial deforestation. We analyzed the seasonal and inter-annual changes of carbon fluxes as affected mainly by the forest transition. The measurements were carried out in a small headwater catchment (38.5 ha) within the TERENO (TERrestrial Environmental Observatories) network in the Eifel National Park Germany (50°30'N, 06°19'E, 595-629 m a.s.l.). An EC system, mounted on the top of a 38 m high tower, continuously samples fluxes of momentum, sensible heat, latent heat and CO2. In August and September 2013, more than 20% of the catchment was deforested and planned for regeneration towards natural deciduous vegetation, and a second EC station (2.5 m height) was installed in the middle of this clearcut. Flux partitioning and gap filling methods were used to calculate full time series and annual carbon budgets of the measured net ecosystem exchange (NEE) and its components gross primary production (GPP) and total ecosystem respiration (Reco). Additionally, soil respiration was measured with manual chambers on a monthly to bi-monthly basis at 25 transect points in the forest and deforested area. Annual sums of NEE represent the forest as a carbon sink with small inter-annual variability. In contrast, the deforested area showed a clear trend. In the first year after partial deforestation, regrowth on the deforested area consisted mainly of grasses and red foxglove (Digitalis purpurea L.), while since the second year also growth of mountain ash (Sorbus aucuparia L.) and broom (Cytisus scoparius L.) increased. The regrowth of biomass is

  4. Long-term CO2 injection and its impact on near-surface soil microbiology. (United States)

    Gwosdz, Simone; West, Julia M; Jones, David; Rakoczy, Jana; Green, Kay; Barlow, Tom; Blöthe, Marco; Smith, Karon; Steven, Michael; Krüger, Martin


    Impacts of long-term CO 2 exposure on environmental processes and microbial populations of near-surface soils are poorly understood. This near-surface long-term CO 2 injection study demonstrated that soil microbiology and geochemistry is influenced more by seasonal parameters than elevated CO 2 Soil samples were taken during a 3-year field experiment including sampling campaigns before, during and after 24 months of continuous CO 2 injection. CO 2 concentrations within CO 2 -injected plots increased up to 23% during the injection period. No CO 2 impacts on geochemistry were detected over time. In addition, CO 2 -exposed samples did not show significant changes in microbial CO 2 and CH 4 turnover rates compared to reference samples. Likewise, no significant CO 2 -induced variations were detected for the abundance of Bacteria, Archaea (16S rDNA) and gene copy numbers of the mcrA gene, Crenarchaeota and amoA gene. The majority (75%-95%) of the bacterial sequences were assigned to five phyla: Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes The majority of the archaeal sequences (85%-100%) were assigned to the thaumarchaeotal cluster I.1b (soil group). Univariate and multivariate statistical as well as principal component analyses showed no significant CO 2 -induced variation. Instead, seasonal impacts especially temperature and precipitation were detected. © FEMS 2016. All rights reserved. For permissions, please e-mail:

  5. Influence of sustainable irrigation regimes and agricultural practices on the soil CO2 fluxes from olive groves in SE Spain (United States)

    Marañón-Jiménez, Sara; Serrano-Ortíz, Penelope; Vicente-Vicente, Jose Luis; Chamizo, Sonia; Kowalski, Andrew S.


    Olive (Olea europaea) is the dominant agriculture plantation in Spain and its main product, olive oil, is vital to the economy of Mediterranean countries. Given the extensive surface dedicated to olive plantations, olive groves can potentially sequester large amounts of carbon and contribute to mitigate climate change. Their potential for carbon sequestration will, however, largely depend on the management and irrigation practices in the olive grove. Although soil respiration is the main path of C release from the terrestrial ecosystems to the atmosphere and a suitable indicator of soil health and fertility, the interaction of agricultural management practices with irrigation regimes on soil CO2 fluxes have not been assessed yet. Here we investigate the influence of the presence of herbaceous cover, use of artificial fertilizers and their interaction with the irrigation regime on the CO2 emission from the soil to the atmosphere. For this, the three agricultural management treatments were established in replicated plots in an olive grove in the SE of Spain: presence of herbaceous cover ("H"), exclusion of herbaceous cover by using herbicides ("NH"), and exclusion of herbaceous cover along with addition of artificial fertilizers (0.55 kg m-2 year-1 of N, P, K solid fertilizer in the proportion 20:10:10, "NHF"). Within each management treatment, three irrigation regimes were also implemented in a randomized design: no-irrigation ("NO") or rain fed, full irrigation (224 l week-1 per olive tree, "MAX"), and a 50% restriction (112 l week-1 per olive tree, "MED"). Soil respiration was measured every 2-3 weeks at 1, 3, and 5 meters from each olive tree together with soil temperature and soil moisture in order to account for the spatial and seasonal variability over the year. Soil respiration was higher when herbaceous cover was present compared to the herbaceous exclusion, whereas the addition of fertilizer did not exert any significant effect. Although the different

  6. Toward an estimation of daily european CO2 fluxes at high spatial resolution by inversion of atmospheric transport

    International Nuclear Information System (INIS)

    Carouge, C.


    Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO 2 . This is possible because CO 2 concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO 2 inversions have used monthly mean CO 2 atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO 2 measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO 2 fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO 2 concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on distance between pixels, climate and vegetation

  7. An update to the Surface Ocean CO2 Atlas (SOCAT version 2)

    NARCIS (Netherlands)

    Bakker, D.C.E.; Pfeil, B.; Smith, K.; Hankin, S.; Olsen, A.; Alin, S. R.; Cosca, C.; Harasawa, S.; Kozyr, A.; Nojiri, Y.; O'Brien, K. M.; Schuster, U.; Telszewski, M.; Tilbrook, B.; Wada, C.; Akl, J.; Barbero, L.; Bates, N. R.; Boutin, J.; Bozec, Y.; Cai, W. -J.; Castle, R. D.; Chavez, F. P.; Chen, L.; Chierici, M.; Currie, K.; de Baar, H. J. W.; Evans, W.; Feely, R. A.; Fransson, A.; Gao, Z.; Hales, B.; Hardman-Mountford, N. J.; Hoppema, M.; Huang, W. -J.; Hunt, C. W.; Huss, B.; Ichikawa, T.; Johannessen, T.; Jones, E. M.; Jones, S. D.; Jutterstrom, S.; Kitidis, V.; Koertzinger, A.; Landschuetzer, P.; Lauvset, S. K.; Lefevre, N.; Manke, A. B.; Mathis, J. T.; Merlivat, L.; Metzl, N.; Murata, A.; Newberger, T.; Omar, A. M.; Ono, T.; Park, G. -H.; Paterson, K.; Pierrot, D.; Rios, A. F.; Sabine, C. L.; Saito, S.; Salisbury, J.; Sarma, V. V. S. S.; Schlitzer, R.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Sullivan, K. F.; Sun, H.; Sutton, A. J.; Suzuki, T.; Sweeney, C.; Takahashi, T.; Tjiputra, J.; Tsurushima, N.; van Heuven, S. M. A. C.; Vandemark, D.; Vlahos, P.; Wallace, D. W. R.; Wanninkhof, R.; Watson, A.J.


    The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO(2) (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data

  8. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. (United States)

    Ahirwal, Jitendra; Maiti, Subodh Kumar; Singh, Ashok Kumar


    Open strip mining of coal results in loss of natural carbon (C) sink and increased emission of CO 2 into the atmosphere. A field study was carried out at five revegetated coal mine lands (7, 8, 9, 10 and 11years) to assess the impact of the reclamation on soil properties, accretion of soil organic C (SOC) and nitrogen (N) stock, changes in ecosystem C pool and soil CO 2 flux. We estimated the presence of C in the tree biomass, soils, litter and microbial biomass to determine the total C sequestration potential of the post mining reclaimed land. To determine the C sequestration of the reclaimed ecosystem, soil CO 2 flux was measured along with the CO 2 sequestration. Reclaimed mine soil (RMS) fertility increased along the age of reclamation and decreases with the soil depths that may be attributed to the change in mine soils characteristics and plant growth. After 7 to 11years of reclamation, SOC and N stocks increased two times. SOC sequestration (1.71MgCha -1 year -1 ) and total ecosystem C pool (3.72MgCha -1 year -1 ) increased with the age of reclamation (CO 2 equivalent: 13.63MgCO 2 ha -1 year -1 ). After 11years of reclamation, soil CO 2 flux (2.36±0.95μmolm -2 s -1 ) was found four times higher than the natural forest soils (Shorea robusta Gaertn. F). The study shows that reclaimed mine land can act as a source/sink of CO 2 in the terrestrial ecosystem and plays an important role to offset increased emission of CO 2 in the atmosphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Surface energy, CO2 fluxes and sea ice

    CSIR Research Space (South Africa)

    Gulev, SK


    Full Text Available from as many as 20 US RVs operating in the Atlantic and Pacific and the Australian Integrated Marine Observing System (IMOS; is a regional initiative around Australia. Some limitations are associated with the effects of ship...) and cloud cover ? along with cloud types, present and past weather, and wind and swell wave characteristics (all of which are visually estimated). Random and systematic uncertainties of VOS observations are typically larger than those for research...

  10. Response to ''Isotopic versus micrometeorologic ocean CO2 fluxes: An order of magnitude conflict'' by W. Broecker et al

    International Nuclear Information System (INIS)

    Wesely, M.L.


    Measurements of short-term, local air-sea exchange of CO 2 by eddy correlation in the atmosphere from surface towers have shown that the transfer (piston) velocities in coastal areas are very large in comparison to long-term oceanic estimates from radioisotope studies. The latter agree with radon evasion and laboratory investigations involving nonreactive gases. Horizontal atmospheric advection seems to be the most likely source of significant error in the eddy correlation estimates but is probably not the cause of the large transfer velocities because they were measured in a wide range of conditions by independent investigators. Furthermore, extrapolation of the large transfer velocities measured by the eddy correlation measurements to world average air-sea exchange rates does not provide a realistic basis on which to evaluate the validity of the local eddy flux measurements in coastal areas. Important chemical and physical phenomena affecting CO 2 exchange rates may be quite different in coastal as opposed to open-ocean conditions, and further research is needed in both cases

  11. Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition. (United States)

    Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping


    We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P plantations under various management practices.

  12. Controlling mechanisms of surface partial pressure of CO2 in Jiaozhou Bay during summer and the influence of heavy rain (United States)

    Li, Yunxiao; Yang, Xufeng; Han, Ping; Xue, Liang; Zhang, Longjun


    Due to the combined effects of natural processes and human activities, carbon source/sink processes and mechanisms in the coastal ocean are becoming more and more important in current ocean carbon cycle research. Based on differences in the ratio of total alkalinity (TA) to dissolved inorganic carbon (DIC) associated with terrestrial input, biological process (production and respiration), calcium carbonate (CaCO3) process (precipitation and dissolution) and CO2 evasion/invasion, we discuss the mechanisms controlling the surface partial pressure of CO2 (pCO2) in Jiaozhou Bay (JZB) during summer and the influence of heavy rain, via three cruises performed in mid-June, early July and late July of 2014. In mid-June and in early July, without heavy rain or obvious river input, sea surface pCO2 ranged from 521 to 1080 μatm and from 547 to 998 μatm, respectively. The direct input of DIC from sewage and the intense respiration produced large DIC additions and the highest pCO2 values in the northeast of the bay near the downtown of Qingdao. However, in the west of the bay, significant CaCO3 precipitation led to DIC removal but no obvious increase in pCO2, which was just close to that in the central area. Due to the shallow depth and longer water residence time in this region, this pattern may be related to the sustained release of CO2 into the atmosphere. In late July, heavy rain promoted river input in the western and eastern portions of JZB. Strong primary production led to a significant decrease in pCO2 in the western area, with the lowest pCO2 value of 252 μatm. However, in the northeastern area, the intense respiration remained, and the highest pCO2 value was 1149 μatm. The average air-sea CO2 flux in mid-June and early July was 20.23 mmol m- 2 d- 1 and 23.56 mmol m- 2 d- 1, respectively. In contrast, in late July, sources became sinks for atmospheric CO2 in the western and central areas of the bay, halving the average air-sea CO2 flux to a value of 10.58 mmol m- 2

  13. APO observations in Southern Greenland: evaluation of modelled air-sea O2 and CO2 fluxes (United States)

    Bonne, Jean-Louis; Bopp, Laurent; Delmotte, Marc; Cadule, Patricia; Resplandy, Laure; Nevison, Cynthia; Manizza, Manfredi; Valentin Lavric, Jost; Manning, Andrew C.; Masson-Delmotte, Valérie


    Since September 2007, the atmospheric CO2 mole fraction and O2/N2 ratio (a proxy for O2 concentration) have been monitored continuously at the coastal site of Ivittuut, southern Greenland (61.21° N, 48.17° W). From 2007 to 2013, our measurements show multi-annual trends of +2.0 ppm/year and -20 per meg/year respectively for CO2 and O2/N2, with annual average peak-to-peak seasonal amplitudes of 14+/-1 ppm and 130+/-15 per meg. We investigate the implications of our data set in terms of APO (Atmospheric Potential Oxygen). This tracer, obtained by a linear combination of CO2 and O2/N2 data, is invariant to CO2 and O2 exchanges in the land biota, but sensitive to the oceanic component of the O2 cycle. It is used as a bridge to evaluate air-sea CO2 and O2 fluxes from atmospheric variations of CO2 and O2/N2. Global ocean biogeochemical models produce estimates of CO2 and O2 air-sea fluxes. Atmospheric APO variations can be simulated through transportation of these fluxes in the atmosphere by Eulerian transport models. Thus, model values of atmospheric APO can be extracted at the station location. This study is based on air-sea flux outputs from CMIP5 simulations. After atmospheric transportation, they give access to atmospheric APO climatologies which can be compared, in terms of seasonal cycles and inter-annual variability, to the in situ observations. A preliminary study is based on the CCSM ocean model air-sea fluxes transported in the atmosphere with the MATCH transport model, over the period 1979-2004. The amplitude of the APO seasonal cycle is correctly captured, but year to year variations on this seasonal cycle appears to be underestimated compared to observations. The LMDZ atmospheric transport model is also used to transport the ocean fluxes from five CMIP5 models, over the period 1979-2005, showing different amplitudes and timings of APO seasonal cycles. This methodology is a first step to evaluate the origin of observed APO variations at our site and then

  14. An analytical model for the distribution of CO2 sources and sinks, fluxes, and mean concentration within the roughness sub-layer (United States)

    Siqueira, M. B.; Katul, G. G.


    A one-dimensional analytical model that predicts foliage CO2 uptake rates, turbulent fluxes, and mean concentration throughout the roughness sub-layer (RSL), a layer that extends from the ground surface up to 5 times the canopy height (h), is proposed. The model combines the mean continuity equation for CO2 with first-order closure principles for turbulent fluxes and simplified physiological and radiative transfer schemes for foliage uptake. This combination results in a second-order ordinary differential equation in which it is imposed soil respiration (RE) as lower and CO2 concentration well above the RSL as upper boundary conditions. An inverse version of the model was tested against data sets from two contrasting ecosystems: a tropical forest (TF, h=40 m) and a managed irrigated rice canopy (RC, h=0.7 m) - with good agreement noted between modeled and measured mean CO2 concentration profiles within the entire RSL (see figure). Sensitivity analysis on the model parameters revealed a plausible scaling regime between them and a dimensionless parameter defined by the ratio between external (RE) and internal (stomatal conductance) characteristics controlling the CO2 exchange process. The model can be used to infer the thickness of the RSL for CO2 exchange, the inequality in zero-plane displacement between CO2 and momentum, and its consequences on modeled CO2 fluxes. A simplified version of the solution is well suited for being incorporated into large-scale climate models. Furthermore, the model framework here can be used to a priori estimate relative contributions from the soil surface and the atmosphere to canopy-air CO2 concentration thereby making it synergetic to stable isotopes studies. Panels a) and c): Profiles of normalized measured leaf area density distribution (a) for TF and RC, respectively. Continuous lines are the constant a used in the model and dashed lines represent data-derived profiles. Panels b) and d) are modeled and ensemble-averaged measured

  15. Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: quantification of the European terrestrial CO2 fluxes (United States)

    Kountouris, Panagiotis; Gerbig, Christoph; Rödenbeck, Christian; Karstens, Ute; Koch, Thomas F.; Heimann, Martin


    Optimized biogenic carbon fluxes for Europe were estimated from high-resolution regional-scale inversions, utilizing atmospheric CO2 measurements at 16 stations for the year 2007. Additional sensitivity tests with different data-driven error structures were performed. As the atmospheric network is rather sparse and consequently contains large spatial gaps, we use a priori biospheric fluxes to further constrain the inversions. The biospheric fluxes were simulated by the Vegetation Photosynthesis and Respiration Model (VPRM) at a resolution of 0.1° and optimized against eddy covariance data. Overall we estimate an a priori uncertainty of 0.54 GtC yr-1 related to the poor spatial representation between the biospheric model and the ecosystem sites. The sink estimated from the atmospheric inversions for the area of Europe (as represented in the model domain) ranges between 0.23 and 0.38 GtC yr-1 (0.39 and 0.71 GtC yr-1 up-scaled to geographical Europe). This is within the range of posterior flux uncertainty estimates of previous studies using ground-based observations.

  16. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2-N2 and CO2-CH4 gas mixtures with high CO2 loading. (United States)

    Pal, Arun; Chand, Santanu; Elahi, Syed Meheboob; Das, Madhab C


    A microporous MOF {[Zn(SDB)(L) 0.5 ]·S} n (IITKGP-5) with a polar pore surface has been constructed by the combination of a V-shaped -SO 2 functionalized organic linker (H 2 SDB = 4,4'-sulfonyldibenzoic acid) with an N-rich spacer (L = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene), forming a network with sql(2,6L1) topology. IITKGP-5 is characterized by TGA, PXRD and single crystal X-ray diffraction. The framework exhibits lozenge-shaped channels of an approximate size of 4.2 × 5.6 Å 2 along the crystallographic b axis with a potential solvent accessible volume of 26%. The activated IITKGP-5a revealed a CO 2 uptake capacity of 56.4 and 49 cm 3 g -1 at 273 K/1 atm and 295 K/1 atm, respectively. On the contrary, it takes up a much smaller amount of CH 4 (17 cm 3 g -1 at 273 K and 13.6 cm 3 g -1 at 295 K) and N 2 (5.5 cm 3 g -1 at 273 K; 4 cm 3 g -1 at 295 K) under 1 atm pressure exhibiting its potential for a highly selective adsorption of CO 2 from flue gas as well as a landfill gas mixture. Based on the ideal adsorbed solution theory (IAST), a CO 2 /N 2 selectivity of 435.5 and a CO 2 /CH 4 selectivity of 151.6 have been realized at 273 K/100 kPa. The values at 295 K are 147.8 for CO 2 /N 2 and 23.8 for CO 2 /CH 4 gas mixtures under 100 kPa. In addition, this MOF nearly approaches the target values proposed for PSA and TSA processes for practical utility exhibiting its prospect for flue gas separation with a CO 2 loading capacity of 2.04 mmol g -1 .

  17. Fluxes of CH4 and N2O in aspen stands grown under ambient and twice-ambient CO2

    DEFF Research Database (Denmark)

    Ambus, P.; Robertson, G.P.


    Elevated atmospheric CO2 has the potential to change below-ground nutrient cycling and thereby alter the soil-atmosphere exchange of biogenic trace gases. We measured fluxes of CH4 and N2O in trembling aspen (Populus tremuloides Michx.) stands grown in open-top chambers under ambient and twice......-ambient CO2 concentrations crossed with `high' and low soil-N conditions. Flux measurements with small static chambers indicated net CH4 oxidation in the open-top chambers. Across dates, CH4 oxidation activity was significantly (P CO2 (8.7 mu g CH4-C m(-2) h(-1)) than...... with elevated CO2 (6.5 mu g CH4-C m(-2) h(-1)) in the low N soil. Likewise, across dates and soil N treatments CH4 was oxidized more rapidly (P CO2 (9.5 mu g CH4-C m(-2) h(-1)) than in chambers with elevated CO2 (8.8 mu g CH4-C m(-2) h(-1)). Methane oxidation in soils incubated...

  18. Monte Carlo surface flux tallies

    International Nuclear Information System (INIS)

    Favorite, Jeffrey A.


    Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.

  19. Simultaneous Measurements of Soil CO2 and CH4 Fluxes Using Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Rachhpal S. Jassal


    Full Text Available We present a method of simultaneously measuring soil CO and CH fluxes using a laser-based cavity ring-down spectrometer (CRDS coupled to an automated non-steady-state chamber system. The differential equation describing the change in the greenhouse gas (GHG mixing ratio in the chamber headspace following lid closure is solved for the condition when a small flow rate of chamber headspace air is pulled through the CRDS by an external pump and exhausted to the atmosphere. The small flow rate allows calculation of fluxes assuming linear relationships between the GHG mixing ratios and chamber lid closure times of a few minutes. We also calibrated the chambers for effective volume ( and show that adsorption of the GHGs on the walls of the chamber caused to be 7% higher than the geometric volume, with the near-surface soil porosity causing another 4% increase in .

  20. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in Southern Vietnam (United States)

    Lopes de Gerenyu, Valentin; Anichkin, Alexander


    Termites play the key role in biogeochemical transformation of organic matter acting as "moderators" of fluxes of carbon and other nutrients. They destroy not only leave litter but also coarse woody debris. Termites translocate considerable masses of dead organic materials into their houses, which leads to significant accumulations of organic matter in termite mounds. We studied the impact of termite mounds on redistribution of CO2 fluxes from soils in semi-deciduous monsoon tropical forests of southern Vietnam. Field study was performed in the Cat Tien National Park (11°21'-11°48'N, 107°10'-107°34'E). The spatial and temporary dynamics of CO2 fluxes from soils (Andosols) populated by termites were studied in plain lagerstroemia (Lagerstroemia calyculata Kurz) monsoon tropical forests. The rate of CO2 emission from the soil surface was measured by closed chamber method two-three times per month from November 2010 to December 2011. Permanent cylindrical PVC chambers (9 cm in diameter and 15 cm in height) were installed beyond the areas occupied by termite mounds (5 replications). Litter was not removed from the soil surface before the measurements. To estimate the spatial heterogeneity of the CO2 emission fluxes from soils populated by termites, a special 'termite' plot (TerPl) was equipped. It was 10×10 m in size and included three termite mounds: one mound built up by Globitermes sulphureus and two mounds populated by termites of the Odontotermes genus. Overall, 52 PVC chambers were installed permanently on the 'termite' plot (ca. 1 m apart from one another). The CO2 emission rate from TerPl was also measured by chamber closed method once in the dry season (April) and twice through the wet season (July and August). The average rate of CO2 emission from termite mounds was two times higher than that from the surrounding area (SurAr). In the dry season, it comprised 91±7 mg C/m2/h from the surrounding soils and 196±16 mg C/m2/h from the termite mounds. In the

  1. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Rissmann, Clinton; Christenson, Bruce; Werner, Cynthia; Leybourne, Matthew; Cole, Jim; Gravley, Darren


    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MW e ). Soil CO 2 degassing was quantified with 2663 CO 2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m −2 ) using published soil temperature heat flow functions. Both CO 2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO 2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO 2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they

  2. The relative influence of H2O and CO2 on the primitive surface conditions of Venus (United States)

    Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefiere, E.


    How the volatile content influences the primordial surface conditions of terrestrial planets and, thus, their future geodynamic evolution is an important question to answer. We simulate the secular convective cooling of a 1-D magma ocean (MO) in interaction with its outgassed atmosphere. A first rapid cooling stage, where efficient MO cooling and degassing take place, producing the atmosphere, is followed by a second quasi steady state where the heat flux balance is dominated by the solar flux. The end ofthe rapid cooling stage (ERCS) is reached when the mantle heat flux becomes negligible compared tothe absorbed solar flux. Varying the initial CO2 and H2O contents and the solar distance, we showed that the resulting surface conditions at ERCS strongly depend on these parameters and that water ocean's formation obeys simple scaling laws.Although today's Venus is located beyond the inner edge of the habitable zone due to its high albedo, its high CO2/H2O ratio prevents any water ocean formation.We already showed that depending on the formation time of its cloudcover and resulting albedo, only 0.3 Earth ocean mass might be sufficient to form a water ocean onearly Venus. Here we investigate more precisely these results by taking into account the effect of shortwave radiation on the radiative budget by computing the feedbacks between atmospheric composition and incident stellar flux instead of using a prescribed albedo value.

  3. Responses of CO2 Fluxes to Arctic Browning Events in a Range of High Latitude, Shrub-Dominated Ecosystems (United States)

    Phoenix, G. K.; Treharne, R.; Emberson, L.; Tømmervik, H. A.; Bjerke, J. W.


    Climatic and biotic extreme events can result in considerable damage to arctic vegetation, often at landscape and larger scale. These acute events therefore contribute to the browning observed in some arctic regions. It is of considerable concern, therefore, that such extreme events are increasing in frequency as part of climate change. However, despite the increasing importance of browning events, and the considerable impact they can have on ecosystems, to date there is little understanding of their impacts on ecosystem carbon fluxes. To address this, the impacts of a number of different, commonly occurring, extreme events and their subsequent browning (vegetation damage) on key ecosystem CO2 fluxes were assessed during the growing season at a range of event damaged sites of shrub dominated vegetation. Sites were located from the boreal to High Arctic (64˚N-79˚N) and had been previously been damaged by events of frost-drought, extreme winter warming, ground icing and caterpillar (Epirrita autumnata) outbreaks. Plot-level CO2 fluxes of Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and Ecosystem Respiration (Reco) were assessed using vegetation chambers. At a sub-set of sites, NDVI (greenness) in flux plots was also assessed by hand-held proximal sensor, allowing the relationship between NDVI of damage plots to CO2 flux to be calculated. Despite the contrasting sites and drivers, damage had consistent, major impacts on all fluxes. All sites showed reductions in GPP and NEE with increasing damage, despite efflux from Reco also declining with damage. When scaled to site-level, reductions of up to 81% of NEE, 51% of GPP and 37% of Reco were observed. In the plot-level NDVI-flux relationship, NDVI was shown to explain up to 91% of variation in GPP, and therefore supports the use of NDVI for estimating changes in ecosystem CO2 flux at larger scales in regions where browning has been driven by extreme events. This work is the first attempt to quantify the

  4. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements. (United States)

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun


    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels

    Directory of Open Access Journals (Sweden)

    A. de Kluijver


    Full Text Available The effect of CO2 on carbon fluxes (production, consumption, and export in Arctic plankton communities was investigated during the 2010 EPOCA (European project on Ocean Acidification mesocosm study off Ny Ålesund, Svalbard. 13C labelled bicarbonate was added to nine mesocosms with a range in pCO2 (185 to 1420 μatm to follow the transfer of carbon from dissolved inorganic carbon (DIC into phytoplankton, bacterial and zooplankton consumers, and export. A nutrient–phytoplankton–zooplankton–detritus model amended with 13C dynamics was constructed and fitted to the data to quantify uptake rates and carbon fluxes in the plankton community. The plankton community structure was characteristic for a post-bloom situation and retention food web and showed high bacterial production (∼31% of primary production, high abundance of mixotrophic phytoplankton, low mesozooplankton grazing (∼6% of primary production and low export (∼7% of primary production. Zooplankton grazing and export of detritus were sensitive to CO2: grazing decreased and export increased with increasing pCO2. Nutrient addition halfway through the experiment increased the export, but not the production rates. Although mixotrophs showed initially higher production rates with increasing CO2, the overall production of POC (particulate organic carbon after nutrient addition decreased with increasing CO2. Interestingly, and contrary to the low nutrient situation, much more material settled down in the sediment traps at low CO2. The observed CO2 related effects potentially alter future organic carbon flows and export, with possible consequences for the efficiency of the biological pump.

