WorldWideScience

Sample records for surface climate anomalies

  1. Weather anomalies affect Climate Change microblogging intensity

    Science.gov (United States)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    There is a huge gap between the scientific consensus and public understanding of climate change. Climate change has become a political issue and a "hot" topic in mass media that only adds the complexity to forming the public opinion. Scientists operate in scientific terms, not necessarily understandable by general public, while it is common for people to perceive the latest weather anomaly as an evidence of climate change. In 1998 Hansen et al. introduced a concept of an objectively measured subjective climate change indicator, which can relate public feeling that the climate is changing to the observed meteorological parameters. We tested this concept in a simple example of a temperature-based index, which we related to microblogging activity. Microblogging is a new form of communication in which the users describe their current status in short Internet messages. Twitter (http://twitter.com), is currently the most popular microblogging platform. There are multiple reasons, why this data is particularly valuable to the researches interested in social dynamics: microblogging is widely used to publicize one's opinion with the public; has broad, diverse audience, represented by users from many countries speaking different languages; finally, Twitter contains an enormous number of data, e.g., there were 1,284,579 messages related to climate change from 585,168 users in the January-May data collection. We collected the textual data entries, containing words "climate change" or "global warming" from the 1st of January, 2012. The data was retrieved from the Internet every 20 minutes using a specially developed Python code. Using geolocational information, blog entries originating from the New York urbanized area were selected. These entries, used as a source of public opinion on climate change, were related to the surface temperature, obtained from La Guardia airport meteorological station. We defined the "significant change" in the temperature index as deviation of the

  2. Analogue forecasting of New Zealand climate anomalies

    Science.gov (United States)

    Mullan, A. Brett; Thompson, Craig S.

    2006-03-01

    An analogue forecast scheme is described for multifield prediction of monthly and seasonal New Zealand climate anomalies on the basis of the methodology of Livezey and Barnston ([1988]) for US seasonal temperatures. The method is applied to predicting terciles of temperature and precipitation for six regions of New Zealand. Empirical orthogonal function analysis is used to reduce sea surface temperature and sea-level pressure predictors down to a set of five independent indices, which incorporate variations due to El Niño-Southern Oscillation, Indian Ocean sea temperatures and a wave 3 pattern in the Southern Hemisphere westerlies. A full bootstrap cross-validation procedure is carried out, along with Monte Carlo tests, to assess the skill of the method on independent data and to determine the significance of the results. Significant skill is found for seasonal temperature forecasts for the summer and winter seasons; there is less success in predicting monthly temperatures or rainfall at either timescale. Considerable care is required to constrain the climate state vector, from which analogues are defined, and to constrain the search procedure itself, in order to produce results that are stable with respect to small parameter changes in the model. For the New Zealand region, 5 to 7 is found to be the optimum number of closest analogues, and the inclusion of anti-analogues improves the predictions, at least in the seasonal case. Skill in predicting regional temperature and rainfall is shown to be related to a combination of skill in predicting sea-level pressure patterns and to how strongly these patterns project onto temperature and rainfall anomalies.

  3. Climatic anomaly affects the immune competence of California sea lions.

    Directory of Open Access Journals (Sweden)

    Marina Banuet-Martínez

    Full Text Available The past decades have been characterized by a growing number of climatic anomalies. As these anomalies tend to occur suddenly and unexpectedly, it is often difficult to procure empirical evidence of their effects on natural populations. We analysed how the recent sea surface temperature (SST anomaly in the northeastern Pacific Ocean affects body condition, nutritional status, and immune competence of California sea lion pups. We found that pup body condition and blood glucose levels of the pups were lower during high SST events, although other biomarkers of malnutrition remained unchanged, suggesting that pups were experiencing early stages of starvation. Glucose-dependent immune responses were affected by the SST anomaly; specifically, pups born during high SST events had lower serum concentrations of IgG and IgA, and were unable to respond to an immune challenge. This means that not only were pups that were born during the SST anomaly less able to synthesize protective antibodies; they were also limited in their ability to respond rapidly to nonspecific immune challenges. Our study provides empirical evidence that atypical climatic conditions can limit energetic reserves and compromise physiological responses that are essential for the survival of a marine top predator.

  4. A 1200 Year Alkenone-based Reconstruction of Sea Surface Temperature and Marine Productivity in the Southern California Current System from the Medieval Climate Anomaly to Present

    Science.gov (United States)

    O'Mara, N. A.; Kelly, C. S.; Herbert, T.

    2017-12-01

    Laminated sediment cores taken from the San Lazaro Basin (SLB) (25.18N, 112.66W) located off the coast of Baja California in the subtropical eastern Pacific were geochemically analyzed for alkenone and sterol biomarkers to reconstruct sea surface temperature (SST) and marine productivity from 850-1980 CE. High sedimentation rates, low bottom water dissolved oxygen, and high marine productivity in combination with the San Lazaro Basin's location within the dynamic transition zone between the tropical and subtropical eastern Pacific, make it a prime location to study variability of tropical and subtropical modes of climate variability. This study focuses on the impacts and variability of the El Niño Southern Oscillation and the Pacific Decadal Oscillation on the subtropical eastern Pacific. SST and coccolithophore productivity (n=730) for 2 mm sections of sediment corresponding to 1 measurement every 1.8 years were reconstructed using the Uk'37 unsaturation index and C37 alkenone concentration. The high resolution of this record allowed for the analysis of variability of SST and productivity on decadal timescales. Brassicasterol concentrations were calculated for a limited number of samples (n=44) to assess diatom productivity. High spectral power was found at periods of 20-30 years in SST and productivity records indicating a strong influence of the PDO on the SLB, making this the first marine based record directly relevant to PDO reconstructions that continuously spans the last millennium. Cool and productive (warm and less productive) waters were observed in the southern California Current in the Medieval Climate Anomaly 900-1200 CE (Little Ice Age 1400-1800 CE) supporting previous reconstructions that warmer (cooler) SST are linked to both reduced (enhanced) phytoplankton productivity. Additionally, cool (warm) SST were also associated with dry (wet) conditions in the American Southwest indicating that changes in the PDO has had a significant impact on drought

  5. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    Science.gov (United States)

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  6. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    temperature anomalies for the above regions respectively. An analysis has shown that most of the short duration anomalies (i.e., anomalies with periods less than 4 months) are driven by the surface heat fluxes. The medium duration anomalies (i.e., anomalies...

  7. Seasonal sea surface temperature anomaly prediction for coastal ecosystems

    Science.gov (United States)

    Stock, Charles A.; Pegion, Kathy; Vecchi, Gabriel A.; Alexander, Michael A.; Tommasi, Desiree; Bond, Nicholas A.; Fratantoni, Paula S.; Gudgel, Richard G.; Kristiansen, Trond; O'Brien, Todd D.; Xue, Yan; Yang, Xiasong

    2015-09-01

    Sea surface temperature (SST) anomalies are often both leading indicators and important drivers of marine resource fluctuations. Assessment of the skill of SST anomaly forecasts within coastal ecosystems accounting for the majority of global fish yields, however, has been minimal. This reflects coarse global forecast system resolution and past emphasis on the predictability of ocean basin-scale SST variations. This paper assesses monthly to inter-annual SST anomaly predictions in coastal "Large Marine Ecosystems" (LMEs). We begin with an analysis of 7 well-observed LMEs adjacent to the United States and then examine how mechanisms responsible for prediction skill in these systems are reflected in predictions for LMEs globally. Historical SST anomaly estimates from the 1/4° daily Optimal Interpolation Sea Surface Temperature reanalysis (OISST.v2) were first found to be highly consistent with in-situ measurements for 6 of the 7 U.S. LMEs. Thirty years of retrospective forecasts from climate forecast systems developed at NOAA's Geophysical Fluid Dynamics Laboratory (CM2.5-FLOR) and the National Center for Environmental Prediction (CFSv2) were then assessed against OISST.v2. Forecast skill varied widely by LME, initialization month, and lead but there were many cases of high skill that also exceeded that of a persistence forecast, some at leads greater than 6 months. Mechanisms underlying skill above persistence included accurate simulation of (a) seasonal transitions between less predictable locally generated and more predictable basin-scale SST variability; (b) seasonal transitions between different basin-scale influences; (c) propagation of SST anomalies across seasons through sea ice; and (d) re-emergence of previous anomalies upon the breakdown of summer stratification. Globally, significant skill above persistence across many tropical systems arises via mechanisms (a) and (b). Combinations of all four mechanisms contribute to less prevalent but nonetheless

  8. Effect of Warm Atlantic Waters on the Climate Anomalies in the West Arctic

    Directory of Open Access Journals (Sweden)

    A. N. Zolotokrylin

    2015-01-01

    Full Text Available Significant climatic changes of oceanic and atmospheric elements and a relation of them to the ocean surface winter anomalies in North Atlantic are analyzed in the paper. Periods of «warm» ocean (2002–2012 and «cold» ocean (1960–1970 were determined. Positive anomalies of the ocean surface temperature increase the ice-free water area and, correspondingly, decrease the ice-field area. As a result of such changes in a state of the ocean surface (open water and ice, surface air temperature rises, and, consequently, atmospheric pressure in central part of a given Arctic sector drops.

  9. Symmetric scaling properties in global surface air temperature anomalies

    Science.gov (United States)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  10. Support for global climate reorganization during the ''Medieval Climate Anomaly''

    Energy Technology Data Exchange (ETDEWEB)

    Graham, N.E. [Hydrologic Research Center, San Diego, CA (United States); Scripps Institution of Oceanography, La Jolla, CA (United States); Ammann, C.M. [National Center for Atmospheric Research, Boulder, CO (United States); Fleitmann, D. [University of Bern, Institute of Geological Sciences, Bern (Switzerland); University of Bern, Oeschger Centre for Climatic Change Research, Bern (Switzerland); Cobb, K.M. [Georgia Institute of Technology, Atlanta, GA (United States); Luterbacher, J. [Justus-Liebig-University, Giessen (Germany)

    2011-09-15

    Widely distributed proxy records indicate that the Medieval Climate Anomaly (MCA; {proportional_to}900-1350 AD) was characterized by coherent shifts in large-scale Northern Hemisphere atmospheric circulation patterns. Although cooler sea surface temperatures in the central and eastern equatorial Pacific can explain some aspects of medieval circulation changes, they are not sufficient to account for other notable features, including widespread aridity through the Eurasian sub-tropics, stronger winter westerlies across the North Atlantic and Western Europe, and shifts in monsoon rainfall patterns across Africa and South Asia. We present results from a full-physics coupled climate model showing that a slight warming of the tropical Indian and western Pacific Oceans relative to the other tropical ocean basins can induce a broad range of the medieval circulation and climate changes indicated by proxy data, including many of those not explained by a cooler tropical Pacific alone. Important aspects of the results resemble those from previous simulations examining the climatic response to the rapid Indian Ocean warming during the late twentieth century, and to results from climate warming simulations - especially in indicating an expansion of the Northern Hemisphere Hadley circulation. Notably, the pattern of tropical Indo-Pacific sea surface temperature (SST) change responsible for producing the proxy-model similarity in our results agrees well with MCA-LIA SST differences obtained in a recent proxy-based climate field reconstruction. Though much remains unclear, our results indicate that the MCA was characterized by an enhanced zonal Indo-Pacific SST gradient with resulting changes in Northern Hemisphere tropical and extra-tropical circulation patterns and hydroclimate regimes, linkages that may explain the coherent regional climate shifts indicated by proxy records from across the planet. The findings provide new perspectives on the nature and possible causes of the MCA

  11. The Impact of Devegetated Dune Fields on North American Climate During the Late Medieval Climate Anomaly

    Science.gov (United States)

    Cook, B. I.; Seager, R.; Miller, R. L.

    2011-01-01

    During the Medieval Climate Anomaly, North America experienced severe droughts and widespread mobilization of dune fields that persisted for decades. We use an atmosphere general circulation model, forced by a tropical Pacific sea surface temperature reconstruction and changes in the land surface consistent with estimates of dune mobilization (conceptualized as partial devegetation), to investigate whether the devegetation could have exacerbated the medieval droughts. Presence of devegetated dunes in the model significantly increases surface temperatures, but has little impact on precipitation or drought severity, as defined by either the Palmer Drought Severity Index or the ratio of precipitation to potential evapotranspiration. Results are similar to recent studies of the 1930s Dust Bowl drought, suggesting bare soil associated with the dunes, in and of itself, is not sufficient to amplify droughts over North America.

  12. The Mars Climate Sounder In-Flight Positioning Anomaly

    Science.gov (United States)

    Jau, Bruno M.; Kass, David

    2008-01-01

    The paper discusses the Mars Climate Sounder (MCS) instrument s in-flight positioning errors and presents background material about it. A short overview of the instrument s science objectives and data acquisition techniques is provided. The brief mechanical description familiarizes the reader with the MCS instrument. Several key items of the flight qualification program, which had a rigorous joint drive test program but some limitations in overall system testing, are discussed. Implications this might have had for the flight anomaly, which began after several months of flawless space operation, are mentioned. The detection, interpretation, and instrument response to the errors is discussed. The anomaly prompted engineering reviews, renewed ground, and some in-flight testing. A summary of these events, including a timeline, is included. Several items of concern were uncovered during the anomaly investigation, the root cause, however, was never found. The instrument is now used with two operational constraints that work around the anomaly. It continues science gathering at an only slightly diminished pace that will yield approximately 90% of the originally intended science.

  13. Data-driven modeling of surface temperature anomaly and solar activity trends

    Science.gov (United States)

    Friedel, Michael J.

    2012-01-01

    A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.

  14. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  15. Anomalies.

    Science.gov (United States)

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  16. Global Surface Temperature Anomalies and Attribution

    Science.gov (United States)

    Pietrafesa, L. J.

    2017-12-01

    We study Non-Stationary, Non-Linear time series of global surface temperatures from 1850 to 2016, and via an empirical, mathematical methodology, we reveal the buried, internal modes of variability of planetary temperatures over the past 167 years, and find periods of cooling and warming, both in the ocean and the atmosphere over land, with multiple modes of variability; seasonal, annual, inter-annual, multi-year, decadal, multi-decadal, centennial and overall warming trends in the ocean, atmosphere and the combination therein. The oceanic rate of warming is less than two thirds of that of the atmosphere. While our findings on overall trends of fossil fuel burning and planetary temperatures are only visually correlative, by employing a mathematical methodology well known in ergonomics, this study causally links the upward rise in planetary surface temperature from the latter part of the 19th Century and into the 21st Century, to the contemporaneous upward rise in fossil fuel burning and suggests that if present fossil fuel burning is not curtailed there will be continued warming of the planet in the future.

  17. Temperature Anomalies from the AIRS Product in Giovanni for the Climate Community

    Science.gov (United States)

    Ding, Feng; Hearty, Thomas J.; Wei, Jennifer; Theobald, Michael; Vollmer, Bruce; Seiler, Edward; Meyer, David

    2018-01-01

    The Atmospheric Infrared Sounder (AIRS) mission began with the launch of Aqua in 2002. Over 15 years of AIRS products have been used by the climate research and application communities. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding Suomi National Polar-Orbiting Partnership (SNPP) Cross-track Infrared Sounder (CrIS) mission. We generated a Multi-year Monthly Mean and Anomaly product using 14 years of AIRS standard monthly product. The product includes Air Temperature at the Surface and Surface Skin Temperature, both in Ascending/Daytime and Descending/Nighttime mode. The temperature variables and their anomalies are deployed to Giovanni, a Web-based application developed by the GES DISC. Giovanni provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. It is also a powerful tool that stakeholders can use for decision support in planning and preparing for increased climate variability. In this presentation, we demonstrate the functions in Giovanni with use cases employing AIRS Multi-year Monthly Mean and Anomaly variables.

  18. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  19. Regional monitoring of environmental physics climate related anomalies

    Science.gov (United States)

    El-Askary, Hesham

    2004-11-01

    Scientific communities have been working in creating and enhancing scientific research programs in which in situ and satellite data as well as remote sensing (RS) technologies are being applied to regional environmental issues. These issues include the effects of climate change on regional flooding, droughts and the impact of human activities as they relate to feedbacks on the global climate. More specifically, one needs to evaluate the potential impact of climatological variability on social, economic, and human activities. In addition, the study of their effects on agriculture, forests, local natural ecosystems and water climate-related resources, is most important. Finally, dust storms and other natural events such as droughts can have great local impacts. Approximately half of the dust in today's atmosphere may be the result of changes to the environment caused by human activities, including agriculture, overgrazing, and deforestation. Climate variability may lead to the occurrence of some severe environmental phenomena like dust storms, hurricanes, tornadoes, floods and droughts. Under normal conditions we can detect different dust effects associated with the movement of storms as well as different rain patterns that do not affect much of the surrounding environment either at regional or global scales. On the other hand, under abnormal climatological conditions, high anomalies of precipitation might occur due to the presence of hurricanes or other events, leading to severe flooding events. In this dissertation, we apply time series analysis techniques to remote sensing and in situ data to detect precipitation and dust storm anomalies and study their behavior on regional scales. The first application is the detection and monitoring of dust storms events over parts of the Middle East and Asia. Dust storms cause health and economic hazards. In this thesis dust storms development is examined based on using remote sensing. It utilizes a combination of optical

  20. Developing global climate anomalies suggest potential disease risks for 2006 – 2007

    Directory of Open Access Journals (Sweden)

    Tucker Compton J

    2006-12-01

    Full Text Available Abstract Background El Niño/Southern Oscillation (ENSO related climate anomalies have been shown to have an impact on infectious disease outbreaks. The Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC has recently issued an unscheduled El Niño advisory, indicating that warmer than normal sea surface temperatures across the equatorial eastern Pacific may have pronounced impacts on global tropical precipitation patterns extending into the northern hemisphere particularly over North America. Building evidence of the links between ENSO driven climate anomalies and infectious diseases, particularly those transmitted by insects, can allow us to provide improved long range forecasts of an epidemic or epizootic. We describe developing climate anomalies that suggest potential disease risks using satellite generated data. Results Sea surface temperatures (SSTs in the equatorial east Pacific ocean have anomalously increased significantly during July – October 2006 indicating the typical development of El Niño conditions. The persistence of these conditions will lead to extremes in global-scale climate anomalies as has been observed during similar conditions in the past. Positive Outgoing Longwave Radiation (OLR anomalies, indicative of severe drought conditions, have been observed across all of Indonesia, Malaysia and most of the Philippines, which are usually the first areas to experience ENSO-related impacts. This dryness can be expected to continue, on average, for the remainder of 2006 continuing into the early part of 2007. During the period November 2006 – January 2007 climate forecasts indicate that there is a high probability for above normal rainfall in the central and eastern equatorial Pacific Islands, the Korean Peninsula, the U.S. Gulf Coast and Florida, northern South America and equatorial east Africa. Taking into consideration current observations and climate forecast information, indications

  1. An updated global grid point surface air temperature anomaly data set: 1851--1990

    Energy Technology Data Exchange (ETDEWEB)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  2. Climate Prediction Center (CPC) Zonally Average 500 MB Temperature Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 500-hPa temperature anomalies averaged over the latitude band 20oN ? 20oS. The anomalies are...

  3. Bayesian versus politically motivated reasoning in human perception of climate anomalies

    Science.gov (United States)

    Ripberger, Joseph T.; Jenkins-Smith, Hank C.; Silva, Carol L.; Carlson, Deven E.; Gupta, Kuhika; Carlson, Nina; Dunlap, Riley E.

    2017-11-01

    In complex systems where humans and nature interact to produce joint outcomes, mitigation, adaptation, and resilience require that humans perceive feedback—signals of health and distress—from natural systems. In many instances, humans readily perceive feedback. In others, feedback is more difficult to perceive, so humans rely on experts, heuristics, biases, and/or identify confirming rationalities that may distort perceptions of feedback. This study explores human perception of feedback from natural systems by testing alternate conceptions about how individuals perceive climate anomalies, a form of feedback from the climate system. Results indicate that individuals generally perceive climate anomalies, especially when the anomalies are relatively extreme and persistent. Moreover, this finding is largely robust to political differences that generate predictable but small biases in feedback perception at extreme ends of the partisan spectrum. The subtlety of these biases bodes well for mitigation, adaptation, and resilience as human systems continue to interact with a changing climate system.

  4. A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change

    Science.gov (United States)

    Mark A Friedl; Josh M Gray; Eli K Melaas; Andrew D Richardson; Koen Hufkens; Trevor F Keenan; Amey Bailey; John. O' Keefe

    2014-01-01

    By the end of this century, mean annual temperatures in the Northeastern United States are expected to warm by 3-5 °C, which will have significant impacts on the structure and function of temperate forests in this region. To improve understanding of these impacts, we exploited two recent climate anomalies to explore how the springtime phenology of Northeastern...

  5. The diffusion mechanism and convective transport in the formation of surface anomalies of RADON-222 generated at depth

    International Nuclear Information System (INIS)

    Pereira, E.B.; Hamza, V.M.

    1982-01-01

    A preliminar study on the importance of a thermally-activated convective transport of radon is made in order to explain radon anomalies at surface generated at great depth. It is theoretically shown that convective currents should be of the order of 10 μm/s or larger to explain such anomalies. The influence of surface temperature changes on the convective transport is also discussed. Seasonal changes in temperature typical of climates such as that of southern Brazil can develop thermal inversion layers at depths up to 20 metres. The optimum period of the year for the employment of surface emanometric techniques is during the second and the third months after the winter peak when the thermal inversion barriers are less intense. (Author) [pt

  6. Predicting Fire Season Severity in South America Using Sea Surface Temperature Anomalies

    Science.gov (United States)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.; Jin, Yufang; DeFries, Ruth S.; Collatz, George J.; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam

    2011-01-01

    Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. Here we investigated the relationship between year-to-year changes in satellite-derived estimates of fire activity in South America and sea surface temperature (SST) anomalies. We found that the Oceanic Ni o Index (ONI) was correlated with interannual fire activity in the eastern Amazon whereas the Atlantic Multidecadal Oscillation (AMO) index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model that predicted regional annual fire season severity (FSS) with 3-5 month lead times. Our approach provides the foundation for an early warning system for forecasting the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for mitigation of greenhouse gas and air pollutant emissions.

  7. Simulation capability of tropical and extratropical seasonal climate anomalies over South America

    Science.gov (United States)

    Labraga, Juan Carlos

    2005-09-01

    An ensemble of 20 extended integrations of the atmospheric model CSIRO Mark 2, forced with the sea-surface temperature observed during the 1986-1998 period, was performed to analyze the simulation capability of seasonal climate anomalies over South America and adjacent oceanic areas. Variations of the simulation skill within the region and during the experimental period were assessed through standard statistical measures and compared to the signal-to-noise ratio distribution. Before the skill assessment, model systematic errors were thoroughly evaluated. The results confirm that the simulation skill is very high in tropical oceanic areas, and decreases rapidly towards middle and high latitudes. Model performance at mid and high atmospheric levels is substantially better than at low levels. Relatively high simulation capability was found over the Pacific Ocean between the equator and the Antarctic coast, which is coherent with the presence of three relative maximums in the signal-to-noise ratio, similar to the increase of the forced variance found by several authors over much of the Pacific-North American pattern region. Rainfall rate and second-order moments associated with the cyclonic activity and the meridional eddy fluxes of heat and humidity are better simulated in a narrow strip parallel to the SPCZ and extending further southeast into mid latitudes of the continent. The simulation skill noticeably improves during the warm and cold ENSO phases, in correspondence with an intensification of the signal-to-noise ratio, and useful rainfall anomaly simulations can be obtained over the Amazonas and Rio de la Plata river basins.

  8. Simulation capability of tropical and extratropical seasonal climate anomalies over South America

    Energy Technology Data Exchange (ETDEWEB)

    Labraga, Juan Carlos [Centro Nacional Patagonico - CONICET, Puerto Madryn (Argentina)

    2005-09-01

    An ensemble of 20 extended integrations of the atmospheric model CSIRO Mark 2, forced with the sea-surface temperature observed during the 1986-1998 period, was performed to analyze the simulation capability of seasonal climate anomalies over South America and adjacent oceanic areas. Variations of the simulation skill within the region and during the experimental period were assessed through standard statistical measures and compared to the signal-to-noise ratio distribution. Before the skill assessment, model systematic errors were thoroughly evaluated. The results confirm that the simulation skill is very high in tropical oceanic areas, and decreases rapidly towards middle and high latitudes. Model performance at mid and high atmospheric levels is substantially better than at low levels. Relatively high simulation capability was found over the Pacific Ocean between the equator and the Antarctic coast, which is coherent with the presence of three relative maximums in the signal-to-noise ratio, similar to the increase of the forced variance found by several authors over much of the Pacific-North American pattern region. Rainfall rate and second-order moments associated with the cyclonic activity and the meridional eddy fluxes of heat and humidity are better simulated in a narrow strip parallel to the SPCZ and extending further southeast into mid latitudes of the continent. The simulation skill noticeably improves during the warm and cold ENSO phases, in correspondence with an intensification of the signal-to-noise ratio, and useful rainfall anomaly simulations can be obtained over the Amazonas and Rio de la Plata river basins. (orig.)

  9. Comparison of full field and anomaly initialisation for decadal climate prediction: towards an optimal consistency between the ocean and sea-ice anomaly initialisation state

    Science.gov (United States)

    Volpi, Danila; Guemas, Virginie; Doblas-Reyes, Francisco J.

    2017-08-01

    Decadal prediction exploits sources of predictability from both the internal variability through the initialisation of the climate model from observational estimates, and the external radiative forcings. When a model is initialised with the observed state at the initial time step (Full Field Initialisation—FFI), the forecast run drifts towards the biased model climate. Distinguishing between the climate signal to be predicted and the model drift is a challenging task, because the application of a-posteriori bias correction has the risk of removing part of the variability signal. The anomaly initialisation (AI) technique aims at addressing the drift issue by answering the following question: if the model is allowed to start close to its own attractor (i.e. its biased world), but the phase of the simulated variability is constrained toward the contemporaneous observed one at the initialisation time, does the prediction skill improve? The relative merits of the FFI and AI techniques applied respectively to the ocean component and the ocean and sea ice components simultaneously in the EC-Earth global coupled model are assessed. For both strategies the initialised hindcasts show better skill than historical simulations for the ocean heat content and AMOC along the first two forecast years, for sea ice and PDO along the first forecast year, while for AMO the improvements are statistically significant for the first two forecast years. The AI in the ocean and sea ice components significantly improves the skill of the Arctic sea surface temperature over the FFI.

  10. Conservation objectives and sea-surface temperature anomalies in the Great Barrier Reef.

    Science.gov (United States)

    Ban, Natalie C; Pressey, Robert L; Weeks, Scarla

    2012-10-01

    Spatial and temporal dynamics of ecological processes have long been considered important in marine systems, but seldom have conservation objectives been set for them. Climate change makes the consideration of the dynamics of ecological processes in the design of marine protected areas critical. We analyzed sea-surface temperature (SST) trends and variability in Great Barrier Reef Marine Park (GBRMP) for 25 years and formulated and tested whether three sets of notional conservation objectives were met to illustrate the potential for planning to address climate change. Given mixed and limited evidence that no-take areas increase resilience to disturbances such as anomalously high temperatures (i.e., temperatures ≥1 °C above weekly mean temperature), our conservation objectives focused on areas less likely to be affected by such events at extents ranging from the entire Great Barrier Reef to the system of no-take zones and individual no-take zones. The objective sets were (1) at least 50% of temperature refugia (i.e., pixels that had high-temperature anomalies Great Barrier Reef increased significantly in some regions, and some of the conservation objectives were met by the park's current zoning plan. Dialogue between conservation scientists and managers is needed to develop appropriate conservation objectives under climate change and strategies to meet them. ©2012 Society for Conservation Biology.

  11. The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests.

    Science.gov (United States)

    Achard, Frédéric; Eva, Hugh D; Mollicone, Danilo; Beuchle, René

    2008-07-12

    Over the last few years anomalies in temperature and precipitation in northern Russia have been regarded as manifestations of climate change. During the same period exceptional forest fire seasons have been reported, prompting many authors to suggest that these in turn are due to climate change. In this paper, we examine the number and areal extent of forest fires across boreal Russia for the period 2002-2005 within two forest categories: 'intact forests' and 'non-intact forests'. Results show a far lower density of fire events in intact forests (5-14 times less) and that those events tend to be in the first 10 km buffer zone inside intact forest areas. Results also show that, during exceptional climatic years (2002 and 2003), fire event density is twice that found during normal years (2004 and 2005) and average areal extent of fire events (burned area) in intact forests is 2.5 times larger than normal. These results suggest that a majority of the fire events in boreal Russia are of human origin and a maximum of one-third of their impact (areal extension) can be attributed to climate anomalies alone, the rest being due to the combined effect of human disturbances and climate anomalies.

  12. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Kharin, V.V.

    1994-01-01

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  13. The Medieval Climate Anomaly and Byzantium: A review of the evidence on climatic fluctuations, economic performance and societal change

    Science.gov (United States)

    Xoplaki, Elena; Fleitmann, Dominik; Luterbacher, Juerg; Wagner, Sebastian; Haldon, John F.; Zorita, Eduardo; Telelis, Ioannis; Toreti, Andrea; Izdebski, Adam

    2016-04-01

    At the beginning of the Medieval Climate Anomaly, in the ninth and tenth century, the medieval eastern Roman empire, more usually known as Byzantium, was recovering from its early medieval crisis and experiencing favourable climatic conditions for the agricultural and demographic growth. Although in the Balkans and Anatolia such favourable climate conditions were prevalent during the eleventh century, parts of the imperial territories were facing significant challenges as a result of external political/military pressure. The apogee of medieval Byzantine socio-economic development, around AD 1150, coincides with a period of adverse climatic conditions for its economy, so it becomes obvious that the winter dryness and high climate variability at this time did not hinder Byzantine society and economy from achieving that level of expansion. Soon after this peak, towards the end of the twelfth century, the populations of the Byzantine world were experiencing unusual climatic conditions with marked dryness and cooler phases. The weakened Byzantine socio-political system must have contributed to the events leading to the fall of Constantinople in AD 1204 and the sack of the city. The final collapse of the Byzantine political control over western Anatolia took place half century later, thus contemporaneous with the strong cooling effect after a tropical volcanic eruption in AD 1257. We suggest that, regardless of a range of other influential factors, climate change was also an important contributing factor to the socio-economic changes that took place in Byzantium during the Medieval Climate Anomaly. Crucially, therefore, while the relatively sophisticated and complex Byzantine society was certainly influenced by climatic conditions, and while it nevertheless displayed a significant degree of resilience, external pressures as well as tensions within the Byzantine society more broadly contributed to an increasing vulnerability in respect of climate impacts. Our

  14. What drove the Pacific and North America climate anomalies in winter 2014/15?

    Science.gov (United States)

    Peng, Peitao; Kumar, Arun; Hu, Zeng-Zhen

    2017-12-01

    In late 2014 and early 2015, the canonical atmospheric response to the El Niño and Southern Oscillation (ENSO) event was not observed in the central and eastern equatorial Pacific, although Niño3.4 index exceeded the threshold for a weak El Niño. In an effort to understand why it was so, this study deconvoluted the observed 2014/15 December-January-February (DJF) mean sea surface temperature (SST), precipitation and 200 hPa stream function anomalies into the leading patterns related to the principal components of DJF SST variability. It is noted that the anomalies of these variables were primarily determined by the patterns related to two SST modes: one is the North Pacific mode (NPM), and the other the ENSO mode. The NPM was responsible for the apparent lack of coupled air-sea relationship in the central equatorial Pacific and the east-west structure of the circulation anomalies over North America, while the ENSO mode linked to SSTs in the central and eastern equatorial Pacific as well as the circulation in the central equatorial Pacific. Further, the ENSO signal in DJF 2014/15 likely evolved from the NPM pattern in winter 2013/14. Its full development, however, was impeded by the easterly anomalies in the central equatorial Pacific that was associated with negative SST anomalies in the southeastern subtropical Pacific. In addition, the analyses also indicates that the SST anomalies in the Niño3.4 region alone were not adequate for capturing the coupling of oceanic and atmospheric anomalies in the tropical Pacific, due to the fact that this index cannot distinguish whether the SST anomaly in the Niño3.4 region is associated with the ENSO mode or NPM, or both.

  15. Improvement of statistical methods for detecting anomalies in climate and environmental monitoring systems

    Science.gov (United States)

    Yakunin, A. G.; Hussein, H. M.

    2018-01-01

    The article shows how the known statistical methods, which are widely used in solving financial problems and a number of other fields of science and technology, can be effectively applied after minor modification for solving such problems in climate and environment monitoring systems, as the detection of anomalies in the form of abrupt changes in signal levels, the occurrence of positive and negative outliers and the violation of the cycle form in periodic processes.

  16. Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica

    Science.gov (United States)

    Hofhansl, Florian; Kobler, Johannes; Ofner, Joachim; Drage, Sigrid; Pölz, Eva-Maria; Wanek, Wolfgang

    2014-12-01

    The productivity of tropical forests is driven by climate (precipitation, temperature, and light) and soil fertility (geology and topography). While large-scale drivers of tropical productivity are well established, knowledge on the sensitivity of tropical lowland net primary production to climate anomalies remains scarce. We here analyze seven consecutive years of monthly recorded tropical forest aboveground net primary production (ANPP) in response to a recent El Niño-Southern Oscillation (ENSO) anomaly. The ENSO transition period resulted in increased temperatures and decreased precipitation during the El Niño dry period, causing a decrease in ANPP. However, the subsequent La Niña wet period caused strong increases in ANPP such that drought-induced reductions were overcompensated. Most strikingly, the climatic controls differed between canopy production (CP) and wood production (WP). Whereas CP showed strong seasonal variation but was not affected by ENSO, WP decreased significantly in response to a 3°C increase in annual maximum temperatures during the El Niño period but subsequently recovered to above predrought levels during the La Niña period. Moreover, the climate sensitivity of tropical forest ANPP components was affected by local topography (water availability) and disturbance history (species composition). Our results suggest that projected increases in temperature and dry season length could impact tropical carbon sequestration by shifting ANPP partitioning toward decreased WP, thus decreasing the carbon storage of highly productive lowland forests. We conclude that the impact of climate anomalies on tropical forest productivity is strongly related to local site characteristics and will therefore likely prevent uniform responses of tropical lowland forests to projected global changes.

  17. A Data-Driven Assessment of the Sensitivity of Global Ecosystems to Climate Anomalies

    Science.gov (United States)

    Miralles, D. G.; Papagiannopoulou, C.; Demuzere, M.; Decubber, S.; Waegeman, W.; Verhoest, N.; Dorigo, W.

    2017-12-01

    Vegetation is a central player in the climate system, constraining atmospheric conditions through a series of feedbacks. This fundamental role highlights the importance of understanding regional drivers of ecological sensitivity and the response of vegetation to climatic changes. While nutrient availability and short-term disturbances can be crucial for vegetation at various spatiotemporal scales, natural vegetation dynamics are overall driven by climate. At monthly scales, the interactions between vegetation and climate become complex: some vegetation types react preferentially to specific climatic changes, with different levels of intensity, resilience and lagged response. For our current Earth System Models (ESMs) being able to capture this complexity is crucial but extremely challenging. This adds uncertainty to our projections of future climate and the fate of global ecosystems. Here, following a Granger causality framework based on a non-linear random forest predictive model, we exploit the current wealth of satellite data records to uncover the main climatic drivers of monthly vegetation variability globally. Results based on three decades of satellite data indicate that water availability is the most dominant factor driving vegetation in over 60% of the vegetated land. This overall dependency of ecosystems on water availability is larger than previously reported, partly owed to the ability of our machine-learning framework to disentangle the co-linearites between climatic drivers, and to quantify non-linear impacts of climate on vegetation. Our observation-based results are then used to benchmark ESMs on their representation of vegetation sensitivity to climate and climatic extremes. Our findings indicate that the sensitivity of vegetation to climatic anomalies is ill-reproduced by some widely-used ESMs.

  18. Mean air surface temperature anomalies in the humid south – south ...

    African Journals Online (AJOL)

    The concept of regional climate is very important in understanding global climate change. Changes in surface air temperature are primary measures of global climate change. In this work, the analyses of the mean air surface temperature dynamics from 1901 to 2000 in six cities located in the South- South humid zone of ...

  19. Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates

    Science.gov (United States)

    Wey, Hao-Wei; Lo, Min-Hui; Lee, Shih-Yu; Yu, Jin-Yi; Hsu, Huang-Hsiung

    2015-10-01

    Anthropogenic water management can change surface energy budgets and the water cycle. In this study, we focused on impacts of Asian low-latitude irrigation on regional and global climates during boreal wintertime. A state-of-the-art Earth system model is used to simulate the land-air interaction processes affected by irrigation and the consequent responses in atmospheric circulation. Perturbed experiments show that wet soil moisture anomalies at low latitudes can reduce the surface temperature on a continental scale through atmospheric feedback. The intensity of prevailing monsoon circulation becomes stronger because of larger land-sea thermal contrast. Furthermore, anomalous upper level convergence over South Asia and midlatitude climatic changes indicate tropical-extratropical teleconnections. The wintertime Aleutian low is deepened and an anomalous warm surface temperature is found in North America. Previous studies have noted this warming but left it unexplained, and we provide plausible mechanisms for these remote impacts coming from the irrigation over Asian low-latitude regions.

  20. Topographical anomaly on surfaces created by abrasive waterjet

    Czech Academy of Sciences Publication Activity Database

    Hloch, S.; Valíček, Jan

    2012-01-01

    Roč. 59, 5-8 (2012), s. 593-604 ISSN 0268-3768 Institutional research plan: CEZ:AV0Z30860518 Keywords : abrasive waterjet * initial zone * surface topography Subject RIV: JQ - Machines ; Tools Impact factor: 1.205, year: 2012 http://www.springerlink.com/content/5701144k76v02372

  1. Estimating Antarctic near-surface magnetic anomalies from Oersted and CHAMP satellite magnetometer observations

    Science.gov (United States)

    von Frese, R. R.; Kim, H.; Gaya-Pique, L. R.; Taylor, P. T.; Golynsky, A. V.; Kim, J.

    2004-12-01

    Significant improvement in predicting near-surface magnetic anomalies can result from the highly accurate magnetic observations of the CHAMP satellite that is orbiting at about 400 km altitude. In general, regional magnetic signals of the crust are strongly masked by the core field and its secular variations due to wavelength coupling in the spherical harmonic representation and thus are difficult to isolate in the satellite measurements. However, efforts to isolate the regional lithospheric from core field components can exploit the correlations between the CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations. In addition, we can use spectral correlation theory to filter the static lithospheric field components from the dynamic external field effects. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Oersted and noisier Magsat observations, CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intra-crustal magnetic features and crustal thickness variations of the Antarctic. Moreover, these results greatly facilitate predicting magnetic anomalies in the regional coverage gaps of the ADMAP compilation of Antarctic magnetic anomalies from shipborne, airborne and ground surveys. Our analysis suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer measurements at minimum orbital altitude.

  2. The Role of Forcing and Internal Dynamics in explaining the 'Medieval Climate Anomaly'

    Science.gov (United States)

    Goossee, Hugues; Crespin, Elisabeth; Dubinkina, Svetlana; Loutre, Marie-France; Mann, Michael E.; Renssen, Hans; Shindell, Drew

    2012-01-01

    Proxy reconstructions suggest that peak global temperature during the past warm interval known as the Medieval Climate Anomaly (MCA, roughly 950-1250 AD) has been exceeded only during the most recent decades. To better understand the origin of this warm period, we use model simulations constrained by data assimilation establishing the spatial pattern of temperature changes that is most consistent with forcing estimates, model physics and the empirical information contained in paleoclimate proxy records. These numerical experiments demonstrate that the reconstructed spatial temperature pattern of the MCA can be explained by a simple thermodynamical response of the climate system to relatively weak changes in radiative forcing combined with a modification of the atmospheric circulation, displaying some similarities with the positive phase of the so-called Arctic Oscillation, and with northward shifts in the position of the Gulf Stream and Kuroshio currents. The mechanisms underlying the MCA are thus quite different from anthropogenic mechanisms responsible for modern global warming.

  3. Influence of the sea surface temperature anomaly over the Indian Ocean in March on the summer rainfall in Xinjiang

    Science.gov (United States)

    Zhou, Yang; Huang, Anning; Zhao, Yong; Yang, Qing; Jiang, Jing; La, Mengke

    2015-02-01

    This study explores the relationship between the sea surface temperature over the Indian Ocean (IOSST) in March and the summer rainfall in Xinjiang. In the observations, the IOSST in March significantly correlates with the summer rainfall in Xinjiang with a correlation coefficient of about 0.49 during 1961-2007. This relationship is independent from the El Niño Southern Oscillation (ENSO), with a partial correlation coefficient of about 0.40-0.48 controlling for the ENSO indices from December to March. In addition to the observations, three sets of numerical sensitivity experiments are conducted with a regional climate model (RegCM4.3). The model results show that warm IOSST can excite a negative anomaly of geopotential height at 500 hPa over the Indian Ocean in March. This anomaly stays over the tropical Indian Ocean, and then propagates north to central Asia in June. Consequently, the anomalous wind associated with this geopotential height anomaly transports moisture from the Persian Gulf and the coast of Iran to Xinjiang, passing over Pakistan and the Tibetan Plateau. Therefore, the warm (cold) IOSST in March tends to cause the increase (decrease) of the summer rainfall over Xinjiang, especially in the Tian Shan and Kunlun Mountains.

  4. IMPACT OF CLIMATE ANOMALY ON CATCH COMPOSITION OF NERITIC TUNA IN SUNDA STRAIT

    Directory of Open Access Journals (Sweden)

    Khairul Amri

    2013-12-01

    Full Text Available Tongkol komo/kawakawa (Euthynnus affinis and tenggiri (Scomberomerus guttatus are commonly caught by mini purseiners operated in Sunda Straits and landed in Labuan, West Java. This species inhabits coastal water and has preference staying in relatively warm water. Oceanography parameters commonly influencing the distribution of Euthynnus affinis are temperature, current, and salinity. The oceanography of Sunda Strait is influenced by water masses coming from the north that mainly originated from the Java Sea and water masses from the south mainly originated from Indian Ocean. The internal oceanography of Sunda Strait is also influenced by upwelling and monsoon as regional climate anomaly (ENSO and Indian Ocean Dipole Mode. This paper describes the influence of Dipole Mode (positive and negative event and ENSO (El- Nino/La-Nina to the catch dynamics of neritic tuna particularly in Sunda Straits waters. The results shown that regional climate anomaly influenced neritic tuna catch and its composition. The catches Euthynnus affinis in phase negative dipole mode or La-Nina were higher and dominated the catch composition of pelagic fishes of Sunda Strait. Similar situation also is showen by Scomberomorus commerson.

  5. Simultaneous solution of the geoid and the surface density anomalies

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.; Karimi, R.; AllahTavakoli, Y.

    2012-04-01

    The main application of the land gravity data in geodesy is "local geoid" or "local gravity field" modeling, whereas the same data could play a vital role for the anomalous mass-density modeling in geophysical explorations. In the realm of local geoid computations based on Geodetic Boundary Value Problems (GBVP), it is needed that the effect of the topographic (or residual terrain) masses be removed via application of the Newton integral in order to perform the downward continuation in a harmonic space. However, harmonization of the downward continuation domain may not be perfectly possible unless accurate information about the mass-density of the topographic masses be available. On the other hand, from the exploration point of view the unwanted topographical masses within the aforementioned procedure could be regarded as the signal. In order to overcome the effect of the remaining masses within the remove step of the GBVP, which cause uncertainties in mathematical modeling of the problem, here we are proposing a methodology for simultaneous solution of the geoid and residual surface density modeling In other words, a new mathematical model will be offered which both provides the needed harmonic space for downward continuation and at the same time accounts for the non-harmonic terms of gravitational field and makes use of it for residual mass density modeling within the topographic region. The presented new model enjoys from uniqueness of the solution, opposite to the inverse application of the Newton integral for mass density modeling which is non-unique, and only needs regularization to remove its instability problem. In this way, the solution of the model provides both the incremental harmonic gravitational potential on surface of the reference ellipsoid as the gravity field model and the lateral surface mass-density variations via the second derivatives of the non harmonic terms of gravitational field. As the case study and accuracy verification, the proposed

  6. A review on remotely sensed land surface temperature anomaly as an earthquake precursor

    Science.gov (United States)

    Bhardwaj, Anshuman; Singh, Shaktiman; Sam, Lydia; Joshi, P. K.; Bhardwaj, Akanksha; Martín-Torres, F. Javier; Kumar, Rajesh

    2017-12-01

    The low predictability of earthquakes and the high uncertainty associated with their forecasts make earthquakes one of the worst natural calamities, capable of causing instant loss of life and property. Here, we discuss the studies reporting the observed anomalies in the satellite-derived Land Surface Temperature (LST) before an earthquake. We compile the conclusions of these studies and evaluate the use of remotely sensed LST anomalies as precursors of earthquakes. The arrival times and the amplitudes of the anomalies vary widely, thus making it difficult to consider them as universal markers to issue earthquake warnings. Based on the randomness in the observations of these precursors, we support employing a global-scale monitoring system to detect statistically robust anomalous geophysical signals prior to earthquakes before considering them as definite precursors.

  7. Reconstructing Tropical Southwest Pacific Climate Variability and Mean State Changes at Vanuatu during the Medieval Climate Anomaly using Geochemical Proxies from Corals

    Science.gov (United States)

    Lawman, A. E.; Quinn, T. M.; Partin, J. W.; Taylor, F. W.; Thirumalai, K.; WU, C. C.; Shen, C. C.

    2017-12-01

    The Medieval Climate Anomaly (MCA: 950-1250 CE) is identified as a period during the last 2 millennia with Northern Hemisphere surface temperatures similar to the present. However, our understanding of tropical climate variability during the MCA is poorly constrained due to a lack of sub-annually resolved proxy records. We investigate seasonal and interannual variability during the MCA using geochemical records developed from two well preserved Porites lutea fossilized corals from the tropical southwest Pacific (Tasmaloum, Vanuatu; 15.6°S, 166.9°E). Absolute U/Th dates of 1127.1 ± 2.7 CE and 1105.1 ± 3.0 CE indicate that the selected fossil corals lived during the MCA. We use paired coral Sr/Ca and δ18O measurements to reconstruct sea surface temperature (SST) and the δ18O of seawater (a proxy for salinity). To provide context for the fossil coral records and test whether the mean state and climate variability at Vanuatu during the MCA is similar to the modern climate, our analysis also incorporates two modern coral records from Sabine Bank (15.9°S, 166.0°E) and Malo Channel (15.7°S, 167.2°E), Vanuatu for comparison. We quantify the uncertainty in our modern and fossil coral SST estimates via replication with multiple, overlapping coral records. Both the modern and fossil corals reproduce their respective mean SST value over their common period of overlap, which is 25 years in both cases. Based on over 100 years of monthly Sr/Ca data from each time period, we find that SSTs at Vanuatu during the MCA are 1.3 ± 0.7°C cooler relative to the modern. We also find that the median amplitude of the annual cycle is 0.8 ± 0.3°C larger during the MCA relative to the modern. Multiple data analysis techniques, including the standard deviation and the difference between the 95th and 5th percentiles of the annual SST cycle estimates, also show that the MCA has greater annual SST variability relative to the modern. Stable isotope data acquisition is ongoing, and when

  8. Warming and Cooling: The Medieval Climate Anomaly in Africa and Arabia

    Science.gov (United States)

    Lüning, Sebastian; Gałka, Mariusz; Vahrenholt, Fritz

    2017-11-01

    The Medieval Climate Anomaly (MCA) is a well-recognized climate perturbation in many parts of the world, with a core period of 1000-1200 Common Era. Here we present a palaeotemperature synthesis for the MCA in Africa and Arabia, based on 44 published localities. The data sets have been thoroughly correlated and the MCA trends palaeoclimatologically mapped. The vast majority of available Afro-Arabian onshore sites suggest a warm MCA, with the exception of the southern Levant where the MCA appears to have been cold. MCA cooling has also been documented in many segments of the circum-Africa-Arabian upwelling systems, as a result of changes in the wind systems which were leading to an intensification of cold water upwelling. Offshore cores from outside upwelling systems mostly show warm MCA conditions. The most likely key drivers of the observed medieval climate change are solar forcing and ocean cycles. Conspicuous cold spikes during the earliest and latest MCA may help to discriminate between solar (Oort Minimum) and ocean cycle (Atlantic Multidecadal Oscillation, AMO) influence. Compared to its large share of nearly one quarter of the world's landmass, data from Africa and Arabia are significantly underrepresented in global temperature reconstructions of the past 2,000 years. Onshore data are still absent for most regions in Africa and Arabia, except for regional data clusters in Morocco, South Africa, the East African Rift, and the Levant coast. In order to reconstruct land palaeotemperatures more robustly over Africa and Arabia, a systematic research program is needed.

  9. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    Science.gov (United States)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have

  10. The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean

    Science.gov (United States)

    Cronin, T. M.; Hayo, K.; Thunell, R.C.; Dwyer, G.S.; Saenger, C.; Willard, D.A.

    2010-01-01

    A new 2400-year paleoclimate reconstruction from Chesapeake Bay (CB) (eastern US) was compared to other paleoclimate records in the North Atlantic region to evaluate climate variability during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Using Mg/Ca ratios from ostracodes and oxygen isotopes from benthic foraminifera as proxies for temperature and precipitation-driven estuarine hydrography, results show that warmest temperatures in CB reached 16-17. ??C between 600 and 950. CE (Common Era), centuries before the classic European Medieval Warm Period (950-1100. CE) and peak warming in the Nordic Seas (1000-1400. CE). A series of centennial warm/cool cycles began about 1000. CE with temperature minima of ~. 8 to 9. ??C about 1150, 1350, and 1650-1800. CE, and intervening warm periods (14-15. ??C) centered at 1200, 1400, 1500 and 1600. CE. Precipitation variability in the eastern US included multiple dry intervals from 600 to 1200. CE, which contrasts with wet medieval conditions in the Caribbean. The eastern US experienced a wet LIA between 1650 and 1800. CE when the Caribbean was relatively dry. Comparison of the CB record with other records shows that the MCA and LIA were characterized by regionally asynchronous warming and complex spatial patterns of precipitation, possibly related to ocean-atmosphere processes. ?? 2010.

  11. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    Science.gov (United States)

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  12. Detecting primary precursors of January surface air temperature anomalies in China

    Science.gov (United States)

    Tan, Guirong; Ren, Hong-Li; Chen, Haishan; You, Qinglong

    2017-12-01

    This study aims to detect the primary precursors and impact mechanisms for January surface temperature anomaly (JSTA) events in China against the background of global warming, by comparing the causes of two extreme JSTA events occurring in 2008 and 2011 with the common mechanisms inferred from all typical episodes during 1979-2008. The results show that these two extreme events exhibit atmospheric circulation patterns in the mid-high latitudes of Eurasia, with a positive anomaly center over the Ural Mountains and a negative one to the south of Lake Baikal (UMLB), which is a pattern quite similar to that for all the typical events. However, the Eurasian teleconnection patterns in the 2011 event, which are accompanied by a negative phase of the North Atlantic Oscillation, are different to those of the typical events and the 2008 event. We further find that a common anomalous signal appearing in early summer over the tropical Indian Ocean may be responsible for the following late-winter Eurasian teleconnections and the associated JSTA events in China. We show that sea surface temperature anomalies (SSTAs) in the preceding summer over the western Indian Ocean (WIO) are intimately related to the UMLB-like circulation pattern in the following January. Positive WIOSSTAs in early summer tend to induce strong UMLB-like circulation anomalies in January, which may result in anomalously or extremely cold events in China, which can also be successfully reproduced in model experiments. Our results suggest that the WIOSSTAs may be a useful precursor for predicting JSTA events in China.