  6. UU* filtering of nighttime net ecosystem CO2 exchange flux over forest canopy under strong wind in wintertime

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Junhui


    effects and density fluxes, Boundary-Layer Meteorology, 2000, 97:487-511.[12]Massman, W. J., Sommerfeld, R. A., Mosier, A. R. et al., A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N2O and CH4 through Layered snowpacks, Journal of Geophysical Research (D), 1997, 102:18851-18863.[13]Bink, N. J., The structure of the atmospheric surface layer subject to local advection, Ph. D. Thesis, Agricultural University, Wageningen, The Netherlands, 1996.[14]Raupach, M. R., Weng, W. S., Carruthers, D. J. et al., Temperature and humidity fields and fluxes over hills, Quart. J. Roy Meteoroi. Soc., 1992, 118: 191-225.[15]Aubinet, M., Heinesch, B., Yernaux, M., Horizontal and vertical CO2 advection in a sloping forest, Boundary-Layer Meteorology,2003, 108: 397-417.[16]Raupach, M. R., Finnigan, J. J., Brunet, Y., Coherent eddies and turbulence in vegetation canopies: the mixing-Layer analogy,Boundary-Layer Meteorology, 1996, 78:351-382.[17]Zhuang, Y., Amiro, B. D., Pressure fluctuations during coherent motions and their effects on the budgets of turbulent kinetic energy and momentum flux within a forest canopy, Journal Of Applied Meteorology, 1994, 33: 704-711.[18]Shaw, R. H., Zhang, X. J., Evidence of pressure-forced turbulent flow in a forest, Boundary-Layer Meteorology, 1992, 58: 273-288.[19]Maitani, T., Seo, T., Estimates of Velocity-pressure and velocity-pressure gradient interactions in the surface layer over plant canopies, Boundary-Layer Meteorology, 1985, 33: 51-60.[20]Schols, J. L. J., Wartena, L., A dynamical description of turbulent structures in the near neutral atmospheric surface layer: the Role of static pressure fluctuations, Boundary-Layer Meteorology,1986, 34: 1-15.[21]McBean, G. A., Elliott, J. A., The vertical transports of kinetic energy by turbulence and pressure in Boundary Layer, Journal of the Atmospheric Sciences, 1975, 32: 753-765.[22]Wilczak, J. M., Edson, J. B

  7. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem. (United States)

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith


    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  8. Estimation of air-sea CO2 flux in the coastal waters of Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Latha, T.P.; Rao, K.H.; Sarma, V.V.S.S.; Seetaram, P.; Choudhury, S.B.; Nagamani, P.V.; Dutt, B.S.; Dhadwal, V.K.; Manna, S.

    radiation, humidity, wind speed, direction and gust were measured using AWS (Watch Dog, 2000 series) instrument which was mounted on the top of the boat. The atmospheric CO2 was measured using Li-COR 840A. The partial pressure of carbon dioxide (pCO2...

  9. Methane and CO2 fluxes of moving point sources - Beyond or within the limits of eddy covariance measurements (United States)

    Felber, Raphael; Neftel, Albrecht; Münger, Andreas; Ammann, Christof


    The eddy covariance (EC) technique has been extensively used for CO2 and energy exchange measurements over different ecosystems. For some years, it has been also becoming widely used to investigate CH4 and N2O exchange over ecosystems including grazing systems. EC measurements represent a spatially integrated flux over an upwind area (footprint). Whereas for extended homogenous areas EC measurements work well, the animals in a grazing system are a challenge as they represent moving point sources that create inhomogeneous conditions in space and time. The main issues which have to be taken into account when applying EC flux measurements over a grazed system are: i) In the presence of animals the high time resolution concentration measurements show large spikes in the signal. These spikes may be filtered/reduced by standard quality control software in order to avoid wrong measurements. ii) Data on the position of the animals relative to the flux footprint is needed to quantify the contribution of the grazing animals to the measured flux. For one grazing season we investigated the ability of EC flux measurements to reliably quantify the contribution of the grazing animals to the CH4 and CO2 exchange over pasture systems. For this purpose, a field experiment with a herd of twenty dairy cows in a full-day rotational grazing system was carried out on the Swiss central plateau. Net CH4 and CO2 exchange of the pasture system was measured continuously by the eddy covariance technique (Sonic Anemometer HS-50, Gill Instruments Ltd; FGGA, Los Gatos Research Inc.). To quantify the contribution of the animals to the net flux, the position of the individual cows was recorded using GPS (5 s time resolution) on each animal. An existing footprint calculation tool (ART footprint tool) was adapted and CH4 emissions of the cows were calculated. CH4 emissions from cows could be used as a tracer to investigate the quality of the evaluation of the EC data, since the background exchange of

  10. Surface Ocean CO2 Atlas Database Version 5 (SOCATv5) (NCEI Accession 0163180) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Ocean CO2 Atlas (SOCAT, is a synthesis activity by the international marine carbon research community and has more than 100 contributors...

  11. Long-term surface pCO2 trends from observations and models

    International Nuclear Information System (INIS)

    Tjiputra, Jerry F.; Olsen, Are; Heinze, Christoph; Bopp, Laurent; Roy, Tilla


    We estimate regional long-term surface ocean pCO 2 growth rates using all available underway and bottled biogeochemistry data collected over the past four decades. These observed regional trends are compared with those simulated by five state-of-the-art Earth system models over the historical period. Oceanic pCO 2 growth rates faster than the atmospheric growth rates indicate decreasing atmospheric CO 2 uptake, while ocean pCO 2 growth rates slower than the atmospheric growth rates indicate increasing atmospheric CO 2 uptake. Aside from the western sub-polar North Pacific and the subtropical North Atlantic, our analysis indicates that the current observation-based basin-scale trends may be underestimated, indicating that more observations are needed to determine the trends in these regions. Encouragingly, good agreement between the simulated and observed pCO 2 trends is found when the simulated fields are sub sampled with the observational coverage. In agreement with observations, we see that the simulated pCO 2 trends are primarily associated with the increase in surface dissolved inorganic carbon (DIC) associated with atmospheric carbon uptake, and in part by warming of the sea surface. Under the RCP8.5 future scenario, DIC continues to be the dominant driver of pCO 2 trends, with little change in the relative contribution of SST. However, the changes in the hydrological cycle play an increasingly important role. For the contemporary (1970-2011) period, the simulated regional pCO 2 trends are lower than the atmospheric growth rate over 90% of the ocean. However, by year 2100 more than 40% of the surface ocean area has a higher oceanic pCO 2 trend than the atmosphere, implying a reduction in the atmospheric CO 2 uptake rate. The fastest pCO 2 growth rates are projected for the sub-polar North Atlantic, while the high-latitude Southern Ocean and eastern equatorial Pacific have the weakest growth rates, remaining below the atmospheric pCO 2 growth rate. Our work

  12. Long-term surface pCO2 trends from observations and models

    Directory of Open Access Journals (Sweden)

    Jerry F. Tjiputra


    Full Text Available We estimate regional long-term surface ocean pCO2 growth rates using all available underway and bottled biogeochemistry data collected over the past four decades. These observed regional trends are compared with those simulated by five state-of-the-art Earth system models over the historical period. Oceanic pCO2 growth rates faster than the atmospheric growth rates indicate decreasing atmospheric CO2 uptake, while ocean pCO2 growth rates slower than the atmospheric growth rates indicate increasing atmospheric CO2 uptake. Aside from the western subpolar North Pacific and the subtropical North Atlantic, our analysis indicates that the current observation-based basin-scale trends may be underestimated, indicating that more observations are needed to determine the trends in these regions. Encouragingly, good agreement between the simulated and observed pCO2 trends is found when the simulated fields are subsampled with the observational coverage. In agreement with observations, we see that the simulated pCO2 trends are primarily associated with the increase in surface dissolved inorganic carbon (DIC associated with atmospheric carbon uptake, and in part by warming of the sea surface. Under the RCP8.5 future scenario, DIC continues to be the dominant driver of pCO2 trends, with little change in the relative contribution of SST. However, the changes in the hydrological cycle play an increasingly important role. For the contemporary (1970–2011 period, the simulated regional pCO2 trends are lower than the atmospheric growth rate over 90% of the ocean. However, by year 2100 more than 40% of the surface ocean area has a higher oceanic pCO2 trend than the atmosphere, implying a reduction in the atmospheric CO2 uptake rate. The fastest pCO2 growth rates are projected for the subpolar North Atlantic, while the high-latitude Southern Ocean and eastern equatorial Pacific have the weakest growth rates, remaining below the atmospheric pCO2 growth rate. Our work

  13. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.


    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  14. An Inversion Analysis of Recent Variability in Natural CO2 Fluxes Using GOSAT and In Situ Observations (United States)

    Wang, James S.; Kawa, S. Randolph; Collatz, G. James; Baker, David F.; Ott, Lesley


    About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks, and their location and year-to-year variability are, however, not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates and two sets of fixed fossil CO2 emissions. Here, our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3 x 3.75 weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM atmospheric transport model driven by meteorology from the MERRA reanalysis. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble those from other studies. For example, the results indicate that the terrestrial biosphere is a net CO2 sink, and a GOSAT-only inversion suggests a shift in

  15. Subsidence in tropical peatlands: Estimating CO2 fluxes from peatlands in Southeast Asia (United States)

    Hoyt, A.; Harvey, C. F.; Seppalainen, S. S.; Chaussard, E.


    Tropical peatlands of Southeast Asia are an important global carbon stock. However, they are being rapidly deforested and drained. Peatland drainage facilitates peat decomposition, releases sequestered peat carbon to the atmosphere as CO2, and leads to subsidence of the peat surface. As a result, subsidence measurements can be used to monitor peatland carbon loss over time. Until now, subsidence measurements have been primarily limited to ground-based point measurements using subsidence poles. Here we demonstrate a powerful method to measure peatland subsidence rates across much larger areas than ever before. Using remotely sensed InSAR data, we map subsidence rates across thousands of square kilometers in Southeast Asia and validate our results against ground-based subsidence measurements. The method allows us to monitor subsidence in remote locations, providing unprecedented spatial information, and the first comprehensive survey of land uses such as degraded peatlands, burnt and open areas, shrub lands, and smallholder farmlands. Strong spatial patterns emerged, with the highest subsidence rates occurring at the centers of peat domes, where the peat is thickest and drainage depths are likely to be largest. Peatland subsidence rates were also strongly dependent on current and historical land use, with typical subsidence rates ranging from 2-4 cm/yr. Finally, we scaled up our results to calculate total annual emissions from peat decomposition in degraded peatlands.

  16. Importance of crop varieties and management practices: evaluation of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L.) sites

    NARCIS (Netherlands)

    Li, L.; Vuichard, N.; Viovy, N.; Ciais, P.; Wang, T.; Ceschia, E.; Jans, W.W.P.; Wattenbach, M.; Beziat, P.; Gruenwald, T.; Lehuger, S.; Bernhofer, C.


    This paper is a modelling study of crop management impacts on carbon and water fluxes at a range of European sites. The model is a crop growth model (STICS) coupled with a process-based land surface model (ORCHIDEE). The data are online eddy-covariance observations of CO2 and H2O fluxes at five

  17. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands

    Directory of Open Access Journals (Sweden)

    D. Imer


    Full Text Available A profound understanding of temporal and spatial variabilities of soil carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O fluxes between terrestrial ecosystems and the atmosphere is needed to reliably quantify these fluxes and to develop future mitigation strategies. For managed grassland ecosystems, temporal and spatial variabilities of these three soil greenhouse gas (GHG fluxes occur due to changes in environmental drivers as well as fertilizer applications, harvests and grazing. To assess how such changes affect soil GHG fluxes at Swiss grassland sites, we studied three sites along an altitudinal gradient that corresponds to a management gradient: from 400 m a.s.l. (intensively managed to 1000 m a.s.l. (moderately intensive managed to 2000 m a.s.l. (extensively managed. The alpine grassland was included to study both effects of extensive management on CH4 and N2O fluxes and the different climate regime occurring at this altitude. Temporal and spatial variabilities of soil GHG fluxes and environmental drivers on various timescales were determined along transects of 16 static soil chambers at each site. All three grasslands were N2O sources, with mean annual soil fluxes ranging from 0.15 to 1.28 nmol m−2 s−1. Contrastingly, all sites were weak CH4 sinks, with soil uptake rates ranging from −0.56 to −0.15 nmol m−2 s−1. Mean annual soil and plant respiration losses of CO2, measured with opaque chambers, ranged from 5.2 to 6.5 μmol m−2 s−1. While the environmental drivers and their respective explanatory power for soil N2O emissions differed considerably among the three grasslands (adjusted r2 ranging from 0.19 to 0.42, CH4 and CO2 soil fluxes were much better constrained (adjusted r2 ranging from 0.46 to 0.80 by soil water content and air temperature, respectively. Throughout the year, spatial heterogeneity was particularly high for soil N2O and CH4 fluxes. We found permanent hot spots for soil N2O emissions as well as

  18. Estimates of CO2 fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling (United States)

    Nickless, Alecia; Rayner, Peter J.; Engelbrecht, Francois; Brunke, Ernst-Günther; Erni, Birgit; Scholes, Robert J.


    We present a city-scale inversion over Cape Town, South Africa. Measurement sites for atmospheric CO2 concentrations were installed at Robben Island and Hangklip lighthouses, located downwind and upwind of the metropolis. Prior estimates of the fossil fuel fluxes were obtained from a bespoke inventory analysis where emissions were spatially and temporally disaggregated and uncertainty estimates determined by means of error propagation techniques. Net ecosystem exchange (NEE) fluxes from biogenic processes were obtained from the land atmosphere exchange model CABLE (Community Atmosphere Biosphere Land Exchange). Uncertainty estimates were based on the estimates of net primary productivity. CABLE was dynamically coupled to the regional climate model CCAM (Conformal Cubic Atmospheric Model), which provided the climate inputs required to drive the Lagrangian particle dispersion model. The Bayesian inversion framework included a control vector where fossil fuel and NEE fluxes were solved for separately.Due to the large prior uncertainty prescribed to the NEE fluxes, the current inversion framework was unable to adequately distinguish between the fossil fuel and NEE fluxes, but the inversion was able to obtain improved estimates of the total fluxes within pixels and across the domain. The median of the uncertainty reductions of the total weekly flux estimates for the inversion domain of Cape Town was 28 %, but reach as high as 50 %. At the pixel level, uncertainty reductions of the total weekly flux reached up to 98 %, but these large uncertainty reductions were for NEE-dominated pixels. Improved corrections to the fossil fuel fluxes would be possible if the uncertainty around the prior NEE fluxes could be reduced. In order for this inversion framework to be operationalised for monitoring, reporting, and verification (MRV) of emissions from Cape Town, the NEE component of the CO2 budget needs to be better understood. Additional measurements of Δ14C and δ13C isotope

  19. Interannual variations of net community production and air-sea CO2 flux from winter to spring in the western subarctic North Pacific

    International Nuclear Information System (INIS)

    Midorikawa, Takashi; Ogawa, Kan; Nemoto, Kazuhiro; Kamiya, Hitomi; Umeda, Takafumi; Hiraishi, Naotaka; Wada, Akira; Ishii, Masao


    The role of spring biological production for the air-sea CO 2 flux was quantified in the Western Subarctic Gyre (48 deg N, 165 deg E), where the vertical profile of temperature revealed the existence of a temperature minimum (Tmin) layer in the North Pacific. The vertical profiles of temperature, salinity, dissolved oxygen, nutrients and dissolved inorganic carbon, DIC, in the upper water column were significantly variable year by year in spring, 1996-2000. Correspondingly, surface seawater at this site in spring was supersaturated with CO 2 in 1997, 1999 and 2000, but was undersaturated in 1996 and 1998. The concentrations of DIC and nutrients in the winter mixed layer were estimated from those in the Tmin layer in spring with a correction for particle decomposition based on the apparent oxygen utilization. The net community production (NCP) and air-sea CO 2 flux from winter to spring were calculated from the vertically integrated deficits of DIC and nutrients in the upper water column between the two seasons. The calculation of the carbon budget indicated large interannual variations of NCP (0-13 mmol/m 2 /d) and CO 2 efflux (4-16 mmol/m 2 /d) for this period. The CO 2 efflux was generally low in the year when NCP was high. The close coupling between biological production and CO 2 efflux suggested the important role of the changes in the mixed-layer depth, as a key process controlling both processes, especially of the timing, so that a decrease in the mixed-layer depth could result in the activation of biological production. The early biological consumption of the surface DIC concentration could shorten the period for acting as a source for atmospheric CO 2 and depress the CO 2 efflux in the Western Subarctic Gyre from winter to spring in 1996 and 1998. On the contrary, in 1997, persistently deep vertical mixing until late spring could suppress the biological activity and give rise to long-lasting CO 2 efflux

  20. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof


    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  1. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China. (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof


    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  2. Investigation of Na-CO2 Reaction with Initial Reaction in Various Reacting Surface

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan; Wi, Myung-Hwan


    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO 2 reaction according to various experimental parameter. Unlike SWR, Na-CO 2 reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO 2 reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO 2 gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO 2 interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO 2 brayton cycle energy conversion system for Na-CO 2 heat exchanger. And next parameter is sodium surface area which contact between sodium and CO 2 when CO 2 is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm 2 . Additionally, it has been reported in recent years that CO 2 Flow rate affects reactivity less significantly and CO 2 flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO 2 flow rate. Na-CO 2 reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO 2 . Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a database for the SFR safety analysis and additional experiments are needed

  3. Scaling-up of CO2 fluxes to assess carbon sequestration in rangelands of Central Asia (United States)

    Bruce K. Wylie; Tagir G. Gilmanov; Douglas A. Johnson; Nicanor Z. Saliendra; Larry L. Tieszen; Ruth Anne F. Doyle; Emilio A. Laca


    Flux towers provide temporal quantification of local carbon dynamics at specific sites. The number and distribution of flux towers, however, are generally inadequate to quantify carbon fluxes across a landscape or ecoregion. Thus, scaling up of flux tower measurements through use of algorithms developed from remote sensing and GIS data is needed for spatial...

  4. Diffuse CO2 flux emissions from the soil in Las Cañadas caldera (Tenerife, Canary Islands) (United States)

    Luengo-Oroz, Natividad; Torres, Pedro A.; Moure, David; D'Alessandro, Walter; Liuzzo, Marco; Longo, Manfredi; Pecoraino, Giovannella


    Starting in April 2004, unusual seismic activity was observed in the interior of the island of Tenerife (Canary Islands, Spain) with much evidence pointing to a reawakening of volcanic activity. During this seismic crisis, several events were felt by the population. Since then, a dense multiparametric monitoring network has been deployed all over the island by Instituto Geográfico Nacional (IGN). In the framework of this volcanic surveillance project, several geochemical studies have been accomplished. Measurements of diffuse CO2 flux from the soil have been carried out in some zones inside Las Cañadas caldera. This study has been performed during three different field campaigns in November 2012 and June and November 2013. The studied area includes two different zones known as Roques de García and Los Azulejos. Since several authors have reported the existence of fractures and faults all along both structures, the objectives of this work were to find anomalous CO2 fluxes from the soil and preferential degassing areas, identify possible hidden faults and study the origin of gas emanations in order to detect the presence of magmatic sources. More than 600 sampling sites have been measured with the accumulation chamber method in an area of about 1 km2. Soil gas has been sampled in points where high CO2 fluxes were detected for the determination of chemical and isotopic composition. The results of the gas prospection confirm the existence of CO2 degassing in the area. Some anomalous fluxes have been measured along previously inferred volcano-tectonic structures. The highest anomalies were found in Los Azulejos with values up to 1774 g/m2.d. Chemical analysis did not reveal significant concentrations of magmatic or geothermal gases except CO2. The latter showed concentrations at 50 cm depth within the soils up to 48% and a C-isotopic composition between -4.72 and -3.67 o indicating a prevailing magmatic origin.

  5. X-ray photoelectron spectroscopy study of CO2 reaction with polycrystalline uranium surface

    International Nuclear Information System (INIS)

    Liu Kezhao; Yu Yong; Zhou Juesheng; Wu Sheng; Wang Xiaolin; Fu Yibei


    The adsorption of CO 2 on 'clean' depleted polycrystalline uranium metal surface has been studied by X-ray photoelectron spectroscopy (XPS) at 300 K. The 'clean' surface were prepared by Ar + ion sputtering under ultra-high vacuum (UHV) condition with a base pressure 6.7 x 10 -8 Pa. The result s shows that adsorption of CO 2 on 'clean' uranium metal took place in total dissociation, and leads to the formation of uranium dioxide, uranium carbides and free carbon. The total dissociation of CO 2 produced carbon, oxygen species, CO 2 2- and CO 3 2- species. The diffusion tendency of carbon was much stronger than that of oxygen, and led to form a carbide in oxide-metal interface while the oxygen remained on their surface as an oxide

  6. CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa

    Directory of Open Access Journals (Sweden)

    R. Valentini


    Full Text Available The impact of fire on soil fluxes of CO2, CH4 and N2O was investigated in a tropical grassland in Congo Brazzaville during two field campaigns in 2007–2008. The first campaign was conducted in the middle of the dry season and the second at the end of the growing season, respectively one and eight months after burning. Gas fluxes and several soil parameters were measured in each campaign from burned plots and from a close-by control area preserved from fire. Rain events were simulated at each campaign to evaluate the magnitude and duration of the generated gas flux pulses. In laboratory experiments, soil samples from field plots were analysed for microbial biomass, net N mineralization, net nitrification, N2O, NO and CO2 emissions under different water and temperature soil regimes. One month after burning, field CO2 emissions were significantly lower in burned plots than in the control plots, the average daily CH4 flux shifted from net emission in the unburned area to net consumption in burned plots, no significant effect of fire was observed on soil N2O fluxes. Eight months after burning, the average daily fluxes of CO2, CH4 and N2O measured in control and burned plots were not significantly different. In laboratory, N2O fluxes from soil of burned plots were significantly higher than fluxes from soil of unburned plots only above 70% of maximum soil water holding capacity; this was never attained in the field even after rain simulation. Higher NO emissions were measured in the lab in soil from burned plots at both 10% and 50% of maximum soil water holding capacity. Increasing the incubation temperature from 25 °C to 37 °C negatively affected microbial growth, mineralization and nitrification activities but enhanced N2O and CO2 production. Results indicate that fire did not increase post-burning soil GHG emissions in this tropical grasslands characterized by acidic, well drained and nutrient-poor soil.

  7. CMS: CO2 Signals Estimated for Fossil Fuel Emissions and Biosphere Flux, California (United States)

    National Aeronautics and Space Administration — This data set provides estimated CO2 emission signals for 16 regions (air quality basins) in California, USA, during the individual months of November 2010 and May...


    Czech Academy of Sciences Publication Activity Database

    Pavelka, Marian; Acosta, Manuel; Janouš, Dalibor


    Roč. 23, - (2004), s. 88-100 ISSN 1335-342X R&D Projects: GA ČR GA526/00/0485; GA AV ČR IBS6087005 Institutional research plan: CEZ:AV0Z6087904 Keywords : CO2 efflux * woody tissue CO2 efflux * Norway spruce Subject RIV: EH - Ecology, Behaviour Impact factor: 0.078, year: 2004

  9. Spatiotemporal variations in CO2 flux in a fringing reef simulated using a novel carbonate system dynamics model (United States)

    Watanabe, A.; Yamamoto, T.; Nadaoka, K.; Maeda, Y.; Miyajima, T.; Tanaka, Y.; Blanco, A. C.


    A carbonate system dynamics (CSD) model was developed in a fringing reef on the east coast of Ishigaki Island, southwest Japan, by incorporating organic and inorganic carbon fluxes (photosynthesis and calcification), air-sea gas exchanges, and benthic cover of coral and seagrass into a three-dimensional hydrodynamic model. The CSD model could reproduce temporal variations in dissolved inorganic carbon (DIC) and total alkalinity in coral zones, but not in seagrass meadows. The poor reproduction in seagrass meadows can be attributed to significant contributions of submarine groundwater discharge as well as misclassification of remotely sensed megabenthos in this area. In comparison with offshore areas, the reef acted as a CO2 sink during the observation period when it was averaged over 24 h. The CSD model also indicated large spatiotemporal differences in the carbon dioxide (CO2) sink/source, possibly related to hydrodynamic features such as effective offshore seawater exchange and neap/spring tidal variation. This suggests that the data obtained from a single point observation may lead to misinterpretation of the overall trend and thus should be carefully considered. The model analysis also showed that the advective flux of DIC from neighboring grids is several times greater than local biological flux of DIC and is three orders of magnitude greater than the air-sea gas flux at the coral zone. Sensitivity tests in which coral or seagrass covers were altered revealed that the CO2 sink potential was much more sensitive to changes in coral cover than seagrass cover.

  10. Soil CO 2 Flux in Hövsgöl National Park, Northern Mongolia

    Directory of Open Access Journals (Sweden)

    Avirmed Otgonsuren


    Full Text Available We investigated soil CO 2 fl ux and bare soil respiration in grasslands that are located at the southern edge of the Siberian boreal forest in Northern Mongolia. The study area has warmed by almost 1.8 o C over the last 40 years, and the soil and vegetation covers have been changed due to intense nomadic grazing pressure. Bare soil respiration is decreased with increasing grazing pressure, but there was no consistent pattern of total soil CO 2 fl ux under three distinct grazing levels. Bare soil respiration and soil CO 2 fl ux were higher on north-facing slopes than on south-facing slopes, due to high organic matter accumulation and the presence of permafrost. Both bare soil respiration and soil CO 2 fl ux were signi fi cantly higher in riparian areas compared with the lower and upper portions of the south-facing slope. Topography has a stronger effect on variability of soil CO 2 fl ux and bare soil respiration than variability induced by grazing. Inter-annual variability in soil CO 2 fl ux and bare soil respiration was very high, because of high variability in climate conditions.

  11. How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest

    International Nuclear Information System (INIS)

    Vargas, Rodrigo


    A current challenge is to understand what are the legacies left by disturbances on ecosystems for predicting response patterns and trajectories. This work focuses on the ecological implications of a major hurricane and analyzes its influence on forest gross primary productivity (GPP; derived from the moderate-resolution imaging spectroradiometer, MODIS) and soil CO 2 efflux. Following the hurricane, there was a reduction of nearly 0.5 kgC m −2 yr −1 , equivalent to ∼15% of the long-term mean GPP (∼3.0 ± 0.2 kgC m −2 yr −1 ; years 2003–8). Annual soil CO 2 emissions for the year following the hurricane were > 3.9 ± 0.5 kgC m −2 yr −1 , whereas for the second year emissions were 1.7 ± 0.4 kgC m −2 yr −1 . Higher annual emissions were associated with higher probabilities of days with extreme soil CO 2 efflux rates ( > 9.7 μmol CO 2 m −2 s −1 ). The variance of GPP was highly variable across years and was substantially increased following the hurricane. Extreme soil CO 2 efflux after the hurricane was associated with deposition of nitrogen-rich fresh organic matter, higher basal soil CO 2 efflux rates and changes in variance of the soil temperature. These results show that CO 2 dynamics are highly variable following hurricanes, but also demonstrate the strong resilience of tropical forests following these events. (letter)

  12. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. (United States)

    Lara, Mark J; McGuire, A David; Euskirchen, Eugenie S; Tweedie, Craig E; Hinkel, Kenneth M; Skurikhin, Alexei N; Romanovsky, Vladimir E; Grosse, Guido; Bolton, W Robert; Genet, Helene


    The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006-2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 10(6) gC-CO2 day(-1) (uncertainty using 95% CI is between -438.3 and -1366 10(6) gC-CO2 day(-1)) and CH4 flux at 28.9 10(6) gC-CH4 day(-1) (uncertainty using 95% CI is between 12.9 and 44.9 10(6) gC-CH4 day(-1)), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (-166.9 10(6) gC-CO2 day(-1)) and CH4 flux (2.8 10(6) gC-CH4 day(-1)) with geomorphic change from low

  13. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula (United States)

    Lara, Mark J.; McGuire, A. David; Euskirchen, Eugénie S.; Tweedie, Craig E.; Hinkel, Kenneth M.; Skurikhin, Alexei N.; Romanovsky, Vladimir E.; Grosse, Guido; Bolton, W. Robert; Genet, Helene


    The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006–2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 106gC-CO2 day−1(uncertainty using 95% CI is between −438.3 and −1366 106gC-CO2 day−1) and CH4 flux at 28.9 106gC-CH4 day−1(uncertainty using 95% CI is between 12.9 and 44.9 106gC-CH4 day−1), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2uptake (−166.9 106gC-CO2 day−1) and CH4 flux (2.8 106gC-CH4 day−1) with geomorphic change from

  14. BOREAS TF-04 CO2 and CH4 Chamber Flux Data from the SSA (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains fluxes of carbon dioxide and methane across the soil-air interface in four ages of jack pine forest at the Southern Study Area. Gross and net flux...

  15. Case study on ground surface deformation induced by CO2 injection into coal seam

    International Nuclear Information System (INIS)

    Li Hong; Tang Chun'an


    To monitor a geomechanical response of injecting CO 2 into relatively shallow coal seams, tiltmeters were set as an array to cover the ground surface area surrounding the injection well, and to measure the ground deformation during a well fracturing stimulation and a short-term CO 2 injection test. In this paper, an attempt to establish a quantitative relationship between the in-situ coal swelling and the corresponding ground deformation was made by means of numerical simulation study. (authors)

  16. Effects of forest regeneration practices on the flux of soil CO2 after clear-cutting in subtropical China. (United States)

    Wang, Yixiang; Zhu, Xudan; Bai, Shangbin; Zhu, Tingting; Qiu, Wanting; You, Yujie; Wu, Minjuan; Berninger, Frank; Sun, Zhibin; Zhang, Hui; Zhang, Xiaohong


    Reforestation after clear-cutting is used to facilitate rapid establishment of new stands. However, reforestation may cause additional soil disturbance by affecting soil temperature and moisture, thus potentially influencing soil respiration. Our aim was to compare the effects of different reforestation methods on soil CO 2 flux after clear-cutting in a Chinese fir plantation in subtropical China: uncut (UC), clear-cut followed by coppicing regeneration without soil preparation (CC), clear-cut followed by coppicing regeneration and reforestation with soil preparation, tending in pits and replanting (CCR P ), and clear-cut followed by coppicing regeneration and reforestation with overall soil preparation, tending and replanting (CCR O ). Clear-cutting significantly increased the mean soil temperature and decreased the mean soil moisture. Compared to UC, CO 2 fluxes were 19.19, 37.49 and 55.93 mg m -2 h -1 higher in CC, CCR P and CCR O , respectively (P soil temperature, litter mass and the mixing of organic matter with mineral soil. The results suggest that, when compared to coppicing regeneration, reforestation practices result in additional CO 2 released, and that regarding the CO 2 emissions, soil preparation and tending in pits is a better choice than overall soil preparation and tending. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) Contribution to CMIP6: Investigation of Sea-Level and Ocean Climate Change in Response to CO2 Forcing (United States)

    Gregory, Jonathan M.; Bouttes, Nathaelle; Griffies, Stephen M.; Haak, Helmuth; Hurlin, William J.; Jungclaus, Johann; Kelley, Maxwell; Lee, Warren G.; Marshall, John; Romanou, Anastasia; hide


    The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere-ocean general circulation models (AOGCMs). It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sealevel rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC) declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable investigation of the model

  18. Estimation of fractional contribution of root respiration to a forest-floor CO2 flux using carbon isotopes

    International Nuclear Information System (INIS)

    Hachiya, Masashi; Moriizumi, Jun; Yamazawa, Hiromi


    Efflux of soil respired carbon dioxide(CO 2 ) is very important component for the global carbon cycle and dynamics of 14 C in environment, and to predict the global climate changes caused by increasing CO 2 concentrations in the atmosphere. There are two components that generate CO 2 in soil, soil organic matter decomposition and root respiration. Although the former is relatively well understood, the root-derived CO 2 efflux has not been evaluated sufficiently. The objective of our research is to estimate depth profile of the root respiration rate. Thus we developed a box model which calculates the depth profile. In this paper, we discussed about (1) the adequacy of calculated result by comparing it to the to observed soil respired CO 2 flux with trenching method and (2) sensitivity of the box model to uncertainty in the input data. The result showed that the depth profile of root respiration rate decreased with soil depth. This is attributed to the distribution of fine roots which dominate root respiration. The model results reasonable agreed with the measurement results and characteristics of root respiration. The output of the model was robust to the variation of the input data. (author)

  19. Day and Night Variability of CO2 Fluxes and Priming Effects under zea Mays Measured in High Resolution (United States)

    Splettstoesser, Thomas; Pausch, Johanna


    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment which enabled us to monitor CO2 fluxes under Zea mays plants in high resolution. The experiment was conducted in a climate chamber where the plants were grown in tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. Continuous 13C-CO2 label was used to allow differentiation between plant- and soil-derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. Results show an increased soil CO2 efflux at day time periods and an overall increase with increasing plant biomass. No difference in chloroform fumigation extractable microbial biomass has been found but a strong negative priming effect was measured in the short experimental period, suggesting that the microbes shifted to the utilization of plant exudates without actual microbial growth triggered by the new labile C input. This is coherent with the observed shift in enzyme kinetics. With this experimental setup we show that measurement of priming effects in high resolution can be achieved.

  20. CO2 and CH4 fluxes from oil palm plantations in Sumatra, Indonesia: effects of palm age and environmental conditions (United States)

    Meijide, A.; Hassler, E.; Corre, M. D.; June, T.; Sabajo, C.; Veldkamp, E.; Knohl, A.


    Global increasing demand of palm oil is leading to the expansion of oil palm plantations, particularly in SE Asia, which in Sumatran lowlands has resulted in a 21% forest area loss. Large photosynthesis rates are expected for oil palms, due to their high growth and yield production. However, there is very limited information on their effect on carbon dioxide (CO2) fluxes and their sink or source strength at ecosystem scale. For methane (CH4) fluxes, research has mainly focused in oil palm plantations located on peatlands, but no information is available at ecosystem level from plantations on mineral soils. With the aim of studying CO2 fluxes during the non-productive and productive phases of oil palm cultivation, an eddy covariance (EC) tower was installed in a 2 year old oil palm plantation, where it was measuring for 8 months, and was subsequently moved to a 12 year old plantation, both in the province of Jambi, Sumatra. The EC system consisted of a Licor 7500A and an ultrasonic Metek anemometer, operating at 10 Hz, installed on a 7m and 22m tower respectively. In the 12 year old plantation, the tower was also equipped with a Los Gatos FGGA-24EP, to assess CH4 fluxes. Chamber measurements were also carried out to obtain information on respiration and CH4 fluxes from the soil. Radiation was the major driver controlling net carbon uptake, while soil moisture did not play a significant role. Average net ecosystem exchange in the hours of the day with higher radiation for the whole measurement period was 10 μmol m-2 s-1 for the 2 year old plantation and -22 μmol m-2 s-1 in the 12 year old. The analysis of the cumulative fluxes show that the non-productive plantation was a carbon source of around 636 g CO2 m-2 during the 8 months of measurements, while in the productive period, it acted as a strong carbon sink (-794 g CO2 m-2 yr-1). Methane uptake was observed in the soil in both plantations and also for the whole ecosystem in the 12 year old one, but its


    We compared fluxes of CO2, CO, NO and N2O, soil microbial biomass, and N-mineralization rates in a 20-year old Brachiaria pasture and a native cerrado area (savanna in Central Brazil). In order to assess the spatial variability of CO2 fluxes, we tested the relation between elect...

  2. Comparison of soil CO2 fluxes by eddy-covariance and chamber methods in fallow periods of a corn-soybean rotation (United States)

    Soil carbon dioxide (CO2) fluxes are typically measured by eddy-covariance (EC) or chamber (Ch) methods, but a long-term comparison has not been undertaken. This study was conducted to assess the agreement between EC and Ch techniques when measuring CO2 flux during fallow periods of a corn-soybean r...

  3. Highly Surface-Active Ca(OH)2 Monolayer as a CO2 Capture Material. (United States)

    Özçelik, V Ongun; Gong, Kai; White, Claire E


    Greenhouse gas emissions originating from fossil fuel combustion contribute significantly to global warming, and therefore the design of novel materials that efficiently capture CO 2 can play a crucial role in solving this challenge. Here, we show that reducing the dimensionality of bulk crystalline portlandite results in a stable monolayer material, named portlandene, that is highly effective at capturing CO 2 . On the basis of theoretical analysis comprised of ab initio quantum mechanical calculations and force-field molecular dynamics simulations, we show that this single-layer phase is robust and maintains its stability even at high temperatures. The chemical activity of portlandene is seen to further increase upon defect engineering of its surface using vacancy sites. Defect-containing portlandene is capable of separating CO and CO 2 from a syngas (CO/CO 2 /H 2 ) stream, yet is inert to water vapor. This selective behavior and the associated mechanisms have been elucidated by examining the electronic structure, local charge distribution, and bonding orbitals of portlandene. Additionally, unlike conventional CO 2 capturing technologies, the regeneration process of portlandene does not require high temperature heat treatment because it can release the captured CO 2 by application of a mild external electric field, making portlandene an ideal CO 2 capturing material for both pre- and postcombustion processes.

  4. Ultra violet photoemission studies of CO2 and NO adsorbed on W(100) surface

    International Nuclear Information System (INIS)

    Bhattacharya, A.K.; Broughton, J.Q.; Perry, D.L.


    In the last few years ultra violet photoelectron spectroscopy (UPS) has been successfully empolyed to determine the nature and bonding of the species formed when gases absorb on metal surfaces. This information is necessary to understand the mechanism of hetergeneous catalysis. The present report deals with UPS investigation of the chemisorption of CO 2 and NO on a W(100) surface. (Auth.)

  5. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO(2) electroreduction

    DEFF Research Database (Denmark)

    Tang, Wei; Peterson, Andrew A; Varela Gasque, Ana Sofia


    This communication examines the effect of the surface morphology of polycrystalline copper on electroreduction of CO(2). We find that a copper nanoparticle covered electrode shows better selectivity towards hydrocarbons compared with the two other studied surfaces, an electropolished copper elect...

  6. Study of plasma formation in CW CO2 laser beam-metal surface interaction (United States)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.


    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  7. Seasonal Changes of Coefficient Q10 in CO2 Flux from Soil Under Spruce Stand

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Marian; Janouš, Dalibor


    Roč. 15, č. 15 (2002), s. 43-48. ISBN 80-7157-297-7 R&D Projects: GA ČR GA526/00/0485 Grant - others:EVK2(XE) CT-1999-00032 Keywords : soil CO2 efflux * Norway spruce * Q10 * respiration * soil Subject RIV: EH - Ecology, Behaviour

  8. Reducing CO2 flux by decreasing tillage in Ohio: overcoming conjecture with data (United States)

    Soil could become an important sink for atmospheric carbon dioxide (CO2) as global agricultural greenhouse gas emissions continue to grow, but data to support this conjecture are few. Sequestering soil carbon (C) depends upon many factors including soil type, climate, crop, tillage, nitrogen fertili...

  9. Mechanisms controlling the air–sea CO2 flux in the North Sea

    NARCIS (Netherlands)

    Prowe, A.E.F.; Thomas, Helmuth; Pätsch, Johannes; Kühn, Wilfried; Bozec, Yann; Schiettecatte, Laure-Sophie; Borges, Alberto V.; Baar, Hein J.W. de; Paetsch, J; Kuehn, W


    The mechanisms driving the air–sea exchange of carbon dioxide (CO2) in the North Sea are investigated using the three-dimensional coupled physical–biogeochemical model ECOHAM (ECOlogical-model, HAMburg). We validate our simulations using field data for the years 2001–2002 and identify the controls

  10. Characterization of Qatar's surface carbonates for CO2 capture and thermochemical energy storage (United States)

    Kakosimos, Konstantinos E.; Al-Haddad, Ghadeer; Sakellariou, Kyriaki G.; Pagkoura, Chrysa; Konstandopoulos, Athanasios G.


    Samples of surface carbonates were collected from three different areas of the Qatar peninsula. We employed material characterization techniques to examine the morphology and composition of the samples, while their CO2 capture capacity was assessed via multiple successive calcination-carbonation cycles. Our samples were mainly calcite and dolomite based. Calcite samples showed higher initial capacity of around 11 mmol CO2 g-1 which decayed rapidly to less than 2 mmol CO2 g-1. On the other hand, dolomite samples showed an excellent stability (˜15 cycles) with a capacity of 6 mmol CO2 g-1. The performance of the dolomite samples is better compared to other similar natural samples, from literature. A promising result for future studies towards improving their performance by physical and chemical modification.

  11. Estimation of CO2 flux from targeted satellite observations: a Bayesian approach

    International Nuclear Information System (INIS)

    Cox, Graham


    We consider the estimation of carbon dioxide flux at the ocean–atmosphere interface, given weighted averages of the mixing ratio in a vertical atmospheric column. In particular we examine the dependence of the posterior covariance on the weighting function used in taking observations, motivated by the fact that this function is instrument-dependent, hence one needs the ability to compare different weights. The estimation problem is considered using a variational data assimilation method, which is shown to admit an equivalent infinite-dimensional Bayesian formulation. The main tool in our investigation is an explicit formula for the posterior covariance in terms of the prior covariance and observation operator. Using this formula, we compare weighting functions concentrated near the surface of the earth with those concentrated near the top of the atmosphere, in terms of the resulting covariance operators. We also consider the problem of observational targeting, and ask if it is possible to reduce the covariance in a prescribed direction through an appropriate choice of weighting function. We find that this is not the case—there exist directions in which one can never gain information, regardless of the choice of weight. (paper)

  12. Regulation of CO2 Air Sea Fluxes by Sediments in the North Sea (United States)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley


    A multi-tracer approach is applied to assess the impact of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

  13. Tracing the link between plant volatile organic compound emissions and CO2 fluxes and by stable isotopes (United States)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby


    The vegetation exerts a large influence on the atmosphere through the emission of volatile organic compounds (VOCs) and the emission and uptake of the greenhouse gas CO2. Despite the enormous importance, processes controlling plant carbon allocation into primary and secondary metabolism, such as photosynthetic carbon uptake, respiratory CO2 emission and VOC synthesis, remains unclear. Moreover, vegetation-atmosphere CO2 exchange is associated with a large isotopic imprint due to photosynthetic carbon isotope discrimination and 13C-fractionation during respiratory CO2 release1. The latter has been proposed to be related to carbon partitioning in the metabolic branching points of the respiratory pathways and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate. Notably, it is a known substrate in a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds (VOCs), such as volatile isoprenoids, oxygenated VOCs, aromatics, fatty acid oxidation products, which can be emitted by plants. Here we investigate the linkage between VOC emissions, CO2 fluxes and associated isotope effects based on simultaneous real-time measurements of stable carbon isotope composition of branch respired CO2 (CRDS) and VOC fluxes (PTR-MS). We utilized positionally specific 13C-labeled pyruvate branch feeding experiments in the mediterranean shrub (Halimium halimifolium) to trace the partitioning of C1, C2, and C3 carbon atoms of pyruvate into VOCs versus CO2 emissions in the light and in the dark. In the light, we found high emission rates of a large array of VOC including volatile isoprenoids, oxygenated VOCs, green leaf volatiles, aromatics, sulfides, and nitrogen containing VOCs. These observations suggest that in the light, H. halimifolium dedicates a high carbon flux through secondary biosynthetic pathways including the pyruvate dehydrogenase bypass, mevalonic acid, MEP/DOXP, shikimic acid, and

  14. Comparison of Landfill Methane Oxidation Measured Using Stable Isotope Analysis and CO2/CH4 Fluxes Measured by the Eddy Covariance Method (United States)

    Xu, L.; Chanton, J.; McDermitt, D. K.; Li, J.; Green, R. B.


    Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate methane oxidation fraction when the anaerobic CO2 / CH4 production ratio is known, or can be estimated. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2 / CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested using carbon dioxide emission rates (fluxes) and methane emission rates (fluxes) measured using the eddy covariance method over a one year period at the Turkey Run landfill in Georgia, USA. The CO2 / CH4 production ratio was estimated by measuring CO2 and CH4 concentrations in air sampled under anaerobic conditions deep inside the landfill. We also used a mass balance approach to independently estimate fractional oxidation based on stable isotope measurements (δ13C of methane) of gas samples taken from deep inside the landfill and just above the landfill surface. Results from the two independent methods agree well. The model will be described and methane oxidation will be discussed in relation to wind direction, location at the landfill, and age of the deposited refuse.

  15. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions. (United States)

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen


    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  16. Effects of experimental nitrogen fertilization on planktonic metabolism and CO2 flux in a hypereutrophic hardwater lake.

    Directory of Open Access Journals (Sweden)

    Matthew J Bogard

    Full Text Available Hardwater lakes are common in human-dominated regions of the world and often experience pollution due to agricultural and urban effluent inputs of inorganic and organic nitrogen (N. Although these lakes are landscape hotspots for CO2 exchange and food web carbon (C cycling, the effect of N enrichment on hardwater lake food web functioning and C cycling patterns remains unclear. Specifically, it is unknown if different eutrophication scenarios (e.g., modest non point vs. extreme point sources yield consistent effects on auto- and heterotrophic C cycling, or how biotic responses interact with the inorganic C system to shape responses of air-water CO2 exchange. To address this uncertainty, we induced large metabolic gradients in the plankton community of a hypereutrophic hardwater Canadian prairie lake by adding N as urea (the most widely applied agricultural fertilizer at loading rates of 0, 1, 3, 8 or 18 mg N L-1 week-1 to 3240-L, in-situ mesocosms. Over three separate 21-day experiments, all treatments of N dramatically increased phytoplankton biomass and gross primary production (GPP two- to six-fold, but the effects of N on autotrophs plateaued at ~3 mg N L-1. Conversely, heterotrophic metabolism increased linearly with N fertilization over the full treatment range. In nearly all cases, N enhanced net planktonic uptake of dissolved inorganic carbon (DIC, and increased the rate of CO2 influx, while planktonic heterotrophy and CO2 production only occurred in the highest N treatments late in each experiment, and even in these cases, enclosures continued to in-gas CO2. Chemical effects on CO2 through calcite precipitation were also observed, but similarly did not change the direction of net CO2 flux. Taken together, these results demonstrate that atmospheric exchange of CO2 in eutrophic hardwater lakes remains sensitive to increasing N loading and eutrophication, and that even modest levels of N pollution are capable of enhancing autotrophy and CO

  17. Chemical weathering on the North Island of New Zealand: CO2 consumption and fluxes of Sr and Os (United States)

    Blazina, Tim; Sharma, Mukul


    We present Os and Sr isotope ratios and Os, Sr and major/trace element concentrations for river waters, spring waters and rains on the North Island of New Zealand. The Os and Sr data are used to examine whether the NINZ is a significant contributor of unradiogenic Os and Sr to the oceans. Major element chemistry is used to quantify weathering and CO2 consumption rates on the island to investigate relationships between these processes and Os and Sr behavior. Chemical erosion rates and CO2 consumption rates across the island range from 44 to 555 km-2 yr-1 and 95 to 1900 × 103 mol CO2 km-2 yr-1, respectively. Strontium flux for the island range from 177 to 16,100 mol km-2 yr-1 and the rivers have an average flux normalized 87Sr/86Sr ratio of 0.7075. In agreement with the previous studies these findings provide further evidence that weathering of arc terrains contributes a disproportionally large amount of Sr to the oceans and consumes very large amounts of CO2 annually compared to their areal extent. However, the 87Sr/86Sr from the NINZ is not particularly unradiogenic and it is likely not contributing significant amounts of unradiogenic Sr to the oceans. Repeated Os analyses and bottle leaching experiments revealed extensive and variable sample contamination by Os leaching from rigorously precleaned LDPE bottles. An upper bound on the flux of Os from NINZ can nevertheless be assessed and indicates that island arcs cannot provide significant amounts of unradiogenic Os to the oceans.

  18. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem (United States)

    Wylie, B.K.; Johnson, D.A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B.


    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio-energy balance (BREB) technique in a sagebrush (Artemisia spp.)-steppe ecosystem in northeast Idaho, USA, during 1996-1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996-1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2 = 0.79, n = 66, P improved predictions of Fday (R2= 0.82, n = 66, P management strategies, carbon certification, and validation and calibration of carbon flux models. ?? 2003 Elsevier Science Inc. All rights reserved.

  19. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem (United States)

    Wylie, Bruce K.; Johnson, Douglas A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, Tagir G.; Reed, Bradley C.; Tieszen, Larry L.; Worstell, Bruce B.


    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rnwere measured with a Bowen ratio–energy balance (BREB) technique in a sagebrush (Artemisia spp.)–steppe ecosystem in northeast Idaho, USA, during 1996–1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996–1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday(R2=0.79, n=66, Pimproved predictions of Fday (R2=0.82, n=66, Pmanagement strategies, carbon certification, and validation and calibration of carbon flux models.

  20. Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions (United States)

    Escamilla-Roa, Elizabeth; Martin-Torres, Javier; Sainz-Díaz, C. Ignacio


    Methane has been detected on all planets of our Solar System, and most of the larger moons, as well as in dwarf-planets like Pluto and Eric. The presence of this molecule in rocky planets is very interesting because its presence in the Earth's atmosphere is mainly related to biotic processes. Space instrumentation in orbiters around Mars has detected olivine on the Martian soil and dust. On the other hand the measurements of methane from the Curiosity rover report detection of background levels of atmospheric methane with abundance that is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, elevated levels of methane about this background have been observed implying that Mars is episodically producing methane from an additional unknown source, making the reasons of these temporal fluctuations of methane a hot topic in planetary research. The goal of this study is to investigate at atomic level the interactions during the adsorption processes of methane and other Mars atmospheric species (CO2, H2O) on forsterite surfaces, through electronic structure calculations based on the Density Functional Theory (DFT). We propose two models to simulate the interaction of adsorbates with the surface of dust mineral, such as binary mixtures (5CH4+5H2O/5CH4+5CO2) and as a semi-clathrate adsorption. We have obtained interesting results of the adsorption process in the mixture 5CH4+5CO2. Associative and dissociative adsorptions were observed for water and CO2 molecules. The methane molecules were only trapped and held by water or CO2 molecules. In the dipolar surface, the adsorption of CO2 molecules produced new species: one CO from a CO2 dissociation, and, two CO2 molecules chemisorbed to mineral surface forming in one case a carbonate group. Our results suggest that CO2 has a strong interaction with the mineral surface when methane is present. These results could be confirmed after the

  1. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability

    International Nuclear Information System (INIS)

    Stuiver, M.; Quay, P.D.


    A high-precision tree-ring record of the atmospheric 14 C levels between 1820 and 1954 is presented. Good agreement is obtained between measured and model calculated 19th and 20th century atmospheric δ 14 C levels when both fossil fuel CO 2 release and predicted natural variations in 14 C production are taken into account. The best fit is obtained by using a box-diffusion model with an oceanic eddy diffusion coefficient of 3 cm 2 /s, a CO 2 atmosphere-ocean gas exchange rate of 21 moles msup(-2) yrsup(-1) and biospheric residence time of 60 years. For trees in the state of Washington the measured 1949-1951 atmospheric δ 14 C level was 20.0 +- 1.2per mille below the 1855-1864 level. Model calculations indicate that in 1950 industrial CO 2 emissions are responsible for at least 85% of the δ 14 C decline, whereas natural variability accounts for the remaining 15%. (orig.)

  2. Data-Constrained Projections of Methane Fluxes in a Northern Minnesota Peatland in Response to Elevated CO2 and Warming (United States)

    Ma, Shuang; Jiang, Jiang; Huang, Yuanyuan; Shi, Zheng; Wilson, Rachel M.; Ricciuto, Daniel; Sebestyen, Stephen D.; Hanson, Paul J.; Luo, Yiqi


    Large uncertainties exist in predicting responses of wetland methane (CH4) fluxes to future climate change. However, sources of the uncertainty have not been clearly identified despite the fact that methane production and emission processes have been extensively explored. In this study, we took advantage of manual CH4 flux measurements under ambient environment from 2011 to 2014 at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experimental site and developed a data-informed process-based methane module. The module was incorporated into the Terrestrial ECOsystem (TECO) model before its parameters were constrained with multiple years of methane flux data for forecasting CH4 emission under five warming and two elevated CO2 treatments at SPRUCE. We found that 9°C warming treatments significantly increased methane emission by approximately 400%, and elevated CO2 treatments stimulated methane emission by 10.4%-23.6% in comparison with ambient conditions. The relative contribution of plant-mediated transport to methane emission decreased from 96% at the control to 92% at the 9°C warming, largely to compensate for an increase in ebullition. The uncertainty in plant-mediated transportation and ebullition increased with warming and contributed to the overall changes of emissions uncertainties. At the same time, our modeling results indicated a significant increase in the emitted CH4:CO2 ratio. This result, together with the larger warming potential of CH4, will lead to a strong positive feedback from terrestrial ecosystems to climate warming. The model-data fusion approach used in this study enabled parameter estimation and uncertainty quantification for forecasting methane fluxes.

  3. Millennial-scale changes in atmospheric CO2 levels linked to the Southern Ocean carbon isotope gradient and dust flux (United States)

    Ziegler, Martin; Diz, Paula; Hall, Ian R.; Zahn, Rainer


    The rise in atmospheric CO2 concentrations observed at the end of glacial periods has, at least in part, been attributed to the upwelling of carbon-rich deep water in the Southern Ocean. The magnitude of outgassing of dissolved CO2, however, is influenced by the biological fixation of upwelled inorganic carbon and its transfer back to the deep sea as organic carbon. The efficiency of this biological pump is controlled by the extent of nutrient utilization, which can be stimulated by the delivery of iron by atmospheric dust particles. Changes in nutrient utilization should be reflected in the δ13C gradient between intermediate and deep waters. Here we use the δ13C values of intermediate- and bottom-dwelling foraminifera to reconstruct the carbon isotope gradient between thermocline and abyssal water in the subantarctic zone of the South Atlantic Ocean over the past 360,000 years. We find millennial-scale oscillations of the carbon isotope gradient that correspond to changes in dust flux and atmospheric CO2 concentrations as reported from Antarctic ice cores. We interpret this correlation as a relationship between the efficiency of the biological pump and fertilization by dust-borne iron. As the correlation is exponential, we suggest that the sensitivity of the biological pump to dust-borne iron fertilization may be increased when the background dust flux is low.

  4. Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Elsgaard, Lars; Lærke, Poul Erik


    Cultivation of bioenergy crops has been suggested as a promising option for reduction of greenhouse gas (GHG) emissions from arable organic soils (Histosols). Here, we report the annual net ecosystem exchange (NEE) fluxes of CO2 as measured with a dynamic closed chamber method at a drained fen......-C m−2 in RCG and SB plots, respectively, with Rfb accounting for 32 and 22% respectively. Total estimated annual GP was −1818 ± 42 and −1329 ± 66 g CO2-C m−2 in RCG and SB plots leading to a NEE of 69 ± 36 g CO2-C m−2 yr−1 in RCG plots (i.e., a weak net source) and −41 ± 47 g CO2-C m−2 yr−1 in SB...

  5. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux (United States)

    Christian P. Giardina; Creighton M. Litton; Susan E. Crow; Gregory P Asner


    The universally observed exponential increase in soil-surface CO2 effux (‘soil respiration’; FS) with increasing temperature has led to speculation that global warming will accelerate soil organic carbon (SOC) decomposition, reduce SOC storage, and drive a positive feedback to future warming. However, interpreting temperature–FS relationships,...

  6. CO2 sorption on surface-modified carbonaceous support: Probing the influence of the carbon black microporosity and surface polarity

    International Nuclear Information System (INIS)

    Gargiulo, Valentina; Alfè, Michela; Ammendola, Paola; Raganati, Federica; Chirone, Riccardo


    Graphical abstract: - Highlights: • CO 2 -sorbent materials preparation by surface modification of CB. • CB functionalization (amino-groups), CB coating (Fe 3 O 4 ), CB impregnation (ionic liquid). • Sorbents bearing basic functionalities exhibit the higher CO 2 sorption capacity. • Microporous supporting material limits the CO 2 accessibility toward the adsorbing material. - Abstract: The use of solid sorbents is a convenient option in post-combustion CO 2 capture strategies. Sorbents selection is a key point because the materials are required to be both low-cost and versatile in typical post-combustion conditions in order to guarantee an economically advantageous overall process. This work compares strategies to tailor the chemico-physical features of carbon black (CB) by surface-modification and/or coating with a CO 2 -sorbent phase. The influence of the CB microporosity, enhanced by chemical/thermal treatments, is also taken into account. Three CB surface modifications are performed and compared: (i) oxidation and functionalization with amino-groups, (ii) coating with iron oxides and (iii) impregnation with an ionic liquid (IL). The CO 2 capture performance is evaluated on the basis of the breakthrough curves measured at atmospheric pressure and room temperature in a lab-scale fixed bed micro-reactor. Most of tested solids adsorb a CO 2 amount significantly higher than a 13X zeolite and DARCO FGD (Norit) activated carbon (up to 4 times more in the best case). The sorbents bearing basic functionalities (amino-groups and IL) exhibit the highest CO 2 sorption capacity. The use of a microporous carbonaceous support limits the accessibility of CO 2 toward the adsorbing phase (IL or FM) lowering the number of accessible binding sites for CO 2 .

  7. An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces




    There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. A pulsed TEA CO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lase...

  8. Estimating noctural ecosystem respiration from the vertical turbulent flux and change in storange of CO2

    NARCIS (Netherlands)

    Gorsel, van E.; Delpierre, N.; Leuning, R.; Black, A.; Munger, J.W.; Wofsy, S.; Aubinet, M.; Feigenwinter, C.; Beringer, J.; Bonal, D.; Chen, B.; Chen, J.; Clement, R.; Davis, K.J.; Desai, A.R.; Dragoni, D.; Etzold, S.; Grünwald, T.; Gu, L.; Heinesch, B.; Hutyra, L.R.; Jans, W.W.P.; Kutsch, W.; Law, B.E.; Leclerc, Y.; Mammarella, I.; Montagnani, L.; Noormets, A.; Rebmann, C.; Wharton, S.


    Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be

  9. SAFARI 2000 Kalahari Transect CO2, Water Vapor, and Heat Flux, Wet Season 2000 (United States)

    National Aeronautics and Space Administration — ABSTRACT: Short-term measurements of carbon dioxide, water, and energy fluxes were collected at four locations along a mean annual precipitation gradient in southern...