  13. Simulations of The Extreme Precipitation Event Enhanced by Sea Surface Temperature Anomaly over the Black Sea

    Science.gov (United States)

    Hakan Doǧan, Onur; Önol, Barış

    2016-04-01

    Istanbul Technical University, Aeronautics and Astronautics Faculty, Meteorological Engineering, Istanbul, Turkey In this study, we examined the extreme precipitation case over the Eastern Black Sea region of Turkey by using regional climate model, RegCM4. The flood caused by excessive rain in August 26, 2010 killed 12 people and the landslides in Rize province have damaged many buildings. The station based two days total precipitation exceeds 200 mm. One of the usual suspects for this extreme event is positive anomaly of sea surface temperature (SST) over the Black Sea where the significant warming trend is clear in the last three decades. In August 2010, the monthly mean SST is higher than 3 °C with respect to the period of 1981-2010. We designed three sensitivity simulations with RegCM4 to define the effects of the Black Sea as a moisture source. The simulation domain with 10-km horizontal resolution covers all the countries bordering the Black Sea and simulation period is defined for entire August 2010. It is also noted that the spatial variability of the precipitation produced by the reference simulation (Sim-0) is consistent with the TRMM data. In terms of analysis of the sensitivity to SST, we forced the simulations by subtracting 1 °C (Sim-1), 2 °C (Sim-2) and 3 °C (Sim-3) from the ERA-Interim 6-hourly SST data (considering only the Black Sea). The sensitivity simulations indicate that daily total precipitation for all these simulations gradually decreased based on the reference simulation (Sim-0). 3-hourly maximum precipitation rates for Sim-0, Sim-1, Sim-2 and Sim-3 are 32, 25, 13 and 10.5 mm respectively over the hotspot region. Despite the fact that the simulations signal points out the same direction, degradation of the precipitation intensity does not indicate the same magnitude for all simulations. It is revealed that 2 °C (Sim-2) threshold is critical for SST sensitivity. We also calculated the humidity differences from the simulation and these

  14. Attribution of surface temperature anomalies induced by land use and land cover changes

    Science.gov (United States)

    Rigden, Angela J.; Li, Dan

    2017-07-01

    Land use/land cover changes (LULCC) directly impact the surface temperature by modifying the radiative, physiological, and aerodynamic properties controlling the surface energy and water balances. In this study, we propose a new method to attribute changes in the surface temperature induced by LULCC to changes in radiative and turbulent heat fluxes, with the partition of turbulent fluxes controlled by aerodynamic and surface resistances. We demonstrate that previous attribution studies have overestimated the contribution of aerodynamic resistance by assuming independence between the aerodynamic resistance and the Bowen ratio. Our results further demonstrate that acceptable agreement between modeled and observed temperature anomalies does not guarantee correct attribution by the model. When performing an attribution analysis, the covariance among attributing variables needs to be taken into consideration in order to accurately interpret the results.

  15. Far-infrared surface emissivity and climate.

    Science.gov (United States)

    Feldman, Daniel R; Collins, William D; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-18

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8-2.0 W m(-2) difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m(-2), and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.

  16. Observations. Surface and Atmospheric Climate Change. Chapter 3

    Energy Technology Data Exchange (ETDEWEB)

    Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; Soden, B.; Zhai, P.

    2007-09-15

    understanding of extremes. The global means of temperature and precipitation are most readily linked to global mean radiative forcing and are important because they clearly indicate if unusual change is occurring. However, the local or regional response can be complex and perhaps even counter-intuitive, such as changes in planetary waves in the atmosphere induced by global warming that result in regional cooling. As an indication of the complexity associated with temporal and spatial scales measures of the magnitude of natural variability of surface temperature in which climate signals are embedded are provided. The measures used are indicators of the range: the mean range of the diurnal and annual cycles, and the estimated 5th to 95th percentiles range of anomalies. These are based on the standard deviation and assumed normal distribution, which is a reasonable approximation in many places for temperature, with the exception of continental interiors in the cold season, which have strongly negatively skewed temperature distributions owing to cold extremes. For the global mean, the variance is somewhat affected by the observed trend, which inflates this estimate of the range slightly. The comparison highlights the large diurnal cycle and daily variability. Daily variability is, however, greatly reduced by either spatial or temporal averaging that effectively averages over synoptic weather systems. Nevertheless, even continental-scale averages contain much greater variability than the global mean in association with planetary-scale waves and events such as El Nino.

  17. The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations

    Directory of Open Access Journals (Sweden)

    R. M. Parinussa

    2011-10-01

    MERRA land surface temperature instead of Ka-band radiometric land surface temperature leads to a relative decrease in skill (on average 9.7% of soil moisture anomaly estimates. However the situation is reversed for highly vegetated conditions where soil moisture anomaly estimates show a relative increase in skill (on average 13.7% when using MERRA land surface temperature. In addition, a pre-processing technique to shift phase of the modelled surface temperature is shown to generally enhance the value of MERRA surface temperature estimates for soil moisture retrieval. Finally, a very high correlation (R2 = 0.95 and consistency between the two evaluation techniques lends further credibility to the obtained results.

  18. Coherent climate anomalies over the Indo-western Pacific in post-El Niño summer

    Science.gov (United States)

    Kosaka, Y.; Xie, S. P.; DU, Y.; Hu, K.; Chowdary, J. S.; Huang, G.

    2016-12-01

    El Niño typically peaks in boreal winter, and the associated equatorial Pacific sea surface temperature (SST) signal dissipates before subsequent summer. Its impact, however, outlasts until boreal summer in the Indo-western Pacific, featuring basin-wide Indian Ocean warming and tropical Northwestern Pacific cooling accompanied by the Pacific-Japan (PJ) teleconnection pattern with surface anomalous anticyclone (AAC) extending from the Philippine Sea to the northern Indian Ocean. Two formation mechanisms have been proposed for these climate anomalies in post-El Niño-Southern Oscillation (ENSO) summer. One hypothesis invokes the wind-evaporation-SST (WES) feedback in the tropical Northwestern Pacific, while the other points to inter-basin feedback between the Indian Ocean and tropical Northwestern Pacific. Based on a coupled model experiment, we propose an ocean-atmosphere coupled mode that synthesizes the two mechanisms. This Indo-western Pacific Ocean capacitor (IPOC) mode evolves seasonally from spring to summer under seasonal migration of background state. In spring, the WES feedback is operative in association with the tropical Northwestern Pacific cooling, while in summer the Indian Ocean warming and the inter-basin interaction maintains the AAC. While the IPOC mode is independent of ENSO in mechanism, ENSO can drive this mode in its decay phase. This excitation, however, has undergone substantial interdecadal modulations, depending on ENSO amplitude and persistence of Indian Ocean warming. The ENSO-IPOC correlation is high after the mid-1970s and at the beginning of the 20th century, but low in between.

  19. On the Relative Influences of Different Ocean Basin Sea Surface Temperature Anomalies on Southern African Rainfall in 20th and 21st Century GCM Simulations

    Science.gov (United States)

    Lickley, M.; Solomon, S.

    2017-12-01

    Southern Africa rainfall (SAR) is generally projected to decrease during the 21st century as a result of climate change, though there is some disagreement regarding the location and magnitude of this reduction in General Circulation Models (GCMs). Here we examine the robustness of the rainfall response to sea surface temperature (SST) anomalies. Previous work argues that warmer SSTs in the Indian Ocean suppress SAR. Other studies argue that El Niños lead to suppressed SAR. We examine the SAR response to SST anomalies in the Indian Ocean, Atlantic Ocean and ENSO 3.4 region both in observations and in two large ensembles of GCMs run over the 20th and 21st century. We find that ENSO SSTs are most correlated with SAR, while correlations between SAR and the Indian Ocean are dominated by their respective responses to ENSO. This relationship appears to persist under a warming background state.

  20. Preliminary analysis of surface temperature anomalies that preceded the two major Emilia 2012 earthquakes (Italy

    Directory of Open Access Journals (Sweden)

    Kai Qin

    2012-10-01

    Full Text Available In the 1980's, from an analysis of satellite images, Russian scientists reported on a short-term thermal infrared radiation enhancement that occurred before some medium-to-large earthquakes in central Asia [Gorny et al. 1988]. Since then, many researchers have been studying earthquake thermal anomalies with satellite remote sensing data [Qiang et al. 1991, Tronin 1996, Tramutoli et al. 2001, Ouzounov and Freund 2004, Saraf and Choudhury 2004, Aliano et al. 2008, Blackett et al. 2011]. Recently, abnormal surface latent heat flux [Dey and Singh 2003, Cervone et al. 2005, Qin et al. 2009, Qin et al. 2011, Qin et al. 2012], outgoing long-wave radiation [Ouzounov et al. 2007] and microwave radiation [Takashi and Tadashi 2010] have also been shown to precede earthquakes. To investigate the possible physical mechanisms of such satellite thermal anomalies, some studies conducted a series of detecting experiments on rock loaded to fracturing [Wu et al. 2000, Freund 2002, Wu et al. 2002, Wu et al. 2006a, Wu et al. 2006b, Freund et al. 2007], and some hypotheses have been proposed. These have included: leaking of pore-gas, and hence the resulting greenhouse effect [Qiang et al. 1995]; activating and recombining of p-holes during rock deformation [Freund 2002]; release of latent heat due to near-surface air ionization [Pulinets et al. 2006], and stress-induced thermal effects due to friction and fluids [Wu and Liu 2009]. […] In this study, the long-term temperature data from both satellite and ground (with greater emphasis on the satellite data have been used to determine whether there were thermal anomalies associated with this Emilia 2012 seismic sequence. In particular, the next section will be dedicated to describing both the data and the method of analysis. In Section 3, we provide the more significant results, which we discuss in Section 4, together with the main conclusions. […

  1. Expanded spatial extent of the Medieval Climate Anomaly revealed in lake-sediment records across the boreal region in northwest Ontario.

    Science.gov (United States)

    Laird, Kathleen R; Haig, Heather A; Ma, Susan; Kingsbury, Melanie V; Brown, Thomas A; Lewis, C F Michael; Oglesby, Robert J; Cumming, Brian F

    2012-09-01

    Multi-decadal to centennial-scale shifts in effective moisture over the past two millennia are inferred from sedimentary records from six lakes spanning a ~250 km region in northwest Ontario. This is the first regional application of a technique developed to reconstruct drought from drainage lakes (open lakes with surface outlets). This regional network of proxy drought records is based on individual within-lake calibration models developed using diatom assemblages collected from surface sediments across a water-depth gradient. Analysis of diatom assemblages from sediment cores collected close to the near-shore ecological boundary between benthic and planktonic diatom taxa indicated this boundary shifted over time in all lakes. These shifts are largely dependent on climate-driven influences, and can provide a sensitive record of past drought. Our lake-sediment records indicate two periods of synchronous signals, suggesting a common large-scale climate forcing. The first is a period of prolonged aridity during the Medieval Climate Anomaly (MCA, c. 900-1400 CE). Documentation of aridity across this region expands the known spatial extent of the MCA megadrought into a region that historically has not experienced extreme droughts such as those in central and western north America. The second synchronous period is the recent signal of the past ~100 years, which indicates a change to higher effective moisture that may be related to anthropogenic forcing on climate. This approach has the potential to fill regional gaps, where many previous paleo-lake depth methods (based on deeper centrally located cores) were relatively insensitive. By filling regional gaps, a better understanding of past spatial patterns in drought can be used to assess the sensitivity and realism of climate model projections of future climate change. This type of data is especially important for validating high spatial resolution, regional climate models. © 2012 Blackwell Publishing Ltd.

  2. Climate Prediction Center (CPC) Area-average 200-hPa Zonal Wind Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 200-hPa zonal wind anomalies averaged over the area 5oN ? 5oS, 165oW-110oW. The anomalies are...

  3. A triangular climate-based decision model to forecast crop anomalies in Kenya

    Science.gov (United States)

    Guimarães Nobre, G.; Davenport, F.; Veldkamp, T.; Jongman, B.; Funk, C. C.; Husak, G. J.; Ward, P.; Aerts, J.

    2017-12-01

    By the end of 2017, the world is expected to experience unprecedented demands for food assistance where, across 45 countries, some 81 million people will face a food security crisis. Prolonged droughts in Eastern Africa are playing a major role in these crises. To mitigate famine risk and save lives, government bodies and international donor organisations are increasingly building up efforts to resolve conflicts and secure humanitarian relief. Disaster-relief and financing organizations traditionally focus on emergency response, providing aid after an extreme drought event, instead of taking actions in advance based on early warning. One of the reasons for this approach is that the seasonal risk information provided by early warning systems is often considered highly uncertain. Overcoming the reluctance to act based on early warnings greatly relies on understanding the risk of acting in vain, and assessing the cost-effectiveness of early actions. This research develops a triangular climate-based decision model for multiple seasonal time-scales to forecast strong anomalies in crop yield shortages in Kenya using Casual Discovery Algorithms and Fast and Frugal Decision Trees. This Triangular decision model (1) estimates the causality and strength of the relationship between crop yields and hydro climatological predictors (extracted from the Famine Early Warning Systems Network's data archive) during the crop growing season; (2) provides probabilistic forecasts of crop yield shortages in multiple time scales before the harvesting season; and (3) evaluates the cost-effectiveness of different financial mechanisms to respond to early warning indicators of crop yield shortages obtained from the model. Furthermore, we reflect on how such a model complements and advances the current state-of-art FEWS Net system, and examine its potential application to improve the management of agricultural risks in Kenya.

  4. Remote Sensing of Climatic Anomalies and West Nile Virus Risk in the United States

    Science.gov (United States)

    Wimberly, M. C.; Chuang, T.; Henebry, G. M.; Kimball, J. S.

    2012-12-01

    West Nile virus (WNV) is the most widespread and important mosquito-borne pathogen in North America, and the national resurgence of human WNV cases during the summer of 2012 has highlighted the persistent threat posed by this potentially fatal disease. Advance warning of the timing and locations of WNV outbreaks can help public health officials to more effectively target WNV prevention and control efforts. To this end, we used environmental monitoring data from earth observing satellites to develop environmental indices of WNV risk and applied these indices to model seasonal and interannual patterns of mosquito populations and human disease cases. Our overarching hypothesis is that anomalies of cumulative temperature and moisture throughout the mosquito season affect the risk of WNV transmission to humans through their influences on mosquito populations, bird communities, and the extrinsic incubation period of the virus itself. In a preliminary study, we developed a model of WNV in the northern Great Plains using satellite optical-IR remote sensing products from MODIS, including land surface temperature, vegetation indices, and actual evapotranspiration computed using the simplified surface energy balance method. This model was applied in 2011 and 2012 to forecast spatial patterns of WNV relative risk prior to the main transmission season in July-September. We expanded this modeling approach to a national level using a daily global land surface parameter database developed from the NASA Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E). This dataset provides several novel environmental variables that are potentially relevant to mosquito ecology, including near-surface air temperature, surface soil moisture, fractional open water cover, and estimates of vegetation canopy opacity to microwave emissions at three microwave frequencies. Preliminary analyses demonstrated that higher temperatures during the amplification season are consistently

  5. Information transfer and synchronization among the scales of climate variability: clues for understanding anomalies and extreme events?

    Science.gov (United States)

    Palus, Milan

    2017-04-01

    Deeper understanding of complex dynamics of the Earth atmosphere and climate is inevitable for sustainable development, mitigation and adaptation strategies for global change and for prediction of and resilience against extreme events. Traditional (linear) approaches cannot explain or even detect nonlinear interactions of dynamical processes evolving on multiple spatial and temporal scales. Combination of nonlinear dynamics and information theory explains synchronization as a process of adjustment of information rates [1] and causal relations (à la Granger) as information transfer [2]. Information born in dynamical complexity or information transferred among systems on a way to synchronization might appear as an abstract quantity, however, information transfer is tied to a transfer of mass and energy, as demonstrated in a recent study using directed (causal) climate networks [2]. Recently, an information transfer across scales of atmospheric dynamics has been observed [3]. In particular, a climate oscillation with the period around 7-8 years has been identified as a factor influencing variability of surface air temperature (SAT) on shorter time scales. Its influence on the amplitude of the SAT annual cycle was estimated in the range 0.7-1.4 °C and the effect on the overall variability of the SAT anomalies (SATA) leads to the changes 1.5-1.7 °C in the annual SATA means. The strongest effect of the 7-8 year cycle was observed in the winter SATA means where it reaches 4-5 °C in central European station and reanalysis data [4]. In the dynamics of El Niño-Southern Oscillation, three principal time scales have been identified: the annual cycle (AC), the quasibiennial (QB) mode(s) and the low-frequency (LF) variability. An intricate causal network of information flows among these modes helps to understand the occurrence of extreme El Niño events, characterized by synchronization of the QB modes and AC, and modulation of the QB amplitude by the LF mode. The latter

  6. Midlatitude atmospheric responses to Arctic sensible heat flux anomalies in Community Climate Model, Version 4: Atmospheric Response to Arctic SHFs

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Catrin M. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder Colorado USA; Cassano, John J. [Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder Colorado USA; Cassano, Elizabeth N. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder Colorado USA

    2016-12-10

    Possible linkages between Arctic sea ice loss and midlatitude weather are strongly debated in the literature. We analyze a coupled model simulation to assess the possibility of Arctic ice variability forcing a midlatitude response, ensuring consistency between atmosphere, ocean, and ice components. We work with weekly running mean daily sensible heat fluxes with the self-organizing map technique to identify Arctic sensible heat flux anomaly patterns and the associated atmospheric response, without the need of metrics to define the Arctic forcing or measure the midlatitude response. We find that low-level warm anomalies during autumn can build planetary wave patterns that propagate downstream into the midlatitudes, creating robust surface cold anomalies in the eastern United States.

  7. Prominent Midlatitude Circulation Signature in High Asia's Surface Climate During Monsoon

    Science.gov (United States)

    Mölg, Thomas; Maussion, Fabien; Collier, Emily; Chiang, John C. H.; Scherer, Dieter

    2017-12-01

    High Asia has experienced strong environmental changes in recent decades, as evident in records of glaciers, lakes, tree rings, and vegetation. The multiscale understanding of the climatic drivers, however, is still incomplete. In particular, few systematic assessments have evaluated to what degree, if at all, the midlatitude westerly circulation modifies local surface climates in the reach of the Indian Summer Monsoon. This paper shows that a southward shift of the upper-tropospheric westerlies contributes significantly to climate variability in the core monsoon season (July-September) by two prominent dipole patterns at the surface: cooling in the west of High Asia contrasts with warming in the east, while moist anomalies in the east and northwest occur with drying along the southwestern margins. Circulation anomalies help to understand the dipoles and coincide with shifts in both the westerly wave train and the South Asian High, which imprint on air mass advection and local energy budgets. The relation of the variabilities to a well-established index of midlatitude climate dynamics allows future research on climate proxies to include a fresh hypothesis for the interpretation of environmental changes.

  8. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    NARCIS (Netherlands)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.

    2017-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of

  9. Low frequency variability of the Indian Ocean from TOPEX/POSEIDON sea surface height anomalies

    Digital Repository Service at National Institute of Oceanography (India)

    Somayajulu, Y.K.; Murty, V.S.N.; Sarma, Y.V.B.

    and off Sumatra present large variability on both seasonal and inter-annual time scales. The SSH anomalies off Sumatra show dominant influence of warm (cold) ENSO events with peak negative (positive) anomalies coinciding with El Nino (La Nina...

  10. Land surface contribution to climate predictability: the long way from early evidence to improved forecast skill

    Science.gov (United States)

    Douville, Hervé

    2013-04-01

    Seasonal forecasts performance over most land areas remains relatively weak, particularly in the mid-latitudes where the interannual ocean variability has a lesser influence than in the tropics. Yet, many observational and numerical studies suggest that there is a fraction of predictability that is still untapped over land at the monthly to seasonal time scales, due to both local and remote land surface effects. Soil moisture and snow mass anomalies may have a strong signature in the land surface energy budget and thereby influence not only surface temperature, but also precipitation through changes in surface evaporation and/or moisture convergence. Land surface anomalies may also trigger planetary waves that can have remote effects on seasonal mean climate. This talk will first illustrate some potential land surface impacts on climate predictability using both statistical and numerical evidence. Then, the limitations of such studies and the practical difficulties for taking advantage of the land surface memory will be presented, as well as on-going efforts for adressing these issues at both European (i.e., SPECS) and international (i.e., GLACE) levels.

  11. Pacific climate variability and the possible impact on global surface CO2 flux

    Directory of Open Access Journals (Sweden)

    Kawamiya Michio

    2011-10-01

    Full Text Available Abstract Background Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM control run are examined. Results Global integration of the terrestrial CO2 flux anomaly shows variation much greater in amplitude and longer in periodic timescale than the oceanic flux. The terrestrial CO2 flux anomaly correlates negatively with the oceanic flux in some periods, but positively in others, as the periodic timescale is different between the two variables. To determine the spatial pattern of the variability, a series of composite analyses are performed. The results show that the oceanic CO2 flux variability peaks when the eastern tropical Pacific has a large sea surface temperature anomaly (SSTA. By contrast, the terrestrial CO2 flux variability peaks when the SSTA appears in the central tropical Pacific. The former pattern of variability resembles the ENSO-mode and the latter the ENSO-modoki1. Conclusions Our results imply that the oceanic and terrestrial CO2 flux anomalies may correlate either positively or negatively depending on the relative phase of these two modes in the tropical Pacific.

  12. Pacific climate variability and the possible impact on global surface CO2 flux.

    Science.gov (United States)

    Okajima, Hideki; Kawamiya, Michio

    2011-10-08

    Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM) control run are examined. Global integration of the terrestrial CO2 flux anomaly shows variation much greater in amplitude and longer in periodic timescale than the oceanic flux. The terrestrial CO2 flux anomaly correlates negatively with the oceanic flux in some periods, but positively in others, as the periodic timescale is different between the two variables. To determine the spatial pattern of the variability, a series of composite analyses are performed. The results show that the oceanic CO2 flux variability peaks when the eastern tropical Pacific has a large sea surface temperature anomaly (SSTA). By contrast, the terrestrial CO2 flux variability peaks when the SSTA appears in the central tropical Pacific. The former pattern of variability resembles the ENSO-mode and the latter the ENSO-modoki1. Our results imply that the oceanic and terrestrial CO2 flux anomalies may correlate either positively or negatively depending on the relative phase of these two modes in the tropical Pacific.

  13. Advection and diffusion in random media implications for sea surface temperature anomalies

    CERN Document Server

    Piterbarg, Leonid I

    1997-01-01

    The book presents the foundations of the theory of turbulent transport within the context of stochastic partial differential equations. It serves to establish a firm connection between rigorous and non-rigorous results concerning turbulent diffusion. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: stochastic advection-diffusion (transport) equation. There is no attempt made to derive universal statistics for turbulent flow. Instead emphasis is placed on a statistical description of a passive scalar (tracer) under given velocity statistics. An application concerning transport of sea surface temperature anomalies reconciles the developed theory and a highly practical issue of modern physical oceanography by using the newly designed inversion techniques which take advantage of powerful maximum likelihood and autoregressive estimators. Audience: Graduate students and researchers in mathematics, fluid dynamics, and physical oceanography.

  14. Evolution features of the surface latent heat flux anomalies over the tropical Pacific associated with two types of ENSO events

    Science.gov (United States)

    Liu, Zhiyuan; Zhou, Lian-Tong

    2017-09-01

    The present study investigates the features of the surface latent heat flux (LHF) anomalies and their related variables over the tropical Pacific during two types of El Niño-Southern Oscillation (ENSO) events and seeks a possible candidate for the main contributions to the LHF anomalies. During El Niño Modoki and canonical El Niño events, the LHFs show positive anomalies over the equatorial central Pacific and in the areas immediately south of the equatorial eastern Pacific. In addition, the largest magnitudes and widest ranges of positive LHF anomalies for both types of events occur during their mature stages rather than during their developing or decaying phases. Analyses show that the positive LHF anomalies associated with both events are largely affected by the positive sea-air humidity difference anomalies. However, the negative surface wind speed anomalies associated with the canonical El Niño events clearly contribute to the decreases in the positive LHF anomalies over the central Pacific and in the area immediately north of the equatorial eastern Pacific due to the presence of westerly and northerly anomalies, respectively. Moreover, over the equatorial central Pacific and in the area immediately south of the eastern Pacific, the LHF anomalies are mainly influenced by oceanic variables during both types of ENSO events, indicating an atmospheric response to oceanic forcing. In contrast, outside of the area spanning 10° north and south of the equator in the tropical Pacific and with the exception of the southeastern region, the LHF anomalies are greatly influenced by atmospheric variables, suggesting an oceanic response to atmospheric forcing. Distinct differences exist during the mature event phase, with oceanic forcing dominating the equatorial central Pacific during El Niño Modoki events and the area immediately south of the equatorial eastern Pacific during canonical El Niño events. In addition, both types of ENSO events suggest the increasing

  15. Assessment of Regional Vegetation Response to Climate Anomalies : A Case Study for Australia Using GIMMS NDVI Time Series between 1982 and 2006

    NARCIS (Netherlands)

    De Keersmaecker, W.; Lhermitte, S.L.M.; Hill, M.J.; Tits, L.; Coppin, P.; Somers, B.

    2017-01-01

    Within the context of climate change, it is of utmost importance to quantify the stability of ecosystems with respect to climate anomalies. It is well acknowledged that ecosystem stability may change over time. As these temporal stability changes may provide a warning for increased vulnerability of

  16. Climate variability during the Medieval Climate Anomaly and Little Ice Age based on ostracod faunas and shell geochemistry from Biscayne Bay, Florida: Chapter 14

    Science.gov (United States)

    Cronin, Thomas M.; Wingard, G. Lynn; Dwyer, Gary S.; Swart, Peter K.; Willard, Debra A.; Albietz, Jessica

    2012-01-01

    An 800-year-long environmental history of Biscayne Bay, Florida, is reconstructed from ostracod faunal and shell geochemical (oxygen, carbon isotopes, Mg/Ca ratios) studies of sediment cores from three mudbanks in the central and southern parts of the bay. Using calibrations derived from analyses of modern Biscayne and Florida Bay ostracods, palaeosalinity oscillations associated with changes in precipitation were identified. These oscillations reflect multidecadal- and centennial-scale climate variability associated with the Atlantic Multidecadal Oscillation during the late Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Evidence suggests wetter regional climate during the MCA and drier conditions during the LIA. In addition, twentieth century anthropogenic modifications to Everglades hydrology influenced bay circulation and/or processes controlling carbon isotopic composition.

  17. Changes in Managerial Decision on Pond Management to Adapt to Climate Anomalies in the Coastal Area of Pare-Pare Gulf, District of Pinrang

    Science.gov (United States)

    Fattah, M. H.; Busaeri, S. R.; Kasnir, M.; Siswanto

    2017-08-01

    The climate anomaly was adapted through the adjustment of tiger shrimp stocking patterns and optimum use of locally endemic Phronima Suppa (PS) to suit the season. Thus, the batches period determined was adjusted to suit climate change dynamics, reducing the shrimp stocking density down to 10.000 - 15.000 per ha and applying PS so the shrimp became tolerant of any environmental stress and pathogen infection. The knowledge of adaptation to climate anomalies, a learning outcome of the field school, managed to increase the average production of tiger shrimp to 217 kg/ha with an average receipt of IDR 22.60 million/ha.

  18. Integrated GRASS GIS based techniques to identify thermal anomalies on water surface. Taranto case study.

    Science.gov (United States)

    Massarelli, Carmine; Matarrese, Raffaella; Felice Uricchio, Vito

    2014-05-01

    In the last years, thermal images collected by airborne systems have made the detection of thermal anomalies possible. These images are an important tool to monitor natural inflows and legal or illegal dumping in coastal waters. By the way, the potential of these kinds of data is not well exploited by the Authorities who supervises the territory. The main reason is the processing of remote sensing data that requires very specialized operators and softwares which are usually expensive and complex. In this study, we adopt a simple methodology that uses GRASS, a free open-source GIS software, which has allowed us to map surface water thermal anomalies and, consequently, to identify and locate coastal inflows, as well as manmade or natural watershed drains or submarine springs (in italian citri) in the Taranto Sea (South of Italy). Taranto sea represents a coastal marine ecosystem that has been gradually modified by mankind. One of its inlet, the Mar Piccolo, is a part of the National Priority List site identified by the National Program of Environmental Remediation and Restoration because of the size and high presence of industrial activities, past and present, that have had and continue to seriously compromise the health status of the population and the environment. In order to detect thermal anomalies, two flights have been performed respectively on March 3rd and on April 7th, 2013. A total of 13 TABI images have been acquired to map the whole Mar Piccolo with 1m of spatial resolution. TABI-320 is an airborne thermal camera by ITRES, with a continuous spectral range between 8 and 12 microns. On July 15th, 2013, an in-situ survey was carried out along the banks to retrieve clear visible points of natural or artificial inflows, detecting up to 72 of discharges. GRASS GIS (Geographic Resources Analysis Support System), is a free and open source Geographic Information System (GIS) software suite used for geospatial data management and analysis, image processing

  19. Climate Prediction Center (CPC)Area-averaged 850-hPa Western Pacific Trade Wind Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 850-hPa trade wind anomalies averaged over the area 5oN ? 5oS, 135oE-180o (western equatorial...

  20. Climate Prediction Center (CPC)Area-averaged 850-hPa Eastern Pacific Trade Wind Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 850-hPa trade wind anomalies averaged over the area 5oN ? 5oS, 135oW-120oW (eastern...

  1. Climate Prediction Center (CPC)Area-averaged 850-hPa Central Pacific Trade Wind Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 850-hPa trade wind anomalies averaged over the area 5oN ? 5oS, 175oW-140oW (central...

  2. The role of forcing and internal dynamics in explaining the ''Medieval Climate Anomaly''

    Energy Technology Data Exchange (ETDEWEB)

    Goosse, Hugues; Crespin, Elisabeth; Dubinkina, Svetlana; Loutre, Marie-France; Sallaz-Damaz, Yoann [Universite Catholique de Louvain, Earth and Life Institute, Georges Lemaitre Centre for Earth and Climate Research, Louvain-la-Neuve (Belgium); Mann, Michael E. [Pennsylvania State University, Department of Meteorology and Earth and Environmental Systems Institute, University Park, PA (United States); Renssen, Hans [Vrije Universiteit Amsterdam, Section Climate Change and Landscape Dynamics, Department of Earth Sciences, Amsterdam (Netherlands); Shindell, Drew [NASA Goddard Institute for Space Studies, New York City, NY (United States)

    2012-12-15

    Proxy reconstructions suggest that peak global temperature during the past warm interval known as the Medieval Climate Anomaly (MCA, roughly 950-1250 AD) has been exceeded only during the most recent decades. To better understand the origin of this warm period, we use model simulations constrained by data assimilation establishing the spatial pattern of temperature changes that is most consistent with forcing estimates, model physics and the empirical information contained in paleoclimate proxy records. These numerical experiments demonstrate that the reconstructed spatial temperature pattern of the MCA can be explained by a simple thermodynamical response of the climate system to relatively weak changes in radiative forcing combined with a modification of the atmospheric circulation, displaying some similarities with the positive phase of the so-called Arctic Oscillation, and with northward shifts in the position of the Gulf Stream and Kuroshio currents. The mechanisms underlying the MCA are thus quite different from anthropogenic mechanisms responsible for modern global warming. (orig.)

  3. Seasonal variability in Northern Hemisphere atmospheric circulation during the Medieval Climate Anomaly and the Little Ice Age

    Science.gov (United States)

    Edwards, Thomas W. D.; Hammarlund, Dan; Newton, Brandi W.; Sjolte, Jesper; Linderson, Hans; Sturm, Christophe; St. Amour, Natalie A.; Bailey, Joscelyn N.-L.; Nilsson, Anders L.

    2017-06-01

    Here we report new reconstructions of winter temperature and summer moisture during the past millennium in southeastern Sweden, based on stable-isotope data from a composite tree-ring sequence, that further enhances our knowledge and understanding of seasonal climate variability in the Northern Hemisphere over the past millennium. Key features of these new climate proxy records include evidence for distinctive fluctuations in winter temperature in SE Sweden, superimposed upon the general pattern of cooling between the so-called Medieval Climate Anomaly (MCA) of the early millennium and the Little Ice Age (LIA) of the late millennium, as well as evidence for sustained summer wetness during the MCA, followed by drier and less variable conditions during the LIA. We also explore these new records within a circumpolar spatial context by employing self-organizing map analysis of meteorological reanalysis data to identify potential modern analogues of mid-tropospheric synoptic circulation types in the Northern Hemisphere extratropics that can reconcile varying seasonal climate states during the MCA and LIA in SE Sweden with less variable conditions in southwestern Canada, as portrayed by paleoclimate records developed in the same manner in an earlier study.

  4. Reconstruction of spatial patterns of climatic anomalies during the medieval warm period (AD 900-1300)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, H.F. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Research Labs.; Hughes, M.K. [Arizona Univ., Tucson, AZ (United States). Lab. of Tree-Ring Research

    1992-12-31

    The workshop will focus on climatic variations during the Medieval Warm Period or Little Climatic Optimum. The nominal time interval assigned to this period is AD 900--1300, but climate information available during the century or two preceding and following this episode is welcome. The aims of the workshop will be to: examine the available evidence for the existence of this episode; assess the spatial and temporal synchronicity of the climatic signals; discuss possible forcing mechanisms; and identify areas and paleoenvironmental records where additional research efforts are needed to improve our knowledge of this period. This document consists of abstracts of eighteen papers presented at the meeting.

  5. Pathfinder Sea Surface Temperature Climate Data Record

    Science.gov (United States)

    Baker-Yeboah, S.; Saha, K.; Zhang, D.; Casey, K. S.

    2016-02-01

    Global sea surface temperature (SST) fields are important in understanding ocean and climate variability. The NOAA National Centers for Environmental Information (NCEI) develops and maintains a high resolution, long-term, climate data record (CDR) of global satellite SST. These SST values are generated at approximately 4 km resolution using Advanced Very High Resolution Radiometer (AVHRR) instruments aboard NOAA polar-orbiting satellites going back to 1981. The Pathfinder SST algorithm is based on the Non-Linear SST algorithm using the modernized NASA SeaWiFS Data Analysis System (SeaDAS). Coefficients for this SST product were generated using regression analyses with co-located in situ and satellite measurements. Previous versions of Pathfinder included level 3 collated (L3C) products. Pathfinder Version 5.3 includes level 2 pre-processed (L2P), level 3 Uncollated (L3C), and L3C products. Notably, the data were processed in the cloud using Amazon Web Services and are made available through all of the modern web visualization and subset services provided by the THREDDS Data Server, the Live Access Server, and the OPeNDAP Hyrax Server.In this version of Pathfinder SST, anomalous hot-spots at land-water boundaries are better identified and the dataset includes updated land masks and sea ice data over the Antarctic ice shelves. All quality levels of SST values are generated, giving the user greater flexibility and the option to apply their own cloud-masking procedures. Additional improvements include consistent cloud tree tests for NOAA-07 and NOAA-19 with respect to the other sensors, improved SSTs in sun glint areas, and netCDF file format improvements to ensure consistency with the latest Group for High Resolution SST (GHRSST) requirements. This quality controlled satellite SST field is a reference environmental data record utilized as a primary resource of SST for numerous regional and global marine efforts.

  6. Global climate anomalies and potential infectious disease risks: 2014-2015

    Science.gov (United States)

    Background: The El Niño/Southern Oscillation (ENSO) is a global climate phenomenon that impacts human infectious disease risk worldwide through droughts, floods, and other climate extremes. Throughout summer and fall 2014, El Niño Watch, issued by the US National Oceanic and Atmospheric Administrat...

  7. Assessment of Regional Vegetation Response to Climate Anomalies: A Case Study for Australia Using GIMMS NDVI Time Series between 1982 and 2006

    Directory of Open Access Journals (Sweden)

    Wanda De Keersmaecker

    2017-01-01

    Full Text Available Within the context of climate change, it is of utmost importance to quantify the stability of ecosystems with respect to climate anomalies. It is well acknowledged that ecosystem stability may change over time. As these temporal stability changes may provide a warning for increased vulnerability of the system, this study provides a methodology to quantify and assess these temporal changes in vegetation stability. Within this framework, vegetation stability changes were quantified over Australia from 1982 to 2006 using GIMMS NDVI and climate time series (i.e., SPEI (Standardized Precipitation and Evaporation Index. Starting from a stability assessment on the complete time series, we aim to assess: (i the magnitude and direction of stability changes; and (ii the similarity in these changes for different stability metrics, i.e., the standard deviation of the NDVI anomaly (SD, auto-correlation at lag one of the NDVI anomaly (AC and the correlation of NDVI anomaly with SPEI (CS. Results show high variability in magnitude and direction for the different stability metrics. Large areas and types of Australian vegetation showed an increase in variability (SD over time; however, vegetation memory (AC decreased. The association of NDVI anomalies with drought events (CS showed a mixed response: the association increased in the western part, while it decreased in the eastern part. This methodology shows the potential for quantifying vegetation responses to major climate shifts and land use change, but results could be enhanced with higher resolution time series data.

  8. Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific

    Science.gov (United States)

    Anderson, Bruce T.

    2003-12-01

    The correspondence of sea-surface temperature (SST) anomalies to changes in antecedent large-scale sea level pressure anomalies is investigated using reanalysis data. By statistically examining linearly coupled precursor sea level pressure fields and subsequent SST fields for different lag periods, it is possible to isolate a precursor mode of sea level pressure (SLP) variability in the central subtropical North Pacific that precedes variations in the January-March El Niño/Southern Oscillation (ENSO) by approximately 12-15 months. A sea level pressure index, which captures the important characteristics of this precursor mode of variability, is developed and evaluated. It is shown that both analyzed and observed versions of the index are significantly correlated with the January-March ENSO one year later. The SLP index is then used to examine the evolution of the surface circulation and temperature structures leading up to mature ENSO events. Initially, the January-March subtropical North Pacific SLP anomalies are associated with changes in the intensity of the subtropical trade wind regime over the North Pacific, as well as with SST anomalies over the eastern equatorial Pacific and subtropical central Pacific. In agreement with the correlation statistics associated with the SLP and lagged NINO3.4 indices, both the sea level pressure field and the SST field subsequently develop ENSO-like structures over the course of the following year. Significant discussion of these results and pertinent areas of future research are provided within the broader context of the ENSO system.

  9. Postoperative assessment of surgical results using three dimensional surface reconstruction CT (3D-CT) in a craniofacial anomaly

    International Nuclear Information System (INIS)

    Nishimura, Jiro; Sato, Kaoru; Nishimoto, Hiroshi; Tsukiyama, Takashi; Fujioka, Mutsuhisa; Akagawa, Tetsuya.

    1988-01-01

    In 1983, Michael W. Vannier and Jeffrey L. Marsh developed a computer method that reconstructs three dimensional (3D) born and soft tissue surfaces, given a high resolution CT scan-series of the facial skeleton. This method has been applied to craniofacial anomalies, basal encephaloceles, and musculoskeletal anomalies. In this study, a postoperative assessment of the craniofacial surgical results has been accomplished using this 3D-CT in 2 children with craniofacial dysmorphism. The authors discuss the advantages of this 3D-CT imaging method in the postoperative assessments of craniofacial anomalies. Results are detailed in the following listing : 1) a postoperative 3D-CT reveals the anatomical details corrected by the craniofacial surgery more precisely and stereographically than conventional radiological methods ; 2) secondary changes of the cranium after the surgery, such as bony formation in the area of the osteotomy and postoperative asymmetric deformities, are detected early by the 3D-CT imaging technique, and, 3) 3D-CT mid-sagittal and top axial views of the intracranial skull base are most useful in postoperative assessments of the surgical results. Basesd on our experience, we expect that three dimensional surface reconstructions from CT scans will become to be used widely in the postoperative assessments of the surgical results of craniofacial anomalies. (author)

  10. Winter precipitation changes during the Medieval Climate Anomaly and the Little Ice Age in arid Central Asia

    Science.gov (United States)

    Fohlmeister, Jens; Plessen, Birgit; Dudashvili, Alexey Sergeevich; Tjallingii, Rik; Wolff, Christian; Gafurov, Abror; Cheng, Hai

    2017-12-01

    The strength of the North Atlantic Oscillation (NAO) is considered to be the main driver of climate changes over the European and western Asian continents throughout the last millennium. For example, the predominantly warm Medieval Climate Anomaly (MCA) and the following cold period of the Little Ice Age (LIA) over Europe have been associated with long-lasting phases with a positive and negative NAO index. Its climatic imprint is especially pronounced in European winter seasons. However, little is known about the influence of NAO with respect to its eastern extent over the Eurasian continent. Here we present speleothem records (δ13C, δ18O and Sr/Ca) from the southern rim of Fergana Basin (Central Asia) revealing annually resolved past climate variations during the last millennium. The age control of the stalagmite relies on radiocarbon dating as large amounts of detrital material inhibit accurate 230Th dating. Present-day calcification of the stalagmite is most effective during spring when the cave atmosphere and elevated water supply by snow melting and high amount of spring precipitation provide optimal conditions. Seasonal precipitation variations cause changes of the stable isotope and Sr/Ca compositions. The simultaneous changes in these geochemical proxies, however, give also evidence for fractionation processes in the cave. By disentangling both processes, we demonstrate that the amount of winter precipitation during the MCA was generally higher than during the LIA, which is in line with climatic changes linked to the NAO index but opposite to the higher mountain records of Central Asia. Several events of strongly reduced winter precipitation are observed during the LIA in Central Asia. These dry winter events can be related to phases of a strong negative NAO index and all results reveal that winter precipitation over the central Eurasian continent is tightly linked to atmospheric NAO modes by the westerly wind systems.

  11. Late Holocene flood probabilities in the Black Hills, South Dakota with emphasis on the Medieval Climate Anomaly

    Science.gov (United States)

    Harden, Tessa M.; O'Connor, James E.; Driscoll, Daniel G.

    2015-01-01

    A stratigraphic record of 35 large paleofloods and four large historical floods during the last 2000 years for four basins in the Black Hills of South Dakota reveals three long-term flooding episodes, identified using probability distributions, at A.D.: 120–395, 900–1290, and 1410 to present. During the Medieval Climate Anomaly (~ A.D. 900–1300) the four basins collectively experienced 13 large floods compared to nine large floods in the previous 800 years, including the largest floods of the last 2000 years for two of the four basins. This high concentration of extreme floods is likely caused by one or more of the following: 1) instability of air masses caused by stronger than normal westerlies; 2) larger or more frequent hurricanes in the Gulf of Mexico and Atlantic Ocean; and/or 3) reduced land covering vegetation or increased forest fires caused by persistent regional drought.

  12. Effects of persistence and large-scale climate anomalies on trends and change points in extreme precipitation of Canada

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew; Shao, Dongguo

    2017-07-01

    Slowly varying (trend) and abrupt (change points) changes in annual maximum daily precipitation (AMP) and seasonal maximum daily precipitation (SMP) across Canada for 223 stations in six regions during four periods (1900-2010, 1930-2010, 1950-2010 and 1970-2010) were analyzed. Variants of the Mann-Kendall (MK) test considering influences of short-term persistence (STP), long-term persistence (LTP) and large-scale climate anomalies on trend detection were applied to detect trends, and the Pettitt test was used to evaluate change points. The results indicate that there was a mix of increasing and decreasing trends for Canadian AMPs and SMPs. Most regions in Pacific Maritime, central Boreal regions and the Atlantic Maritime showed an increase in AMP, while a decrease in Canadian Prairies and most Boreal regions. More stations showing statistically significant increases than decreases in spring, summer and autumn SMPs were found while there was a statistically significant decrease (increase) in winter SMP over southern (northern) Canada. LTP significantly increased the likelihood of trends detected in AMPs and SMPs. The effects of STP on the trend detection were also evident as shown by the differences in results obtained from the MK tests with and without considering the effect of STP. The effects of large-scale climate anomalies on trends were significant for winter SMPs. More than 1/4 of stations were detected with statistically significant change points in AMPs and SMPs which occurred around 1960-1990. More stations showed significant change points than trends, and winter showed more evident trends and change points in SMPs than other three seasons. Trends and change points detected were field-significant.

  13. Trends in seasonal warm anomalies across the contiguous United States: Contributions from natural climate variability

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi. Bian

    2018-01-01

    Many studies have shown the importance of anthropogenic greenhouse gas emissions in contributing to observed upward trends in the occurrences of temperature extremes over the U.S. However, few studies have investigated the contributions of internal variability in the climate system to these observed trends. Here we use daily maximum temperature time series from the...

  14. Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer

    Science.gov (United States)

    Liu, Senfeng; Duan, Anmin

    2017-02-01

    The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific-Japan or East Asia-Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.

  15. A comparison of the climates of the Medieval Climate Anomaly, Little Ice Age, and Current Warm Period reconstructed using coral records from the northern South China Sea

    Science.gov (United States)

    Deng, Wenfeng; Liu, Xi; Chen, Xuefei; Wei, Gangjian; Zeng, Ti; Xie, Luhua; Zhao, Jian-xin

    2017-01-01

    For the global oceans, the characteristics of high-resolution climate changes during the last millennium remain uncertain because of the limited availability of proxy data. This study reconstructs climate conditions using annually resolved coral records from the South China Sea (SCS) to provide new insights into climate change over the last millennium. The results indicate that the climate of the Medieval Climate Anomaly (MCA, AD 900-1300) was similar to that of the Current Warm Period (CWP, AD 1850-present), which contradicts previous studies. The similar warmth levels for the MCA and CWP have also been recorded in the Makassar Strait of Indonesia, which suggests that the MCA was not warmer than the CWP in the western Pacific and that this may not have been a globally uniform change. Hydrological conditions were drier/saltier during the MCA and similar to those of the CWP. The drier/saltier MCA and CWP in the western Pacific may be associated with the reduced precipitation caused by variations in the Pacific Walker Circulation. As for the Little Ice Age (LIA, AD 1550-1850), the results from this study, together with previous data from the Makassar Strait, indicate a cold and wet period compared with the CWP and the MCA in the western Pacific. The cold LIA period agrees with the timing of the Maunder sunspot minimum and is therefore associated with low solar activity. The fresher/wetter LIA in the western Pacific may have been caused by the synchronized retreat of both the East Asian Summer Monsoon and the Australian Monsoon.

  16. Climate effects on inter- and intra-annual larch stemwood anomalies in the Mongolian forest-steppe

    Science.gov (United States)

    Khishigjargal, Mookhor; Dulamsuren, Choimaa; Leuschner, Hanns Hubert; Leuschner, Christoph; Hauck, Markus

    2014-02-01

    Climate response of tree-ring width and intra-annual wood anomalies were studied in stands of Siberian larch (Larix sibirica) on Mt. Bogd Uul in the forest-steppe ecotone of Mongolia. Climate on Mt. Bogd Uul is characterized by an increase of the annual mean temperature by 1.5 K between 1965 and 2007, the lack of a long-term trend for annual precipitation and, with it, an increase in aridity. Tree-ring width increases with increasing June precipitation of the current year (June) and increasing late summer precipitation of the previous year. In >100-year old trees, also a negative correlation of tree-ring width with the July temperature of the year prior to tree-ring formation was found. Decreasing tree-ring width with increasing snowfall in December can be explained with the protection of the frost-sensitive eggs of gypsy moth by snow cover, which is a major herbivore of larch in Mongolia and causes reduction in the annual stem increment. The most significant change in wood anatomy was the decline of wide latewood, which is attributable to the increase of summer days with a mean temperature > 15 °C and drought periods in summer without precipitation. Increasing summer drought is also thought to have caused the repeated occurrence of missing rings since the 1960s, which were not observed in the late 19th and early 20th centuries.

  17. Characterizing ecosystem response to water supply changes inferred from GRACE drought severity index and surface soil moisture anomalies from ESA CCI and SMAP

    Science.gov (United States)

    Zhao, M.; Velicogna, I.; Kimball, J. S.

    2017-12-01

    Climate change such as more frequent heatwaves and drought is threatening our food security and ecosystem by reducing water supply to vegetation. Characterizing vegetation response to water supply changes is not only important for evaluating and mitigating climatic change impacts on ecosystem functions and services, but also to determine the feedback mechanisms that ecosystem response may generate on the climate itself. However, such characterization is not well-known at the global scale partly because large scale observations of underground water supply changes are limited. Satellite observations of soil moisture (SM) datasets such as from Soil Moisture Active and Passive (SMAP) and European Space Agency Climate Change Initiative (ESA CCI) do not penetrate more than a few centimeters and do not capture the entire root-zone. Here we employ a newly developed Drought Severity Index from Gravity Recovery and Climate Experiment (GRACE-DSI) to complement SM observations by informing total water supply changes in the entire terrestrial hydrological cycle. We use MODIS vegetation indices as proxies for vegetation growth and investigate their seasonal and interannual variability in relation to GRACE-DSI. We find that total water supply constrains vegetation growth across the entire continental US. Water constraint begins at an earlier date of year and lasts for a longer period in the lower latitude than in the higher latitude. We also find that water constraint occurs at different phenological stages depending on vegetation type. For instance, water constrain forest growth during reproductive period in eastern US but constrain shrub land growth during green-up in Arizona (Fig. 1). In western United States, eastern Australia and the horn of Africa, we find that vegetation growth changes closely follows GRACE-DSI but can have 16-day to one-month delay with respect to SM anomalies from SMAP and ESA CCI. This suggests that in these regions, vegetation is sensitive to water

  18. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    Science.gov (United States)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  19. The Coral Reef Temperature Anomaly Database (CoRTAD) - Global, 4 km, Sea Surface Temperature and Related Thermal Stress Metrics for 1985-2005 (NODC Accession 0044419)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  20. Gridded 5-day mean sea surface height anomaly and significant wave height from Jason-1 and OSTM/Jason-2 satellites (NODC Accession 0065055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the gridded 5-day mean sea surface height anomaly (SSHA) and Ku Band significant wave height (SWH-KU) observed from Jason-1 and OSTM/Jason-2...

  1. Quantitative Examination of Piezoelectric/Seismoelectric Anomalies from Near-Surface Targets

    Directory of Open Access Journals (Sweden)

    Lev Eppelbaum

    2017-09-01

    Full Text Available The piezoelectric and seismo-electrokinetic phenomena are manifested by electrical and electromagnetic processes that occur in rocks under the influence of elastic oscillations triggered by shots or mechanical impacts. Differences in piezoelectric properties between the studied targets and host media determine the possibilities of the piezoelectric/seismoelectric method application. Over a long time, an interpretation of obtained data is carried out by the use of methods developed in seismic prospecting. Examination of nature of piezoelectric/seismoelectric anomalies observed in subsurface indicates that these may be related (mainly to electric potential field. In this paper, it is shown that quantitative analysis of piezoelectric/seismoelectric anomalies may be performed by the advanced and reliable methodologies developed in magnetic prospecting. Some examples from mining geophysics (Russia and ancient metallurgical site (Israel confirm applicability of the suggested approach.

  2. Variations of Cloud and Radiative Properties of Boundary-layer and Deep Convective Systems with Sea Surface Temperature Anomalies

    Science.gov (United States)

    Xu, Kuan-Man

    2010-01-01

    Gridded monthly-mean satellite data contain compositing information from different cloud system types and clear-sky environments. To isolate the variations of cloud physical properties of an individual cloud system type with its environment, orbital data are needed. In this study, we will analyze the variations of cloud and radiative properties of boundary-layer clouds and deep convective cloud systems with sea surface temperature (SST) anomalies. We use Terra-CERES (Clouds and the Earth s Radiant Energy System) Level 2 data to classify distinct cloud objects defined by cloud-system types (deep convection, boundary-layer cumulus, stratocumulus and overcast clouds), sizes, geographic locations, and matched large-scale environments. This analysis method identifies a cloud object as a contiguous region of the Earth with a single dominant cloud-system type. It determines the shape and size of the cloud object from the satellite data and the cloud-system selection criteria. The statistical properties of the identified cloud objects are analyzed in terms of probability density functions (PDFs) of a single property or joint PDFs between two properties. The SST anomalies are defined as the differences from five-year annual-cycle means. Individual cloud objects are sorted into one of five equal size subsets, with the matched SST anomalies ranging from the most negative to the most positive values, for a given size category of deep convective cloud objects, boundary-layer cumulus, stratocumulus and overcast cloud objects. The PDFs of cloud and radiative properties for deep convective cloud objects (between 30 S and 30 N) are found to largely similar among the five SST anomaly subsets except for the lowest SST anomaly subset. The different characteristics from this SST anomaly subset may be related to some cloud objects resulting from equatorward movement of extratropical cloud systems. This result holds true for all three different size categories (measured by equivalent

  3. Avances en el pronóstico climático de las anomalías de lluvia en la Región Pampeana Advances in the climatic forecast of rainfall anomalies in the Pampa Region

    Directory of Open Access Journals (Sweden)

    Juan C. Labraga

    2011-12-01

    Full Text Available Los modelos globales de la circulación general de la atmósfera (MCGA son capaces de simular anomalías climáticas estadísticamente significativas de escala estacional o mayor, asociadas con anomalías en la temperatura de la superficie del mar. Los MCGA pueden estimar efectivamente el signo y la probabilidad de tales anomalías climáticas cuando su extensión es varias veces mayor que la resolución espacial del modelo. En este trabajo se presentan algunos avances en la estimación de las anomalías de la lluvia en 22 localidades de la Región Pampeana Argentina mediante downscaling estadístico de la información producida por un ensamble de veinte simulaciones con el MCGA CSIRO-9, prescribiendo la temperatura de la superficie del mar de acuerdo con los valores diarios observados en el período 1987-1998. El downscaling estadístico de la lluvia produjo una mayor correlación con las observaciones locales que los datos de lluvia del MCGA interpolados sobre cada sitio. Los resultados de un Análisis de las Componentes Principales aplicado a los datos observados y estimados indican que este método de downscaling permite discernir áreas con diferente comportamiento de la lluvia dentro de la región de estudio.Atmospheric general circulation models (AGCM are able to simulate statistically significant climate anomalies of seasonal or larger time-scales, associated with anomalies in the sea surface temperature. AGCMs can effectively estimate the sign and probability of such climate anomalies whenever their extent is several times greater than the spatial resolution of the model. Some progress attained in the estimation of rainfall anomalies in 22 sites of the Pampa Region, Argentina, by means of statistical downscaling of the output from an AGCM are presented in this work. Downscaling models were based in the multiple lineal regression method. Climatic anomalies of the atmospheric independent variables required in the rainfall downscaling

  4. Observed radiative cooling over the Tibetan Plateau for the past three decades driven by snow cover-induced surface albedo anomaly

    Science.gov (United States)

    Chen, Xiaona; Long, Di; Hong, Yang; Liang, Shunlin; Hou, Aizhong

    2017-06-01

    Seasonal snow cover on the Tibetan Plateau (TP) is a sensitive indicator of climate change. Unlike the decreasing snow cover extent and associated weakening of radiative cooling effects for the Northern Hemisphere during recent decades reported by previous studies, snow cover variability over the TP and its impact on the energy budget remain largely unknown. We defined the snow cover-induced radiative forcing (SnRF) as the instantaneous perturbation to Earth's shortwave radiation at the top of the atmosphere (TOA) induced by the presence of snow cover. Here using satellite observations and a radiative kernel approach, we found slightly enhanced SnRF, i.e., a radiative cooling effect on the TP during the past three decades (1982-2014). However, this cooling effect weakened during 2001-2014 because of reduced snow cover at a rate of -0.61% decade-1 and land surface albedo at a rate of -0.72% decade-1. Changes in snow cover fraction are highly correlated with anomalies in land surface albedo (as) over the TP both spatially and temporally. Moreover, the SnRF is closely related to the direct observation of TOA shortwave flux anomalies (R2 = 0.54, p = 0.004) over the TP during 2001-2014. Despite the insignificant interannual variability in SnRF, its intra-annual variability has intensified driven mostly by enhanced SnRF during the snow accumulation season but weakened SnRF during the melt season, indicating greater energy release during the transition between accumulation and melt seasons. This may pose a great challenge to snow meltwater use and flood prediction for transboundary rivers originating from the TP, such as the Brahmaputra River basin.

  5. MODELING THE ANOMALY OF SURFACE NUMBER DENSITIES OF GALAXIES ON THE GALACTIC EXTINCTION MAP DUE TO THEIR FIR EMISSION CONTAMINATION

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi; Yahata, Kazuhiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Kayo, Issha [Department of Physics, Toho University, Funabashi, Chiba 274-8510 (Japan); Nishimichi, Takahiro, E-mail: kashiwagi@utap.phys.s.u-tokyo.ac.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan)

    2015-02-01

    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al. for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.

  6. Vegetation response to southern California drought during the Medieval Climate Anomaly and early Little Ice Age (AD 800–1600)

    Science.gov (United States)

    Heusser, Linda E.; Hendy, Ingrid L.; Barron, John A.

    2015-01-01

    High-resolution studies of pollen in laminated sediments deposited in Santa Barbara Basin (SBB) core SPR0901-02KC reflect decadal-scale fluctuations in precipitation spanning the interval from AD 800–1600. From AD 800–1090 during the Medieval Climate Anomaly (MCA) SBB sediments were dominated by xeric vegetation types (drought-resistant coastal sagebrush and chaparral) implying reduced precipitation in the southern California region. Drought-adapted vegetation abruptly decreased at AD 1090 and was rapidly replaced by mesic oak (Quercus) woodlands associated with an increased pollen flux into the basin. After a mesic interval lasting ∼100 years, pollen flux and the relative abundance of Quercus pollen dropped abruptly at AD 1200 when the rapid rise of chaparral suggests a significant drought similar to that of the MCA (∼AD 800–1090). This brief resurgence of drought-adapted vegetation between AD 1200–1270 marked the end of the MCA droughts. A gradual increase in mesic vegetation followed, characterizing cool hydroclimates of the Little Ice Age (LIA) in coastal southern California.

  7. Transcontinental Surface Validation of Satellite Observations of Enhanced Methane Anomalies Associated with Fossil Fuel Industrial Methane Emissions

    Science.gov (United States)

    Leifer, I.; Culling, D.; Schneising, O.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.

    2012-12-01

    A ground-based, transcontinental (Florida to California - i.e., satellite-scale) survey was conducted to understand better the role of fossil fuel industrial (FFI) fugitive emissions of the potent greenhouse gas, methane. Data were collected by flame ion detection gas chromatography (Fall 2010) and by a cavity ring-down sensor (Winter 2012) from a nearly continuously moving recreational vehicle, allowing 24/7 data collection. Nocturnal methane measurements for similar sources tended to be higher compared to daytime values, sometime significantly, due to day/night meteorological differences. Data revealed strong and persistent FFI methane sources associated with refining, a presumed major pipeline leak, and several minor pipeline leaks, a coal loading plant, and areas of active petroleum production. Data showed FFI source emissions were highly transient and heterogeneous; however, integrated over these large-scale facilities, methane signatures overwhelmed that of other sources, creating clearly identifiable plumes that were well elevated above ambient. The highest methane concentration recorded was 39 ppm at an active central valley California production field, while desert values were as low as 1.80 ppm. Surface methane data show similar trends with strong emissions correlated with FFI on large (4° bin) scales and positive methane anomalies centered on the Gulf Coast area of Houston, home to most of US refining capacity. Comparison with SCIAMACHY and GOSAT satellite data show agreement with surface data in the large-scale methane spatial patterns. Positive satellite methane anomalies in the southeast and Mexico largely correlated with methane anthropogenic and wetland inventory models suggests most strong ground methane anomalies in the Gulf of Mexico region were related to dominant FFI input for most seasons. Wind advection played a role, in some cases confounding a clear relationship. Results are consistent with a non-negligible underestimation of the FFI

  8. Shifting relative importance of climatic constraints on land surface phenology

    Science.gov (United States)

    Garonna, Irene; de Jong, Rogier; Stöckli, Reto; Schmid, Bernhard; Schenkel, David; Schimel, David; Schaepman, Michael E.

    2018-02-01

    Land surface phenology (LSP), the study of seasonal dynamics of vegetated land surfaces from remote sensing, is a key indicator of global change, that both responds to and influences weather and climate. The effects of climatic changes on LSP depend on the relative importance of climatic constraints in specific regions—which are not well understood at global scale. Understanding the climatic constraints that underlie LSP is crucial for explaining climate change effects on global vegetation phenology. We used a combination of modelled and remotely-sensed vegetation activity records to quantify the interplay of three climatic constraints on land surface phenology (namely minimum temperature, moisture availability, and photoperiod), as well as the dynamic nature of these constraints. Our study examined trends and the relative importance of the three constrains at the start and the end of the growing season over eight global environmental zones, for the past three decades. Our analysis revealed widespread shifts in the relative importance of climatic constraints in the temperate and boreal biomes during the 1982-2011 period. These changes in the relative importance of the three climatic constraints, which ranged up to 8% since 1982 levels, varied with latitude and between start and end of the growing season. We found a reduced influence of minimum temperature on start and end of season in all environmental zones considered, with a biome-dependent effect on moisture and photoperiod constraints. For the end of season, we report that the influence of moisture has on average increased for both the temperate and boreal biomes over 8.99 million km2. A shifting relative importance of climatic constraints on LSP has implications both for understanding changes and for improving how they may be modelled at large scales.

  9. Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015

    Directory of Open Access Journals (Sweden)

    C. Yue

    2017-11-01

    Full Text Available Understanding the variations in global land carbon uptake, and their driving mechanisms, is essential if we are to predict future carbon-cycle feedbacks on global environmental changes. Satellite observations of vegetation greenness have shown consistent greening across the globe over the past three decades. Such greening has driven the increasing land carbon sink, especially over the growing season in northern latitudes. On the other hand, interannual variations in land carbon uptake are strongly influenced by El Niño–Southern Oscillation (ENSO climate variations. Marked reductions in land uptake and strong positive anomalies in the atmospheric CO2 growth rates occur during El Niño events. Here we use the year 2015 as a natural experiment to examine the possible response of land ecosystems to a combination of vegetation greening and an El Niño event. The year 2015 was the greenest year since 2000 according to satellite observations, but a record atmospheric CO2 growth rate also occurred due to a weaker than usual land carbon sink. Two atmospheric inversions indicate that the year 2015 had a higher than usual northern land carbon uptake in boreal spring and summer, consistent with the positive greening anomaly and strong warming. This strong uptake was, however, followed by a larger source of CO2 in the autumn. For the year 2015, enhanced autumn carbon release clearly offset the extra uptake associated with greening during the summer. This finding leads us to speculate that a long-term greening trend may foster more uptakes during the growing season, but no large increase in annual carbon sequestration. For the tropics and Southern Hemisphere, a strong transition towards a large carbon source for the last 3 months of 2015 is discovered, concomitant with El Niño development. This transition of terrestrial tropical CO2 fluxes between two consecutive seasons is the largest ever found in the inversion records. The strong transition to a

  10. Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate, land-use, or land-use management?

    Directory of Open Access Journals (Sweden)

    F. Fenicia

    2009-09-01

    Full Text Available The objective of this paper is to investigate the time variability of catchment characteristics in the Meuse basin through its effect on catchment response. The approach uses a conceptual model to represent rainfall-runoff behaviour of this catchment, and evaluates possible time-dependence of model parameters. The main hypothesis is that conceptual model parameters, although not measurable quantities, are representative of specific catchment attributes (e.g. geology, land-use, land management, topography. Hence, we assume that eventual trends in model parameters are representative of catchment attributes that may have changed over time. The available hydrological record involves ninety years of data, starting in 1911. During this period the Meuse catchment has undergone significant modifications. The catchment structural modifications, although documented, are not available as "hard-data". Hence, our results should be considered as "plausible hypotheses". The main motivation of this work is the "anomaly" found in the rainfall runoff behaviour of the Meuse basin, where ninety years of rainfall-runoff simulations show a consistent overestimation of the runoff in the period between 1930 and 1965. Different authors have debated possible causes for the "anomaly", including climatic variability, land-use change and data errors. None of the authors considered the way in which the land is used by for instance agricultural and forestry practises. This aspect influenced the model design, which has been configured to account for different evaporation demand of growing forest. As a result of our analysis, we conclude that the lag time of the catchment has decreased significantly over time, which we attribute to more intensive drainage and river training works. Furthermore, we hypothesise that forest rotation has had a significant impact on the evaporation of the catchment. These results contrast with previous studies, where the effect of land-use change on

  11. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) Contribution to CMIP6: Investigation of Sea-Level and Ocean Climate Change in Response to CO2 Forcing

    Science.gov (United States)

    Gregory, Jonathan M.; Bouttes, Nathaelle; Griffies, Stephen M.; Haak, Helmuth; Hurlin, William J.; Jungclaus, Johann; Kelley, Maxwell; Lee, Warren G.; Marshall, John; Romanou, Anastasia; hide

    2016-01-01

    The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere-ocean general circulation models (AOGCMs). It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sealevel rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC) declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable investigation of the model

  12. Salinity-induced stratification and the onset of hypoxia during the Holocene Thermal Maximum and the Medieval Climate Anomaly

    Science.gov (United States)

    Papadomanolaki, Nina; Dijkstra, Nikki; van Helmond, Niels; Sangiorgi, Francesca; Hagens, Mathilde; Kotthoff, Ulrich; Slomp, Caroline

    2016-04-01

    During the past ~8000 years the Baltic Sea has experienced three distinct intervals of hypoxia, of which the last one is still ongoing. These intervals are characterized by enhanced sedimentary organic matter burial and enrichment of redox-sensitive metals, such as molybdenum and iron. The first two of these intervals occurred during the Holocene Thermal Maximum (HTM) and the Medieval Climate Anomaly (MCA), two phases with high temperatures and changed precipitation patterns. Studies focussing on the Holocene sedimentary record of the Baltic Sea aim at clarifying the causes of the initiation, evolution and termination of these hypoxic intervals, as well as their consequences. This information could help to potentially aid in finding solutions for the mitigation of present-day hypoxia in the Baltic Sea. The factors contributing to hypoxia development during the HTM and MCA are still debated. Here we present data from a core retrieved during Integrated Ocean Drilling Program (IODP) Expedition 347 in the Landsort Deep basin, the deepest basin of the Baltic Sea at 463m water depth. Sediments were analysed at a high resolution using inorganic geochemical and (mainly marine) palynological proxies. Dinoflagellate cyst (dinocyst) assemblages and total elemental compositions provide clues on the role of salinity in enhancing stratification, ultimately causing hypoxia. During the onset of the HTM changes in salinity, as indicated by the palynology, closely follow changes in sedimentary organic carbon burial and trace metal concentrations. This suggests that stratification was an important cause of hypoxia during the HTM. In contrast, the palynology suggests that reduced stratification did not contribute to re-oxygenation during the termination of the HTM. We did not observe major changes in the palynology throughout the hypoxic interval of the MCA. Our results thus suggest that changes in salinity did not cause the onset and termination of hypoxia during the MCA.

  13. Climatic variability of river outflow in the Pantanal region and the influence of sea surface temperature

    Science.gov (United States)

    Silva, Carlos Batista; Silva, Maria Elisa Siqueira; Ambrizzi, Tércio

    2017-07-01

    This paper investigates possible linear relationships between climate, hydrology, and oceanic surface variability in the Pantanal region (in South America's central area), over interannual and interdecadal time ranges. In order to verify the mentioned relations, lagged correlation analysis and linear adjustment between river discharge at the Pantanal region and sea surface temperature were used. Composite analysis for atmospheric fields, air humidity flux divergence, and atmospheric circulation at low and high levels, for the period between 1970 and 2003, was analyzed. Results suggest that the river discharge in the Pantanal region is linearly associated with interdecadal and interannual oscillations in the Pacific and Atlantic oceans, making them good predictors to continental hydrological variables. Considering oceanic areas, 51 % of the annual discharge in the Pantanal region can be linearly explained by mean sea surface temperature (SST) in the Subtropical North Pacific, Tropical North Pacific, Extratropical South Pacific, and Extratropical North Atlantic over the period. Considering a forecast approach in seasonal scale, 66 % of the monthly discharge variance in Pantanal, 3 months ahead of SST, is explained by the oceanic variables, providing accuracy around 65 %. Annual discharge values in the Pantanal region are strongly related to the Pacific Decadal Oscillation (PDO) variability (with 52 % of linear correlation), making it possible to consider an interdecadal variability and a consequent subdivision of the whole period in three parts: 1st (1970-1977), 2nd (1978-1996), and 3rd (1997-2003) subperiods. The three subperiods coincide with distinct PDO phases: negative, positive, and negative, respectively. Convergence of humidity flux at low levels and the circulation pattern at high levels help to explain the drier and wetter subperiods. During the wetter 2nd subperiod, the air humidity convergence at low levels is much more evident than during the other two

  14. Variability and Predictability of West African Droughts. A Review in the Role of Sea Surface Temperature Anomalies

    Science.gov (United States)

    Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang; hide

    2015-01-01

    The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.

  15. Climate Impacts of Fire-Induced Land-Surface Changes

    Science.gov (United States)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  16. Remote sensing of climatic anomalies and West Nile virus incidence in the northern Great Plains of the United States.

    Science.gov (United States)

    Chuang, Ting-Wu; Wimberly, Michael C

    2012-01-01

    The northern Great Plains (NGP) of the United States has been a hotspot of West Nile virus (WNV) incidence since 2002. Mosquito ecology and the transmission of vector-borne disease are influenced by multiple environmental factors, and climatic variability is an important driver of inter-annual variation in WNV transmission risk. This study applied multiple environmental predictors including land surface temperature (LST), the normalized difference vegetation index (NDVI) and actual evapotranspiration (ETa) derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) products to establish prediction models for WNV risk in the NGP. These environmental metrics are sensitive to seasonal and inter-annual fluctuations in temperature and precipitation, and are hypothesized to influence mosquito population dynamics and WNV transmission. Non-linear generalized additive models (GAMs) were used to evaluate the influences of deviations of cumulative LST, NDVI, and ETa on inter-annual variations of WNV incidence from 2004-2010. The models were sensitive to the timing of spring green up (measured with NDVI), temperature variability in early spring and summer (measured with LST), and moisture availability from late spring through early summer (measured with ETa), highlighting seasonal changes in the influences of climatic fluctuations on WNV transmission. Predictions based on these variables indicated a low WNV risk across the NGP in 2011, which is concordant with the low case reports in this year. Environmental monitoring using remote-sensed data can contribute to surveillance of WNV risk and prediction of future WNV outbreaks in space and time.

  17. Remote sensing of climatic anomalies and West Nile virus incidence in the northern Great Plains of the United States.

    Directory of Open Access Journals (Sweden)

    Ting-Wu Chuang

    Full Text Available The northern Great Plains (NGP of the United States has been a hotspot of West Nile virus (WNV incidence since 2002. Mosquito ecology and the transmission of vector-borne disease are influenced by multiple environmental factors, and climatic variability is an important driver of inter-annual variation in WNV transmission risk. This study applied multiple environmental predictors including land surface temperature (LST, the normalized difference vegetation index (NDVI and actual evapotranspiration (ETa derived from Moderate-Resolution Imaging Spectroradiometer (MODIS products to establish prediction models for WNV risk in the NGP. These environmental metrics are sensitive to seasonal and inter-annual fluctuations in temperature and precipitation, and are hypothesized to influence mosquito population dynamics and WNV transmission. Non-linear generalized additive models (GAMs were used to evaluate the influences of deviations of cumulative LST, NDVI, and ETa on inter-annual variations of WNV incidence from 2004-2010. The models were sensitive to the timing of spring green up (measured with NDVI, temperature variability in early spring and summer (measured with LST, and moisture availability from late spring through early summer (measured with ETa, highlighting seasonal changes in the influences of climatic fluctuations on WNV transmission. Predictions based on these variables indicated a low WNV risk across the NGP in 2011, which is concordant with the low case reports in this year. Environmental monitoring using remote-sensed data can contribute to surveillance of WNV risk and prediction of future WNV outbreaks in space and time.

  18. Magnetization anomalies of fine particles interpreted as surface effects by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Hennion, M.; Mirebeau, I.; Bellouard, C.

    1994-01-01

    Inelastic neutron scattering experiments on small Fe particles (R=12 Angstrom) reveal that some part of the magnetic intensity is paramagnetic at 300 K. As T decreases it freezes and develops short range ferromagnetic correlations. It is attributed to spins at the particle surface. (authors). 3 figs., 5 refs

  19. Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields During Boreal Summer: A Comprehensive Analysis over North America

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Wang, Hailan; Schubert, Siegfried D.

    2016-01-01

    We perform a series of stationary wave model (SWM) experiments in which the boreal summer atmosphere is forced, over a number of locations in the continental U.S., with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-mb eddy streamfunction) is largely the same: a high anomaly forms over west central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, we find similar results; imposing soil moisture dryness in the AGCM in different locations within the US interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi Valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the US-Canada border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior.

  20. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    Science.gov (United States)

    Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.

    2018-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt

  1. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing

    Directory of Open Access Journals (Sweden)

    J. M. Gregory

    2016-11-01

    Full Text Available The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere–ocean general circulation models (AOGCMs. It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sea-level rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable

  2. Impacts of Future Grassland Changes on Surface Climate in Mongolia

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-01-01

    Full Text Available Climate change caused by land use/cover change (LUCC is becoming a hot topic in current global change, especially the changes caused by the grassland degradation. In this paper, based on the baseline underlying surface data of 1993, the predicted underlying surface data which can be derived through overlaying the grassland degradation information to the map of baseline underlying surface, and the atmospheric forcing data of RCP 6.0 from CMIP5, climatological changes caused by future grassland changes for the years 2010–2020 and 2040–2050 with the Weather Research Forecast model (WRF are simulated. The model-based analysis shows that future grassland degradation will significantly result in regional climate change. The grassland degradation in future could lead to an increasing trend of temperature in most areas and corresponding change range of the annual average temperature of −0.1°C–0.4°C, and it will cause a decreasing trend of precipitation and corresponding change range of the annual average precipitation of 10 mm–50 mm. This study identifies lines of evidence for effects of future grassland degradation on regional climate in Mongolia which provides meaningful decision-making information for the development and strategy plan making in Mongolia.

  3. Nonlinear effects of anthropogenic aerosol and urban land surface forcing on spring climate in eastern China

    Science.gov (United States)

    Deng, Jiechun; Xu, Haiming; Zhang, Leying

    2016-05-01

    Anthropogenic aerosols and urban land cover change induce opposite thermal effects on the atmosphere near surface as well as in the troposphere. One can think of these anthropogenic effects as composed of two parts: the individual effect due to an individual anthropogenic forcing and the nonlinear effects resulting from the coexistence of two forcing factors. In this study, we explored the role of such nonlinear effects in affecting East Asian climate, as well as individual forcing effects, using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Atmospheric responses were simulated by including anthropogenic aerosol emission only, urban cover only, or the combination of the two, over eastern China. Results showed that nonlinear responses were different from any effects by an individual forcing or the linear combination of individual responses. The nonlinear interaction could generate cold horizontal temperature advection to cool the troposphere, which induced anomalous subsidence along the Yangtze River Valley (YRV). This anomalous vertical motion, together with a weakened low-level southwesterly, favored below-normal (above-normal) rainfall over the YRV (southern China), shifting the spring rain belt southward. The resultant diabatic cooling, in turn, amplified the anomalous descent and further decreased tropospheric temperature over the YRV, forming a positive feedback loop to maintain the nonlinear effects. Consequently, the nonlinear effects acted to reduce the climate anomalies from a simple linear combination of two individual effects and played an important role in regional responses to one anthropogenic forcing when the other is prescribed.

  4. Phonon anomalies and electron-phonon coupling of metal surfaces and thin films; Phononenanomalien und Elektron-Phonon-Kopplung an Metalloberflaechen und duennen Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Flach, B.

    2000-01-01

    This thesis has two topics: One is the investigation of an adsorbate induced phonon anomaly on W(110) and Mo{sub 1-x}Re{sub x}(110) (x = 5, 15, 25%) with inelastic helium atom scattering (HAS). The other one is the study of the growth, morphology and dynamics of ultra-thin lithium films deposited on W(110). In 1992 a giant phonon anomaly was found by J. Luedecke on the hydrogen saturated W(110) and Mo(110) surfaces. The anomaly consists of a deep and sharp indentation in the phonon dispersion curves in which the phonon energy nearly drops to zero ({omega}{sub 1}). In addition, a small and broad dip in the surface Rayleigh mode is observed ({omega}{sub 2}). The anomaly appears in the anti {gamma}-H- as well as in the anti {gamma}-S-direction of the surface Brillouin zone (SBZ). Since its first discovery, numerous other experimental and theoretical studies have followed. In the present work the effects is reinvestigated and experimental parameters, such as the crystal temperature and the incident energy, were changed in order to study their influence on the anomalous phonon behavior. In the case of H/Mo(110) the substrate was changed as well by alloying with small amounts of rhenium. In the present experiments a strong crystal temperature dependence of the {omega}{sub 2}-branch was found which leads to lower energies at the 'dip' for smaller temperatures, while the {omega}{sub 1}-anomaly remains unchanged. Such behavior agrees well with the picture that the {omega}{sub 2}-branch is due to a Kohn anomaly. (orig.)

  5. Land surface and climate parameters and malaria features in Vietnam

    Science.gov (United States)

    Liou, Y. A.; Anh, N. K.

    2017-12-01

    Land surface parameters may affect local microclimate, which in turn alters the development of mosquito habitats and transmission risks (soil-vegetation-atmosphere-vector borne diseases). Forest malaria is a chromic issue in Southeast Asian countries, in particular, such as Vietnam (in 1991, approximate 2 million cases and 4,646 deaths were reported (https://sites.path.org)). Vietnam has lowlands, sub-tropical high humidity, and dense forests, resulting in wide-scale distribution and high biting rate of mosquitos in Vietnam, becoming a challenging and out of control scenario, especially in Vietnamese Central Highland region. It is known that Vietnam's economy mainly relies on agriculture and malaria is commonly associated with poverty. There is a strong demand to investigate the relationship between land surface parameters (land cover, soil moisture, land surface temperature, etc.) and climatic variables (precipitation, humidity, evapotranspiration, etc.) in association with malaria distribution. GIS and remote sensing have been proven their powerful potentials in supporting environmental and health studies. The objective of this study aims to analyze physical attributes of land surface and climate parameters and their links with malaria features. The outcomes are expected to illustrate how remotely sensed data has been utilized in geohealth applications, surveillance, and health risk mapping. In addition, a platform with promising possibilities of allowing disease early-warning systems with citizen participation will be proposed.

  6. Multi-decadal evolution characteristics of global surface temperature anomaly data shown by observation and CMIP5 models

    Science.gov (United States)

    Zhu, X.

    2017-12-01

    Based on methods of statistical analysis, the time series of global surface air temperature(SAT) anomalies from 1860-2014 has been defined by three types of phase changes that occur through the division of temperature changes into different stages. The characteristics of the three types of phase changes simulated by CMIP5 models were evaluated. The conclusion is as follows: the SAT from 1860-2014 can be divided into six stages according to trend differences, and this subdivision is proved to be statistically significant. Based on trend analysis and the distribution of slopes between any two points (two points' slope) in every stage, the six stages can be summarized as three phase changes of warming, cooling, and hiatus. Between 1860 and 2014, the world experienced three heating phases (1860-1878, 1909-1942,1975-2004), one cooling phase (1878-1909), and two hiatus phases (1942-1975, 2004-2014).Using the definition method, whether the next year belongs to the previous phase can be estimated. Furthermore, the temperature in 2015 was used as an example to validate the feasibility of this method. The simulations of the heating period by CMIP5 models are well; however the characteristics shown by SAT during the cooling and hiatus period cannot be represented by CMIP5 models. As such, the projections of future heating phases using the CMIP5 models are credible, but for cooling and hiatus events they are unreliable.

  7. On the differences between early and middle winter atmospheric responses to sea surface temperature anomalies in the northwest Atlantic

    International Nuclear Information System (INIS)

    Peng, S.; Mysak, L.A.; Derome, J.; Ritchie, H.; Dugas, B.

    1994-01-01

    Using an atmospheric global spectral model at RPN with T42 horizontal resolution, we have shown that the winter atmosphere in the mid-latitude is capable of reacting to the SST anomalies prescribed in the northwest Atlantic with two different responses. The nature of the response is determined by the climatological conditions of the winter system. Experiments are conducted using either the perpetual November or January conditions, with or without the SST anomalies prescribed. Six 50-day integrations, with positive (or negative) SST anomalies prescribed, initialized from independent November analyses and similarly, four runs initialized from January analyses, have been examined in comparison with their control runs

  8. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies

    Science.gov (United States)

    Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, Roger N.; Combe, J.-P.; Head, J. W.; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.

    2011-01-01

    from all three focus regions support the hypothesis that the magnetic anomalies deflect solar wind ions away from the swirls and onto off-swirl surfaces. Nanophase iron (npFe0) is largely responsible for the spectral characteristics we attribute to space weathering and maturation, and is created by vaporization/deposition by micrometeorite impacts and sputtering/reduction by solar wind ions. On the swirls, the decreased proton flux slows the spectral effects of space weathering (relative to nonswirl regions) by limiting the npFe0 production mechanism almost exclusively to micrometeoroid impact vaporization/deposition. Immediately adjacent to the swirls, maturation is accelerated by the increased flux of protons deflected from the swirls.

  9. Correlation between phonon anomaly along [211] and the Fermi surface nesting features with associated electron-phonon interactions in Ni2FeGa: A first principles study

    International Nuclear Information System (INIS)

    Chabungbam, Satyananda; Sahariah, Munima B.

    2015-01-01

    First principles calculation reaffirms the presence of phonon anomaly along [211] direction in Ni 2 FeGa shape memory alloy supporting the experimental findings of J. Q. Li et al. Fermi surface scans have been performed in both austenite and martensite phase to see the possible Fermi nesting features in this alloy. The magnitude of observed Fermi surface nesting vectors in (211) plane exactly match the phonon anomaly wavevectors along [211] direction. Electron-phonon calculation in the austenite phase shows that there is significant electron-phonon coupling in this alloy which might arise out of the lattice coupling between lower acoustic modes and higher optical modes combined with the observed strong Fermi nesting features in the system. - Highlights: • Transverse acoustic (TA 2 ) modes show anomaly along [211] direction in Ni 2 FeGa. • The phonon anomaly wavevector has been correlated with the Fermi nesting vectors. • Electron-phonon coupling calculation shows significant coupling in this system. • Max. el-ph coupling occurs in transition frequencies from acoustic to optical modes

  10. Modelling land surface fluxes of CO2 in response to climate change and nitrogen deposition

    DEFF Research Database (Denmark)

    Hansen, Kristina; Ambelas Skjøth, Carsten; Geels, Camilla

    Climate change, land use variations, and impacts of atmospheric nitrogen (N) deposition represent uncertainties for the prediction of future greenhouse gas exchange between land surfaces and the atmosphere as the mechanisms describing nutritional effects are not well developed in climate...... climate feedback mechanisms of CO2 between changes in management, land use practise, and climate change....

  11. What is the ARM Climate Research Facility: Is Global Warming a Real Bias or a Statistical Anomaly?

    Energy Technology Data Exchange (ETDEWEB)

    Egami, Takeshi [U of Tennessee and ORNL; Sisterson, Douglas L.

    2010-03-10

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) is a U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research national user facility. With multi-laboratory management of distributed facilities worldwide, the ACRF does not fit the mold of a traditional user facility located at a national laboratory. The ACRF provides the world's most comprehensive 24/7 observational capabilities for obtaining atmospheric data specifically for climate change research. Serving nearly 5,000 registered users from 15 federal and state agencies, 375 universities, and 67 countries, the ACRF Data Archive collects and delivers over 5 terabytes of data per month to its users. The ACRF users provide critical information about cloud formation processes, water vapor, and aerosols, and their influence on radiative transfer in the atmosphere. This information is used to improve global climate model predictions of climate change.

  12. NOAA Climate Data Record (CDR) of Ocean Near Surface Atmospheric Properties, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature; near-surface wind speed, air temperature, and specific...

  13. NOAA Climate Data Record (CDR) of Sea Surface Temperature - WHOI, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature, near-surface atmospheric properties, and heat fluxes....

  14. Surface Winds and Dust Biases in Climate Models

    Science.gov (United States)

    Evan, A. T.

    2018-01-01

    An analysis of North African dust from models participating in the Fifth Climate Models Intercomparison Project (CMIP5) suggested that, when forced by observed sea surface temperatures, these models were unable to reproduce any aspects of the observed year-to-year variability in dust from North Africa. Consequently, there would be little reason to have confidence in the models' projections of changes in dust over the 21st century. However, no subsequent study has elucidated the root causes of the disagreement between CMIP5 and observed dust. Here I develop an idealized model of dust emission and then use this model to show that, over North Africa, such biases in CMIP5 models are due to errors in the surface wind fields and not due to the representation of dust emission processes. These results also suggest that because the surface wind field over North Africa is highly spatially autocorrelated, intermodel differences in the spatial structure of dust emission have little effect on the relative change in year-to-year dust emission over the continent. I use these results to show that similar biases in North African dust from the NASA Modern Era Retrospective analysis for Research and Applications (MERRA) version 2 surface wind field biases but that these wind biases were not present in the first version of MERRA.

  15. Effects of the ground surface temperature anomalies over the Tibetan Plateau on the rainfall over northwestern China and western Mongolia in July

    Science.gov (United States)

    Zhou, Yang; Yang, Ben; Zhao, Yong; Jiang, Jing; Huang, Anning; La, Mengke

    2017-10-01

    A significantly negative interannual relationship is identified between the ground surface temperature (GTS) over the Tibetan Plateau (TP) and the rainfall over northwestern China and western Mongolia (NWC-WM) through analyzing the Chinese weather station data, GPCP precipitation, and ERA-Interim reanalysis in July during 1980-2012. This relationship is verified by the model sensitivity experiments carried out by using RegCM4.1 during 1982-2011. The positive/negative GTS forcing of three different magnitudes is added in two key regions over the TP in RegCM4.1. One of the key regions covers the central and eastern TP (denoted as TPC). The other covers the northern and north slope of the TP (denoted as TPN). The model results suggest that when the GTS anomalies in either of the two key regions are negative (positive), the rainfall anomalies over NWC-WM are positive (negative), which is consistent with observations. Furthermore, rainfall anomalies over NWC-WM are more sensitive to the GTS anomalies over the TPN region than those over the southern TP. The model results also reveal that the negative (positive) GTS anomalies over region TPN mainly cause the decrease (increase) of the latent heat release related to rainfall (surface sensible heat) and descent (ascent) over the TPN region but ascent (descent) to the north of the TP between 40° and 50° N. In addition, the specific humidity between 40° and 50° N is increased (decreased). Therefore, the increase (decrease) in specific humidity and the ascent (descent) between 40° and 50° N cause the increase (decrease) in the rainfall over NWC-WM.

  16. Detecting Ecosystem Performance Anomalies for Land Management in the Upper Colorado River Basin Using Satellite Observations, Climate Data, and Ecosystem Models

    Directory of Open Access Journals (Sweden)

    Bruce K. Wylie

    2010-07-01

    Full Text Available This study identifies areas with ecosystem performance anomalies (EPA within the Upper Colorado River Basin (UCRB during 2005–2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions at the 90% level of confidence. The EPA maps were validated using “percentage of bare soil” ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming tended to have a higher (lower percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005–2007 persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions.

  17. Coupled Surface and Groundwater Hydrological Modeling in a Changing Climate.

    Science.gov (United States)

    Sridhar, Venkataramana; Billah, Mirza M; Hildreth, John W

    2017-11-09

    Many current watershed modeling efforts now incorporate surface water and groundwater for managing water resources since the exchanges between groundwater and surface water need a special focus considering the changing climate. The influence of groundwater dynamics on water and energy balance components is investigated in the Snake River Basin (SRB) by coupling the Variable Infiltration Capacity (VIC) and MODFLOW models (VIC-MF) for the period of 1986 through 2042. A 4.4% increase in base flows and a 10.3% decrease in peak flows are estimated by VIC-MF compared to the VIC model in SRB. The VIC-MF model shows significant improvement in the streamflow simulation (Nash-Sutcliffe efficiency [NSE] of 0.84) at King Hill, where the VIC model could not capture the effect of spring discharge in the streamflow simulation (NSE of -0.30); however, the streamflow estimates show an overall decreasing trend. Two climate scenarios representing median and high radiative-forcings such as representative concentration pathways 4.5 and 8.5 show an average increase in the water table elevations between 2.1 and 2.6 m (6.9 and 8.5 feet) through the year 2042. The spatial patterns of these exchanges show a higher groundwater elevation of 15 m (50 feet) in the downstream area and a lower elevation of up to 3 m (10 feet) in the upstream area. Broadly, this study supports results of previous work demonstrating that integrated assessment of groundwater-surface water enables stakeholders to balance pumping, recharge and base flow needs and to manage the watersheds that are subjected to human pressures more sustainably. © 2017, National Ground Water Association.

  18. QRS duration and QRS fractionation on surface electrocardiogram are markers of right ventricular dysfunction and atrialization in patients with Ebstein anomaly.

    Science.gov (United States)

    Egidy Assenza, Gabriele; Valente, Anne Marie; Geva, Tal; Graham, Dionne; Pluchinotta, Francesca Romana; Romana Pluchinotta, Francesca; Sanders, Stephen P; Autore, Camillo; Volpe, Massimo; Landzberg, Michael J; Cecchin, Frank

    2013-01-01

    Ebstein anomaly is a rare and heterogeneous congenital heart defect affecting the tricuspid valve and right ventricular (RV) myocardium. Few studies have analysed the electrocardiographic features of Ebstein anomaly and none has addressed correlations with disease severity. Patients with Ebstein anomaly who had undergone electrocardiography and cardiac magnetic resonance (CMR) within 6 weeks between 2001 and 2009 were included. Exclusion criteria were: associated congenital cardiac defect, previous RV myoplasty and/or reduction surgery, class I anti-arrhythmic drug therapy, and paced/pre-excited QRS. Standard electrocardiogram (ECG) findings were correlated with CMR-based RV measures and clinical profile. The mean age of the 63 study patients was 22 ± 13 years. An RV conduction delay (rsR' pattern in right precordial leads) was present in 45 patients (71%). The QRS duration correlated with anatomic RV diastolic volume (r = +0.56, P surface ECG identifies a subset of patients with Ebstein anomaly with mild morphological and functional abnormalities and better clinical profile.

  19. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    Science.gov (United States)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  20. Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies.

    Science.gov (United States)

    Shi, Bin; Wang, Peng; Jiang, Jiping; Liu, Rentao

    2018-01-01

    It is critical for surface water management systems to provide early warnings of abrupt, large variations in water quality, which likely indicate the occurrence of spill incidents. In this study, a combined approach integrating a wavelet artificial neural network (wavelet-ANN) model and high-frequency surrogate measurements is proposed as a method of water quality anomaly detection and warning provision. High-frequency time series of major water quality indexes (TN, TP, COD, etc.) were produced via a regression-based surrogate model. After wavelet decomposition and denoising, a low-frequency signal was imported into a back-propagation neural network for one-step prediction to identify the major features of water quality variations. The precisely trained site-specific wavelet-ANN outputs the time series of residual errors. A warning is triggered when the actual residual error exceeds a given threshold, i.e., baseline pattern, estimated based on long-term water quality variations. A case study based on the monitoring program applied to the Potomac River Basin in Virginia, USA, was conducted. The integrated approach successfully identified two anomaly events of TP variations at a 15-minute scale from high-frequency online sensors. A storm event and point source inputs likely accounted for these events. The results show that the wavelet-ANN model is slightly more accurate than the ANN for high-frequency surface water quality prediction, and it meets the requirements of anomaly detection. Analyses of the performance at different stations and over different periods illustrated the stability of the proposed method. By combining monitoring instruments and surrogate measures, the presented approach can support timely anomaly identification and be applied to urban aquatic environments for watershed management. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 3 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1982-2009 (NODC Accession 0068999)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  2. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 2 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1982-2008 (NODC Accession Number 0054501)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  3. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 4 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1981-10-31 to 2010-12-31 (NODC Accession 0087989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  4. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 2 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1982-2008 (NODC Accession 0054501)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  5. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 1 - Global, 4 km, Sea Surface Temperature and Related Thermal Stress Metrics for 1985-2005 (NODC Accession 0044419)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coral Reef Temperature Anomaly Database (CoRTAD) is a collection of sea surface temperature (SST) and related thermal stress metrics, developed specifically for...

  6. The Coral Reef Temperature Anomaly Database (CoRTAD) Version 5 - Global, 4 km Sea Surface Temperature and Related Thermal Stress Metrics for 1982-2012 (NCEI Accession 0126774)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 5 of the Coral Reef Temperature Anomaly Database (CoRTAD) is a global, 4 km, sea surface temperature (SST) and related thermal stress metrics dataset for...

  7. High-resolution paleoclimatology of the Santa Barbara Basin during the Medieval Climate Anomaly and early Little Ice Age based on diatom and silicoflagellate assemblages in Kasten core SPR0901-02KC

    Science.gov (United States)

    Barron, John A.; Bukry, David B.; Hendy, Ingrid L.

    2015-01-01

    Diatom and silicoflagellate assemblages documented in a high-resolution time series spanning 800 to 1600 AD in varved sediment recovered in Kasten core SPR0901-02KC (34°16.845’ N, 120°02.332’ W, water depth 588 m) from the Santa Barbara Basin (SBB) reveal that SBB surface water conditions during the Medieval Climate Anomaly (MCA) and the early part of the Little Ice Age (LIA) were not extreme by modern standards, mostly falling within one standard deviation of mean conditions during the pre anthropogenic interval of 1748 to 1900. No clear differences between the character of MCA and the early LIA conditions are apparent. During intervals of extreme droughts identified by terrigenous proxy scanning XRF analyses, diatom and silicoflagellate proxies for coastal upwelling typically exceed one standard deviation above mean values for 1748-1900, supporting the hypothesis that droughts in southern California are associated with cooler (or La Niña-like) sea surface temperatures (SSTs). Increased percentages of diatoms transported downslope generally coincide with intervals of increased siliciclastic flux to the SBB identified by scanning XRF analyses. Diatom assemblages suggest only two intervals of the MCA (at ~897 to 922 and ~1151 to 1167) when proxy SSTs exceeded one standard deviation above mean values for 1748 to 1900. Conversely, silicoflagellates imply extreme warm water events only at ~830 to 860 (early MCA) and ~1360 to 1370 (early LIA) that are not supported by the diatom data. Silicoflagellates appear to be more suitable for characterizing average climate during the 5 to 11 year-long sample intervals studied in the SPR0901-02KC core than diatoms, probably because diatom relative abundances may be dominated by seasonal blooms of a particular year.

  8. Sensitivity of simulated South America climate to the land surface schemes in RegCM4

    Science.gov (United States)

    Llopart, Marta; da Rocha, Rosmeri P.; Reboita, Michelle; Cuadra, Santiago

    2017-12-01

    This work evaluates the impact of two land surface parameterizations on the simulated climate and its variability over South America (SA). Two numerical experiments using RegCM4 coupled with the Biosphere-Atmosphere Transfer Scheme (RegBATS) and the Community Land Model version 3.5 (RegCLM) land surface schemes are compared. For the period 1979-2008, RegCM4 simulations used 50 km horizontal grid spacing and the ERA-Interim reanalysis as initial and boundary conditions. For the period studied, both simulations represent the main observed spatial patterns of rainfall, air temperature and low level circulation over SA. However, with regard to the precipitation intensity, RegCLM values are closer to the observations than RegBATS (it is wetter in general) over most of SA. RegCLM also produces smaller biases for air temperature. Over the Amazon basin, the amplitudes of the annual cycles of the soil moisture, evapotranspiration and sensible heat flux are higher in RegBATS than in RegCLM. This indicates that RegBATS provides large amounts of water vapor to the atmosphere and has more available energy to increase the boundary layer thickness and cause it to reach the level of free convection (higher sensible heat flux values) resulting in higher precipitation rates and a large wet bias. RegCLM is closer to the observations than RegBATS, presenting smaller wet and warm biases over the Amazon basin. On an interannual scale, the magnitudes of the anomalies of the precipitation and air temperature simulated by RegCLM are closer to the observations. In general, RegBATS simulates higher magnitude for the interannual variability signal.

  9. High-resolution lake sediment archives of midcontinental atmospheric and hydroclimate variability during the Medieval Climate Anomaly and Little Ice Age

    Science.gov (United States)

    Bird, B. W.; Wilson, J. J.; Gilhooly, W., III; Steinman, B. A.; Stamps, L. G.; Ahmed, M. N.; Abbott, M. B.; Pompeani, D. P.; Hillman, A. L.; Finkenbinder, M. S.

    2017-12-01

    Hydroclimate variability in the midcontinental United States (US) during the last 2000 years is not well characterized because there are few high-resolution paleoclimate records from the region. The majority of information about late Holocene midcontinental hydroclimate variability comes from scattered lake and bog sediment archives (primarily north of 42˚N) and gridded Palmer Drought Severity Index (PDSI) data calculated from a network of tree-ring records. The density of tree-ring records is lowest in the midcontinent, however, and decreases precipitously with time. In order to address this midcontinental paleoclimate data gap, we are developing a series of new lake-sediment-based hydroclimate records spanning 85˚ to 98˚W and 38˚ to 45˚N. New results from the eastern and central portions of the study area indicate large hydroclimate changes during the last 2000 years. Specifically, the Ohio and central Mississippi River valleys were wetter during the Medieval Climate Anomaly (MCA; 950-1250 CE), but drier during the Little Ice Age (LIA; 1350-1850 CE) with an especially severe, multi-decadal drought between 1350-1450 CE. Comparison with western (west of 96˚W) drought and fire records supports the existence of a hydroclimate dipole, with opposite hydroclimate conditions west and east of 96˚W. Isotopic changes in precipitation during the MCA and LIA suggest hydroclimate anomalies during these events were associated with mean state atmospheric circulation changes that resemble modern Pacific North American Mode (PNA) variability. Midcontinental Native American populations appear to have responded to MCA and LIA hydroclimate variability, with the latter event contributing to midcontinental depopulation between 1350-1500 CE.

  10. Relating climatic attributes and water resources allocation: A study using surface water supply and soil moisture indices in the Snake River basin, Idaho

    Science.gov (United States)

    Hoekema, David J.; Sridhar, Venkataramana

    2011-07-01

    Climate change forced by anthropogenic activities has been ongoing since at least the beginning of the industrial revolution. Part of the recent warming in the western United States has been attributed to anthropogenic climate change. This research seeks to answer the basic question of how declining streamflow, increasing temperatures, and fluctuation in precipitation have impacted water resource allocation in the Snake River Plain over the past 35 years (1971-2005). Understanding how changes in climatic attributes have historically impacted water allocation should help water managers better understand how projected climate change may influence allocation. Annual and monthly diversion trends from 62 locations in the Snake River Plain were compared to temperature and precipitation trends at 10 climate stations across the basin. We found a strong trend of declining annual surface water diversions across the study area. Of the 62 diversion points examined, 45 have highly significant decreasing annual diversion trends, while an additional 8 have significant decreasing trends. Despite the annual decline in surface water diversions, April diversions have increased at more than half of the diversion points, with 15 locations showing highly significant trends and an additional 17 showing significant increasing diversion trends. A comparison of diversions to the Surface Water Supply Index indicates that the decline in midseason and late season diversions is mostly caused by decreasing supply in the study period, while a comparison of diversions to Palmer's Z index and the Standardized Precipitation Index indicates that early season diversions are highly correlated to early season moisture anomalies.

  11. A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input

    Directory of Open Access Journals (Sweden)

    Robert M. Parinussa

    2016-10-01

    Full Text Available Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth’s surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1–2 GHz. Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E, as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM, and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm and descending (01:30 am paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for

  12. A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input

    Science.gov (United States)

    Parinussa, Robert M.; de Jeu, Richard A. M.; van Der Schalie, Robin; Crow, Wade T.; Lei, Fangni; Holmes, Thomas R. H.

    2016-01-01

    Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth's surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1-2 GHz). Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm) observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am) equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM), and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm) and descending (01:30 am) paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for the radiative

  13. Complex Networks Dynamics Based on Events-Phase Synchronization and Intensity Correlation Applied to The Anomaly Patterns and Extremes in The Tropical African Climate System

    Science.gov (United States)

    Oluoch, K.; Marwan, N.; Trauth, M.; Loew, A.; Kurths, J.

    2012-04-01

    The African continent lie almost entirely within the tropics and as such its (tropical) climate systems are predominantly governed by the heterogeneous, spatial and temporal variability of the Hadley and Walker circulations. The variabilities in these meridional and zonal circulations lead to intensification or suppression of the intensities, durations and frequencies of the Inter-tropical Convergence Zone (ICTZ) migration, trade winds and subtropical high-pressure regions and the continental monsoons. The above features play a central role in determining the African rainfall spatial and temporal variability patterns. The current understanding of these climate features and their influence on the rainfall patterns is not sufficiently understood. Like many real-world systems, atmospheric-oceanic processes exhibit non-linear properties that can be better explored using non-linear (NL) methods of time-series analysis. Over the recent years, the complex network approach has evolved as a powerful new player in understanding spatio-temporal dynamics and evolution of complex systems. Together with NL techniques, it is continuing to find new applications in many areas of science and technology including climate research. We would like to use these two powerful methods to understand the spatial structure and dynamics of African rainfall anomaly patterns and extremes. The method of event synchronization (ES) developed by Quiroga et al., 2002 and first applied to climate networks by Malik et al., 2011 looks at correlations with a dynamic time lag and as such, it is a more intuitive way to correlate a complex and heterogeneous system like climate networks than a fixed time delay most commonly used. On the other hand, the short comings of ES is its lack of vigorous test statistics for the significance level of the correlations, and the fact that only the events' time indices are synchronized while all information about how the relative intensities propagate within network

  14. Three-dimensional brain-surface MR images of brain anomalies in Fukuyama congenital muscular dystrophy and its differentiation from Duchenne muscular dystrophy with severe mental retardation

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Tatsushi; Watanabe, Toshiaki; Shimizu, Teruo; Iwata, Makoto; Kanazawa, Ichiro (Tokyo Univ. (Japan). Faculty of Medicine); Matsumura, Kiichiro

    1993-12-01

    Fukuyama congenital muscular dystrophy (FCMD) is the second most common form of muscular dystrophy in Japan and is peculiarly associated with brain anomalies such as micropolygyria. Since these anomalies are preferentially observed on the brain surface, it is difficult to identify them by either X-ray CT or conventional MRI. In addition, FCMD has an atypical (mild) form in which the patients are capable of walking. In such cases, clinical differential diagnosis from Duchenne muscular dystrophy with severe mental retardation (DMD-MR) is not necessarily easy. We analyzed the brain-surface structures of 4 typical FCMD cases. 1 atypical FCMD case, 4 DMD-MR cases, and 1 undiagnosed case using a method of 3-dimensional (3-D) brain-surface MR imaging; we then compared the results with dystrophin immuno-stainings of the biopsied skeletal muscles. In both typical and atypical FCMD cases, micropolygyria could be clearly demonstrated, with individual variations. The 3-D images were verified by neuropathology. Of the 4 DMD-MR cases, 3 cases showed no gyral abnormality. However, in 1 DMD-MR case the diagnosis was corrected to atypical FCMD because of micropolygyria found on 3-D MRI. The one undiangosed case was diagnosed as DMD-MR on the basis of 3-D MRI. There was a good correspondence between the results of the 3-D imaging and the dystrophin test. Recently, some FCMD cases with a complete deficiency of dystrophin have been reported. Therefore, the detection of brain anomalies is important for the precise diagnosis of FCMD; the present method is considered effective for this purpose. (author).

  15. Three-dimensional brain-surface MR images of brain anomalies in Fukuyama congenital muscular dystrophy and its differentiation from Duchenne muscular dystrophy with severe mental retardation

    International Nuclear Information System (INIS)

    Toda, Tatsushi; Watanabe, Toshiaki; Shimizu, Teruo; Iwata, Makoto; Kanazawa, Ichiro; Matsumura, Kiichiro.

    1993-01-01

    Fukuyama congenital muscular dystrophy (FCMD) is the second most common form of muscular dystrophy in Japan and is peculiarly associated with brain anomalies such as micropolygyria. Since these anomalies are preferentially observed on the brain surface, it is difficult to identify them by either X-ray CT or conventional MRI. In addition, FCMD has an atypical (mild) form in which the patients are capable of walking. In such cases, clinical differential diagnosis from Duchenne muscular dystrophy with severe mental retardation (DMD-MR) is not necessarily easy. We analyzed the brain-surface structures of 4 typical FCMD cases. 1 atypical FCMD case, 4 DMD-MR cases, and 1 undiagnosed case using a method of 3-dimensional (3-D) brain-surface MR imaging; we then compared the results with dystrophin immuno-stainings of the biopsied skeletal muscles. In both typical and atypical FCMD cases, micropolygyria could be clearly demonstrated, with individual variations. The 3-D images were verified by neuropathology. Of the 4 DMD-MR cases, 3 cases showed no gyral abnormality. However, in 1 DMD-MR case the diagnosis was corrected to atypical FCMD because of micropolygyria found on 3-D MRI. The one undiangosed case was diagnosed as DMD-MR on the basis of 3-D MRI. There was a good correspondence between the results of the 3-D imaging and the dystrophin test. Recently, some FCMD cases with a complete deficiency of dystrophin have been reported. Therefore, the detection of brain anomalies is important for the precise diagnosis of FCMD; the present method is considered effective for this purpose. (author)

  16. Evaluating climatic and non-climatic stresses for declining surface water quality in Bagmati River of Nepal.

    Science.gov (United States)

    Panthi, Jeeban; Li, Fengting; Wang, Hongtao; Aryal, Suman; Dahal, Piyush; Ghimire, Sheila; Kabenge, Martin

    2017-06-01

    Both climatic and non-climatic factors affect surface water quality. Similar to its effect across various sectors and areas, climate change has potential to affect surface water quality directly and indirectly. On the one hand, the rise in temperature enhances the microbial activity and decomposition of organic matter in the river system and changes in rainfall alter discharge and water flow in the river ultimately affecting pollution dilution level. On the other hand, the disposal of organic waste and channelizing municipal sewage into the rivers seriously worsen water quality. This study attempts to relate hydro-climatology, water quality, and impact of climatic and non-climatic stresses in affecting river water quality in the upper Bagmati basin in Central Nepal. The results showed that the key water quality indicators such as dissolved oxygen and chemical oxygen demand are getting worse in recent years. No significant relationships were found between the key water quality indicators and changes in key climatic variables. However, the water quality indicators correlated with the increase in urban population and per capita waste production in the city. The findings of this study indicate that dealing with non-climatic stressors such as reducing direct disposal of sewerage and other wastes in the river rather than emphasizing on working with the effects from climate change would largely help to improve water quality in the river flowing from highly populated urban areas.