  10. SAFARI 2000 Kalahari Transect CO2, Water Vapor, and Heat Flux, Wet Season 2000 (United States)

    National Aeronautics and Space Administration — Short-term measurements of carbon dioxide, water, and energy fluxes were collected at four locations along a mean annual precipitation gradient in southern Africa...

  11. A two-dimensional hydrodynamic model of turbulent transfer of CO2 and H2O over a heterogeneous land surface (United States)

    Mukhartova, Yu. V.; Krupenko, A. S.; Mangura, P. A.; Levashova, N. T.


    A two-dimensional hydrodynamic model was developed and applied to describe turbulent fluxes of CO2 and H2O within the atmospheric surface layer over a heterogeneous land surface featuring mosaic vegetation and complex topography. Numerical experiments were carried out with a 4.5-km profile that crosses a hilly region in the central part of European Russia, with the diverse land-use patterns (bare soil, crop areas, grasslands, and forests). The results showed very strong variability of the vertical and horizontal turbulent CO2 and H2O fluxes. The standard deviations of the vertical fluxes were estimated for separate profile sections with uniform vegetation cover for daylight conditions in summer, and they were comparable with the mean vertical fluxes for corresponding sections. The highest horizontal turbulent fluxes occurred at the boundaries between different plant communities and at irregularities in surface profile. In some cases, these fluxes reached 10-20% of the absolute values of the mean vertical fluxes for corresponding profile sections. Significant errors in estimating the local and integrated fluxes e.g. when using the eddy covariance technique, can result from ignoring the surface topography, even in the case of relatively large plots with uniform vegetation cover.

  12. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering (United States)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli


    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  13. Variability and budget of CO2 in Europe: analysis of the CAATER airborne campaigns – Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework

    Directory of Open Access Journals (Sweden)

    P. Ciais


    Full Text Available Our ability to predict future climate change relies on our understanding of current and future CO2 fluxes, particularly on a regional scale (100–1000 km. CO2 regional sources and sinks are still poorly understood. Inverse transport modeling, a method often used to quantify these fluxes, relies on atmospheric CO2 measurements. One of the main challenges for the transport models used in the inversions is to properly reproduce CO2 vertical gradients between the boundary layer and the free troposphere, as these gradients impact on the partitioning of the calculated fluxes between the different model regions. Vertical CO2 profiles are very well suited to assess the performances of the models. In this paper, we conduct a comparison between observed and modeled CO2 profiles recorded during two CAATER campaigns that occurred in May 2001 and October 2002 over Western Europe, as described in a companion paper. We test different combinations between a global transport model (LMDZt, a mesoscale transport model (CHIMERE, and different sets of biospheric fluxes, all chosen with a diurnal cycle (CASA, SiB2 and ORCHIDEE. The vertical profile comparison shows that: 1 in most cases the influence of the biospheric flux is small but sometimes not negligible, ORCHIDEE giving the best results in the present study; 2 LMDZt is most of the time too diffuse, as it simulates a too high boundary layer height; 3 CHIMERE better reproduces the observed gradients between the boundary layer and the free troposphere, but is sometimes too variable and gives rise to incoherent structures. We conclude there is a need for more vertical profiles to conduct further studies to improve the parameterization of vertical transport in the models used for CO2 flux inversions. Furthermore, we use a modeling method to quantify CO2 fluxes at the regional scale from a chosen observing point, coupling influence functions from the transport model LMDZt (that works quite well at the synoptic

  14. Variability and budget of CO2 in Europe: analysis of the CAATER airborne campaigns - Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework

    International Nuclear Information System (INIS)

    Xueref-Remy, I.; Bousquet, P.; Rivier, L.; Ciais, P.; Carouge, C.


    Our ability to predict future climate change relies on our understanding of current and future CO 2 fluxes, particularly on a regional scale (100-1000 km). CO 2 regional sources and sinks are still poorly understood. Inverse transport modeling, a method often used to quantify these fluxes, relies on atmospheric CO 2 measurements. One of the main challenges for the transport models used in the inversions is to properly reproduce CO 2 vertical gradients between the boundary layer and the free troposphere, as these gradients impact on the partitioning of the calculated fluxes between the different model regions. Vertical CO 2 profiles are very well suited to assess the performances of the models. In this paper, we conduct a comparison between observed and modeled CO 2 profiles recorded during two CAATER campaigns that occurred in May 2001 and October 2002 over Western Europe, as described in a companion paper. We test different combinations between a global transport model (LMDZt), a mesoscale transport model (CHIMERE), and different sets of biospheric fluxes, all chosen with a diurnal cycle (CASA, SiB2 and ORCHIDEE). The vertical profile comparison shows that: 1) in most cases the influence of the biospheric flux is small but sometimes not negligible, ORCHIDEE giving the best results in the present study; 2) LMDZt is most of the time too diffuse, as it simulates a too high boundary layer height; 3) CHIMERE better reproduces the observed gradients between the boundary layer and the free troposphere, but is sometimes too variable and gives rise to incoherent structures. We conclude there is a need for more vertical profiles to conduct further studies to improve the parameterization of vertical transport in the models used for CO 2 flux inversions. Furthermore, we use a modeling method to quantify CO 2 fluxes at the regional scale from a chosen observing point, coupling influence functions from the transport model LMDZt (that works quite well at the synoptic scale) with

  15. Soil CO2 CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration

    Directory of Open Access Journals (Sweden)

    J. I. L. Morison


    Full Text Available The effect of tree (lodgepole pine planting with and without intensive drainage on soil greenhouse gas (GHG fluxes was assessed after 45 yr at a raised peatbog in West Flanders Moss, central Scotland. Fluxes of CO2 CH4 and N2O from the soil were monitored over a 2-yr period every 2 to 4 weeks using the static opaque chamber method in a randomised experimental block trial with the following treatments: drained and planted (DP, undrained and planted (uDP, undrained and unplanted (uDuP and for reference also from an adjoining near-pristine area of bog at East Flanders Moss (n-pris. There was a strong seasonal pattern in both CO2 and CH4 effluxes which were significantly higher in late spring and summer months because of warmer temperatures. Effluxes of N2O were low and no significant differences were observed between the treatments. Annual CH4 emissions increased with the proximity of the water table to the soil surface across treatments in the order: DP 4 m−2 yr−1, respectively. For CO2, effluxes increased in the order uDP 2 m−2 yr−1, respectively. CO2 effluxes dominated the total net GHG emission, calculated using the global warming potential (GWP of the three GHGs for each treatment (76–98%, and only in the n-pris site was CH4 a substantial contribution (23%. Based on soil effluxes only, the near pristine (n-pris peatbog had 43% higher total net GHG emission compared with the DP treatment because of high CH4 effluxes and the DP treatment had 33% higher total net emission compared with the uDP because drainage increased CO2 effluxes. Restoration is likely to increase CH4 emissions, but reduce CO2 effluxes. Our study suggests that if estimates of CO2 uptake by vegetation from similar peatbog sites were included, the total net GHG emission of restored peatbog would still be higher than that of the peatbog with trees.

  16. Surface modification of polyethylene terephthalate using excimer and CO2 laser

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.


    Complete text of publication follows. Attempts have been made to evaluate microstructuring which affects cell behaviour, physical and chemical changes produced by laser irradiation onto the polyethylene terephthalate (PET) surface. The surfaces of PET were irradiated using the CO 2 laser and KrF excimer pulsed laser. The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-IR) and contact angle measurements. ATR-IR Spectra showed that the crystallinity in the surface region decreased due to the CO 2 laser and excimer laser irradiation. Scanning electron microscopy observations showed that the morphology of the laser irradiated PET surface changed due to laser irradiation. The results obtained from the cell behaviour studies revealed that changes of physico-chemical properties of the laser treated PET film have significantly changed in comparison with the unmodified PET

  17. Water and CO2 fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau (United States)

    Wang, Lei; Liu, Huizhi; Shao, Yaping; Liu, Yang; Sun, Jihua


    Based on eddy covariance flux data from July 15, 2014, to December 31, 2015, the water and CO2 fluxes were compared over a semiarid alpine steppe (Bange, Tibetan Plateau) and a humid alpine meadow (Lijiang, Yunnan) on the Tibetan Plateau and its surrounding region. During the wet season, the evaporative fraction (EF) was strongly and linearly correlated with the soil water content (SWC) at Bange because of its sparse green grass cover. In contrast, the correlation between the EF at Lijiang and the SWC and the normalized difference vegetation index (NDVI) was very low because the atmosphere was close to saturation and the EF was relatively constant. In the dry season, the EF at both sites decreased with the SWC. The net ecosystem exchange (NEE) at Bange was largely depressed at noon, while this phenomenon did not occur at Lijiang. The saturated NEE at Bange was 24% of that at Lijiang. The temperature sensitivity coefficient of ecosystem respiration at Bange (1.7) was also much lower than that at Lijiang (3.4). The annual total NEE in 2015 was 21.8 and -230.0 g C m-2 yr-1 at Bange and Lijiang, respectively, and the NEE was tightly controlled by the NDVI at the two sites. The distinct differences in the water and CO2 fluxes at Bange and Lijiang are attributed to the large SWC difference and its effect on vegetation growth.

  18. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong


    While recent reports have demonstrated that oxide-derived Cu-based electrodes exhibit high selectivity for CO2 reduction at low overpotential, the low catalytic current density (<2 mA/cm2 at -0.45 V vs. RHE) still largely limits its applications for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open frameworks, the resulting Cu foam electrodes prepared at higher temperatures exhibit enhanced electrochemically active surface area and distinct surface structures. In particular, the Cu foam electrode prepared at 500 °C exhibits an extremely high geometric current density of ~9.4 mA/cm2 in CO2-satrurated 0.1 M KHCO3 aqueous solution and achieving ~39% CO and ~23% HCOOH Faradaic efficiencies at -0.45 V vs. RHE. The high activity and significant selectivity enhancement are attributable to the formation of abundant grain-boundary supported active sites and preferable (100) and (111) facets as a result of reconstruction of Cu surface facets. This work demonstrates that the structural integration of Cu foam with open 3D frameworks and the favorable surface structures is a promising strategy to develop an advanced Cu electrocatalyst that can operate at high current density and low overpotential for CO2 reduction.

  19. Mass transfer of CO2 to groundwaters from a near-surface waste disposal site

    International Nuclear Information System (INIS)

    Caron, F.; Wilkinson, S.R.; Manni, G.; Torok, J.


    Gaseous 14 CO 2 originating from buried low-level radioactive wastes (LLRW) in a near-surface disposal site can be released to the environment via two major paths: gas-phase diffusion through soils to the atmosphere, and dissolution in groundwater, followed by aqueous migration. Aqueous migration would give the highest dose to an individual, especially if C-14 was converted to an organic form and ingested. Gaseous diffusion would give a lower dose, largely because of atmospheric dispersion and dilution. The objective of this study was to develop the capability to estimate which of the two paths will likely be dominant for typical near-surface disposal facilities. The main missing parameter for making this estimate was a mass-transfer coefficient (K L ) of 14 CO 2 to groundwaters, which was determined experimentally using a large sand box. The K L thus determined was approximately 10 to 20 times smaller than for an open liquid surface. This suggests that there is a potential resistance to mass transfer, probably caused by the capillary fringe. The value obtained was incorporated into a simple model of CO 2 transport around a typical near-surface disposal site. The model suggests that CO 2 transport via both gaseous release and aqueous migration paths are of similar magnitude for a repository located ∼2 m above the water table. (author). 11 refs., 2 tabs., 2 figs

  20. Effect of surface-breakdown plasma on metal drilling by pulsed CO2-laser radiation (United States)

    Arutiunian, P. V.; Baranov, V. Iu.; Bobkov, I. V.; Bol'Shakov, L. A.; Dolgov, V. A.


    The effect of low-threshold surface breakdown produced by short (5-microsec) CO2-laser pulses on the metal drilling process is investigated. Data on the interaction of metals with laser pulses having the same duration but different shape are shown to be different. The effect of the ambient atmospheric pressure on the laser drilling process is investigated.

  1. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes (United States)

    Marinov, I.; Gnanadesikan, A.


    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  2. High Resolution Measurement of Rhizosphere Priming Effects and Temporal Variability of CO2 Fluxes under Zea Mays (United States)

    Splettstößer, T.; Pausch, J.


    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment, which enabled us to monitor CO2 fluxes under zea mays plants with high resolution. The experiment was conducted in a climate chamber where the plants were grown in thin, tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. 13C-CO2 was introduced to allow differentiation between plant and soil derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I δ13C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. In order to visualize the spatial distribution of carbon allocation to the root system a few plants were additionally labeled with 14C and 14C distribution was monitored by 14C imaging of the root systems over 4 days. Based on the 14C distribution a grid was chosen and the soil was sampled from each square of the grid to investigate the impact of carbon allocation hotspots on enzymatic activities and microbial biomass. First initial results show an increase of soil CO2 efflux in the night periods, whereby the contribution of priming is not fully analyzed yet. Additionally, root tips were identified as hotspots of short term carbon allocation via 14C imaging and an in increase in microbial biomass could be measured in this regions. The full results will be shown at AGU 2016.

  3. CO2 and CH4 fluxes of contrasting pristine bogs in southern Patagonia (Tierra del Fuego, Argentina) (United States)

    Münchberger, Wiebke; Blodau, Christian; Kleinebecker, Till; Pancotto, Veronica


    South Patagonian peatlands cover a wide range of the southern terrestrial area and thus are an important component of the terrestrial global carbon cycle. These extremely southern ecosystems have been accumulating organic material since the last glaciation up to now and are - in contrast to northern hemisphere bogs - virtually unaffected by human activities. So far, little attention has been given to these pristine ecosystems and great carbon reservoirs which will potentially be affected by climate change. We aim to fill the knowledge gap in the quantity of carbon released from these bogs and in what controls their fluxes. We study the temporal and spatial variability of carbon fluxes in two contrasting bog ecosystems in southern Patagonia, Tierra del Fuego. Sphagnum-dominated bog ecosystems in Tierra del Fuego are similar to the ones on the northern hemisphere, while cushion plant-dominated bogs can almost exclusively be found in southern Patagonia. These unique cushion plant-dominated bogs are found close to the coast and their occurrence changes gradually to Sphagnum-dominated bogs with increasing distance from the coast. We conduct closed chamber measurements and record relevant environmental variables for CO2 and CH4 fluxes during two austral vegetation periods from December to April. Chamber measurements are performed on microforms representing the main vegetation units of the studied bogs. Gas concentrations are measured with a fast analyzer (Los Gatos Ultraportable Greenhouse Gas Analyzer) allowing to accurately record CH4 fluxes in the ppm range. We present preliminary results of the carbon flux variability from south Patagonian peat bogs and give insights into their environmental controls. Carbon fluxes of these two bog types appear to be highly different. In contrast to Sphagnum-dominated bogs, cushion plant-dominated bogs release almost no CH4 while their CO2 flux in both, photosynthesis and respiration, can be twice as high as for Sphagnum

  4. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. (United States)

    Feldman, D R; Collins, W D; Gero, P J; Torn, M S; Mlawer, E J; Shippert, T R


    The climatic impact of CO2 and other greenhouse gases is usually quantified in terms of radiative forcing, calculated as the difference between estimates of the Earth's radiation field from pre-industrial and present-day concentrations of these gases. Radiative transfer models calculate that the increase in CO2 since 1750 corresponds to a global annual-mean radiative forcing at the tropopause of 1.82 ± 0.19 W m(-2) (ref. 2). However, despite widespread scientific discussion and modelling of the climate impacts of well-mixed greenhouse gases, there is little direct observational evidence of the radiative impact of increasing atmospheric CO2. Here we present observationally based evidence of clear-sky CO2 surface radiative forcing that is directly attributable to the increase, between 2000 and 2010, of 22 parts per million atmospheric CO2. The time series of this forcing at the two locations-the Southern Great Plains and the North Slope of Alaska-are derived from Atmospheric Emitted Radiance Interferometer spectra together with ancillary measurements and thoroughly corroborated radiative transfer calculations. The time series both show statistically significant trends of 0.2 W m(-2) per decade (with respective uncertainties of ±0.06 W m(-2) per decade and ±0.07 W m(-2) per decade) and have seasonal ranges of 0.1-0.2 W m(-2). This is approximately ten per cent of the trend in downwelling longwave radiation. These results confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions, and provide empirical evidence of how rising CO2 levels, mediated by temporal variations due to photosynthesis and respiration, are affecting the surface energy balance.

  5. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites (United States)

    Sauer, U.; Schuetze, C.; Dietrich, P.


    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The

  6. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition]. (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin


    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  7. CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: estimates from flux tower measurements (United States)

    Gilmanov, Tagir; Wylie, Bruce; Tieszen, Larry; Meyers, Tilden P.; Baron, Vern S.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Fischer, Marc L.; Glenn, Aaron J.; Hanan, Niall P.; Hatfield, Jerry L.; Heuer, Mark W.; Hollinger, Steven E.; Howard, Daniel M.; Matamala, Roser; Prueger, John H.; Tenuta, Mario; Young, David G.


    We analyzed net CO2 exchange data from 13 flux tower sites with 27 site-years of measurements over maize and wheat fields across midcontinent North America. A numerically robust “light-soil temperature-VPD”-based method was used to partition the data into photosynthetic assimilation and ecosystem respiration components. Year-round ecosystem-scale ecophysiological parameters of apparent quantum yield, photosynthetic capacity, convexity of the light response, respiration rate parameters, ecological light-use efficiency, and the curvature of the VPD-response of photosynthesis for maize and wheat crops were numerically identified and interpolated/extrapolated. This allowed us to gap-fill CO2 exchange components and calculate annual totals and budgets. VPD-limitation of photosynthesis was systematically observed in grain crops of the region (occurring from 20 to 120 days during the growing season, depending on site and year), determined by the VPD regime and the numerical value of the curvature parameter of the photosynthesis-VPD-response, σVPD. In 78% of the 27 site-years of observations, annual gross photosynthesis in these crops significantly exceeded ecosystem respiration, resulting in a net ecosystem production of up to 2100 g CO2 m−2 year−1. The measurement-based photosynthesis, respiration, and net ecosystem production data, as well as the estimates of the ecophysiological parameters, provide an empirical basis for parameterization and validation of mechanistic models of grain crop production in this economically and ecologically important region of North America.

  8. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan


    Full Text Available The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  9. Constraining Marsh Carbon Budgets Using Long-Term C Burial and Contemporary Atmospheric CO2 Fluxes (United States)

    Forbrich, I.; Giblin, A. E.; Hopkinson, C. S.


    Salt marshes are sinks for atmospheric carbon dioxide that respond to environmental changes related to sea level rise and climate. Here we assess how climatic variations affect marsh-atmosphere exchange of carbon dioxide in the short term and compare it to long-term burial rates based on radiometric dating. The 5 years of atmospheric measurements show a strong interannual variation in atmospheric carbon exchange, varying from -104 to -233 g C m-2 a-1 with a mean of -179 ± 32 g C m-2 a-1. Variation in these annual sums was best explained by differences in rainfall early in the growing season. In the two years with below average rainfall in June, both net uptake and Normalized Difference Vegetation Index were less than in the other three years. Measurements in 2016 and 2017 suggest that the mechanism behind this variability may be rainfall decreasing soil salinity which has been shown to strongly control productivity. The net ecosystem carbon balance was determined as burial rate from four sediment cores using radiometric dating and was lower than the net uptake measured by eddy covariance (mean: 110 ± 13 g C m-2 a-1). The difference between these estimates was significant and may be because the atmospheric measurements do not capture lateral carbon fluxes due to tidal exchange. Overall, it was smaller than values reported in the literature for lateral fluxes and highlights the importance of investigating lateral C fluxes in future studies.

  10. Carbon Dioxide and Water Vapor Concentrations, Co-spectra and Fluxes from Latest Standardized Automated CO2/H2O Flux Systems versus Established Analyzer Models (United States)

    Burba, G. G.; Kathilankal, J. C.; Begashaw, I.; Franzen, D.; Welles, J.; McDermitt, D. K.


    Spatial and temporal flux data coverage have improved significantly in recent years, due to standardization, automation and management of data collection, and better handling of the generated data. With more stations and networks, larger data streams from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process.These tools should produce standardized verifiable datasets, and provide a way to cross-share the standardized data with external collaborators to leverage available funding, and promote data analyses and publications. In 2015, new open-path and enclosed flux measurement systems1 were developed, based on established gas analyzer models2,3, with the goal of improving stability in the presence of contamination, refining temperature control and compensation, and providing more accurate gas concentration measurements. In 2017, the new open-path system was further refined to simplify hardware configuration, and to reduce power consumption and cost. Additionally, all new systems incorporate complete automated on-site flux calculations using EddyPro® Software4 run by a weatherized remotely-accessible microcomputer to provide standardized traceable data sets for fluxes and supporting variables. This presentation will describe details and results from the field tests of the new flux systems, in comparison to older models and reference instruments. References:1 Burba G., W. Miller, I. Begashaw, G. Fratini, F. Griessbaum, J. Kathilankal, L. Xu, D. Franz, E. Joseph, E. Larmanou, S. Miller, D. Papale, S. Sabbatini, T. Sachs, R. Sakai, D. McDermitt, 2017. Comparison of CO2 Concentrations, Co-spectra and Flux Measurements between Latest Standardized Automated CO2/H2O Flux Systems and Older Gas Analysers. 10th ICDC Conference, Switzerland: 21-25/08 2 Metzger, S., G. Burba, S. Burns, P. Blanken, J. Li, H. Luo, R. Zulueta, 2016. Optimization of an enclosed gas analyzer sampling system for measuring eddy

  11. High speed surface cleaning by a high repetition rated TEA-CO2 laser

    International Nuclear Information System (INIS)

    Tsunemi, Akira; Hirai, Ryo; Hagiwara, Kouji; Nagasaka, Keigo; Tashiro, Hideo


    We demonstrated the feasibility of high speed cleaning of solid surfaces by the laser ablation technique using a TEA-CO 2 laser. The laser pulses with the repetition rate of 1 kHz were applied to paint, rust, moss and dirt attached on the surfaces. The attachments were effectively removed without the damage of bulk surfaces by the irradiation of line-focused sequential pulses with an energy of 300 mJ/pulse. A cleaning rate reached to 17 m 2 /hour for the case of paint removal from iron surfaces. (author)

  12. A TPD-MS study of glassy carbon surfaces oxidized by CO2 and O2

    Directory of Open Access Journals (Sweden)



    Full Text Available The temperature-programmed desorption (TPD method combined with mass spectrometric (MS analysis has been applied to investigate the surface properties of carbon materials. The apparatus consisting of a temperature-programmed furnace and a quadrupole mass spectrometer was constructed in order to characterize the surface of differently treated glassy carbon samples. In this work, samples of glassy carbon exposed to air, CO2 and O2 were examined. The desorption of H2O, CO and CO2, as major products, indicated the presence of different oxide groups. The amount of these groups for all samples was calculated. It is concluded that oxidation affects the nature and the amount of the surface oxide groups and contributes to their increased stability.

  13. LBA-ECO CD-10 CO2 and H2O Eddy Flux Data at km 67 Tower Site, Tapajos National Forest (United States)

    National Aeronautics and Space Administration — This data set reports eddy flux measurements of CO2 and H2O exchange and associated meteorological measurements at the Para Western (Santarem) - km 67, Primary...

  14. LBA-ECO CD-10 CO2 and H2O Eddy Fluxes at km 67 Tower Site, Tapajos National Forest (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports eddy flux measurements of CO2 and H2O exchange and associated meteorological measurements at the Para Western (Santarem) - km 67,...

  15. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast (United States)

    Lee, Meemong; Weidner, Richard


    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  16. Linking interfacial chemistry of CO2 to surface structures of hydrated metal oxide nanoparticles: hematite. (United States)

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril


    A better understanding of interaction with dissolved CO2 is required to rationally design and model the (photo)catalytic and sorption processes on metal (hydr)oxide nanoparticles (NPs) in aqueous media. Using in situ FTIR spectroscopy, we address this problem for rhombohedral 38 nm hematite (α-Fe2O3) nanoparticles as a model. We not only resolve the structures of the adsorbed carbonate species, but also specify their adsorption sites and their location on the nanoparticle surface. The spectral relationships obtained present a basis for a new method of characterizing the microscopic structural and acid-base properties (related to individual adsorption sites) of hydrated metal (hydr)oxide NPs using atmospherically derived CO2 as a probe. Specifically, we distinguish two carbonate species suggesting two principally different adsorption mechanisms. One species, which is more weakly adsorbed, has an inner-sphere mononuclear monodentate structure which is formed by a conventional ligand-exchange mechanism. At natural levels of dissolved carbonate and pH from 3 to 11, this species is attached to the most acidic/reactive surface cations (surface states) associated with ferrihydrite-like surface defects. The second species, which is more strongly adsorbed, presents a mixed C and O coordination of bent CO2. This species uniquely recognizes the stoichiometric rhombohedral {104} facets in the NP texture. Like in gas phase, it is formed through the surface coordination of molecular CO2. We address how the adsorption sites hosting these two carbonate species are affected by the annealing and acid etching of the NPs. These results support the nanosize-induced phase transformation of hematite towards ferrihydrite under hydrous conditions, and additionally show that the process starts from the roughened areas of the facet intersections.

  17. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing

    Directory of Open Access Journals (Sweden)

    J. M. Gregory


    Full Text Available The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere–ocean general circulation models (AOGCMs. It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sea-level rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable

  18. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C


    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  19. Seasonal variation of air-sea CO2 fluxes in the Terra Nova Bay of the Ross Sea, Antarctica, based on year-round pCO2 observations (United States)

    Zappa, C. J.; Rhee, T. S.; Kwon, Y. S.; Choi, T.; Yang, E. J.; Kim, J.


    The polar oceans are rapidly changing in response to climate variability. In particular, augmented inflow of glacial melt water and shrinking sea-ice extent impacts the polar coastal oceans, which may in turn shift the biogeochemistry into an unprecedented paradigm not experienced previously. Nonetheless, most research in the polar oceans is limited to the summer season. Here, we present the first direct observations of ocean and atmospheric pCO2 measured near the coast of Terra Nova Bay in the Ross Sea, Antarctica, ongoing since February, 2015 at Jang Bogo Station. The coastal area is covered by landfast sea-ice from spring to fall while continually exposed to the atmosphere during summer season only. The pCO2 in seawater swung from 120 matm in February to 425 matm in early October. Although sea-ice still covers the coastal area, pCO2 already started decreasing after reaching the peak in October. In November, the pCO2 suddenly dropped as much as 100 matm in a week. This decrease of pCO2 continued until late February when the sea-ice concentration was minimal. With growing sea ice, the pCO2 increased logarithmically reaching the atmospheric concentration in June/July, depending on the year, and continued to increase until October. Daily mean air-sea CO2 flux in the coastal area widely varied from -70 mmol m-2 d-1 to 20 mmol m-2 d-1. Based on these observations of pCO2 in Terra Nova Bay, the annual uptake of CO2 is 8 g C m-2, estimated using the fraction of sea-ice concentration estimated from AMSR2 microwave emission imagery. Extrapolating to all polynyas surrounding Antarctica, we expect the annual uptake of 8 Tg C in the atmosphere. This is comparable to the amount of CO2 degassed into the atmosphere south of the Antarctic Polar Front (62°S).

  20. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach

    Directory of Open Access Journals (Sweden)

    J. Czerny


    Full Text Available Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation, all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC, nitrogen (DON and particulate organic phosphorus (POP were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon

  1. Experimental and theoretical analysis of defocused CO2 laser microchanneling on PMMA for enhanced surface finish (United States)

    Prakash, Shashi; Kumar, Subrata


    The poor surface finish of CO2 laser-micromachined microchannel walls is a major limitation of its utilization despite several key advantages, like low fabrication cost and low time consumption. Defocused CO2 laser beam machining is an effective solution for fabricating smooth microchannel walls on polymer and glass substrates. In this research work, the CO2 laser microchanneling process on PMMA has been analyzed at different beam defocus positions. Defocused processing has been investigated both theoretically and experimentally, and the depth of focus and beam diameter have been determined experimentally. The effect of beam defocusing on the microchannel width, depth, surface roughness, heat affected zone and microchannel profile were examined. A previously developed analytical model for microchannel depth prediction has been improved by incorporating the threshold energy density factor. A semi-analytical model for predicting the microchannel width at different defocus positions has been developed. A semi-empirical model has also been developed for predicting microchannel widths at different defocusing conditions for lower depth values. The developed models were compared and verified by performing actual experiments. Multi-objective optimization was performed to select the best optimum set of input parameters for achieving the desired surface roughness.