  17. The Largs high-latitude oxygen isotope anomaly (New Zealand) and climatic controls of oxygen isotopes in magma

    International Nuclear Information System (INIS)

    Blattner, P.; Williams, J.G.

    1991-01-01

    In northern Fiordland the Brook Street terrane of New Zealand consists of two units - the predominantly basaltic Plato and the predominantly andesitic Largs terrane. The Permian Plato terrane has normal to slightly enriched δ 18 O values, whereas the Largs terrane, which is of similar pre-early Triassic age, has not yielded a single normal δ 18 O SMOW result, with all of 17 total rocks showing less than 3.2per mille, seven less than -4per mille, and two less than -9per mille. These strongly anomalous data confirm an earlier suggested terrestrial character of Largs deposition, and demand the presence of Permo-Triassic geothermal systems running on subAntarctic to Antarctic meteoric water. The skewed data spectrum suggests a relatively immature flow system and likely values for the recharge water are -20per mille δ 18 O or less. For a climate distribution similar to the present one, inlcuding polar ice caps, this would indicate over 70deg of southern latitude. Rafts and xenoliths of Largs rocks have been entrained within Mackay Intrusives in the early Triassic. On field evidence the Mackay magmas have also intruded an early Darran Complex, but this complex has been substantially reactivated in the Cretaceous. It has δ 18 O values near 5.0per mille, which is distinctly low for island arc magmas. Since the complex is isotopically homogenous, its δ 18 O is unlikely to be a direct effect of the relatively shallow Largs terrane. More probable is a climate related slight depression of the δ 18 O of magma sources, in which other high-latitude, low-δ 18 O sediments and geothermal systems have been involved. (orig.)

  18. Cross-spectral study of the spatial relationships in the North Pacific sea-surface temperature anomaly field. Report No. 23

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, J.W.

    1980-03-01

    Cross-spectral analysis is used to examine the dependence of the temporal covariation of sea-surface temperature (SST) anomalies at pairs of spatially separated points in the North Pacific on (1) the time scale of the variations, (2) the relative displacement of the points and (3) their location within the North Pacific basin. Spatial scales considered here range from 1000 kilometers up to the width of the basin. The study focuses on cross-spectral estimates for the interannual frequency band, 0.125-0.75 yr/sup -1/ although estimates for three other bands spanning higher frequencies are also examined.

  19. DOWN'S ANOMALY.

    Science.gov (United States)

    PENROSE, L.S.; SMITH, G.F.

    BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…

  20. Medieval climate anomaly and little ice age as recorded in speleothem and tree-ring data from the Middle Atlas in Morocco

    Science.gov (United States)

    Wassenburg, J. A.; Immenhauser, A.; Richter, D. K.; Fietzke, J.; Scholz, D.; Jochum, K. P.; Riechelmann, D. F. C.; Schneider, L.; Esper, J.

    2012-04-01

    Progress has recently been made in assessing the spatial extend and timing of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) on hemispheric and global scales (Graham et al. 2011). Uncertainties still exist, however, since the transition from the MCA into the LIA seems to be diachronous, and in many cases, reconstructions are based on single climate archives (e.g., speleothems, tree-rings, or pollen data). In Morocco, cedar trees from the Middle and High Atlas have been used to reconstruct the Palmer Drought Severity Index (PDSI) back to 1049 AD (Esper et al., 2007), a metric integrating the evaporation-precipitation balance and soil properties. According to Graham et al. (2011), the MCA/LIA transition recorded in Moroccan tree rings occurred rather late (around 1400 AD) in comparison to the reconstructed winter temperature in the European Alps (e.g., Mangini et al., 2005), which show substantial changes about 50 years earlier. Here we compare precisely dated speleothem δ13C and trace element records from the Middle Atlas with an updated version of the tree-ring based PDSI reconstruction from Esper et al. (2007). Both stalagmite δ13C and strontium records support the prevalence of exceptionally dry conditions during the MCA and relatively wet conditions during the LIA. These changes have formerly been suggested to be related to persistent positive and negative phases of the North Atlantic Oscillation (Trouet et al., 2009). The speleothem based reconstruction extends back to 700 AD and, thus, provides insight on the precise timing of the driest period during the MCA in the Moroccan Middle Atlas.

  1. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, John A. [Univ. of Alabama, Birmingham, AL (United States). Material Science & Engineering Dept.

    2014-02-20

    The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.

  2. Possible impacts of spring sea surface temperature anomalies over South Indian Ocean on summer rainfall in Guangdong-Guangxi region of China

    Science.gov (United States)

    Jin, Dachao; Guan, Zhaoyong; Huo, Liwei; Wang, Xudong

    2017-11-01

    Based on observational and reanalysis data for 1979-2015, the possible impacts of spring sea surface temperature anomalies (SSTA) over the South Indian Ocean on the inter-annual variations of summer rainfall in Guangdong and Guangxi Provinces (i.e., the Guangdong-Guangxi area, GG) were analysed in this study. The physical mechanism behind these impacts was explored. Two geographic regions over [65°E-95°E, 35°S-25°S] and [90°E-110°E, 20°S-5°S] were defined as the western pole region and the eastern pole region, respectively, for the GG summer precipitation (PGG)-related South Indian Ocean dipole SSTA pattern (R-SIODP). The difference between springtime SST anomalies averaged over the western pole region and that averaged over the eastern pole region was defined as the R-SIODP index. The correlation between the spring R-SIODP index and GG summer precipitation can reach up to 0.52. In the spring of positive R-SIODP anomaly, southerly winds over the western pole of the R-SIODP weaken, whereas the southeast trade winds over the eastern pole strengthen. By means of the wind-evaporation-SST feedback mechanism, the enhanced southeast trade winds can weaken the evaporation over the western pole of the R-SIODP and enhance the evaporation over the eastern pole. This results in a sustained positive SSTA in the western pole of the R-SIODP and a sustained negative SSTA in the eastern pole, whereby the distribution of the SSTAs maintains until summer. The SST dipole abnormally enhances the cross-equatorial airflow near 105°E, which intensifies the anomalous anti-cyclonic circulation over South China Sea at 850 hPa and simultaneously results in abnormal enhancement of water vapour transport to GG. Additionally, the SST dipole promotes abnormal divergence in the lower troposphere and abnormal convergence in the upper troposphere over the maritime continent (MC) region. Moreover, the low-level convergence in GG is enhanced, which results in abnormal enhancement of ascending

  3. Atmospheric impacts on climatic variability of surface incident solar radiation

    Directory of Open Access Journals (Sweden)

    K. C. Wang

    2012-10-01

    Full Text Available The Earth's climate is driven by surface incident solar radiation (Rs. Direct measurements have shown that Rs has undergone significant decadal variations. However, a large fraction of the global land surface is not covered by these observations. Satellite-derived Rs has a good global coverage but is of low accuracy in its depiction of decadal variability. This paper shows that daily to decadal variations of Rs, from both aerosols and cloud properties, can be accurately estimated using globally available measurements of Sunshine Duration (SunDu. In particular, SunDu shows that since the late 1980's Rs has brightened over Europe due to decreases in aerosols but dimmed over China due to their increases. We found that variation of cloud cover determines Rs at a monthly scale but that aerosols determine the variability of Rs at a decadal time scale, in particular, over Europe and China. Because of its global availability and long-term history, SunDu can provide an accurate and continuous proxy record of Rs, filling in values for the blank areas that are not covered by direct measurements. Compared to its direct measurement, Rs from SunDu appears to be less sensitive to instrument replacement and calibration, and shows that the widely reported sharp increase in Rs during the early 1990s in China was a result of instrument replacement. By merging direct measurements collected by Global Energy Budget Archive with those derived from SunDu, we obtained a good coverage of Rs over the Northern Hemisphere. From this data, the average increase of Rs from 1982 to 2008 is estimated to be 0.87 W m−2 per decade.

  4. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations

    Science.gov (United States)

    Su, Hua; Li, Wene; Yan, Xiao-Hai

    2018-01-01

    Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.

  5. Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study

    Science.gov (United States)

    Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; hide

    2013-01-01

    The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.

  6. Soil temperature response in Korea to a changing climate using a land surface model

    Science.gov (United States)

    Park, Seon Ki; O, Sungmin; Cassardo, Claudio

    2017-11-01

    The land surface processes play an important role in weather and climate systems through its regulation of radiation, heat, water and momentum fluxes. Soil temperature (ST) is one of the most important parameters in the land surface processes; however, there are few extensive measurements of ST with a long time series in the world. According to the CLImatology of Parameters at the Surface (CLIPS) methodology, the output of a trusted Soil-Vegetation- Atmosphere Transfer (SVAT) scheme can be utilized instead of observations to investigate the regional climate of interest. In this study, ST in South Korea is estimated in a view of future climate using the output from a trusted SVAT scheme — the University of TOrino model of land Process Interaction with Atmosphere (UTOPIA), which is driven by a regional climate model. Here characteristic changes in ST are analyzed under the IPCC A2 future climate for 2046-2055 and 2091-2100, and are compared with those under the reference climate for 1996-2005. The UTOPIA results were validated using the observed ST in the reference climate, and the model proved to produce reasonable ST in South Korea. The UTOPIA simulations indicate that ST increases due to environmental change, especially in air temperature (AT), in the future climate. The increment of ST is proportional to that of AT except for winter. In wintertime, the ST variations are different from region to region mainly due to variations in snow cover, which keeps ST from significant changes by the climate change.

  7. ClimoBase: Rouse Canadian Surface Observations of Weather, Climate, and Hydrological Variables, 1984-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ClimoBase is a collection of surface climate measurements collected in Northern Canada by Dr. Wayne Rouse between 1984 and 1998 in three locations: Churchill,...

  8. Quantifying the impact of climate change on enteric waterborne pathogen concentrations in surface water

    NARCIS (Netherlands)

    Hofstra, N.

    2011-01-01

    Climate change, among other factors, will impact waterborne pathogen concentrations in surface water worldwide, possibly increasing the risk of diseases caused by these pathogens. So far, the impacts are only determined qualitatively and thorough quantitative estimates of future pathogen

  9. Impact of surface waves in a Regional Climate Model

    DEFF Research Database (Denmark)

    Rutgersson, Anna; Sætra, Oyvind; Semedo, Alvaro

    2010-01-01

    A coupled regional atmosphere-wave model system is developed with the purpose of investigating the impact of climate changes on the wave field, as well as feed-back effects of the wave field on the atmospheric parameters. This study focuses on the effects of introducing a two-way atmosphere......-wave coupling on the atmosphere as well as on wave parameters. The model components are the regional climate model RCA, and the third generation wave model WAM. Two different methods are used for the coupling, using the roughness length and only including the effect of growing sea, and using the wave age...... in climate models for a realistic description of processes over sea....

  10. Wintertime land surface characteristics in climatic simulations over ...

    Indian Academy of Sciences (India)

    eastward moving low-pressure synoptic weather systems, called Western Disturbances (WDs). (Pisharoty and Desai .... Land surface processes are controlled by surface roughness and albedo. Different land surfaces will have different roughness length and albedo. Table 1 illustrates vegetation types and their correspond-.

  11. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    Science.gov (United States)

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  12. Reliability of CHAMP Anomaly Continuations

    Science.gov (United States)

    vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.

    2003-01-01

    CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, anomaly continuation is severely limited by the non-uniqueness of the process and satellite anomaly errors. Indeed, our numerical anomaly simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the anomaly details are to be exploited most fully. Given current anomaly error levels, joint inversion of satellite and near- surface anomalies is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic anomalies are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.

  13. Dyonic anomalies

    International Nuclear Information System (INIS)

    Henningson, Mans; Johansson, Erik P.G.

    2005-01-01

    We consider the problem of coupling a dyonic p-brane in d=2p+4 space-time dimensions to a prescribed (p+2)-form field strength. This is particularly subtle when p is odd. For the case p=1, we explicitly construct a coupling functional, which is a sum of two terms: one which is linear in the prescribed field strength, and one which describes the coupling of the brane to its self-field and takes the form of a Wess-Zumino term depending only on the embedding of the brane world-volume into space-time. We then show that this functional is well-defined only modulo a certain anomaly, related to the Euler class of the normal bundle of the brane world-volume

  14. Satellite remotely-sensed land surface parameters and their climatic effects for three metropolitan regions

    Science.gov (United States)

    Xian, George

    2008-01-01

    By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.

  15. Sensitivity of Distributions of Climate System Properties to Surface Temperature Datasets

    Science.gov (United States)

    Libardoni, A. G.; Forest, C. E.

    2011-12-01

    Predictions of climate change from models depend strongly on the representation of climate system properties emerging from the processes and feedbacks in the models. The quality of any model prediction can be evaluated by determining how well its output reproduces the observed climate system. With this evaluation, the reliability of climate projections derived from the model and provided for policy makers is assessed and quantified. In this study, surface temperature, upper-air temperature, and ocean heat content data are used to constrain the distributions of the parameters that define three climate system properties in the MIT Integrated Global Systems Model: climate sensitivity, the rate of ocean heat uptake into the deep ocean, and net anthropogenic aerosol forcing. In particular, we explore the sensitivity of the distributions to the surface temperature dataset used to estimate the likelihood of model output given the observed climate records. In total, five different reconstructions of past surface temperatures are used and the resulting parameter distribution functions differ from each other. Differences in estimates of climate sensitivity mode and mean are as great as 1 K between the datasets, with an overall range of 1.2 to 5.3 K using the 5-95 confidence intervals. Ocean effective diffusivity is poorly constrained regardless of which dataset is used. All distributions show broad distributions and only three show signs of a distribution mode. When a mode is present, they tend to be for low diffusivity values. Distributions for the net aerosol forcing show similar shapes and cluster into two groups that are shifted by approximately 0.1 watts per square meter. However, the overall spread of forcing values from the 5-95 confidence interval, -0.19 to -0.83 watts per square meter, is small compared to other uncertainties in climate forcings. Transient climate response estimates derived from these distributions range between 0.87 and 2.41 K. Similar to the

  16. The Surface Radiation Budget and Cloud Climate Interactions as a Part of CERES

    Science.gov (United States)

    Cess, Robert D.

    1998-01-01

    Work that has been completed is described in reprints and preprints, and summaries in terms of broad categories are given as follows: (1) The Relationship between Surface and Satellite Shortwave Radiative Fluxes; (2) Cloud-Climate Interactions in Atmospheric General Circulation Models; (3) Absorption of Shortwave radiation by clouds; (4) Clear-sky atmospheres shortwave radiation; and (5) Surface shortwave radiation measurements.

  17. On the assessment of urban land-surface impacts on climate in regional climate model simulations over Central Europe

    Science.gov (United States)

    Huszar, Peter; Belda, Michal; Halenka, Tomas

    2016-04-01

    When aiming higher resolution in dynamical downscaling, which is common trend in CORDEX activities, the effects of land use and land use changes are playing increasing role. This is especially true for the urban areas, which in high resolution can occupy significant part of a single gridbox, if not being even bigger in case of big cities or megacities. Moreover, the role of cities will increase in future, as the population within the urban areas is growing faster, with the estimate for Europe of about 84% living in cities. For the purpose of qualifying and quantifying the impact of cities and in general the urban surfaces on climate, the surface parameterization in regional climate model RegCM4 has been coupled with the Single Layer Urban Canopy Model (SLUCM), which can be used both in dynamic scale within BATS scheme and in a more detailed SUBBATS scale to treat the surface on a higher resolution subgrid. A set of experiments was performed over the period of 2005-2009 over central Europe, either without considering urban surfaces and with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer), on the boundary layer height (ZPBL, increases up to 50 m). Additionally, the version of land-surface scheme using CLM is tested and effect of the urban environment, which is included in the CLM scheme, will be assessed. Both versions will be compared and validated using EOBS data.

  18. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    NARCIS (Netherlands)

    van Angelen, J.H.|info:eu-repo/dai/nl/325922470; Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; Lhermitte, S.; Fettweis, X.; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van Meijgaard, E.; Smeets, C.J.P.P.|info:eu-repo/dai/nl/191522236

    2012-01-01

    We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover,

  19. Potential effects of climate change on surface-water quality in North America

    Science.gov (United States)

    Murdoch, Peter S.; Baron, Jill S.; Miller, T.L.

    2000-01-01

    Data from long-term ecosystem monitoring and research stations in North America and results of simulations made with interpretive models indicate that changes in climate (precipitation and temperature) can have a significant effect on the quality of surface waters. Changes in water quality during storms, snowmelt, and periods of elevated air temperature or drought can cause conditions that exceed thresholds of ecosystem tolerance and, thus, lead to water-quality degradation. If warming and changes in available moisture occur, water-quality changes will likely first occur during episodes of climate-induced stress, and in ecosystems where the factors controlling water quality are sensitive to climate variability. Continued climate stress would increase the frequency with which ecosystem thresholds are exceeded and thus lead to chronic water-quality changes. Management strategies in a warmer climate will therefore be needed that are based on local ecological thresholds rather than annual median condition. Changes in land use alter biological, physical, and chemical processes in watersheds and thus significantly alter the quality of adjacent surface waters; these direct human-caused changes complicate the interpretation of water-quality changes resulting from changes in climate, and can be both mitigated and exacerbated by climate change. A rigorous strategy for integrated, long-term monitoring of the ecological and human factors that control water quality is necessary to differentiate between actual and perceived climate effects, and to track the effectiveness of our environmental policies.

  20. Improved exploration of fishery resources through the integration of remotely sensed merged sea level anomaly, chlorophyll concentration, and sea surface temperature

    Science.gov (United States)

    Priya, R. Kanmani Shanmuga; Balaguru, B.; Ramakrishnan, S.

    2013-10-01

    The capabilities of evolving satellite remote sensing technology, combined with conventional data collection techniques, provide a powerful tool for efficient and cost effective management of living marine resources. Fishes are the valuable living marine resources producing food, profit and pleasure to the human community. Variations in oceanic condition play a role in natural fluctuations of fish stocks. The Satellite Altimeter derived Merged Sea Level Anomaly(MSLA) results in the better understanding of ocean variability and mesosclae oceanography and provides good possibility to reveal the zones of high dynamic activity. This study comprised the synergistic analysis of signatures of SEAWIFS derived chlorophyll concentration, National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer(NOAA-AVHRR) derived Sea Surface Temperature and the monthly Merged Sea Level Anomaly data derived from Topex/Poseidon, Jason-1 and ERS-1 Altimeters for the past 7 years during the period from 1998 to 2004. The overlapping Chlorophyll, SST and MSLA were suggested for delineating Potential Fishing Zones (PFZs). The Chlorophyll and SST data set were found to have influenced by short term persistence from days to week while MSLA signatures of respective features persisted for longer duration. Hence, the study used Altimeter derived MSLA as an index for long term variability detection of fish catches along with Chlorophyll and SST images and the maps showing PFZs of the study area were generated. The real time Fishing statistics of the same duration were procured from FSI Mumbai. The catch contours were generated with respect to peak spectra of chlorophyll variation and trough spectra of MSLA and SST variation. The vice- a- versa patterns were observed in the poor catch contours. The Catch Per Unit Effort (CPUE) for each fishing trail was calculated to normalize the fish catch. Based on the statistical analysis the actual CPUEs were classified at each

  1. Turbulent Mixing and Vertical Heat Transfer in the Surface Mixed Layer of the Arctic Ocean: Implication of a Cross-Pycnocline High-Temperature Anomaly

    Science.gov (United States)

    Kawaguchi, Yusuke; Takeda, Hiroki

    2017-04-01

    This study focuses on the mixing processes in the vicinity of surface mixed layer (SML) of the Arctic Ocean. Turbulence activity and vertical heat transfer are quantitatively characterized in the Northwind Abyssal Plain, based on the RV Mirai Arctic cruise, during the transition from late summer to early winter 2014. During the cruise, noticeable storm events were observed, which came over the ship's location and contributed to the deepening of the SML. According to the ship-based microstructure observation, within the SML, the strong wind events produced enhanced dissipation rates of turbulent kinetic energy in the order of magnitude of ɛ = 10-6-10-4W kg-1. On thermal variance dissipation rate, χ increases toward the base of SML, reaching O(10-7) K2 s-1, resulting in vertical heat flux of O(10) W m-2. During the occasional energetic mixing events, the near-surface warm water was transferred downward and penetrated through the SML base, creating a cross-pycnocline high-temperature anomaly (CPHTA) at approximately 20-30 m depth. Near CPHTA, the vertical heat flux was anomalously magnified to O(10-100) W m-2. Following the fixed-point observation, in the regions of marginal and thick ice zones, the SML heat content was monitored using an autonomous drifting buoy, UpTempO. During most of the ice-covered period, the ocean-to-ice turbulent heat flux was dominant, rather than the diapycnal heat transfer across the SML bottom interface.

  2. Competing effects of surface albedo and orographic elevated heating on regional climate

    Science.gov (United States)

    Hu, Shineng; Boos, William R.

    2017-07-01

    All else being equal, a given atmospheric pressure level is thought to be warmer over a plateau than over surrounding nonelevated terrain because of orographic "elevated heating." However, elevated surfaces are also typically brighter due to reduced vegetation and increased ice cover. Here we assess the degree to which surface albedo compensates for orographic elevated heating. We confirm that land surface albedo generally increases with surface elevation in observations. Using a cloud system-resolving model, we show that increased surface albedo strongly compensates for orographic elevated heating in radiative-convective equilibrium. A nonelevated surface with the albedo of modern India would enter a runaway greenhouse regime without ventilation by monsoonal winds, while a surface with the albedo and elevation of Tibet would achieve a cooler radiative-convective equilibrium. Surface albedo changes may thus be just as important as surface elevation changes for the evolution of low-latitude regional climate throughout Earth's history.

  3. Surface temperatures of the Mid-Pliocene North Atlantic Ocean: Implications for future climate

    Science.gov (United States)

    Dowsett, Harry J.; Chandler, Mark A.; Robinson, Marci M.

    2009-01-01

    The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.

  4. Global land surface climate analysis based on the calculation of a modified Bowen ratio

    Science.gov (United States)

    Han, Bo; Lü, Shihua; Li, Ruiqing; Wang, Xin; Zhao, Lin; Zhao, Cailing; Wang, Danyun; Meng, Xianhong

    2017-05-01

    A modified Bowen ratio (BRm), the sign of which is determined by the direction of the surface sensible heat flux, was used to represent the major divisions in climate across the globe, and the usefulness of this approach was evaluated. Five reanalysis datasets and the results of an offline land surface model were investigated. We divided the global continents into five major BRm zones using the climatological means of the sensible and latent heat fluxes during the period 1980-2010: extremely cold, extremely wet, semi-wet, semi-arid and extremely arid. These zones had BRm ranges of (-∞, 0), (0, 0.5), (0.5, 2), (2, 10) and (10, +∞), respectively. The climatological mean distribution of the Bowen ratio zones corresponded well with the K¨oppen-like climate classification, and it reflected well the seasonal variation for each subdivision of climate classification. The features of climate change over the mean climatological BRm zones were also investigated. In addition to giving a map-like classification of climate, the BRm also reflects temporal variations in different climatic zones based on land surface processes. An investigation of the coverage of the BRm zones showed that the extremely wet and extremely arid regions expanded, whereas a reduction in area was seen for the semi-wet and semi-arid regions in boreal spring during the period 1980-2010. This indicates that the arid regions may have become drier and the wet regions wetter over this period of time.

  5. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  6. Surface and Mid-tropospheric Climate Change in Antarctica

    Science.gov (United States)

    Bromwich, D. H.; Monaghan, A. J.; Colwell, S. R.

    2008-12-01

    Near-surface air temperatures and 500-hPa temperatures over Antarctica for 1960-2007 have been reconstructed over the entire continent using manned station observations and radiosonde records, respectively, from the READER database maintained by British Antarctic Survey. The 50-year trends found in our near-surface temperature reconstruction agree with recent work by others using a variety of spatial extrapolation techniques. It is found that the statistically significant Antarctic Peninsula near-surface warming on an annual basis has spread into West Antarctica reaching as far as east as the Pine Island Bay-Thwaites Glacier region. The warming is most marked in recent years with 2007 being the warmest year in the 1960- 2007 interval. In contrast to the western (eastern) Antarctic Peninsula warming which is maximized in winter (summer), the warming over West Antarctica is maximized in the spring (SON) and in that season statistically significant warming stretches across all of West Antarctica and into northern Victoria Land. Weak near- surface warming is found over East Antarctica and the continent as a whole on an annual basis although continental warming in the spring is statistically significant and driven largely by the strong and widespread changes in West Antarctica. The 1960-2007 500-hPa temperature reconstruction is compared to the changes described by Turner et al. (2005), who found strong winter warming in radiosonde records over Antarctica for 1971-2003 but noted greater uncertainty over West Antarctica where there are few observational constraints.

  7. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  8. Wintertime land surface characteristics in climatic simulations over ...

    Indian Academy of Sciences (India)

    Most of the surface characteristics show that major interplay between topography and western disturbances (WDs) takes place along the foothills rather than over the higher peaks of the western Himalayas. ... Present address: Hydrospheric Atmospheric Research Center (HyARC), Nagoya University, Nagoya, Japan.

  9. Flow-dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian Climate Prediction Model

    Directory of Open Access Journals (Sweden)

    François Counillon

    2016-12-01

    Full Text Available We document a pilot stochastic re-analysis computed by assimilating sea surface temperature (SST anomalies into the ocean component of the coupled Norwegian Climate Prediction Model (NorCPM for the period 1950–2010 (doi: 10.11582/2016.00002. NorCPM is based on the Norwegian Earth System Model and uses the ensemble Kalman filter for data assimilation (DA. Here, we assimilate SST from the stochastic HadISST2 historical reconstruction. The accuracy, reliability and drift are investigated using both assimilated and independent observations. NorCPM is slightly overdispersive against assimilated observations but shows stable performance through the analysis period. It demonstrates skills against independent measurements: sea surface height, heat and salt content, in particular in the Equatorial and North Pacific, the North Atlantic Subpolar Gyre (SPG region and the Nordic Seas. Furthermore, NorCPM provides a reliable monitoring of the SPG index and represents the vertical temperature variability there, in good agreement with observations. The monitoring of the Atlantic meridional overturning circulation is also encouraging. The benefit of using a flow-dependent assimilation method and constructing the covariance in isopycnal coordinates are investigated in the SPG region. Isopycnal coordinates discretisation is found to better capture the vertical structure than standard depth-coordinate discretisation, because it leads to a deeper influence of the assimilated surface observations. The vertical covariance shows a pronounced seasonal and decadal variability that highlights the benefit of flow-dependent DA method. This study demonstrates the potential of NorCPM to compute an ocean re-analysis for the 19th and 20th centuries when SST observations are available.

  10. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Lin Bing; Min Qilong; Sun Wenbo; Hu Yongxiang; Fan, Tai-Fang

    2011-01-01

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  11. Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers

    Science.gov (United States)

    Salerno, Franco; Thakuri, Sudeep; Tartari, Gianni; Nuimura, Takayuki; Sunako, Sojiro; Sakai, Akiko; Fujita, Koji

    2017-08-01

    What are the main morphological factors that control the heterogeneous responses of debris-covered glaciers to climate change in the southern central Himalaya? A debate is open whether thinning rates on debris-covered glaciers are comparable to those of debris-free ones. Previous studies have adopted a deterministic approach, which is indispensable, but is also limiting in that only a few glaciers can be monitored. In this context, we propose a statistical analysis based on a wider glacier population as a complement to these deterministic studies. We analysed 28 glaciers situated on the southern slopes of Mt. Everest in the central southern Himalaya during the period 1992-2008. This study combined data compiled by three distinct studies for a common period and population of glaciers for use in a robust statistical analysis. Generally, surface gradient was the main morphological factor controlling the features and responses of the glaciers to climate change. In particular, the key points that emerged are as follows. 1) Reduced downstream surface gradient is responsible for increased glacier thinning. 2) The development of supraglacial ponds is a further controlling factor of glacier thinning: where supraglacial ponds develop, the glaciers register further surface lowering. 3) Debris coverage and thickness index were not found to be significantly responsible for the development of supraglacial ponds, changes in elevation, or shifts in snow line altitude.

  12. Climate of the Greenland ice sheet using a high-resolution climate model – Part 2: Near-surface climate and energy balance

    Directory of Open Access Journals (Sweden)

    J. Ettema

    2010-12-01

    Full Text Available The spatial variability of near-surface variables and surface energy balance components over the Greenland ice sheet are presented, using the output of a regional atmospheric climate model for the period 1958–2008. The model was evaluated in Part 1 of this paper.

    The near-surface temperature over the ice sheet is affected by surface elevation, latitude, longitude, large-scale and small-scale advection, occurrence of summer melt and mesoscale topographical features. The atmospheric boundary layer is characterised by a strong temperature inversion, due to continuous longwave cooling of the surface. In combination with a gently sloping surface the radiative loss maintains a persistent katabatic wind. This radiative heat loss is mainly balanced by turbulent sensible heat transport towards the surface. In summer, the surface is near radiative balance, resulting in lower wind speeds. Absorption of shortwave radiation and a positive subsurface heat flux due to refreezing melt water are heat sources for surface sublimation and melt.

    The strongest temperature deficits (>13 °C are found on the northeastern slopes, where the strongest katabatic winds (>9 m s−1 and lowest relative humidity (<65% occur. Due to strong large scale winds, clear sky (cloud cover <0.5 and a concave surface, a continuous supply of cold dry air is generated, which enhances the katabatic forcing and suppresses subsidence of potentially warmer free atmosphere air.

  13. Wetlands inform how climate extremes influence surface water expansion and contraction

    Directory of Open Access Journals (Sweden)

    M. K. Vanderhoof

    2018-03-01

    Full Text Available Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1 quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR and adjacent Northern Prairie (NP in the United States, and (2 explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015. The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density. To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less

  14. Wetlands inform how climate extremes influence surface water expansion and contraction

    Science.gov (United States)

    Vanderhoof, Melanie K.; Lane, Charles R.; McManus, Michael G.; Alexander, Laurie C.; Christensen, Jay R.

    2018-03-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985-2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic drainage

  15. Wetlands inform how climate extremes influence surface water expansion and contraction

    Science.gov (United States)

    Vanderhoof, Melanie; Lane, Charles R.; McManus, Michael L.; Alexander, Laurie C.; Christensen, Jay R.

    2018-01-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic

  16. Climate in the glaciated central Peruvian Andes observed since 1921: Trends in maximum, minimum, mean and DTR surface air temperature

    Science.gov (United States)

    Lagos, P.; Mark, B. G.; McKenzie, J. M.; Baraer, M.; Wigmore, O.; Somers, L. D.; Ccasani, Y.

    2016-12-01

    With ongoing climate change, there is increasing stress on water resources in low-latitude glacierized catchments. Glacier and hydrologic modeling is needed for future river discharge prediction, but it requires historical river discharge, temperature and precipitation time series. In the present study, we identify significant long term trends in maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tm) and diurnal temperature range, based on the single longest climatic dataset recorded in the Central Peruvian Andes. The site, Huancayo, located in the rural area of the Mantaro valley, at 3350 m a.s.l., has a high quality climatic dataset recorded since 1921. Land surface air temperature has been recorded at an hourly time interval in some decades and at 7, 13 and 19 hours in another decades. Maximum and minimum temperature were recorded every day. The daily means were calculated from these observed values. The Diurnal Temperature Range (DTR) defined as Tmax-Tmin, was also calculated from observed values. The data set we have analyzed contains daily, monthly, annual and decadal means for Tmax, Tmin, Tm and DTR for the period 1921-2015. We also calculated temperature anomalies relative to the 1961 - 1990 climate normal period, and use them to calculate monthly, annual and decadal trends. Monthly and annual means of Tmax and the other variables show substantial interannual and interdecadal variability. There are clear long-term trends, with periods showing significant increases and decreases. Hence, we calculated the long-term trends for the last 35 (1981-2015), 65 (1951-2015) and 85 (1931-2015) year intervals. Trends in oC per decade for Tmax calculated with the annual mean time series are 0.223 (1981-2015), 0.402 (1951-2015) and 0.161 (1931-2015); for Tmin for the same periods are 0.150, 0.013 and 0.001; for Tm 0.222, 0.127 and 0.081 and; for DTR 0.072, 0.228, and 0.159 respectably.

  17. Impact of Urban Climate Landscape Patterns on Land Surface Temperature in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Yasha Wang

    2017-09-01

    Full Text Available Facing urban warming, mitigation and adaptation strategies are not efficient enough to tackle excessive urban heat, especially at the local scale. The local climate zone (LCZ classification scheme is employed to examine the diversity and complexity of the climate response within a city. This study suggests that zonal practice could be an efficient way to bridge the knowledge gap between climate research and urban planning. Urban surfaces classified by LCZ are designated as urban climate landscapes, which extends the LCZ concept to urban planning applications. Selecting Wuhan as a case study, we attempt to explore the climatic effect of landscape patterns. Thermal effects are compared across the urban climate landscapes, and the relationships between patch metrics and land surface temperature (LST are quantified. Results indicate that climate landscape layout is a considerable factor impacting local urban climate. For Wuhan, 500 m is an optimal scale for exploring landscape pattern-temperature relationships. Temperature contrast between surrounding landscape patches has a major influence on LST. Generally, fragmental landscape patches contribute to heat release. For most climate landscape types, patch metrics also have a significant effect on thermal response. When three metrics are included as predictive variables, 53.3% of the heating intensity variation can be explained for the Large Lowrise landscape, while 57.4% of the cooling intensity variation can be explained for the Water landscape. Therefore, this article claims that land-based layout optimization strategy at local scale, which conforms to planning manner, should be taken into account in terms of heat management.

  18. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities.

    Science.gov (United States)

    Bright, Ryan M; Zhao, Kaiguang; Jackson, Robert B; Cherubini, Francesco

    2015-09-01

    By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region. © 2015 John Wiley & Sons Ltd.

  19. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. L.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J. H.; Nergui, T.; Guenther, Alex B.; Miller, C.; Reyes, J.; Tague, C. L.; Choate, J. S.; Salathe, E.; Stockle, Claudio O.; Adam, J. C.

    2014-05-16

    Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables(evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These im20 pact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However

  20. Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol

    Directory of Open Access Journals (Sweden)

    X. Yue

    2011-06-01

    Full Text Available Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1 The negative net (shortwave plus longwave radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2 The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.

  1. Satellite remotely-sensed land surface parameters and their climatic effects on urban areas

    Science.gov (United States)

    Zoran, M.; Savastru, R.; Savastru, D.; Ciobanu, M.; Tautan, M. N.; Miclos, S.

    2009-04-01

    Rapid urbanization transforms the natural landscape to anthropogenic urban land and changes surface biogeophysical characteristics.Urban growth affects the ecology of cities in a number of ways, such as eliminating and fragmenting native habitats, modifying local climate conditions, and generating anthropogenic pollutants.Urbanization has changed many landscapes throughout the world with serious ecological consequences.To understand the ecology of urban systems, it is necessary to quantify the spatial and temporal patterns of urbanization, which often requires dynamic modeling and spatial analysis. Geospatial information provided by satellite remote sensing sensors and biogeophysical field data are very useful for urban landuse-landcover dynamics and impacts analysis. The spatial and spectral variability of urban environments present fundamental challenges to deriving accurate remote sensing information for urban areas. By integrating high-resolution and medium-resolution satellite imagery with other geospatial information, have been investigated several land surface parameters including impervious surfaces and land surface temperatures for Bucharest metropolitan area in Romania. Percent impervious surface was used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapour content. Land surface temperatures have been analysed for different land use and land cover categories both in urban as well as in periurban areas. Because of the removal of vegetative cover and the reduction in evaporation over urban impervious surfaces, the urban heterogeneity of land surface and associated spatial extents influence surface thermal conditions. In situ meteorological data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape

  2. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J.; Bergstroem, R.; Foltescu, V. [Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden)

    2005-02-01

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition. (author)

  3. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Science.gov (United States)

    Langner, Joakim; Bergström, Robert; Foltescu, Valentin

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition.

  4. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    Science.gov (United States)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  5. Public Perception of Climate Change and the New Climate Dice

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Ruedy, Reto

    2012-01-01

    "Climate dice", describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 years, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3 sigma) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming, because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change.

  6. Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment

    DEFF Research Database (Denmark)

    Ruiz-Ramos, M.; Ferrise, Roberto; Rodríguez, A

    2018-01-01

    Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected...... decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here......, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions...

  7. The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling

    Science.gov (United States)

    Mischna, M.; Piqueux, S.

    2017-12-01

    On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may

  8. A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-09-01

    Full Text Available This study presents a method for adjusting long-term climate data records (CDRs for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS. Recently, a 23-year long (1983–2005 continuous SIS CDR has been generated based on the visible channel (0.45–1 μm of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF. Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005 and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present was applied that combines the Standard Normal Homogeneity Test (SNHT and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN and about 50 stations of the Global Energy Balance Archive (GEBA over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of

  9. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    Science.gov (United States)

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. © Her Majesty the

  10. Selected translated abstracts of Russian-language climate-change publications: I, Surface energy budget

    Energy Technology Data Exchange (ETDEWEB)

    Burtis, M.D. (comp.)

    1992-09-01

    This report presents abstracts (translated into English) of important Russian-language literature concerning the surface energy budget as it relates to climate change. In addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included, to assist the reader in locating abstracts of particular interest.

  11. Selected Translated Abstracts of Russian-Language Climate-Change Publications, I. Surface Energy Budget

    Energy Technology Data Exchange (ETDEWEB)

    Ravina, C.B.

    1992-01-01

    This report presents abstracts (translated into English) of important Russian-language literature concerning the surface energy budget as it relates to climate change. In addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included, to assist the reader in locating abstracts of particular interest.

  12. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling

    NARCIS (Netherlands)

    Ettema, J.|info:eu-repo/dai/nl/304831913; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van Meijgaard, E.; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Bamber, Jonathan L.; Box, J.E.; Bales, R.C.

    2009-01-01

    High-resolution (∼11 km) regional climate modeling shows total annual precipitation on the Greenland ice sheet for 1958–2007 to be up to 24% and surface mass balance up to 63% higher than previously thought. The largest differences occur in coastal southeast Greenland, where the much higher

  13. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    NARCIS (Netherlands)

    Rae, J.G.L.; Aðalgeirsdóttir, G.; Edwards, T.L.; Fettweis, X.; Gregory, J.M.; Hewitt, H.T.; Lowe, J.A.; Lucas-Picher, P.; Mottram, R.H.; Payne, A.J.; Ridley, J.K.; Shannon, S.R.; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643

    2012-01-01

    Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution

  14. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  15. Global runoff anomalies over 1993–2009 estimated from coupled Land–Ocean–Atmosphere water budgets and its relation with climate variability

    Directory of Open Access Journals (Sweden)

    S. Munier

    2012-10-01

    Full Text Available Whether the global runoff (or freshwater discharge from land to the ocean is currently increasing and the global water cycle is intensifying is still a controversial issue. Here we compute land–atmosphere and ocean–atmosphere water budgets and derive two independent estimates of the global runoff over the period 1993–2009. Water storage variations in the land, ocean and atmosphere reservoirs are estimated from different types of data sets: atmospheric reanalyses, land surface models, satellite altimetry and in situ ocean temperature data (the difference between altimetry based global mean sea level and ocean thermal expansion providing an estimate of the ocean mass component. These data sets are first validated using independent data, and then the global runoff is computed from the two methods. Results for the global runoff show a very good correlation between both estimates. More importantly, no significant trend is observed over the whole period. Besides, the global runoff appears to be clearly impacted by large-scale climate phenomena such as major ENSO events. To infer this, we compute the zonal runoff over four latitudinal bands and set up for each band a new index (combined runoff index obtained by optimization of linear combinations of various climate indices. Results show that, in particular, the intertropical and northern mid-latitude runoffs are mainly driven by ENSO and the Atlantic multidecadal oscillation (AMO with opposite behavior. Indeed, the zonal runoff in the intertropical zone decreases during major El Niño events, whereas it increases in the northern mid-latitudes, suggesting that water masses over land are shifted northward/southward during El Niño/La Niña. In addition to this study, we propose an innovative method to estimate the global ocean thermal expansion. The method is based on the assumption that the difference between both runoff estimates is mainly due to the thermal expansion term not accounted for in

  16. Characterizing Mediterranean Land Surfaces as Component of the Regional Climate System by Remote Sensing

    Science.gov (United States)

    Bolle, H.-J.; Koslowsky, D.; Menenti, M.; Nerry, F.; Otterman, Joseph; Starr, D.

    1998-01-01

    Extensive areas in the Mediterranean region are subject to land degradation and desertification. The high variability of the coupling between the surface and the atmosphere affects the regional climate. Relevant surface characteristics, such as spectral reflectance, surface emissivity in the thermal-infrared region, and vegetation indices, serve as "primary" level indicators for the state of the surface. Their spatial, seasonal and interannual variability can be monitored from satellites. Using relationships between these primary data and combining them with prior information about the land surfaces (such as topography, dominant soil type, land use, collateral ground measurements and models), a second layer of information is built up which specifies the land surfaces as a component of the regional climate system. To this category of parameters which are directly involved in the exchange of energy, momentum and mass between the surface and the atmosphere, belong broadband albedo, thermodynamic surface temperature, vegetation types, vegetation cover density, soil top moisture, and soil heat flux. Information about these parameters finally leads to the computation of sensible and latent heat fluxes. The methodology was tested with pilot data sets. Full resolution, properly calibrated and normalized NOAA-AVHRR multi-annual primary data sets are presently compiled for the whole Mediterranean area, to study interannual variability and longer term trends.

  17. Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11.

    Science.gov (United States)

    Kandiano, Evgenia S; van der Meer, Marcel T J; Schouten, Stefan; Fahl, Kirsten; Sinninghe Damsté, Jaap S; Bauch, Henning A

    2017-04-10

    Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.

  18. Influence of climatic factors and the ground surface on the required noise abatement from power equipment

    Science.gov (United States)

    Tupov, V. B.; Taratorin, A. A.

    2013-07-01

    The influence of climatic factors and the ground surface on the required noise abatement from the power equipment is analyzed. It is shown that annual oscillations of temperature and humidity lead to substantial variations in the levels of the sound and the sound pressure from the same source in the design point, while the ground effect surface can in some cases cause an increase in the sound pressure levels in the design point, and in other cases—their decrease. When developing the measures on sound suppression of the power equipment, it is recommended to take into account the influence of climatic factors depending on annual variations in temperature and humidity for this terrain as well as on the category of the ground surface.

  19. Impacts of Climate Variability on Surface Energy and Water Budgets in sub-Saharan Africa

    Science.gov (United States)

    Harrison, Laura Suzanne

    According to the IPCC Fifth Assessment Report, climate change will exacerbate current climate and non-climate stressors on agricultural systems in sub-Saharan Africa. This will adversely impact food security and the wellbeing of communities. Small-scale farmers grow more than 90 percent of the food produced in the region and many households depend on productive local growing conditions to support for their families. A better understanding of recent and near future climate constraints is important for identifying future food security risks and locally-appropriate adaptation strategies. This dissertation research examines impacts of weather and climate on vegetation productivity in geographically diverse areas of east Africa and the semi-arid Sahel. The focus of this research is how surface energy and water budgets respond to variations in rainfall and temperature. It asks the following questions: Where will warmer temperature pose a hazard to rainfed agriculture in the Sahel in the next 20 years? What environment and weather conditions led to above average surface temperature during the recent decade in east Africa? How have declines in rainfall since the 1980s impacted vegetation productivity and hydrology in Tanzania? The research incorporates a variety of earth observation data, including historical records from in situ, model-derived, and satellite-observed sources and projections from global climate models. A major contribution is the identification of specific areas, mainly in semi-arid climate zones, where increases in temperature and decreases to rainfall have large negative impacts on vegetation productivity. The research also presents new methods for evaluating land-atmosphere interactions in the context of hazards to vegetation.

  20. Spring Soil Temperature Anomalies over Tibetan Plateau and Summer Droughts/Floods in East Asia

    Science.gov (United States)

    Xue, Y.; Li, W.; LI, Q.; Diallo, I.; Chu, P. C.; Guo, W.; Fu, C.

    2017-12-01

    Recurrent extreme climate events, such as droughts and floods, are important features of the climate of East Asia, especially over the Yangtze River basin. Many studies have attributed these episodes to variability and anomaly of global sea surface temperatures (SST) anomaly. In addition, snow in the Tibetan Plateau has also been considered as one of the factors affecting the Asian monsoon variability. However, studies have consistently shown that SST along is unable to explain the extreme climate events fully and snow has difficulty to use as a predictor. Remote effects of observed large-scale land surface temperature (LST) and subsurface temperature variability in Tibetan Plateau (TP) on East Asian regional droughts/floods, however, have been largely ignored. We conjecture that a temporally filtered response to snow anomalies may be preserved in the LST anomaly. In this study, evidence from climate observations and model simulations addresses the LST/SUBT effects. The Maximum Covariance Analysis (MCA) of observational data identifies that a pronounce spring LST anomaly pattern over TP is closely associated with precipitation anomalies in East Asia with a dipole pattern, i.e., negative/positive TP spring LST anomaly is associated with the summer drought/flood over the region south of the Yangtze River and wet/dry conditions to the north of the Yangtze River. Climate models were used to demonstrate a causal relationship between spring cold LST anomaly in the TP and the severe 2003 drought over the southern part of the Yangtze River in eastern Asia. This severe drought resulted in 100 x 106 kg crop yield losses and an economic loss of 5.8 billion Chinese Yuan. The modeling study suggests that the LST effect produced about 58% of observed precipitation deficit; while the SST effect produced about 32% of the drought conditions. Meanwhile, the LST and SST effects also simulated the observed flood over to the north of the Yangtze River. This suggests that inclusion of

  1. Modeling large-scale human alteration of land surface hydrology and climate

    Science.gov (United States)

    Pokhrel, Yadu N.; Felfelani, Farshid; Shin, Sanghoon; Yamada, Tomohito J.; Satoh, Yusuke

    2017-12-01

    Rapidly expanding human activities have profoundly affected various biophysical and biogeochemical processes of the Earth system over a broad range of scales, and freshwater systems are now amongst the most extensively altered ecosystems. In this study, we examine the human-induced changes in land surface water and energy balances and the associated climate impacts using a coupled hydrological-climate model framework which also simulates the impacts of human activities on the water cycle. We present three sets of analyses using the results from two model versions—one with and the other without considering human activities; both versions are run in offline and coupled mode resulting in a series of four experiments in total. First, we examine climate and human-induced changes in regional water balance focusing on the widely debated issue of the desiccation of the Aral Sea in central Asia. Then, we discuss the changes in surface temperature as a result of changes in land surface energy balance due to irrigation over global and regional scales. Finally, we examine the global and regional climate impacts of increased atmospheric water vapor content due to irrigation. Results indicate that the direct anthropogenic alteration of river flow in the Aral Sea basin resulted in the loss of 510 km3 of water during the latter half of the twentieth century which explains about half of the total loss of water from the sea. Results of irrigation-induced changes in surface energy balance suggest a significant surface cooling of up to 3.3 K over 1° grids in highly irrigated areas but a negligible change in land surface temperature when averaged over sufficiently large global regions. Results from the coupled model indicate a substantial change in 2 m air temperature and outgoing longwave radiation due to irrigation, highlighting the non-local (regional and global) implications of irrigation. These results provide important insights on the direct human alteration of land surface

  2. Forecasting experiments of a dynamical-statistical model of the sea surface temperature anomaly field based on the improved self-memorization principle

    Science.gov (United States)

    Hong, Mei; Chen, Xi; Zhang, Ren; Wang, Dong; Shen, Shuanghe; Singh, Vijay P.

    2018-04-01

    With the objective of tackling the problem of inaccurate long-term El Niño-Southern Oscillation (ENSO) forecasts, this paper develops a new dynamical-statistical forecast model of the sea surface temperature anomaly (SSTA) field. To avoid single initial prediction values, a self-memorization principle is introduced to improve the dynamical reconstruction model, thus making the model more appropriate for describing such chaotic systems as ENSO events. The improved dynamical-statistical model of the SSTA field is used to predict SSTA in the equatorial eastern Pacific and during El Niño and La Niña events. The long-term step-by-step forecast results and cross-validated retroactive hindcast results of time series T1 and T2 are found to be satisfactory, with a Pearson correlation coefficient of approximately 0.80 and a mean absolute percentage error (MAPE) of less than 15 %. The corresponding forecast SSTA field is accurate in that not only is the forecast shape similar to the actual field but also the contour lines are essentially the same. This model can also be used to forecast the ENSO index. The temporal correlation coefficient is 0.8062, and the MAPE value of 19.55 % is small. The difference between forecast results in spring and those in autumn is not high, indicating that the improved model can overcome the spring predictability barrier to some extent. Compared with six mature models published previously, the present model has an advantage in prediction precision and length, and is a novel exploration of the ENSO forecast method.

  3. Climate effects of land use changes and anthropogenic impact on surface radiation

    OpenAIRE

    Kvalevåg, Maria Malene

    2009-01-01

    The fourth assessment report on climate change (AR4) was released in 2007 and the Intergovernmental Panel of Climate Change (IPCC) derive an increase of 0.74 ± 0.18°C in the 100 year global mean surface temperature linear trend between 1906 – 2005. IPCC state further that “there is very high confidence that the global average net effect of human activities since 1750 has been one of warming” (IPCC, 2007). The observed global warming has occurred during the same period as a considerable increa...

  4. Determination of surface parameters and fluxes for climate studies from space observation. Methods, results and problems

    Science.gov (United States)

    Becker, F.; Seguin, B.

    Climate being the result of many interconnected processes, it can hardly be understood without models which describe these various processes as quantitatively as possible and define the parameters which are relevant for climate studies. Among those, surface processes and therefore surface parameters are now recognized to be of great importance. Some examples are discussed in the first part, showing the great interest to measure the relevant parameters on a multi-year basis, over large areas with sufficiently dense array and on a stable basis, in order to monitor climate changes or to study the impact on climate of the modifications of some relevant parameters which are analysed. Since space observations from satellites fulfil these requirements, it is clear that they will become very soon a fundamental tool for climate studies. Unfortunately, as it is discussed in the second part, satellites do measure only spectral radiances at the top of the atmosphere and the determination of the relevant surface parameters (or fluxes) from these radiances still raises many problems which have to be solved, although many progresses have already been made. The aim of this paper is therefore to review and discuss these problems and the various ways they have been tackled until now. The first part is devoted to an overview of what needs to be measured and why, while the existing methods for determining the most important surface parameters from space observations are presented in the second part where a particular attention is given to the theoretical and experimental validations of these methods, their limits and the problems still to be solved.

  5. Surface CO2 Exchange Dynamics across a Climatic Gradient in McKenzie Valley: Effect of Landforms, Climate and Permafrost

    Directory of Open Access Journals (Sweden)

    Natalia Startsev

    2016-11-01

    Full Text Available Northern regions are experiencing considerable climate change affecting the state of permafrost, peat accumulation rates, and the large pool of carbon (C stored in soil, thereby emphasizing the importance of monitoring surface C fluxes in different landform sites along a climate gradient. We studied surface net C exchange (NCE and ecosystem respiration (ER across different landforms (upland, peat plateau, collapse scar in mid-boreal to high subarctic ecoregions in the Mackenzie Valley of northwestern Canada for three years. NCE and ER were measured using automatic CO2 chambers (ADC, Bioscientific LTD., Herts, England, and soil respiration (SR was measured with solid state infrared CO2 sensors (Carbocaps, Vaisala, Vantaa, Finland using the concentration gradient technique. Both NCE and ER were primarily controlled by soil temperature in the upper horizons. In upland forest locations, ER varied from 583 to 214 g C·m−2·year−1 from mid-boreal to high subarctic zones, respectively. For the bog and peat plateau areas, ER was less than half that at the upland locations. Of SR, nearly 75% was generated in the upper 5 cm layer composed of live bryophytes and actively decomposing fibric material. Our results suggest that for the upland and bog locations, ER significantly exceeded NCE. Bryophyte NCE was greatest in continuously waterlogged collapsed areas and was negligible in other locations. Overall, upland forest sites were sources of CO2 (from 64 g·C·m−2·year−1 in the high subarctic to 588 g C·m−2·year−1 in mid-boreal zone; collapsed areas were sinks of C, especially in high subarctic (from 27 g·C·m−2 year−1 in mid-boreal to 86 g·C·m−2·year−1 in high subarctic and peat plateaus were minor sources (from 153 g·C·m−2·year−1 in mid-boreal to 6 g·C·m−2·year−1 in high subarctic. The results are important in understanding how different landforms are responding to climate change and would be useful in modeling the

  6. Mapping the impact of climate change on surface recession of carbonate buildings in Europe.

    Science.gov (United States)

    Bonazza, Alessandra; Messina, Palmira; Sabbioni, Cristina; Grossi, Carlota M; Brimblecombe, Peter

    2009-03-01

    Climate change is currently attracting interest at both research and policy levels. However, it is usually explored in terms of its effect on agriculture, water, industry, energy, transport and health and as yet has been insufficiently addressed as a factor threatening cultural heritage. Among the climate parameters critical to heritage conservation and expected to change in the future, precipitation plays an important role in surface recession of stone. The Lipfert function has been taken under consideration to quantify the annual surface recession of carbonate stone, due to the effects of clean rain, acid rain and dry deposition of pollutants. The present paper provides Europe-wide maps showing quantitative predictions of surface recession on carbonate stones for the 21st century, combining a modified Lipfert function with output from the Hadley global climate model. Chemical dissolution of carbonate stones, via the karst effect, will increase with future CO(2) concentrations, and will come to dominate over sulfur deposition and acid rain effects on monuments and buildings in both urban and rural areas. During the present century the rainfall contribution to surface recession is likely to have a small effect, while the increase in atmospheric CO(2) concentration is shown to be the main factor in increasing weathering via the karst effect.

  7. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  8. Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate

    Directory of Open Access Journals (Sweden)

    E. L. Davin

    2012-05-01

    Full Text Available The influence of land processes and in particular of diffuse/direct radiation partitioning on surface fluxes and associated regional-scale climate feedbacks is investigated using ERA-40 driven simulations over Europe performed with the COSMO-CLM2 Regional Climate Model (RCM. Two alternative Land Surface Models (LSMs, a 2nd generation LSM (TERRA_ML and a more advanced 3rd generation LSM (Community Land Model version 3.5, and two versions of the atmospheric component are tested, as well as a revised coupling procedure allowing for variations in diffuse/direct light partitioning at the surface, and their accounting by the land surface component.

    Overall, the RCM performance for various variables (e.g., surface fluxes, temperature and precipitation is improved when using the more advanced 3rd generation LSM. These improvements are of the same order of magnitude as those arising from a new version of the atmospheric component, demonstrating the benefit of using a realistic representation of land surface processes for regional climate simulations. Taking into account the variability in diffuse/direct light partitioning at the surface further improves the model performance in terms of summer temperature variability at the monthly and daily time scales. Comparisons with observations show that the RCM realistically captures temporal variations in diffuse/direct light partitioning as well as the evapotranspiration sensitivity to these variations. Our results suggest that a modest but consistent fraction (up to 3 % of the overall variability in summer temperature can be explained by variations in the diffuse to direct ratio.

  9. Surface Mass Balance Distributions: Downscaling of Coarse Climates to drive Ice Sheet Models realistically

    Science.gov (United States)

    Rodehacke, Christian; Mottram, Ruth; Langen, Peter; Madsen, Marianne; Yang, Shuting; Boberg, Fredrik; Christensen, Jens

    2017-04-01

    The surface mass balance (SMB) is the most import boundary conditions for the state of glaciers and ice sheets. Hence its representation in numerical model simulations is of highest interest for glacier, ice cap and ice sheet modeling efforts. While descent SMB distributions of the current climate could be interfered with the help of various observation techniques and platforms, its construction for older past and future climates relies on input from spatially coarse resolved global climate models or reconstructions. These coarse SMB estimates with a footprint in the order of 100 km could hardly resolve the marginal ablations zones where the Greenland ice sheets, for instance, loses snow and ice. We present a downscaling method that is based on the physical calculation of the surface mass and energy balance. By the consequent application of universal and computationally cheap parameterizations we get an astonishing good representation of the SMB distribution including its marginal ablation zone. However the method has its limitations; for example wrong accumulation rates due to an insufficient precipitation field leaves its imprint on the SMB distribution. Also the still not satisfactory description of the bare ice albedo, in particular, in parts of Greenland is a challenge. We inspect our Greenland SMB fields' for various forcings and compare them with some widely used reference fields in the community to highlight the weakness and strength of our approach. We use the ERA-Interim reanalyzes period starting in 1979 directly as well as dynamically downscaled by our regional climate model HIRHAM (5 km resolution). Also SMB distributions obtained from the climate model EC-Earth with a resolution of T159 (approx. 125 km resolution in Greenland) are used either directly or downscaled with our regional climate model HIRHAM. Model-based End-of-the-century SMB estimates give an outlook of the future.

  10. Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica

    Directory of Open Access Journals (Sweden)

    Minji Seo

    2016-11-01

    Full Text Available The cryosphere is an essential part of the earth system for understanding climate change. Components of the cryosphere, such as ice sheets and sea ice, are generally decreasing over time. However, previous studies have indicated differing trends between the Antarctic and the Arctic. The South Pole also shows internal differences in trends. These phenomena indicate the importance of continuous observation of the Polar Regions. Albedo is a main indicator for analyzing Antarctic climate change and is an important variable with regard to the radiation budget because it can provide positive feedback on polar warming and is related to net radiation and atmospheric heating in the mainly snow- and ice-covered Antarctic. Therefore, in this study, we analyzed long-term temporal and spatial variability of albedo and investigated the interrelationships between albedo and climatic variables over Antarctica. We used broadband surface albedo data from the Satellite Application Facility on Climate Monitoring and data for several climatic variables such as temperature and Antarctic oscillation index (AAO during the period of 1983 to 2009. Time series analysis and correlation analysis were performed through linear regression using albedo and climatic variables. The results of this research indicated that albedo shows two trends, west trend and an east trend, over Antarctica. Most of the western side of Antarctica showed a negative trend of albedo (about −0.0007 to −0.0015 year−1, but the other side showed a positive trend (about 0.0006 year−1. In addition, albedo and surface temperature had a negative correlation, but this relationship was weaker in west Antarctica than in east Antarctica. The correlation between albedo and AAO revealed different relationships in the two regions; west Antarctica had a negative correlation and east Antarctica showed a positive correlation. In addition, the correlation between albedo and AAO was weaker in the west. This

  11. The response of surface ozone to climate change over the Eastern United States

    Directory of Open Access Journals (Sweden)

    P. N. Racherla

    2008-02-01

    Full Text Available We investigate the response of surface ozone (O3 to future climate change in the eastern United States by performing simulations corresponding to present (1990s and future (2050s climates using an integrated model of global climate, tropospheric gas-phase chemistry, and aerosols. A future climate has been imposed using ocean boundary conditions corresponding to the IPCC SRES A2 scenario for the 2050s decade. Present-day anthropogenic emissions and CO2/CH4 mixing ratios have been used in both simulations while climate-sensitive emissions were allowed to vary with the simulated climate. The severity and frequency of O3 episodes in the eastern U.S. increased due to future climate change, primarily as a result of increased O3 chemical production. The 95th percentile O3 mixing ratio increased by 5 ppbv and the largest frequency increase occured in the 80–90 ppbv range; the US EPA's current 8-h ozone primary standard is 80 ppbv. The increased O3 chemical production is due to increases in: 1 natural isoprene emissions; 2 hydroperoxy radical concentrations resulting from increased water vapor concentrations; and, 3 NOx concentrations resulting from reduced PAN. The most substantial and statistically significant (p<0.05 increases in episode frequency occurred over the southeast and midatlantic U.S., largely as a result of 20% higher annual-average natural isoprene emissions. These results suggest a lengthening of the O3 season over the eastern U.S. in a future climate to include late spring and early fall months. Increased chemical production and shorter average lifetime are two consistent features of the seasonal response of surface O3, with increased dry deposition loss rates contributing most to the reduced lifetime in all seasons except summer. Significant interannual variability is observed in the frequency of O3

  12. Learning about Poland Anomaly

    Science.gov (United States)

    ... these symptoms occur on one side of the body (unilateral). Also, it is important to note that Poland anomaly does not typically affect intelligence. Top of page What causes Poland anomaly? The ...

  13. Vascular Anomalies in Pediatrics.

    Science.gov (United States)

    Foley, Lisa S; Kulungowski, Ann M

    2015-08-01

    A standardized classification system allows improvements in diagnostic accuracy. Multidisciplinary vascular anomaly centers combine medical, surgical, radiologic, and pathologic expertise. This collaborative approach tailors treatment and management of vascular anomalies for affected individuals.

  14. Regional climate model assessment of the urban land-surface forcing over central Europe

    Directory of Open Access Journals (Sweden)

    P. Huszar

    2014-11-01

    Full Text Available For the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single-layer Urban Canopy Model (SLUCM. A set of experiments was performed over the period of 2005–2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer as well as on the boundary layer height (increases up to 50 m. Urbanization further influences surface wind with a winter decrease up to −0.6 m s−1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s−1. Urban surfaces significantly reduce the humidity over the surface. This impacts the simulated summer precipitation rate, showing a decrease over cities of up to −2 mm day−1. Significant temperature increases are simulated over higher altitudes as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment, such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity. Statistically significant impacts are modelled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant

  15. Mesoscale convective system surface pressure anomalies responsible for meteotsunamis along the U.S. East Coast on June 13th, 2013.

    Science.gov (United States)

    Wertman, Christina A; Yablonsky, Richard M; Shen, Yang; Merrill, John; Kincaid, Christopher R; Pockalny, Robert A

    2014-11-25

    Two destructive high-frequency sea level oscillation events occurred on June 13th, 2013 along the U.S. East Coast. Seafloor processes can be dismissed as the sources, as no concurrent offshore earthquakes or landslides were detected. Here, we present evidence that these tsunami-like events were generated by atmospheric mesoscale convective systems (MCSs) propagating from inland to offshore. The USArray Transportable Array inland and NOAA tide gauges along the coast recorded the pressure anomalies associated with the MCSs. Once offshore, the pressure anomalies generated shallow water waves, which were amplified by the resonance between the water column and atmospheric forcing. Analysis of the tidal data reveals that these waves reflected off the continental shelf break and reached the coast, where bathymetry and coastal geometry contributed to their hazard potential. This study demonstrates that monitoring MCS pressure anomalies in the interior of the U.S. provides important observations for early warnings of MCS-generated tsunamis.

  16. Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment

    Science.gov (United States)

    Soundharajan, Bankaru-Swamy; Adeloye, Adebayo J.; Remesan, Renji

    2016-07-01

    This study employed a Monte-Carlo simulation approach to characterise the uncertainties in climate change induced variations in storage requirements and performance (reliability (time- and volume-based), resilience, vulnerability and sustainability) of surface water reservoirs. Using a calibrated rainfall-runoff (R-R) model, the baseline runoff scenario was first simulated. The R-R inputs (rainfall and temperature) were then perturbed using plausible delta-changes to produce simulated climate change runoff scenarios. Stochastic models of the runoff were developed and used to generate ensembles of both the current and climate-change-perturbed future runoff scenarios. The resulting runoff ensembles were used to force simulation models of the behaviour of the reservoir to produce 'populations' of required reservoir storage capacity to meet demands, and the performance. Comparing these parameters between the current and the perturbed provided the population of climate change effects which was then analysed to determine the variability in the impacts. The methodology was applied to the Pong reservoir on the Beas River in northern India. The reservoir serves irrigation and hydropower needs and the hydrology of the catchment is highly influenced by Himalayan seasonal snow and glaciers, and Monsoon rainfall, both of which are predicted to change due to climate change. The results show that required reservoir capacity is highly variable with a coefficient of variation (CV) as high as 0.3 as the future climate becomes drier. Of the performance indices, the vulnerability recorded the highest variability (CV up to 0.5) while the volume-based reliability was the least variable. Such variabilities or uncertainties will, no doubt, complicate the development of climate change adaptation measures; however, knowledge of their sheer magnitudes as obtained in this study will help in the formulation of appropriate policy and technical interventions for sustaining and possibly enhancing

  17. Magnetic hyperfine anomalies

    International Nuclear Information System (INIS)

    Buettgenbach, S.

    1984-01-01

    This study is concerned with the measurement and interpretation of magnetic hyperfine anomalies in electronic and muonic atoms, i.e. effects of the distribution of nuclear magnetization on the magnetic dipole hyperfine interaction. After a summary of the relevant theory and a review of experimental techniques, hyperfine anomaly results are discussed in terms of various nuclear models. The use of the anomaly for yielding information about the origin of magnetic hyperfine interactions is outlined. Experimental and theoretical hyperfine anomalies are tabulated. (Auth.)

  18. Land surface albedo bias in climate models and its association with tropical rainfall

    Science.gov (United States)

    Levine, Xavier J.; Boos, William R.

    2017-06-01

    The influence of surface albedo on tropical precipitation is widely appreciated, but albedo bias over snow-free areas in climate models has been studied little. Here historical Coupled Model Intercomparison Project Phase 5 simulations are shown to exhibit large multimodel mean bias and intermodel variability in boreal summer mean surface broadband shortwave albedo. Intermodel variability in this albedo is globally coherent over vegetated regions and correlates with intermodel tropical precipitation variability. Evidence supports the hypothesis that these spatially coherent albedo variations cause precipitation variations. Specifically, spatial structures of albedo and precipitation variations are distinct, suggesting the latter do not cause the former by darkening soil. Furthermore, simulated interannual albedo variance is small compared to intermodel albedo variance, while the ratio of interannual to intermodel precipitation variance is much larger. Finally, imposing the dominant pattern of intermodel albedo variability in one climate model causes a precipitation change with structure similar to that of the intermodel variability.

  19. Statistical multi-model climate projections of surface ocean waves in Europe

    Science.gov (United States)

    Perez, Jorge; Menendez, Melisa; Camus, Paula; Mendez, Fernando J.; Losada, Inigo J.

    2015-12-01

    In recent years, the impact of climate change on sea surface waves has received increasingly more attention by the climate community. Indeed, ocean waves reaching the coast play an important role in several processes concerning coastal communities, such as inundation and erosion. However, regional downscaling at the high spatial resolution necessary for coastal studies has received less attention. Here, we present a novel framework for regional wave climate projections and its application in the European region. Changes in the wave dynamics under different scenarios in the Northeast Atlantic Ocean and the Mediterranean are analyzed. The multi-model projection methodology is based on a statistical downscaling approach. The statistical relation between the predictor (atmospheric conditions) and the predictand (multivariate wave climate) is based on a weather type (WT) classification. This atmospheric classification is developed by applying the k-means clustering technique over historical offshore sea level pressure (SLP) fields. Each WT is linked to sea wave conditions from a wave hindcast. This link is developed by associating atmospheric conditions from reanalysis with multivariate local waves. This predictor-predictand relationship is applied to the daily SLP fields from global climate models (GCMs) in order to project future changes in regional wave conditions. The GCMs used in the multi-model projection are selected according to skill criteria. The application of this framework uses CMIP5-based wave climate projections in Europe. The low computational requirements of the statistical approach allow a large number of GCMs and climate change scenarios to be studied. Consistent with previous works on global wave climate projections, the estimated changes from the regional wave climate projections show a general decrease in wave heights and periods in the Atlantic Europe for the late twenty-first century. The regional projections, however, allow a more detailed

  20. Climate change and water table fluctuation: Implications for raised bog surface variability

    Science.gov (United States)

    Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija

    2018-03-01

    Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.

  1. Tracheobronchial Branching Anomalies

    International Nuclear Information System (INIS)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick; Park, A Young

    2010-01-01

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  2. Tracheobronchial Branching Anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)

    2010-04-15

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  3. Anomalies of nuclear criticality

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E.D.

    1979-06-01

    During the development of nuclear energy, a number of apparent anomalies have become evident in nuclear criticality. Some of these have appeared in the open literature and some have not. Yet, a naive extrapolation or application of existing data, without knowledge of the anomalies, could lead to potentially serious consequences. This report discusses several of these anomalies.

  4. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NARCIS (Netherlands)

    Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; King, J.C.; Gray, T.; Reijmer, C.H.|info:eu-repo/dai/nl/229345956

    2012-01-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in

  5. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NARCIS (Netherlands)

    Kuipers Munneke, P.; van den Broeke, Michiel; King, J.C.; Gray, T.; Reijmer, C.H.

    2011-01-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), including melt energy. The two AWSs are separated by about 70 km in the

  6. Ocean Surface Waves and Turbulence: Air-Sea Fluxes and Climate Variability

    Science.gov (United States)

    Melville, W. Kendall

    2009-11-01

    Apart from heating of the atmosphere, two of the most important consequences of current climate variability are changes in sea level, and acidification of the oceans. Over decadal time scales, changes in sea level are caused by changes in heat content and salinity of the ocean, and by changes in mass resulting from exchanges between the ocean, glaciers and other land-based reservoirs. The oceans have absorbed about one third of the anthropogenic CO2 due to fossil fuel burning. This reduces the green house effect in the atmosphere, but the CO2 reacts in the surface waters of the ocean to lower pH. Conservative projections of sea level rise over the next century are O(0.1 - 1) m, while ocean acidification is already having an impact on marine ecosystems. Both these processes depend on air-sea fluxes: heat flux for sea level rise, and gas flux for ocean acidification. These fluxes are among the most poorly constrained in current climate models, but both ultimately depend on fluid dynamics at the ocean surface and in the adjacent boundary layers. Traditional boundary layer models of the marine boundary layer and the marine atmospheric boundary layer were based on classical theories of boundary layers over rigid surfaces, but there is increasing evidence that these models must now include surface wave effects. In this talk the motivating climate data and modeling will be briefly reviewed, and then recent work on surface wave dynamics, air-sea fluxes and the adjacent boundary layers will be presented. The roles of surface wave breaking, Langmuir circulations, wave-turbulence interactions and gravity-capillary waves will be discussed.

  7. A study on the direct effect of anthropogenic aerosols on near surface air temperature over Southeastern Europe during summer 2000 based on regional climate modeling

    Directory of Open Access Journals (Sweden)

    P. Zanis

    2009-10-01

    Full Text Available In the present work it is investigated the direct shortwave effect of anthropogenic aerosols on the near surface temperature over Southeastern Europe and the atmospheric circulation during summer 2000. In summer 2000, a severe heat-wave and droughts affected many countries in the Balkans. The study is based on two yearly simulations with and without the aerosol feedback of the regional climate model RegCM3 coupled with a simplified aerosol model. The surface radiative forcing associated with the anthropogenic aerosols is negative throughout the European domain with the more negative values in Central and Central-eastern Europe. A basic pattern of the aerosol induced changes in air temperature at the lower troposphere is a decrease over Southeastern Europe and the Balkan Peninsula (up to about 1.2°C thus weakening the pattern of the climatic temperature anomalies of summer 2000. The aerosol induced changes in air temperature from the lower troposphere to upper troposphere are not correlated with the respective pattern of the surface radiative forcing implying the complexity of the mechanisms linking the aerosol radiative forcing with the induced atmospheric changes through dynamical feedbacks of aerosols on atmospheric circulation. Investigation of the aerosol induced changes in the circulation indicates a southward shift of the subtropical jet stream playing a dominant role for the decrease in near surface air temperature over Southeastern Europe and the Balkan Peninsula. The southward shift of the jet exit region over the Balkan Peninsula causes a relative increase of the upward motion at the northern flank of the jet exit region, a relative increase of clouds, less solar radiation absorbed at the surface and hence relative cooler air temperatures in the lower troposphere between 45° N and 50° N. The southward extension of the lower troposphere aerosol induced negative temperature changes in the latitudinal band 35° N–45° N over the

  8. Uncertainty in Land Cover observations and its impact on near surface climate

    Science.gov (United States)

    Georgievski, Goran; Hagemann, Stefan

    2017-04-01

    Land Cover (LC) and its bio-geo-physical feedbacks are important for the understanding of climate and its vulnerability to changes on the surface of the Earth. Recently ESA has published a new LC map derived by combining remotely sensed surface reflectance and ground-truth observations. For each grid-box at 300m resolution, an estimate of confidence is provided. This LC data set can be used in climate modelling to derive land surface boundary parameters for the respective Land Surface Model (LSM). However, the ESA LC classes are not directly suitable for LSMs, therefore they need to be converted into the model specific surface presentations. Due to different design and processes implemented in various climate models they might differ in the treatment of artificial, water bodies, ice, bare or vegetated surfaces. Nevertheless, usually vegetation distribution in models is presented by means of plant functional types (PFT), which is a classification system used to simplify vegetation representation and group different vegetation types according to their biophysical characteristics. The method of LC conversion into PFT is also called "cross-walking" (CW) procedure. The CW procedure is another source of uncertainty, since it depends on model design and processes implemented and resolved by LSMs. These two sources of uncertainty, (i) due to surface reflectance conversion into LC classes, (ii) due to CW procedure, have been studied by Hartley et al (2016) to investigate their impact on LSM state variables (albedo, evapotranspiration (ET) and primary productivity) by using three standalone LSMs. The present study is a follow up to that work and aims at quantifying the impact of these two uncertainties on climate simulations performed with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) using prescribed sea surface temperature and sea ice. The main focus is on the terrestrial water cycle, but the impacts on surface albedo, wind patterns, 2m temperatures

  9. Arctic Storms and Their Influence on Surface Climate in the Chukchi-Beaufort Seas

    Science.gov (United States)

    Yang, Y.; Zhang, X.; Rinke, A.; Zhang, J.

    2017-12-01

    Increases in the frequency and intensity of Arctic storms and resulting weather hazards may endanger the offshore environment, coastal community, and energy infrastructure in the Arctic as sea ice retreats. Advancing ability to identify fine-scale variations in surface climate produced by progressively stronger storm would be extremely helpful to resources management and sustainable development for coastal community. In this study, we analyzed the storms and their impacts on surface climate over the Beaufort-Chukchi seas by employing the date sets from both the hindcast simulations of the coupled Arctic regional climate model HIRHAM-NAOSIM and the recently developed Chukchi-Beaufort High-resolution Atmospheric Reanalysis (CBHAR). Based on the characteristics of spatial pattern and temporal variability of the Arctic storm activity, we categorized storms to three groups with their different origins: the East Siberia Sea, Alaska and the central Arctic Ocean. The storms originating from the central Arctic Ocean have the strongest intensity in winter with relatively less storm number. Storms traveling from Alaska to the Beaufort Sea most frequently occurred in autumn with weaker intensity. A large portion of storms originated from the East Siberia Sea region in summer. Further statistical analysis suggests that increase in surface air temperature and wind speed could be attributed to the increased frequency of storm occurrence in autumn (September to November) along the continental shelf in the Beaufort Sea.

  10. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    P. Kuipers Munneke

    2012-03-01

    Full Text Available Data collected by two automatic weather stations (AWS on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB, which includes melt energy. The two AWSs are separated by about 70 km in the north–south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.

  11. Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques

    Science.gov (United States)

    Flach, Milan; Gans, Fabian; Brenning, Alexander; Denzler, Joachim; Reichstein, Markus; Rodner, Erik; Bathiany, Sebastian; Bodesheim, Paul; Guanche, Yanira; Sippel, Sebastian; Mahecha, Miguel D.

    2017-08-01

    Today, many processes at the Earth's surface are constantly monitored by multiple data streams. These observations have become central to advancing our understanding of vegetation dynamics in response to climate or land use change. Another set of important applications is monitoring effects of extreme climatic events, other disturbances such as fires, or abrupt land transitions. One important methodological question is how to reliably detect anomalies in an automated and generic way within multivariate data streams, which typically vary seasonally and are interconnected across variables. Although many algorithms have been proposed for detecting anomalies in multivariate data, only a few have been investigated in the context of Earth system science applications. In this study, we systematically combine and compare feature extraction and anomaly detection algorithms for detecting anomalous events. Our aim is to identify suitable workflows for automatically detecting anomalous patterns in multivariate Earth system data streams. We rely on artificial data that mimic typical properties and anomalies in multivariate spatiotemporal Earth observations like sudden changes in basic characteristics of time series such as the sample mean, the variance, changes in the cycle amplitude, and trends. This artificial experiment is needed as there is no gold standard for the identification of anomalies in real Earth observations. Our results show that a well-chosen feature extraction step (e.g., subtracting seasonal cycles, or dimensionality reduction) is more important than the choice of a particular anomaly detection algorithm. Nevertheless, we identify three detection algorithms (k-nearest neighbors mean distance, kernel density estimation, a recurrence approach) and their combinations (ensembles) that outperform other multivariate approaches as well as univariate extreme-event detection methods. Our results therefore provide an effective workflow to automatically detect anomalies

  12. Synoptic and mesoscale climate forcing on Antarctic ice shelf surface melt dynamics

    Science.gov (United States)

    Karmosky, Christopher

    Given that the polar regions, especially the Antarctic Peninsula, have experienced one of the largest temperature increases on Earth over the last few decades, an understanding of Antarctic climate has become more urgent. Ice shelves themselves are located at the intersection of the atmosphere, hydrosphere and the cryosphere---the air-ice-ocean boundary, and are sensitive to changes in any of these media. In addition to being particularly sensitive to changes in climate, ice shelves play an important role in controlling the flow of glaciers into the ocean, which has important implications for sea level changes. In a warming world, an increased understanding of how climate change is affecting Antarctic ice shelves is valuable for assessing vulnerable regions of the Antarctic that may be prone to further instability. This work focuses on determining the underlying climatic processes controlling energy and mass balance responsible for driving melting over ice shelves. A novel melt-magnitude retrieval method is presented that uses Moderate Resolution Imaging Spectroradiometer (MODIS)-derived near-IR reflectance coupled with ice surface temperature as a proxy for surface melt magnitude. This method has a higher spatial resolution than passive microwave melt detection, has the added benefit of retrieving melt magnitude rather than a binary melt occurrence or non-occurrence, but has a lower temporal resolution than either passive-microwave or microwave-scatterometry melt detection. This limitation is a result of the opacity of cloud cover to both visible and IR radiation, requiring more satellite overpasses to obtain spatially contiguous imagery. This work also examines several weather variables associated with a large-extent, long-duration surface melt event on the Ross Ice Shelf. It is shown that cloudy conditions coupled with increased sensible and latent heat flux to the surface were present during the event, and these conditions are consistent with those that induce

  13. Regional climates in the GISS general circulation model: Surface air temperature

    Science.gov (United States)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  14. Response of African humid tropical forests to recent rainfall anomalies.

    Science.gov (United States)

    Asefi-Najafabady, Salvi; Saatchi, Sassan

    2013-01-01

    During the last decade, strong negative rainfall anomalies resulting from increased sea surface temperature in the tropical Atlantic have caused extensive droughts in rainforests of western Amazonia, exerting persistent effects on the forest canopy. In contrast, there have been no significant impacts on rainforests of West and Central Africa during the same period, despite large-scale droughts and rainfall anomalies during the same period. Using a combination of rainfall observations from meteorological stations from the Climate Research Unit (CRU; 1950-2009) and satellite observations of the Tropical Rainfall Measuring Mission (TRMM; 1998-2010), we show that West and Central Africa experienced strong negative water deficit (WD) anomalies over the last decade, particularly in 2005, 2006 and 2007. These anomalies were a continuation of an increasing drying trend in the region that started in the 1970s. We monitored the response of forests to extreme rainfall anomalies of the past decade by analysing the microwave scatterometer data from QuickSCAT (1999-2009) sensitive to variations in canopy water content and structure. Unlike in Amazonia, we found no significant impacts of extreme WD events on forests of Central Africa, suggesting potential adaptability of these forests to short-term severe droughts. Only forests near the savanna boundary in West Africa and in fragmented landscapes of the northern Congo Basin responded to extreme droughts with widespread canopy disturbance that lasted only during the period of WD. Time-series analyses of CRU and TRMM data show most regions in Central and West Africa experience seasonal or decadal extreme WDs (less than -600 mm). We hypothesize that the long-term historical extreme WDs with gradual drying trends in the 1970s have increased the adaptability of humid tropical forests in Africa to droughts.

  15. Assessing surface water availability considering human water use and projected climate variability

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan

    2017-04-01

    Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.

  16. Species-rich semi-natural grasslands have a higher resistance but a lower resilience than intensively managed agricultural grasslands in response to climate anomalies

    NARCIS (Netherlands)

    Keersmaecker, De Wanda; Rooijen, van Nils; Lhermitte, Stef; Tits, Laurent; Schaminée, Joop; Coppin, Pol; Honnay, Olivier; Somers, Ben

    2016-01-01

    The stable delivery of ecosystem services provided by grasslands is strongly dependent on the stability of grassland ecosystem functions such as biomass production. Biomass production is in turn strongly affected by the frequency and intensity of climate extremes. The aim of this study is to

  17. A robust empirical seasonal prediction of winter NAO and surface climate.

    Science.gov (United States)

    Wang, L; Ting, M; Kushner, P J

    2017-03-21

    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  18. Impact of Future Emissions and Climate Change on Surface Ozone over China

    Science.gov (United States)

    Ma, C. T.; Westervelt, D. M.; Fiore, A. M.; Rieder, H. E.; Kinney, P.; Wang, S.; Correa, G. J. P.

    2017-12-01

    China's immense ambient air pollution problem and world-leading greenhouse gas emissions place it at the forefront of global efforts to address these related environmental concerns. Here, we analyze the impact of ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) future emissions scenarios representative of current legislation (CLE) and maximum technically feasible emissions reductions (MFR) on surface ozone (O3) concentrations over China in the 2030s and 2050s, in the context of a changing climate. We use a suite of simulations performed with the NOAA Geophysical Fluid Dynamics Laboratory's AM3 global chemistry-climate model. To estimate the impact of climate change in isolation on Chinese air quality, we hold emissions of air pollutants including O3 precursors fixed at 2015 levels but allow climate (global sea surface temperatures and sea ice cover) to change according to decadal averages for the years 2026-2035 and 2046-2055 from a three-member ensemble of GFDL-CM3 simulations under the RCP8.5 high warming scenario. Evaluation of the present-day simulation (2015 CLE) with observations from 1497 chiefly urban air quality monitoring stations shows that simulated surface O3 is positively biased by 26 ppb on average over the domain of China. Previous studies, however, have shown that the modeled ozone response to changes in NOx emissions over the Eastern United States mirrors the magnitude and structure of observed changes in maximum daily average 8-hour (MDA8) O3 distributions. Therefore, we use the model's simulated changes for the 2030s and 2050s to project changes in policy-relevant MDA8 O3 concentrations. We find an overall increase in MDA8 O3 for CLE scenarios in which emissions of NOx precursors are projected to increase, and under MFR scenarios, an overall decrease, with the highest changes occurring in summertime for both 2030 and 2050 MFR. Under climate change alone, the model simulates a mean summertime decrease of 1.3 ppb

  19. Reinitialised versus continuous regional climate simulations using ALARO-0 coupled to the land surface model SURFEXv5

    Science.gov (United States)

    Berckmans, Julie; Giot, Olivier; De Troch, Rozemien; Hamdi, Rafiq; Ceulemans, Reinhart; Termonia, Piet

    2017-01-01

    Dynamical downscaling in a continuous approach using initial and boundary conditions from a reanalysis or a global climate model is a common method for simulating the regional climate. The simulation potential can be improved by applying an alternative approach of reinitialising the atmosphere, combined with either a daily reinitialised or a continuous land surface. We evaluated the dependence of the simulation potential on the running mode of the regional climate model ALARO coupled to the land surface model Météo-France SURFace EXternalisée (SURFEX), and driven by the ERA-Interim reanalysis. Three types of downscaling simulations were carried out for a 10-year period from 1991 to 2000, over a western European domain at 20 km horizontal resolution: (1) a continuous simulation of both the atmosphere and the land surface, (2) a simulation with daily reinitialisations for both the atmosphere and the land surface and (3) a simulation with daily reinitialisations of the atmosphere while the land surface is kept continuous. The results showed that the daily reinitialisation of the atmosphere improved the simulation of the 2 m temperature for all seasons. It revealed a neutral impact on the daily precipitation totals during winter, but the results were improved for the summer when the land surface was kept continuous. The behaviour of the three model configurations varied among different climatic regimes. Their seasonal cycle for the 2 m temperature and daily precipitation totals was very similar for a Mediterranean climate, but more variable for temperate and continental climate regimes. Commonly, the summer climate is characterised by strong interactions between the atmosphere and the land surface. The results for summer demonstrated that the use of a daily reinitialised atmosphere improved the representation of the partitioning of the surface energy fluxes. Therefore, we recommend using the alternative approach of the daily reinitialisation of the atmosphere for

  20. A virtual climate library of surface temperature over North America for 1979-2015

    Science.gov (United States)

    Kravtsov, Sergey; Roebber, Paul; Brazauskas, Vytaras

    2017-10-01

    The most comprehensive continuous-coverage modern climatic data sets, known as reanalyses, come from combining state-of-the-art numerical weather prediction (NWP) models with diverse available observations. These reanalysis products estimate the path of climate evolution that actually happened, and their use in a probabilistic context—for example, to document trends in extreme events in response to climate change—is, therefore, limited. Free runs of NWP models without data assimilation can in principle be used for the latter purpose, but such simulations are computationally expensive and are prone to systematic biases. Here we produce a high-resolution, 100-member ensemble simulation of surface atmospheric temperature over North America for the 1979-2015 period using a comprehensive spatially extended non-stationary statistical model derived from the data based on the North American Regional Reanalysis. The surrogate climate realizations generated by this model are independent from, yet nearly statistically congruent with reality. This data set provides unique opportunities for the analysis of weather-related risk, with applications in agriculture, energy development, and protection of human life.

  1. Land-Surface Characteristics and Climate in West Africa: Models’ Biases and Impacts of Historical Anthropogenically-Induced Deforestation

    Directory of Open Access Journals (Sweden)

    Souleymane Sy

    2017-10-01

    Full Text Available Land Use Land-Cover Change (LULCC, such as deforestation, affects the climate system and land-atmosphere interactions. Using simulations carried out within the LUCID (Land Use and Climate, IDentification of robust Impacts project framework, we first quantify the role of historical land-cover change induced by human activities on surface climate in West Africa. Focusing on two contrasted African regions, we find that climate responses of land-use changes are small but they are still statistically significant. In Western Sahel, a statistically significant near-surface atmospheric cooling and a decrease in water recycling are simulated in summer in response to LULCC. Over the Guinean zone, models simulate a significant decrease in precipitation and water recycling in autumn in response to LULCC. This signal is comparable in magnitude with the effect induced by the increase in greenhouse gases. Simulated climate changes due to historical LULCC could however be underestimated because: (i the prescribed LULCC can be underestimated in those regions; (ii the climate models underestimate the coupling strength between West African surface climate and leaf area index (LAI and (iii the lack of interactive LAI in some models. Finally, our study reveals indirect atmospheric processes triggered by LULCC. Over the Western Sahel, models reveal that a significant decrease in solar reflection tend to cool down the surface and thus counteract the atmospheric feedback. Conversely, over the Guinea zone, models reveal that the indirect atmospheric processes and turbulent heat fluxes dominate the climatic responses over the direct effects of LULCC.

  2. Confronting the surface temperature cold bias in AGCMs over the Tibetan Plateau and improving climate simulations

    Science.gov (United States)

    Wu, G. X.; Liu, Y.; Bao, Q.; Chen, X.; Li, J.

    2017-12-01

    One of the mid-term progresses of the NSFC- Key Research Program "Land-air Coupling over the Tibetan Plateau and Its Climate Impact " is presented. The elevated heating in summer and cooling in winter of the Tibetan Plateau significantly regulate the seasonal change of the atmospheric circulation and exert remarkable impacts on world climate. Recent studies have demonstrated that the majority of the Phase-5 Coupled Model Inter-comparison Project (CMIP5) models underestimate annual and seasonal mean surface air temperatures (Ta) over the Tibetan Plateau (TP). In addition, more than half of the models underestimate annual and seasonal mean surface temperatures (Ts) over the TP. These cold biases are larger over the western TP. By decomposing the Ts bias using the surface energy budget equation, it was demonstrated that this TP's cold bias can be attributed to various factors, in which the stronger bias in surface albedo (a-) and the weaker bias in clear-sky downward Longwave radiation (DLR) play the most significant roles. Since a- and DLR are respectively affected by snow coverage fraction at the ground surface and water vapor content in the atmosphere, these results then imply that the cold bias over the TP is caused by too large snow coverage fraction and too less water vapor content over the TP in the models. The FAMIL AGCM model developed at LASG also suffers from the similar cold bias over the TP. By introducing the 3D- Radiative Transfer Parameterization Over Mountains/Snow (Liou, 2013) into the model, the total solar radiation reaching the ground surface is increased during the daytime, resulting in more snowmelt and less snow coverage. Accordingly, surface albedo is decreased on the sunny side of the mountains, and the surface cold bias over mountain areas is decreased. It is shown that the improvement is sensitive to the model resolution: increased the horizontal resolution of Community Land Model version 4.0 (CLM 4.0) from nearly 200km (1.9o×2.5o) to

  3. Quantum anomalies in nodal line semimetals

    Science.gov (United States)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  4. Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf

    Science.gov (United States)

    Guo, Lanli; Sheng, Jinyu

    2017-05-01

    A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights ( H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.

  5. Quality assessment and improvement of the EUMETSAT Meteosat Surface Albedo Climate Data Record

    Directory of Open Access Journals (Sweden)

    A. Lattanzio

    2015-10-01

    Full Text Available Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA Climate Data Record (CDR currently comprising up to 24 years (1982–2006 of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS stability requirements for desert reference sites. The limitation in quality due to non-removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. The first step consists of the application of a robust and reliable cloud mask, taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers, some clouds can still remain undetected. A second step relies on a post-processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high-quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR release.

  6. ClimoBase: Rouse Canadian Surface Observations of Weather, Climate, and Hydrological Variables, 1984-1998, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — ClimoBase is a collection of surface climate measurements collected in Northern Canada by Dr. Wayne Rouse between 1984 and 1998 in three locations: Churchill,...

  7. An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

    Science.gov (United States)

    Kleidon, Axel; Renner, Maik

    2017-09-01

    Observations and climate model simulations consistently show a higher climate sensitivity of land surfaces compared to ocean surfaces. Here we show that this difference in temperature sensitivity can be explained by the different means by which the diurnal variation in solar radiation is buffered. While ocean surfaces buffer the diurnal variations by heat storage changes below the surface, land surfaces buffer it mostly by heat storage changes above the surface in the lower atmosphere that are reflected in the diurnal growth of a convective boundary layer. Storage changes below the surface allow the ocean surface-atmosphere system to maintain turbulent fluxes over day and night, while the land surface-atmosphere system maintains turbulent fluxes only during the daytime hours, when the surface is heated by absorption of solar radiation. This shorter duration of turbulent fluxes on land results in a greater sensitivity of the land surface-atmosphere system to changes in the greenhouse forcing because nighttime temperatures are shaped by radiative exchange only, which are more sensitive to changes in greenhouse forcing. We use a simple, analytic energy balance model of the surface-atmosphere system in which turbulent fluxes are constrained by the maximum power limit to estimate the effects of these different means to buffer the diurnal cycle on the resulting temperature sensitivities. The model predicts that land surfaces have a 50 % greater climate sensitivity than ocean surfaces, and that the nighttime temperatures on land increase about twice as much as daytime temperatures because of the absence of turbulent fluxes at night. Both predictions compare very well with observations and CMIP5 climate model simulations. Hence, the greater climate sensitivity of land surfaces can be explained by its buffering of diurnal variations in solar radiation in the lower atmosphere.

  8. CLIMATE CHANGE. Possible artifacts of data biases in the recent global surface warming hiatus.

    Science.gov (United States)

    Karl, Thomas R; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H; McMahon, James R; Menne, Matthew J; Peterson, Thomas C; Vose, Russell S; Zhang, Huai-Min

    2015-06-26

    Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming "hiatus." Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a "slowdown" in the increase of global surface temperature. Copyright © 2015, American Association for the Advancement of Science.

  9. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    Directory of Open Access Journals (Sweden)

    J. H. van Angelen

    2012-10-01

    Full Text Available We present a sensitivity study of the surface mass balance (SMB of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6% at the K-transect (west Greenland for the period 2004–2009 is considerably reduced compared to the previous density-dependent albedo scheme (+22%. To simulate realistic snow albedo values, a small concentration of black carbon is needed, which has strongest impact on melt in the accumulation area. A background ice albedo field derived from MODIS imagery improves the agreement between the modeled and observed SMB gradient along the K-transect. The effect of enhanced meltwater retention and refreezing is a decrease of the albedo due to an increase in snow grain size. As a secondary effect of refreezing the snowpack is heated, enhancing melt and further lowering the albedo. Especially in a warmer climate this process is important, since it reduces the refreezing potential of the firn layer that covers the Greenland Ice Sheet.

  10. Effects of climate change on surface-water photochemistry: a review.

    Science.gov (United States)

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2014-10-01

    Information concerning the link between surface-water photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 (·-). However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 (·-). Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 (·-)). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen ((1)O2) and by the triplet states of chromophoric dissolved organic matter ((3)CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.

  11. Congenital optic nerve anomalies.

    Science.gov (United States)

    Martín-Begué, N; Saint-Gerons, M

    2016-12-01

    To update the current knowledge about congenital optic disc anomalies. A comprehensive literature search was performed in the major biomedical databases. Patients with these anomalies usually have poor vision in infancy. Refractive errors are common, and serous retinal detachment may develop in some of these anomalies. It is critically important to clinically differentiate between these congenital optic disc anomalies, as central nervous system malformations are common in some, whereas others may be associated with systemic anomalies. Congenital optic disc anomalies are a heterogeneous group of pathologies with characteristic fundus appearance and systemic associations. We should always try to make a correct diagnosis, in order to ask for specific tests, as well as to provide an adequate follow-up. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Modeling Surface Climate in US Cities Using Simple Biosphere Model Sib2

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert; Imhoff, Marc

    2015-01-01

    We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products in the Simple Biosphere model (SiB2) to assess the effects of urbanized land on the continental US (CONUS) surface climate. Using National Land Cover Database (NLCD) Impervious Surface Area (ISA), we define more than 300 urban settlements and their surrounding suburban and rural areas over the CONUS. The SiB2 modeled Gross Primary Production (GPP) over the CONUS of 7.10 PgC (1 PgC= 10(exp 15) grams of Carbon) is comparable to the MODIS improved GPP of 6.29 PgC. At state level, SiB2 GPP is highly correlated with MODIS GPP with a correlation coefficient of 0.94. An increasing horizontal GPP gradient is shown from the urban out to the rural area, with, on average, rural areas fixing 30% more GPP than urbans. Cities built in forested biomes have stronger UHI magnitude than those built in short vegetation with low biomass. Mediterranean climate cities have a stronger UHI in wet season than dry season. Our results also show that for urban areas built within forests, 39% of the precipitation is discharged as surface runoff during summer versus 23% in rural areas.

  13. The magnitudes and timescales of global mean surface temperature feedbacks in climate models

    Directory of Open Access Journals (Sweden)

    A. Jarvis

    2011-12-01

    Full Text Available Because of the fundamental role feedbacks play in determining the response of surface temperature to perturbations in radiative forcing, it is important we understand the dynamic characteristics of these feedbacks. Rather than attribute the aggregate surface temperature feedback to particular physical processes, this paper adopts a linear systems approach to investigate the partitioning with respect to the timescale of the feedbacks regulating global mean surface temperature in climate models. The analysis reveals that there is a dominant net negative feedback realised on an annual timescale and that this is partially attenuated by a spectrum of positive feedbacks with characteristic timescales in the range 10 to 1000 yr. This attenuation was composed of two discrete phases which are attributed to the equilibration of "diffusive – mixed layer" and "circulatory – deep ocean" ocean heat uptake. The diffusive equilibration was associated with time constants on the decadal timescale and accounted for approximately 75 to 80 percent of the overall ocean heat feedback, whilst the circulatory equilibration operated on a centennial timescale and accounted for the remaining 20 to 25 percent of the response. This suggests that the dynamics of the transient ocean heat uptake feedback first discussed by Baker and Roe (2009 tends to be dominated by loss of diffusive heat uptake in climate models, rather than circulatory deep ocean heat equilibration.

  14. Anomaly-free models for flavour anomalies

    Science.gov (United States)

    Ellis, John; Fairbairn, Malcolm; Tunney, Patrick

    2018-03-01

    We explore the constraints imposed by the cancellation of triangle anomalies on models in which the flavour anomalies reported by LHCb and other experiments are due to an extra U(1)^' gauge boson Z^' . We assume universal and rational U(1)^' charges for the first two generations of left-handed quarks and of right-handed up-type quarks but allow different charges for their third-generation counterparts. If the right-handed charges vanish, cancellation of the triangle anomalies requires all the quark U(1)^' charges to vanish, if there are either no exotic fermions or there is only one Standard Model singlet dark matter (DM) fermion. There are non-trivial anomaly-free models with more than one such `dark' fermion, or with a single DM fermion if right-handed up-type quarks have non-zero U(1)^' charges. In some of the latter models the U(1)^' couplings of the first- and second-generation quarks all vanish, weakening the LHC Z^' constraint, and in some other models the DM particle has purely axial couplings, weakening the direct DM scattering constraint. We also consider models in which anomalies are cancelled via extra vector-like leptons, showing how the prospective LHC Z^' constraint may be weakened because the Z^' → μ ^+ μ ^- branching ratio is suppressed relative to other decay modes.

  15. Soil Moisture and Sea Surface Temperatures equally important for Land Climate in the Warm Season

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2015-12-01

    Both sea surface temperatures (SSTs) and soil moisture (SM) are important drivers of climate variability over land. In this study we present a comprehensive comparison of SM versus SST impacts on land climate in the warm season. We perform ensemble experiments with the Community Earth System Model (CESM) where we set SM or SSTs to median conditions, respectively, to remove their inter-annual variability, whereby the other component - SST or SM - is still interactively computed. In contrast to earlier experiments performed with prescribed SSTs, our experiments suggest that SM is overall as important as SSTs for land climate, not only in the midlatitudes but also in the tropics and subtropics. Mean temperature and precipitation are reduced by 0.1-0.5 K and 0-0.2 mm, respectively, whereas their variability at different time scales decreases by 10-40% (temperature) and 0-10% (precipitation) when either SM or SSTs are prescribed. Also drought occurrence is affected, with mean changes in the maximum number of cumulative dry days of 0-0.75 days. Both SM and SST-induced changes are strongest for hot temperatures (up to 0.7 K, and 50%), extreme precipitation (up to 0.4 mm, and 20%), and strong droughts (up to 2 days). Local climate changes in response to removed SM variability are controlled - to first order - by the land-atmosphere coupling and the natural SM variability. SST-related changes are partly controlled by the relation of local temperature or precipitation with the El Niño-Southern Oscillation. Moreover removed SM or SST variabilities both induce remote effects by impacting the atmospheric circulation. Our results are similar for the present day and the end of the century. We investigate the inter-dependency between SM and SST and find a sufficient degree of independence for the purpose of this study. The robustness of our findings is shown by comparing the response of CESM to removed SM variability with four other global climate models. In summary, SM and SSTs

  16. Future Changes in Surface Runoff over Korea Projected by a Regional Climate Model under A1B Scenario

    Directory of Open Access Journals (Sweden)

    Ji-Woo Lee

    2014-01-01

    Full Text Available This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM, namely, the Global/Regional Integrated Model System (GRIMs, Regional Model Program (RMP. The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4. The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070 simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.

  17. Sensitivity of Asian and African climate to variations in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography

    Science.gov (United States)

    Demenocal, Peter B.; Rind, David

    1993-01-01

    A general circulation model was used to investigate the sensitivity of Asian and African climate to prescribed changes in boundary conditions with the objective of identifying the relative importance of individual high-latitude glacial boundary conditions on seasonal climate and providing a physical basis for interpreting the paleoclimate record. The circulation model is described and results are presented. Insolation forcing increased summer Asian monsoon winds, while increased high-latitude ice cover strengthened winter Asian trade winds causing decreased precipitation. These factors had little effect on African climate. Cooler North Atlantic sea surface temperatures enhanced winter trade winds over North Africa, southern Asian climate was relatively unaffected. Reducing Asian orography enhanced Asian winter circulation while decreasing the summer monsoon. These model results suggest that African and southern Asian climate respond differently to separate elements of high-latitude climate variability.

  18. A new method for extracting near-surface mass-density anomalies from land-based gravity data, based on a special case of Poisson's PDE at the Earth's surface: A case study of salt diapirs in the south of Iran

    Science.gov (United States)

    AllahTavakoli, Y.; Safari, A.; Ardalan, A.; Bahroudi, A.

    2015-12-01

    The current research provides a method for tracking near-surface mass-density anomalies via using only land-based gravity data, which is based on a special version of Poisson's Partial Differential Equation (PDE) of the gravitational field at Earth's surface. The research demonstrates how the Poisson's PDE can provide us with a capability to extract the near-surface mass-density anomalies from land-based gravity data. Herein, this version of the Poisson's PDE is mathematically introduced to the Earth's surface and then it is used to develop the new method for approximating the mass-density via derivatives of the Earth's gravitational field (i.e. via the gradient tensor). Herein, the author believes that the PDE can give us new knowledge about the behavior of the Earth's gravitational field at the Earth's surface which can be so useful for developing new methods of Earth's mass-density determination. In a case study, the proposed method is applied to a set of gravity stations located in the south of Iran. The results were numerically validated via certain knowledge about the geological structures in the area of the case study. Also, the method was compared with two standard methods of mass-density determination. All the numerical experiments show that the proposed approach is well-suited for tracking near-surface mass-density anomalies via using only the gravity data. Finally, the approach is also applied to some petroleum exploration studies of salt diapirs in the south of Iran.

  19. Characterising urban zinc generation to identify surface pollutant hotspots in a low intensity rainfall climate.

    Science.gov (United States)

    Charters, F J; Cochrane, T A; O'Sullivan, A D

    2017-09-01

    Characterising stormwater runoff quality provides useful insights into the dynamics of pollutant generation and wash off rates. These can be used to prioritise stormwater management strategies. This study examined the effects of a low intensity rainfall climate on zinc contributions from different impermeable urban surface types. First flush (FF) and steady state samples were collected from seven different surfaces for characterisation, and the data were also used to calibrate an event-based pollutant load model to predict individual 'hotspot' surfaces across the catchment. Unpainted galvanised roofs generated very high concentrations of zinc, primarily in the more biologically available dissolved form. An older, unpainted galvanised roof had FF concentrations averaging 32,338 μg/L, while the new unpainted roof averaged 4,782 μg/L. Roads and carparks also had elevated zinc, but FF concentrations averaged only 822-1,584 μg/L. Modelling and mapping expected zinc loads from individual impermeable surfaces across the catchment identified specific commercial roof surfaces to be targeted for zinc management. The results validate a policy strategy to replace old galvanised roof materials and avoid unpainted galvanised roofing in future urban development for better urban water quality outcomes. In the interim, readily-implemented treatment options are required to help mitigate chronic zinc impacts on receiving waterways.

  20. Implementing surface parameter aggregation rules in the CCM3 global climate model: regional responses at the land surface

    Directory of Open Access Journals (Sweden)

    M. A. Arain

    1999-01-01

    land-surface parameters results in significant changes in modelled climate and in some improvements in the land-surface diagnostics in selected regions. There is also some evidence that there is a response in the global circulation pattern, which is a focus of further work.

  1. Long-term variations in the surface air 7Be concentration and climatic changes.

    Science.gov (United States)

    Jiwen, Liu; Starovoitova, Valeriia N; Wells, Douglas P

    2013-02-01

    We have used EML Surface Air Sampling Program (SASP) data to analyze the long-term trend in (7)Be surface concentration and address possible correlation between this long-term trend and climatic changes, namely changes in precipitation patterns and temperature. In this paper we present (7)Be concentration data from 23 sites, spanning over 25 years, all over the world, and extract long-term trend parameter using two independent techniques. The (7)Be concentrations in most stations show a pronounced decreasing trend, potentially corresponding to statistically significant changes in transporting (7)Be from upper atmosphere source to these sites. Weak negative correlation between (7)Be concentration and amount of precipitation was also observed. However, more data from more representative sites around the world are needed the statistical robustness of this trend. Published by Elsevier Ltd.