  2. Comparison of net CO2 fluxes measured with open- and closed-path infrared gas analyzers in an urban complex environment

    DEFF Research Database (Denmark)

    Järvi, L.; Mammarella, I.; Eugster, W.


    and their suitability to accurately measure CO2 exchange in such non-ideal landscape. In addition, this study examined the effect of open-path sensor heating on measured fluxes in urban terrain, and these results were compared with similar measurements made above a temperate beech forest in Denmark. The correlation...... between the two fluxes was good (R2 = 0.93) at the urban site, but during the measurement period the open-path net surface exchange (NSE) was 17% smaller than the closed-path NSE, indicating apparent additional uptake of CO2 by open-path measurements. At both sites, sensor heating corrections evidently...... improved the performance of the open-path analyzer by reducing discrepancies in NSE at the urban site to 2% and decreasing the difference in NSE from 67% to 7% at the forest site. Overall, the site-specific approach gave the best results at both sites and, if possible, it should be preferred in the sensor...

  3. Methane and CO2 fluxes from peat soil, palm stems and field drains in two oil palm plantations in Sarawak, Borneo, on different tropical peat soil types. (United States)

    Manning, Frances; Lip Khoon, Kho; Hill, Tim; Arn Teh, Yit


    Oil palm plantations have been expanding rapidly on tropical peat soils in the last 20 years, with 50 % of SE Asian peatlands now managed as industrial or small-holder plantations, up from 11% in 1990. Tropical peat soils are an important carbon (C) store, containing an estimated 17 % of total peatland C. There are large uncertainties as to the soil C dynamics in oil palm plantations on peat due to a shortage of available data. It is therefore essential to understand the soil C cycle in order to promote effective management strategies that optimise yields, whilst maintaining the high C storage capacity of the soil. Here we present CO2 and CH4 fluxes from two oil palm plantations in Sarawak, Malaysia on peat soils. Data were collected from different surface microforms within each plantation that experienced different surface management practices. These included the area next to the palm, in bare soil harvest paths, beneath frond piles, underneath cover crops, from the surface of drains, and from palm stems. Data were collected continuously over one year and analysed with different environmental variables, including soil temperature, WTD, O2, soil moisture and weather data in order to best determine the constraints on the dataset. Total soil respiration (Rtot) varied between 0.09 and 1.59 g C m-2 hr-1. The largest fluxes (0.59 - 1.59 g C m-2 hr-1) were measured next to the palms. Larger CO2 fluxes were observed beneath the cover crops than in the bare soil. This trend was attributed to priming effects from the input of fresh plant litter and exudates. Peat soil type was shown to have significantly different fluxes. The different plantations also had different environmental drivers best explaining the variation in Rtot - with soil moisture being the most significant variable on Sabaju series soil and soil temperature being the most significant environmental variable in the plantation with the Teraja series soil. Rtot was shown to reduce significantly with increasing

  4. High temporal resolution ecosystem CH4, CO2 and H2O flux data measured with a novel chamber technique (United States)

    Steenberg Larsen, Klaus; Riis Christiansen, Jesper


    switching automatically between transparent and darkened mode enabling for separation of light-sensitive and light-indifferent processes in chambers. In a pilot study we measured hourly fluxes of CO2, H2O and CH4 continuously for two weeks in Danish Calluna vulgaris (common heather) heathland (Larsen et al. 2011). We will present an analysis of the novel, high-frequency data of CH4 fluxes under light and dark conditions, assess the advantages and limitations of the experimental setup and recommend future improvements of the technology involved. References: Carter, M.S., Larsen, K.S., et al. 2012. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands: responses to climatic and environmental changes. Biogeosciences 3739-3755. Christiansen, J.R., Korhonen, J.F.J., et al. 2011. Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 fluxes in a laboratory experiment. Plant and Soil 343, 171-185. Christiansen, J.R., Outhwaite, J., et al. 2015. Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agricultural and Forest Meteorology 211-212, 48-57. Creelman, C., Nickerson, N., Risk, D., 2013. Quantifying Lateral Diffusion Error in Soil Carbon Dioxide Respiration Estimates using Numerical Modeling. Soil Science Society of America Journal 77, 699-708. Larsen, K.S., Andresen, L.C., et al. 2011. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biology 17, 1884-1899. Pihlatie, M.K., Christiansen, J.R., et al. 2013. Comparison of static chambers to measure CH4 emissions from soils. Agricultural and Forest Meteorology 171-172, 124-136.

  5. Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site (United States)

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Ellsworth, William L.


    Sequestration of CO2 into subsurface reservoirs can play an important role in limiting future emission of CO2 into the atmosphere (e.g., Benson and Cole, 2008). For geologic sequestration to become a viable option to reduce greenhouse gas emissions, large-volume injection of supercritical CO2 into deep sedimentary formations is required. These formations offer large pore volumes and good pore connectivity and are abundant (Bachu, 2003; U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013). However, hazards associated with injection of CO2 into deep formations require evaluation before widespread sequestration can be adopted safely (Zoback and Gorelick, 2012). One of these hazards is the potential to induce seismicity on pre-existing faults or fractures. If these faults or fractures are large and critically stressed, seismic events can occur with magnitudes large enough to pose a hazard to surface installations and, possibly more critical, the seal integrity of the cap rock. The Decatur, Illinois, carbon capture and storage (CCS) demonstration site is the first, and to date, only CCS project in the United States that injects a large volume of supercritical CO2 into a regionally extensive, undisturbed saline formation. The first phase of the Decatur CCS project was completed in November 2014 after injecting a million metric tons of supercritical CO2 over three years. This phase was led by the Illinois State Geological Survey (ISGS) and included seismic monitoring using deep borehole sensors, with a few sensors installed within the injection horizon. Although the deep borehole network provides a more comprehensive seismic catalog than is presented in this paper, these deep data are not publically available. We contend that for monitoring induced microseismicity as a possible seismic hazard and to elucidate the general patterns of microseismicity, the U.S. Geological Survey (USGS) surface and shallow borehole network described below

  6. A Modern Automatic Chamber Technique as a Powerful Tool for CH4 and CO2 Flux Monitoring (United States)

    Mastepanov, M.; Christensen, T. R.; Lund, M.; Pirk, N.


    A number of similar systems were used for monitoring of CH4 and CO2 exchange by the automatic chamber method in a range of different ecosystems. The measurements were carried out in northern Sweden (mountain birch forest near Abisko, 68°N, 2004-2010), southern Sweden (forest bog near Hässleholm, 56°N, 2007-2014), northeastern Greenland (arctic fen in Zackenberg valley, 74°N, 2005-2014), southwestern Greenland (fen near Nuuk, 64°N, 2007-2014), central Svalbard (arctic fen near Longyearbyen, 78°N, 2011-2014). Those in total 37 seasons of measurements delivered not only a large amount of valuable flux data, including a few novel findings (Mastepanov et al., Nature, 2008; Mastepanov et al., Biogeosciences, 2013), but also valuable experience with implementation of the automatic chamber technique using modern analytical instruments and computer technologies. A range of high resolution CH4 analysers (DLT-100, FMA, FGGA - Los Gatos Research), CO2 analyzers (EGM-4, SBA-4 - PP Systems; Li-820 - Li-Cor Biosciences), as well as Methane Carbon Isotope Analyzer (Los Gatos Research) has shown to be suitable for precise measurements of fluxes, from as low as 0.1 mg CH4 m-1 d-1 (wintertime measurements at Zackenberg, unpublished) to as high as 2.4 g CH4 m-1 d-1 (autumn burst 2007 at Zackenberg, Mastepanov et al., Nature, 2008). Some of these instruments had to be customized to accommodate 24/7 operation in harsh arctic conditions. In this presentation we will explain some of these customizations. High frequency of concentration measurements (1 Hz in most cases) provides a unique opportunity for quality control of flux calculations; on the other hand, this enormous amount of data can be analyzed only using highly automated algorithms. A specialized software package was developed and improved through the years of measurements and data processing. This software automates the data flow from raw concentration data of different instruments and sensors and various status records

  7. On the feasibility of borehole-to-surface electromagnetics for monitoring CO2 sequestration (United States)

    Wilson, G. A.; Zhdanov, M. S.; Hibbs, A. D.; Black, N.; Gribenko, A. V.; Cuma, M.; Agundes, A.; Eiskamp, G.


    Carbon capture and storage (CCS) projects rely on storing supercritical CO2 in deep saline reservoirs where buoyancy forces drive the injected CO2 upward into the aquifer until a seal is reached. The permanence of the sequestration depends entirely on the long-term geological integrity of the seal. Active geophysical monitoring of the sequestration is critical for informing CO2 monitoring, accounting and verification (MVA) decisions. During injection, there exists a correlation between the changes in CO2 and water saturations in a saline reservoir. Dissolved salts react with the CO2 to precipitate out as carbonates, thereby generally decreasing the electrical resistivity. As a result, there is a correlation between the change in fluid saturation and measured electromagnetic (EM) fields. The challenge is to design an EM survey appropriate for monitoring large, deep reservoirs. Borehole-to-surface electromagnetic (BSEM) surveys consist of borehole-deployed galvanic transmitters and a surface-based array of electric and magnetic field sensors. During a recent field trial, it was demonstrated that BSEM could successfully identify the oil-water contact in the water-injection zone of a carbonate reservoir. We review the BSEM methodology, and perform full-field BSEM modeling. The 3D resistivity models used in this study are based on dynamic reservoir simulations of CO2 injection into a saline reservoir. Although the electric field response at the earth's surface is low, we demonstrate that it can be accurately measured and processed with novel methods of noise cancellation and sufficient stacking over the period of monitoring to increase the signal-to-noise ratio for subsequent seismic- and well-constrained 3D inversion. For long-term or permanent monitoring, we discuss the deployment of novel electric field sensors with chemically inert electrodes that couple to earth in a capacitive manner. This capacitive coupling is a purely EM phenomenon, which, to first order, has

  8. CO2 adsorption-assisted CH4 desorption on carbon models of coal surface: A DFT study (United States)

    Xu, He; Chu, Wei; Huang, Xia; Sun, Wenjing; Jiang, Chengfa; Liu, Zhongqing


    Injection of CO2 into coal is known to improve the yields of coal-bed methane gas. However, the technology of CO2 injection-enhanced coal-bed methane (CO2-ECBM) recovery is still in its infancy with an unclear mechanism. Density functional theory (DFT) calculations were performed to elucidate the mechanism of CO2 adsorption-assisted CH4 desorption (AAD). To simulate coal surfaces, different six-ring aromatic clusters (2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, and 7 × 7) were used as simplified graphene (Gr) carbon models. The adsorption and desorption of CH4 and/or CO2 on these carbon models were assessed. The results showed that a six-ring aromatic cluster model (4 × 4) can simulate the coal surface with limited approximation. The adsorption of CO2 onto these carbon models was more stable than that in the case of CH4. Further, the adsorption energies of single CH4 and CO2 in the more stable site were -15.58 and -18.16 kJ/mol, respectively. When two molecules (CO2 and CH4) interact with the surface, CO2 compels CH4 to adsorb onto the less stable site, with a resulting significant decrease in the adsorption energy of CH4 onto the surface of the carbon model with pre-adsorbed CO2. The Mulliken charges and electrostatic potentials of CH4 and CO2 adsorbed onto the surface of the carbon model were compared to determine their respective adsorption activities and changes. At the molecular level, our results showed that the adsorption of the injected CO2 promoted the desorption of CH4, the underlying mechanism of CO2-ECBM.

  9. Correlation between Surface Roughness Characteristics in CO2 Laser Cutting of Mild Steel

    Directory of Open Access Journals (Sweden)

    M. Radovanović


    Full Text Available CO2 laser oxygen cutting of mild steel is widely used industrial application. Cut surface quality is a very important characteristic of laser cutting that ensures an advantage over other contour cutting processes. In this paper mathematical models for estimating characteristics of surface quality such as average surface roughness and ten-point mean roughness in CO2 laser cutting of mild steel based on laser cutting parameters were developed. Empirical models were developed using artificial neural networks and experimental data collected. Taguchi’s orthogonal array was implemented for experimental plan. From the analysis of the developed mathematical models it was observed that functional dependence between laser cutting parameters, their interactions and surface roughness characteristics is complex and non-linear. It was also observed that there exist region of minimal average surface roughness to ten-point mean roughness ratio. The relationship between average surface roughness and ten-point mean roughness was found to be nonlinear and can be expressed with a second degree polynomial.

  10. Optimization of CO2 Laser Cutting Process using Taguchi and Dual Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Madić


    Full Text Available Selection of optimal cutting parameter settings for obtaining high cut quality in CO2 laser cutting process is of great importance. Among various analytical and experimental optimization methods, the application of Taguchi and response surface methodology is one of most commonly used for laser cutting process optimization. Although the concept of dual response surface methodology for process optimization has been used with success, till date, no experimental study has been reported in the field of laser cutting. In this paper an approach for optimization of CO2 laser cutting process using Taguchi and dual response surface methodology is presented. The goal was to determine the near optimal laser cutting parameter values in order to ensure robust condition for minimization of average surface roughness. To obtain experimental database for development of response surface models, Taguchi’s L25 orthogonal array was implemented for experimental plan. Three cutting parameters, the cutting speed (3, 4, 5, 6, 7 m/min, the laser power (0.7, 0.9, 1.1, 1.3, 1.5 kW, and the assist gas pressure (3, 4, 5, 6, 7 bar, were used in the experiment. To obtain near optimal cutting parameters settings, multi-stage Monte Carlo simulation procedure was performed on the developed response surface models.

  11. Decontamination of surfaces by blasting with crystals of H2O and CO2

    International Nuclear Information System (INIS)

    Benson, C.E.; Parfitt, J.E.; Patton, B.D.


    A major mission of the US Department of Energy during the 1990s is site and environmental cleanup. In pursuit of this mission, numerous remediation projects are under way and many others are being planned at Oak Ridge National Laboratory (ORNL). In this report, tests using two proposed methods for decontaminating surfaces one using water ice crystals [Crystalline Ice Blast (CIB)], the other using dry ice crystals (CO 2 Cleanblast trademark) -- are described. Both methods are adaptations of the commonly used sand blasting technology. The two methods tested differ from sand blasting in that the particles are not particularly abrasive and do not accumulate as particles in the wastes. They differ from each other in that the CO 2 particles sublime during and after impact and the ice particles melt. Thus, the two demonstrations provide important information about two strong candidate decontamination methodologies. Each process was tested at ORNL using contaminated lead bricks and contaminated tools and equipment. Demonstrations with the prototype Crystalline Ice Blast and the CO 2 Cleanblast systems showed that paint, grease, and oil can be removed from metal, plastic, asphalt, and concrete surfaces. Furthermore, removal of contamination from lead bricks was highly effective. Both processes were found to be less effective, under the conditions tested, with contaminated tools and equipment that had chemically bonded contamination or contamination located in crevices since neither technology abrades the substrates or penetrates deeply into crevices to remove particulates. Some process improvements are recommended

  12. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT) (United States)

    Bakker, Dorothee; Landa, Camilla S.; Pfeil, Benjamin; Metzl, Nicolas; O’Brien, Kevin; Olsen, Are; Smith, Karl; Cosca, Cathy; Harasawa, Sumiko; Nakaoka, Shin-ichiro; Jones, Stephen; Nojiri, Yukihiro; Steinhoff, Tobias; Sweeney, Colm; Schuster, Ute; Takahashi, Taro; Tilbrook, Bronte; Wada, Chisato; Wanninkhof, Rik; Alin, Simone R.; Balestrini, Carlos F.; Barbero, Leticia; Bates, Nicholas; Bianchi, Alejandro A.; Bonou, Frédéric; Boutin, Jacqueline; Bozec, Yann; Burger, Eugene F.; Cai, Wei-Jun; Castle, Robert D.; Chen, Liqi; Chierici, Melissa; Currie, Kim; Evans, Wiley; Featherstone, Charles; Feely, Richard; Fransson, Agneta; Goyet, Catherine; Greenwood, Naomi; Gregor, Luke; Hankin, Steven C.; Hardman-Mountford, Nick J.; Harlay, Jérôme; Hauck, Judith; Hoppema, Mario; Humphreys, Matthew P.; Hunt, Christopher W.; Huss, Betty; Ibánhez, J. Severino P.; Johannessen, Truls; Keeling, Ralph F.; Kitidis, Vassilis; Körtzinger, Arne; Kozyr, Alex; Krasakopoulou, Evangelia; Kuwata, Akira; Landschützer, Peter; Lauvset, Siv K.; Lefèvre, Nathalie; Lo Monaco, Claire; Manke, Ansley; Mathis, Jeremy T.; Merlivat, Liliane; Millero, Frank J.; Monteiro, Pedro M. S.; Munro, David R.; Murata, Akihiko; Newberger, Timothy; Omar, Abdirahman M.; Ono, Tsuneo; Paterson, Kristina; Pearce, David; Pierrot, Denis; Robbins, Lisa L.; Saito, Shu; Salisbury, Joe; Schlitzer, Reiner; Schneider, Bernd; Schweitzer, Roland; Sieger, Rainer; Skjelvan, Ingunn; Sullivan, Kevin F.; Sutherland, Stewart C.; Sutton, Adrienne J.; Tadokoro, Kazuaki; Telszewski, Maciej; Tuma, Matthias; van Heuven, Steven M. A. C.; Vandemark, Douglas; Ward, Brian; Watson, Andrew J.; Xu, Suqing


    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled f CO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million f CO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million f CO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water f CO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water f CO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). 

  13. Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment

    DEFF Research Database (Denmark)

    Ruiz-Ramos, M.; Ferrise, Roberto; Rodríguez, A


    type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts....... However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T...

  14. Automated CO2, CH4 and N2O Fluxes from Tree Stems and Soils: Magnitudes, Temporal Patterns and Drivers (United States)

    Barba, J.; Poyatos, R.; Vargas, R.


    The emissions of the main greenhouse gases (GHG; CO2, CH4 and N2O) through tree stems are still an uncertain component of the total GHG balance of forests. Despite that stem CO2 emissions have been studied for several decades, it is still unclear the drivers and spatiotemporal patterns of CH4 and N2O stem emissions. Additionally, it is unknown how stem emissions could be related to soil physiological processes or environmental conditions. We measured CO2, CH4 and N2O emissions hourly from April to July 2017 at two different heights (75 [LStem] and 150cm [HStem]) of bitternut hickory (Carya cordiformis) trees and adjacent soil locations in a forested area in the Mid Atlantic of the USA. We designed an automated system to continuously measure the three greenhouse gases (GHG) in stems and soils. Stem and soil CO2 emissions showed similar seasonal patterns with an average of 6.56±0.09 (soil), 3.72±0.05 (LStem) and 2.47±0.04 µmols m-2 s-1 (HStem) (mean±95% CI). Soil temperature controlled CO2 fluxes at both daily and seasonal scales (R2>0.5 for all cases), but there was no clear effect of soil moisture. The stems were a clear CH4 source with emissions decreasing with height (0.35±0.02 and 0.25±0.01 nmols m-2 s-1 for LStem and HStem, respectively) with no apparent seasonal pattern, and no clear relationship with environmental drivers (e.g., temperature, moisture). In contrast, soil was a CH4 sink throughout the experiment (-0.55±0.02 nmols m-2 s-1) and its seasonal pattern responded to moisture changes. Despite soil and stem N2O emissions did not show a seasonal pattern or apparent dependency on temperature or moisture, they showed net N2O emissions with a decrease in emissions with stem height (0.29±0.05 for soil, 0.38±0.06 for LStem and 0.28±0.05 nmols m-2 s-1 for HStem). The three GHG emissions decreased with stem height at similar rates (33%, 28% and 27% for CO2, CH4 and N2O, respectively). These results suggest that the gases were not produced in the stem


    Directory of Open Access Journals (Sweden)



    Full Text Available In laser cutting, the cut quality is of great importance. Multiple non-linear effects of process parameters and their interactions make very difficult to predict cut quality. In this paper, artificial intelligence (AI approach was applied to predict the surface roughness in CO2 laser cutting. To this aim, artificial neural network (ANN model of surface roughness was developed in terms of cutting speed, laser power and assist gas pressure. The experimental results obtained from Taguchi’s L25 orthogonal array were used to develop ANN model. The ANN mathematical model of surface roughness was expressed as explicit nonlinear function of the selected input parameters. Statistical results indicate that the ANN model can predict the surface roughness with good accuracy. It was showed that ANNs may be used as a good alternative in analyzing the effects of cutting parameters on the surface roughness.

  16. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements? (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian


    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  17. Response of CO2 and H2O fluxes in a mountainous tropical rainforest in equatorial Indonesia to El Niño events

    DEFF Research Database (Denmark)

    Olchev, A.; Ibrom, Andreas; Panferov, O.


    The possible impact of El Niño–Southern Oscillation (ENSO) events on the main components of CO2 and H2O fluxes in a pristine mountainous tropical rainforest growing in Central Sulawesi in Indonesia is described. The fluxes were continuously measured using the eddy covariance method for the period...

  18. Possibilities of a metal surface radioactive decontamination using a pulsed CO2 laser (United States)

    Milijanic, Scepan S.; Stjepanovic, Natasa N.; Trtica, Milan S.


    There is a growing interest in the laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. A main mechanism of cleaning in by lasers is ablation. In this work a pulsed TEA CO2 laser was used for surface cleaning, primarily in order to demonstrate that the ablation from metal surfaces with this laser is possible even with relatively low pulse energies, and secondary, that it could be competitive with other lasers because of much higher energy efficiencies. The laser pulse contains two parts, one strong and shot peak at the beginning, followed with a tail. The beam was focused onto a contaminated surface with a KBr lens. The surface was contaminated with 137Cs. Three different metals were used: stainless steel, copper and aluminum. The evaporated material was pumped out in air atmosphere and transferred to a filter. Presence of the activity on the filter was proved by a germanium detector-multichannel analyzer. Activity levels were measured by a GM counter. Calculated decontamination factors as well as collection factors have shown that ablation takes place with relatively high efficiency of decontamination. This investigation suggests that decontamination using the CO2 laser should be seriously considered.

  19. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation (United States)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.


    Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.


    Kumar, Arvind; Walia, Vivek; Yang, Tsanyao Frank; Fu, Ching-Chou; Singh, Surinder; Bajwa, Bikramjit Singh; Arora, Vishal


    Soil 222 Rn concentration, CO 2 and CH 4 flux measurements were conducted around the Jwalamukhi area of North-West Himalayas, India. During this study, around 37 soil gas points and flux measurements were taken with the aim to assure the suitability of this method in the study of fault zones. For this purpose, RAD 7 (Durridge, USA) was used to monitor radon concentrations, whereas portable diffuse flux meter (West Systems, Italy) was used for the CO 2 and CH 4 flux measurements. The recorded radon concentration varies from 6.1 to 34.5 kBq m -3 with an average value of 16.5 kBq m -3 The anomalous value of radon concentrations was recorded between Jwalamukhi thrust and Barsar thrust. The recorded average of CO 2 and CH 4 flux were 11.8 and 2.7 g m -2 day -1 , respectively. The good correlation between anomalous CO 2 flux and radon concentrations has been observed along the fault zone in the study area, suggesting that radon migration is dependent on CO 2 . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  1. Uncertainty of long-term CO2 flux estimates due to the choice of the spectral correction method (United States)

    Ibrom, Andreas; Geißler, Simon; Pilegaard, Kim


    The eddy covariance system at the Danish beech forest long-term flux observation site at Sorø has been intensively examined. Here we investigate which systematic and non-systematic effects the choice of the spectral correction method has on long-term net CO2 flux estimates and their components. Ibrom et al. (2007) gave an overview over different ways to correct for low-pass filtering of the atmospheric turbulent signal by a closed path eddy covariance system. They used degraded temperature time series for spectral correction of low-pass filtered signals. In this new study, correction for high-pass filtering was also included, which made it anyway necessary to use model co-spectra. We compared different ways of adapting different kinds of model co-spectra to the wealth of 14 years high frequency raw data. As the trees grew, the distance between the sonic anemometer and the displacement height decreased over time. The study enabled us to compare the two approaches and different variants of them to give recommendations on their use. The analysis showed that model spectra should not be derived from co-spectra between the vertical wind speed (w) and the scalars measured with the closed path system, i.e. CO2 and H20 concentrations, but instead with sonic temperature (T) w cospectra, to avoid low-pass filtering effects on the estimation of the co-spectral peak frequency (fx). This concern was already expressed earlier in the above mentioned study, but here we show the quantitative effects. The wT co-spectra did not show any height effect on fx as it was suggested in generally used parameterizations. A possible reason for this difference is that measurements, like in all forest flux sites, took place in the roughness sub-layer and not in the inertial sub-layer. At the same time the shape of the relationship between fx and the stability parameter ? differed much from that of often used parameterizations (e.g. from Horst, 1997). The shift of fx towards higher frequencies at

  2. Chambers versus Relaxed Eddy Accumulation: an intercomparison study of two methods for short-term measurements of biogenic CO2 fluxes (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Chmura, Lukasz; Necki, Jaroslaw


    The presented work is a part of comprehensive study aimed at thorough characterization of carbon cycle in the urban environment of Krakow, southern Poland. In the framework of this study two independent methods were employed to quantify biogenic CO2 flux in the city: (i) closed chambers, and (ii) Relaxed Eddy Accumulation (REA). The results of a three-day intensive intercomparison campaign performed in July 2013 and utilizing both measurement methods are reported here. The chamber method is a widely used approach for measurements of gas exchange between the soil and the atmosphere. The system implemented in this study consisted of a single chamber operating in a closed-dynamic mode, combined with Vaisala CarboCAP infrared CO2 sensor in a mobile setup. An alternative flux measurement method, covering larger area is represented by REA, which is a modification of the eddy covariance method. It consists of a 3D anemometer (Gill Windmaster Pro) and the system collecting updraft and downdraft samples to 5-litre Tedlar bags. The CO2 mixing ratios in the collected samples are measured by Picarro G2101i analyzer. The setup consists of two sets of bags so that the sampling can be performed continuously with 15-min temporal resolution. A 48-hectares open meadow located close the city center was chosen as a test site for comparison of the two methods of CO2 flux measurements outlined above. In the middle of the meadow a 3-metre high tripod was installed with the anemometer and REA inlet system. For a period of 46 hours the system was measuring net CO2 flux from the surrounding area. A meteorological conditions and intensity of photosynthetically active radiation (PAR) were also recorded. In the same time, CO2 flux from several points around the REA inlet was measured with the chamber system, resulting in 93 values for both respiration and net CO2 flux. Chamber results show rather homogenous distribution of the soil CO2 flux (the mean value equal to 40.9 ± 2.2 mmol/m2h), with

  3. Measurements of soil, surface water, and groundwater CO2 concentration variability within Earth's critical zone: low-cost, long-term, high-temporal resolution monitoring (United States)

    Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.


    Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.

  4. Distribution of the partial pressure of CO2 in surface water (pCO2w) between Japan and the Hawaiian Islands: pCO2w-SST relationship in the winter and summer

    International Nuclear Information System (INIS)

    Inoue, Hisayuki Y.; Ishii, Masao; Matsueda, Hidekazu; Kawano, Takeshi; Murata, Akihiko; Takasugi, Yoshio


    On the basis of measurements of the partial pressure of carbon dioxide in surface seawater (pCO 2 w) between Japan and the Hawaiian Islands in winter and summer, we examined the relationship between pCO 2 w and the sea surface temperature (SST) in the North Pacific Subtropical Gyre (NPSG). In winter, pCO 2 w correlated well with the SST (0.14-0.24%/deg C), suggesting a monotonous change in the carbonate system. However, in summer, five different pCO 2 w-SST relationships were found in the NPSG (including the Kuroshio Extension) due to changes in the relative contribution of ocean dynamics (upwelling, vertical mixing and advection), biological activity in the absence (very low level) of macro-nutrients and thermodynamics. The increase in pCO 2 w corresponding to a unit increase in the SST from January to July was low (<2.5%/deg C) west (leeward side) of the Hawaiian Islands (19-22 deg N, 158-168 deg W) and in the Kuroshio Extension (33-35 deg N, 140-165deg E), and high (3%/deg C) south of the Kuroshio Extension (25-30 deg N, 180-165 deg W) and the Hawaiian Islands (15-19 deg N, 157-162 deg W). This suggested that the drawdown of dissolved inorganic carbon was affected by the enhanced biological activity due to upwelling events associated with eddies and/or the transport of dissolved nutrients from gyre edges to the interior

  5. Landscape structure control on soil CO2 efflux variability in complex terrain: Scaling from point observations to watershed scale fluxes (United States)

    Diego A. Riveros-Iregui; Brian L. McGlynn


    We investigated the spatial and temporal variability of soil CO2 efflux across 62 sites of a 393-ha complex watershed of the northern Rocky Mountains. Growing season (83 day) cumulative soil CO2 efflux varied from ~300 to ~2000 g CO2 m-2, depending upon landscape position, with a median of 879.8 g CO2 m-2. Our findings revealed that highest soil CO2 efflux rates were...

  6. An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces

    Directory of Open Access Journals (Sweden)



    Full Text Available There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. A pulsed TEA CO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lasers because of much higher energy efficiencies. A brief theoretical analysis was made before the experiments. The laser beam was focused using a KBr-lens onto a surface contaminated with 137Cs (b-, t1/2 = 30.17 y. Three different metals were used: stainless steel, copper and aluminium. The ablated material was pumped out in an air atmosphere and transferred to a filter. The presence of activity on the filter was shown by a germanium detector-multichannel analyzer. The activity levels were measured by a GM counter. The calculated decontamination factors and collection factors showed that ablation occurs with a relatively high efficiency of decontamination. This investigation suggests that decontamination using a CO2 laser should be seriously considered.

  7. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons (United States)

    Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun; Vailionis, Arturas; Baricuatro, Jack H.; Higgins, Drew C.; Nitopi, Stephanie A.; Soriaga, Manuel P.; Jaramillo, Thomas F.


    In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the , , and orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C–C coupling than Cu(111), Cu(751) is the most selective for >2e− oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction. PMID:28533377

  8. The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem (United States)

    Tucker, Colin; McHugh, Theresa A.; Howell, Armin; Gill, Richard; Weber, Bettina; Belnap, Jayne; Grote, Ed; Reed, Sasha C.


    Carbon cycling associated with biological soil crusts, which occupy interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the ‘mantle of fertility’), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report a multi-sensor approach to simultaneously measuring temperature and moisture of this biocrust surface layer (0–2 mm), and the deeper soil profile, concurrent with automated measurement of surface soil CO2effluxes. Our results illuminate robust relationships between biocrust water content and field CO2 pulses that have previously been difficult to detect and explain. All observed CO2 pulses over the measurement period corresponded to surface wetting events, including when the wetting events did not penetrate into the soil below the biocrust layer (0–2 mm). The variability of temperature and moisture of the biocrust surface layer was much greater than even in the 0–5 cm layer of the soil beneath the biocrust, or deeper in the soil profile. We therefore suggest that coupling surface measurements of biocrust moisture and temperature to automated CO2flux measurements may greatly improve our understanding of the climatic sensitivity of carbon cycling in biocrusted interspaces in our study region, and that this method may be globally relevant and applicable.

  9. Variations in pCO2 during summer in the surface water of an unproductive lake in northern Sweden

    International Nuclear Information System (INIS)

    Jonsson, A.; Aaberg, J.; Jansson, M.


    Unproductive lakes are generally supersaturated with carbon dioxide (CO 2 ) and emit CO 2 to the atmosphere continuously during ice-free periods. However, temporal variation of the partial pressure of CO 2 (pCO 2 ) and thus of CO 2 evasion to atmosphere is poorly documented. We therefore carried out temporally high-resolution (every 6 h) measurements of the pCO 2 using an automated logger system in the surface water of a subarctic, unproductive, lake in the birch forest belt. The study period was June-September 2004. We found that the pCO 2 showed large seasonal variation, but low daily variation. The seasonal variation was likely mainly caused by variations in input and mineralization of allochthonous organic matter. Stratification depth probably also influenced pCO 2 of the surface water by controlling the volume in which mineralization of dissolved organic carbon (DOC) occurred. In lakes, with large variations in pCO 2 , as in our study lake a high (weekly) sampling intensity is recommended for obtaining accurate estimates of the evasion of CO 2

  10. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression (United States)

    Ichii, Kazuhito; Ueyama, Masahito; Kondo, Masayuki; Saigusa, Nobuko; Kim, Joon; Alberto, Ma. Carmelita; Ardö, Jonas; Euskirchen, Eugénie S.; Kang, Minseok; Hirano, Takashi; Joiner, Joanna; Kobayashi, Hideki; Marchesini, Luca Belelli; Merbold, Lutz; Miyata, Akira; Saitoh, Taku M.; Takagi, Kentaro; Varlagin, Andrej; Bret-Harte, M. Syndonia; Kitamura, Kenzo; Kosugi, Yoshiko; Kotani, Ayumi; Kumar, Kireet; Li, Sheng-Gong; Machimura, Takashi; Matsuura, Yojiro; Mizoguchi, Yasuko; Ohta, Takeshi; Mukherjee, Sandipan; Yanagi, Yuji; Yasuda, Yukio; Zhang, Yiping; Zhao, Fenghua


    The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8 days are reproduced (e.g., r2 = 0.73 and 0.42 for 8 day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2 = 1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models.

  11. Impact of hydrological variations on modeling of peatland CO2 fluxes: Results from the North American Carbon Program site synthesis (United States)

    Sulman, Benjamin N.; Desai, Ankur R.; Schroeder, Nicole M.; Ricciuto, Dan; Barr, Alan; Richardson, Andrew D.; Flanagan, Lawrence B.; Lafleur, Peter M.; Tian, Hanqin; Chen, Guangsheng; Grant, Robert F.; Poulter, Benjamin; Verbeeck, Hans; Ciais, Philippe; Ringeval, Bruno; Baker, Ian T.; Schaefer, Kevin; Luo, Yiqi; Weng, Ensheng


    Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pools and vulnerability to hydrological change. Use of non-peatland-specific models could lead to bias in modeling studies of peatland-rich regions. Here, seven ecosystem models were used to simulate CO2fluxes at three wetland sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor,sphagnum-dominated bog, over periods between 1999 and 2007. Models consistently overestimated mean annual gross ecosystem production (GEP) and ecosystem respiration (ER) at all three sites. Monthly flux residuals (simulated - observed) were correlated with measured water table for GEP and ER at the two fen sites, but were not consistently correlated with water table at the bog site. Models that inhibited soil respiration under saturated conditions had less mean bias than models that did not. Modeled diurnal cycles agreed well with eddy covariance measurements at fen sites, but overestimated fluxes at the bog site. Eddy covariance GEP and ER at fens were higher during dry periods than during wet periods, while models predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP did not depend on water table, while simulated GEP was higher during wet periods. Carbon cycle modeling in peatland-rich regions could be improved by incorporating wetland-specific hydrology and by inhibiting GEP and ER under saturated conditions. Bogs and fens likely require distinct plant and soil parameterizations in ecosystem models due to differences in nutrients, peat properties, and plant communities.

  12. Why must a solar forcing be larger than a CO2 forcing to cause the same global mean surface temperature change?

    International Nuclear Information System (INIS)

    Modak, Angshuman; Bala, Govindasamy; Cao, Long; Caldeira, Ken


    Many previous studies have shown that a solar forcing must be greater than a CO 2 forcing to cause the same global mean surface temperature change but a process-based mechanistic explanation is lacking in the literature. In this study, we investigate the physical mechanisms responsible for the lower efficacy of solar forcing compared to an equivalent CO 2 forcing. Radiative forcing is estimated using the Gregory method that regresses top-of-atmosphere (TOA) radiative flux against the change in global mean surface temperature. For a 2.25% increase in solar irradiance that produces the same long term global mean warming as a doubling of CO 2 concentration, we estimate that the efficacy of solar forcing is ∼80% relative to CO 2 forcing in the NCAR CAM5 climate model. We find that the fast tropospheric cloud adjustments especially over land and stratospheric warming in the first four months cause the slope of the regression between the TOA net radiative fluxes and surface temperature to be steeper in the solar forcing case. This steeper slope indicates a stronger net negative feedback and hence correspondingly a larger solar forcing than CO 2 forcing for the same equilibrium surface warming. Evidence is provided that rapid land surface warming in the first four months sets up a land-sea contrast that markedly affects radiative forcing and the climate feedback parameter over this period. We also confirm the robustness of our results using simulations from the Hadley Centre climate model. Our study has important implications for estimating the magnitude of climate change caused by volcanic eruptions, solar geoengineering and past climate changes caused by change in solar irradiance such as Maunder minimum. (letter)

  13. CFD simulation of CO_2 sorption on K_2CO_3 solid sorbent in novel high flux circulating-turbulent fluidized bed riser: Parametric statistical experimental design study

    International Nuclear Information System (INIS)

    Thummakul, Theeranan; Gidaspow, Dimitri; Piumsomboon, Pornpote; Chalermsinsuwan, Benjapon


    Highlights: • Circulating-turbulent fluidization was proved to be advantage on CO_2 sorption. • The novel regime was proven to capture CO_2 higher than the conventional regimes. • Uniform solid particle distribution was observed in the novel fluidization regime. • The system continuity had more effect in the system than the process system mixing. • Parametric experimental design analysis was studied to evaluate significant factor. - Abstract: In this study a high flux circulating-turbulent fluidized bed (CTFB) riser was confirmed to be advantageous for carbon dioxide (CO_2) sorption on a potassium carbonate solid sorbent. The effect of various parameters on the CO_2 removal level was evaluated using a statistical experimental design. The most appropriate fluidization regime was found to occur between the turbulent and fast fluidization regimes, which was shown to capture CO_2 more efficiently than conventional fluidization regimes. The highest CO_2 sorption level was 93.4% under optimized CTFB operating conditions. The important parameters for CO_2 capture were the inlet gas velocity and the interactions between the CO_2 concentration and the inlet gas velocity and water vapor concentration. The CTFB regime had a high and uniform solid particle distribution in both the axial and radial system directions and could transport the solid sorbent to the regeneration reactor. In addition, the process system continuity had a stronger effect on the CO_2 removal level in the system than the process system mixing.

  14. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak. (United States)

    Morales, Sergio E; Holben, William E


    Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2) emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA) and activity (mRNA) of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface) CO2 using FACE (Free-Air CO2 Enrichment) systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  15. 222Rn and 14CO2 concentrations in the surface layer of the atmosphere

    International Nuclear Information System (INIS)

    Holy, K.; Chudy, M.; Sivo, A.; Richtarikova, M.; Boehm, R.; Polaskova, A.; Vojtyla, P.; Bosa, I.; Hola, O.


    Long-term monitoring of the Δ 14 C in the atmospheric near-ground CO 2 has been realized in Bratislava and Zlkovce, situated near the nuclear power plant Jaslovske Bohunice. Until 1993, the monthly mean Δ 14 C values showed a high variability. The annual means of Δ 14 C were about 30 per mille higher at Zlkovce than in highly industrialised Bratislava. An important change in the behaviour of the 14 C data has occurred since 1993. The records from both stations show the similar course, mainly due to the fact that there do not occur deep winter minima in Bratislava. This behaviour corresponds to the lower values of the total fossil fuel CO 2 emissions in the years after 1993 when compared to the previous years. At present, both sets of data show that the 14 C concentration is about 10% above the natural level. Since 1987 also the 222 Rn concentration in the surface layer of the atmosphere has been measured in Bratislava. These measurements provided an extensive set of the 222 Rn data characteristic for the inland environment with high level of atmospheric pollution. The seasonal and daily variations of the 222 Rn concentration were observed. The investigation of the relation between the monthly mean diurnal courses of the 222 Rn concentration and the atmospheric stability proved a high correlation between them. The 222 Rn data were used to interpret the anomalous Δ 14 C values in the surface layer of the atmosphere. (author)

  16. Precision requirements for space-based X(CO2) data

    International Nuclear Information System (INIS)

    Miller, C.E.; Crisp, D.; Miller, C.E.; Salawitch, J.; Sander, S.P.; Sen, B.; Toon, C.; DeCola, P.L.; Olsen, S.C.; Randerson, J.T.; Michalak, A.M.; Alkhaled, A.; Michalak, A.M.; Rayner, P.; Jacob, D.J.; Suntharalingam, P.; Wofsy, S.C.; Jacob, D.J.; Suntharalingam, P.; Wofsy, S.C.; Jones, D.B.A.; Denning, A.S.; Nicholls, M.E.; O'Brien, D.; Doney, S.C.; Pawson, S.; Pawson, S.; Connor, B.J.; Fung, I.Y.; Tans, P.; Wennberg, P.O.; Yung, Y.L.; Law, R.M.


    Precision requirements are determined for space-based column-averaged CO 2 dry air mole fraction X(CO 2 ) data. These requirements result from an assessment of spatial and temporal gradients in X(CO 2 ), the relationship between X(CO 2 ) precision and surface CO 2 flux uncertainties inferred from inversions of the X(CO 2 ) data, and the effects of X(CO 2 ) biases on the fidelity of CO 2 flux inversions. Observational system simulation experiments and synthesis inversion modeling demonstrate that the Orbiting Carbon Observatory mission design and sampling strategy provide the means to achieve these X(CO 2 ) data precision requirements. (authors)

  17. Structure and properties of optical-discharge plasma in CO2-laser beam near target surface (United States)

    Danshchikov, Ye. V.; Dymshakov, V. A.; Lebedev, F. V.; Ryazanov, A. V.


    An experimental study of optical-discharge plasma in a CO2-laser beam at a target surface was made for the purpose of exploring the not yet understood role of this plasma in the laser-target interaction process. Such a plasma was produced by means of a quasi-continuous CO2-laser with an unstable resonator, its power being maintained constant for 1 ms periods. Its radiation was focused on the surfaces of thick and seeding thin Al, Ti, and Ta targets inclined at an approximately 70 deg. angle to the beam, inside a hermetic chamber containing air, argon, or helium under atmospheric pressure. The radiation intensity distribution over the focal plane and the nearest caustic surface in the laser beam was measured along with the plasma parameters, the latter by the methods of spectral analysis and photoelectric recording. The instrumentation for this purpose included an MDR-3 monochromator with an entrance slit, a double electron-optical converter, a memory oscillograph, and an SI-10-30 ribbon lamp as radiation reference standard. The results yielded integral diametral intensity distributions of the emission lines Ti-II (457.2 nm), Ti-I (464 nm), Ar-II (462 nm), radial and axial temperature profiles of optical discharge in metal vapor in surrounding gas, and the radial temperature profile of irradiated metal surface at successive instants of time. The results reveal marked differences between the structures and the properties of optical-discharge plasma in metal vapor and in surrounding gas, optical discharge in the former being characterized by localization within the laser beam and optical discharge in the latter being characterized by a drift away from the target.

  18. Seasonal controls on surface pCO2 in the central and eastern ...

    Indian Academy of Sciences (India)

    The mixed layer pCO2 relations with temperature, oxygen, chlorophyll a and primary production revealed ..... Temperature dependence of CO2 fugacity in sea water; Mar. Chem. ... 1996 Mechanism of the biological response to winter cooling.

  19. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran


    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  20. CO2-Induced ATP-Dependent Release of Acetylcholine on the Ventral Surface of the Medulla Oblongata. (United States)

    Huckstepp, Robert T R; Llaudet, Enrique; Gourine, Alexander V


    Complex mechanisms that detect changes in brainstem parenchymal PCO2/[H+] and trigger adaptive changes in lung ventilation are responsible for central respiratory CO2 chemosensitivity. Previous studies of chemosensory signalling pathways suggest that at the level of the ventral surface of the medulla oblongata (VMS), CO2-induced changes in ventilation are (at least in part) mediated by the release and actions of ATP and/or acetylcholine (ACh). Here we performed simultaneous real-time biosensor recordings of CO2-induced ATP and ACh release from the VMS in vivo and in vitro, to test the hypothesis that central respiratory CO2 chemosensory transduction involves simultaneous recruitment of purinergic and cholinergic signalling pathways. In anaesthetised and artificially ventilated rats, an increase in inspired CO2 triggered ACh release on the VMS with a peak amplitude of ~5 μM. Release of ACh was only detected after the onset of CO2-induced activation of the respiratory activity and was markedly reduced (by ~70%) by ATP receptor blockade. In horizontal slices of the VMS, CO2-induced release of ATP was reliably detected, whereas CO2 or bath application of ATP (100 μM) failed to trigger release of ACh. These results suggest that during hypercapnia locally produced ATP induces or potentiates the release of ACh (likely from the medullary projections of distal groups of cholinergic neurones), which may also contribute to the development and/or maintenance of the ventilatory response to CO2.

  1. Surface properties of poly(acrylonitrile) (PAN) precipitation polymerized in supercritical CO2 and the influence of the molecular weight. (United States)

    Shen, Qing; Gu, Qing-Feng; Hu, Jian-Feng; Teng, Xin-Rong; Zhu, Yun-Feng


    In this paper, the surface properties, e.g., the total surface free energy and the related Lifshitz-van der Waals and Lewis acid-base components, of polyacrylonitrile (PAN) precipitation polymerized in supercritical CO(2) have been characterized. Moreover, the influence of molecular weight varying has been also investigated. Results show that the surface properties of PAN resulting from supercritical CO(2) are different from those obtained by the conventional method. Of these data, one important finding is that the supercritical CO(2) PAN seems to decrease the surface free energy with the increased molecular weight. Based on previous recorded NMR spectra of this PAN and especially compared to commercial PAN, such phenomena are discussed and ascribed to an increase of the H-bonds and a reduction of the isotacticity in the supercritical CO(2) condition for PAN.

  2. Reconciling top-down and bottom-up estimates of CO2 fluxes to understand increased seasonal exchange in Northern ecosystems (United States)

    Bastos, A.; Ciais, P.; Zhu, D.; Maignan, F.; Wang, X.; Chevallier, F.; Ballantyne, A.


    Continuous atmospheric CO2 monitoring data indicate enhanced seasonal exchange in the high-latitudes in the Northern Hemisphere (above 40oN), mainly attributed to terrestrial ecosystems. Whether this enhancement is mostly explained by increased vegetation growth due to CO2 fertilization and warming, or by changes in land-use and land-management practices is still an unsettled question (e.g. Forkel et al. (2016) and Zeng et al. (2013)). Previous studies have shown that models present variable performance in capturing trends in CO2 amplitude at CO2 monitoring sites, and that Earth System Models present large spread in their estimates of such trends. Here we integrate data of atmospheric CO2 exchange in terrestrial ecosystems by a set of atmospheric CO2 inversions and a range of land-surface models to evaluate the ability of models to reproduce changes in CO2 seasonal exchange within the observation uncertainty. We then analyze the factors that explain the model spread to understand if the trend in seasonal CO2 amplitude may indeed be a useful metric to constrain future changes in terrestrial photosynthesis (Wenzel et al., 2016). We then compare model simulations with satellite and other observation-based datasets of vegetation productivity, biomass stocks and land-cover change to test the contribution of natural (CO2 fertilization, climate) and human (land-use change) factors to the increasing trend in seasonal CO2 amplitude. Forkel, Matthias, et al. "Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems." Science 351.6274 (2016): 696-699. Wenzel, Sabrina, et al. "Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2." Nature 538, no. 7626 (2016): 499-501.Zeng, Ning, et al. "Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude." Nature 515.7527 (2014): 394.

  3. Relating surface chemistry and oxygen surface exchange in LnBaCo2O(5+δ) air electrodes. (United States)

    Téllez, Helena; Druce, John; Kilner, John A; Ishihara, Tatsumi


    The surface and near-surface chemical composition of electroceramic materials often shows significant deviations from that of the bulk. In particular, layered materials, such as cation-ordered LnBaCo2O(5+δ) perovskites (Ln = lanthanide), undergo surface and sub-surface restructuring due to the segregation of the divalent alkaline-earth cation. These processes can take place during synthesis and processing steps (e.g. deposition, sintering or annealing), as well as at temperatures relevant for the operation of these materials as air electrodes in solid oxide fuel cells and electrolysers. Furthermore, the surface segregation in these double perovskites shows fast kinetics, starting at temperatures as low as 400 °C over short periods of time and leading to a decrease in the transition metal surface coverage exposed to the gas phase. In this work, we use a combination of stable isotope tracer labeling and surface-sensitive ion beam techniques to study the oxygen transport properties and their relationship with the surface chemistry in ordered LnBaCo2O(5+δ) perovskites. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS) combined with (18)O isotope exchange was used to determine the oxygen tracer diffusion (D*) and surface exchange (k*) coefficients. Furthermore, Low Energy Ion Scattering (LEIS) was used for the analysis of the surface and near surface chemistry as it provides information from the first mono-atomic layer of the materials. In this way, we could relate the compositional modifications (e.g. cation segregation) taking place at the electrochemically-active surface during the exchange at high temperatures and the oxygen transport properties in double perovskite electrode materials to further our understanding of the mechanism of the surface exchange process.

  4. Interfacial Interactions and Wettability Evaluation of Rock Surfaces for CO2 Storage

    NARCIS (Netherlands)

    Shojai Kaveh, N.


    To reduce CO2 emissions into the atmosphere, different scenarios are proposed to capture and store carbon dioxide (CO2) in geological formations (CCS). Storage strategies include CO2 injection into deep saline aquifers, depleted gas and oil reservoirs, and unmineable coal seams. To identify a secure

  5. Long term monitoring at Solfatara of Pozzuoli (Campi Flegrei, Italy): 1998-2014, fifteen years of soil CO2 flux measurement. (United States)

    Cardellini, Carlo; Chiodini, Giovanni; Rosiello, Angelo; Bagnato, Emanuela; Avino, Rosario; Frondini, Francesco; Donnini, Marco; Caliro, Stefano


    With a flux of deeply derived fluids of ~5000 t/d and an energetic release of ~100 MW Solfatara of Pozzuoli is one of the largest studied volcanic-hydrothermal system of the world. Since 1998, soil CO2 flux surveys where performed using the accumulation chamber method over a large area (1.45 km2), including the volcanic apparatus and its surroundings. The statistical elaboration of CO2 flux, also coupled with the investigation of the CO2 efflux isotopic composition, allowed to characterize both the CO2 flux connected to by biological activity in the soil and that feed to the degassing of the hydrothermal system. A geostatistical elaboration of CO2 fluxes based on sequential Gaussian simulations, allowed to define the spatial structure of the degassing area, pointing out the presence of a well defined diffuse degassing structure interested by the release of deeply derived CO2 (Solfatara DDS). Solfatara DDS results well correlated to volcanic and tectonic structures interesting the crater area and the eastern area of Pisciarelli. With the same approach the total amount of CO2 release was estimated to range between 754 t/d and 1530 t/d in the last fifteen year (with an error in the estimate varying between 9 and 15 %). Also the extension of the DDS experienced relevant variations varying between 4.5x105 m2 to 12.3 x105 m2. In particular two major changes occurred in the extension of the DDS, the first consisted in its doubling in 2003-2004 and the second in further enlargement of ~ 30% in 2011-2012, the last occurring after period of decreasing trend which interrupted 4-5 years of relative stability. These variations mainly occurred external to the crater area in correspondence of a NE-SW fault system where fluxes increased from background to values typical of the endogenous source. The first event was previously correlated with the occurrence in 2000 of a relatively deep seismic swarm, which was interpreted as the indicator of the opening of an easy-ascent pathway

  6. ORCHIDEE-PEAT (revision 4596, a model for northern peatland CO2, water, and energy fluxes on daily to annual scales

    Directory of Open Access Journals (Sweden)

    C. Qiu


    Full Text Available Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP (r2 =  0.76; Nash–Sutcliffe modeling efficiency, MEF  =  0.76 and ecosystem respiration (ER, r2 =  0.78, MEF  =  0.75, with lesser accuracy for latent heat fluxes (LE, r2 =  0.42, MEF  =  0.14 and and net ecosystem CO2 exchange (NEE, r2 =  0.38, MEF  =  0.26. Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86. For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT variation was not well predicted (r2 < 0.1, likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature, which better reflects the spatial gradients of annual NEE than using an average Vcmax value.

  7. ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales (United States)

    Qiu, Chunjing; Zhu, Dan; Ciais, Philippe; Guenet, Bertrand; Krinner, Gerhard; Peng, Shushi; Aurela, Mika; Bernhofer, Christian; Brümmer, Christian; Bret-Harte, Syndonia; Chu, Housen; Chen, Jiquan; Desai, Ankur R.; Dušek, Jiří; Euskirchen, Eugénie S.; Fortuniak, Krzysztof; Flanagan, Lawrence B.; Friborg, Thomas; Grygoruk, Mateusz; Gogo, Sébastien; Grünwald, Thomas; Hansen, Birger U.; Holl, David; Humphreys, Elyn; Hurkuck, Miriam; Kiely, Gerard; Klatt, Janina; Kutzbach, Lars; Largeron, Chloé; Laggoun-Défarge, Fatima; Lund, Magnus; Lafleur, Peter M.; Li, Xuefei; Mammarella, Ivan; Merbold, Lutz; Nilsson, Mats B.; Olejnik, Janusz; Ottosson-Löfvenius, Mikaell; Oechel, Walter; Parmentier, Frans-Jan W.; Peichl, Matthias; Pirk, Norbert; Peltola, Olli; Pawlak, Włodzimierz; Rasse, Daniel; Rinne, Janne; Shaver, Gaius; Schmid, Hans Peter; Sottocornola, Matteo; Steinbrecher, Rainer; Sachs, Torsten; Urbaniak, Marek; Zona, Donatella; Ziemblinska, Klaudia


    Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 = 0.76; Nash-Sutcliffe modeling efficiency, MEF = 0.76) and ecosystem respiration (ER, r2 = 0.78, MEF = 0.75), with lesser accuracy for latent heat fluxes (LE, r2 = 0.42, MEF = 0.14) and and net ecosystem CO2 exchange (NEE, r2 = 0.38, MEF = 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57-0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value.

  8. Interaction of cw CO2 laser radiation with plasma near-metallic substrate surface (United States)

    Azharonok, V. V.; Astapchik, S. A.; Zabelin, Alexandre M.; Golubev, Vladimir S.; Golubev, V. S.; Grezev, A. N.; Filatov, Igor V.; Chubrik, N. I.; Shimanovich, V. D.


    Optical and spectroscopic methods were used in studying near-surface plasma that is formed under the effect CW CO2 laser of (2- 5)x106W/cm2 power density upon stainless steel in He and Ar shielding gases. The variation of plume spatial structure with time has been studied, the outflow of gas-vapor jets from the interaction area has been characterized. The spectra of plasma plume pulsations have been obtained for the frequency range Δf = 0-1 MHz. The temperature and electron concentration of plasma plume have been found under radiation effect upon the target of stainless steel. Consideration has been given to the most probable mechanisms of CW laser radiation-metal non-stationary interaction.

  9. Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria. (United States)

    Karbin, Saeed; Guillet, Cécile; Kammann, Claudia I; Niklaus, Pascal A


    Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources.

  10. Surface CO2 Exchange Dynamics across a Climatic Gradient in McKenzie Valley: Effect of Landforms, Climate and Permafrost

    Directory of Open Access Journals (Sweden)

    Natalia Startsev


    Full Text Available Northern regions are experiencing considerable climate change affecting the state of permafrost, peat accumulation rates, and the large pool of carbon (C stored in soil, thereby emphasizing the importance of monitoring surface C fluxes in different landform sites along a climate gradient. We studied surface net C exchange (NCE and ecosystem respiration (ER across different landforms (upland, peat plateau, collapse scar in mid-boreal to high subarctic ecoregions in the Mackenzie Valley of northwestern Canada for three years. NCE and ER were measured using automatic CO2 chambers (ADC, Bioscientific LTD., Herts, England, and soil respiration (SR was measured with solid state infrared CO2 sensors (Carbocaps, Vaisala, Vantaa, Finland using the concentration gradient technique. Both NCE and ER were primarily controlled by soil temperature in the upper horizons. In upland forest locations, ER varied from 583 to 214 g C·m−2·year−1 from mid-boreal to high subarctic zones, respectively. For the bog and peat plateau areas, ER was less than half that at the upland locations. Of SR, nearly 75% was generated in the upper 5 cm layer composed of live bryophytes and actively decomposing fibric material. Our results suggest that for the upland and bog locations, ER significantly exceeded NCE. Bryophyte NCE was greatest in continuously waterlogged collapsed areas and was negligible in other locations. Overall, upland forest sites were sources of CO2 (from 64 g·C·m−2·year−1 in the high subarctic to 588 g C·m−2·year−1 in mid-boreal zone; collapsed areas were sinks of C, especially in high subarctic (from 27 g·C·m−2 year−1 in mid-boreal to 86 g·C·m−2·year−1 in high subarctic and peat plateaus were minor sources (from 153 g·C·m−2·year−1 in mid-boreal to 6 g·C·m−2·year−1 in high subarctic. The results are important in understanding how different landforms are responding to climate change and would be useful in modeling the

  11. The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments

    Czech Academy of Sciences Publication Activity Database

    Cannone, N.; Augusti, A.; Malfasi, F.; Pallozi, E.; Calfapietra, Carlo; Brugnoli, E.


    Roč. 39, č. 9 (2016), s. 1581-1596 ISSN 0722-4060 Institutional support: RVO:67179843 Keywords : Arctic ecosystems * CO2 fluxes * Speciesspecific photosynthetic capacity * Soil temperature * Carbon isotope composition * Climate warming Subject RIV: EH - Ecology, Behaviour Impact factor: 1.949, year: 2016

  12. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains (United States)

    Net ecosystem exchange (NEE) of carbon dioxide (CO2) and water vapor (H2O) fluxes from irrigated grain sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) fields in the Texas High Plains were quantified using the eddy covariance (EC) technique during 2014-2016 growing seasons and examined in...

  13. Comparison of CO2 and H2O fluxes over grassland vegetations measured by the eddy-covariance technique and by open system chamber

    Czech Academy of Sciences Publication Activity Database

    Balogh, J.; Nagy, Z.; Fóti, S.; Pintér, K.; Czóbel, S.; Péli, E.; Acosta, Manuel; Marek, Michal V.; Csintalan, Z.; Tuba, Z.


    Roč. 45, č. 2 (2007), s. 288-292 ISSN 0300-3604 Institutional research plan: CEZ:AV0Z60870520 Keywords : CO2 and H2O fluxes * leaf area index * grassland * EC Subject RIV: EH - Ecology, Behaviour Impact factor: 0.976, year: 2007

  14. [Research on the spectral feature and identification of the surface vegetation stressed by stored CO2 underground leakage]. (United States)

    Chen, Yun-Hao; Jiang, Jin-Bao; Steven, Michael D; Gong, A-Du; Li, Yi-Fan


    With the global climate warming, reducing greenhouse gas emissions becomes a focused problem for the world. The carbon capture and storage (CCS) techniques could mitigate CO2 into atmosphere, but there is a risk in case that the CO2 leaks from underground. The objective of this paper is to study the chlorophyll contents (SPAD value), relative water contents (RWC) and leaf spectra changing features of beetroot under CO2 leakage stress through field experiment. The result shows that the chlorophyll contents and RWC of beetroot under CO2 leakage stress become lower than the control beetroot', and the leaf reflectance increases in the 550 nm region and decreases in the 680nm region. A new vegetation index (R550/R680) was designed for identifying beetroot under CO2 leakage stress, and the result indicates that the vegetation index R550/R680 could identify the beetroots after CO2 leakage for 7 days. The index has strong sensitivity, stability and identification for monitoring the beetroots under CO2 stress. The result of this paper has very important meaning and application values for selecting spots of CCS project, monitoring and evaluating land-surface ecology under CO2 stress and monitoring the leakage spots by using remote sensing.

  15. MERIS Ocean Colour Data for the Estimation of Surface Water pCO2: The Case Studies of Peru and Namibia

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Badger, Merete; Sørensen, Lise Lotte


    Carbon dioxide fluxes between the ocean and atmosphere are important when trying to estimate the amount of existing atmospheric CO2. The ocean can potentially be considered as a storage or source of CO2 depending on temperature, salinity, biological activity and wind. To identify the role...... of a region, CO2 fluxes must be estimated. The air-sea exchange of CO2 depends on the partial pressures of atmospheric and oceanic CO2 and a wind related exchange coefficient. Direct in situ measurements are expensive, operationally demanding and of low spatial resolution. It has been shown that indirect...... estimation of oceanic pCO2 is possible due to its strong dependence on temperature. Primary production may also influence the CO2 concentration in the water, due to the consumption by phytoplankton. The present study aims at estimating the oceanic pCO2 with the use of satellite measurements for water...

  16. Statistical partitioning of a three-year time series of direct urban net CO2 flux measurements into biogenic and anthropogenic components (United States)

    Menzer, Olaf; McFadden, Joseph P.


    Eddy covariance flux measurements are increasingly used to quantify the net carbon dioxide exchange (FC) in urban areas. FC represents the sum of anthropogenic emissions, biogenic carbon release from plant and soil respiration, and carbon uptake by plant photosynthesis. When FC is measured in natural ecosystems, partitioning into respiration and photosynthesis is a well-established procedure. In contrast, few studies have partitioned FC at urban flux tower sites due to the difficulty of accounting for the temporal and spatial variability of the multiple sources and sinks. Here, we partitioned a three-year time series of flux measurements from a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. We segregated FC into one subset that captured fluxes from a residential neighborhood and into another subset that covered a golf course. For both land use types we modeled anthropogenic flux components based on winter data and extrapolated them to the growing season, to estimate gross primary production (GPP) and ecosystem respiration (Reco) at half-hourly, daily, monthly and annual scales. During the growing season, GPP had the largest magnitude (up to - 9.83 g C m-2 d-1) of any component CO2 flux, biogenic or anthropogenic, and both GPP and Reco were more dynamic seasonally than anthropogenic fluxes. Owing to the balancing of Reco against GPP, and the limitations of the growing season in a cold temperate climate zone, the net biogenic flux was only 1.5%-4.5% of the anthropogenic flux in the dominant residential land use type, and between 25%-31% of the anthropogenic flux in highly managed greenspace. Still, the vegetation sink at our site was stronger than net anthropogenic emissions on 16-20 days over the residential area and on 66-91 days over the recreational area. The reported carbon flux sums and dynamics are a critical step toward developing models of urban CO2 fluxes within and across cities that differ in vegetation cover.

  17. Atmospheric and Surface-Condition Effects on CO2 Exchange in the Liaohe Delta Wetland, China

    Directory of Open Access Journals (Sweden)

    Qingyu Jia


    Full Text Available The eddy covariance method was used to study the CO2 budget of the Liaohe Delta reed wetland in northern China during 2012–2015. The changes in environmental factors (including meteorology, vegetation, hydrology, and soil were analyzed simultaneously. The change in the trend of the CO2 concentration in the reed wetland was similar to global changes over the four years. The average annual CO2 accumulation was 2.037 kg·CO2·m−2, ranging from 1.472 to 2.297 kg·CO2·m−2. The seasonal characteristics of the CO2 exchange included high CO2 absorption in June and July, and high emissions in April and from September to October, with the highest emissions in July 2015. The average temperatures from 2013 to 2015 were higher than the 50-year average, largely due to increased temperatures in winter. Precipitation was below the 50-year average, mainly because of low precipitation in summer. The average wind speed was less than the 50-year average, and sunshine duration decreased each year. The CO2 exchange and environmental factors had a degree of correlation or consistency. The contribution of meteorology, vegetation, hydrology, and soil to the CO2 budget was analyzed using the partial least squares method. Water and soil temperature had a greater effect on the CO2 exchange variability. The regression equation of the CO2 budget was calculated using the significant contributing factors, including temperature, precipitation, relative humidity, water-table level, salinity, and biomass. The model fit explained more than 70% of the CO2 exchange, and the simulation results were robust.

  18. The 2007 and 2014 eruptions of Stromboli at match: monitoring the potential occurrence of effusion-driven basaltic paroxysmal explosions from a volcanic CO2 flux perspective (United States)

    Liuzzo, Marco; Aiuppa, Alessandro; Salerno, Giuseppe; Burton, Mike; Federico, Cinzia; Caltabiano, Tommaso; Giudice, Gaetano; Giuffrida, Giovanni


    The recent effusive unrests of Stromboli occurred in 2002 and 2007 were both punctuated by short-lived, violent paroxysmal explosions generated from the volcano's summit craters. When effusive activity recently resumed on Stromboli, on 6 August 2014, much concern was raised therefore on whether or not a paroxysm would have occurred again. The occurrence of these potentially hazardous events has stimulated research toward understanding the mechanisms through which effusive eruptions can perturb the volcano's plumbing system, to eventually trigger a paroxysm. The anomalously large CO2 gas emissions measured prior to the 15 March 2007 paroxysmal explosion of Stromboli [1] have first demonstrated the chance to predict days in advance the effusive-to-explosive transition. Here 2007 and 2014 volcanic CO2 flux records have been compared for exploring causes/conditions that had not triggered any paroxysm event in the 2014 case. We show that the 2007 and 2014 datasets shared both similarities and remarkable differences. The pre-eruptive trends of CO2 and SO2 flux emissions were strikingly similar in both 2007 and 2014, indicating similar conditions within the plumbing system prior to onset of both effusive crises. In both events, the CO2 flux substantially accelerated (relative to the pre-eruptive mean flux) after onset of the effusion. However, this CO2 flux acceleration was a factor 3 lower in 2014 than in 2007, and the excess CO2 flux (the fraction of CO2 not associated with the shallowly emplaced/erupted magma, and therefore contributed by the deep magmatic system) never returned to the very high levels observed prior to the 15 March 2007 paroxysm. We conclude therefore that, although similar quantities of magma were effusively erupted in 2007 and 2014, the deep magmatic system was far less perturbed in the most recent case. We speculate that the rate at which the deep magmatic system is decompressed, rather than the level of de-compression itself, determine if the deep

  19. Relating Nimbus-7 37 GHz data to global land-surface evaporation, primary productivity and the atmospheric CO2 concentration (United States)

    Choudhury, B. J.


    Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.

  20. Importance of crop varieties and management practices: evaluation of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L.) sites (United States)

    Li, L.; Vuichard, N.; Viovy, N.; Ciais, P.; Wang, T.; Ceschia, E.; Jans, W.; Wattenbach, M.; Béziat, P.; Gruenwald, T.; Lehuger, S.; Bernhofer, C.


    This paper is a modelling study of crop management impacts on carbon and water fluxes at a range of European sites. The model is a crop growth model (STICS) coupled with a process-based land surface model (ORCHIDEE). The data are online eddy-covariance observations of CO2 and H2O fluxes at five European maize cultivation sites. The results show that the ORCHIDEE-STICS model explains up to 75 % of the observed daily net CO2 ecosystem exchange (NEE) variance, and up to 79 % of the latent heat flux (LE) variance at five sites. The model is better able to reproduce gross primary production (GPP) variations than terrestrial ecosystem respiration (TER) variations. We conclude that structural deficiencies in the model parameterizations of leaf area index (LAI) and TER are the main sources of error in simulating CO2 and H2O fluxes. A number of sensitivity tests, with variable crop variety, nitrogen fertilization, irrigation, and planting date, indicate that any of these management factors is able to change NEE by more than 15 %, but that the response of NEE to management parameters is highly site-dependent. Changes in management parameters are found to impact not only the daily values of NEE and LE, but also the cumulative yearly values. In addition, LE is shown to be less sensitive to management parameters than NEE. Multi-site model evaluations, coupled with sensitivity analysis to management parameters, thus provide important information about model errors, which helps to improve the simulation of CO2 and H2O fluxes across European croplands.

  1. Importance of crop varieties and management practices: evaluation of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L. sites

    Directory of Open Access Journals (Sweden)

    T. Gruenwald


    Full Text Available This paper is a modelling study of crop management impacts on carbon and water fluxes at a range of European sites. The model is a crop growth model (STICS coupled with a process-based land surface model (ORCHIDEE. The data are online eddy-covariance observations of CO2 and H2O fluxes at five European maize cultivation sites. The results show that the ORCHIDEE-STICS model explains up to 75 % of the observed daily net CO2 ecosystem exchange (NEE variance, and up to 79 % of the latent heat flux (LE variance at five sites. The model is better able to reproduce gross primary production (GPP variations than terrestrial ecosystem respiration (TER variations. We conclude that structural deficiencies in the model parameterizations of leaf area index (LAI and TER are the main sources of error in simulating CO2 and H2O fluxes. A number of sensitivity tests, with variable crop variety, nitrogen fertilization, irrigation, and planting date, indicate that any of these management factors is able to change NEE by more than 15 %, but that the response of NEE to management parameters is highly site-dependent. Changes in management parameters are found to impact not only the daily values of NEE and LE, but also the cumulative yearly values. In addition, LE is shown to be less sensitive to management parameters than NEE. Multi-site model evaluations, coupled with sensitivity analysis to management parameters, thus provide important information about model errors, which helps to improve the simulation of CO2 and H2O fluxes across European croplands.

  2. Dissolution of spherical cap CO2 bubbles attached to flat surfaces in air-saturated water (United States)

    Peñas, Pablo; Parrales, Miguel A.; Rodriguez-Rodriguez, Javier


    Bubbles attached to flat surfaces immersed in quiescent liquid environments often display a spherical cap (SC) shape. Their dissolution is a phenomenon commonly observed experimentally. Modelling these bubbles as fully spherical may lead to an inaccurate estimate of the bubble dissolution rate. We develop a theoretical model for the diffusion-driven dissolution or growth of such multi-component SC gas bubbles under constant pressure and temperature conditions. Provided the contact angle of the bubble with the surface is large, the concentration gradients in the liquid may be approximated as spherically symmetric. The area available for mass transfer depends on the instantaneous bubble contact angle, whose dynamics is computed from the adhesion hysteresis model [Hong et al., Langmuir, vol. 27, 6890-6896 (2011)]. Numerical simulations and experimental measurements on the dissolution of SC CO2 bubbles immersed in air-saturated water support the validity of our model. We verify that contact line pinning slows down the dissolution rate, and the fact that any bubble immersed in a saturated gas-liquid solution eventually attains a final equilibrium size. Funded by the Spanish Ministry of Economy and Competitiveness through Grant DPI2011-28356-C03-0.

  3. Developing multi-tracer approaches to constrain the parameterisation of leaf and soil CO2 and H2O exchange in land surface models (United States)

    Ogée, Jerome; Wehr, Richard; Commane, Roisin; Launois, Thomas; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Zahniser, Mark; Wofsy, Steve; Wingate, Lisa


    The net flux of carbon dioxide between the land surface and the atmosphere is dominated by photosynthesis and soil respiration, two of the largest gross CO2 fluxes in the carbon cycle. More robust estimates of these gross fluxes could be obtained from the atmospheric budgets of other valuable tracers, such as carbonyl sulfide (COS) or the carbon and oxygen isotope compositions (δ13C and δ18O) of atmospheric CO2. Over the past decades, the global atmospheric flask network has measured the inter-annual and intra-annual variations in the concentrations of these tracers. However, knowledge gaps and a lack of high-resolution multi-tracer ecosystem-scale measurements have hindered the development of process-based models that can simulate the behaviour of each tracer in response to environmental drivers. We present novel datasets of net ecosystem COS, 13CO2 and CO18O exchange and vertical profile data collected over 3 consecutive growing seasons (2011-2013) at the Harvard forest flux site. We then used the process-based model MuSICA (multi-layer Simulator of the Interactions between vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of each tracer within the forest and exchanged with the atmosphere. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem exchange of each tracer. The model also captured well the dynamic vertical features of tracer behaviour within the canopy. This unique dataset and model sensitivity analysis highlights the benefit in the collection of multi-tracer high-resolution field datasets and the developement of multi-tracer land surface models to provide valuable constraints on photosynthesis and respiration across scales in the near future.

  4. CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments. (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto


    Carbon dioxide capture and storage (CCS), involving the injection of CO 2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO 2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO 2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO 2 -enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO 2 -enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO 2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO 2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO 2 . Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO 2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO 2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be

  5. Can we relate respiration rates of bark and wood with tissue nitrogen concentrations and branch-level CO2 fluxes across woody species? (United States)

    Eller, A. S.; Wright, I.; Cernusak, L. A.


    Respiration from above-ground woody tissue is generally responsible for 5-15% of ecosystem respiration (~ 30% of total above-ground respiration). The CO2 respired by branches comes from both the sapwood and the living layers within the bark, but because there is considerable movement of respired CO2 within woody tissues (e.g. in the transpiration stream), and because the bark can present a considerable barrier to CO2 diffusion, it can be difficult to interpret measured CO2 efflux from intact branches in relation to the respiration rates of the component tissues, and to relative mass allocation to each. In this study we investigated these issues in 15 evergreen tree and shrub species native to the Sydney area in eastern Australia. We measured CO2 efflux and light-dependent refixation of respired CO2 in photosynthetic bark from the exterior surfaces of branches (0.5-1.5 cm in diameter), and measured the tissue-specific respiration rates of the bark and wood from those same branches. We also measured the nitrogen content and tissue density of the wood and bark to determine: 1) Among species, what is the relationship between %N and tissue respiration? 2) How is photosynthetic refixation of CO2 related to respiration and %N in the bark and underlying wood? and 3) What is the relationship between branch CO2 efflux and the respiration rates of the underlying wood and bark that make up the branch? Across the 15 species %N was a better predictor of respiration in wood than in bark. CO2 efflux measured from the exterior of the stem in the dark was positively correlated with photosynthetic refixation and explained ~40% of the variation in rates of refixation. Refixation rates were not strongly related to bark or wood %N. Differences among species in CO2 efflux rates were not well explained by differences in bark or wood %N and there was a stronger relationship between bark respiration and CO2 efflux than between wood respiration and CO2 efflux. These results suggest that the

  6. Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces

    DEFF Research Database (Denmark)

    Jovanov, Zarko; Hansen, Heine A.; Varela Gasque, Ana Sofia


    Electrolysis could enable the large-scale conversion of CO2 to fuels and small molecules. This perspective discusses the state-of-the-art understanding of CO2 and CO reduction electrocatalysis and provides an overview of the most promising approaches undertaken thus far. We set to explore "bifunc...

  7. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas

    KAUST Repository

    Lively, Ryan P.


    Using a process-guided approach, a new 6FDA-based polyimide - 6FDA-DAM:DABA(4:1) - has been developed in the form of hollow fiber membranes for CO 2 recovery from post-combustion flue gas streams. Dense film studies on this polymer reveal a CO 2 permeability of 224 Barrers at 40°C at a CO 2 feed pressure of 10psia. The dense films exhibit an ideal CO 2/N 2 permselectivity of 20 at 40°C, which permits their use in a two-step counter-flow/sweep membrane process. Dry-jet, wet-quench, non-solvent-induced phase inversion spinning was used to create defect-free hollow fibers from 6FDA-DAM:DABA(4:1). Membranes with defect-free skin layers, approximately 415nm thick, were obtained with a pure CO 2 permeance of 520GPU at 30°C and an ideal CO 2/N 2 permselectivity of 24. Mixed gas permeation and wet gas permeation are presented for the fibers. The CO 2 permeance in the fibers was reduced by approximately a factor of 2 in feeds with 80% humidity. As a proof-of-concept path forward to increase CO 2 flux, we incorporated microporous ZIF-8 fillers into 6FDA-DAM:DABA(4:1) dense films. Our 6FDA-DAM:DABA(4:1)/ZIF-8 dense film composites (20wt% ZIF-8) had a CO 2 permeability of 550 Barrers and a CO 2/N 2 selectivity of 19 at 35°C. Good adhesion between the ZIF and the 6FDA-DAM:DABA(4:1) matrix was observed. CO 2 capture costs of $27/ton of CO 2 using the current, "non-optimized" membrane are estimated using a custom counterflow membrane model. Hollow fiber membrane modules were estimated to have order-of-magnitude reductions in system footprint relative to spiral-wound modules, thereby making them attractive in current space-constrained coal-fired power stations. © 2012 Elsevier B.V.

  8. Surface geothermal exploration in the Canary Islands by means of soil CO_{2} degassing surveys (United States)

    García-Merino, Marta; Rodríguez, Fátima; Padrón, Eleazar; Melián, Gladys; Asensio-Ramos, María; Barrancos, José; Hernández, Pedro A.; Pérez, Nemesio M.


    With the exception of the Teide fumaroles, there is not any evidence of hydrothermal fluid discharges in the surficial environment of the Canary Islands, the only Spanish territory with potential high enthalpy geothermal resources. Here we show the results of several diffuse CO2 degassing surveys carried out at five mining licenses in Tenerife and Gran Canaria with the aim of sorting the possible geothermal potential of these five mining licenses. The primary objective of the study was to reduce the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. The yardstick used to classify the different areas was the contribution of volcano-hydrothermal CO2 in the diffuse CO2 degassing at each study area. Several hundreds of measurements of diffuse CO2 emission, soil CO2 concentration and isotopic composition were performed at each mining license. Based in three different endmembers (biogenic, atmospheric and deep-seated CO2) with different CO2 concentrations (100, 0.04 and 100%, respectively) and isotopic compositions (-24, -8 and -3 per mil vs. VPDB respectively) a mass balance to distinguish the different contribution of each endmember in the soil CO2 at each sampling site was made. The percentage of the volcano-hydrothermal contribution in the current diffuse CO2 degassing was in the range 0-19%. The Abeque mining license, that comprises part of the north-west volcanic rift of Tenerife, seemed to show the highest geothermal potential, with an average of 19% of CO2 being released from deep sources, followed by Atidama (south east of Gran Canaria) and Garehagua (southern volcanic rift of Tenerife), with 17% and 12% respectively.

  9. Agricultural crops and soil treatment impacts on the daily and seasonal dynamics of CO2 fluxes in the field agroecosystems at the Central region of Russia (United States)

    Mazirov, Ilya; Vasenev, Ivan; Meshalkina, Joulia; Yaroslavtsev, Alexis; Berezovskiy, Egor; Djancharov, Turmusbek


    The problem of greenhouse gases' concentrations increasing becomes more and more important due to global changes issues. The main component of greenhouse gases is carbon dioxide. The researches focused on its fluxes in natural and anthropogenic modified landscapes can help in this problem solution. Our research has been done with support of the RF Government grants # 11.G34.31.0079 and # and of FP7 Grant # 603542 LUC4C in the representative for Central Region of Russia field agroecosystems at the Precision Farming Experimental Field of Russian Timiryazev State Agrarian University with cultivated sod podzoluvisols, barley and oats - vetch grass mix (Moscow station of the RusFluxNet). The daily and seasonal dynamics of the carbon dioxide have been studied at the ecosystem level by the Eddy covariance method (2 stations) and at the soil level by the exposition chamber method (40 chambers) with mobile infra red gas analyzer (Li-Cor 820). The primary Eddy covariance monitoring data on CO2 fluxes and water vapor have been processed by EddyPro software developed by LI-COR Biosciences. According to the two-year monitoring data the daily CO2 sink during the vegetation season is usually approximately two times higher than its emission at night. Seasonal CO2 fluxes comparative stabilization has been fixed in case the plants height around 10-12 cm and it usually persist until the wax ripeness phase. There is strong dependence between the soil CO2 emission and the air temperature with the correlation coefficient 0.86 in average (due to strong input of the soil thin top functional subhorizon), but it drops essentially at the end of the season - till 0.38. The soil moisture impact on CO2 fluxes dynamics was less, with negative correlation at the end of the season. High daily dynamics of CO2 fluxes determines the protocol requirements for seasonal soil monitoring investigation with less limitation at the end of the season. The accumulated monitoring data will be

  10. Surface and Subsurface Geochemical Monitoring of an EOR-CO2 Field: Buracica, Brazil Monitoring géochimique en surface et sub-surface d’un gisement en production par récupération assistée et injection de CO2 : le champ de Buracica, Brésil

    Directory of Open Access Journals (Sweden)

    Magnier C.


    Full Text Available This paper presents a surface and subsurface geochemical survey of the Buracica EOR-CO2 field onshore Brazil. We adopted a methodology coupling the stable isotopes of carbon with noble gases to investigate the adequacy of geochemical monitoring to track deep fluid leakage at the surface. Three campaigns of CO2 flux and concentration in soils were performed to understand the CO2 variability across the field. The distribution of the CO2 soil contents between 0.8 and 14% is in great part controlled by the properties of the soil, with a first-order topographic dependency. These results, together with a δ13CCO2 between –15 and –23‰, suggest that the bulk of the soil CO2 flux is biological. The gas injected and produced at numerous wells across the field showed a great spatial and somewhat temporal heterogeneity with respect to molecular, δ13CCO2 and noble gas compositions. This heterogeneity is a consequence of the EOR-induced sweeping of the petroleum fluids by the injected CO2, producing a heterogeneous mixing controlled by the production scheme and the distribution in reservoir permeability. In light of the δ13CCO2 found in the reservoir, the stable isotopic composition of carbon was insufficient to track CO2 leaks at the surface. We demonstrate how noble gases may be powerful leak discriminators, even for CO2 abundances in soils in the bottom range of the biological baseline (~1%. The results presented in this study show the potential of geochemical monitoring techniques, involving stable isotopes and noble gases at the reservoir and soil levels, for tracing CO2 in CCS projects. Le monitoring géochimique du gisement de Buracica, qui produit des hydrocarbures par récupération assistée et injection de dioxyde de carbone, est présenté dans cet article. Une méthodologie permettant de coupler l’utilisation des isotopes stables du carbone et des isotopes des gaz rares pour étudier la faisabilité de traçage d’une fuite de CO2 du r

  11. Modeling radon flux from the earth's surface

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, M.A.


    We report development of a 222 Rn flux density model and its use to estimate the 222 Rn flux density over the earth's land surface. The resulting maps are generated on a grid spacing of 1 0 x 1 0 using as input global data for soil radium, soil moisture, and surface temperature. While only a first approximation, the maps suggest a significant regional variation (a factor of three is not uncommon) and a significant seasonal variation (a factor of two is not uncommon) in 222 Rn flux density over the earth's surface. The estimated average global flux density from ice-free land is 34 ± 9 mBq m -2 s -1 . (author)

  12. Seasonal variations in CO2 and CH4 fluxes of four different plant compositions of a Sphagnum-dominated Alpine peat bog (United States)

    Drollinger, Simon; Maier, Andreas; Karer, Jasmin; Glatzel, Stephan


    Peatlands are the only type of ecosystems which have the ability to accumulate significant amounts of carbon (C) under undisturbed conditions. The amount of C sequestered in peatlands depends on the balance between gross primary production, ecosystem respiration and decomposition of plant material. Sphagnum-dominated bogs possess the greatest peat accumulation potential of all peatlands, thus in turn, feature highest C release potentials. Many studies report about the C balances of undisturbed northern peat bogs, however, little is known about the effects of peatland degradation on the C balance between different plant compositions within peat bog ecosystems. Particularly in the Alpine region, where temperature increase during the last century has been almost twice as high as the global mean. The investigated peat bog is located in the inner Alpine Enns valley in the Eastern Alps, Austria (N 47˚ 34.873' E 14˚ 20.810'). It is a pine peat bog covered by Sphagnum mosses and a present extent of about 62 ha. Due to increasing differences in surface height of the peatland compared to the surrounding areas and related lowered water retention capacity attributed to the subsidence of the adjacent intensively managed meadows on deeply drained peat soils, the function of the peatland as a carbon sink is strongly endangered. Hence, the current mean water table depth of the central peat bog area is about -12 cm. To reveal differences in peatland-atmosphere C exchanges within the peatland ecosystem, we investigated CO2 and CH4 fluxes of four different vegetation compositions (PM1-PM4) at the treeless central peat bog area. PM1 is dominated by the graminoids Rhynchospora alba and Eriophorum vaginatum. PM2 is inhabited by small individuals (< 35 cm) of the conifer Pinus mugo, whereas PM3 is dominated by the ericaceous plant Calluna vulgaris. PM4 again is populated by Pinus mugo, but higher growing (35 - 60 cm) and with corresponding higher amount of biomass. Fluxes were measured

  13. Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Ambus, Per; Albert, Kristian Rost


    In temperate regions, climate change is predicted to increase annual mean temperature and intensify the duration and frequency of summer droughts, which together with elevated atmospheric carbon dioxide (CO2) concentrations, may affect the exchange of nitrous oxide (N2O) and methane (CH4) between...... terrestrial ecosystems and the atmosphere. We report results from the CLIMAITE experiment, where the effects of these three climate change parameters were investigated solely and in all combinations in a temperate heathland. Field measurements of N2O and CH4 fluxes took place 1–2 years after the climate...... change manipulations were initiated. The soil was generally a net sink for atmospheric CH4. Elevated temperature (T) increased the CH4 uptake by on average 10 μg C m−2 h−1, corresponding to a rise in the uptake rate of about 20%. However, during winter elevated CO2 (CO2) reduced the CH4 uptake, which...

  14. A Model for Interpreting High-Tower CO2 Concentration Records for the Surface Carbon Balance Information (United States)

    Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.


    Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can

  15. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa) (United States)

    Brümmer, Christian; Papen, Hans; Wassmann, Reiner; Brüggemann, Nicolas


    The contribution of West African savanna ecosystems to global greenhouse gas budgets is highly uncertain. In this study we quantified soil-atmosphere CH4 and CO2 fluxes in the southwest of Burkina Faso from June to September 2005 and from April to September 2006 at four different agricultural fields planted with sorghum (n = 2), cotton, and peanut and at a natural savanna site with termite (Cubitermes fungifaber) mounds. During the rainy season both CH4 uptake and CH4 emission were observed in the savanna, which was on average a CH4 source of 2.79 and 2.28 kg CH4-C ha-1 a-1 in 2005 and 2006, respectively. The crop sites were an average CH4 sink of -0.67 and -0.70 kg CH4-C ha-1 a-1 in the 2 years, without significant seasonal variation. Mean annual soil respiration ranged between 3.86 and 5.82 t CO2-C ha-1 a-1 in the savanna and between 2.50 and 4.51 t CO2-C ha-1 a-1 at the crop sites. CH4 emission from termite mounds was 2 orders of magnitude higher than soil CH4 emissions, whereas termite CO2 emissions were of the same order of magnitude as soil CO2 emissions. Termite CH4 and CO2 release in the savanna contributed 8.8% and 0.4% to the total soil CH4 and CO2 emissions, respectively. At the crop sites, where termite mounds had been almost completely removed because of land use change, termite fluxes were insignificant. Mound density-based upscaling of termite CH4 fluxes resulted in a global termite CH4 source of 0.9 Tg a-1, which corresponds to 0.15% of the total global CH4 budget of 582 Tg a-1, hence significantly lower than those obtained previously by biomass-based calculations. This study emphasizes that land use change, which is of high relevance in this region, has particularly affected soil CH4 fluxes in the past and might still do so in the future.

  16. Surface Flux Measurements at King Sejong Station in West Antarctica (United States)

    Choi, T.; Lee, B.; Lee, H.; Shim, J.


    The Antarctic Peninsula is important in terms of global warming research due to pronounced increase of air temperature over the last century. The first eddy covariance system was established and turbulent fluxes of heat, water vapor, CO2 and momentum have been measured at King Sejong Station (62 \\deg 13øØS, 58 \\deg 47øØW) located in the northern edge of the Antarctic Peninsula since December in 2002. Our objectives are to better understand the interactions between the Antarctic land surface and the atmosphere and to test the feasibility of the long-term operation of eddy covariance system under extreme weather conditions. Various lichens cover the study area and the dominant species is Usnea fasciata-Himantormia. Based on the analyses on turbulent statistics such as integral turbulence characteristics of vertical velocity (w) and heat (T), stationarity test and investigation of correlation coefficient, they follow the Monin-Obukhov similarity and eddy covariance flux data were reliable. About 50 % of total retrieved sensible heat flux data could be used for further analysis. We will report on seasonal variations of energy and mass fluxes and environmental variables. In addition, factors controlling these fluxes will be presented. Acknowledgement: This study was supported by ¡rEnvironmental Monitoring on Human Impacts at the King Sejong Station, Antarctica¡_ (Project PP04102 of Korea Polar Research Institute) and ¡rEco-technopia 21 project¡_ (Ministry of Environment of Korea).

  17. Air-sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK (United States)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Kitidis, Vassilis; Cazenave, Pierre W.; Nightingale, Philip D.; Yelland, Margaret J.; Pascal, Robin W.; Prytherch, John; Brooks, Ian M.; Smyth, Timothy J.


    We present air-sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27 m above mean sea level, a.m.s.l.), each from a different period during 2014-2015. At sampling heights ≥ 18 m a.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable ( ≤ ±20 % in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air-sea exchange measurements in shelf regions. Covariance air-sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20 ± 3; 38 ± 3; 29 ± 6 µmole m-2 d-1 at 15, 18, 27 m a.m.s.l.) than during falling tides (14 ± 2; 22 ± 2; 21 ± 5 µmole m-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air-sea CH4 flux by eddy covariance to be 20 µmole m-2 d-1 over hourly timescales (4 µmole m-2 d-1 over 24 h).

  18. The validation of ocean surface heat fluxes in AMIP

    International Nuclear Information System (INIS)

    Gleckler, P.J.; Randall, D.A.


    Recent intercomparisons of Atmospheric General Circulation Models (AGCMS) constrained with sea-surface temperatures have shown that while there are substantial differences among various models (with each other and available observations), overall the differences between them have been decreasing. The primary goal of AMIP is to enable a systematic intercomparison and validation of state-of-the- art AGCMs by supporting in-depth diagnosis of and interpretation of the model results. Official AMIP simulations are 10 years long, using monthly mean Sea-Surface Temperatures (SSTs) and sea ice conditions which are representative of the 1979--1988 decade. Some model properties are also dictated by the design of AMIP such as the solar constant, the atmospheric CO 2 concentration, and the approximate horizontal resolution. In this paper, some of the preliminary results of AMIP Subproject No. 5 will be summarized. The focus will be on the intercomparison and validation of ocean surface heat fluxes of the AMIP simulations available thus far

  19. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA (United States)

    Lindsey E. Rustad; Ivan J. Fernandez


    The effect of soil warming on CO2 and CH4 flux from a spruce-fir forest soil was evaluated at the Howland Integrated Forest Study site in Maine, USA from 1993 to 1995. Elevated soil temperatures (~5 °C) were maintained during the snow-free season (May-November) in replicated 15 × 15-m plots using electric cables buried 1-2...

  20. One year of continuous measurements of soil CH4 and CO2 fluxes in a Japanese cypress forest: Temporal and spatial variations associated with Asian monsoon rainfall


    Sakabe, Ayaka; Kosugi, Yoshiko; Takahashi, Kenshi; Itoh, Masayuki; Kanazawa, Akito; Makita, Naoki; Ataka, Mioko


    We examined the effects of Asian monsoon rainfall on CH[4] absorption of water-unsaturated forest soil. We conducted a 1 year continuous measurement of soil CH[4] and CO[2] fluxes with automated chamber systems in three plots with different soil characteristics and water content to investigate how temporal variations in CH[4] fluxes vary with the soil environment. CH[4] absorption was reduced by the “Baiu” summer rainfall event and peaked during the subsequent hot, dry period. Although CH[4] ...

  1. Surface-downhole and crosshole geoelectrics for monitoring of brine injection at the Ketzin CO2 storage site (United States)

    Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia


    The Ketzin pilot site in Germany is the longest operating on-shore CO2 storage site in Europe. From June 2008 till August 2013, a total of ˜67,000 tonnes of CO2 were safely stored in a saline aquifer at depths of 630 m to 650 m. The storage site has now entered the abandonment phase, and continuation of the multi-disciplinary monitoring as part of the national project "CO2 post-injection monitoring and post-closure phase at the Ketzin pilot site" (COMPLETE) provides the unique chance to participate in the conclusion of the complete life cycle of a CO2 storage site. As part of the continuous evaluation of the functionality and integrity of the CO2 storage in Ketzin, from October 12, 2015 till January 6, 2015 a total of ˜2,900 tonnes of brine were successfully injected into the CO2 reservoir, hereby simulating in time-lapse the natural backflow of brine and the associated displacement of CO2. The main objectives of this brine injection experiment include investigation of how much of the CO2 in the pore space can be displaced by brine and if this displacement of CO2 during the brine injection differs from the displacement of formation fluid during the initial CO2 injection. Geophysical monitoring of the brine injection included continuous geoelectric measurements accompanied by monitoring of pressure and temperature conditions in the injection well and two adjacent observation wells. During the previous CO2 injection, the geoelectrical monitoring concept at the Ketzin pilot site consisted of permanent crosshole measurements and non-permanent large-scale surveys (Kiessling et al., 2010). Time-lapse geoelectrical tomographies derived from the weekly crosshole data at near-wellbore scale complemented by six surface-downhole surveys at a scale of 1.5 km showed a noticeable resistivity signature within the target storage zone, which was attributed to the CO2 plume (Schmidt-Hattenberger et al., 2011) and interpreted in terms of relative CO2 and brine saturations (Bergmann

  2. A first principles study of the adsorption and dissociation of CO2 on the δ-Pu (111) surface

    International Nuclear Information System (INIS)

    Atta-Fynn, R.; Raya, A.K.


    A complete understanding of the nature of the 5f electrons has been and continues to be a major scientific problem in condensed matter physics. Bulk and surface electronic structure studies of the actinides as also atomic and molecular adsorptions on the actinide surfaces provide a path towards this understanding. In this work, ab initio calculations within the framework of density functional theory have been used to study the adsorption of molecular CO 2 and the corresponding partially dissociated (CO+O) and completely dissociated (C+O+O) products on the δ-Pu (111) surface. The completely dissociated C+O+O configurations exhibit the strongest binding with the surface (7.92 eV), followed by partially dissociated products CO+O (5.08 eV), with molecular CO 2 adsorption having the lowest binding energies (2.35 eV). For all initial vertically upright orientations, the CO 2 molecule physi-sorbs or do not bind to the surface and the geometry and orientation do not change. For all initial flat lying orientations chemisorption occurs, with the final state corresponding to a bent CO 2 molecule with bond angles of 117-130 degrees and the elongation of the CO bond. For CO+O co-adsorption, the stable configurations corresponded to CO dipole moment orientations of 100-172 degrees with respect to the surface normal and the elongation of the CO bond. The most stable chemisorption cases correspond to anomalously large rumpling of the top Pu layer. The interactions of the CO 2 and CO with the Pu surface have been analyzed using the energy density of states and difference charge density distributions. The nature and the behavior of the 5f electrons have also been discussed in detail in the context of this study. (authors)

  3. Small scale soil carbon and moisture gradients in a drained peat bog grassland and their influence on CO2, CH4 and N2O fluxes (United States)

    Leiber-Sauheitl, K.; Fuß, R.; Freibauer, A.


    Due to the UNFCCC report requirements of each country on the emissions of greenhouse gases from key sources the joint research project "Organic Soils" was established in Germany. The project's objective is to improve the data set on greenhousegas emissions from organic soils in Germany. Within 12 German Project Catchments emissions from different types of organic soils, e.g. under different land uses and hydrological conditions, are measured. At the location "Großes Moor" near Gifhorn (Lower Saxony) the effects of small-scale soil organic carbon and groundwater level gradients on the GHG fluxes (CO2, CH4 and N2O) are quantified. The study area is located within a former peat bog altered by drainage and peat cutting, which is currently grassland under extensive agricultural use. The focus of the study is on the acquisition of CO2, CH4 and N2O fluxes on six sites via manual closed chambers. In order to calculate the annual CO2 exchange rate, values are interpolated on a 0.5 hour scale between measurement campaigns. In combination with continually logged meteorological parameters, such as the photosynthetic active radiation as well as air and soil temperatures, we calculate the daily CO2 ecosystem exchange of the different sites. During the 2011 campaign, CO2 was determined as the most important greenhouse gas. The groundwater table was the dominant variable influencing gas emissions. Another important factor was the vegetation composition. In detail, highest CO2 emissions occurred with a water table of 40-50 cm below ground level, temperatures above 10°C and low plant biomass amounts. Due to the more complex formation of N2O by a number of processes, each being promoted by different soil conditions, the measurement of N2O fluxes in the field was complemented by a laboratory experiment. In this, the use of stable isotope tracer techniques enabled us to quantify the contribution of single biochemical pathways to the overall formation of N2O under controlled


    Carbon dioxide (CO2), a main contributor to global climate change, also adds carbon to forests. In contrast, tropospheric ozone (O3) can reduce carbon uptake and increase carbon loss by forests. Thus, the net balance of carbon uptake and loss for forests can be affected by concu...

  5. Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil. (United States)

    Hawthorne, Iain; Johnson, Mark S; Jassal, Rachhpal S; Black, T Andrew; Grant, Nicholas J; Smukler, Sean M


    Nitrogen (N) fertilization of forests for increasing carbon sequestration and wood volume is expected to influence soil greenhouse gas (GHG) emissions, especially to increase N 2 O emissions. As biochar application is known to affect soil GHG emissions, we investigated the effect of biochar application, with and without N fertilization, to a forest soil on GHG emissions in a controlled laboratory study. We found that biochar application at high (10%) application rates increased CO 2 and N 2 O emissions when applied without urea-N fertilizer. At both low (1%) and high biochar (10%) application rates CH 4 consumption was reduced when applied without urea-N fertilizer. Biochar application with urea-N fertilization did not increase CO 2 emissions compared to biochar amended soil without fertilizer. In terms of CO 2 -eq, the net change in GHG emissions was mainly controlled by CO 2 emissions, regardless of treatment, with CH 4 and N 2 O together accounting for less than 1.5% of the total emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.) (United States)

    Ramesh Murthy; Greg Barron-Gafford; Philip M. Dougherty; Victor c. Engels; Katie Grieve; Linda Handley; Christie Klimas; Mark J. Postosnaks; Stanley J. Zarnoch; Jianwei Zhang


    We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf- and stand-level CO2 exchange in model 3-year-old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large-scale, controlled environments of the Biosphere 2 Laboratory. A short-term experiment was imposed...

  7. Infiltration-driven metamorphism, New England, USA: Regional CO2 fluxes and implications for Devonian climate and extinctions (United States)

    Stewart, E. M.; Ague, Jay J.


    We undertake thermodynamic pseudosection modeling of metacarbonate rocks in the Wepawaug Schist, Connecticut, USA, and examine the implications for CO2 outgassing from collisional orogenic belts. Two broad types of pseudosections are calculated: (1) a fully closed-system model with no fluid infiltration and (2) a fluid-buffered model including an H2O-CO2 fluid of a fixed composition. This fluid-buffered model is used to approximate a system open to infiltration by a water-bearing fluid. In all cases the fully closed-system model fails to reproduce the observed major mineral zones, mineral compositions, reaction temperatures, and fluid compositions. The fluid-infiltrated models, on the other hand, successfully reproduce these observations when the XCO2 of the fluid is in the range ∼0.05 to ∼0.15. Fluid-infiltrated models predict significant progressive CO2 loss, peaking at ∼50% decarbonation at amphibolite facies. The closed-system models dramatically underestimate the degree of decarbonation, predicting only ∼15% CO2 loss at peak conditions, and, remarkably, global warming, sea level rise, and, perhaps, extinction in the mid- to late-Devonian.

  8. Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska (United States)

    O'Donnell, Jonathan A.; Turetsky, Merritt R.; Harden, Jennifer W.; Manies, Kristen L.; Pruett, L.E.; Shetler, Gordon; Neff, Jason C.


    Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the

  9. Experimental warming in a dryland community reduced plant photosynthesis and soil CO2 efflux although the relationship between the fluxes remained unchanged (United States)

    Wertin, Timothy M.; Belnap, Jayne; Reed, Sasha C.


    1. Drylands represent our planet's largest terrestrial biome and, due to their extensive area, maintain large stocks of carbon (C). Accordingly, understanding how dryland C cycling will respond to climate change is imperative for accurately forecasting global C cycling and future climate. However, it remains difficult to predict how increased temperature will affect dryland C cycling, as substantial uncertainties surround the potential responses of the two main C fluxes: plant photosynthesis and soil CO2 efflux. In addition to a need for an improved understanding of climate effects on individual dryland C fluxes, there is also notable uncertainty regarding how climate change may influence the relationship between these fluxes.2. To address this important knowledge gap, we measured a growing season's in situphotosynthesis, plant biomass accumulation, and soil CO2 efflux of mature Achnatherum hymenoides (a common and ecologically important C3 bunchgrass growing throughout western North America) exposed to ambient or elevated temperature (+2°C above ambient, warmed via infrared lamps) for three years.3. The 2°C increase in temperature caused a significant reduction in photosynthesis, plant growth, and soil CO2 efflux. Of important note, photosynthesis and soil respiration appeared tightly coupled and the relationship between these fluxes was not altered by the elevated temperature treatment, suggesting C fixation's strong control of both above-ground and below-ground dryland C cycling. Leaf water use efficiency was substantially increased in the elevated temperature treatment compared to the control treatment.4. Taken together, our results suggest notable declines in photosynthesis with relatively subtle warming, reveal strong coupling between above- and below-ground C fluxes in this dryland, and highlight temperature's strong effect on fundamental components of dryland C and water cycles.

  10. Surface-reconstructed Cu Electrode via a Facile Electrochemical Anodization-Reduction Process for Low Overpotential CO 2 reduction

    KAUST Repository

    Min, Shixiong; Yang, Xiulin; Lu, Ang-Yu; Tseng, Chien-Chih; Hedhili, Mohamed N.; Lai, Zhiping; Li, Lain-Jong; Huang, Kuo-Wei


    A high-surface-area Cu electrode, fabricated by a simple electrochemical anodization-reduction method, exhibits high activity and selectivity for CO2 reduction at low overpotential in 0.1 M KHCO3 solution. A faradaic efficiency of 37% for HCOOH

  11. CO2 activation through silylimido and silylamido zirconium hydrides supported on N-donor chelating SBA15 surface ligand

    KAUST Repository

    Pasha, Fahran Ahmad; Bendjeriou-Sedjerari, Anissa; Abou-Hamad, Edy; Huang, Kuo-Wei; Basset, Jean-Marie


    Density functional theory calculations and 2D 1H-13C HETCOR solid state NMR spectroscopy prove that CO2 can probe, by its own reactivity, different types of N-donor surface ligands on SBA15-supported ZrIV hydrides: [(≡Si-O-)(≡Si-N=)[Zr]H] and [(≡Si

  12. Turbulent transport across invariant canonical flux surfaces

    International Nuclear Information System (INIS)

    Hollenberg, J.B.; Callen, J.D.


    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux

  13. Explaining CO2 fluctuations observed in snowpacks (United States)

    Graham, Laura; Risk, David


    Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.

  14. CO2 activation through silylimido and silylamido zirconium hydrides supported on N-donor chelating SBA15 surface ligand

    KAUST Repository

    Pasha, Fahran Ahmad


    Density functional theory calculations and 2D 1H-13C HETCOR solid state NMR spectroscopy prove that CO2 can probe, by its own reactivity, different types of N-donor surface ligands on SBA15-supported ZrIV hydrides: [(≡Si-O-)(≡Si-N=)[Zr]H] and [(≡Si-NH-)(≡Si-X-)[Zr]H2] (X = O or NH). Moreover, [(≡Si-O-)(≡Si-N=)[Zr]H] activates CO2 more efficiently than the other complexes and leads to a carbimato Zr formate.

  15. Preliminary estimate of CO2 budget discharged from Vulcano island


    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rowet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.


    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eruption (1888-1890). At p...

  16. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.


    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  17. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong; Yang, Xiulin; Lu, Ang-Yu; Tseng, Chien-Chih; Hedhili, Mohamed N.; Li, Lain-Jong; Huang, Kuo-Wei


    for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open

  18. Modeling and Simulated Annealing Optimization of Surface Roughness in CO2 Laser Nitrogen Cutting of Stainless Steel


    M. Madić; M. Radovanović; B. Nedić


    This paper presents a systematic methodology for empirical modeling and optimization of surface roughness in nitrogen, CO2 laser cutting of stainless steel . The surface roughness prediction model was developed in terms of laser power , cutting speed , assist gas pressure and focus position by using The artificial neural network ( ANN ) . To cover a wider range of laser cutting parameters and obtain an experimental database for the ANN model development, Taguchi 's L27 orthogonal array was im...

  19. The response of soil CO2 fluxes to progressively excluding vertebrate and invertebrate herbivores depends on ecosystem type (United States)

    Anita C. Risch; Alan G. Haynes; Matt D. Busse; Flurin Filli; Martin Schütz


    Grasslands support large populations of herbivores and store up to 30% of the world’s soil carbon (C). Thus, herbivores likely play an important role in the global C cycle. However, most studies on how herbivory impacts the largest source of C released from grassland soils—soil carbon dioxide (CO2) emissions—only considered the role of large...

  20. Use of the isotope flux ratio approach to investigate the C18O16O and 13CO2 exchange near the floor of a temperate deciduous forest

    Directory of Open Access Journals (Sweden)

    P. Bartlett


    Full Text Available Stable isotopologues of CO2, such as 13CO2 and C18OO, have been used to study the CO2 exchange between land and atmosphere. The advent of new measuring techniques has allowed near-continuous measurements of stable isotopes in the air. These measurements can be used with micrometeorological techniques, providing new tools to investigate the isotope exchange in ecosystems. The objectives of this study were to evaluate the use of the isotope flux ratio method (IFR near the forest floor of a temperate deciduous forest and to study the temporal dynamics of δ18O of CO2 flux near the forest floor by comparing IFR estimates with estimates of δ18O of net soil CO2 flux provided by an analytical model. Mixing ratios of 12C16O2, 13CO2 and C16O18O were measured within and above a temperate deciduous forest, using the tunable diode laser spectroscopy technique. The half-hourly compositions of the CO2 flux near the forest floor (δ13CF and δ18OF were calculated by IFR and compared with estimates provided by a modified Keeling plot technique (mKP and by a Lagrangian dispersion analysis (WT analysis. The mKP and IFR δ18OF estimates showed good agreement (slope = 1.03 and correlation, R2 = 0.80. The δ13CF estimates from the two methods varied in a narrow range of −32.7 and −23‰; the mean (± SE mKP and IFR δ13CF values were −27.5‰ (±0.2 and −27.3‰ (±0.1, respectively, and were statistically identical (p>0.05. WT analysis and IFR δ18OF estimates showed better correlation (R2 = 0.37 when only turbulent periods (u*>0.6 m s−1 were included in the analysis. The large amount of data captured (~95 % of half-hour periods evaluated for the IFR in comparison with mKP (27 % shows that the former provides new opportunities for studying δ18OF dynamics within forest canopies. Values of δ18OF showed large temporal variation, with values ranging from −31.4‰ (DOY 208 to −11.2‰ (DOY 221. Precipitation events caused substantial variation (~8

  1. Optimal Surface Amino-Functionalization Following Thermo-Alkaline Treatment of Nanostructured Silica Adsorbents for Enhanced CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Obdulia Medina-Juárez


    Full Text Available Special preparation of Santa Barbara Amorphous (SBA-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO2. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. CO2 adsorption is only reasonably achieved when the SiO2 surface becomes aminated after put in contact with a solution of an amino alkoxide compound in the right solvent. Unfunctionalized and amine-functionalized substrates were characterized through X-ray diffraction, N2 sorption, Raman spectroscopy, electron microscopy, 29Si solid-state Nuclear Magnetic Resonance (NMR, and NH3 thermal programmed desorption. These analyses proved that the thermo-alkaline procedure desilicates the substrate and eliminates the micropores (without affecting the SBA-15 capillaries, present in the original solid. NMR analysis confirms that the hydroxylated solid anchors more amino functionalizing molecules than the unhydroxylated material. The SBA-15 sample subjected to hydroxylation and amino-functionalization displays a high enthalpy of interaction, a reason why this solid is suitable for a strong deposition of CO2 but with the possibility of observing a low-pressure hysteresis phenomenon. Contrastingly, CH4 adsorption on amino-functionalized, hydroxylated SBA-15 substrates becomes almost five times lower than the CO2 one, thus giving proof of their selectivity toward CO2. Although the amount of retained CO2 is not yet similar to or higher than those determined in other investigations, the methodology herein described is still susceptible to optimization.

  2. Full GHG balance of drained fen peatland cropped to spring barley and reed canary grass using comparative assessment of CO2 fluxes

    DEFF Research Database (Denmark)

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka Prasad


    Empirical greenhouse gas (GHG) flux estimates from diverse peatlands are required in order to derive emission factors for managed peatlands. This study on a drained fen peatland quantified the annual GHG balance (Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and C exported in crop yield......) from spring barley (SB) and reed canary grass (RCG) using static opaque chambers for GHG flux measurements and biomass yield for indirectly estimating gross primary production (GPP). Estimates of ecosystem respiration (ER) and GPP were compared with more advanced but costly and labor-intensive dynamic...... by static chamber and dynamic chamber methods was similar, particularly when using nonlinear regression techniques for flux calculations. A comparison of GPP derived from aboveground biomass and from measuring net ecosystem exchange (NEE) showed that GPP estimation from biomass might be useful, or serve...

  3. Understanding the behavior of carbon dioxide and surface energy fluxes in semiarid Salt Lake Valley, Utah, USA (United States)

    Ramamurthy, Prathap

    This dissertation reports the findings from the Salt Lake Valley flux study. The Salt Lake Valley flux study was designed to improve our understanding of the complex land-atmosphere interactions in urban areas. The flux study used the eddy covariance technique to quantify carbon dioxide and surface energy budget in the semiarid Salt Lake Valley. Apart from quantifying fluxes, the study has also added new insight into the nature of turbulent scalar transport in urban areas and has addressed some of the complications in using Eddy Covariance technique in urban areas. As part of this experiment, eddy fluxes of CO2 and surface energy fluxes were measured at two sites, with distinct urban landforms; One site was located in a suburban neighborhood with substantial vegetative cover, prototypical of many residential neighborhoods in the valley. The other CO2 site was in a preurban surrounding that resembled the Salt Lake Valley before it was urbanized. The two sites were intentionally chosen to illustrate the impact of urbanization on CO 2 and surface energy flux cycles. Results indicate that the suburban site acted as a sink of CO2 during the midday period due to photosynthesis and acted as a source of CO2 during the evening and nighttime periods. The vegetative cover around the suburban site also had a significant impact on the surface energy fluxes. Contribution from latent heat flux was substantially high at the suburban site during the summer months compared to sensible heat. The turbulence investigation found that the general behavior of turbulence was very much influenced by local factors and the statistics did not always obey Monin-Obukhov Similarity parameters. This investigation also found that the scalar (co)spectra observed at the suburban site were characterized by multiple peaks and were different compared to (co)spectra reported over forest and crop canopies. The study also observed multiscale CO2 transport at the suburban site during the convective period

  4. Oxygen permeation flux through 10Sc1YSZ-MnCo2O4 asymmetric membranes prepared by two-step sintering

    DEFF Research Database (Denmark)

    Pirou, Stéven; Gurauskis, Jonas; Gil, Vanesa


    Asymmetric membranes based on a dual phase composite consisting of (Y2O3)0.01(Sc2O3)0.10(ZrO2)0.89 (10Sc1YSZ) as ionic conductor and MnCo2O4 as electronic conductor were prepared and characterized with respect to sinterability, microstructure and oxygen transport properties. The composite membranes...... were prepared by tape casting, lamination and fired in a two-step sintering process. Microstructural analysis showed that a gastight thin membrane layer with the desired ratio of ionic/electronic conducting phases could be fabricated. Oxygen permeation fluxes across the 10SclYSZ/MnCo2O4 (70/30 vol......%) composite membrane were measured from 750 to 940 degrees C using air or pure oxygen as feed gases and N2 or CO2 as sweep gases. Fluxes up to 2.3 mlN min-1 cm-2 were obtained for the 7 μm thick membrane. A degradation test over 1730 h showed an initial degradation of 21% during the first 1100 h after which...

  5. Net sea–air CO2 flux uncertainties in the Bay of Biscay based on the choice of wind speed products and gas transfer parameterizations

    Directory of Open Access Journals (Sweden)

    P. Otero


    Full Text Available The estimation of sea–air CO2 fluxes is largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from the use of different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim, one high-resolution regional forecast model (HIRLAM-AEMet, winds derived under the Cross-Calibrated Multi-Platform (CCMP project, and QuikSCAT winds in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle (September 2002–September 2003 may vary by a factor of ~ 3 depending on the selected wind speed product and the gas exchange parameterization, with the highest impact due to the last one. The comparison of satellite- and model-derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In the coastal region, the presence of land and the time resolution are the main constraints of QuikSCAT, which turns CCMP and ERA-Interim in the preferred options.

  6. Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use? (United States)

    Chen, Shuangling; Hu, Chuanmin; Cai, Wei-Jun; Yang, Bo


    Various approaches and models have been proposed to remotely estimate surface pCO2 in the ocean, with variable performance as they were designed for different environments. Among these, a recently developed mechanistic semi-analytical approach (MeSAA) has shown its advantage for its explicit inclusion of physical and biological forcing in the model, yet its general applicability is unknown. Here, with extensive in situ measurements of surface pCO2, the MeSAA, originally developed for the summertime East China Sea, was tested in the northern Gulf of Mexico (GOM) where river plumes dominate water's biogeochemical properties during summer. Specifically, the MeSAA-predicted surface pCO2 was estimated by combining the dominating effects of thermodynamics, river-ocean mixing and biological activities on surface pCO2. Firstly, effects of thermodynamics and river-ocean mixing (pCO2@Hmixing) were estimated with a two-endmember mixing model, assuming conservative mixing. Secondly, pCO2 variations caused by biological activities (ΔpCO2@bio) was determined through an empirical relationship between sea surface temperature (SST)-normalized pCO2 and MODIS (Moderate Resolution Imaging Spectroradiometer) 8-day composite chlorophyll concentration (CHL). The MeSAA-modeled pCO2 (sum of pCO2@Hmixing and ΔpCO2@bio) was compared with the field-measured pCO2. The Root Mean Square Error (RMSE) was 22.94 μatm (5.91%), with coefficient of determination (R2) of 0.25, mean bias (MB) of - 0.23 μatm and mean ratio (MR) of 1.001, for pCO2 ranging between 316 and 452 μatm. To improve the model performance, a locally tuned MeSAA was developed through the use of a locally tuned ΔpCO2@bio term. A multi-variate empirical regression model was also developed using the same dataset. Both the locally tuned MeSAA and the regression models showed improved performance comparing to the original MeSAA, with R2 of 0.78 and 0.84, RMSE of 12.36 μatm (3.14%) and 10.66 μatm (2.68%), MB of 0.00 μatm and - 0