  2. Congenital anomalies in Primorsky region.

    Science.gov (United States)

    Kiku, P; Voronin, S; Golokhvast, K

    2015-01-01

    According to WHO hereditary diseases and congenital malformations contribute significantly to the health of population. Thus, the problems of epidemiology, clinical presentation, diagnosis and treatment of congenital abnormalities are of interest for many researchers [2]. In addition, the dynamic accounting for the incidence of congenital malformations and hereditary diseases allows the researchers to assess the ecological situation in the region [1]. The occurrence of congenital anomalies in the world varies; it depends heavily on how carefully the data is collected [4]. Multifactorial or polygenic diseases develop under the influence of environmental factors in the presence of defective genes. They can constitute up to 90% of all chronic pathology [2-5]. To determine the incidence of congenital anomalies under the influence of environmental factors. The study used the methodology of system evaluation of congenital anomalies incidence in Primorsky region, depending on bio-climatic and environmental conditions. The authors used health statistics for the period from 2000 to 2014, F.12 class for congenital abnormalities in adolescents and children that were compared in geographical and temporal aspects with environmental factors of 33 settlements in Primorsky region. The environment is represented by nature and climate (6 factor modules) and sanitation (7 factor modules) blocks of factors. When formalizing the information database of the environment a specially developed 10-point assessment scale was used. Statistical processing of the information was carried out using Pearson's chi-squared test and multiple regression method from SSPS application program package. The study found that over the 15-year period the level of congenital abnormalities in children increased by 27.5% and in adolescents - by 35.1%, and in 2014 it amounted to 1687.6 and 839.3 per 100 000 people, respectively. The predictive model shows a steady further growth of this pathology. The incidence

  3. Less sensitive of urban surface to climate variability than rural in Northern China.

    Science.gov (United States)

    Yao, Rui; Wang, Lunche; Huang, Xin; Chen, Jiangping; Li, Jiarui; Niu, Zigeng

    2018-02-14

    In this study, the relationships between interannual variations of surface urban heat islands (SUHIs) and climate variability were studied in 31 cities of China for the period 2001-2016. For cold and dry Northern China, it was found that the interannual variations of SUHI intensity (SUHII, land surface temperature (LST) in urban minus rural) in urban cores was significantly (purban cores (1.141°C for SDs and 2.535°C for WDs) than in rural areas (1.890°C for SDs and 3.377°C for WDs). The standard deviation was further used to reflect the interannual stabilities of LST, enhanced vegetation index (EVI) and white sky albedo (WSA). Interestingly, the standard deviations of LST across 2001-2016 were generally lower in urban cores (0.994°C for SDs and 1.577°C for WDs) than in rural areas (1.431°C for SDs and 2.077°C for WDs). Similar results were observed for EVI and WSA (winter). The results suggested that the urban surface is less sensitive to climate variability than rural areas in Northern China. Comparatively, most findings were less evident in hot and humid Southern China. Despite the whole world would become warmer or colder in future, the insensitivity of urban surface may mitigate its impacts in cold and dry Northern China. However, it does not mean that urbanization is totally good due to its environmental problem. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A study of Arctic sea ice freeboard heights, gravity anomalies and dynamic topography from ICESat measurementes

    DEFF Research Database (Denmark)

    Skourup, Henriette

    The Arctic sea ice cover has a great influence on the climate and is believed to respond rapidly to climate changes. Since 2003 the Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission has provided satellite altimetry over the ice covered Arctic Ocean up to 86 N. In this thesis......, the main topic is to estimate the sea surface height in the Arctic Ocean from ICESat laser altimetry data and to use this information to estimate sea ice freeboard heights, gravity anomalies and mean dynamic topography. The laser altimeter measures the height of the surface topography, which in the Arctic...... is a combination of sea ice and open water. The sea surface height is found by a "lowest-level" filtering procedure, originally developed for airborne lidar measurements, which assumes that the lowest levels measured represent the open water in the ice pack. The sea surface obtained this way is used to estimate...

  5. Dental Anomalies: An Update

    Directory of Open Access Journals (Sweden)

    Fatemeh Jahanimoghadam

    2016-01-01

    Full Text Available Dental anomalies are usual congenital malformation that can happen either as isolated findings or as a part of a syndrome. Developmental anomalies influencing the morphology exists in both deciduous and permanent dentition and shows different forms such as gemination, fusion, concrescence, dilaceration, dens evaginatus (DE, enamel pearls, taurodontism or peg-shaped laterals. All These anomalies have clinical significance concerning aesthetics, malocclusion and more necessary preparing of the development of dental decays and oral diseases. Through a search in PubMed, Google, Scopus and Medline, a total of eighty original research papers during 1928-2016 were found with the keywords such as dental anomaly, syndrome, tooth and hypodontia. One hundred review titles were identified, eighty reviews were retrieved that were finally included as being relevant and of sufficient quality. In this review, dental anomalies including gemination, fusion, concrescence, dilaceration, dens invaginatus, DE, taurodontism, enamel pearls, fluorosis, peg-shaped laterals, dentinal dysplasia, regional odontodysplasia and hypodontia are discussed. Diagnosing dental abnormality needs a thorough evaluation of the patient, involving a medical, dental, familial and clinical history. Clinical examination and radiographic evaluation and in some of the cases, specific laboratory tests are also needed. Developmental dental anomalies require careful examination and treatment planning. Where one anomaly is present, clinicians should suspect that other anomalies may also be present. Moreover, careful clinical and radiographical examination is required. Furthermore, more complex cases need multidisciplinary planning and treatment.

  6. Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China.

    Science.gov (United States)

    Yang, Qiquan; Huang, Xin; Li, Jiayi

    2017-08-24

    The urban heat island (UHI) effect exerts a great influence on the Earth's environment and human health and has been the subject of considerable attention. Landscape patterns are among the most important factors relevant to surface UHIs (SUHIs); however, the relationship between SUHIs and landscape patterns is poorly understood over large areas. In this study, the surface UHI intensity (SUHII) is defined as the temperature difference between urban and suburban areas, and the landscape patterns are quantified by the urban-suburban differences in several typical landscape metrics (ΔLMs). Temperature and land-cover classification datasets based on satellite observations were applied to analyze the relationship between SUHII and ΔLMs in 332 cities/city agglomerations distributed in different climatic zones of China. The results indicate that SUHII and its correlations with ΔLMs are profoundly influenced by seasonal, diurnal, and climatic factors. The impacts of different land-cover types on SUHIs are different, and the landscape patterns of the built-up and vegetation (including forest, grassland, and cultivated land) classes have the most significant effects on SUHIs. The results of this study will help us to gain a deeper understanding of the relationship between the SUHI effect and landscape patterns.

  7. Climate applications for NOAA 1/4° Daily Optimum Interpolation Sea Surface Temperature

    Science.gov (United States)

    Boyer, T.; Banzon, P. V. F.; Liu, G.; Saha, K.; Wilson, C.; Stachniewicz, J. S.

    2015-12-01

    Few sea surface temperature (SST) datasets from satellites have the long temporal span needed for climate studies. The NOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) on a 1/4° grid, produced at National Centers for Environmental Information, is based primarily on SSTs from the Advanced Very High Resolution Radiometer (AVHRR), available from 1981 to the present. AVHRR data can contain biases, particularly when aerosols are present. Over the three decade span, the largest departure of AVHRR SSTs from buoy temperatures occurred during the Mt Pinatubo and El Chichon eruptions. Therefore, in DOISST, AVHRR SSTs are bias-adjusted to match in situ SSTs prior to interpolation. This produces a consistent time series of complete SST fields that is suitable for modelling and investigating local climate phenomena like El Nino or the Pacific warm blob in a long term context. Because many biological processes and animal distributions are temperature dependent, there are also many ecological uses of DOISST (e.g., coral bleaching thermal stress, fish and marine mammal distributions), thereby providing insights into resource management in a changing ocean. The advantages and limitations of using DOISST for different applications will be discussed.

  8. An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2017-09-01

    Full Text Available Observations and climate model simulations consistently show a higher climate sensitivity of land surfaces compared to ocean surfaces. Here we show that this difference in temperature sensitivity can be explained by the different means by which the diurnal variation in solar radiation is buffered. While ocean surfaces buffer the diurnal variations by heat storage changes below the surface, land surfaces buffer it mostly by heat storage changes above the surface in the lower atmosphere that are reflected in the diurnal growth of a convective boundary layer. Storage changes below the surface allow the ocean surface–atmosphere system to maintain turbulent fluxes over day and night, while the land surface–atmosphere system maintains turbulent fluxes only during the daytime hours, when the surface is heated by absorption of solar radiation. This shorter duration of turbulent fluxes on land results in a greater sensitivity of the land surface–atmosphere system to changes in the greenhouse forcing because nighttime temperatures are shaped by radiative exchange only, which are more sensitive to changes in greenhouse forcing. We use a simple, analytic energy balance model of the surface–atmosphere system in which turbulent fluxes are constrained by the maximum power limit to estimate the effects of these different means to buffer the diurnal cycle on the resulting temperature sensitivities. The model predicts that land surfaces have a 50 % greater climate sensitivity than ocean surfaces, and that the nighttime temperatures on land increase about twice as much as daytime temperatures because of the absence of turbulent fluxes at night. Both predictions compare very well with observations and CMIP5 climate model simulations. Hence, the greater climate sensitivity of land surfaces can be explained by its buffering of diurnal variations in solar radiation in the lower atmosphere.

  9. Potential evaporation estimation through an unstressed surface energy balance and its sensitivity to climate change

    Science.gov (United States)

    Barella-Ortiz, A.; Polcher, J.; Tuzet, A.; Laval, K.

    2013-06-01

    Potential evaporation (ETP) is a basic input for hydrological and agronomic models, as well as a key variable in most actual evaporation estimations. It has been approached through several diffusive and energy balance methods, out of which the Penman-Monteith equation is recommended as the standard one. In order to deal with the diffusive approach, ETP must be estimated at a sub-diurnal frequency, as currently done in land surface models (LSM). This study presents an improved method, developed in the ORCHIDEE LSM, which consists in estimating ETP through an unstressed surface energy balance (USEB method). The results confirm the quality of the estimation which is currently implemented in the model (Milly, 1992). ETP has also been estimated using a reference equation (computed at a daily time step) provided by the Food and Agriculture Organization (FAO). First, a comparison for a reference period under current climate conditions, shows that both formulations differ, specially in arid areas. However, they supply similar values when FAO's assumption of neutral stability conditions is relaxed, by replacing FAO's aerodynamic resistance by the model's one. Furthermore, if the vapour pressure deficit (VPD) estimated for FAO's equation, is substituted by ORCHIDEE's VPD or its humidity gradient, the daily mean estimate is further improved. In a second step, ETP's sensitivity to climate change is assessed comparing trends in both formulations for the 21st Century. It is found that the USEB method shows a higher sensitivity. Both VPD and the model's humidity gradient, as well as the aerodynamic resistance have been identified as key parameters in governing ETP trends. Finally, the sensitivity study is extended to three empirical approximations based on temperature, net radiation and mass transfer (Hargreaves, Priestley-Taylor and Rohwer, respectively). The sensitivity of these methods is compared to the USEB method's one to test if simplified equations are able to reproduce

  10. Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland

    Science.gov (United States)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1994-01-01

    Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat

  11. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  12. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  13. Land surface phenology of Northeast China during 2000-2015: temporal changes and relationships with climate changes.

    Science.gov (United States)

    Zhang, Yue; Li, Lin; Wang, Hongbin; Zhang, Yao; Wang, Naijia; Chen, Junpeng

    2017-10-01

    As an important crop growing area, Northeast China (NEC) plays a vital role in China's food security, which has been severely affected by climate change in recent years. Vegetation phenology in this region is sensitive to climate change, and currently, the relationship between the phenology of NEC and climate change remains unclear. In this study, we used a satellite-derived normalized difference vegetation index (NDVI) to obtain the temporal patterns of the land surface phenology in NEC from 2000 to 2015 and validated the results using ground phenology observations. We then explored the relationships among land surface phenology, temperature, precipitation, and sunshine hours for relevant periods. Our results showed that the NEC experienced great phenological changes in terms of spatial heterogeneity during 2000-2015. The spatial patterns of land surface phenology mainly changed with altitude and land cover type. In most regions of NEC, the start date of land surface phenology had advanced by approximately 1.0 days year -1 , and the length of land surface phenology had been prolonged by approximately 1.0 days year -1 except for the needle-leaf and cropland areas, due to the warm conditions. We found that a distinct inter-annual variation in land surface phenology related to climate variables, even if some areas presented non-significant trends. Land surface phenology was coupled with climate variables and distinct responses at different combinations of temperature, precipitation, sunshine hours, altitude, and anthropogenic influence. These findings suggest that remote sensing and our phenology extracting methods hold great potential for helping to understand how land surface phenology is sensitive to global climate change.

  14. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    Science.gov (United States)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  15. Detection of a weak meddy-like anomaly from high-resolution satellite SST maps

    Directory of Open Access Journals (Sweden)

    Mikhail Emelianov

    2012-09-01

    Full Text Available Despite the considerable impact of meddies on climate through the long-distance transport of properties, a consistent observation of meddy generation and propagation in the ocean is rather elusive. Meddies propagate at about 1000 m below the ocean surface, so satellite sensors are not able to detect them directly and finding them in the open ocean is more fortuitous than intentional. However, a consistent census of meddies and their paths is required in order to gain knowledge about their role in transporting properties such as heat and salt. In this paper we propose a new methodology for processing high-resolution sea surface temperature maps in order to detect meddy-like anomalies in the open ocean on a near-real-time basis. We present an example of detection, involving an atypical meddy-like anomaly that was confirmed as such by in situ measurements.

  16. Impact of Urban Growth on Surface Climate: A Case Study in Oran, Algeria

    Science.gov (United States)

    Bounoua, Lahouari; Safia, Abdelmounaine; Masek, Jeffrey; Peters-Lidars, Christaq; Imhoff, Marc L.

    2008-01-01

    We develop a land use map discriminating urban surfaces from other cover types over a semiarid region in North Africa and use it in a land surface model to assess the impact of urbanized land on surface energy, water and carbon balances. Unlike in temperate climates where urbanization creates a marked heat island effect, this effect is not strongly marked in semiarid regions. During summer, the urban class results in an additional warming of 1.45 C during daytime and 0.81 C at night compared to that simulated for needleleaf trees under similar climate conditions. Seasonal temperatures show urban areas warmer than their surrounding during summer and slightly cooler in winter. The hydrological cycle is practically "shut down" during summer and characterized by relatively large amount of runoff in winter. We estimate the annual amount of carbon uptake to 1.94 million metric tons with only 11.9% assimilated during the rainy season. However, if urbanization expands to reach 50% of the total area excluding forests, the annual total carbon uptake will decline by 35% and the July mean temperature would increase only 0.10 C, compared to current situation. In contrast, if urbanization expands to 50% of the total land excluding forests and croplands but all short vegetation is replaced by native broadleaf deciduous trees, the annual carbon uptake would increase 39% and the July mean temperature would decrease by 0.9 C, compared to current configuration. These results provide guidelines for urban planners and land use managers and indicate possibilities for mitigating the urban heat.

  17. The Influence of Climate Change on Irrigated Water Demands and Surface Water Availability of the Yellow River Basin

    Science.gov (United States)

    Troy, T. J.; Zhang, J.

    2017-12-01

    Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.

  18. Turtle carapace anomalies: the roles of genetic diversity and environment.

    Directory of Open Access Journals (Sweden)

    Guillermo Velo-Antón

    2011-04-01

    Full Text Available Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales.In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium.Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations.

  19. On the origins of Earth rotation anomalies: New insights on the basis of both “paleogeodetic” data and Gravity Recovery and Climate Experiment (GRACE) data

    Science.gov (United States)

    Peltier, W. R.; Luthcke, Scott B.

    2009-11-01

    The theory previously developed to predict the impact on Earth's rotational state of the late Pleistocene glaciation cycle is extended. In particular, we examine the extent to which a departure of the infinite time asymptote of the viscoelastic tidal Love number of degree 2, "k2T," from the observed "fluid" Love number, "kf," impacts the theory. A number of tests of the influence of the difference in these Love numbers on theoretical predictions of the model of the glacial isostatic adjustment (GIA) process are explored. Relative sea level history predictions are shown not to be sensitive to the difference even though they are highly sensitive to the influence of the changing rotational state itself. We also explore in detail the accuracy with which the Gravity Recovery and Climate Experiment (GRACE) satellite system is able to observe the global GIA process including the time-dependent amplitude of the degree 2 and order 1 spherical harmonic components of the gravitational field, the only components that are significantly influenced by rotational effects. It is explicitly shown that the GRACE observation of these properties of the time-varying gravitational field is sufficiently accurate to rule out the values predicted by the ICE-5G (VM2) model of Peltier (2004). However, we also note that this model is constrained only by data from an epoch during which modern greenhouse gas induced melting of both the great polar ice-sheets and small ice sheets and glaciers was not occurring. Such modern loss of grounded continental ice strongly influences the evolving rotational state of the planet and thus the values of the degree 2 and order 1 Stokes coefficients as they are currently being measured by the GRACE satellite system. A series of sensitivity tests are employed to demonstrate this fact. We suggest that the accuracy of scenarios for modern land ice melting may be tested by ensuring that such scenarios conform to the GRACE observations of these crucial time

  20. Anomalies on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Arkani-Hamed, Nima; Cohen, Andrew G.; Georgi, Howard

    2001-03-16

    We discuss the form of the chiral anomaly on an S1/Z2 orbifold with chiral boundary conditions. We find that the 4-divergence of the higher-dimensional current evaluated at a given point in the extra dimension is proportional to the probability of finding the chiral zero mode there. Nevertheless the anomaly, appropriately defined as the five dimensional divergence of the current, lives entirely on the orbifold fixed planes and is independent of the shape of the zero mode. Therefore long distance four dimensional anomaly cancellation ensures the consistency of the higher dimensional orbifold theory.

  1. Theoretically Optimal Distributed Anomaly Detection

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel general framework for distributed anomaly detection with theoretical performance guarantees is proposed. Our algorithmic approach combines existing anomaly...

  2. Modeling the Urban Impact on Semiarid Surface Climate: A Case Study in Marrakech, Morocco

    Science.gov (United States)

    Lachir, Asia; Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis; Moussouli, Mohamed

    2016-01-01

    We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.

  3. Modeling The Urban Impact On Semiarid Surface Climate: A Case Study In Marrakesh, Morocco

    Science.gov (United States)

    Lachir, Asia; Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis; Messouli, Mohamed

    2016-01-01

    We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.

  4. Near-surface wind pattern in regional climate projections over the broader Adriatic region

    Science.gov (United States)

    Belušić, Andreina; Telišman Prtenjak, Maja; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2017-04-01

    The Adriatic region is characterized by the complex coastline, strong topographic gradients and specific wind regimes. This represents excellent test area for the latest generation of the regional climate models (RCMs) applied over the European domain. The most famous wind along the Adriatic coast is bora, which due to its strength, has a strong impact on all types of human activities in the Adriatic region. The typical bora wind is a severe gusty downslope flow perpendicular to the mountains. Besides bora, in the Adriatic region, typical winds are sirocco (mostly during the wintertime) and sea/land breezes (dominantly in the warm part of the year) as a part of the regional Mediterranean wind system. Thus, it is substantial to determine future changes in the wind filed characteristics (e.g., changes in strength and frequencies). The first step was the evaluation of a suite of ten EURO- and MED-CORDEX models (at 50 km and 12.5 km resolution), and two additional high resolution models from the Swiss Federal Institute of Technology in Zürich (ETHZ, at 12.5 km and 2.2. km resolution) in the present climate. These results provided a basis for the next step where wind field features, in an ensemble of RCMs forced by global climate models (GCMs) in historical and future runs are examined. Our aim is to determine the influence of the particular combination of RCMs and GCMs, horizontal resolution and emission scenario on the future changes in the near-surface wind field. The analysis reveals strong sensitivity of the simulated wind flow and its statistics to both season and location analyzed, to the horizontal resolution of the RCM and on the choice of the particular GCM that provides boundary conditions.

  5. Modeling land surface hydrology sensitivity in the Colorado River Basin to historical climate variability

    Science.gov (United States)

    Whitney, K. M.; Bohn, T. J.; Vivoni, E. R.

    2017-12-01

    Over the past century, the Colorado River Basin (CRB) has experienced substantial warming and interannual climate variations, including prolonged drought periods. These patterns are projected to accelerate in the 21st century, with major consequences for water resources in the southwestern U.S. and northwestern Mexico. To evaluate future projections appropriately, however, it is important to first quantify the regional hydrologic response to historical climate variability in the CRB. In the current effort, we force the Variable Infiltration Capacity (VIC) land surface hydrology model and a river routing model with historical meteorological data to estimate water balance components and naturalized streamflow response in the CRB at 1/16o spatial resolution and at an hourly time step over the period 1950-2013. We utilize data products from satellite remote sensing to specify spatiotemporal variations in vegetation parameters and include an irrigation scheme to account for evapotranspiration from croplands in the CRB. Furthermore, we apply recent modifications in VIC to more properly account for bare soil evaporation in arid and semiarid ecosystems. Analyses of the historical model simulations are focused on quantifying the spatiotemporal variability of the soil moisture, evapotranspiration, streamflow and snowmelt response and their linkages to extreme meteorological events. Here we characterize the annual and monthly distributions, trends, and statistical extremes and central tendencies of water balance terms averaged over the CRB and its sub-basins for the entire study period 1950-2013. By building a model-based hydrologic climatology and catalog of historical extreme events for the CRB, we aim to construct a basis for future activities that analyze the impact of statistically downscaled climate change projections on the hydrology of the CRB and its urban areas.

  6. Vegetation anomalies caused by antecedent precipitation in most of the world

    Science.gov (United States)

    Papagiannopoulou, C.; Miralles, D. G.; Dorigo, W. A.; Verhoest, N. E. C.; Depoorter, M.; Waegeman, W.

    2017-07-01

    Quantifying environmental controls on vegetation is critical to predict the net effect of climate change on global ecosystems and the subsequent feedback on climate. Following a non-linear Granger causality framework based on a random forest predictive model, we exploit the current wealth of multi-decadal satellite data records to uncover the main drivers of monthly vegetation variability at the global scale. Results indicate that water availability is the most dominant factor driving vegetation globally: about 61% of the vegetated surface was primarily water-limited during 1981-2010. This included semiarid climates but also transitional ecoregions. Intra-annually, temperature controls Northern Hemisphere deciduous forests during the growing season, while antecedent precipitation largely dominates vegetation dynamics during the senescence period. The uncovered dependency of global vegetation on water availability is substantially larger than previously reported. This is owed to the ability of the framework to (1) disentangle the co-linearities between radiation/temperature and precipitation, and (2) quantify non-linear impacts of climate on vegetation. Our results reveal a prolonged effect of precipitation anomalies in dry regions: due to the long memory of soil moisture and the cumulative, non-linear, response of vegetation, water-limited regions show sensitivity to the values of precipitation occurring three months earlier. Meanwhile, the impacts of temperature and radiation anomalies are more immediate and dissipate shortly, pointing to a higher resilience of vegetation to these anomalies. Despite being infrequent by definition, hydro-climatic extremes are responsible for up to 10% of the vegetation variability during the 1981-2010 period in certain areas, particularly in water-limited ecosystems. Our approach is a first step towards a quantitative comparison of the resistance and resilience signature of different ecosystems, and can be used to benchmark Earth

  7. High salinity anomalies south of Oahu, Hawaii

    Science.gov (United States)

    Pearson, K.; Carter, G. S.

    2013-12-01

    Patches of higher salinity water were observed, using Seaglider data, in the upper 50m of the water-column between Oahu and Penguin Bank. These anomalies occur approximately once a month, and are visible in the glider data for an average of 3 days. Anomalies have abrupt transitions occurring over mere hours. Salinity within the patches can reach values in excess of 35.2 psu, 0.3 higher than the average profile for the region. The salinity signature associated with the anomalies corresponds to Subtropical surface water, found north of the Hawaiian island chain. The high salinity water is trapped by the thermocline in the mixed layer. Seasonal variations of the anomaly depth are directly related to the seasonal variations of mixed layer depth. These patches of high salinity coincide with the presence of eddies. Using sea surface height as an indicator, we found that eddy-eddy interaction and eddy-island interaction dictate the advection of upwelled waters into the region. Infrequently, we observe corresponding temperature anomalies. The larger the distance between the center of the eddy and the glider, the less visible the temperature anomaly. Positive (negative) values indicate salinity above (below) the mean profile.

  8. Effect of Climate Change on Management of Surface Water of South Saskatchewan River Basin

    Science.gov (United States)

    Islam, Z.; Gan, T. Y.

    2011-12-01

    Environment, but by 2050s and 2080s, even users with senior licenses could also be affected. The overall predicted increase in water deficit due to climate change impact is about 60% in 2020s, 88% in 2050s and 112% in the 2080s. Users categorised under district irrigation junior and future non-district irrigation, junior non-irrigation will be most affected. References Kerkhoven, E., and Gan, T. Y., A Modified ISBA Surface Scheme for Modeling the Hydrology of Athabasca River Basin with GCM-scale Data, Advances in Water Resources, 29(6), 808-826, June, 2006.

  9. What will be the impacts of climate change on surface hydrology in France by 2070?

    International Nuclear Information System (INIS)

    Chauveau, Mathilde; Chazot, Sebastien; David, Julian; Norotte, Thomas; Perrin, Charles; Bourgin, Pierre-Yves; Sauquet, Eric; Vidal, Jean-Philippe; Rouchy, Nathalie; Martin, Eric; Maugis, Pascal; De Lacaze, Xavier

    2013-01-01

    Within the Explore 2070 project, an evaluation of the possible impacts of climate change on surface water between the 1961-1990 reference period and the 2046-2065 period was carried out in continental France and i n overseas departments on the basis of the A1B greenhouse gas emission scenario, seven general circulation models an d two hydrological models (Isba-Modcou and GR4J). In continental France, results indicate: (1) a possible increase in ai r temperature between +1.4 deg. C and +3 deg. C; (2) an uncertain evolution of precipitation, most models however agreeing on a decreasing trend in summer precipitation; (3) a significant decrease (10% to 40%) of mean annual flows at the country scale, especially pronounced in the Seine-Normandie and Adour-Garonne districts; (4) a strong decrease in summer lo w flows in most basins; (5) more heterogeneous and less significant evolutions for floods. A special care was given to the quantification of the uncertainties linked to these results. They provide an indication of the significance of projected changes. The evolutions calculated in the overseas zones can be considered non-significant given the level of uncertainty linked to the hydro-climatic modelling chain. These results urge to implement adaptation strategies based on a better management of water resources, among others. (authors)

  10. Do climate simulations from models forced by averaged sea surface temperatures represent actual dynamics?

    Directory of Open Access Journals (Sweden)

    P. J. Roebber

    1997-01-01

    Full Text Available Recently atmospheric general circulation models (AGCMs forced by observed sea surface temperatures (SSTs have offered the possibility of studying climate variability over periods ranging from years to decades. Such models represent and alternative to fully coupled asynchronous atmosphere ocean models whose long term integration remains problematic. Here, the degree of the approximation represented by this approach is investigated from a conceptual point of view by comparing the dynamical properties of a low order coupled atmosphere-ocean model to those of the atmospheric component of the same model when forced with monthly values of SST derived from the fully coupled simulation. The low order modelling approach is undertaken with the expectation that it may reveal general principles concerning the dynamical behaviour of the forced versus coupled systems; it is not expected that such an approach will determine the details of these differences, for which higher order modelling studies will be required. We discover that even though attractor (global averages may be similar, local dynamics and the resultant variability and predictability characteristics differ substantially. These results suggest that conclusions concerning regional climatic variability (in time as well as space drawn from forced modelling approaches may be contaminated by an inherently unquantifiable error. It is therefore recommended that this possibility be carefully investigated using state-of-the-art coupled AGCMs.

  11. Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities

    Czech Academy of Sciences Publication Activity Database

    Geletič, Jan; Lehnert, M.; Dobrovolný, Petr

    2016-01-01

    Roč. 8, č. 10 (2016), č. článku 788. ISSN 2072-4292 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:UrbanAdapt(XE) EHP-CZ02-OV-1-036-2015 Program:CZ02 Biodiverzita a ekosystémové služby / Monitorování a integrované plánování a kontrola v životním prostředí/ Adaptace na změnu klimatu Institutional support: RVO:67179843 Keywords : land surface temperature * local climate zones * ASTER * LANDSAT * analysis of variance * Prague * Brno * Czech Republic Subject RIV: EH - Ecology, Behaviour Impact factor: 3.244, year: 2016

  12. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    Science.gov (United States)

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sea-surface temperatures for the last 7200 years from the eastern Sunda Shelf, South China Sea: Climatic inferences from planktonic foraminiferal Mg/Ca ratios

    Science.gov (United States)

    Woodson, Anna Lee; Leorri, Eduardo; Culver, Stephen J.; Mallinson, David J.; Parham, Peter R.; Thunell, Robert C.; Vijayan, V. R.; Curtis, Scott

    2017-06-01

    To test whether low latitude shallow shelf deposits can provide high resolution paleoclimatic records, we utilized two cores from the Holocene sedimentary fill of incised valleys on the Sunda Shelf off Sarawak, Malaysia. We developed a new sea-surface temperature (SST) record based on planktonic foraminiferal Mg/Ca for the last 7200 years. This record reveals several significant shifts between warmer and colder conditions. Temperatures averaged 27.5 °C ca. 7200 cal. years BP, then climbed to 28.2 °C from 6500 to 5500 cal. years BP. At 5500-4500 cal. years BP we identified the coldest period (26.8 °C) of the analyzed period. For the last 4500 years SST again averaged 27.5 °C but the profile is rather variable. The last ca. 1000 years recorded the warmest SST averaging 28.5 °C. We record, for the first time in this region, a cool interval, ca. 1000 years in duration, centered on 5000 cal years BP concomitant with a wet period recorded in Borneo. The record also reflects a warm interval from ca. 1000 to 500 cal years BP that may represent the Medieval Climate Anomaly. Variations in the East Asian Monsoon (EAM) and solar activity are considered as potential drivers of SST trends. However, hydrology changes related to the El Niño-Southern Oscillation (ENSO) variability, shifts of the Western Pacific Warm Pool and migration of the Intertropical Convergence Zone are more likely to have impacted our SST temporal trend. Our findings indicate that climatic patterns in the region might be in phase with ENSO and out of phase with the EAM.

  14. Anomaly Detection in Sequences

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a set of novel algorithms which we call sequenceMiner, that detect and characterize anomalies in large sets of high-dimensional symbol sequences that...

  15. Skyrmions and anomalies

    International Nuclear Information System (INIS)

    Rho, M.

    1987-02-01

    The author summarizes the works presented at the meeting on skyrmions and anomalies. He divides the principal issues of this workshop into five categories: QCD effective lagrangians, chiral bags and the Cheshire cat principle, strangeness problem, phenomenology, mathematical structure

  16. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    Directory of Open Access Journals (Sweden)

    J. G. L. Rae

    2012-11-01

    Full Text Available Four high-resolution regional climate models (RCMs have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB, and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs. This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2, with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.

  17. Congenital laryngeal anomalies,

    OpenAIRE

    Rutter, Michael J.

    2014-01-01

    Introduction: It is essential for clinicians to understand issues relevant to the airway management of infants and to be cognizant of the fact that infants with congenital laryngeal anomalies are at particular risk for an unstable airway. Objectives: To familiarize clinicians with issues relevant to the airway management of infants and to present a succinct description of the diagnosis and management of an array of congenital laryngeal anomalies. Methods: Revision article, in which the ma...

  18. Fivebrane gravitational anomalies

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie

    2000-01-01

    Freed, Harvey, Minasian and Moore (FHMM) have proposed a mechanism to cancel the gravitational anomaly of the M-theory fivebrane coming from diffeomorphisms acting on the normal bundle. This procedure is based on a modification of the conventional M-theory Chern-Simons term. We apply the FHMM mechanism in the ten-dimensional type IIA theory. We then analyze the relation to the anomaly cancellation mechanism for the type IIA fivebrane proposed by Witten

  19. Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities

    Directory of Open Access Journals (Sweden)

    Jan Geletič

    2016-09-01

    Full Text Available The main factors influencing the spatiotemporal variability of urban climate are quite widely recognized, including, for example, the thermal properties of materials used for surfaces and buildings, the mass, height and layout of the buildings themselves and patterns of land use. However, the roles played by particular factors vary from city to city with respect to differences in geographical location, overall size, number of inhabitants and more. In urban climatology, the concept of “local climate zones” (LCZs has emerged over the past decade to address this heterogeneity. In this contribution, a new GIS-based method is used for LCZ delimitation in Prague and Brno, the two largest cities in the Czech Republic, while land surface temperatures (LSTs derived from LANDSAT and ASTER satellite data are employed for exploring the extent to which LCZ classes discriminate with respect to LSTs. It has been suggested that correctly-delineated LCZs should demonstrate the features typical of LST variability, and thus, typical surface temperatures should differ significantly among most LCZs. Zones representing heavy industry (LCZ 10, dense low-rise buildings (LCZ 3 and compact mid-rise buildings (LCZ 2 were identified as the warmest in both cities, while bodies of water (LCZ G and densely-forested areas (LCZ A made up the coolest zones. ANOVA and subsequent multiple comparison tests demonstrated that significant temperature differences between the various LCZs prevail. The results of testing were similar for both study areas (89.3% and 91.7% significant LST differences for Brno and Prague, respectively. LSTs computed from LANDSAT differentiated better between LCZs, compared with ASTER. LCZ 8 (large low-rise buildings, LCZ 10 (heavy industry and LCZ D (low plants are well-differentiated zones in terms of their surface temperatures. In contrast, LCZ 2 (compact mid-rise, LCZ 4 (open high-rise and LCZ 9 (sparsely built-up are less distinguishable in both

  20. Fluvial and climate controls on the surface energy balance in a large lowland river

    Science.gov (United States)

    Bray, E. N.; Dunne, T.; Dozier, J.

    2013-12-01

    Partitioning of radiant and turbulent energy into evaporation and absorption in a river channel is controlled by climate and streamflow characteristics, and controls the water and energy balance. Atmosphere-surface interactions, coupled with advective processes, drive the heterogeneity of heat storage and exchange over longitudinal profiles whose hydraulic and thermal patterns are crucial for survival of migratory and resident fishes and subject to alteration by humans. Over 100 large-scale flow experiments have been conducted globally to measure abiotic and biotic responses to streamflow, yet none has been utilized to elucidate large-scale physical controls on the surface energy balance of a river. In this paper, we describe a synoptic method by which net solar radiation and turbulent heat fluxes were calculated over the length of a river from time series of hydroclimatological and fluvial conditions measured during a long-term large-scale flow experiment. We examine what are the dominant physical controls to the surface energy balance in a lowland river when surface water stage varies with flow releases in a 240-km reach of the San Joaquin River, California, USA. We developed an energy balance model integrated with advective exchange of heat utilizing spatially-distributed predictions of water surface elevation, inundated surface area, and velocity from an existing hydraulic model that accounts for losses and gains over the length of the river. Absorption of radiation along the river is determined by the wavelength-dependent index of refraction, expressed by the angle of refraction and the optical depth as a function of physical depth and the absorption coefficient. Results show that over the solar spectrum, the absorption coefficient varies by seven orders of magnitude, while flow depth varies by two orders of magnitude over time and distance. Observations and modeling show that (1) discharge is controlled mainly by flow releases, diversions, and exchanges with

  1. The Holographic Weyl anomaly

    CERN Document Server

    Henningson, M; Henningson, Mans; Skenderis, Kostas

    1998-01-01

    We calculate the Weyl anomaly for conformal field theories that can be described via the adS/CFT correspondence. This entails regularizing the gravitational part of the corresponding supergravity action in a manner consistent with general covariance. Up to a constant, the anomaly only depends on the dimension d of the manifold on which the conformal field theory is defined. We present concrete expressions for the anomaly in the physically relevant cases d = 2, 4 and 6. In d = 2 we find for the central charge c = 3 l/ 2 G_N in agreement with considerations based on the asymptotic symmetry algebra of adS_3. In d = 4 the anomaly agrees precisely with that of the corresponding N = 4 superconformal SU(N) gauge theory. The result in d = 6 provides new information for the (0, 2) theory, since its Weyl anomaly has not been computed previously. The anomaly in this case grows as N^3, where N is the number of coincident M5 branes, and it vanishes for a Ricci-flat background.

  2. 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5

    Directory of Open Access Journals (Sweden)

    F. Zabel

    2013-05-01

    Full Text Available Most land surface hydrological models (LSHMs consider land surface processes (e.g. soil–plant–atmosphere interactions, lateral water flows, snow and ice in a spatially detailed manner. The atmosphere is considered as exogenous driver, neglecting feedbacks between the land surface and the atmosphere. On the other hand, regional climate models (RCMs generally simulate land surface processes through coarse descriptions and spatial scales but include land–atmosphere interactions. What is the impact of the differently applied model physics and spatial resolution of LSHMs on the performance of RCMs? What feedback effects are induced by different land surface models? This study analyses the impact of replacing the land surface module (LSM within an RCM with a high resolution LSHM. A 2-way coupling approach was applied using the LSHM PROMET (1 × 1 km2 and the atmospheric part of the RCM MM5 (45 × 45 km2. The scaling interface SCALMET is used for down- and upscaling the linear and non-linear fluxes between the model scales. The change in the atmospheric response by MM5 using the LSHM is analysed, and its quality is compared to observations of temperature and precipitation for a 4 yr period from 1996 to 1999 for the Upper Danube catchment. By substituting the Noah-LSM with PROMET, simulated non-bias-corrected near-surface air temperature improves for annual, monthly and daily courses when compared to measurements from 277 meteorological weather stations within the Upper Danube catchment. The mean annual bias was improved from −0.85 to −0.13 K. In particular, the improved afternoon heating from May to September is caused by increased sensible heat flux and decreased latent heat flux as well as more incoming solar radiation in the fully coupled PROMET/MM5 in comparison to the NOAH/MM5 simulation. Triggered by the LSM replacement, precipitation overall is reduced; however simulated precipitation amounts are still of high uncertainty, both

  3. Potential evaporation estimation through an unstressed surface-energy balance and its sensitivity to climate change

    Science.gov (United States)

    Barella-Ortiz, A.; Polcher, J.; Tuzet, A.; Laval, K.

    2013-11-01

    Potential evaporation (ETP) is a basic input for many hydrological and agronomic models, as well as a key variable in most actual evaporation estimations. It has been approached through several diffusive and energy balance methods, out of which the Penman-Monteith equation is recommended as the standard one. In order to deal with the diffusive approach, ETP must be estimated at a sub-diurnal frequency, as currently done in land surface models (LSMs). This study presents an improved method, developed in the ORCHIDEE LSM, which consists of estimating ETP through an unstressed surface-energy balance (USEB method). The results confirm the quality of the estimation which is currently implemented in the model (Milly, 1992). The ETP underlying the reference evaporation proposed by the Food and Agriculture Organization, FAO, (computed at a daily time step) has also been analysed and compared. First, a comparison for a reference period under current climate conditions shows that USEB and FAO's ETP estimations differ, especially in arid areas. However, they produce similar values when the FAO's assumption of neutral stability conditions is relaxed, by replacing FAO's aerodynamic resistance by that of the model's. Furthermore, if the vapour pressure deficit (VPD) estimated for the FAO's equation, is substituted by ORCHIDEE's VPD or its humidity gradient, the agreement between the daily mean estimates of ETP is further improved. In a second step, ETP's sensitivity to climate change is assessed by comparing trends in these formulations for the 21st century. It is found that the USEB method shows a higher sensitivity than the FAO's. Both VPD and the model's humidity gradient, as well as the aerodynamic resistance have been identified as key parameters in governing ETP trends. Finally, the sensitivity study is extended to two empirical approximations based on net radiation and mass transfer (Priestley-Taylor and Rohwer, respectively). The sensitivity of these ETP estimates is

  4. The impact of changing climate on surface and ground water quality in southeast of Ireland

    Science.gov (United States)

    Tribak, Kamal

    2015-04-01

    In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk

  5. Relevance of decadal variations in surface radiative fluxes for climate change

    Science.gov (United States)

    Wild, Martin

    2013-05-01

    Recent evidence suggests that radiative fluxes incident at Earth's surface are not stable over time but undergo significant changes on decadal timescales. This is not only found in the thermal spectral range, where an increase in the downwelling flux is expected due to the increasing greenhouse effect, but also in the solar spectral range. Observations suggest that surface solar radiation, after a period of decline from the 1950s to the 1980s ("global dimming"), reversed into a "brightening" since the mid-1980s at widespread locations, often in line with changes in anthropogenic air pollution. These decadal variations observed in both solar and thermal surface radiative fluxes have the potential to affect various aspects of climate change. Discussed here are specifically the evidence for potential effects on global warming, as seen in asymmetries in hemispheric warming rates as well as in differences in the decadal warming rates over land and oceans. These variations in observed warming rates fit well to our conceptual understanding of how aerosol and greenhouse gas-induced changes in the surface radiative fluxes should affect global warming. Specifically, on the Northern Hemisphere, the suppression of warming from the 1950s to the 1980s fits to the concurrent dimming and increasing air pollution, while the accelerated warming from the 1980s to 2000 matches with the brightening and associated reduction in pollution levels. The suppression of warming from the 1950s to the 1980s is even somewhat stronger over oceans than over land, in line with the conceptual idea that aerosol-induced dimming and brightening tendencies may be enhanced through cloud aerosol interactions particularly over the pristine ocean areas. On the Southern Hemisphere, the absence of significant pollution levels as well as trend reversals therein, fit to the observed stable warming rates over the entire 1950 to 2000 period.

  6. Trend of surface solar radiation over Asia simulated by aerosol transport-climate model

    Science.gov (United States)

    Takemura, T.; Ohmura, A.

    2009-12-01

    Long-term records of surface radiation measurements indicate a decrease in the solar radiation between the 1950s and 1980s (“global dimming”), then its recovery afterward (“global brightening”) at many locations all over the globe [Wild, 2009]. On the other hand, the global brightening is delayed over the Asian region [Ohmura, 2009]. It is suggested that these trends of the global dimming and brightening are strongly related with a change in aerosol loading in the atmosphere which affect the climate change through the direct, semi-direct, and indirect effects. In this study, causes of the trend of the surface solar radiation over Asia during last several decades are analyzed with an aerosol transport-climate model, SPRINTARS. SPRINTARS is coupled with MIROC which is a general circulation model (GCM) developed by Center for Climate System Research (CCSR)/University of Tokyo, National Institute for Environmental Studies (NIES), and Frontier Research Center for Global Change (FRCGC) [Takemura et al., 2000, 2002, 2005, 2009]. The horizontal and vertical resolutions are T106 (approximately 1.1° by 1.1°) and 56 layers, respectively. SPRINTARS includes the transport, radiation, cloud, and precipitation processes of all main tropospheric aerosols (black and organic carbons, sulfate, soil dust, and sea salt). The model treats not only the aerosol mass mixing ratios but also the cloud droplet and ice crystal number concentrations as prognostic variables, and the nucleation processes of cloud droplets and ice crystals depend on the number concentrations of each aerosol species. Changes in the cloud droplet and ice crystal number concentrations affect the cloud radiation and precipitation processes in the model. Historical emissions, that is consumption of fossil fuel and biofuel, biomass burning, aircraft emissions, and volcanic eruptions are prescribed from database provided by the Aerosol Model Intercomparison Project (AeroCom) and the latest IPCC inventories

  7. Surface water hydrology and geomorphic characterization of a playa lake system: Implications for monitoring the effects of climate change

    Science.gov (United States)

    Adams, Kenneth D.; Sada, Donald W.

    2014-03-01

    Playa lakes are sensitive recorders of subtle climatic perturbations because these ephemeral water bodies respond to the flux of diffuse and channelized flow from their watersheds as well as from direct precipitation. The Black Rock Playa in northwestern Nevada is one of the largest playas in North America and is noted for its extreme flatness, varying less than one meter across a surface area of 310 km2. Geo-referenced Landsat imagery was used to map surface-area fluctuations of ephemeral lakes on the playa from 1972 to 2013 to provide baseline data on surface water hydrology of this system to compare to future hydrologic conditions caused by climate change. The area measurements were transformed into depth and volumetric estimates using results of detailed topographic global positioning system (GPS) surveys and correlated with available surface hydrological and meteorological monitoring data. Playa lakes reach their maximum size (responsible for the flatness of the playa. When lakes do not form for a period of several years, the clay- and silt-rich playa surface transforms from one that is hard and durable into one that is soft and puffy, probably from upward capillary movement of water and resultant evaporation. Subsequent flooding restores the hard and durable surface. The near-global availability of Landsat imagery for the last 41 years should allow the documentation of baseline surface hydrologic characteristics for a large number of widely-distributed playa lake systems that can be used to assess the hydrologic effects of future climate changes.

  8. GRAVITY ANOMALIES OF THE MOON

    Directory of Open Access Journals (Sweden)

    S. G. Pugacheva

    2015-01-01

    Full Text Available The source of gravity anomalies of the Moon are large mascons with a high mass concentration at a depth of volcanic plains and lunar Maria. New data on the gravitational field of the Moon were obtained from two Grail spacecrafts. The article presents the data of physical and mechanical properties of the surface soil layer of the lunar Maria and gives an assessment of the chemical composition of the soil. There have been calculated heterogeneity parameters of the surface macro-relief of the lunar Maria: albedo, soil density, average grain diameter of the particles forming the surface layer and the volume fraction occupied by particles. It can be assumed that mascons include rich KREEP rocks with a high content of thorium and iron oxide. Formation of mascons is connected with intensive development of basaltic volcanism on the Moon in the early periods of its existence.

  9. Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2012-03-01

    Full Text Available It is notoriously difficult to couple surface mass balance (SMB results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs. In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS. Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.

  10. Assessment of clear sky radiative fluxes in CMIP5 climate models using surface observations from BSRN

    Science.gov (United States)

    Wild, M.; Hakuba, M. Z.; Folini, D.; Ott, P.; Long, C. N.

    2017-12-01

    Clear sky fluxes in the latest generation of Global Climate Models (GCM) from CMIP5 still vary largely particularly at the Earth's surface, covering in their global means a range of 16 and 24 Wm-2 in the surface downward clear sky shortwave (SW) and longwave radiation, respectively. We assess these fluxes with monthly clear sky reference climatologies derived from more than 40 Baseline Surface Radiation Network (BSRN) sites based on Long and Ackermann (2000) and Hakuba et al. (2015). The comparison is complicated by the fact that the monthly SW clear sky BSRN reference climatologies are inferred from measurements under true cloud-free conditions, whereas the GCM clear sky fluxes are calculated continuously at every timestep solely by removing the clouds, yet otherwise keeping the prevailing atmospheric composition (e.g. water vapor, temperature, aerosols) during the cloudy conditions. This induces the risk of biases in the GCMs just due to the additional sampling of clear sky fluxes calculated under atmospheric conditions representative for cloudy situations. Thereby, a wet bias may be expected in the GCMs compared to the observational references, which may induce spurious low biases in the downward clear sky SW fluxes. To estimate the magnitude of these spurious biases in the available monthly mean fields from 40 CMIP5 models, we used their respective multi-century control runs, and searched therein for each month and each BSRN station the month with the lowest cloud cover. The deviations of the clear sky fluxes in this month from their long-term means have then be used as indicators of the magnitude of the abovementioned sampling biases and as correction factors for an appropriate comparison with the BSRN climatologies, individually applied for each model and BSRN site. The overall correction is on the order of 2 Wm-2. This revises our best estimate for the global mean surface downward SW clear sky radiation, previously at 249 Wm-2 infered from the GCM clear sky

  11. Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties

    Directory of Open Access Journals (Sweden)

    Anke Duguay-Tetzlaff

    2015-10-01

    Full Text Available The European Organization for the Exploitation of Meteorological Satellites’ (EUMETSAT Meteosat satellites provide the unique opportunity to compile a 30+ year land surface temperature (LST climate data record. Since the Meteosat instrument on-board Meteosat 2–7 is equipped with a single thermal channel, single-channel LST retrieval algorithms are used to ensure consistency across Meteosat satellites. The present study compares the performance of two single-channel LST retrieval algorithms: (1 A physical radiative transfer-based mono-window (PMW; and (2 a statistical mono-window model (SMW. The performance of the single-channel algorithms is assessed using a database of synthetic radiances for a wide range of atmospheric profiles and surface variables. The two single-channel algorithms are evaluated against the commonly-used generalized split-window (GSW model. The three algorithms are verified against more than 60,000 LST ground observations with dry to very moist atmospheres (total column water vapor (TCWV 1–56 mm. Except for very moist atmospheres (TCWV > 45 mm, results show that Meteosat single-channel retrievals match those of the GSW algorithm by 0.1–0.5 K. This study also outlines that it is possible to put realistic uncertainties on Meteosat single-channel LSTs, except for very moist atmospheres: simulated theoretical uncertainties are within 0.3–1.0 K of the in situ root mean square differences for TCWV < 45 mm.

  12. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 1: Greenland (1958-2016)

    Science.gov (United States)

    Noël, Brice; van de Berg, Willem Jan; Melchior van Wessem, J.; van Meijgaard, Erik; van As, Dirk; Lenaerts, Jan T. M.; Lhermitte, Stef; Kuipers Munneke, Peter; Smeets, C. J. P. Paul; van Ulft, Lambertus H.; van de Wal, Roderik S. W.; van den Broeke, Michiel R.

    2018-03-01

    We evaluate modelled Greenland ice sheet (GrIS) near-surface climate, surface energy balance (SEB) and surface mass balance (SMB) from the updated regional climate model RACMO2 (1958-2016). The new model version, referred to as RACMO2.3p2, incorporates updated glacier outlines, topography and ice albedo fields. Parameters in the cloud scheme governing the conversion of cloud condensate into precipitation have been tuned to correct inland snowfall underestimation: snow properties are modified to reduce drifting snow and melt production in the ice sheet percolation zone. The ice albedo prescribed in the updated model is lower at the ice sheet margins, increasing ice melt locally. RACMO2.3p2 shows good agreement compared to in situ meteorological data and point SEB/SMB measurements, and better resolves the spatial patterns and temporal variability of SMB compared with the previous model version, notably in the north-east, south-east and along the K-transect in south-western Greenland. This new model version provides updated, high-resolution gridded fields of the GrIS present-day climate and SMB, and will be used for projections of the GrIS climate and SMB in response to a future climate scenario in a forthcoming study.

  13. Relating Sub-Surface Ice Features to Physiological Stress in a Climate Sensitive Mammal, the American Pika (Ochotona princeps)

    OpenAIRE

    Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were...

  14. Combining Satellite Data and Models to Assess the Impacts of Urbanization on the Continental US Surface Climate

    Science.gov (United States)

    Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.; hide

    2013-01-01

    Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate

  15. Long-term climate change: the evolution of shield surface boundary conditions

    International Nuclear Information System (INIS)

    Peltier, W.R.

    2007-01-01

    The Earths surface during the Pleistocene epoch has been repeatedly subjected to glacial cycles that have markedly influenced both the landscape and surface boundary conditions that, in part, governed past evolution of deep-seated Shield groundwater flow domains. As part of the Deep Geologic Repository Technology Programme simulations of the last Laurentide glacial episode have been undertaken with the University of Toronto Glacial System Model (GSM). The purpose of these simulations is to yield constrained predictions of the magnitude and time rate of change of peri-glacial, glacial and boreal regimes that have perturbed Shield flow domains in the geologic past. A detailed model of long timescale climate change has been developed, which is able to make useful predictions of the process of continental glaciation and deglaciation that has occurred in the past due to the small changes in the effective intensity of the Sun at the location of the Earth caused by gravitational many body effects in Solar System evolution. Based upon the success of this model we are able to assert that we have demonstrated a basic understanding of why this process has continually recurred in the past on a timescale of approximately 100 000 years. Continuing work with the Glacial Systems Model and efforts to provide explicit linkage to numerical analyses of sub-surface hydrology are beginning to yield a new understanding of groundwater flow system evolution and response to glacial perturbations. In so doing this understanding is not only providing a reasoned basis on which to examine issues of geosphere stability as relevant to the safety of a hypothetical repository for used nuclear fuel in Shield terrain, but is also offering an improved basis for the integrated interpretation of multi-disciplinary geo-scientific data necessary for development of a descriptive geosphere model that is seen as fundamental to the repository Safety Case. (author)

  16. Using isotopes to improve impact and hydrological predictions of land-surface schemes in global climate models

    International Nuclear Information System (INIS)

    McGuffie, K.; Henderson-Sellers, A.

    2002-01-01

    Global climate model (GCM) predictions of the impact of large-scale land-use change date back to 1984 as do the earliest isotopic studies of large-basin hydrology. Despite this coincidence in interest and geography, with both papers focussed on the Amazon, there have been few studies that have tried to exploit isotopic information with the goal of improving climate model simulations of the land-surface. In this paper we analyze isotopic results from the IAEA global data base specifically with the goal of identifying signatures of potential value for improving global and regional climate model simulations of the land-surface. Evaluation of climate model predictions of the impacts of deforestation of the Amazon has been shown to be of significance by recent results which indicate impacts occurring distant from the Amazon i.e. tele-connections causing climate change elsewhere around the globe. It is suggested that these could be similar in magnitude and extent to the global impacts of ENSO events. Validation of GCM predictions associated with Amazonian deforestation are increasingly urgently required because of the additional effects of other aspects of climate change, particularly synergies occurring between forest removal and greenhouse gas increases, especially CO 2 . Here we examine three decades distributions of deuterium excess across the Amazon and use the results to evaluate the relative importance of the fractionating (partial evaporation) and non-fractionating (transpiration) processes. These results illuminate GCM scenarios of importance to the regional climate and hydrology: (i) the possible impact of increased stomatal resistance in the rainforest caused by higher levels of atmospheric CO2 [4]; and (ii) the consequences of the combined effects of deforestation and global warming on the regions climate and hydrology

  17. Estimating Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR

    NARCIS (Netherlands)

    Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallee, H

    2012-01-01

    We report future projections of Surface Mass Balance (SMB) over the Greenland ice sheet (GrIS) obtained with the regional climate model MAR, forced by the outputs of three CMIP5 General Circulation Models (GCMs) when considering two different warming scenarios (RCP 4.5 and RCP 8.5). The GCMs

  18. Mid-Piacenzian Variability of Nordic Seas Surface Circulation Linked to Terrestrial Climatic Change in Norway

    Science.gov (United States)

    Panitz, Sina; De Schepper, Stijn; Salzmann, Ulrich; Bachem, Paul E.; Risebrobakken, Bjørg; Clotten, Caroline; Hocking, Emma P.

    2017-12-01

    During the mid-Piacenzian, Nordic Seas sea surface temperatures (SSTs) were higher than today. While SSTs provide crucial climatic information, on their own they do not allow a reconstruction of potential underlying changes in water masses and currents. A new dinoflagellate cyst record for Ocean Drilling Program (ODP) Site 642 is presented to evaluate changes in northward heat transport via the Norwegian Atlantic Current (NwAC) between 3.320 and 3.137 Ma. The record is compared with vegetation and SST reconstructions from Site 642 and SSTs from Iceland Sea ODP Site 907 to identify links between SSTs, ocean currents, and vegetation changes. The dinocyst record shows that strong Atlantic water influence via the NwAC corresponds to higher-than-present SSTs and cool temperate vegetation during Marine Isotope Stage (MIS) transition M2-M1 and KM5. Reduced Atlantic water inflow relative to the warm stages coincides with near-modern SSTs and boreal vegetation during MIS M2, KM6, and KM4-KM2. During most of the studied interval, a strong SST gradient between Sites 642 and 907 indicates the presence of a proto-Arctic Front (AF). An absent gradient during the first half of MIS KM6, due to reduced Atlantic water influence at Site 642 and warm, presumably Atlantic water reaching Site 907, is indicative of a weakened NwAC and East Greenland Current. We conclude that repeated changes in Atlantic water influence directly affect terrestrial climate and that an active NwAC is needed for an AF to develop. Obliquity forcing may have played a role, but the correlation is not consistent.

  19. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    Science.gov (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  20. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps).

    Science.gov (United States)

    Wilkening, Jennifer L; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  1. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps.

    Directory of Open Access Journals (Sweden)

    Jennifer L Wilkening

    Full Text Available The American pika (Ochotona princeps is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without and analyzed for glucocorticoid metabolites (GCM. We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  2. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia

    Science.gov (United States)

    Gessner, Ursula; Naeimi, Vahid; Klein, Igor; Kuenzer, Claudia; Klein, Doris; Dech, Stefan

    2013-11-01

    In Central Asia, water is a particularly scarce and valuable good. In many ecosystems of this region, the vegetation development during the growing season is dependent on water provided by rainfall. With climate change, alterations of the seasonal distribution of precipitation patterns and a higher frequency of extreme events are expected. Vegetation dynamics are likely to respond to these changes and thus ecosystem services will be affected. However, there is still a lack in understanding the response of vegetation to precipitation anomalies, especially for dryland regions such as Central Asia. This study aims to contribute to an improved understanding of vegetation sensitivity to precipitation anomalies and corresponding temporal reaction patterns at regional scale. The presented analyses are based on time-series of Normalized Difference Vegetation Index (NDVI) and gridded precipitation datasets (GPCC Full Data Reanalysis) for the years 1982-2006. Time-series correlation analyses show that vegetation development is sensitive to precipitation anomalies for nearly 80% of the Central Asian land surface. Results indicate a particularly strong sensitivity of vegetation in areas with 100-400 mm of annual rainfall. Temporal rainfall-NDVI response patterns show a temporal lag between precipitation anomalies and vegetation activity of 1-3 months. The reaction of vegetation was found to be strongest for precipitation anomalies integrated over periods of 2-4 months. The observed delayed response of vegetation to precipitation anomalies reveals potential for drought prediction in Central Asia. The spatial patterns of vegetation reactions are discussed with focus on the role of precipitation amount and seasonality, land use and land cover.

  3. High-resolution climate and land surface interactions modeling over Belgium: current state and decennial scale projections

    Science.gov (United States)

    Jacquemin, Ingrid; Henrot, Alexandra-Jane; Beckers, Veronique; Berckmans, Julie; Debusscher, Bos; Dury, Marie; Minet, Julien; Hamdi, Rafiq; Dendoncker, Nicolas; Tychon, Bernard; Hambuckers, Alain; François, Louis

    2016-04-01

    The interactions between land surface and climate are complex. Climate changes can affect ecosystem structure and functions, by altering photosynthesis and productivity or inducing thermal and hydric stresses on plant species. These changes then impact socio-economic systems, through e.g., lower farming or forestry incomes. Ultimately, it can lead to permanent changes in land use structure, especially when associated with other non-climatic factors, such as urbanization pressure. These interactions and changes have feedbacks on the climate systems, in terms of changing: (1) surface properties (albedo, roughness, evapotranspiration, etc.) and (2) greenhouse gas emissions (mainly CO2, CH4, N2O). In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), we aim at improving regional climate model projections at the decennial scale over Belgium and Western Europe by combining high-resolution models of climate, land surface dynamics and socio-economic processes. The land surface dynamics (LSD) module is composed of a dynamic vegetation model (CARAIB) calculating the productivity and growth of natural and managed vegetation, and an agent-based model (CRAFTY), determining the shifts in land use and land cover. This up-scaled LSD module is made consistent with the surface scheme of the regional climate model (RCM: ALARO) to allow simulations of the RCM with a fully dynamic land surface for the recent past and the period 2000-2030. In this contribution, we analyze the results of the first simulations performed with the CARAIB dynamic vegetation model over Belgium at a resolution of 1km. This analysis is performed at the species level, using a set of 17 species for natural vegetation (trees and grasses) and 10 crops, especially designed to represent the Belgian vegetation. The CARAIB model is forced with surface atmospheric variables derived from the monthly global CRU climatology or ALARO outputs

  4. Potential Evaporation Computation through an Unstressed Surface Energy Balance and its Sensitivity to Climate Change Effect

    Science.gov (United States)

    Barella-Ortiz, Anaïs; Polcher, Jan; Tuzet, Andrée; Laval, Katia

    2013-04-01

    Potential evaporation (ETP) is a basic input for hydrological and agronomic models, as well as a key variable in most actual evaporation estimations. It has been approached through several diffusive and energy balance methods, out of which the Penman-Monteith equation is recommended as the standard one. In order to deal with the diffusive approach, ETP must be estimated at a sub-diurnal frequency, as currently done in land surface models (LSM). This study presents an improved method, developed in the ORCHIDEE LSM, which consists in estimating ETP through an unstressed surface energy balance (USEB method). The values provided confirm the quality of the estimation which is currently implemented (Milly, 1992). ETP has also been estimated using a reference equation (computed at a daily time step) provided by the Food and Agriculture Organization (FAO). In the first place, a comparison for a reference period of 11 years shows that both formulations differ, specially in arid areas. However, they supply similar values when FAO's assumption of neutral stability conditions is relaxed, by replacing FAO's aerodynamic resistance by the model's one. Additionally, if the vapour pressure deficit (VPD) is also substituted by either ORCHIDEE's VPD or its humidity gradient, the daily mean estimate is further improved. ETP's sensitivity to climate change is assessed comparing trends in both formulations for the 21st Century. It is found that the USEB method shows a higher sensitivity mainly due to FAO's assumption of neutral stability conditions and to a lesser extent, to the approximation proposed for the VPD. Both FAO's VPD and the model's humidity gradient, as well as ORCHIDEE's aerodynamic resistance have been identified as key parameters in governing ETP trends. Finally, the sensitivity study is extended to 3 empirical approximations based on temperature, net radiation and mass transfer (Hargreaves, Priestley - Taylor and Rohwer, respectively). When compared to the USEB method

  5. Possible cause of anomalies in storage time of ultra-cold neutrons

    International Nuclear Information System (INIS)

    Frank, I.M.

    Various possible causes of anomalies in the storage time of ultracold neutrons are considered. It is concluded that anomalies in extreme ultracold neutrons, at least partially, are related to surface waves and that this problem requires more detailed theoretical study

  6. On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr

    Directory of Open Access Journals (Sweden)

    T. Kobashi

    2013-03-01

    Full Text Available The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies due to its association with sea level rise. However, the causes of multidecadal-to-centennial temperature changes in Greenland temperatures are not well understood, largely owing to short observational records. To examine these, we calculated the Greenland temperature anomalies (GTA[G-NH] over the past 800 yr by subtracting the standardized northern hemispheric (NH temperature from the standardized Greenland temperature. This decomposes the Greenland temperature variation into background climate (NH; polar amplification; and regional variability (GTA[G-NH]. The central Greenland polar amplification factor as expressed by the variance ratio Greenland/NH is 2.6 over the past 161 yr, and 3.3–4.2 over the past 800 yr. The GTA[G-NH] explains 31–35% of the variation of Greenland temperature in the multidecadal-to-centennial time scale over the past 800 yr. We found that the GTA[G-NH] has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by the North Atlantic Oscillation/Arctic Oscillation (NAO/AO. Climate modeling and proxy temperature records indicate that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC and associated changes in northward oceanic heat transport.

  7. The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

    Science.gov (United States)

    Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.

    2017-08-01

    The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.

  8. Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water.

    Science.gov (United States)

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2014-08-15

    Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Impact of highway construction on land surface energy balance and local climate derived from LANDSAT satellite data.

    Science.gov (United States)

    Nedbal, Václav; Brom, Jakub

    2018-03-26

    Extensive construction of highways has a major impact on the landscape and its structure. They can also influence local climate and heat fluxes in the surrounding area. After the removal of vegetation due to highway construction, the amount of solar radiation energy used for plant evapotranspiration (latent heat flux) decreases, bringing about an increase in landscape surface temperature, changing the local climate and increasing surface run-off. In this study, we evaluated the impact of the D8 highway construction (Central Bohemia, Czech Republic) on the distribution of solar radiation energy into the various heat fluxes (latent, sensible and ground heat flux) and related surface functional parameters (surface temperature and surface wetness). The aim was to describe the severity of the impact and the distance from the actual highway in which it can be observed. LANDSAT multispectral satellite images and field meteorological measurements were used to calculate surface functional parameters and heat balance before and during the highway construction. Construction of a four-lane highway can influence the heat balance of the landscape surface as far as 90m in the perpendicular direction from the highway axis, i.e. up to 75m perpendicular from its edge. During a summer day, the decrease in evapotranspired water can reach up to 43.7m 3 per highway kilometre. This means a reduced cooling effect, expressed as the decrease in latent heat flux, by an average of 29.7MWh per day per highway kilometre and its surroundings. The loss of the cooling ability of the land surface by evaporation can lead to a rise in surface temperature by as much as 7°C. Thus, the results indicate the impact of extensive line constructions on the local climate. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  11. The role of natural climatic variation in perturbing the observed global mean temperature trend

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)

    2011-02-15

    Controversy continues to prevail concerning the reality of anthropogenically-induced climatic warming. One of the principal issues is the cause of the hiatus in the current global warming trend. There appears to be a widely held view that climatic change warming should exhibit an inexorable upwards trend, a view that implies there is no longer any input by climatic variability in the existing climatic system. The relative roles of climatic change and climatic variability are examined here using the same coupled global climatic model. For the former, the model is run using a specified CO{sub 2} growth scenario, while the latter consisted of a multi-millennial simulation where any climatic variability was attributable solely to internal processes within the climatic system. It is shown that internal climatic variability can produce global mean surface temperature anomalies of {+-}0.25 K and sustained positive and negative anomalies sufficient to account for the anomalous warming of the 1940s as well as the present hiatus in the observed global warming. The characteristics of the internally-induced negative temperature anomalies are such that if this internal natural variability is the cause of the observed hiatus, then a resumption of the observed global warming trend is to be expected within the next few years. (orig.)

  12. Effect of Urbanization on Land-Surface Temperature at an Urban Climate Station in North China

    Science.gov (United States)

    Bian, Tao; Ren, Guoyu; Yue, Yanxia

    2017-12-01

    While the land-surface temperature (LST) observed at meteorological stations has significantly increased over the previous few decades, it is still unclear to what extent urbanization has affected these positive trends. Based on the LST data recorded at an urban station in Shijiazhuang in North China, and two rural meteorological stations, the effect of urbanization at the Shijiazhuang station for the period 1965-2012 is examined. We find, (1) a statistically-significant linear trend in annual mean urban-rural LST difference of 0.27°C (10 year)^{-1}, with an urbanization contribution of 100% indicating that the increase in the annual mean LST at the urban station is entirely caused by urbanization. The urbanization effects in spring, summer and autumn on the trends of mean LST are also significant; (2) the urbanization effect is small for time series of the annual mean minimum LST, and statistically marginal for the trend in annual mean maximum LST [0.19°C (10 year)^{-1}]; (3) the urbanization effect on the annual mean diurnal LST range (Δ {LST}) at the urban station is a strongly significant trend of 0.23°C (10 year)^{-1}, with an urbanization contribution of 21%. The urbanization effects on trends in the spring and autumn mean Δ {LST} are also larger and more significant than for the other seasons; (4) the urbanization effects on the long-term LST trends are remarkably different from those on the near-surface air temperature at the same urban station. Nonetheless, the significant warming of the urban boundary layer is expected to affect the urban environment and ecosystems. However, the problem of data representativeness at an urban station for the monitoring and investigation of large-scale climate change remains.

  13. Coccolithophore response to climate and surface hydrography in Santa Barbara Basin, California, AD 1917–2004

    Directory of Open Access Journals (Sweden)

    M. Grelaud

    2009-10-01

    Full Text Available The varved sedimentary AD 1917–2004 record from the depositional center of the Santa Barbara Basin (SBB, California was analyzed with monthly to triannual resolution to yield relative abundances of six coccolithophore species representing at least 96% of the coccolithophore assemblage. Seasonal/annual relative abundances respond to climatic and surface hydrographic conditions in the SBB, whereby (i the three species G. oceanica, H. carteri and F. profunda are characteristic of the strength of the northward flowing warm California Counter Current, (ii the two species G. ericsonii and G. muellerae are associated with the cold equatorward flowing California Current, (iii and E. huxleyi appears to be endemic to the SBB. Spectral analyses on relative abundances of these species show that all are influenced by the El Niño Southern Oscillation (ENSO and/or by the Pacific Decadal Oscillation (PDO. Increased relative abundances of G. oceanica and H. carteri are associated with warm ENSO events, G. muellerae responds to warm PDO events and the abundance of G. ericsonii increases during cold PDO events. Morphometric parameters measured on E. huxleyi, G. muellerae and G. oceanica indicate increasing coccolithophore shell carbonate mass from ~1917 until 2004 concomitant with rising pCO2 and sea surface temperature in the region of the SBB.

  14. The impacts of thermal roughness length on land surface climate in IPSL-CM

    Science.gov (United States)

    Wand, Fuxing; Cheruy, Frédérique; Vuichard, Nicolas; Sima, Adriana; Hourdin, Frederic

    2016-04-01

    The aerodynamic and thermal roughness lengths (z0m and z0h) are the two crucial parameters for bulk transfer equations to calculate turbulent flux. The exchange of momentum is usually different with scalars as heat (or water vapor, carbon dioxide, traces gas). In general, the transport of scalars (by molecular diffusion) is considered less efficient than momentum (by pressure fluctuations), owing to the absence of bluff-body forces for scalar exchange. However, the z0h and z0m are equal in the current IPSL-CM model. The objective of the study is to investigate the impacts of z0h parameterizations on the land surface climate. Several sensitivity experiments that accounting for different z0h and z0m are carried out with IPSL-CM: (1) z0h = z0m/10; (2) z0h = z0m/100; (3) a more physically based z0h parameterizations. A nudging approach is used in order to avoid the time-consuming long-term simulations required to account for the natural variability of the climate. The results show that the seasonal mean surface temperature (Ts) increases 0.5-1 K (for z0h = z0m/10) and 1-2 K (for z0h = z0m/100) over JJA due to the decrease of z0h. The most significant variation is over the Sahara. During the daytime, the increase of Ts (around 1-2 K) is higher than the air temperature (Tair, ~0.2 K) for z0h = z0m/10. During the night time, the increase of Ts and Tair are very close (around 0.3-0.6 K) for z0h = z0m/10. The asymmetric variation of Tair during night and day causes a decrease (~0.3 K for z0h = z0m/10; ~0.6 K for z0h = z0m/100) of diurnal temperature range (DTR). The seasonal mean sensible heat flux decreases by ~4-6 W/m2 (for z0h = z0m/10) with the decrease of z0h as well. The change of latent heat flux is the most significant over the tropics with the seasonal mean decrease of 4-8 W/m2 for z0h = z0m/10 over both JJA and DJF. Besides the change of mean climate, the human thermal comfort is also affected by z0h. A smaller z0h corresponds to a higher wet-bulb temperature

  15. Response of the Adriatic Sea to the atmospheric anomaly in 2003

    Directory of Open Access Journals (Sweden)

    B. Grbec

    2007-05-01

    Full Text Available Unusual weather conditions over the southern Europe and the Mediterranean area in 2003 significantly impacted the oceanographic properties of the Adriatic Sea. To document these changes, both in the atmosphere and the sea, anomalies from the normal climate were calculated. The winter 2003 was extremely cold, whereas the spring/summer period was extremely warm. The air temperature in June was more than 3 standard deviations above the average. On the other hand, precipitation and river runoff were extremely low between February and August. The response of the sea was remarkable, especially in surface salinity during spring and summer, with values at least one standard deviation above the average. Analysis of thermohaline properties in the middle Adriatic showed the importance of two phenomena responsible for the occurrence of exceptionally high salinity: (1 enhanced inflow of saline Levantine Intermediate Water (LIW in the Adriatic, and (2 extremely low precipitation and river runoff, accompanied with strong evaporation. Two large-scale atmospheric indices: NAOI (North Atlantic Oscillation Index and MOI (Mediterranean Oscillation Index, although generally correlated to the Adriatic climate, failed to describe anomalies in 2003. The air pressure gradients used for the definition of both indices significantly decreased in 2003 due to the presence of the high pressure areas over most of Europe and the northern Atlantic, and were actually responsible for the observed anomalies above and in the Adriatic.

  16. Assessing climate change impacts on runoff from karstic watersheds: NASA/GISS land-surface model improvement

    Science.gov (United States)

    Blake, Reginald Alexander

    The off-line version of the Goddard Institute for Space Studies (GISS) land-surface hydrological model over- predicted run-off from the karstic Rio Cobre watershed in Jamaica. To assess possible climate change impacts on runoff from the watershed, the model's simulation of observed runoff was improved by adding to it a karst component that has pipe flow features. The improved model was tested on two other karstic watersheds (Yangtze - China and Rio Grande - USA) and the results were encouraging. The impacts that possible climate change may have on the three karstic watersheds were then assessed. The assessment indicates that in a doubled carbon dioxide climate, the Rio Cobre and the Rio Grande may experience decreases in runoff, especially in low flow periods. The Yangtze, on the other hand, may not experience decreases in total runoff, but its peak flow which now occurs in July may be attenuated and shifted to September. The results of the study also show that climate feedbacks convolute climate change assessments and that different results can be obtained from the same climate change scenario depending on the choice of the modeling methodology-that is, on whether the models are coupled or uncoupled.

  17. Albedo as a modulator of climate response to tropical deforestation

    Science.gov (United States)

    Dirmeyer, Paul A.; Shukla, J.

    1994-01-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.

  18. Surface radiation changes and their impact on climate in Central Europe[Dissertation 17578

    Energy Technology Data Exchange (ETDEWEB)

    Ruckstuhl, Ch.

    2008-07-01

    The rapid temperature increase of 0.7 {sup o}C averaged over the Northern Hemisphere and of 1 {sup o}C over mainland Europe since 1980 is considerably larger than expected from anthropogenic greenhouse warming. The present thesis addresses questions like whether this rapid climate change is due to unexpected large greenhouse forcing that includes strong water vapor feedback or whether the temperature rise is strengthened by an increase in shortwave radiation fluxes observed since the mid-1980s. Solar dimming, a decrease of solar radiation measured at the Earth's surface, has been observed during several decades before the 1980s. Since then a reversed trend with increasing solar radiation has been observed. Our investigations show that this solar brightening has apparently added to the temperature rise since the 1980s. The analyses give evidence for a substantial decline in aerosol concentrations over Europe, which has led to a significant increase of solar radiation reaching the ground. Aerosol optical depth (AOD) observations at six remote locations from the Baltic Sea to the Central Alps show a decrease in AOD by up to 63 percent from 1986 to 2005. Solar radiation, concurrently measured under cloud-free skies and averaged over eight German and twenty-five Swiss radiation stations below 1000 m a.s.l., shows a statistically significant increase of +1.15 [+0.68 to +1.62] W m{sup -2} dec {sup -1} between 1981 and 2005. Hence, the direct aerosol effect is clearly measured. On the other hand, all-sky solar radiation shows a statistically significant increase only due to the extraordinary year 2003, with its strongly reduced cloud amount. Without considering the year 2003, which has only a marginal impact on the temperature trends, the increase in solar radiation due to changes in clouds is +0.78 [-1.26 to +2.82] W m{sup -2} dec {sup -1}. This shortwave cloud forcing is further reduced due to the counterbalancing longwave cloud effect. With respect to climate

  19. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Zhang, Xuezhen; Xiong, Zhe; Tang, Qiuhong

    2017-08-01

    In Northwest China, water originates from the mountain area and is largely used for irrigation agriculture in the middle reaches. This study investigates the local and remote impact of irrigation on regional climate in the Heihe River Basin, the second largest inland river basin in Northwest China. An irrigation scheme was developed and incorporated into the Weather Research and Forecasting (WRF) model with the Noah-MP land surface scheme (WRF/Noah-MP). The effects of irrigation is assessed by comparing the model simulations with and without consideration of irrigation (hereafter, IRRG and NATU simulations, respectively) for five growth seasons (May to September) from 2009 to 2013. As consequences of irrigation, daily mean temperature decreased by 1.7°C and humidity increased by 2.3 g kg-1 (corresponding to 38.5%) over irrigated area. The temperature and humidity of IRRG simulation matched well with the observations, whereas NATU simulation overestimated temperature and underestimated humidity over irrigated area. The effects on temperature and humidity are generally small outside the irrigated area. The cooling and wetting effects have opposing impacts on convective precipitation, resulting in a negligible change in localized precipitation over irrigated area. However, irrigation may induce water vapor convergence and enhance precipitation remotely in the southeastern portion of the Heihe River Basin.

  20. Urban Climate Station Site Selection Through Combined Digital Surface Model and Sun Angle Calculations

    Science.gov (United States)

    Kidd, Chris; Chapman, Lee

    2012-01-01

    Meteorological measurements within urban areas are becoming increasingly important due to the accentuating effects of climate change upon the Urban Heat Island (UHI). However, ensuring that such measurements are representative of the local area is often difficult due to the diversity of the urban environment. The evaluation of sites is important for both new sites and for the relocation of established sites to ensure that long term changes in the meteorological and climatological conditions continue to be faithfully recorded. Site selection is traditionally carried out in the field using both local knowledge and visual inspection. This paper exploits and assesses the use of lidar-derived digital surface models (DSMs) to quantitatively aid the site selection process. This is acheived by combining the DSM with a solar model, first to generate spatial maps of sky view factors and sun-hour potential and second, to generate site-specific views of the horizon. The results show that such a technique is a useful first-step approach to identify key sites that may be further evaluated for the location of meteorological stations within urban areas.

  1. Response of faults to climate-driven changes in ice and water volumes on Earth's surface.

    Science.gov (United States)

    Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios

    2010-05-28

    Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.

  2. Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data

    Czech Academy of Sciences Publication Activity Database

    Plavcová, Eva; Kyselý, Jan

    2012-01-01

    Roč. 39, 7-8 (2012), s. 1681-1695 ISSN 0930-7575 R&D Project s: GA ČR GAP209/10/2265 Grant - others:ENSEMBLES: EU-FP6(XE) 505539 Program:FP6 Institutional support: RVO:68378289 Keywords : Regional climate models * Global climate models * Atmospheric circulation * Surface air temperature * ENSEMBLES * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.231, year: 2012 http://link.springer.com/article/10.1007%2Fs00382-011-1278-8#

  3. Low Risk Anomalies?

    DEFF Research Database (Denmark)

    Schneider, Paul; Wagner, Christian; Zechner, Josef

    This paper shows that stocks' CAPM alphas are negatively related to CAPM betas if investors demand compensation for negative skewness. Thus, high (low) beta stocks appear to underperform (outperform). This apparent anomaly merely reflects compensation for residual coskewness ignored by the CAPM...

  4. Venus - Ishtar gravity anomaly

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.

    1984-01-01

    The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.

  5. Bolivian Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Bouguer anomaly grid for the country of Bolivia.Number of columns is 550 and number of rows is 900. The order of the data is from the lower left to the...

  6. Anomaly Busters II

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The anomaly busters had struck on the first day of the Kyoto meeting with Yoji Totsuka of Tokyo speaking on baryon number nonjjonservation and 'related topics'. The unstable proton is a vital test of grand unified pictures pulling together the electroweak and quark/gluon forces in a single field theory

  7. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  8. Echocardiography in Ebstein's anomaly

    NARCIS (Netherlands)

    W.J. Gussenhoven (Wilhelmina Johanna)

    1984-01-01

    textabstractIn this thesis the value of echocardiography is evaluated for the diagnosis of Ebstein's anomaly of the tricuspid valve. This congenital heart defect, first described in 1866 by Wilhelm Ebstein, is characterized by an apical displacement of the septal and inferior tricuspid valve

  9. Dealing with Ebstein's anomaly

    NARCIS (Netherlands)

    Geerdink, L.M.; Kapusta, L.

    2014-01-01

    Ebstein's anomaly is a complex congenital disorder of the tricuspid valve. Presentation in neonatal life and (early) childhood is common. Disease severity and clinical features vary widely and require a patient-tailored treatment. In this review, we describe the natural history of children and

  10. Assessing Asset Pricing Anomalies

    NARCIS (Netherlands)

    W.A. de Groot (Wilma)

    2017-01-01

    markdownabstractOne of the most important challenges in the field of asset pricing is to understand anomalies: empirical patterns in asset returns that cannot be explained by standard asset pricing models. Currently, there is no consensus in the academic literature on the underlying causes of

  11. Algebra of anomalies

    International Nuclear Information System (INIS)

    Talon, M.

    1987-01-01

    The algebraic set up for anomalies, a la Stora, is reviewed. Then a brief account is provided of the work of M. Dubois Violette, M. Talon, C. Viallet, in which the general algebraic solution to the consistency conditions is described. 34 references

  12. The Pioneer Anomaly

    Directory of Open Access Journals (Sweden)

    Viktor T. Toth

    2010-09-01

    Full Text Available Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 × 10–9 Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of aP = (8.74 ± 1.33 × 10–10 m/s2. This apparent violation of the Newton's gravitational inverse square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.

  13. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    Science.gov (United States)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  14. [Characteristics and adaptation of seasonal drought in southern China under the background of climate change. III. Spatiotemporal characteristics of seasonal drought in southern China based on the percentage of precipitation anomalies].

    Science.gov (United States)

    Huang, Wan-Hua; Sui, Yue; Yang, Xiao-Guang; Dai, Shu-Wei; Li, Mao-Song

    2013-02-01

    To analyze the spatiotemporal characteristics and occurrence regularity of seasonal drought can provide theoretical basis for constituting the countermeasures of drought resistance and drought mitigation under the background of global climate change. Based on the 1959-2008 daily precipitation and atmospheric temperature data collected from the meteorological stations in 15 provinces (municipalities, and autonomous regions) of southern China, and using the percentages of precipitation anomalies (Pa) in the national standard "Meteorological Drought Classification", which were locally modified, the drought indices in southern China in 1959-2008 were calculated, and the spatial distribution characteristics of drought frequency in southern China in each year, each season, and each month, as well as the inter-annual changes of the drought intensity and the proportions of the stations with seasonal drought were analyzed. In the study period, the annual drought risk in southern China was generally low. There existed obvious seasonal differences in the spatial distribution characteristics of the drought. Autumn drought was most frequent and most intensive, mainly occurred in the middle and lower reaches of Yangtze River, South China and in the other major agricultural areas, winter drought was also frequent and intensive, mainly occurred in the west of Southwest China and the South China and other winter crop planting areas, while spring drought and summer drought were relatively less frequent or intensive. Spring drought mostly occurred in the southwest of Southwest China, the south of South China, and Huaibei area etc. , and summer drought mostly occurred in the middle and lower reaches of Yangtze River, southeastern coastal area of Fujian, and northeast of Southwest China. The area with drought frequently occurred showed an obvious monthly fluctuation and space transformation, which was decreased with time from November to next May, increased with time from May to

  15. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    Science.gov (United States)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of

  16. The interaction of climate and glacial landforms on subsurface and surface hydrology and chemistry across a heterogeneous boreal plain landscape

    Science.gov (United States)

    Hokanson, Kelly; Carrera-Hernández, Jaime; Devito, Kevin; Mendoza, Carl

    2016-04-01

    The Boreal Plains (BP) region of Canada is experiencing high levels of anthropogenic activity and may be susceptible to climate change to various degrees. The BP is characterized by heterogeneous glacial landforms, with large contrasts in storage and transmissivity, which when coupled with wet-dry climate cycles, results in complex groundwater-surface water interactions. Predicting the impacts of land use change, climate change, and the future performance of constructed and reclaimed landscapes is currently not possible due to our limited knowledge regarding the natural variability of water table fluctuations, geochemistry, and salinity across the various glacial landforms in the BP. We compare isotopes, EC, chemistry (DOC, Ca, Mg, SO4) and water table position between a drought (2003) and a wet (2013) year to examine the interactions between climate, landform, and geology on the variation in landscape connectivity and overall salinity distribution. Data were collected from surface waters to a depth of 40 m, along a 50 km transect encompassing pond-wetland-forestland sequences across the major glacial depositional types typical of the BP (coarse textured glaciofluvial outwash, fine textured stagnant ice moraine, and lacustrine clay plain). Within each landform, sites range from isolated local flow systems to large intermediate scale flow systems. High spatial variability of water table fluctuations and salinity illustrate the strong regional controls that climate and geology exerts over scales of groundwater flow between landforms and surface water bodies across the BP, reinforcing the need to link surface water and groundwater processes when developing conceptual models. Additionally, when coupled with a strong, physical hydrogeologic conceptual model, synoptic chemical and isotopic surveys can be used to confirm scales and directions of flow; however, without an understanding of the climatic and geologic influence of the region, such data cannot be used as a

  17. Ferret Workflow Anomaly Detection System

    National Research Council Canada - National Science Library

    Smith, Timothy J; Bryant, Stephany

    2005-01-01

    The Ferret workflow anomaly detection system project 2003-2004 has provided validation and anomaly detection in accredited workflows in secure knowledge management systems through the use of continuous, automated audits...

  18. Genetics Home Reference: Peters anomaly

    Science.gov (United States)

    ... navigation Home Page Search Home Health Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Share: Email Facebook Twitter Home Health Conditions Peters anomaly Peters anomaly Printable PDF Open All Close All ...

  19. Surface changes in the North Atlantic meridional overturning circulation during the last millennium

    Science.gov (United States)

    Wanamaker, Alan D.; Butler, Paul G.; Scourse, James D.; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A.

    2012-01-01

    Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector. PMID:22692542

  20. HYPERSPECTRAL ANOMALY DETECTION IN URBAN SCENARIOS

    Directory of Open Access Journals (Sweden)

    J. G. Rejas Ayuga

    2016-06-01

    Full Text Available We have studied the spectral features of reflectance and emissivity in the pattern recognition of urban materials in several single hyperspectral scenes through a comparative analysis of anomaly detection methods and their relationship with city surfaces with the aim to improve information extraction processes. Spectral ranges of the visible-near infrared (VNIR, shortwave infrared (SWIR and thermal infrared (TIR from hyperspectral data cubes of AHS sensor and HyMAP and MASTER of two cities, Alcalá de Henares (Spain and San José (Costa Rica respectively, have been used. In this research it is assumed no prior knowledge of the targets, thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by image segmentation. Several experiments on urban scenarios and semi-urban have been designed, analyzing the behaviour of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. A new technique for anomaly detection in hyperspectral data called DATB (Detector of Anomalies from Thermal Background based on dimensionality reduction by projecting targets with unknown spectral signatures to a background calculated from thermal spectrum wavelengths is presented. First results and their consequences in non-supervised classification and extraction information processes are discussed.

  1. Decadal surface water quality trends under variable climate, land use, and hydrogeochemical setting in Iowa, USA

    Science.gov (United States)

    Green, Christopher T.; Bekins, Barbara A.; Kalkhoff, Stephen J.; Hirsch, Robert M.; Liao, Lixia; Barnes, Kimberlee K.

    2014-01-01

    Understanding how nitrogen fluxes respond to changes in agriculture and climate is important for improving water quality. In the midwestern United States, expansion of corn cropping for ethanol production led to increasing N application rates in the 2000s during a period of extreme variability of annual precipitation. To examine the effects of these changes, surface water quality was analyzed in 10 major Iowa Rivers. Several decades of concentration and flow data were analyzed with a statistical method that provides internally consistent estimates of the concentration history and reveals flow-normalized trends that are independent of year-to-year streamflow variations. Flow-normalized concentrations of nitrate+nitrite-N decreased from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to flow-weighted annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000s and to the long (e.g., 8 year) subsurface residence times in some basins. Dilution of N and depletion of stored N occurs in years with high discharge. Reduced N transport and increased N storage occurs in low-discharge years. Central Iowa basins showed the greatest reduction in flow-normalized concentrations, likely because of smaller storage volumes and shorter residence times. Effects of land-use changes on the water quality of major Iowa Rivers may not be noticeable for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.

  2. Ikh Turgen Mountain Glacier Change and 3d Surface Extents Prediction Using Long Term Landsat Image and Climate Data

    Science.gov (United States)

    Nasanbat, Elbegjargal; Erdenebat, Erdenetogtokh; Chogsom, Bolorchuluun; Lkhamjav, Ochirkhuyag; Nanzad, Lkhagvadorj

    2018-04-01

    The glacier is most important the freshwater resources and indicator of the climate change. The researchers noted that during last decades the glacier is melting due to global warming. The study calculates a spatial distribution of protentional change of glacier coverage in the Ikh Turgen mountain of Western Mongolia, and it integrates long-term climate data and satellite datasets. Therefore, in this experiment has tried to estimation three-dimensional surface area of the glacier. For this purpose, Normalized difference snow index (NDSI) was applied to decision tree approach, using Landsat MSS, TM, ETM+ and LC8 imagery for 1975-2016, a surface and slope for digital elevation model, precipitation and air temperature historical data of meteorological station. The potential volume area significantly changed glacier cover of the Ikh Turgen Mountain, and the area affected by highly variable precipitation and air temperature regimes. Between 1972 and 2016, a potential area of glacier area has been decreased in Ikh Turgen mountain region.

  3. Adaptation response surfaces from an ensemble of wheat projections under climate change in Europe

    Science.gov (United States)

    Ruiz-Ramos, Margarita; Ferrise, Roberto

    2016-04-01

    The uncertainty about climate change (CC) complicates impact adaptation and risk management evaluation at the regional level. Approaches for managing this uncertainty and for simulating and communicating climate change impacts and adaptation opportunities are required. Here we apply an ensemble of crop models for adapting rainfed winter wheat at Lleida (NE Spain), constructing adaptation response surfaces (ARS). Our methodology has been adapted from Pirttioja et al. (2015). Impact response surfaces (IRS) are plotted surfaces showing the response of an impact variable (here crop yield Y) to changes in two explanatory variables (here precipitation P and temperature T). By analyzing adaptation variables such as changes in crop yield (ΔY) when an adaptation option is simulated, these can be interpreted as the adaptation response to potential changes of P and T, i.e. ARS. To build these ARS, we explore the sensitivity of an ensemble of wheat models to changes in T and P. Baseline (1981-2010) T and P were modified using a delta change approach with changes in the seasonal patterns. Three levels of CO2 (representing future conditions until 2050) and two actual soil profiles are considered. Crop models were calibrated with field data from Abeledo et al. (2008) and Cartelle et al. (2006). Most promising adaptation options to be analyzed by the ARS approach are identified in a pilot stage with the models DSSAT4.5 and SiriusQuality v.2, subsequently simulating the selected adaptation combinations by the whole ensemble of 11 crop models. The adaptation options identified from pilot stage were: a cultivar with no vernalisation requirements, shortening or extending a 10 % the crop cycle of the standard cultivar, sowing 15 days earlier and 30 days later than the standard date, supplementary irrigation with 40 mm at flowering and full irrigation. These options and those of the standard cultivar and management resulted in 54 combinations and 450.000 runs per crop model. Our

  4. Analysing Surface Exposure to Climate Dynamics in the Himalayas to Adopt a Planning Framework for Landslide Risk Reduction

    Science.gov (United States)

    Tiwari, A.

    2017-12-01

    Himalayas rank first in the inventory of most densely populated and congested high altitude mountain regions of the planet. The region is mostly characterized by inadequate infrastructure, lack of mitigation tools along with constraints of terrain undermining the carrying capacity and resilience of urban ecosystems. Moreover, climate change has increased vulnerability of poor and marginalized population living in rapidly urbanizing mountain towns to increased frequency and severity of risks from extreme weather events. Such events pose multifold threat by easily translating to hazards, without the ability to respond and mitigate. Additionally, the recent extreme climate dynamics such as rainfall patterns have influenced the natural rate of surface/slope processes in the Himalaya. The aim of the study was to analyze the extent of interaction between climate dynamics and upland surface to develop participatory planning framework for landslide risk reduction using Integral Geographic Information System (integral GIS). At this stage, the study is limited to only rainfall triggered landslides (RTL). The study region lies in the middle Himalayan range (Himachal). Research utilized terrain analysis tools in integral GIS and identified risk susceptible surface without: 1.adding to its (often) complex fragmentation, and 2. Interference in surface/slope processes. Analysis covered most of the relevant surface factors including geology, slope instability, infrastructure development, natural and urban drainage system, land-cover and land-use as well. The outcome included an exposure-reduced model of existing terrain and the surface-process accommodated by it, with the use of local technical tools available among the poor and fragile mountain community. The final participatory planning framework successfully harmonized people's perception and adaptation knowledge, and incorporated priorities of local authorities. This research is significant as it rises above the fundamental

  5. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong Wei-Chyung Wang

    2007-01-01

    Full Text Available We used the State University of New York at Albany (SUNYA regional climate model to study the effect of cloud vertical distribution in affecting the surface energy balance of the East Asia summer monsoon (EASM. Simulations were conducted for the summers of 1988 and 1989, during which large contrast in the intra-seasonal cloud radiative forcing (CRF was observed at the top of the atmosphere.

  6. Borehole temperatures, climate change and the pre-observational surface air temperature mean: allowance for hydraulic conditions

    Czech Academy of Sciences Publication Activity Database

    Bodri, L.; Čermák, Vladimír

    2005-01-01

    Roč. 45, č. 4 (2005), s. 265-276 ISSN 0921-8181 R&D Projects: GA AV ČR IAA3012005; GA ČR GA205/03/0998; GA AV ČR KSK3046108 Institutional research plan: CEZ:AV0Z3012916 Keywords : climate change * global warming * surface air temperature Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.223, year: 2005

  7. Detection of sinkholes or anomalies using full seismic wave fields.

    Science.gov (United States)

    2013-04-01

    This research presents an application of two-dimensional (2-D) time-domain waveform tomography for detection of embedded sinkholes and anomalies. The measured seismic surface wave fields were inverted using a full waveform inversion (FWI) technique, ...

  8. Penile Anomalies in Adolescence

    Directory of Open Access Journals (Sweden)

    Dan Wood

    2011-01-01

    Full Text Available This article considers the impact and outcomes of both treatment and underlying condition of penile anomalies in adolescent males. Major congenital anomalies (such as exstrophy/epispadias are discussed, including the psychological outcomes, common problems (such as corporal asymmetry, chordee, and scarring in this group, and surgical assessment for potential surgical candidates. The emergence of new surgical techniques continues to improve outcomes and potentially raises patient expectations. The importance of balanced discussion in conditions such as micropenis, including multidisciplinary support for patients, is important in order to achieve appropriate treatment decisions. Topical treatments may be of value, but in extreme cases, phalloplasty is a valuable option for patients to consider. In buried penis, the importance of careful assessment and, for the majority, a delay in surgery until puberty has completed is emphasised. In hypospadias patients, the variety of surgical procedures has complicated assessment of outcomes. It appears that true surgical success may be difficult to measure as many men who have had earlier operations are not reassessed in either puberty or adult life. There is also a brief discussion of acquired penile anomalies, including causation and treatment of lymphoedema, penile fracture/trauma, and priapism.

  9. Doomed reservoirs in Kansas, USA? Climate change and groundwater mining on the Great Plains lead to unsustainable surface water storage

    Science.gov (United States)

    Brikowski, T. H.

    2008-06-01

    SummaryStreamflow declines on the Great Plains of the US are causing many Federal reservoirs to become profoundly inefficient, and will eventually drive them into unsustainability as negative annual reservoir water budgets become more common. The streamflow declines are historically related to groundwater mining, but since the mid-1980s correlate increasingly with climate. This study highlights that progression toward unsustainability, and shows that future climate change will continue streamflow declines at historical rates, with severe consequences for surface water supply. An object lesson is Optima Lake in the Oklahoma Panhandle, where streamflows have declined 99% since the 1960s and the reservoir has never been more than 5% full. Water balances for the four westernmost Federal reservoirs in Kansas (Cedar Bluff, Keith Sebelius, Webster and Kirwin) show similar tendencies. For these four, reservoir inflow has declined by 92%, 73%, 81% and 64% respectively since the 1950s. Since 1990 total evaporated volumes relative to total inflows amounted to 68%, 83%, 24% and 44% respectively. Predictions of streamflow and reservoir performance based on climate change models indicate 70% chance of steady decline after 2007, with a ˜50% chance of failure (releases by gravity flow impossible) of Cedar Bluff Reservoir between 2007 and 2050. Paradoxically, a 30% chance of storage increase prior 2020 is indicated, followed by steady declines through 2100. Within 95% confidence the models predict >50% decline in surface water resources between 2007 and 2050. Ultimately, surface storage of water resources may prove unsustainable in this region, forcing conversion to subsurface storage.

  10. Impact of improved Greenland ice sheet surface representation in the NASA GISS ModelE2 GCM on simulated surface mass balance and regional climate

    Science.gov (United States)

    Alexander, P. M.; LeGrande, A. N.; Fischer, E.; Tedesco, M.; Kelley, M.; Schmidt, G. A.; Fettweis, X.

    2017-12-01

    Towards achieving coupled simulations between the NASA Goddard Institute for Space Studies (GISS) ModelE2 general circulation model (GCM) and ice sheet models (ISMs), improvements have been made to the representation of the ice sheet surface in ModelE2. These include a sub-grid-scale elevation class scheme, a multi-layer snow model, a time-variable surface albedo scheme, and adjustments to parameterization of sublimation/evaporation. These changes improve the spatial resolution and physical representation of the ice sheet surface such that the surface is represented at a level of detail closer to that of Regional Climate Models (RCMs). We assess the impact of these changes on simulated Greenland Ice Sheet (GrIS) surface mass balance (SMB). We also compare ModelE2 simulations in which winds have been nudged to match the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis with simulations from the Modèle Atmosphérique Régionale (MAR) RCM forced by the same reanalysis. Adding surface elevation classes results in a much higher spatial resolution representation of the surface necessary for coupling with ISMs, but has a negligible impact on overall SMB. Implementing a variable surface albedo scheme increases melt by 100%, bringing it closer to melt simulated by MAR. Adjustments made to the representation of topography-influenced surface roughness length in ModelE2 reduce a positive bias in evaporation relative to MAR. We also examine the impact of changes to the GrIS surface on regional atmospheric and oceanic climate in coupled ocean-atmosphere simulations with ModelE2, finding a general warming of the Arctic due to a warmer GrIS, and a cooler North Atlantic in scenarios with doubled atmospheric CO2 relative to pre-industrial levels. The substantial influence of changes to the GrIS surface on the oceans and atmosphere highlight the importance of including these processes in the GCM, in view of potential feedbacks between the ice sheet

  11. Climate change impact of livestock CH4emission in India: Global temperature change potential (GTP) and surface temperature response.

    Science.gov (United States)

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity

    Science.gov (United States)

    Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.

    2017-10-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.

  13. Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens

    Directory of Open Access Journals (Sweden)

    S. G. Mutz

    2018-04-01

    Full Text Available The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80  ×  80 km at the Equator palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA. Time periods and boundary conditions considered include the Pliocene (PLIO,  ∼  3 Ma, the Last Glacial Maximum (LGM,  ∼  21 ka, mid-Holocene (MH,  ∼  6 ka, and pre-industrial (PI, reference year 1850. The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last  ∼  3 Myr. Comparison

  14. Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens

    Science.gov (United States)

    Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin

    2018-04-01

    The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and

  15. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces.

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J; Nolte, Christopher G; Spero, Tanya L; Hubbell, Bryan; Rappold, Ana G

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results varied by region. Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1.6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.6 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels.

  16. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong and Wei-Chyung Wang

    2007-01-01

    Full Text Available We used the State University of New York at Albany (SUNYA regional climate model to study the effect of cloud vertical distribution in affecting the surface energy balance of the East Asia summer monsoon (EASM. Simulations were conducted for the summers of 1988 and 1989, during which large contrast in the intra-seasonal cloud radiative forcing (CRF was observed at the top of the atmosphere. The model results indicate that both the high and low clouds are persistent throughout the summer months in both years. Because of large cloud water, low clouds significantly reduce the solar radiation flux reaching the surface, which nevertheless still dominate the surface energy balance, accounting for more than 50% of the surface heating. The low clouds also contribute significantly the downward longwave radiation to the surface with values strongly dependent on the cloud base temperature. The presence of low clouds effectively decreases the temperature and moisture gradients near surface, resulting in a substantial decrease in the sensible and latent heat fluxes from surface, which partially compensate the decrease of the net radiative cooling of the surface. For example, in the two days, May 8 and July 11 of 1988, the total cloud cover of 80% is simulated, but the respective low cloud cover (water was 63% (114 gm-2 and 22% (21 gm-2. As a result, the downward solar radiation is smaller by 161 Wm-2 in May 8. On the other hand, the cloud temperature was _ lower, yielding 56 Wm-2 smaller downward longwave radiation. The near surface temperature and gradient is more than _ smaller (and moisture gradient, leading to 21 and 81 Wm-2 smaller sensible heat and latent heat fluxes. It is also demonstrated that the model is capable to reproduce the intraseasonal variation of shortwave CRF, and catches the relationship between total cloud cover and SW CRF. The model results show the dominance of high cloud on the regional mean longwave CRF and low cloud on the intra

  17. Estimating Climate Impacts on Cholera in Piura, Peru during the 1997-98 El Niño

    Science.gov (United States)

    Ramirez, I. J.

    2012-12-01

    In this retrospective study, I examine the impacts of climate on cholera incidence in Piura, Peru during the strongest El Niño of the 20th century in 1998. Bivariate regression analyses were conducted to assess the impact of climate variables (a) Niño 3.4 sea surface temperature anomaly (SSTA), (b) Niño 1+2 SSTA, (c) Paita SSTA, (d) maximum temperature anomaly (TMAXA), (e) minimum temperature anomaly (TMINA), (f) mean temperature anomaly (TMEANA), and (g) total rainfall on cholera incidence at the district level. Temporal lag associations from zero to 7 months were also explored. The strongest associations were mapped in ArcGIS 9.2 to explore the spatial variation of the climate-cholera associations. The results showed that the strength of associations varied by climate variable, temporal lag and district. The climate variable with the strongest association was rainfall (1 and 2 month lags) and explains how cholera may have spread via flooding during the 1997-98 El Niño. Impacts were generally found in districts located on the west coast of Piura; however, associations were also observed in central Piura. This study illustrates the potential usefulness of temporal-spatial climate and health information for future epidemic preparedness and infectious disease prevention. It also demonstrates the challenges faced by public health scientists, particularly in developing countries, in the assessment of climate impacts on human health.

  18. Forest succession and climate change: Coupling land-surface processes and ecological dynamics

    International Nuclear Information System (INIS)

    Martin, P.

    1990-01-01

    Growing evidence supports the hypothesis that humans are in the process of inadvertently modifying the Earth's climate by increasing the atmospheric concentrations of carbon dioxide and other radiatively active trace gas. The present man-induced climate change, often referred to as the greenhouse effect, is different from natural changes because of its unprecedented pace and the incomplete knowledge of its consequences. As some scientists put it, humanity is performing on itself a 'global experiment' which may entail a number of surprises. The potential changes in the behavior of atmosphere/biosphere interactions are of particular importance. Such changes could affect atmospheric dynamics, the local and regional hydrology, the global bio-geochemistry, and therefore, human societies. Five distinct aspects of climate/vegetation interactions are examined. First, the climatically and physiologically mediated impacts of increases in the concentration of carbon dioxide on the evaporation from agricultural crops, grassland, and forests are investigated using the Penman-Monteith combination equation. Second, the degree of coupling between the vegetation and the atmosphere, as defined by Jarvis and McNaughton, is reexamined taking radiative losses from the vegetation to the atmosphere into account. Third, the effects of changes in the mean vs. the variance of climatic variables are investigated using a modified version of the forest dynamics model developed by Pastor and Post, LINK-AGES. Fourth, using the same model, changes in the production of non-methane hydrocarbons are estimated as climate and/or vegetation change. Finally, the main focus is on the response of forests to climatic changes using a model treating the physics of energy and water exchange in detail

  19. The Response of African Land Surface Phenology to Large Scale Climate Oscillations

    Science.gov (United States)

    Brown, Molly E.; de Beurs, Kirsten; Vrieling, Anton

    2010-01-01

    Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the African continent. Analysis of changes in phenology can provide quantitative information on the effect of climate variability on growing seasons in agricultural regions. Using a robust statistical methodology, we describe the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), and the Multivariate ENSO Index (MEI). We map the most significant positive and negative correlation for the four climate indices in Eastern, Western and Southern Africa between two phenological metrics and the climate indices. Our objective is to provide evidence of whether climate variability captured in the four indices has had a significant impact on the vegetative productivity of Africa during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by large scale variations in climate. The particular climate index and the timing showing highest correlation depended heavily on the region examined. In Western Africa the cumulative NDVI correlates with PDO in September-November. In Eastern Africa the start of the June-October season strongly correlates with PDO in March-May, while the PDO in December-February correlates with the start of the February-June season. The cumulative NDVI over this last season relates to the MEI of March-May. For Southern Africa, high correlations exist between SOS and NAO of September-November, and cumulative NDVI and MEI of March-May. The research shows that climate indices can be used to anticipate late start and variable vigor in the growing season of sensitive agricultural regions in Africa.

  20. The Shape of Things to Come: Estimating Northern-Hemisphere (NH) Transient Climate Response Through Hindcasting and Forecasting the Frequency Distribution of Earth's NH Land Temperature Anomalies for the Period 1951-2071

    Science.gov (United States)

    Leclerc, D. F.

    2016-12-01

    Northern-hemisphere (NH) heatwaves, during which temperatures rise 5 standard deviations (SD), sigma, above the historical mean temperature, mu, are becoming frequent; these events skew temperature anomaly (delta T) profiles towards extreme values. Although general extreme value (GEV) distributions have modeled precipitation data, their application to temperatures have met with limited success. This work presents a modified three-parameter (mu, sigma and tau (skew)) Exponential-Gaussian (eGd) model that hindcasts decadal NH land winter (DJF) and summer (JJA) delta Ts from 1951 to 2011, and forecasts profiles for a business-as-usual (BAU) scenario for 2061-2071. We accessed 12 numerical binned (0.05 °C/bin) z-scored NH decadal datasets (posted online until August 2015) from the publicly available website http://www.columbia.edu/ mhs119/PerceptionsAndDice/ mentioned in Hansen et al, PNAS 109 E2415-E2423 (2012) and stated to be in the public domain. No pre-processing was done. Parameters were calculated for the 12 NH datasets pasted into Microsoft Excel™ through the method of moments for 1-tail distributions and through the BEST deconvolution program described by Pommé and Marroyo, Applied Radiation and Isotopes 96 148-153 (2015) for 2-tail distributions. We used maximum likelihood estimation (MLE), residual sum of squares (RSS) and F-test to find optimal parameter values. Calculated 1st (= sigma + tau) and 2nd (= sigma2 + tau2) moments were found to be within 0.5% of observed values. Land delta Ts were recovered from the z-score values by multiplying the winter data by its SD (1.2 °C) and likewise the summer data by 0.6 °C. Results were all within 0.05 °C of 10-year averages from the GHCNv3 NH land dataset. Assuming BAU (increases from 2.1 to 2.6 ppm/y CO2) and using temperature rises of 0.27 °C and 0.35 °C per decade, for summer and winter, respectively, and forecasting to 2071, we obtain for the transient climate response for doubled CO2 (560 ppm CO2) mean

  1. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR

    NARCIS (Netherlands)

    Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.|info:eu-repo/dai/nl/325922470; Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Gallée, H.

    2013-01-01

    To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Mod`ele Atmosph´erique R´egional), forced by output of three CMIP5 (Coupled Model

  2. Multi-Annual Climate Predictions for Fisheries: An Assessment of Skill of Sea Surface Temperature Forecasts for Large Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Desiree Tommasi

    2017-06-01

    Full Text Available Decisions made by fishers and fisheries managers are informed by climate and fisheries observations that now often span more than 50 years. Multi-annual climate forecasts could further inform such decisions if they were skillful in predicting future conditions relative to the 50-year scope of past variability. We demonstrate that an existing multi-annual prediction system skillfully forecasts the probability of next year, the next 1–3 years, and the next 1–10 years being warmer or cooler than the 50-year average at the surface in coastal ecosystems. Probabilistic forecasts of upper and lower seas surface temperature (SST terciles over the next 3 or 10 years from the GFDL CM 2.1 10-member ensemble global prediction system showed significant improvements in skill over the use of a 50-year climatology for most Large Marine Ecosystems (LMEs in the North Atlantic, the western Pacific, and Indian oceans. Through a comparison of the forecast skill of initialized and uninitialized hindcasts, we demonstrate that this skill is largely due to the predictable signature of radiative forcing changes over the 50-year timescale rather than prediction of evolving modes of climate variability. North Atlantic LMEs stood out as the only coastal regions where initialization significantly contributed to SST prediction skill at the 1 to 10 year scale.

  3. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  4. Hyades CN anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.A.; Twarog, B.A.

    1983-05-01

    Recent uvby photometric work indicating possible CN variation among main-sequence stars in the Hyades is tested. Comparison of Reticon spectra of normal stars of similar temperature to five anomalous CN candidates in the Hyades demonstrates that there is no significant difference between the spectra of the program and comparison stars for four of the anomalous CN candidates in the wavelength region of CN 4216. The observed spectral discrepancy for the fifth program star appears to be the result of an incorrect temperature index as compared to previous observations of the same star. The source of the photometric anomaly remains unexplained.

  5. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China - Part 2: The roles of anthropogenic emissions and climate variability

    Science.gov (United States)

    Xu, Wanyun; Xu, Xiaobin; Lin, Meiyun; Lin, Weili; Tarasick, David; Tang, Jie; Ma, Jianzhong; Zheng, Xiangdong

    2018-01-01

    Inter-annual variability and long-term trends in tropospheric ozone are both environmental and climate concerns. Ozone measured at Mt Waliguan Observatory (WLG, 3816 m a.s.l.) on the Tibetan Plateau over the period of 1994-2013 has increased significantly by 0.2-0.3 ppbv yr-1 during spring and autumn but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry-climate model hindcast simulations (GFDL AM3), a trajectory-mapped ozonesonde data set, and several climate indices. A stratospheric ozone tracer implemented in GFDL AM3 indicates that stratosphere-to-troposphere transport (STT) can explain ˜ 60 % of the simulated springtime ozone increase at WLG, consistent with an increase in the NW air-mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originating from South East Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors are the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv yr-1). AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv yr-1 at WLG in autumn under conditions with strong transport from South East Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses, but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last 2 decades, which likely explains why summertime ozone measured at WLG shows no significant trend

  6. The impact of climate and composition on playa surface roughness: Investigation of atmospheric mineral dust emission mechanisms

    Science.gov (United States)

    Tollerud, H. J.; Fantle, M. S.

    2011-12-01

    Atmospheric mineral dust has a wide range of impacts, including the transport of elements in geochemical cycles, health hazards from small particles, and climate forcing via the reflection of sunlight from dust particles. In particular, the mineral dust component of climate forcing is one of the most uncertain elements in the IPCC climate forcing summary. Mineral dust is also an important component of geochemical cycles. For instance, dust inputs to the ocean potentially affect the iron cycle by stimulating natural iron fertilization, which could then modify climate via the biological pump. Also dust can transport nutrients over long distances and fertilize nutrient-poor regions, such as island ecosystems or the Amazon rain forest. However, there are still many uncertainties in quantifying dust emissions from source regions. One factor that influences dust emission is surface roughness and texture, since a weak, unconsolidated surface texture is more easily ablated by wind than a strong, hard crust. We are investigating the impact of processes such as precipitation, groundwater evaporation, and wind on surface roughness in a playa dust source region. We find that water has a significant influence on surface roughness. We utilize ESA's Advanced Synthetic Aperture Radar (ASAR) instrument to measure roughness in the playa. A map of roughness indicates where the playa surface is smooth (on the scale of centimeters) and potentially very strong, and where it is rough and might be more sensitive to disturbance. We have analyzed approximately 40 ASAR observations of the Black Rock Desert from 2007-2011. In general, the playa is smoother and more variable over time relative to nearby areas. There is also considerable variation within the playa. While the playa roughness maps changed significantly between summers and between observations during the winters, over the course of each summer, the playa surface maintained essentially the same roughness pattern. This suggests that

  7. Fire-induced surface forcing of the Siberian larch forests since 2000 in the context of climate change

    Science.gov (United States)

    Chen, D.; Loboda, T. V.; He, T.; Zhang, Y.; Liang, S.

    2017-12-01

    The Siberian larch forests are a major component of the global boreal biome with wildfire being the most important disturbance agent. However, due to their unique characteristics and remote location, coupled with a limited record of remotely sensed datasets, we know little about the post-fire albedo dynamics in the region as well as the associated climatic impact, especially over a relatively longer temporal span at the regional scale. This is unfortunate as it has been suggested that the fire-induced albedo changes may have a pivotal role in controlling the net climatic impact of the boreal forests. Utilizing a 30-m 24-year stand age distribution map of the Siberian larch forests, combined with the full record of the MODIS albedo product, this study quantified the surface forcing induced by stand-replacing fires in the Siberian larch forests over 2001-2015. The results show that the larch forests experienced stand-replacing fires in the region has a cooling effect lasting for more than 25 years, and the magnitude of the cooling (-9.60 ± 0.03 Wm-2) is much larger than previously expected. Due to the strong cooling of stand-replacing fires, coupled with their wide distribution, the net surface forcing of the Siberian larch forests between 2001 and 2013 is negative (-0.78 Wm-2). In contrast, the forests that did not experience stand-replacing fires since 2000 show a warming effect, which is largely attributable to a lengthening of snow-free duration in the region. These results together indicate that wildfire may play a much bigger role in modulating the climatic impact of the Siberian larch forests than we previously thought, but this role is likely weakened by the considerable warming in the region, thus needs to be evaluated in the context of global climate change.

  8. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2017-08-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  9. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2018-03-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  10. The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China

    Science.gov (United States)

    Sun, Weijun; Qin, Xiang; Wang, Yetang; Chen, Jizu; Du, Wentao; Zhang, Tong; Huai, Baojuan

    2017-08-01

    To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010-2015, keeping the clean ice albedo fixed in the range of 0.3-0.4, LAIs caused an increase of +7.1 to +16 W m-2 of net shortwave radiation and an removal of 1101-2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.

  11. Near-Surface Meteorology During the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of Reanalyses and Global Climate Models.

    Science.gov (United States)

    De Boer, G.; Shupe, M.D.; Caldwell, P.M.; Bauer, Susanne E.; Persson, O.; Boyle, J.S.; Kelley, M.; Klein, S.A.; Tjernstrom, M.

    2014-01-01

    Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)- Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.

  12. A statistical adjustment approach for climate projections of snow conditions in mountain regions using energy balance land surface models

    Science.gov (United States)

    Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Lafaysse, Matthieu

    2017-04-01

    Projections of future climate change have been increasingly called for lately, as the reality of climate change has been gradually accepted and societies and governments have started to plan upcoming mitigation and adaptation policies. In mountain regions such as the Alps or the Pyrenees, where winter tourism and hydropower production are large contributors to the regional revenue, particular attention is brought to current and future snow availability. The question of the vulnerability of mountain ecosystems as well as the occurrence of climate-related hazards such as avalanches and debris-flows is also under consideration. In order to generate projections of snow conditions, however, downscaling global climate models (GCMs) by using regional climate models (RCMs) is not sufficient to capture the fine-scale processes and thresholds at play. In particular, the altitudinal resolution matters, since the phase of precipitation is mainly controlled by the temperature which is altitude-dependent. Simulations from GCMs and RCMs moreover suffer from biases compared to local observations, due to their rather coarse spatial and altitudinal resolution, and often provide outputs at too coarse time resolution to drive impact models. RCM simulations must therefore be adjusted using empirical-statistical downscaling and error correction methods, before they can be used to drive specific models such as energy balance land surface models. In this study, time series of hourly temperature, precipitation, wind speed, humidity, and short- and longwave radiation were generated over the Pyrenees and the French Alps for the period 1950-2100, by using a new approach (named ADAMONT for ADjustment of RCM outputs to MOuNTain regions) based on quantile mapping applied to daily data, followed by time disaggregation accounting for weather patterns selection. We first introduce a thorough evaluation of the method using using model runs from the ALADIN RCM driven by a global reanalysis over the

  13. Responses of Surface Energy Partition to Climatic Factors: A Comparison Over Two Types of Underlying Surfaces in Qinghai-Xizang Plateau

    Science.gov (United States)

    Yu, Y.; Xie, J.; Xia, D.

    2017-12-01

    Sensible and latent heat fluxes are energy ties that connect the land surface and the atmosphere through tightly coupling soil moisture to temperature and precipitation. The response of surface energy partitioning into sensible and latent heat fluxes to climatic factors is extremely complex and significantly different in different regions. The Qinghai-Tibetan Plateau, known as the "roof of the world", has an average elevation of more than 4000 m and an area of about 2.57 x 106 km2 . Due to its high elevation, much less column air mass, and strong solar radiation, the land-atmosphere interaction is very strong over the plateau. In this study, surface observations at two sites with distinctively different surface conditions (nearly bare vs alpine grassland) over Qinghai-Xizang Plateau were obtained in 2014. A combinatorial stratification method was used to compare and analysis the direct and indirect effects of soil water content (SWC), net radiation (Rnet) and vapor pressure deficit (VPD) on surface energy partitioning at the two sites, and a path analysis method was used to study the key climatic factors influencing surface energy partition over the two different underlying surfaces. Results show that the responses of evaporative fraction (EF) to SWC stayed in soil moisture-limited regime at the nearly bare site while it is energy-limited at the alpine grassland. EF grows faster with SWC when VPD was high and Rnet had little impact on the variation of EF with SWC at the bare ground site. The variation of EF with SWC is not influenced by VPD and Rnet at the alpine grassland. EF decreases at first and then tends to be stable as VPD increases, and the sensitive of EF to VPD reduced when SWC becomes larger and it is independent of Rnet at the bare ground site. EF increases slightly at first and then tends to be stable as VPD increases and the trend is not influenced by SWC and Rnet at the alpine grassland. EF tends to be stable as Rnet increases and the stable values

  14. Pregnancy outcome and Ebstein's anomaly.

    OpenAIRE

    Donnelly, J E; Brown, J M; Radford, D J

    1991-01-01

    BACKGROUND--Ebstein's anomaly is an uncommon congenital cardiac abnormality that may be associated with cyanosis and arrhythmias. For those female patients with the anomaly who survive to adult life there is little information available about pregnancy, maternal complications, and fetal outcome. This study was designed to address this issue so that these patients can receive appropriate advice and management. METHODS AND RESULTS--Forty two pregnancies in 12 women with Ebstein's anomaly were s...

  15. Anomalies in Economics and Finance

    OpenAIRE

    Christopher L. Gilbert

    2010-01-01

    The term “anomaly” played a crucial role in Thomas Kuhn’s characterization of scientific progress. For Kuhn, an anomaly is a puzzle which challenges an accepted paradigm. Puzzles only achieve anomalous status once an alternative paradigm becomes available which allows explanation of the puzzle. Anomalies were introduced into the finance literature by Michael Jensen but more as resolvable puzzles than Kuhnian anomalies. They entered economics via Richard Thaler who saw behavioural economics as...

  16. Congenital Anomalies among Live Births

    OpenAIRE

    Vivian Rosa Vázquez Martínez; Cristobal Jorge Torres González; Alina Luisa Díaz Dueñas; Grisel Torres Vázquez; Dariel Diaz Díaz; Rafael de la Rosa López

    2014-01-01

    Background: congenital anomalies contribute significantly to mortality during early stages of life; they are the leading cause of infant death in developed countries.Objective: to determine the characteristics of congenital anomalies among live births. Methods: a descriptive study was conducted in the province of Cienfuegos in 2012. Thirty-seven women who had live-born neonates with congenital anomalies were studied. The variables analyzed were: parental age, skin color, order of birth, famil...

  17. Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship

    Science.gov (United States)

    Abatzoglou, John T.; Ficklin, Darren L.

    2017-09-01

    The geographic variability in the partitioning of precipitation into surface runoff (Q) and evapotranspiration (ET) is fundamental to understanding regional water availability. The Budyko equation suggests this partitioning is strictly a function of aridity, yet observed deviations from this relationship for individual watersheds impede using the framework to model surface water balance in ungauged catchments and under future climate and land use scenarios. A set of climatic, physiographic, and vegetation metrics were used to model the spatial variability in the partitioning of precipitation for 211 watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. A generalized additive model found that four widely available variables, precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow, explained 81.2% of the variability in ω. The ω model applied to the Budyko equation explained 97% of the spatial variability in long-term Q for an independent set of watersheds. The ω model was also applied to estimate the long-term water balance across the CONUS for both contemporary and mid-21st century conditions. The modeled partitioning of observed precipitation to Q and ET compared favorably across the CONUS with estimates from more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western United States.

  18. Irrigation as an Historical Climate Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  19. Influence of 21st century atmospheric and sea surface temperature forcing on West African climate

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Chris B [Stanford University; Ashfaq, Moetasim [ORNL; Diffenbaugh, Noah [Stanford University

    2011-01-01

    he persistence of extended drought events throughout West Africa during the 20th century has motivated a substantial effort to understand the mechanisms driving African climate variability, as well as the possible response to elevated greenhouse gas (GHG) forcing. We use an ensemble of global climate model experiments to examine the relative roles of future direct atmospheric radiative forcing and SST forcing in shaping potential future changes in boreal summer precipitation over West Africa. We find that projected increases in precipitation throughout the Western Sahel result primarily from direct atmospheric radiative forcing. The changes in atmospheric forcing generate a slight northward displacement and weakening of the African easterly jet (AEJ), a strengthening of westward monsoon flow onto West Africa and an intensification of the tropical easterly jet (TEJ). Alternatively, we find that the projected decreases in precipitation over much of the Guinea Coast region are caused by SST changes that are induced by the atmospheric radiative forcing. The changes in SSTs generate a weakening of the monsoon westerlies and the TEJ, as well as a decrease in low-level convergence and resultant rising air throughout the mid levels of the troposphere. Our experiments suggest a potential shift in the regional moisture balance of West Africa should global radiative forcing continue to increase, highlighting the importance of climate system feedbacks in shaping the response of regional-scale climate to global-scale changes in radiative forcing.

  20. Beneath the surface of global change: Impacts of climate change on groundwater

    NARCIS (Netherlands)

    Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A.

    2011-01-01

    Global change encompasses changes in the characteristics of inter-related climate variables in space and time, and derived changes in terrestrial processes, including human activities that affect the environment. As such, projected global change includes groundwater systems. Here, groundwater is

  1. Data-Model Comparison of Pliocene Sea Surface Temperature

    Science.gov (United States)

    Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.

    2013-12-01

    The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.

  2. Extending TOPS: A Prototype MODIS Anomaly Detection Architecture

    Science.gov (United States)

    Votava, P.; Nemani, R. R.; Srivastava, A. N.

    2008-12-01

    The management and processing of Earth science data has been gaining importance over the last decade due to higher data volumes generated by a larger number of instruments, and due to the increase in complexity of Earth science models that use this data. The volume of data itself is often a limiting factor in obtaining the information needed by the scientists; without more sophisticated data volume reduction technologies, possible key information may not be discovered. We are especially interested in automatic identification of disturbances within the ecosystems (e,g, wildfires, droughts, floods, insect/pest damage, wind damage, logging), and focusing our analysis efforts on the identified areas. There are dozens of variables that define the health of our ecosystem and both long-term and short-term changes in these variables can serve as early indicators of natural disasters and shifts in climate and ecosystem health. These changes can have profound socio-economic impacts and we need to develop capabilities for identification, analysis and response to these changes in a timely manner. Because the ecosystem consists of a large number of variables, there can be a disturbance that is only apparent when we examine relationships among multiple variables despite the fact that none of them is by itself alarming. We have to be able to extract information from multiple sensors and observations and discover these underlying relationships. As the data volumes increase, there is also potential for large number of anomalies to "flood" the system, so we need to provide ability to automatically select the most likely ones and the most important ones and the ability to analyze the anomaly with minimal involvement of scientists. We describe a prototype architecture for anomaly driven data reduction for both near-real-time and archived surface reflectance data from the MODIS instrument collected over Central California and test it using Orca and One-Class Support Vector Machines

  3. [Developmental venous anomaly (DVA)].

    Science.gov (United States)

    Zimmer, A; Hagen, T; Ahlhelm, F; Viera, J; Reith, W; Schulte-Altedorneburg, G

    2007-10-01

    As congenital anatomic variants of venous drainage, developmental venous anomalies (DVA) represent up to 60% of all cerebral vascular malformations. The prior term "venous angioma" is a misnomer implicating an abnormal vascular structure with an increased bleeding risk. They are often found incidentally and are hardly ever symptomatic. Their morphologic characteristics are dilated vessels in the white matter, which converge on a greater collector vein, forming the typical caput medusae. They drain into the superficial or deep venous system. The frequent association with other, potentially bleeding-prone vascular malformations is clinically relevant, in particular cavernous angioma, which might require therapeutic action. Therefore, coincident vascular lesions need to be actively sought by appropriate additional imaging techniques.

  4. Water radon anomaly fields

    Energy Technology Data Exchange (ETDEWEB)

    Yin, H.

    1980-01-01

    A striking aspect of water radon levels in relation to earthquakes is that before the Tangshan quake there was a remarkable synchronicity of behavior of many wells within 200 km of Tangshan. However, for many wells anomalous values persisted after the earthquake, particularly outside the immediate region of the quake. It is clear that radon may be produced by various processes; some candidates are pressure, shear, vibration, temperature and pressure, mixing of water-bearing strata, breakdown of mineral crystal structure, and the like, although it is not clear which of these are primary. It seems that a possible explanation of the persistence of the anomaly in the case of Tangshan may be that the earthquake released strain in the vicinity of Tangshan but increased it further along the geological structures involved, thus producing a continued radon buildup.

  5. Using sea surface temperatures to improve performance of single dynamical downscaling model in flood simulation under climate change

    Science.gov (United States)

    Chao, Y.; Cheng, C. T.; Hsiao, Y. H.; Hsu, C. T.; Yeh, K. C.; Liu, P. L.

    2017-12-01

    There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualties and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily, this research used the simulation data from AGCM of Meteorological Research Institute (MRI-AGCM). Considering dynamical downscaling methods consume massive computing power, and typhoon number is very limited in a single model simulation, using dynamical downscaling data could cause uncertainty in disaster risk assessment. In order to improve the problem, this research used four sea surfaces temperatures (SSTs) to increase the climate change scenarios under RCP 8.5. In this way, MRI-AGCMs project 191 extreme typhoons in Taiwan (when typhoon center touches 300 km sea area of Taiwan) in late 21th century. SOBEK, a two dimensions flood simulation model, was used to assess the flood risk under four SSTs climate change scenarios in Tainan, Taiwan. The results show the uncertainty of future flood risk assessment is significantly decreased in Tainan, Taiwan in late 21th century. Four SSTs could efficiently improve the problems of limited typhoon numbers in single model simulation.

  6. County-Level Climate Uncertainty for Risk Assessments: Volume 14 Appendix M - Historical Surface Runoff.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  7. County-Level Climate Uncertainty for Risk Assessments: Volume 15 Appendix N - Forecast Surface Runoff.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  8. Groundwater—Surface Water Interactions in a Mountain-to-Coast Watershed: Effects of Climate Change and Human Stressors

    Directory of Open Access Journals (Sweden)

    S. B. Foster

    2015-01-01

    Full Text Available Watersheds located within a mountain to coast physiographic setting have been described as having a highly interconnected surface water and groundwater environment. The quantification of groundwater—surface water interactions at the watershed scale requires upscaling. This study uses MIKE SHE, a coupled numerical model, to explore the seasonally and spatially dynamic nature of these interactions in the Cowichan Watershed on Vancouver Island, British Columbia, Canada. The calibrated model simulates a transition of the Cowichan River from mostly gaining within the valley, to losing stream near the coast where groundwater extraction is focused. Losing and gaining sections correlate with geological substrate. Recharge across the watershed accounts for 17% of precipitation. Climate change is projected to lessen snowpack accumulation in the high alpine and alter timing of snowmelt, resulting in higher spring and winter river discharge and lower summer flows.

  9. Insights into Low-frequency Climate Dynamics from a Surface Temperature Reconstruction Spanning the Last 2,000 Years

    Science.gov (United States)

    Wang, J.; Emile-Geay, J.; McKay, N.; Guillot, D.

    2015-12-01

    Reconstructions of surface temperature over the past 2000 years extend our knowledge of temperature changes beyond the instrumental era, and thus allows for the characterization of climate variability on multidecadal to centennial timescales. This lends insight into our understanding and quantification of the influence of exogenous and endogenous global climate variability. In this study, we do so via a set of global temperature reconstructions based on the latest incarnation of the PAGES 2k global multi-proxy database (http://www.pages-igbp.org/ini/wg/2k-network/data/phase-2-data-status). Two climate field reconstruction (CFR) methods are employed: Gaussian graphical models embedded within the regularized EM algorithm (GraphEM, Guillot et al., 2015) and Canonical Correlation Analysis (CCA, Smerdon et al., 2010). We find a globally warm Medieval period, which was colder than the late twentieth-century by 0.5 C. With a probability of 87%, the 1961 - 1990 period was the warmest 40-year period in the past 2000 years in most regions, especially in the high latitudes of the Northern Hemisphere. We show that surface temperature has a robust large-scale cooling pattern shortly after a volcanic eruption; in particular, over the North Atlantic Ocean, the cooling can persist up to 3 years after an eruption. An El Niño-like response (~0.2 C) is also found in 2 and 3 years after an eruption. Solar irradiance forcing is found to be an important modulator of multidecadal climate variability, with the strongest solar response (0.25 C) in high latitude North America. These key features are echoed in multiple GCM simulations of the last millennium, though we find notable differences, in particular regarding the timing of the post-volcanic ENSO response, and the magnitude of the temperature response to solar irradiance forcing. The results suggest that there is no fundamental discrepancy between simulated and reconstructed climates of the last millennium, and thus lend credibility

  10. A simulation tool for integrating climate change and Canadian surface transport : towards assessing impacts and adaptations

    International Nuclear Information System (INIS)

    Kanaroglou, P.; Maoh, H.; Woudsma, C.; Marshall, S.

    2008-01-01

    Extreme weather events resulting from climate change will have a significant impact of the performance of the Canadian transportation system. This presentation described a simulation tool designed to investigate the potential ramifications of future climate change on transportation and the economy. The CLIMATE-C tool was designed to simulate future weather scenarios for the years 2020 and 2050 using weather parameters obtained from a global general circulation model. The model accounted for linkages between weather, transportation, and economic systems. A random utility-based multi-regional input-output model was used to predict inter-regional trade flows by truck and rail in Canada. Simulated weather scenarios were used to describe predicted changes in demographic, social, economic, technological and environmental developments to 2100. Various changes in population and economic growth were considered. Six additional scenarios were formulated to consider moderate and high rainfall events, moderate, high and extreme snowfall, and cold temperatures. Results of the preliminary analysis indicated that the model is sensitive to changes in weather events. Future research is needed to evaluate future weather scenarios and analyze weather-transport data in order to quantify travel speed reduction parameters. tabs., figs.

  11. Entropy discrepancy and total derivatives in trace anomaly

    Directory of Open Access Journals (Sweden)

    Amin Faraji Astaneh

    2015-12-01

    Full Text Available In this note we address the discrepancy found by Hung, Myers and Smolkin between the holographic calculation of entanglement entropy (using the Jacobson–Myers functional for the holographic minimal surface and the CFT trace anomaly calculation if one uses the Wald prescription to compute the entropy in six dimensions. As anticipated in our previous work [1] the discrepancy originates entirely from a total derivative term present in the trace anomaly in six dimensions.

  12. Entropy discrepancy and total derivatives in trace anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Astaneh, Amin Faraji, E-mail: faraji@ipm.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Patrushev, Alexander, E-mail: apatrush@gmail.com [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie, 141980 Dubna (Russian Federation); Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Fédération Denis Poisson, Université François-Rabelais Tours, Parc de Grandmont, 37200 Tours (France); Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.fr [Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Fédération Denis Poisson, Université François-Rabelais Tours, Parc de Grandmont, 37200 Tours (France)

    2015-12-17

    In this note we address the discrepancy found by Hung, Myers and Smolkin between the holographic calculation of entanglement entropy (using the Jacobson–Myers functional for the holographic minimal surface) and the CFT trace anomaly calculation if one uses the Wald prescription to compute the entropy in six dimensions. As anticipated in our previous work [1] the discrepancy originates entirely from a total derivative term present in the trace anomaly in six dimensions.

  13. Bias for summer decay of interannual SST anomaly in the northern tropical Atlantic and its link with the Guinea Dome in coupled GCMs

    Science.gov (United States)

    Doi, T.; Vecchi, G. A.

    2010-12-01

    Interannual sea surface temperature (SST) anomaly in the northern topical Atlantic is strongly seasonally phase-locked; it develops from early winter, reaches the peak in spring, and decays suddenly in summer. To simulate this seasonal phase-locking reasonably is critical for the accurate prediction of the Atlantic hurricane activity. In a fully coupled ocean-atmosphere model of GFDL-CM2.1 (Climate Model version 2.1 developed at the Geophysical Fluid Dynamics Laboratory), the decay of SSTA in the northern tropical Atlantic is slower and weaker than the observation. This bias is amplified and sustained by a false air-sea coupled positive feedback linked with the subsurface doming of thermocline in the northeastern tropical Atlantic: the Guinea Dome. Anomalous northward migration of the ITCZ associated with the warm SST anomaly in the northern tropical Atlantic leads to the stronger Ekman upwelling and colder subsurface temperature in the north of the climatological Guinea Dome region, where the doming and entrainment is relatively weak in the climatology. Therefore, the cold subsurface Guinea Dome cannot work on the decay of warm SST anomaly through entrainment. In contrast, the warmer subsurface temperature is found just in the climatological Guinea Dome region. It suppresses the decay of the warm SST anomaly through entrainment. The outcome is the sustained warm SST anomaly during summer and further northward ITCZ migration. Therefore, realistic simulation of the subsurface Guinea Dome is critical for improving the seasonal phase-locking bias in the northern tropical Atlantic.

  14. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    Science.gov (United States)

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. UV Climate at Mars Surface: A Proposed Sensor for Both Orbit and Ground Stations

    Science.gov (United States)

    Gillotay, D.; Depiesse, C.; Daerden, F.; This, N.; Muller, C.

    2012-06-01

    The UV conditions on the surface of Mars are of paramount importance for the human exploration of Mars. We propose to measure spectrally the solar direct and diffuse UV and visible radiations from both Mars orbit and surface with light instruments.

  16. Axial anomaly at finite temperature

    International Nuclear Information System (INIS)

    Chaturvedi, S.; Gupte, Neelima; Srinivasan, V.

    1985-01-01

    The Jackiw-Bardeen-Adler anomaly for QED 4 and QED 2 are calculated at finite temperature. It is found that the anomaly is independent of temperature. Ishikawa's method [1984, Phys. Rev. Lett. vol. 53 1615] for calculating the quantised Hall effect is extended to finite temperature. (author)

  17. Anomaly Structure of Regularized Supergravity

    Science.gov (United States)

    Butter, Daniel; Gaillard, Mary K.

    2015-01-01

    On-shell Pauli-Villars regularization of the one-loop divergences of supergravity theories is used to study the anomaly structure of supergravity and the cancellation of field theory anomalies under a U (1 ) gauge transformation and under the T -duality group of modular transformations in effective supergravity theories with three Kähler moduli Ti obtained from orbifold compactification of the weakly coupled heterotic string. This procedure requires constraints on the chiral matter representations of the gauge group that are consistent with known results from orbifold compactifications. Pauli-Villars (PV) regulator fields allow for the cancellation of all quadratic and logarithmic divergences, as well as most linear divergences. If all linear divergences were canceled, the theory would be anomaly free, with noninvariance of the action arising only from Pauli-Villars masses. However there are linear divergences associated with nonrenormalizable gravitino/gaugino interactions that cannot be canceled by PV fields. The resulting chiral anomaly forms a supermultiplet with the corresponding conformal anomaly, provided the ultraviolet cutoff has the appropriate field dependence, in which case total derivative terms, such as Gauss-Bonnet, do not drop out from the effective action. The anomalies can be partially canceled by the four-dimensional version of the Green-Schwarz mechanism, but additional counterterms, and/or a more elaborate set of Pauli-Villars fields and couplings, are needed to cancel the full anomaly, including D -term contributions to the conformal anomaly that are nonlinear in the parameters of the anomalous transformations.

  18. CRANIOVERTEBRAL JUNCTION ANOMALIES SEEN AT ...

    African Journals Online (AJOL)

    hi-tech

    2000-03-03

    Mar 3, 2000 ... anomalies that give rise to symptoms in this area are basilar impression, occipitalisation of the atlas, odontoid process abnormalities and atlanto-axial dislocation. Neuromeningeal anomalies in this region include Arnold-. Chiari malformation, syringomyelia and basal arachnoiditis. The clinical presentation ...

  19. What is a Timing Anomaly?

    DEFF Research Database (Denmark)

    Cassez, Franck; Hansen, Rene Rydhof; Olesen, Mads Chr.

    2012-01-01

    difficult. We examine previous definitions of timing anomalies, and identify examples where they do not align with common observations. We then provide a definition for consistently slower hardware traces that can be used to define timing anomalies and aligns with common observations....

  20. Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India

    Science.gov (United States)

    Pommier, Matthieu; Fagerli, Hilde; Gauss, Michael; Sharma, Sumit; Sinha, Vinay; Ghude, Sachin; Langren, Oskar; Nyiri, Agnes; Wind, Peter

    2017-04-01

    This work aims to study the changes in surface ozone (O3) and fine particulate matter (PM2.5) in a world of changing emissions and climate by focusing on India. Stakeholders in India are already aware about air quality issues but anthropogenic emissions are projected to largely increase for some of the pollutants in the short-term (2030) and medium-term (2050) futures in India, especially if no more policy efforts are made. Only the policies in place before 2014/15 have been taken into account while projecting the future emissions. Current policies have led to decrease in emission intensities, however may not be enough for control of absolute emissions in future. In this study, the regional EMEP/MSC-W chemical transport model is used forced by downscaled meteorological fields at a 50 km resolution following the RCP8.5 greenhouse gas concentration scenario. The reference scenario (for present-day) is evaluated with surface-based measurements. Given the relatively coarse resolution of the meteorological fields used for this comparison with urban observations, the agreement can be considered satisfactory as high correlations with O3 (r=0.9) and PM2.5 (r=0.5 and r=0.8 depending on the data set) are noticed. The bias in PM2.5 is limited (lower than 6%) but the model overestimates the O3 by 35%. Then, this work shows that in the 2050s, the variation in O3 linked to the climate change is mainly due to the change in O3 deposition velocity related to the change in the boundary layer height and, over a few areas, by changes in VOCs. At short term and medium-term, the PM2.5 is predicted to increase due to climate change, by up to 6.5% in the 2050s. This climatic variation is mainly explained by increases in dust, organic matter and secondary inorganic aerosols which are affected by the change in wind speed and precipitations. The large increase in anthropogenic emissions will modify the composition of PM2.5 over India as the secondary inorganic aerosols will be dominant. The

  1. Interactions of Mineral Dust with Clouds, Sea Surface Temperature, and Climate Modes of Variability

    Science.gov (United States)

    DeFlorio, Michael J.

    Global climate models (GCMs) are a vital tool for ensuring the prosperity and security of modern society. They allow scientists to understand complex interactions between the air, ocean, and land, and are used by policymakers to project future changes in climate on regional and global scales. The previous generation of GCMs, represented by CMIP3 models, are shown to be deficient in their representation of precipitation over the western United States, a region that depends critically on wintertime orographically enhanced precipitation for drinking water. In addition, aerosol-cloud interactions were prescribed in CMIP3 models, which decreased the value of their representation of global aerosol, cloud, and precipitation features. This has potentially large impacts on global radiation budgets, since aerosol-cloud interactions affect the spatial extent and magnitude of clouds and precipitation. The newest suite of GCMs, the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, includes state-of-the-art parameterizations of small-scale features such as aerosols, clouds, and precipitation, and is widely used by the scientific community to learn more about the climate system. The Community Earth System Model (CESM), in conjunction with observations, provides several simulations to investigate the role of aerosols, clouds, and precipitation in the climate system and how they interact with larger modes of climate variability. We show that CESM produces a realistic spatial distribution of precipitation extremes over the western U.S., and that teleconnected signals of ENSO and the Pacific Decadal Oscillation to large-scale circulation patterns and precipitation over the western U.S. are improved when compared to CCSM3. We also discover a new semi-direct effect between dust and stratocumulus clouds over the subtropical North Atlantic, whereby boundary layer inversion strength increases during the most dusty summers due to shortwave absorption of dust above the planetary

  2. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting site investigations at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The results from the investigations at the sites are used as a basic input to the development of Site Descriptive Models (SDM). The SDM shall summarise the current state of knowledge of the site, and provide parameters and models to be used in further analyses within Safety Assessment, Repository Design and Environmental Impact Assessment. The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 'data freeze' (July 31, 2004). The groundwater is very shallow, with groundwater levels within one meter below ground as an annual mean for almost all groundwater monitoring wells. Also, the annual groundwater level amplitude is less than 1.5 m for most wells. The shallow groundwater levels mean that there is a strong interaction between evapotranspiration, soil moisture and groundwater. In the modelling, surface water and near-surface groundwater divides are assumed to coincide. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The observed differences in levels are not fully consistent with the good hydraulic contact between overburden and bedrock indicated by the hydraulic tests in the Quaternary deposits. However, the relatively lower groundwater levels in the bedrock may be caused by the horizontal to sub-horizontal highly

  3. Spontaneous abrupt climate change due to an atmospheric blocking-sea-ice-ocean feedback in an unforced climate model simulation.

    Science.gov (United States)

    Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A; Livina, Valerie

    2013-12-03

    Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change.

  4. Effect of Climate Conditions on Land Surface Productivity Across the Mojave, Sonoran, and Chihuahua Deserts and Apache Highlands

    Science.gov (United States)

    K. C., Pratima

    Understanding the patterns and relationships between land surface productivity and the climatic condition is essential to predict the impact of climate change. This study aims to understand spatial temporal variability and relationships of land surface productivity using Normalized Difference Vegetation Index (NDVI) and drought indices, mainly Standard Precipitation Index (SPI) and Standard Precipitation Evaporation Index (SPEI) across four ecoregions: Mojave, Sonoran, Apache Highlands and Chihuahua of the Southwest United States. Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and land cover data, and Parameter Regression on Independent Slopes Model (PRISM) precipitation and temperature data were used for analysis. Using Mann-Kendall, I calculated the trends in annual and seasonal NDVI, SPI and SPEI datasets. I used the Pearson Correlation Coefficients to examine the response of integrated and monthly NDVI values to SPI and SPEI values. The positive and negative trends were found during the annual and monsoon seasons whereas only negative trends were found during the spring season for NDVI, SPI and SPEI values. The relationship between NDVI and coincident and antecedent SPEI values changed significantly by area and season for each of the ecoregions across the east-west seasonal precipitation gradient.

  5. Strategies for reducing the impacts of surface transportation on global climate change : a synthesis of policy research and state and local mitigation strategies

    Science.gov (United States)

    2009-03-01

    Climate change is likely to have more impact on the future of surface transportation than any other issue. The challenges and implications for surface transportation and for state DOTs include: the need to support major GHG reductions, the need to me...

  6. Influences of two types of El Niño event on the Northwest Pacific and tropical Indian Ocean SST anomalies

    Science.gov (United States)

    Hu, Haibo; Wu, Qigang; Wu, Zepeng

    2018-01-01

    Based on the HadISST1 and NCEP datasets, we investigated the influences of the central Pacific El Niño event (CP-EL) and eastern Pacific El Niño event (EP-EL) on the Sea Surface Temperature (SST) anomalies of the Tropical Indian Ocean. Considering the remote effect of Indian Ocean warming, we also discussed the anticyclone anomalies over the Northwest Pacific, which is very important for the South China precipitation and East Asian climate. Results show that during the El Niño developing year of EP-EL, cold SST anomalies appear and intensify in the east of tropical Indian Ocean. At the end of that autumn, all the cold SST anomaly events lead to the Indian Ocean Dipole (IOD) events. Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs. However, considering the statistical significance, more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year. For further research, EP-EL accompany with Indian Ocean Basin Warming (EPI-EL) and CP El Niño accompany with Indian Ocean Basin Warming (CPI-EL) events are classified. With the remote effects of Indian Ocean SST anomalies, the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific. For the EPI-EL developing year, large-scale warm SST anomalies arise in the North Indian Ocean in May, and persist to the autumn of the El Niño decaying year. However, for the CPI-EL, weak warm SST anomalies in the North Indian Ocean maintain to the El Niño decaying spring. Because of these different SST anomalies in the North Indian Ocean, distinct zonal SST gradient, atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Niño decaying years. Specifically, the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years, can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean. The atmospheric

  7. Probabilistic evaluation of competing climate models

    Directory of Open Access Journals (Sweden)

    A. Braverman

    2017-10-01

    Full Text Available Climate models produce output over decades or longer at high spatial and temporal resolution. Starting values, boundary conditions, greenhouse gas emissions, and so forth make the climate model an uncertain representation of the climate system. A standard paradigm for assessing the quality of climate model simulations is to compare what these models produce for past and present time periods, to observations of the past and present. Many of these comparisons are based on simple summary statistics called metrics. In this article, we propose an alternative: evaluation of competing climate models through probabilities derived from tests of the hypothesis that climate-model-simulated and observed time sequences share common climate-scale signals. The probabilities are based on the behavior of summary statistics of climate model output and observational data over ensembles of pseudo-realizations. These are obtained by partitioning the original time sequences into signal and noise components, and using a parametric bootstrap to create pseudo-realizations of the noise sequences. The statistics we choose come from working in the space of decorrelated and dimension-reduced wavelet coefficients. Here, we compare monthly sequences of CMIP5 model output of average global near-surface temperature anomalies to similar sequences obtained from the well-known HadCRUT4 data set as an illustration.

  8. Probabilistic evaluation of competing climate models

    Science.gov (United States)

    Braverman, Amy; Chatterjee, Snigdhansu; Heyman, Megan; Cressie, Noel

    2017-10-01

    Climate models produce output over decades or longer at high spatial and temporal resolution. Starting values, boundary conditions, greenhouse gas emissions, and so forth make the climate model an uncertain representation of the climate system. A standard paradigm for assessing the quality of climate model simulations is to compare what these models produce for past and present time periods, to observations of the past and present. Many of these comparisons are based on simple summary statistics called metrics. In this article, we propose an alternative: evaluation of competing climate models through probabilities derived from tests of the hypothesis that climate-model-simulated and observed time sequences share common climate-scale signals. The probabilities are based on the behavior of summary statistics of climate model output and observational data over ensembles of pseudo-realizations. These are obtained by partitioning the original time sequences into signal and noise components, and using a parametric bootstrap to create pseudo-realizations of the noise sequences. The statistics we choose come from working in the space of decorrelated and dimension-reduced wavelet coefficients. Here, we compare monthly sequences of CMIP5 model output of average global near-surface temperature anomalies to similar sequences obtained from the well-known HadCRUT4 data set as an illustration.

  9. Tectonics, climate and mountain building in the forearc of southern Peru recorded in the 10Be chronology of low-relief surface abandonment

    Science.gov (United States)

    Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.

    2009-12-01

    Regional low-relief surfaces have long been recognized as key features to understanding the response of landscapes to surface uplift. The canonical models of low-relief surface formation involve an extended period of tectonic quiescence during which, the fluvial systems bevel the landscape to a uniform elevation. This quiescent period is punctuated by a period(s) of surface uplift, which causes fluvial incision thereby abandoning the low-relief landscape. Over time, as rivers continue to incise in response to changes in sediment supply, river discharge, and base level fall, pieces of the relict low-relief landscape are left as abandoned remnants stranded above active channels. By determining the age of abandoned surfaces, previous workers have identified the onset of a change in the tectonic or climatic setting. One key assumption of this model is that the low-relief surfaces are truly abandoned with no current processes further acting on the surface. To improve our understanding of the underlying assumptions and problems of low-relief surface formation, we have used detailed mapping and absolute dating with cosmogenic 10Be to investigate surfaces in the hyperarid forearc region of southern Peru between ~14° and 18°S. Within this region, marine terraces and strath terraces reflect Plio-Pleistocene surface uplift, and together with the hyperarid climate, ongoing surface uplift provides a perfect natural laboratory to examine the processes affecting low-relief surface abandonment and preservation. With our new chronology we address: 1) the space and time correlations of surfaces, 2) incision rates of streams in response to base-level fall, and 3) surface erosion rates. Multiple surfaces have yielded 10Be surface abandonment ages that span >2 Ma - ~35 ka. While most of the surfaces we have dated are considerably less than 1 Ma, we have located two surfaces which are likely older than 2 Ma and constrain regional erosion rates to be level are known, we can estimate

  10. A Climate Data Record of Near-Surface Over-Ocean Parameters and Air-Sea Fluxes

    Science.gov (United States)

    Clayson, C. A.; Brown, J.

    2015-12-01

    In this climate data record, we have derived surface and near-surface parameters of wind speed, temperature, and humidity from a combination of satellite observations, with a focus on the use of these variables towards determination of the air-sea turbulent heat fluxes. The dataset is a follow-on to the CDR SeaFlux v 1 dataset, which currently covers the time period of 1988 through 2008, and the variables of sea surface temperature and 10-m temperature, wind speed, and specific humidity at a 3-hourly, 0.25º resolution over the global oceans. These products have been developed for the specific focus of accurate determination of the surface turbulent fluxes. The current dataset is brought forward to short latency (roughly three months) by adding in SSMIS data. This talk will discuss the additional issues associated with including the much-noisier SSMIS data, comparisons of uncertainties from the time period of the SSMIS as compared to the SSMI era, and an analysis of interannual variability over the time period from 1988 through 2015, including the recent ENSO variability.

  11. Climate change signal and uncertainty in CMIP5-based projections of global ocean surface wave heights

    Science.gov (United States)

    Wang, Xiaolan L.; Feng, Yang; Swail, Val R.

    2015-05-01

    This study uses the analysis of variance approaches to quantify the climate change signal and uncertainty in multimodel ensembles of statistical simulations of significant wave height (Hs), which are based on the CMIP5 historical, RCP4.5 and RCP8.5 forcing scenario simulations of sea level pressure. Here the signal of climate change refers to the temporal variations caused by the prescribed forcing. "Significant" means "significantly different from zero at 5% level." In a four-model ensemble of Hs simulations, the common signal—the signal that is simulated in all the four models—is found to strengthen over time. For the historical followed by RCP8.5 scenario, the common signal in annual mean Hs is found to be significant in 16.6% and 82.2% of the area by year 2005 and 2099, respectively. The global average of the variance proportion of the common signal increases from 0.75% in year 2005 to 12.0% by year 2099. The signal is strongest in the eastern tropical Pacific (ETP), featuring significant increases in both the annual mean and maximum of Hs in this region. The climate model uncertainty (i.e., intermodel variability) is significant nearly globally; its magnitude is comparable to or greater than that of the common signal in most areas, except in the ETP where the signal is much larger. In a 20-model ensemble of Hs simulations for the period 2006-2099, the model uncertainty is found to be significant globally; it is about 10 times as large as the variability between the RCP4.5 and RCP8.5 scenarios. The copyright line for this article was changed on 10 JUNE 2015 after original online publication.

  12. NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance, Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains gridded daily surface reflectance and brightness temperatures derived from the Advanced Very High Resolution Radiometer (AVHRR) sensors onboard...

  13. Predictable patterns of the May-June rainfall anomaly over East Asia

    Science.gov (United States)

    Xing, Wen; Wang, Bin; Yim, So-Young; Ha, Kyung-Ja

    2017-02-01

    During early summer (May-June, MJ), East Asia (EA) subtropical front is a defining feature of Asian monsoon, which produces the most prominent precipitation band in the global subtropics. Here we show that dynamical prediction of early summer EA (20°N-45°N, 100°E-130°E) rainfall made by four coupled climate models' ensemble hindcast (1979-2010) yields only a moderate skill and cannot be used to estimate predictability. The present study uses an alternative, empirical orthogonal function (EOF)-based physical-empirical (P-E) model approach to predict rainfall anomaly pattern and estimate its potential predictability. The first three leading modes are physically meaningful and can be, respectively, attributed to (a) the interaction between the anomalous western North Pacific subtropical high and underlying Indo-Pacific warm ocean, (b) the forcing associated with North Pacific sea surface temperature (SST) anomaly, and (c) the development of equatorial central Pacific SST anomalies. A suite of P-E models is established to forecast the first three leading principal components. All predictors are 0 month ahead of May, so the prediction here is named as a 0 month lead prediction. The cross-validated hindcast results demonstrate that these modes may be predicted with significant temporal correlation skills (0.48-0.72). Using the predicted principal components and the corresponding EOF patterns, the total MJ rainfall anomaly was hindcasted for the period of 1979-2015. The time-mean pattern correlation coefficient (PCC) score reaches 0.38, which is significantly higher than dynamical models' multimodel ensemble skill (0.21). The estimated potential maximum attainable PCC is around 0.65, suggesting that the dynamical prediction models may have large rooms to improve. Limitations and future work are discussed.

  14. Mapping localised freshwater anomalies in the brackish paleo-lake sediments of the Machile–Zambezi Basin with transient electromagnetic sounding, geoelectrical imaging and induced polarisation

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Christiansen, Anders Vest; Fiandaca, Gianluca

    2015-01-01

    A recent airborne TEM survey in the Machile–Zambezi Basin of south western Zambia revealed high electrical resistivity anomalies (around 100 Ωm) in a low electrical resistivity (below 13 Ωm) background. The near surface (0–40 m depth range) electrical resistivity distribution of these anomalies...... appeared to be coincident with superficial features related to surface water such as alluvial fans and flood plains. This paper describes the application of transient electromagnetic soundings (TEM) and continuous vertical electrical sounding (CVES) using geo-electrics and time domain induced polarisation...... thins out and deteriorates in water quality further inland. It is postulated that the freshwater lens originated as a result of interaction between the Zambezi River and the salty aquifer in a setting in which evapotranspiration is the net climatic stress. Similar high electrical resistivity bodies were...

  15. Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface energy budget changes

    Science.gov (United States)

    Georgescu, M.; Miguez-Macho, G.; Steyaert, L.T.; Weaver, C.P.

    2009-01-01

    This paper is part 1 of a two-part study that evaluates the climatic effects of recent landscape change for one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. The region's landscape evolution over an approximate 30-year period since the early 1970s is documented on the basis of analyses of Landsat images and land use/land cover (LULC) data sets derived from aerial photography (1973) and Landsat (1992 and 2001). High-resolution, Regional Atmospheric Modeling System (RAMS), simulations (2-km grid spacing) are used in conjunction with consistently defined land cover data sets and associated biophysical parameters for the circa 1973, circa 1992, and circa 2001 time periods to quantify the impacts of intensive land use changes on the July surface temperatures and the surface radiation and energy budgets for the Greater Phoenix region. The main findings are as follows: since the early 1970s the region's landscape has been altered by a significant increase in urban/suburban land area, primarily at the expense of decreasing plots of irrigated agriculture and secondarily by the conversion of seminatural shrubland. Mean regional temperatures for the circa 2001 landscape were 0.12??C warmer than the circa 1973 landscape, with maximum temperature differences, located over regions of greatest urbanization, in excess of 1??C. The significant reduction in irrigated agriculture, for the circa 2001 relative to the circa 1973 landscape, resulted in dew point temperature decreases in excess of 1??C. The effect of distinct land use conversion themes (e.g., conversion from irrigated agriculture to urban land) was also examined to evaluate how the most important conversion themes have each contributed to the region's changing climate. The two urbanization themes studied (from an initial landscape of irrigated agriculture and seminatural shrubland) have the greatest positive effect on near-surface temperature, increasing maximum daily

  16. Analysis and modelling of surface Urban Heat Island in 20 Canadian cities under climate and land-cover change.

    Science.gov (United States)

    Gaur, Abhishek; Eichenbaum, Markus Kalev; Simonovic, Slobodan P

    2018-01-15

    Surface Urban Heat Island (SUHI) is an urban climate phenomenon that is expected to respond to future climate and land-use land-cover change. It is important to further our understanding of physical mechanisms that govern SUHI phenomenon to enhance our ability to model future SUHI characteristics under changing geophysical conditions. In this study, SUHI phenomenon is quantified and modelled at 20 cities distributed across Canada. By analyzing MODerate Resolution Imaging Spectroradiometer (MODIS) sensed surface temperature at the cities over 2002-2012, it is found that 16 out of 20 selected cities have experienced a positive SUHI phenomenon while 4 cities located in the prairies region and high elevation locations have experienced a negative SUHI phenomenon in the past. A statistically significant relationship between observed SUHI magnitude and city elevation is also recorded over the observational period. A Physical Scaling downscaling model is then validated and used to downscale future surface temperature projections from 3 GCMs and 2 extreme Representative Concentration Pathways in the urban and rural areas of the cities. Future changes in SUHI magnitudes between historical (2006-2015) and future timelines: 2030s (2026-2035), 2050s (2046-2055), and 2090s (2091-2100) are estimated. Analysis of future projected changes indicate that 15 (13) out of 20 cities can be expected to experience increases in SUHI magnitudes in future under RCP 2.6 (RCP 8.5). A statistically significant relationship between projected future SUHI change and current size of the cities is also obtained. The study highlights the role of city properties (i.e. its size, elevation, and surrounding land-cover) towards shaping their current and future SUHI characteristics. The results from this analysis will help decision-makers to manage Canadian cities more efficiently under rapidly changing geophysical and demographical conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Solar Spectral Irradiance and Climate

    Science.gov (United States)

    Pilewskie, P.; Woods, T.; Cahalan, R.

    2012-01-01

    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate i