WorldWideScience

Sample records for surface charge effects

  1. Surface charge measurement by the Pockels effect

    CERN Document Server

    Sam, Y L

    2001-01-01

    have been observed by applying both impulse and AC voltages to a needle electrode in direct contact with the BSO. AC surface discharge behaviour of polymeric materials bonded to the BSO has also been investigated. The effect of the surrounding environment has been experimentally examined by placing the cell inside a vacuum chamber. Surface charge measurements have been made at various atmospheric pressures. The effect of an electro-negative gas (Sulphur Hexafluoride) on the surface charge distribution has also been investigated. This thesis is concerned with the design and development of a surface charge measurement system using Pockels effect. The measurement of surface charge is important in determining the electrical performance of high voltage insulation materials. The method proposed allows on-line measurement of charge and can generate two-dimensional images that represent the charge behaviour on the surface of the material under test. The measurement system is optical and uses a Pockels crystal as the ...

  2. Surface charge effects in protein adsorption on nanodiamonds.

    Science.gov (United States)

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.

  3. Surface charge effects in protein adsorption on nanodiamonds

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  4. Effect of surface topography and morphology on space charge packets in polyethylene

    International Nuclear Information System (INIS)

    Zhou Yuanxiang; Wang Yunshan; Sun Qinghua; Wang Ninghua

    2009-01-01

    Polyethylene (PE) is a major kind of internal insulating material. With great progresses of space charge measurement technologies in the last three decades, lots of researches are focused on space charge in PE. The heat pressing and annealing condition of polyethylene affect its morphology obviously. During the heat pressing, the surface of PE forms different surface topographies because of different substrate materials. Surface topography has great relation to the epitaxial crystallization layer and influences the space charge characteristic of PE dramatically. This paper studied the formation process of different surface topographies and their micrographic characters in low density polyethylene (LDPE). pulsed electro-acoustic (PEA) method was used to measure the space charge distribution of samples with different surface topographies and morphologies in LDPE. The effect of surface topography and morphology to space charge packet were studied. The surface topography has great influence on space charge packet polarity and morphology has influence on both movement speed rate and polarity of space charge packet.

  5. Interaction between heterogeneously charged surfaces: surface patches and charge modulation.

    Science.gov (United States)

    Ben-Yaakov, Dan; Andelman, David; Diamant, Haim

    2013-02-01

    When solid surfaces are immersed in aqueous solutions, some of their charges can dissociate and leave behind charged patches on the surface. Although the charges are distributed heterogeneously on the surface, most of the theoretical models treat them as homogeneous. For overall non-neutral surfaces, the assumption of surface charge homogeneity is rather reasonable since the leading terms of two such interacting surfaces depend on the nonzero average charge. However, for overall neutral surfaces the nature of the surface charge distribution is crucial in determining the intersurface interaction. In the present work we study the interaction between two charged surfaces across an aqueous solution for several charge distributions. The analysis is preformed within the framework of the linearized Poisson-Boltzmann theory. For periodic charge distributions the interaction is found to be repulsive at small separations, unless the two surface distributions are completely out-of-phase with respect to each other. For quenched random charge distributions we find that due to the presence of the ionic solution in between the surfaces, the intersurface repulsion dominates over the attraction in the linear regime of the Poisson-Boltzmann theory. The effect of quenched charge heterogeneity is found to be particularly substantial in the case of large charged domains.

  6. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    Science.gov (United States)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of

  7. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  8. Concentration polarization and desalination in nanochannels: Effect of surface charge dynamics

    Science.gov (United States)

    Andersen, Mathias B.; Bruus, Henrik; Mani, Ali; Bazant, Martin Z.

    2011-11-01

    Mani, Zangle, and Santiago (Langmuir, 25, 3898-3916) have shown that at microchannel-nanochannel junctions the coupled effect of concentration polarization and surface conduction can lead to long range propagation of bulk ion-depletion shocks. Essential for this phenomena is the surface charge which for many materials depends on both the concentration and the pH of the local bulk electrolyte. Standard models predict that the surface charge decreases with decreasing concentration leading to the contradictory expectation that there is little or no surface charge in the depleted region and hence no mechanism to sustain long range propagation of desalination shocks. We show that this simple prediction fails to take into account axial transport terms. As such, we couple a surface charge model with the Poisson-Nernst-Planck equations for electric potential and ionic species combined with the Navier-Stokes and continuity equations for fluid velocity. Motivated by experimental work we consider steady-state solutions at the dead end of a nanochannel against a membrane, a scenario where especially space charge and electroosmotic flow are important. Our results suggest that the surface charge density remains finite and does not vanish, and even grows, as the depletion front propagates through the channel.

  9. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation

    Science.gov (United States)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.

    2018-02-01

    Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.

  10. Electrokinetic effect combined with surface-charge assumption: a possible generation mechanism of coseismic EM signals

    Science.gov (United States)

    Ren, Hengxin; Wen, Jian; Huang, Qinghua; Chen, Xiaofei

    2015-02-01

    According to field observations, electromagnetic (EM) signals accompanying seismic waves can be recorded. The orders of magnitude of observed coseismic electric and magnetic signals associated with earthquakes are usually around 1 to 101 mV km-1 and 10-2 to 1 nT, respectively. In this paper, we carry out numerical simulation of coseismic EM signals associated with seismic waves due to electrokinetic effect and compare with field observations. The seismic source is represented by a finite fault measuring 15 × 9 km2 with a max slip displacement 1.5 m, corresponding to a Mw 5.9 earthquake. While using the EM surface boundary condition of continuous horizontal EM components, the magnetic signals only accompany the late-arriving S waves at receiver near the ground surface. This is obviously different from field observations. Thus, we adopt another EM surface boundary condition which assumes the ground surface carries surface charge. For the used half-space model, a surface-charge density magnitude |Qsc| in excess of 10-4 C m-2 is sufficient to make horizontal magnetic components clearly show up at the whole time duration of seismic waves. When |Qsc| increases, the contribution of surface-charge density to coseismic EM signals becomes more and more dominant comparing with that of the seismically induced streaming-current. We estimate the Qsc expected at the Earth's surface might be a value between -5 × 10-4 and -0.1 C m-2 by the comparison between numerical results and field observations. The vertical magnetic signals only accompany the late-arriving seismic waves, because they are theoretically only induced by SH wave. The field observation results of vertical magnetic signals may be resulted from the scattering effect or the seismic dynamo effect. We conclude that electrokinetic effect combined with surface-charge assumption is one possible generation mechanism of the observed coseismic EM signals.

  11. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    International Nuclear Information System (INIS)

    Massen, S. E.; Garistov, V. P.; Grypeos, M. E.

    1996-01-01

    The effects of nuclear surface fluctuations on harmonic oscillator elastic charge form factor of light nuclei are investigated, simultaneously approximating the short-range correlations through a Jastrow correlation factor. Inclusion of the surface fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of 16 O and 40 Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that surface-fluctuation correlations produce a drastic change in the asymptotic behaviour of the point-proton form-factor, which now falls off quite slowly (i.e. as const.q -4 ) at large values of the momentum transfer q

  12. Structural and electrostatic effects at the surfaces of size- and charge-selected aqueous nanodrops.

    Science.gov (United States)

    Cooper, Richard J; O'Brien, Jeremy T; Chang, Terrence M; Williams, Evan R

    2017-07-01

    The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory. IRPD spectra of M(H 2 O) n where M = La 3+ , Ca 2+ , Na + , Li + , I - , SO 4 2- and supporting molecular dynamics simulations indicate that strong interactions between multiply charged ions and water molecules can disrupt optimal hydrogen bonding (H-bonding) at the nanodrop surface. The IRPD spectra also reveal that "free" OH stretching frequencies of surface-bound water molecules are highly sensitive to the ion's identity and the OH bond's local H-bond environment. The measured frequency shifts are qualitatively reproduced by a computationally inexpensive point-charge model that shows the frequency shifts are consistent with a Stark shift from the ion's electric field. For multiply charged cations, pronounced Stark shifting is observed for clusters containing ∼100 or fewer water molecules. This is attributed to ion-induced solvent patterning that extends to the nanodrop surface, and serves as a spectroscopic signature for a cation's ability to influence the H-bond network of water located remotely from the ion. The Stark shifts measured for the larger nanodrops are extrapolated to infinite dilution to obtain the free OH stretching frequency of a surface-bound water molecule at the bulk air-water interface (3696.5-3701.0 cm -1 ), well within the relatively wide range of values obtained from SFG measurements. These cluster measurements also indicate that surface curvature effects can influence the free OH stretching frequency, and that even nanodrops without an ion have a surface potential that depends on cluster size.

  13. The effects of two counterpropagating surface acoustic wave beams on single electron acoustic charge transport

    International Nuclear Information System (INIS)

    He Jianhong; Guo Huazhong; Song Li; Zhang Wei; Gao Jie; Lu Chuan

    2010-01-01

    We present a comprehensive study of the effects of two counterpropagating surface acoustic waves on the acoustoelectric current of single electron transport devices. A significant improvement in the accuracy of current quantization is achieved as a result of an additional surface acoustic wave beam. The experiments reveal the sinusoidally periodical modulation in the acoustoelectric current characteristic as a function of the relative phase of the two surface acoustic wave beams. Besides, by using standing surface acoustic waves, the acoustoelectric current is detected which we consider as the so-called anomalous acoustoelectric current produced by acoustic wave mechanical deformations. This kind current is contributed to one component of the acoustoelectric current in surface acoustic wave device, which could enable us to establish a more adequate description of acoustoelectric effects on single-electron acoustic charge transport.

  14. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, Marcela de, E-mail: marcelafarmausp77@gmail.com [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: mpemdel@fcfrp.usp.br [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: amandosi@ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others

    2014-03-15

    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  15. Memory effect on energy losses of charged particles moving parallel to solid surface

    International Nuclear Information System (INIS)

    Kwei, C.M.; Tu, Y.H.; Hsu, Y.H.; Tung, C.J.

    2006-01-01

    Theoretical derivations were made for the induced potential and the stopping power of a charged particle moving close and parallel to the surface of a solid. It was illustrated that the induced potential produced by the interaction of particle and solid depended not only on the velocity but also on the previous velocity of the particle before its last inelastic interaction. Another words, the particle kept a memory on its previous velocity, v , in determining the stopping power for the particle of velocity v. Based on the dielectric response theory, formulas were derived for the induced potential and the stopping power with memory effect. An extended Drude dielectric function with spatial dispersion was used in the application of these formulas for a proton moving parallel to Si surface. It was found that the induced potential with memory effect lay between induced potentials without memory effect for constant velocities v and v. The memory effect was manifest as the proton changes its velocity in the previous inelastic interaction. This memory effect also reduced the stopping power of the proton. The formulas derived in the present work can be applied to any solid surface and charged particle moving with arbitrary parallel trajectory either inside or outside the solid

  16. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation.

    Science.gov (United States)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J; Hu, Qingang; Hu, Hongming

    2017-12-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe 2 O 3 /APTS (3-aminopropyltrimethoxysilane) NPs and γFe 2 O 3 /DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe 2 O 3 /APTS NPs, but not negative charged γFe 2 O 3 /DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe 2 O 3 /APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe 2 O 3 /DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  17. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    Science.gov (United States)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  18. Effect of the surface roughness on contact charging of polypropylene with mercury; Polypropylene to suigin tono sesshoku taiden ni oyobosu hyomen arasa no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y.; Saito, K. [Nagoya Institute of Technology, Nagoya (Japan)

    2000-02-14

    The effect of the surface roughness on the contact charging of polypropylene with mercury has been studied by measuring the two-dimensional surface charge distribution. For each sample film, one half of its area was made rough by sandpaper, and the other half was left untreated. These two portions were charged by contacting them simultaneously with mercury, and the two-dimensional surface charge distribution was measured over the entire sample. Our observations show that the behavior of the contact charging clearly depends on physical roughness. The charge density on rough surface was lower than that on smooth surface. Moreover, when the surface was made exceedingly rough, no contact charging occurred. (author)

  19. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, Slavko, E-mail: slavko.kralj@ijs.si [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia); Rojnik, Matija [University of Ljubljana, Faculty of Pharmacy (Slovenia); Romih, Rok [University of Ljubljana, Faculty of Medicine, Institute of Cell Biology (Slovenia); Jagodic, Marko [Institute of Mathematics, Physics and Mechanics (Slovenia); Kos, Janko [University of Ljubljana, Faculty of Pharmacy (Slovenia); Makovec, Darko [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia)

    2012-10-15

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 {mu}g/cm{sup 3} in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  20. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Science.gov (United States)

    Kralj, Slavko; Rojnik, Matija; Romih, Rok; Jagodič, Marko; Kos, Janko; Makovec, Darko

    2012-10-01

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 μg/cm3 in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  1. Spacecraft Surface Charging Handbook

    Science.gov (United States)

    1992-11-01

    discharges however produce replacement currents that can be global. The local effect of punchthrough is illustrated by a small dipole model for the...St’rap I Farda or TEK7103 Scope Power Dipole -- Line tenna To To PA HP05000 and Spectrum X-Y Analyzer Plotter Figure 61. Test setup for surface...Testing Seminar, Los Angeles, CA, p. 77-82, 19817. Levadou, F., "Proprietes Electriques Des Materiaux." Space Environment: Prevention of Risks Related

  2. Evaluation of the In Vitro Effect of Gold Nanorod Aspect Ratio, Surface Charge and Chemistry on Cellular Association and Cytotoxicity

    Science.gov (United States)

    2016-03-28

    Nanorods. Analytical Chemistry , 79(2), 572-579. doi: 10.1021/ac061730d 22 LIST OF ACRONYMS ATCC American Type Culture Collection AR Aspect...EVALUATION OF THE IN VITRO EFFECTOF GOLD NANOROD ASPECT RATIO, SURFACE CHARGE AND CHEMISTRY ON CELLULAR ASSOCIATION AND CYTOTOXICITY...July 2012 – Jan 2016 4. TITLE AND SUBTITLE EVALUATION OF THE IN VITRO EFFECT OF GOLD NANOROD ASPECT RATIO, SURFACE CHARGE AND CHEMISTRY ON

  3. Effects of Surface Charges on Dental Implants: Past, Present, and Future

    OpenAIRE

    Cecilia Yan Guo; Jukka Pekka Matinlinna; Alexander Tin Hong Tang

    2012-01-01

    Osseointegration is a major factor influencing the success of dental implantation. To achieve rapid and strong, durable osseointegration, biomaterial researchers have investigated various surface treatment methods for dental subgingival titanium (Ti) implants. This paper focuses on surface-charge modification on the surface of titanium dental implants, which is a relatively new and very promising methodology for improving the implants' osseointegration properties. We give an overview on both ...

  4. Funneling effect of alpha particles on the charge collection efficiency in N type silicon surface barrier detector

    International Nuclear Information System (INIS)

    Boorboor, S.; Feghhi, S.A.H.; Jafari, H.

    2014-01-01

    Highlights: • Field funneling due to SEE in microelectronic device affects the charge collection efficiency. • Charge collection efficiency from alpha particles in a N type SSB device was calculated. • GEANT4, a Monte Carlo code and ATLAS, a numerical code have been used. • The simulation results have been validated through comparison with the experimental results. - Abstract: There are three different mechanisms of charge collection in a semiconductor charge particle detector, such as the drift of carriers in depletion zone, the drift of carriers in an extended electrical field along the ion track or funneling effect and the diffusion of carriers. In this work, the funneling effect on charge collection efficiency due to alpha particle track in a N type silicon surface barrier detector has been investigated. GEANT4, as Monte Carlo code, has been used for estimation of the deposit energy distribution in the component. In addition, the semiconductor device simulator, ATLAS, has been used in calculation of charge collection efficiency. The simulation results have been validated through comparison with the available experimental results. The calculated charge collection efficiency has good agreement with experiment. Without considering the funneling effect and diffusion, the calculation results underestimate the charge collection efficiency within 60%. Our overall results were indicative of the fact that considering funneling effect, considerably improves the accuracy of the charge collection efficiency estimation

  5. Surface oxide net charge of a titanium alloy: comparison between effects of treatment with heat or radiofrequency plasma glow discharge.

    Science.gov (United States)

    MacDonald, Daniel E; Rapuano, Bruce E; Schniepp, Hannes C

    2011-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy's surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy's surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50-100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm-cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long-range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples. These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. Published by Elsevier B.V.

  6. Atomistic simulation of charge effects: From tunable thin film growth to isolation of surface states with spin-orbit coupling

    Science.gov (United States)

    Ming, Wenmei

    This dissertation revitalizes the importance of surface charge effects in semiconductor nanostructures, in particular in the context of thin film growth and exotic electronic structures under delicate spin-orbit coupling. A combination of simulation techniques, including density functional theory calculation, kinetic Monte Carlo method, nonequilibrium Green's function method, and tight binding method, were employed to reveal the underlying physical mechanisms of four topics: (1) Effects of Li doping on H-diffusion in MgH 2 for hydrogen storage. It addresses both the effect of Fermi level tuning by charged dopant and the effect of dopant-defect interaction, and the latter was largely neglected in previous works; (2) Tuning nucleation density of the metal island with charge doping of the graphene substrate. It is the first time that the surface charge doping effect is proposed and studied as an effective approach to tune the kinetics of island nucleation at the early stage of thin film growth; (3) Complete isolation of Rashba surface states on the saturated semiconductor surface. It shows that the naturally saturated semiconductor surface of InSe(0001) with Au single layer film provides a mechanism for the formation of Rashba states with large spin splitting; it opens up an innovative route to obtaining ideal Rashba states without the overwhelming bulk spin-degenerate carriers in spin-dependent transport; (4) Formation of large band gap quantum spin Hall state on Si surface. This study reveals the importance of atomic orbital composition in the formation of a topological insulator, and shows promisingly the possible integration of topological insulator technology into Si-based modern electronic devices.

  7. Surface transport processes in charged porous media.

    Science.gov (United States)

    Gabitto, Jorge; Tsouris, Costas

    2017-07-15

    Surface transport processes are very important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effect of surface bilayer charges on the magnetic field around ionic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Soares, Marília Amável [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Cortez, Celia Martins, E-mail: ccortezs@ime.uerj.br [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil); Oliveira Cruz, Frederico Alan de [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Physics, Rural Federal University of Rio de Janeiro (Brazil); Silva, Dilson [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil)

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na{sup +} and K{sup +}-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na{sup +} and K{sup +} permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K{sup +}-channel is very less sensible to temperature changes than the current density through a Na{sup +}- channel, active Na{sup +}-channels do not directly interfere with the K{sup +}-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  9. Effect of valence nucleons on RMS charge radii and surface thickness

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, I. (Kossuth Univ., Debrecen (Hungary). Inst. of Experimental Physics)

    1991-04-01

    The nucleonic promiscuity factor P = N{sub p}N{sub n}/(N{sub p} + N{sub n}), where N{sub p}(N{sub n}) is the number of valence protons (neutrons) or holes, is shown to be a useful and physically meaningful parameter in the description of RMS charge radii. The empirically found mass number dependence of the P-dependent contribution to radii is in agreement with the qualitative theoretical expectation for the average strength of the isoscalar p-n interaction. A significant correlation between surface diffusivity and promiscuity as well as between diffusivity and radius is pointed out. (author).

  10. Surface Charging and Points of Zero Charge

    CERN Document Server

    Kosmulski, Marek

    2009-01-01

    Presents Points of Zero Charge data on well-defined specimen of materials sorted by trademark, manufacturer, and location. This text emphasizes the comparison between particular results obtained for different portions of the same or very similar material and synthesizes the information published in research reports over the past few decades

  11. Effect of the surface charge of artificial model membranes on the aggregation of amyloid β-peptide.

    Science.gov (United States)

    Sabaté, Raimon; Espargaró, Alba; Barbosa-Barros, Lucyanna; Ventura, Salvador; Estelrich, Joan

    2012-08-01

    The neurotoxicity effect of the β-amyloid (Aβ) peptide, the primary constituent of senile plaques in Alzheimer's disease, occurs through interactions with neuronal membranes. Here, we attempt to clarify the mechanisms and consequences of the interaction of Aβ with lipid membranes. We have used liposomes as a model of biological membrane, and have devoted particular attention to the bilayer charge effect. Our results show that insertion and surface association of peptide with membrane, increased in a membrane charge-dependent manner, lead to a reduction of Aβ soluble species, lag time elongation and an increase in the inter-molecular β-sheet ratio of amyloid fibrils. In addition, our findings suggest that the fine balance between peptide insertion and surface association modulates Aβ aggregation, influencing the amyloid fibrils concentration as well as their morphology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Effect of inorganic and organic depressants on the cationic flotation and surface charge of rhodonite-rhodochrosite

    OpenAIRE

    Duarte, Renata Santos; Lima, Rosa Malena Fernandes; Leão, Versiane Albis

    2015-01-01

    Abstract Silicates (rhodonite, tephroite, spessartine) and the carbonate (rhodochrosite) of manganese are of economic interest in silicate-carbonated manganese ores. The recovery of both mineral classes by flotation constitutes a challenge; rhodochrosite is a slightly soluble mineral that can release Mn2+ ions in pulp. In this work, the effects of inorganic and organic depressants on the cationic flotation at pH 10 with ether amine acetate and the surface charges of rhodonite and rhodochrosit...

  13. Complementary surface charge for enhanced capacitive deionization

    NARCIS (Netherlands)

    Gao, X.; Porada, S.; Omosebi, A.; Liu, K.L.; Biesheuvel, P.M.; Landon, J.

    2016-01-01

    Commercially available activated carbon cloth electrodes are treated using nitric acid and ethylenediamine solutions, resulting in chemical surface charge enhanced carbon electrodes for capacitive deionization (CDI) applications. Surface charge enhanced electrodes are then configured in a CDI

  14. Surface charge compensation for a highly charged ion emission microscope

    International Nuclear Information System (INIS)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-01-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed

  15. Effect of the surface charge density on the creep of copper

    Science.gov (United States)

    Zhmakin, Yu. D.; Rybyanets, V. A.; Nevskii, S. A.; Gromov, V. E.

    2015-01-01

    The creep of polycrystalline copper under the action of high and low electric potentials is studied. At potentials of ±4 kV and ±5 V, the steady-state creep rate decreases, and the effect in the former case is weaker than in the latter by a factor of 2.5. This difference is caused by the fact that the charge density in the sample-capacitor bank system at the high electric potentials is lower than at the low potentials.

  16. Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating

    Czech Academy of Sciences Publication Activity Database

    Huk, A.; Izak-Nau, E.; el Yamani, N.; Uggerud, H.; Vadset, M.; Zasońska, Beata Anna; Duschl, A.; Dusinska, M.

    2015-01-01

    Roč. 12, 24 July (2015), 25_1-25_20 ISSN 1743-8977 Institutional support: RVO:61389013 Keywords : silver nanomaterials * surface charge * surface coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.649, year: 2015

  17. The effects of surface-charged submicron polystyrene particles on the structure and performance of PSF forward osmosis membrane

    Science.gov (United States)

    Zuo, Hao-Ran; Fu, Jia-Bei; Cao, Gui-Ping; Hu, Nian; Lu, Hui; Liu, Hui-Qing; Chen, Peng-Peng; Yu, Jie

    2018-04-01

    Monodisperse surface-charged submicron polystyrene particles were designed, synthesized, and blended into polysulfone (PSF) support layer to prepare forward osmosis (FO) membrane with high performance. The membrane incorporated with particles were characterized with respect to morphology, porosity, and internal osmotic pressure (IOP). Results showed that the polymer particles not only increased the hydrophilicity and porosity of support layer, but also generated considerable IOP, which helped markedly decreasing the structure parameter from 1550 to 670 μm. The measured mass transfer parameters further confirmed the beneficial effects of the surface-charged submicron polymer particles on the performance of FO membrane. For instance, the water permeability coefficient (5.37 L m-2 h-1 bar-1) and water flux (49.7 L m-2 h-1) of the FO membrane incorporated with 5 wt% particles were almost twice as much as that of FO membrane without incorporation. This study suggests that monodisperse surface-charged submicron polymer particles are potential modifiers for improving the performance of FO membranes.

  18. Electronic coupling effects and charge transfer between organic molecules and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Forker, Roman

    2010-07-01

    We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. (orig.)

  19. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  20. Effects of external surface charges on the enhanced piezoelectric potential of ZnO and AlN nanowires and nanotubes

    Directory of Open Access Journals (Sweden)

    Seong Min Kim

    2012-12-01

    Full Text Available We theoretically investigate external surface charge effects on piezoelectric potential of ZnO and AlN nanowires (NWs and nanotubes (NTs under uniform compression. The free carrier depletion caused by negative surface charges via surface functionalization on vertically compressed ZnO and AlN NWs/NTs is simulated using finite element calculation; this indicates the enhancement of piezoelectric potential is due to the free carriers (electrons being fully depleted at the critical surface charge density. Numerical simulations reveal that full coverage of surface charges surrounding the NTs increases the piezoelectric output potential exponentially within a relatively smaller range of charge density compared to the case of NWs for a typical donor concentration (∼1017 cm−3. The model can be used to design functional high-power semiconducting piezoelectric nanogenerators.

  1. Invisible Surface Charge Pattern on Inorganic Electrets

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2013-01-01

    We propose an easy method to pattern the surface charge of ${\\rm SiO}_{2}$ electrets without patterning the dielectric layer. By eliminating the use of metal guard electrodes, both the charge efficiency and the surface charge stability in humid environments improve. We apply the concept...

  2. Multilayer Coating of Tetrandrine-loaded PLGA nanoparticles: Effect of surface charges on cellular uptake rate and drug release profile.

    Science.gov (United States)

    Meng, Rui; Li, Ke; Chen, Zhe; Shi, Chen

    2016-02-01

    The effect of surface charges on the cellular uptake rate and drug release profile of tetrandrine-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPNs) was studied. Stabilizer-free nanoprecipitation method was used in this study for the synthesis of TPNs. A typical layer-by-layer approach was applied for multi-coating particles' surface with use of poly(styrene sulfonate) sodium salt (PSS) as anionic layer and poly(allylamine hydrochloride) (PAH) as cationic layer. The modified TPNs were characterized by different physicochemical techniques such as Zeta sizer, scanning electron microscopy and transmission electron microscopy. The drug loading efficiency, release profile and cellular uptake rate were evaluated by high performance liquid chromatography and confocal laser scanning microscopy, respectively. The resultant PSS/PAH/PSS/PAH/TPNs (4 layers) exhibited spherical-shaped morphology with the average size of 160.3±5.165 nm and zeta potential of-57.8 mV. The encapsulation efficiency and drug loading efficiency were 57.88% and 1.73%, respectively. Multi-layer coating of polymeric materials with different charges on particles' surface could dramatically influence the drug release profile of TPNs (4 layers vs. 3 layers). In addition, variable layers of surface coating could also greatly affect the cellular uptake rate of TPNs in A549 cells within 8 h. Overall, by coating particles' surface with those different charged polymers, precise control of drug release as well as cellular uptake rate can be achieved simultaneously. Thus, this approach provides a new strategy for controllable drug delivery.

  3. Charge transfer effects on the Fermi surface of Ba0.5K 0.5Fe2As2

    KAUST Repository

    Nazir, Safdar

    2011-01-31

    Ab-initio calculations within density functional theory are performed to obtain a more systematic understanding of the electronic structure of iron pnictides. As a prototypical compound we study Ba0.5K 0.5Fe2As2 and analyze the changes of its electronic structure when the interaction between the Fe2As 2 layers and their surrounding is modified. We find strong effects on the density of states near the Fermi energy as well as the Fermi surface. The role of the electron donor atoms in iron pnictides thus cannot be understood in a rigid band picture. Instead, the bonding within the Fe2As 2 layers reacts to a modified charge transfer from the donor atoms by adapting the intra-layer Fe-As hybridization and charge transfer in order to maintain an As3- valence state. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface-induced charge at the Ge (001) surface and its interaction with self-interstitials

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji; Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, B-9000 Gent (Belgium)

    2014-02-21

    The Ge (001) surface with dimer structure, is negatively charged while into the bulk, positive charges are observed even deeper than the fifteenth layer from the surface. This is different from the Si case. This charge distribution can lead to the repulsion of positively charged self-interstitials by the positively charged near surface layer in an implantation or irradiation process. Self-interstitial reflection by Ge surfaces had been proposed to explain the results of diffusion experiments during irradiation whereby positively charged self-interstitials are generated by collisions of highly energetic particles with Ge atoms. We investigated different Ge (001) surface comparing an as-cleaved surface with dangling bonds to a surface with dimer structure, and to a surface terminated by hydrogen atoms. The effect of these different surface terminations on the surface-induced charges in the near surface bulk were calculated by ab initio techniques.

  5. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study

    International Nuclear Information System (INIS)

    Abbaszadegan, A.; Ghahramani, Y.; Nabavizadeh, M.; Gholami, A.; Hemmateenejad, I.; Dorostkar, S.; Sharghi, H.

    2014-01-01

    The bactericidal efficiency of various positively and negatively charged silver nanoparticles has been extensively evaluated in literature, but there is no report on efficacy of neutrally charged silver nanoparticles. The goal of this study is to evaluate the role of electrical charge at the surface of silver nanoparticles on antibacterial activity against a panel of microorganisms. Three different silver nanoparticles were synthesized by different methods, providing three different electrical surface charges (positive, neutral, and negative). The antibacterial activity of these nanoparticles was tested against gram-positive (i.e., Staphylococcus aureus, Streptococcus mutans, and Streptococcus pyogenes) and gram-negative (i.e., Escherichia coli and Proteus vulgaris) bacteria. Well diffusion and micro-dilution tests were used to evaluate the bactericidal activity of the nanoparticles. According to the obtained results, the positively-charged silver nanoparticles showed the highest bactericidal activity against all microorganisms tested. The negatively charged silver nanoparticles had the least and the neutral nanoparticles had intermediate antibacterial activity. The most resistant bacteria were Proteus vulgaris. We found that the surface charge of the silver nanoparticles was a significant factor affecting bactericidal activity on these surfaces. Although the positively charged nanoparticles showed the highest level of effectiveness against the organisms tested, the neutrally charged particles were also potent against most bacterial species.

  6. Effect of hydrogen charging on the stability of SAE 10B22 steel surface in alkaline solutions

    International Nuclear Information System (INIS)

    Modiano, S.; Carreno, J.A.; Fugivara, C.S.; Benedetti, A.V.; Mattos, O.R.

    2005-01-01

    The influence of hydrogen charging into a quenched and tempered boron steel membrane electrode (SAE 10B22) was studied using borate buffer (pH 8.4) and NaOH solutions (pH 12.7), with or without the addition of 0.01 M EDTA. At the hydrogen input side, hydrogen charging influenced cyclic voltammograms increasing the anodic charge of iron(II) hydroxide formation, and decreasing the donor density of passive films. These results suggest that the hydrogen ingress caused instability of metallic surface, increasing the surface area activity

  7. On equilibrium charge distribution above dielectric surface

    Directory of Open Access Journals (Sweden)

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  8. DETERMINATION OF SURFACE CHARGE DENSITY OF α ...

    African Journals Online (AJOL)

    a

    dissociation of these groups, result into a pH dependent surface charge whose density can be measured by acid-base titration. The surface charge density determined by such method is essentially measured relative to the unknown condition of the oxide/liquid interface prior to reagent addition (i.e. at the point of zero ...

  9. Membrane effects of Vitamin E deficiency: bioenergetic and surface-charge-density studies of skeletal muscle and liver mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Quintanilha, A.T.; Packer, L.; Szyszlo Davies, J.M.; Racanelli, T.L.; Davies, K.J.A.

    1981-12-01

    Vitamin E (dl-..cap alpha..-tocopherol) deficiency in rats increased the sensitivity of liver and muscle mitochondria to damage during incubation at various temperatures, irradiation with visible light, or steady state respiration with substrates. In all cases, vitamin E deficient mitochondria exhibited increased lipid peroxidation, reduced transmembrane potential, decreased respiratory coupling, and lower rates of electron transport, compared to control mitochondria. Muscle mitochondria always showed greater negative inner membrane surface charge density, and were also more sensitive to damage than were liver mitochondria. Vitamin E deficient mitochondria also showed slightly more negative inner membrane surface charge density compared to controls. The relationship between greater negative surface potential and increased sensitivity to damage observed, provides for a new and sensitive method to further probe the role of surface charge in membrane structure and function. Implications of these new findings for the well known human muscle myopathies and those experimentally induced by Vitamin E deficiency in animals, are discussed.

  10. Charge transmission through liquid neon and helium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galea, R [Nevis Laboratories, Columbia University, 136 South Broadway, P.O.Box 137, Irvington, NY, 10533 (United States); Dodd, J [Nevis Laboratories, Columbia University, 136 South Broadway, P.O.Box 137, Irvington, NY, 10533 (United States); Leltchouk, M [Nevis Laboratories, Columbia University, 136 South Broadway, P.O.Box 137, Irvington, NY, 10533 (United States); Willis, W [Nevis Laboratories, Columbia University, 136 South Broadway, P.O.Box 137, Irvington, NY, 10533 (United States); Rehak, P [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY, 11973 (United States); Tcherniatine, V [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY, 11973 (United States)

    2007-04-15

    The transmission of charges through liquid neon and helium surfaces was studied. It was found that the penetration of charges from the liquid to the gas phase is more complex than a simple barrier penetration. The effective surface trapping times of localized electrons in liquid neon is much longer than previously measured.

  11. Charge transmission through liquid neon and helium surfaces

    Science.gov (United States)

    Galea, R.; Dodd, J.; Leltchouk, M.; Willis, W.; Rehak, P.; Tcherniatine, V.

    2007-04-01

    The transmission of charges through liquid neon and helium surfaces was studied. It was found that the penetration of charges from the liquid to the gas phase is more complex than a simple barrier penetration. The effective surface trapping times of localized electrons in liquid neon is much longer than previously measured.

  12. Fabrication of Al2O3 Nano-Structure Functional Film on a Cellulose Insulation Polymer Surface and Its Space Charge Suppression Effect

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-10-01

    Full Text Available Cellulose insulation polymer (paper/pressboard has been widely used in high voltage direct current (HVDC transformers. One of the most challenging issues in the insulation material used for HVDC equipment is the space charge accumulation. Effective ways to suppress the space charge injection/accumulation in insulation material is currently a popular research topic. In this study, an aluminium oxide functional film was deposited on a cellulose insulation pressboard surface using reactive radio frequency (RF magnetron sputtering. The sputtered thin film was characterized by the scanning electron microscopy/energy dispersive spectrometer (SEM/EDS, X-ray photoelectron spectroscopy (XPS, and X-ray diffraction (XRD. The influence of the deposited functional film on the dielectric properties and the space charge injection/accumulation behaviour was investigated. A preliminary exploration of the space charge suppression effect is discussed. SEM/EDS, XPS, and XRD results show that the nano-structured Al2O3 film with amorphous phase was successfully fabricated onto the fibre surface. The cellulose insulation pressboard surface sputtered by Al2O3 film has lower permittivity, conductivity, and dissipation factor values in the lower frequency (<103 Hz region. The oil-impregnated sputtered pressboard presents an apparent space-charge suppression effect. Compared with the pressboard sputtered with Al2O3 film for 90 min, the pressboard sputtered with Al2O3 film for 60 min had a better space charge suppression effect. Ultra-small Al2O3 particles (<10 nm grew on the surface of the larger nanoparticles. The nano-structured Al2O3 film sputtered on the fibre surface could act as a functional barrier layer for suppression of the charge injection and accumulation. This study offers a new perspective in favour of the application of insulation pressboard with a nano-structured function surface against space charge injection/accumulation in HVDC equipment.

  13. Space-Charge Effect

    CERN Document Server

    Chauvin, N.

    2013-12-16

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  14. La modified TiO{sub 2} photoanode and its effect on DSSC performance: A comparative study of doping and surface treatment on deep and surface charge trapping

    Energy Technology Data Exchange (ETDEWEB)

    Ako, Rajour Tanyi [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Ekanayake, Piyasiri, E-mail: piyasiri.ekanayake@ubd.edu.bn [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Centre for Advanced Material and Energy Sciences (CAMES), Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Tan, Ai Ling [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Young, David James [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558 (Australia); Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore)

    2016-04-01

    The effect of Lanthanum ions (La{sup 3+}) on charge trapping in dye-sensitized solar cell (DSSC) photoanodes has been investigated with doped and surface-treated TiO{sub 2} nanoparticles. Doped nanoparticles consisting of 0.5 mol.% Mg and La co-doped TiO{sub 2}, 0.5 mol.% Mg doped TiO{sub 2} and pure TiO{sub 2} were synthesized by the sol gel method. Surface-treated nanoparticles of Mg doped TiO{sub 2} and pure TiO{sub 2} were prepared by ball milling in 0.05 M aqueous La{sup 3+} solution. All materials were analyzed by XRD, XPS and UV–Vis DRS. Cell performance, surface free energy state changes and electron injection efficiency of DSSCs based on these nanoparticles were evaluated using current –voltage measurements, EIS and Incident photon to current conversion efficiency. Doped materials had La and Mg ions incorporated into the TiO{sub 2} lattice, while no lattice changes were observed for the surface-treated materials. Less visible light was absorbed by treated oxides compared with doped oxide samples. The overall power conversion efficiencies (PCE) of DSSC photoanodes based on doped materials were twice those of photoanodes fabricated from treated nanoparticles. Doping establishes deep traps that reduce the recombination of electron–hole (e–h) pairs. Conversely, the presence of absorbed oxygen in treated materials enhances e–h recombination with electrolyte at surface trap sites. - Highlights: • DSSC performance is investigated using photoanodes of doped and La{sup 3+} surface treated TiO{sub 2}. • TiO{sub 2} and Mg–TiO{sub 2} treated with La{sup 3+} absorbed less visible light. • A high concentration of absorbed oxygen on surface treated oxides reduced band bending. • Increased surface free energy in the modified DSSC anodes is caused more by Mg{sup 2+} at Ti{sup 4+} than by La{sup 3+} at the surfaces. • Near surface charge traps due to La{sup 3+} treatment promotes e–h recombination.

  15. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Skinner, B.; Chen, T.; Shklovskii, B. I.

    2013-01-01

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states

  16. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline [University of Puerto Rico, Department of Chemical Engineering (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2013-08-15

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle-cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine-silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33-45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from -50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle-cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions.

  17. Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density

    Czech Academy of Sciences Publication Activity Database

    Černocká, Hana; Ostatná, Veronika; Paleček, Emil

    2015-01-01

    Roč. 174, AUG 2015 (2015), s. 356-360 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA15-15479S; GA ČR(CZ) GA13-00956S Institutional support: RVO:68081707 Keywords : Bovine serum albumin * sensing of surface-attached protein stability * protein structural transition at Hg Subject RIV: BO - Biophysics Impact factor: 4.803, year: 2015

  18. Role of protein surface charge in monellin sweetness.

    Science.gov (United States)

    Xue, Wei-Feng; Szczepankiewicz, Olga; Thulin, Eva; Linse, Sara; Carey, Jannette

    2009-03-01

    A small number of proteins have the unusual property of tasting intensely sweet. Despite many studies aimed at identifying their sweet taste determinants, the molecular basis of protein sweetness is not fully understood. Recent mutational studies of monellin have implicated positively charged residues in sweetness. In the present work, the effect of overall net charge was investigated using the complementary approach of negative charge alterations. Multiple substitutions of Asp/Asn and Glu/Gln residues radically altered the surface charge of single-chain monellin by removing six negative charges or adding four negative charges. Biophysical characterization using circular dichroism, fluorescence, and two-dimensional NMR demonstrates that the native fold of monellin is preserved in the variant proteins under physiological solution conditions although their stability toward chemical denaturation is altered. A human taste test was employed to determine the sweetness detection threshold of the variants. Removal of negative charges preserves monellin sweetness, whereas added negative charge has a large negative impact on sweetness. Meta-analysis of published charge variants of monellin and other sweet proteins reveals a general trend toward increasing sweetness with increasing positive net charge. Structural mapping of monellin variants identifies a hydrophobic surface predicted to face the receptor where introduced positive or negative charge reduces sweetness, and a polar surface where charges modulate long-range electrostatic complementarity.

  19. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  20. Surface charging, discharging and chemical modification at a sliding contact

    International Nuclear Information System (INIS)

    Singh, S. V.; Kusano, Y.; Morgen, P.; Michelsen, P. K.

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X-ray photoelectron spectroscopy (XPS). The experiments were performed on the disk surface of a ball-on-rotating-disk apparatus; using a glass disk and a Teflon (polytetrafluoroethylene) ball arrangement, and a polyester disks and a diamondlike carbon (DLC) coated steel ball arrangement. The capacitive probe is designed to perform highly resolved measurements, which is sensitive to relative change in charge density on the probed surface. For glass and Teflon arrangement, electrical measurements show that the ball track acquires non-uniform charging. Here not only the increase in charge density, but interestingly, increase in number of highly charged regions on the ball track was resolved. Threefold increase in the number of such highly charged regions per cycle was detected immediately before the gas breakdown-like incidences compared to that of other charge/discharge incidences at a fixed disk rotation speed. We are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly indicate that the wear and friction (sliding without charging) on the surface can be discarded from inducing such a deoxidation effect.

  1. Why Do Spacecraft Charge in Sunlight? Differential Charging and Surface Condition

    National Research Council Canada - National Science Library

    Lai, Shu T; Tautz, Maurice

    2005-01-01

    .... We compare the results with observations. The second reason concerns reflectance. Much attention has been paid in recent years to the effect of surface conditions on secondary emission, which plays an essential role in spacecraft charging...

  2. Effects of adhesions of amorphous Fe and Al hydroxides on surface charge and adsorption of K+ and Cd2+ on rice roots.

    Science.gov (United States)

    Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou

    2017-11-01

    Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Understanding colloidal charge renormilization from surface chemistry : experiment and theory

    OpenAIRE

    Gisler, Thomas; Schulz, S. F.; Borkovec, Michal; Sticher, Hans; Schurtenberger, Peter; D'Aguanno, Bruno; Klein, Rudolf

    1994-01-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stem capacitance) are determined from tits of a Stem ...

  4. Screening model for nanowire surface-charge sensors in liquid

    DEFF Research Database (Denmark)

    Sørensen, Martin Hedegård; Mortensen, Asger; Brandbyge, Mads

    2007-01-01

    The conductance change of nanowire field-effect transistors is considered a highly sensitive probe for surface charge. However, Debye screening of relevant physiological liquid environments challenge device performance due to competing screening from the ionic liquid and nanowire charge carriers....

  5. Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization.

    Science.gov (United States)

    Bonaccorso, A; Musumeci, T; Serapide, M F; Pellitteri, R; Uchegbu, I F; Puglisi, G

    2017-06-01

    Nose to brain delivery and nanotechnology are the combination of innovative strategies for molecules to reach the brain and to bypass blood brain barriers. In this work we investigated the fate of two rhodamine B labeled polymeric nanoparticles (Z-ave <250nm) of opposite surface charge in different areas of the brain after intranasal administration in rats. A preliminary screening was carried out to select the suitable positive (chitosan/poly-l-lactide-co-glycolide) nanocarrier through photon correlation spectroscopy and turbiscan. Physico-chemical and technological characterizations of poly-l-lactide-co-glycolide (negative) and chitosan/poly-l-lactide-co-glycolide (positive) fluorescent labeled nanoparticles were performed. The animals were allocated to three groups receiving negative and positive polymeric nanoparticles via single intranasal administration or no treatment. The localization of both nanocarriers in different brain areas was detected using fluorescent microscopy. Our data revealed that both nanocarriers reach the brain and are able to persist in the brain up to 48h after intranasal administration. Surface charge influenced the involved pathways in their translocation from the nasal cavity to the central nervous system. The positive charge of nanoparticles slows down brain reaching and the trigeminal pathway is involved, while the olfactory pathway may be responsible for the transport of negatively charged nanoparticles, and systemic pathways are not excluded. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrostatic behavior of the charge-regulated bacterial cell surface.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  7. Effective Topological Charge Cancelation Mechanism.

    Science.gov (United States)

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-06-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems' microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant "impurities" (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy.

  8. Adsorption of cellular peptides of Microcystis aeruginosa and two herbicides onto activated carbon. Effect of surface charge and interactions

    Czech Academy of Sciences Publication Activity Database

    Hnaťuková, Petra; Kopecká, Ivana; Pivokonský, Martin

    2011-01-01

    Roč. 45, č. 11 (2011), s. 3359-3368 ISSN 0043-1354 R&D Projects: GA AV ČR IAA200600902; GA ČR GPP105/10/P515 Institutional research plan: CEZ:AV0Z20600510 Keywords : cellular organic matter * granular activated carbon * molecular weight distribution * surface charge * cyanobacterial peptides Subject RIV: BK - Fluid Dynamics Impact factor: 4.865, year: 2011

  9. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro.

    Science.gov (United States)

    Ge, Yuqing; Zhang, Yu; Xia, Jingguang; Ma, Ming; He, Shiying; Nie, Fang; Gu, Ning

    2009-10-15

    We synthesized three types of magnetic iron oxide nanoparticles (MNPs), which were meso-2,3-dimercaptosuccinic acid (DMSA) coated MNPs (DMSA@MNPs, 17.3+/-4.8 nm, negative charge), chitosan (CS) coated MNPs (CS@MNPs, 16.5+/-6.1 nm, positive charge) and magnetic nanoparticles agglomerates, formed by electronic aggregation between DMSA@MNPs and CS (CS-DMSA@MNPs, 85.7+/-72.9 nm, positive charge) respectively. The interactions of these MNPs with Oral Squamous Carcinoma Cell KB were investigated. The results showed that cellular uptakes of MNPs were on the dependence of incubation time, nanoparticles concentration and nanoparticles properties such as surface charge, size, etc. The cellular uptake was enhanced with the increase of incubation time and nanoparticles concentration. Although all MNPs could enter to cells, we observed apparent differences in the magnitude of nanoparticles uptaken. The cellular uptake of CS-DMSA@MNPs by KB cells was the highest and that of DMSA@MNPs was the lowest among the three types of MNPs. The same conclusions were drawn via the reduction of water proton relaxation times T(2)(*), resulting from the different iron load of labeled cells using a 1.5T clinical MR imager. The finding of this study will have implications in the chemical design of nanomaterials for biomedical applications.

  10. Colloids with continuously tunable surface charge.

    Science.gov (United States)

    van Ravensteijn, Bas G P; Kegel, Willem K

    2014-09-09

    In this paper, we present a robust way to tune the surface potential of polystyrene colloids without changing the pH, ionic strength, etc. The colloids are composed of a cross-linked polystyrene core and a cross-linked vinylbenzyl chloride layer. Besides the chlorine groups, the particle surface contains sulfate/sulfonate groups (arising from the polymerization initiators) that provide a negative surface potential. Performing a Menschutkin reaction on the surface chlorine groups with tertiary amines allows us to introduce quaternary, positively charged amines. The overall charge on the particles is then determined by the ratio between the sulfate/sulfonate moieties and the quaternary amines. Using this process, we were able to invert the charge in a continuous manner without losing colloidal stability upon passing the isoelectric point. The straightforward reaction mechanism together with the fact that the reaction could be quenched rapidly resulted in a colloidal system in which the ζ potential can be tuned between -80 and 45 mV. As proof of principle, the positively charged particles were used in heterocoagulation experiments with nanometer- and micrometer-sized negatively charged silica particles to create geometrically well-defined colloidal (nano) clusters.

  11. Understanding colloidal charge renormalization from surface chemistry: Experiment and theory

    Science.gov (United States)

    Gisler, T.; Schulz, S. F.; Borkovec, M.; Sticher, H.; Schurtenberger, P.; D'Aguanno, B.; Klein, R.

    1994-12-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stern capacitance) are determined from fits of a Stern layer model to the titration data. We find strong evidence that the dissociation of protons is the only specific adsorption process. Effective particle charges are determined by fits of integral equation calculations of the polydisperse static structure factor to the static light scattering data. A generalization of the Poisson-Boltzmann cell model including the dissociation of the acidic surface groups and the autodissociation of water is used to predict effective particle charges from the surface chemical parameters determined by the titration experiments. We find that the light scattering data are best described by a model where a small fraction of the ionizable surface sites are sulfate groups which are completely dissociated at moderate pH. These effective charges are comparable to the predictions by a basic cell model where charge regulation is absent.

  12. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge.

    Science.gov (United States)

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2011-01-04

    An enzyme charge ladder was used to examine the role of electrostatic interactions involved in biocatalysis at the solid-liquid interface. The reactive substrate consisted of an immobilized bovine serum albumin (BSA) multilayer prepared using a layer-by-layer technique. The zeta potential of the BSA substrate and each enzyme variant was measured to determine the absolute charge in solution. Enzyme adsorption and the rate of substrate surface hydrolysis were monitored for the enzyme charge ladder series to provide information regarding the strength of the enzyme-substrate interaction and the rate of interfacial biocatalysis. First, each variant of the charge ladder was examined at pH 8 for various solution ionic strengths. We found that for positively charged variants the adsorption increased with the magnitude of the charge until the surface became saturated. For higher ionic strength solutions, a greater positive enzyme charge was required to induce adsorption. Interestingly, the maximum catalytic rate was not achieved at enzyme saturation but at an invariable intermediate level of adsorption for each ionic strength value. Furthermore, the maximum achievable reaction rate for the charge ladder was larger for higher ionic strength values. We propose that diffusion plays an important role in interfacial biocatalysis, and for strong enzyme-substrate interaction, the rate of diffusion is reduced, leading to a decrease in the overall reaction rate. We investigated the effect of substrate charge by varying the solution pH from 6.1 to 8.7 and by examining multiple ionic strength values for each pH. The same intermediate level of adsorption was found to maximize the overall reaction rate. However, the ionic strength response of the maximum achievable rate was clearly dependent on the pH of the experiment. We propose that this observation is not a direct effect of pH but is caused by the change in substrate surface charge induced by changing the pH. To prove this

  13. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge.

    Science.gov (United States)

    Arzani, Gelareh; Haeri, Azadeh; Daeihamed, Marjan; Bakhtiari-Kaboutaraki, Hamid; Dadashzadeh, Simin

    2015-01-01

    Carvedilol (CRV) is an antihypertensive drug with both alpha and beta receptor blocking activity used to preclude angina and cardiac arrhythmias. To overcome the low, variable oral bioavailability of CRV, niosomal formulations were prepared and characterized: plain niosomes (without bile salts), bile salt-enriched niosomes (bilosomes containing various percentages of sodium cholate or sodium taurocholate), and charged niosomes (negative, containing dicetyl phosphate and positive, containing hexadecyl trimethyl ammonium bromide). All formulations were characterized in terms of encapsulation efficiency, size, zeta potential, release profile, stability, and morphology. Various formulations were administered orally to ten groups of Wistar rats (n=6 per group). The plasma levels of CRV were measured by a validated high-performance liquid chromatography (HPLC) method and pharmacokinetic properties of different formulations were characterized. Contribution of lymphatic transport to the oral bioavailability of niosomes was also investigated using a chylomicron flow-blocking approach. Of the bile salt-enriched vesicles examined, bilosomes containing 20% sodium cholate (F2) and 30% sodium taurocholate (F5) appeared to give the greatest enhancement of intestinal absorption. The relative bioavailability of F2 and F5 formulations to the suspension was estimated to be 1.84 and 1.64, respectively. With regard to charged niosomes, the peak plasma concentrations (Cmax) of CRV for positively (F7) and negatively charged formulations (F10) were approximately 2.3- and 1.7-fold higher than after a suspension. Bioavailability studies also revealed a significant increase in extent of drug absorption from charged vesicles. Tissue histology revealed no signs of inflammation or damage. The study proved that the type and concentration of bile salts as well as carrier surface charge had great influences on oral bioavailability of niosomes. Blocking the lymphatic absorption pathway

  14. Effect of pullulan nanoparticle surface charges on HSA complexation and drug release behavior of HSA-bound nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xiaojun Tao

    Full Text Available Nanoparticle (NP compositions such as hydrophobicity and surface charge are vital to determine the presence and amount of human serum albumin (HSA binding. The HSA binding influences drug release, biocompatibility, biodistribution, and intercellular trafficking of nanoparticles (NPs. Here, we prepared 2 kinds of nanomaterials to investigate HSA binding and evaluated drug release of HSA-bound NPs. Polysaccharides (pullulan carboxyethylated to provide ionic derivatives were then conjugated to cholesterol groups to obtain cholesterol-modified carboxyethyl pullulan (CHCP. Cholesterol-modified pullulan (CHP conjugate was synthesized with a similar degree of substitution of cholesterol moiety to CHCP. CHCP formed self-aggregated NPs in aqueous solution with a spherical structure and zeta potential of -19.9 ± 0.23 mV, in contrast to -1.21 ± 0.12 mV of CHP NPs. NPs could quench albumin fluorescence intensity with maximum emission intensity gradually decreasing up to a plateau at 9 to 12 h. Binding constants were 1.12 × 10(5 M(-1 and 0.70 × 10(5 M(-1 to CHP and CHCP, respectively, as determined by Stern-Volmer analysis. The complexation between HSA and NPs was a gradual process driven by hydrophobic force and inhibited by NP surface charge and shell-core structure. HSA conformation was altered by NPs with reduction of α-helical content, depending on interaction time and particle surface charges. These NPs could represent a sustained release carrier for mitoxantrone in vitro, and the bound HSA assisted in enhancing sustained drug release.

  15. Surface charge measurement using an electrostatic probe

    DEFF Research Database (Denmark)

    Crichton, George C; McAllister, Iain Wilson

    1998-01-01

    During the 1960s, the first measurements of charge on dielectric surfaces using simple electrostatic probes were reported. However it is only within the last 10 years that a proper understanding of the probe response has been developed. This situation arose as a consequence of the earlier studies...

  16. Effects of the surface concentration of fixed charges in C18-bonded stationary phases on the adsorption process and on the preparative chromatography of small ionizable compounds.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2014-11-06

    The effects of the surface concentration of positive charges attached to the surface of research BEH-C 18 hybrid particles on the overloaded band profiles and the adsorption isotherms of a neutral (caffeine) and a positively charged (nortryptilinium hydrochloride) compounds were measured and investigated. The inverse method (IM) of chromatography was used to determine the isotherm parameters. Three columns were packed with endcapped BEH-C 18 particles doped with three different charge densities on their surfaces (LOW, MEDIUM and HIGH). Two other columns packed with unbonded, non-endcapped, and endcapped BEH-C 18 particles served as standard reference materials. Minor disturbance method (MDM) experiments were conducted with acetonitrile/water mixtures in order to assess qualitatively the surface densities of the fixed positive charges. A more quantitative approach based on the solution of the linearized Poisson-Boltzmann equation and the decrease of the experimental Henry constant was also applied. The results show that the surface concentrations of the fixed charges in the LOW, MEDIUM and HIGH columns were 0.029, 0.050, and 0.064μmol/m 2 , e.g., close to two orders of magnitude smaller than the surface density of bonded C 18 chains (2.1μmol/m 2 ). The adsorption isotherm of the ionizable compound nortryptilinium onto the BEH-C 18 columns is consistent with a two-sites adsorption model. The density of the high energy sites correlates directly to the total amount of the fixed charges and isolated silanols amidst the C 18 -bonded chains. The amount of low energy sites reflects the specific surface area of the adsorbent. The binding constants on the high- and low-energy adsorption sites are respectively ten and two times lower on the HIGH column than on the reference endcapped column. The active sites are closer to the adsorbent surface than the weak adsorption sites. Finally, a higher production rate of ionizable compounds can be achieved in preparative

  17. Effects of charge design features on parameters of acoustic and seismic waves and cratering, for SMR chemical surface explosions

    Science.gov (United States)

    Gitterman, Y.

    2012-04-01

    A series of experimental on-surface shots was designed and conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR) in Negev desert, including two large calibration explosions: about 82 tons of strong IMI explosives in August 2009, and about 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources in different weather/wind conditions, for calibration of IMS infrasound stations in Europe, Middle East and Asia. Strong boosters and the upward charge detonation scheme were applied to provide a reduced energy release to the ground and an enlarged energy radiation to the atmosphere, producing enhanced infrasound signals, for better observation at far-regional stations. The following observations and results indicate on the required explosives energy partition for this charge design: 1) crater size and local seismic (duration) magnitudes were found smaller than expected for these large surface explosions; 2) small test shots of the same charge (1 ton) conducted at SMR with different detonation directions showed clearly lower seismic amplitudes/energy and smaller crater size for the upward detonation; 3) many infrasound stations at local and regional distances showed higher than expected peak amplitudes, even after application of a wind-correction procedure. For the large-scale explosions, high-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. Empirical relations for air-blast parameters - peak pressure, impulse and the Secondary Shock (SS) time delay - depending on distance, were developed and analyzed. The parameters, scaled by the cubic root of estimated TNT equivalent charges, were found consistent for all analyzed explosions, except of SS

  18. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per

    2012-01-01

    -ray photoelectron spectroscopy (XPS). The experiments were performed on the disk surface of a ball-on-rotating-disk apparatus; using a glass disk and a Teflon (polytetrafluoroethylene) ball arrangement, and a polyester disks and a diamondlike carbon (DLC) coated steel ball arrangement. The capacitive probe...... is designed to perform highly resolved measurements, which is sensitive to relative change in charge density on the probed surface. For glass and Teflon arrangement, electrical measurements show that the ball track acquires non-uniform charging. Here not only the increase in charge density, but interestingly...... indicate that the wear and friction (sliding without charging) on the surface can be discarded from inducing such a deoxidation effect. © 2012 American Institute of Physics...

  19. Charge transport by holographic Fermi surfaces

    CERN Document Server

    Faulkner, Thomas; Liu, Hong; McGreevy, John; Vegh, David

    2013-01-01

    We compute the contribution to the conductivity from holographic Fermi surfaces obtained from probe fermions in an AdS charged black hole. This requires calculating a certain part of the one-loop correction to a vector propagator on the charged black hole geometry. We find that the current dissipation is as efficient as possible and the transport lifetime coincides with the single-particle lifetime. In particular, in the case where the spectral density is that of a marginal Fermi liquid, the resistivity is linear in temperature.

  20. Combined Effects of Surface Charge and Pore Size on Co-enhanced Permeability and Ion Selectivity through RGO-OCNT Nanofiltration Membranes.

    Science.gov (United States)

    Zhang, Haiguang; Quan, Xie; Chen, Shuo; Fan, Xinfei; Wei, Gaoliang; Yu, Hongtao

    2018-04-04

    Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the co-enhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size are increased. The permeability increased to 10.6 L m-2 h-1 bar-1 and rejection rate reached 78.1% for Na2SO4 filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m-2 h-1 bar-1) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination.

  1. The effect of surface charge on the thermal stability and ice recrystallization inhibition activity of antifreeze protein III (AFP III).

    Science.gov (United States)

    Deller, R C; Carter, B M; Zampetakis, I; Scarpa, F; Perriman, A W

    2018-01-01

    The aim of this study was to examine the effect of chemical cationization on the structure and function of antifreeze protein III (AFP III) over an extreme temperature range (-40°C to +90°C) using far-UV synchrotron radiation circular dichroism (SRCD) and ice recrystallization inhibition (IRI) assays. Chemical cationization was able to produce a modified AFP III with a net cationic charge at physiological pH that had enhanced resistance to denaturation at elevated temperatures, with no immediate negative impact on protein structure at subzero temperatures. Furthermore, cationized AFP III retained an IRI activity similar to that of native AFP III. Consequently, chemical cationization may provide a pathway to the development of more robust antifreeze proteins as supplementary cryoprotectants in the cryopreservation of clinically relevant cells. Copyright © 2017. Published by Elsevier Inc.

  2. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Gustavo A.; Lohse, Samuel E.; Torelli, Marco; Murphy, Catherine; Hamers, Robert J.; Orr, Galya; Klaper, Rebecca D.

    2015-05-01

    Concern has been raised regarding the current and future release of engineered nanomaterials into aquatic environments from industry and other sources. However, not all nanomaterials may cause an environ-mental impact and identifying which nanomaterials may be of greatest concern has been difficult. It is thought that the surface groups of a functionalized nanoparticles (NPs) may play a significant role in determining their interactions with aquatic organisms, but the way in which surface properties of NPs impact their toxicity in whole organisms has been minimally explored. A major point of interaction of NPs with aquatic organisms is in the gastrointestinal tract as they ingest particulates from the water column or from the sediment. The main goal of this study was to use model gold NP (AuNPs) to evaluate the potential effects of the different surfaces groups on NPs on the gut of an aquatic model organism, Daphnia magna. In this study, we exposed daphnids to a range of AuNPs concentrations and assessed the impact of AuNP exposure in the daphnid gut by measuring reactive oxygen species (ROS) production and expression of genes associated with oxidative stress and general cellular stress: glutathione S-transferase(gst), catalase (cat), heat shock protein 70 (hsp70), and metallothionein1 (mt1). We found ROS formation and gene expression were impacted by both charge and the specific surface ligand used. We detected some degree of ROS production in all NP exposures, but positively charged AuNPs induced a greater ROS response. Similarly, we observed that, compared to controls, both positively charged AuNPs and only one negatively AuNP impacted expression of genes associated with cellular stress. Finally, ligand-AuNP exposures showed a different toxicity and gene expression profile than the ligand alone, indicating a NP specific effect.

  3. Influence of surface charge on lysozyme adsorption to ceria nanoparticles

    International Nuclear Information System (INIS)

    Wang Binghui; Wu Peng; Yokel, Robert A.; Grulke, Eric A.

    2012-01-01

    Understanding mechanisms for forming protein coronas on nanomaterial surfaces is essential to designing drug delivery systems and designing and interpreting the results of nanomaterial toxicity tests. The study reports the adsorption behavior of a positively charged protein, lysozyme, on cerium dioxide (ceria) nanoparticles with three different surface charges. Adsorption isotherms were modeled with the Toth and Sips equations. Isotherm loading levels were compared to monolayer coverage estimate for ‘side-on’ and ‘end-on’ lysozyme orientations as well as random packing (jamming) and maximum packing limits. Evaluation of adsorption site energy distributions (generated using the model coefficients) suggested that the negatively charged ceria surface had a very broad site energy distribution and that its surface heterogeneity controls the adsorption process. By contrast, the adsorption of lysozyme on the positively charged nanoparticles appears to be influenced by lateral effects from adsorbed protein species. The results illustrate the importance of nanoparticle surface chemistry to protein adsorption. The modeling and site energy distribution evaluations may be useful for interpreting the formation of protein coronas on nanoparticles.

  4. Thermal noise due to surface-charge effects within the Debye layer of endogenous structures in dendrites

    Science.gov (United States)

    Poznanski, Roman R.

    2010-02-01

    An assumption commonly used in cable theory is revised by taking into account electrical amplification due to intracellular capacitive effects in passive dendritic cables. A generalized cable equation for a cylindrical volume representation of a dendritic segment is derived from Maxwell’s equations under assumptions: (i) the electric-field polarization is restricted longitudinally along the cable length; (ii) extracellular isopotentiality; (iii) quasielectrostatic conditions; and (iv) homogeneous medium with constant conductivity and permittivity. The generalized cable equation is identical to Barenblatt’s equation arising in the theory of infiltration in fissured strata with a known analytical solution expressed in terms of a definite integral involving a modified Bessel function and the solution to a linear one-dimensional classical cable equation. Its solution is used to determine the impact of thermal noise on voltage attenuation with distance at any particular time. A regular perturbation expansion for the membrane potential about the linear one-dimensional classical cable equation solution is derived in terms of a Green’s function in order to describe the dynamics of free charge within the Debye layer of endogenous structures in passive dendritic cables. The asymptotic value of the first perturbative term is explicitly evaluated for small values of time to predict how the slowly fluctuating (in submillisecond range) electric field attributed to intracellular capacitive effects alters the amplitude of the membrane potential. It was found that capacitive effects are almost negligible for cables with electrotonic lengths L>0.5 , contributes up to 10% of the signal for cables with electrotonic lengths in the range between 0.25

  5. Thermal noise due to surface-charge effects within the Debye layer of endogenous structures in dendrites.

    Science.gov (United States)

    Poznanski, Roman R

    2010-02-01

    An assumption commonly used in cable theory is revised by taking into account electrical amplification due to intracellular capacitive effects in passive dendritic cables. A generalized cable equation for a cylindrical volume representation of a dendritic segment is derived from Maxwell's equations under assumptions: (i) the electric-field polarization is restricted longitudinally along the cable length; (ii) extracellular isopotentiality; (iii) quasielectrostatic conditions; and (iv) homogeneous medium with constant conductivity and permittivity. The generalized cable equation is identical to Barenblatt's equation arising in the theory of infiltration in fissured strata with a known analytical solution expressed in terms of a definite integral involving a modified Bessel function and the solution to a linear one-dimensional classical cable equation. Its solution is used to determine the impact of thermal noise on voltage attenuation with distance at any particular time. A regular perturbation expansion for the membrane potential about the linear one-dimensional classical cable equation solution is derived in terms of a Green's function in order to describe the dynamics of free charge within the Debye layer of endogenous structures in passive dendritic cables. The asymptotic value of the first perturbative term is explicitly evaluated for small values of time to predict how the slowly fluctuating (in submillisecond range) electric field attributed to intracellular capacitive effects alters the amplitude of the membrane potential. It was found that capacitive effects are almost negligible for cables with electrotonic lengths L>0.5 , contributes up to 10% of the signal for cables with electrotonic lengths in the range between 0.25thermal noise due to intracellular capacitive effects. The presence of significant thermal noise weakens the assumption of intracellular isopotentiality when approximating dendrites with compartments.

  6. Ion association at discretely-charged dielectric interfaces: Giant charge inversion [Dielectric response controlled ion association at physically heterogeneous surfaces: Giant charge reversal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi -Yong [Chongqing Univ. of Technology, Chongqing (China); Univ. of California, Riverside, CA (United States); Wu, Jianzhong [Univ. of California, Riverside, CA (United States)

    2017-07-11

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  7. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav

    2011-11-28

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  8. Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors

    DEFF Research Database (Denmark)

    De Vico, L.; Iversen, L.; Sørensen, Martin Hedegård

    2011-01-01

    changes (e.g. a positive signal change due to a net positive protein binding to a p-type conductor) can occur for certain combinations of charge distributions and Debye lengths. The new method is applied to interpret published experimental data on Streptavidin (Ishikawa et al., ACS Nano, 2009, 3, 3969......-3976) and Nucleocapsid protein (Ishikawa et al., ACS Nano, 2009, 3, 1219-1224)....

  9. Chemical sensors based on surface charge transfer

    Science.gov (United States)

    Mohtasebi, Amirmasoud; Kruse, Peter

    2018-02-01

    The focus of this review is an introduction to chemiresistive chemical sensors. The general concept of chemical sensors is briefly introduced, followed by different architectures of chemiresistive sensors and relevant materials. For several of the most common systems, the fabrication of the active materials used in such sensors and their properties are discussed. Furthermore, the sensing mechanism, advantages, and limitations of each group of chemiresistive sensors are briefly elaborated. Compared to electrochemical sensors, chemiresistive sensors have the key advantage of a simpler geometry, eliminating the need for a reference electrode. The performance of bulk chemiresistors can be improved upon by using freestanding ultra-thin films (nanomaterials) or field effect geometries. Both of those concepts have also been combined in a gateless geometry, where charge transport though a percolation network of nanomaterials is modulated via adsorbate doping.

  10. Depth Distribution Studies of Carbon in Steel Surfaces by Means of Charged Particle Activation Analysis with an Account of Heat and Diffusion Effects in the Sample

    International Nuclear Information System (INIS)

    Brune, D.; Lorenzen, J.; Witalis, E.

    1972-05-01

    Depth distribution studies of carbon in steel and iron were carried out in the concentration range 0.05-1 %, using proton activation analysis. Surface content studies were performed in the concentration range 0.01-1 % using deuteron activation analysis. The following reactions were utilized: 12 C(p,γ) 13 N and 12 C(d,n) 13 N Evaluations of depth distribution were based on resonances in the excitation function. The carbon content was determined with the aid of the positron emitter, 13 N, using either single-peak or coincidence measurements. The heat dissipation in the irradiated region of the samples was calculated, and the temperature rise was measured using thermocouples. The temperature distribution within the hot zone subjected to irradiation by charged particles, together with the temperature distribution around this zone, was studied in order to estimate any effect this might have on the carbon diffusion. A device for automatic sample exchange which is remotely controlled is described

  11. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    Science.gov (United States)

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  12. Improving Charging-Breeding Simulations with Space-Charge Effects

    Science.gov (United States)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  13. Fractional Effective Charges and Misner-Wheeler Charge without Charge Effect in Metamaterials

    Directory of Open Access Journals (Sweden)

    Igor Smolyaninov

    2016-07-01

    Full Text Available Transformation optics enables engineering of the effective topology and dimensionality of the optical space in metamaterials. Nonlinear optics of such metamaterials may mimic Kaluza-Klein theories having one or more kinds of effective charges. As a result, novel photon blockade devices may be realized. Here we demonstrate that an electromagnetic wormhole may be designed, which connects two points of such an optical space and changes its effective topological connectivity. Electromagnetic field configurations, which exhibit fractional effective charges, appear as a result of such topology change. Moreover, such effects as Misner-Wheeler “charge without charge” may be replicated.

  14. Corrected Debye-Hückel analysis of surface complexation. II. A theory of surface charging.

    Science.gov (United States)

    Gunnarsson, Magnus; Abbas, Zareen; Ahlberg, Elisabet; Gobom, Sylvia; Nordholm, Sture

    2002-05-01

    A theory of surface charging of colloidal particles suspended in an electrolyte solution is presented. The charging at the particle surface is assumed to originate from the adsorption and desorption of protons and is therefore strongly dependent on the acidity of the solution. The surface binding of protons occurs locally at sites of occupancy zero or one that are described by a binding energy u(0) and a three-dimensional vibration of frequency nu. The diffuse screening of ions at the surface is described by the corrected Debye-Hückel analysis assuming linear response. The model contains a capacitor layer close to the charged surface and the finite size of the electrolyte ions is taken into account. The theory has been applied to titrated surface charge data on goethite (alpha-FeOOH) at NaClO(4) background concentrations ranging from 0.01 to 1.0 M. The protonation mechanism used in the modeling of these data corresponds to the 1-pK approach. A very good description of the experimental data was obtained at the highest ionic strength. Close to the pH(pzc) the theory also gave a good description at lower ionic strengths. However, at low salt concentrations and pH values far away from the pH(pzc) the electrostatic potential outside the capacitor layer becomes so high that nonlinear electrostatic effects become important and the theory therefore underestimates the surface charge. These results were compared with model calculations obtained using existing surface complexation models.

  15. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.

    Science.gov (United States)

    Carlsson, Daniel O; Hua, Kai; Forsgren, Johan; Mihranyan, Albert

    2014-01-30

    TEMPO-mediated surface oxidation of mesoporous highly crystalline Cladophora cellulose was used to introduce negative surface charges onto cellulose nanofibrils without significantly altering other structural characteristics. This enabled the investigation of the influence of mesoporous nanocellulose surface charges on aspirin chemical stability to be conducted. The negative surface charges (carboxylate content 0.44±0.01 mmol/g) introduced on the mesoporous crystalline nanocellulose significantly accelerated aspirin degradation, compared to the starting material which had significantly less surface charge (0.06±0.01 mmol/g). This effect followed from an increased aspirin amorphisation ability in mesopores of the oxidized nanocellulose. These results highlight the importance of surface charges in formulating nanocellulose for drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Mapping and Quantifying Surface Charges on Clay Nanoparticles.

    Science.gov (United States)

    Liu, Jun; Gaikwad, Ravi; Hande, Aharnish; Das, Siddhartha; Thundat, Thomas

    2015-09-29

    Understanding the electrical properties of clay nanoparticles is very important since they play a crucial role in every aspect of oil sands processing, from bitumen extraction to sedimentation in mature fine tailings (MFT). Here, we report the direct mapping and quantification of surface charges on clay nanoparticles using Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). The morphology of clean kaolinite clay nanoparticles shows a layered structure, while the corresponding surface potential map shows a layer-dependent charge distribution. More importantly, a surface charge density of 25 nC/cm(2) was estimated for clean kaolinite layers by using EFM measurements. On the other hand, the EFM measurements show that the clay particles obtained from the tailings demonstrate a reduced surface charge density of 7 nC/cm(2), which may be possibly attributed to the presence of various bituminous compounds residing on the clay surfaces.

  17. Modeling the Electric Potential and Surface Charge Density Near Charged Thunderclouds

    Science.gov (United States)

    Neel, Matthew Stephen

    2018-03-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and cloud-to-ground lightning. We wish to examine the latter form, in which upward leaders from Earth connect with downward leaders from the cloud to form a plasma channel and produce lightning. Much of the literature indicates that the lower part of a thundercloud becomes negatively charged while the upper part becomes positively charged via convective charging, although the opposite polarity can certainly exist along with various, complex intra-cloud currents. It is estimated that >90% of cloud-to-ground lightning is "negative lightning," or the flow of charges from the bottom of the cloud, while the remaining the flow of charges from the top of the cloud. We wish to understand the electric potential surrounding charged thunderclouds as well as the resulting charge density on the surface of Earth below them. In this paper we construct a simple and adaptable model that captures the very basic features of the cloud/ground system and that exhibits conditions favorable for both forms of lightning. In this way, we provide a practical application of electrostatic dipole physics as well as the method of images that can serve as a starting point for further modeling and analysis by students.

  18. The interplay between surface charging and microscale roughness during plasma etching of polymeric substrates

    Science.gov (United States)

    Memos, George; Lidorikis, Elefterios; Kokkoris, George

    2018-02-01

    The surface roughness developed during plasma etching of polymeric substrates is critical for a variety of applications related to the wetting behavior and the interaction of surfaces with cells. Toward the understanding and, ultimately, the manipulation of plasma induced surface roughness, the interplay between surface charging and microscale roughness of polymeric substrates is investigated by a modeling framework consisting of a surface charging module, a surface etching model, and a profile evolution module. The evolution of initially rough profiles during plasma etching is calculated by taking into account as well as by neglecting charging. It is revealed, on the one hand, that the surface charging contributes to the suppression of root mean square roughness and, on the other hand, that the decrease of the surface roughness induces a decrease of the charging potential. The effect of charging on roughness is intense when the etching yield depends solely on the ion energy, and it is mitigated when the etching yield additionally depends on the angle of ion incidence. The charging time, i.e., the time required for reaching a steady state charging potential, is found to depend on the thickness of the polymeric substrate, and it is calculated in the order of milliseconds.

  19. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Zhao-Dong Liu

    2017-08-01

    Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  20. Experimental and Theoretical Investigations of Glass Surface Charging Phenomena

    Science.gov (United States)

    Agnello, Gabriel

    Charging behavior of multi-component display-type (i.e. low alkali) glass surfaces has been studied using a combination of experimental and theoretical methods. Data obtained by way of a Rolling Sphere Test (RST), streaming/zeta potential and surface energy measurements from commercially available display glass surfaces (Corning EAGLE XGRTM and Lotus(TM) XT) suggest that charge accumulation is highly dependent on surface treatment (chemical and/or physical modification) and measurement environment, presumably through reactionary mechanisms at the surface with atmospheric moisture. It has been hypothesized that water dissociation, along with the corresponding hydroxylation of the glass surface, are important processes related to charging in glass-metal contact systems. Classical Molecular Dynamics (MD) simulations, in conjunction with various laboratory based measurements (RST, a newly developed ElectroStatic Gauge (ESG) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)) on simpler Calcium AluminoSilicate (CAS) glass surfaces were used to further explore these phenomena. Analysis of simulated high-silica content (≥50%) (CAS) glass structures suggest that controlled variation of bulk chemistry can directly affect surface defect concentrations, such as non-bridging oxygen (NBO), which can be suitable high-energy sites for hydrolysis-type reactions to occur. Calculated NBO surface concentrations correlate well with charge based measurements on laboratory fabricated CAS surfaces. The data suggest that a directional/polar shift in contact-charge transfer occurs at low silica content (≤50%) where the highest concentrations of NBOs are observed. Surface charging sensitivity with respect to NBO concentration decreases as the relative humidity of the measurement environment increases; which should be expected as the highly reactive sites are progressively covered by liquid water layers. DRIFTS analysis of CAS powders expand on this analysis showing

  1. DETERMINATION OF SURFACE CHARGE DENSITY OF α ...

    African Journals Online (AJOL)

    a

    . ... include manufacture of aerospace housing, automotive and jet engines and lead acid batteries. [2]. In specialised ... diameter of one hydrated ion) from the surface of the oxide (ψd) are normally measured through methods such as ...

  2. On the physics of both surface overcharging and charge reversal at heterophase interfaces.

    Science.gov (United States)

    Wang, Zhi-Yong; Zhang, Pengli; Ma, Zengwei

    2018-02-07

    The conventional paradigm for characterizing surface overcharging and charge reversal is based on the so-called Stern layer, in which surface dissociation reaction and specific chemical adsorption are assumed to take place. In this article, a series of Monte Carlo simulations have been applied to obtain useful insights into the underlying physics responsible for these two kinds of anomalous phenomena at the interface of two dielectrics, with special emphasis on the case of divalent counterions that are more relevant in natural and biological environments. At a weakly charged surface, it is found that independent of the type of surface charge distribution and the dielectric response of the solution, the overcharging event is universally driven by the ion size-asymmetric effect. Exceptionally, the overcharging still persists when the surface is highly charged but is only restricted to the case of discrete surface charge in a relatively low dielectric medium. As compared to the adsorption onto the homogeneously smeared charge surface that has the same average affinity for counterions, on the other hand, charge reversal under the action of a dielectric response can be substantially enhanced in the discrete surface charge representation due to strong association of counterions with interfacial groups, and the degree of enhancement depends in a nontrivial way on the reduction of the medium dielectric constant and the steric effects of finite ion size. Rather interestingly, the charge reversal is of high relevance to the overcharging of interfaces because the overwhelming interfacial association forces the coions closer to the surface due to their smaller size than the counterions. Upon the addition of a monovalent salt to the solution, the interfacial association with divalent counterions makes surface overcharging and charge reversal widely unaffected, in contrast to the prevailing notion that screening of surface charge of a homogeneous nature is determined by the

  3. Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces

    Science.gov (United States)

    Munoz, Raul C.; Arenas, Claudio

    2017-03-01

    We discuss recent progress regarding size effects and their incidence upon the coefficients describing charge transport (resistivity, magnetoresistance, and Hall effect) induced by electron scattering from disordered grain boundaries and from rough surfaces on metallic nanostructures; we review recent measurements of the magneto transport coefficients that elucidate the electron scattering mechanisms at work. We review as well theoretical developments regarding quantum transport theories that allow calculating the increase in resistivity induced by electron-rough surface scattering (in the absence of grain boundaries) from first principles—from the parameters that describe the surface roughness that can be measured with a Scanning Tunnelling Microscope (STM). We evaluate the predicting power of the quantum version of the Fuchs-Sondheimer theory and of the model proposed by Calecki, abandoning the method of parameter fitting used for decades, but comparing instead theoretical predictions with resistivity measured in thin films where surface roughness has also been measured with a STM, and where electron-grain boundary scattering can be neglected. We also review the theory of Mayadas and Shatzkes (MS) [Phys. Rev. B 1, 1382 (1970)] used for decades, and discuss its severe conceptual difficulties that arise out of the fact that: (i) MS employed plane waves to describe the electronic states within the metal sample having periodic grain boundaries, rather than the Bloch states known since the thirties to be the solutions of the Schrödinger equation describing electrons propagating through a Krönig-Penney [Proc. R. Soc. London Ser. A 130, 499 (1931)] periodic potential; (ii) MS ignored the fact that the wave functions describing electrons propagating through a 1-D disordered potential are expected to decay exponentially with increasing distance, a fact known since the work of Anderson [Phys. Rev. 109, 1492 (1958)] in 1958 for which he was awarded the Nobel Prize in

  4. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  5. Laboratory measurements of dusty surface charging in plasma.

    Science.gov (United States)

    Chou, Kevin; Wang, Joseph

    2017-09-01

    A novel method is developed to study the charging of a conducting surface covered by a thin dust layer in plasma. The potential profile in the dust layer and the floating potential of the surface underneath are measured directly by embedding conducting wires in the dust and connecting the wires to a measurement plate outside the vacuum chamber, where a Trek non-contacting electrostatic voltmeter measures the floating potential of the measurement plate. Laboratory experiments are carried out to study plasma charging of a conducting plate covered by lunar dust simulant, JSC-1A. The results show that the plate potential is dependent on both the ambient plasma condition and the dust layer thickness. The current balance condition controls the floating potential of the dust surface while the dust layer acts as a capacitor and controls the potential of the plate with respect to the dust surface. Hence, a dust covered conducting plate will be charged more negatively than a clean plate.

  6. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  7. Surface charge algebra in gauge theories and thermodynamic integrability

    International Nuclear Information System (INIS)

    Barnich, Glenn; Compere, Geoffrey

    2008-01-01

    Surface charges and their algebra in interacting Lagrangian gauge field theories are constructed out of the underlying linearized theory using techniques from the variational calculus. In the case of exact solutions and symmetries, the surface charges are interpreted as a Pfaff system. Integrability is governed by Frobenius' theorem and the charges associated with the derived symmetry algebra are shown to vanish. In the asymptotic context, we provide a generalized covariant derivation of the result that the representation of the asymptotic symmetry algebra through charges may be centrally extended. Comparison with Hamiltonian and covariant phase space methods is made. All approaches are shown to agree for exact solutions and symmetries while there are differences in the asymptotic context

  8. Charged particle discrimination with silicon surface barrier detectors

    International Nuclear Information System (INIS)

    Coote, G.E.; Pithie, J.; Vickridge, I.C.

    1996-01-01

    The application for materials analysis of nuclear reactions that give rise to charged particles is a powerful surface analytical and concentration depth profiling technique. Spectra of charged particles, with energies in the range 0.1 to 15 MeV, emitted from materials irradiated with beams of light nuclei such as deuterons are measured with silicon surface barrier detectors. The spectra from multi-elemental materials typically encountered in materials research are usually composed of an overlapping superposition of proton, alpha, and other charged particle spectra. Interpretation of such complex spectra would be simplified if a means were available to electronically discriminate between the detector response to the different kinds of charged particle. We have investigated two methods of discriminating between different types of charged particles. The fast charge pulses from a surface barrier detector have different shapes, depending on the spatial distribution of energy deposition of the incident particle. Fast digitisation of the pulses, followed by digital signal processing provides one avenue for discrimination. A second approach is to use a thin transmission detector in front of a thick detector as a detector telescope. For a given incident energy, different types of charged particles will lose different amounts of energy in the thin detector, providing an alternative means of discrimination. We show that both approaches can provide significant simplification in the interpretation of charged particle spectra in practical situations, and suggest that silicon surface barrier detectors having graded electronic properties could provide improved discrimination compared to the current generation of detectors having homogeneous electronic properties. (author).12 refs., 2 tabs., 28 figs

  9. Structural and electrostatic effects at the surfaces of size- and charge-selected aqueous nanodrops† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00481h Click here for additional data file.

    OpenAIRE

    Cooper, Richard J.; O'Brien, Jeremy T.; Chang, Terrence M.; Williams, Evan R.

    2017-01-01

    The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory. IRPD spectra of M(H2O) n where M = La3+, Ca2+, Na+, Li+, I–, SO4 2– and supporting molecular dynamics simulations indicate that strong interactions between multiply charged ions and water molecules can disrupt optimal hydrogen bonding (H-bonding) at the na...

  10. Structural and electrostatic effects at the surfaces of size- and charge-selected aqueous nanodrops† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00481h Click here for additional data file.

    Science.gov (United States)

    Cooper, Richard J.; O'Brien, Jeremy T.; Chang, Terrence M.

    2017-01-01

    The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory. IRPD spectra of M(H2O)n where M = La3+, Ca2+, Na+, Li+, I–, SO4 2– and supporting molecular dynamics simulations indicate that strong interactions between multiply charged ions and water molecules can disrupt optimal hydrogen bonding (H-bonding) at the nanodrop surface. The IRPD spectra also reveal that “free” OH stretching frequencies of surface-bound water molecules are highly sensitive to the ion's identity and the OH bond's local H-bond environment. The measured frequency shifts are qualitatively reproduced by a computationally inexpensive point-charge model that shows the frequency shifts are consistent with a Stark shift from the ion's electric field. For multiply charged cations, pronounced Stark shifting is observed for clusters containing ∼100 or fewer water molecules. This is attributed to ion-induced solvent patterning that extends to the nanodrop surface, and serves as a spectroscopic signature for a cation's ability to influence the H-bond network of water located remotely from the ion. The Stark shifts measured for the larger nanodrops are extrapolated to infinite dilution to obtain the free OH stretching frequency of a surface-bound water molecule at the bulk air–water interface (3696.5–3701.0 cm–1), well within the relatively wide range of values obtained from SFG measurements. These cluster measurements also indicate that surface curvature effects can influence the free OH stretching frequency, and that even nanodrops without an ion have a surface potential that depends on cluster size. PMID:28970907

  11. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges

    NARCIS (Netherlands)

    Bhattacharjee, S.; Rietjens, I.M.C.M.; Singh, M.P.; Atkins, T.M.; Purkait, T.K.; Xu, Z.; Regli, S.; Shukaliak, A.; Clark, R.J.; Mitchell, B.S.; Alink, G.M.; Marcelis, A.T.M.; Fink, M.J.; Veinot, J.G.C.; Kauzlarich, S.M.; Zuilhof, H.

    2013-01-01

    Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying

  12. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  13. Influence of nanopore surface charge and magnesium ion on polyadenosine translocation.

    Science.gov (United States)

    Lepoitevin, Mathilde; Coulon, Pierre Eugène; Bechelany, Mikhael; Cambedouzou, Julien; Janot, Jean-Marc; Balme, Sebastien

    2015-04-10

    We investigate the influence of a nanopore surface state and the addition of Mg(2+) on poly-adenosine translocation. To do so, two kinds of nanopores with a low aspect ratio (diameter ∼3-5 nm, length 30 nm) were tailored: the first one with a negative charge surface and the second one uncharged. It was shown that the velocity and the energy barrier strongly depend on the nanopore surface. Typically if the nanopore and polyA exhibit a similar charge, the macromolecule velocity increases and its global energy barrier of entrance in the nanopore decreases, as opposed to the non-charged nanopore. Moreover, the addition of a divalent chelating cation induces an increase of energy barrier of entrance, as expected. However, for a negative nanopore, this effect is counterbalanced by the inversion of the surface charge induced by the adsorption of divalent cations.

  14. Surface Charge and Ion Sorption Properties of Titanium Dioxide

    Science.gov (United States)

    Ridley, M. K.; Machesky, M. L.; Wesolowski, D. J.; Finnegan, M. P.; Palmer, D. A.

    2001-12-01

    The interaction of submicron metal oxide particles with natural aqueous solutions results in the hydroxylation of surface sites, which impart a pH-dependent surface charge. The charged submicron particles influence processes such as nanoparticle assembly and alteration, crystal growth rates and morphologies, colloid flocculation, and contaminant transport. The surface charge and ion sorption properties of metal-oxide particles may be studied by potentiometric titrations, using hydrogen-electrode concentration-cells or traditional glass electrodes and an autotitrator. These techniques have been used to quantify the adsorption of various ions (Na+, Rb+, Ca2+, Sr2+, Cl-) on rutile, at ionic strengths up to 1.0 molality and temperatures to 250° C. The crystalline rutile used in these studies is less than 400 nm in diameter, has a BET surface area of 17 m2/g, and the 110 and 100 faces predominate. The negative surface charge of the rutile was enhanced by increasing temperature, increasing ionic strength, and decreasing the ionic radii of the electrolyte cation. Moreover, the addition of a divalent cation significantly enhances the negative charge of the rutile surface. These data have been rationalized with the MUSIC model of Hiemestra and van Riemsdijk, and a Basic Stern layer description of the electric double layer (EDL). Model fitting of the experimental data provides binding constants for the adsorbed counterions and divalent cations, and capacitance values as well as corresponding electrical potential values of the binding planes. Recently, new studies have been initiated to determine particle size affects on the proton induced surface charge and ion sorption properties of titanium dioxide. In these studies, anatase with a BET surface area of 40 and 100 m2/g (primary particle sizes of 40 and 10 nm, respectively) is being investigated. The complexity of both the experimental and modeling procedures increases with decreasing particle size. For example, the fine

  15. Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces

    Science.gov (United States)

    Xie, Yun; Zhou, Jian; Jiang, Shaoyi

    2010-02-01

    In this work, the parallel tempering Monte Carlo (PTMC) algorithm is applied to accurately and efficiently identify the global-minimum-energy orientation of a protein adsorbed on a surface in a single simulation. When applying the PTMC method to simulate lysozyme orientation on charged surfaces, it is found that lysozyme could easily be adsorbed on negatively charged surfaces with "side-on" and "back-on" orientations. When driven by dominant electrostatic interactions, lysozyme tends to be adsorbed on negatively charged surfaces with the side-on orientation for which the active site of lysozyme faces sideways. The side-on orientation agrees well with the experimental results where the adsorbed orientation of lysozyme is determined by electrostatic interactions. As the contribution from van der Waals interactions gradually dominates, the back-on orientation becomes the preferred one. For this orientation, the active site of lysozyme faces outward, which conforms to the experimental results where the orientation of adsorbed lysozyme is co-determined by electrostatic interactions and van der Waals interactions. It is also found that despite of its net positive charge, lysozyme could be adsorbed on positively charged surfaces with both "end-on" and back-on orientations owing to the nonuniform charge distribution over lysozyme surface and the screening effect from ions in solution. The PTMC simulation method provides a way to determine the preferred orientation of proteins on surfaces for biosensor and biomaterial applications.

  16. Effect of Stochastic Charge Fluctuations on Dust Dynamics

    Science.gov (United States)

    Matthews, Lorin; Shotorban, Babak; Hyde, Truell

    2017-10-01

    The charging of particles in a plasma environment occurs through the collection of electrons and ions on the particle surface. Depending on the particle size and the plasma density, the standard deviation of the number of collected elementary charges, which fluctuates due to the randomness in times of collisions with electrons or ions, may be a significant fraction of the equilibrium charge. We use a discrete stochastic charging model to simulate the variations in charge across the dust surface as well as in time. The resultant asymmetric particle potentials, even for spherical grains, has a significant impact on the particle coagulation rate as well as the structure of the resulting aggregates. We compare the effects on particle collisions and growth in typical laboratory and astrophysical plasma environments. This work was supported by the National Science Foundation under Grant PHY-1414523.

  17. Surface potential based modeling of charge, current, and capacitances in DGTFET including mobile channel charge and ambipolar behaviour

    Science.gov (United States)

    Jain, Prateek; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh

    2017-08-01

    We present a surface potential based analytical model for double gate tunnel field effect transistor (DGTFET) for the current, terminal charges, and terminal capacitances. The model accounts for the effect of the mobile charge in the channel and captures the device physics in depletion as well as in the strong inversion regime. The narrowing of the tunnel barrier in the presence of mobile charges in the channel is incorporated via modeling of the inverse decay length, which is constant under channel depletion condition and bias dependent under inversion condition. To capture the ambipolar current behavior in the model, tunneling at the drain junction is also included. The proposed model is validated against TCAD simulation data and it shows close match with the simulation data.

  18. The protective nature of passivation films on zinc: surface charge

    International Nuclear Information System (INIS)

    Muster, Tim H.; Cole, Ivan S.

    2004-01-01

    The influence of oxide surface charge on the corrosion performance of zinc metals was investigated. Oxidised zinc species (zinc oxide, zinc hydroxychloride, zinc hydroxysulfate and zinc hydroxycarbonate) with chemical compositions similar to those produced on zinc during atmospheric corrosion were formed as particles from aqueous solution, and as passive films deposited onto zinc powder, and rolled zinc, surfaces. Synthesized oxides were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and electron probe X-ray microanalysis. The zeta potentials of various oxide particles, as determined by microelectrophoresis, are reported as a function of pH. Particulates containing a majority of zinc hydroxycarbonate and zinc hydroxysulfate crystallites were found to possess a negative surface charge below pH 6, whilst zinc oxide-hydroxide and zinc hydroxychloride crystallites possessed isoelectric points (IEP's) higher than pH 8. The ability of chloride species to pass through a bed of 3 μm diameter zinc powder was found to increase for surfaces possessing carboxy and sulfate surface species, suggesting that negatively charged surfaces can aid in the repulsion of chloride ions. Electrochemical analysis of the open-circuit potential as a function of time at a fixed pH of 6.5 showed that the chemical composition of passive films on zinc plates influenced the ability of chloride ions to access anodic sites for periods of approximately 1 h

  19. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    Science.gov (United States)

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.

  20. Fluctuation charge effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)

    2008-05-21

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.

  1. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    International Nuclear Information System (INIS)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-01-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr 2 O 3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr 2 O 3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr 2 O 3 coatings. (paper)

  2. Effective charge of energetic ions in metals

    International Nuclear Information System (INIS)

    Kitagawa, M.; Brandt, W.

    1983-01-01

    The effective charge of energetic ion, as derived from stopping power of metals, is calculated by use of a dielectronic-response function method. The electronic distribution in the ion is described through the variational principle in a statistical approximation. The dependences of effective charge on the ion velocity, atomic number and r/sub s/-value of metal are derived at the low-velocity region. The effective charge becomes larger than the real charge of ion due to the close collisions. We obtain the quasi-universal equation of the fractional effective electron number of ion as a function of the ratio between the ionic size and the minimum distance approach. The comparsion between theoretical and experimental results of the effective charge is performed for the cases of N ion into Au, C and Al. We also discuss the equipartition rule of partially ionized ion at the high-velocity region

  3. Dynamics of surface screening charges on domains of BiFeO3 films

    Directory of Open Access Journals (Sweden)

    Jun-xing Gu

    2016-01-01

    Full Text Available The dynamics of surface screening charges on BiFeO3 films with pre-written stripe domains was studied with surface potential measurements by Kelvin Probe Force Microscopy. The screening effect decays exponentially over time, and this decay is slower in the arrays with wider domains or larger intervals of domains, indicating that the in-plane diffusion of the surface screening charges plays a major role in the decay dynamics. The good agreement between experimental data and theoretical results based on diffusion-drift model confirms the mechanism of in-plane diffusion of the screening charges in the decay dynamics. Our work could provide a pathway to control the data stability of charge storage by artificially designing the ferroelectric domains.

  4. Solvation effects on like-charge attraction.

    Science.gov (United States)

    Ghanbarian, Shahzad; Rottler, Jörg

    2013-02-28

    We present results of molecular dynamics simulations of the electrostatic interaction between two parallel charged rods in the presence of divalent counterions. Such polyelectrolytes have been considered as a simple model for understanding electrostatic interactions in highly charged biomolecules such as DNA. Since there are correlations between the free charge carriers, the phenomenon of like charge attraction appears for specific parameters. We explore the role of solvation effects and the resulting deviations from Coulomb's law on the nanoscale on this peculiar phenomenon. The behavior of the force between the charged rods in a simulation with atomistic representation of water molecules is completely different from a model in which water is modeled as a continuum dielectric. By calculating counterion-rodion pair correlation functions, we find that the presence of water molecules changes the structure of the counterion cloud and results in both qualitative and quantitative changes of the force between highly charged polyelectrolytes.

  5. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  6. Polarons, free charge localisation and effective dielectric permittivity in oxides

    OpenAIRE

    Maglione, Mario

    2010-01-01

    This review will deal with several types of free charge localisation in oxides and their consequences on the effective dielectric spectra of such materials. The first one is the polaronic localisation at the unit cell scale on residual impurities in ferroelectric networks. The second one is the collective localisation of free charge at macroscopic interfaces like surfaces, electrodes and grain boundaries in ceramics. Polarons have been observed in many oxide perovskites mostly when cations ha...

  7. Free charge localization and effective dielectric permittivity in oxides

    OpenAIRE

    Mario Maglione

    2016-01-01

    This review will deal with several types of free charge localization in oxides and their consequences on the effective dielectric spectra of such materials. The first one is the polaronic localization at the unit cell scale on residual impurities in ferroelectric networks. The second one is the collective localization of free charge at macroscopic interfaces like surfaces, electrodes and grain boundaries in ceramics. Polarons have been observed in many oxide perovskites mostly when cations ha...

  8. Surface charge modulated aptasensor in a single glass conical nanopore.

    Science.gov (United States)

    Cai, Sheng-Lin; Cao, Shuo-Hui; Zheng, Yu-Bin; Zhao, Shuang; Yang, Jin-Lei; Li, Yao-Qun

    2015-09-15

    In this work, we have proposed a label-free nanopore-based biosensing strategy for protein detection by performing the DNA-protein interaction inside a single glass conical nanopore. A lysozyme binding aptamer (LBA) was used to functionalize the walls of glass nanopore via siloxane chemistry and negatively charged recognition sites were thus generated. The covalent modification procedures and their recognition towards lysozyme of the single conical nanopore were characterized via ionic current passing through the nanopore membrane, which was measured by recording the current-voltage (I-V) curves in 1mM KCl electrolyte at pH=7.4. With the occurring of recognition event, the negatively charged wall was partially neutralized by the positively charged lysozyme molecules, leading to a sensitive change of the surface charge-dependent current-voltage (I-V) characteristics. Our results not only demonstrate excellent selectivity and sensitivity towards the target protein, but also suggest a route to extend this nanopore-based sensing strategy to the biosensing platform designs of a wide range of proteins based on a charge modulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Theory of the surface dipole layer and of surface tension in liquids of charged particles

    International Nuclear Information System (INIS)

    Senatore, G.; Tosi, M.P.

    1980-01-01

    The problem of the surface density profiles and of the surface tension of a two-component liquid of charged particles in equilibrium with its vapour is examined. The exact equilibrium conditions for the profiles are given in terms of the inverse response functions of the inhomogeneous fluid, and alternative exact expressions for the surface tension are derived. The use of a density gradient expansion reduces the problem to knowledge of properties of a homogeneous charged fluid on a uniform neutralizing background, in which the total particle density and the charge density are independent variables. Additional simplifications are discussed for special cases for which a perturbative treatment of the surface charge density profile can be developed, and in particular for nearly symmetric ionic liquids and for simple liquid metals. (author)

  10. Influence of the projectile charge state on electron emission spectra from a Cu(111) surface

    Science.gov (United States)

    Archubi, C. D.; Silkin, V. M.; Gravielle, M. S.

    2015-09-01

    Double differential electron emission distributions produced by grazing impact of fast dressed ions on a Cu(111) surface are investigated focusing on the effects of the electronic band structure. The process is described within the Band-Structure-Based approximation, which is a perturbative method that includes an accurate representation of the electron-surface interaction, incorporating information of the electronic band structure of the solid. Differences in the behavior of the emission spectra for He+ q, Li+ q, Be+ q and C+ q projectiles with different charge states q are explained by the combined effect of the projectile trajectory and the projectile charge distribution.

  11. Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard-Jones potential.

    Science.gov (United States)

    Geada, Isidro Lorenzo; Ramezani-Dakhel, Hadi; Jamil, Tariq; Sulpizi, Marialore; Heinz, Hendrik

    2018-02-19

    Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard-Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals.

  12. Adsorption of cations onto positively charged surface mesopores.

    Science.gov (United States)

    Neue, Uwe; Iraneta, Pamela; Gritti, Fabrice; Guiochon, Georges

    2013-11-29

    Uwe Neue developed a theoretical treatment to account for the adsorption of ions on mesopores of packing materials the walls of which are bonded to ionic ligands but left this work unfinished. We elaborated upon this treatment and refined it, based on the equivalence that he suggested between charged surface particles and a membrane that separates two ionic solutions but is impermeable to one specification. He had written that the electro-chemical potentials in both ionic solutions are equal (Donnan equilibrium). The equilibrium between the surface and the pore concentrations is accounted for by an homogeneous electrostatically modified Langmuir (EML) isotherm model. The theoretical results are presented for four different charge surface concentrations σ0=0, 0.001, 0.002, and 0.003C/m(2), using a phosphate buffer (W(S)pH=2.65) of ionic strength I=10mM. The average pore size, the specific surface area, and the specific pore volume of the stationary phase were Dp=140Å, Sp=182m(2)/g, and Vp=0.70cm(3)/g, respectively. The theoretical results provide the quantitative difference between the ionic strength, the pH, and the concentrations of all the ions in the pores and in the bulk eluent. The theory predicts (1) that the retention times of cations under linear conditions is lower and (2) that their band widths under overloaded conditions for a given retention factor shrinks when the surface charge density σ0 is increased. These theoretical results are in good agreement with experimental results published previously and explain them. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.

    Science.gov (United States)

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng

    2015-12-03

    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  14. Interaction of slow highly charged ions with surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aumayr, F. [Technische Universitaet Wien (Austria)

    1994-12-31

    A review will be presented on recent investigations concerning the interaction of slow ({le} 10{sup 6} m/s) ions in high charge states approaching a clean metal surface. Detailed information on the generation and decay of transiently formed multiply excited {open_quotes}hollow atoms{close_quotes} can be gained from the measurement of total yields and energy distributions of emitted electrons and, in particular, from the electron emission statistics. By comparing measured results with model calculations based on a recently extended classical over-barrier approach, different sources for the observed electron emission can be identified: autoionisation of the multiply excited hollow atoms on their way toward the surface; promotion above the vacuum barrier of electrons previously captured by the projectile, due to their self- and image-charge screening near the surface; `peeling-off` of electrons still bound in highly excited projectile states at the moment of surface impact, and finally; electron emission due to final subsurface de-excitation.

  15. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?

    Science.gov (United States)

    Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu

    2013-01-17

    Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.

  16. Effects of Solar UV on Spacecraft Charging in Sunlight

    National Research Council Canada - National Science Library

    Lai, Shu T; Tautz, Maurice; Tobiska, Kent

    2006-01-01

    Spacecraft surface charging is determined by the balance of currents. Photoelectron currents from spacecraft surfaces greatly exceed the ambient electron or ion currents and therefore are often of prime importance for charging in sunlight...

  17. Surface electrical charge of bloodstream trypomastigotes of Trypanosoma cruzi strains

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora de Sousa

    1983-12-01

    Full Text Available Bloodstream trypomastigotes of some Trypanosoma cruzi strains were processed through DEAE-cellulose columns under standardized conditions. The results obtained suggest mainly that these strains present different surface charges, that there are subpopulations of bloodstream trypomastigotes as regards electrical charges and that the broad forms are less negative than the slender ones.Tripomastigotas sanguíneos de algumas cepas de Trypanosoma cruzi foram processadas em colunas de DEAE-celulose sob condições padronizadas. Os resultados obtidos sugerem principalmente que estas cepas possuem cargas superficiais diferentes, que em relação a este aspecto existem subpopulações de tripomastigotas e que as formas largas são menos negativas do que as finas.

  18. Self-Amplified Surface Charging and Partitioning of Ionic Liquids in Nanopores

    Science.gov (United States)

    Neal, Justin N.; Van Aken, K. L.; Gogotsi, Y.; Wesolowski, David J.; Wu, Jianzhong

    2017-09-01

    We study ion partitioning and self-charging of nanoporous electrodes with room-temperature ionic liquids using a classical density-functional theory that accounts for molecular-excluded volume effects and electrostatic correlations. Nanopores of zero electrical potential are predicted to favor adsorption of small ions even without specific surface attraction, and the imbalanced distributions of cations and anions inside the pore induces a net surface charge that promotes further enrichment of small ions. The self-amplified ion partitioning is most significant when the nanopore and the ionic species are of comparable dimension.

  19. Competitive adsorption and ordered packing of counterions near highly charged surfaces: From mean-field theory to Monte Carlo simulations.

    Science.gov (United States)

    Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo

    2012-04-01

    Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.

  20. Exploring effective interactions through transition charge density ...

    Indian Academy of Sciences (India)

    Hartree–Fock–Bogoliubov; effective interactions; transition charge density. PACS Nos 21.60.-n; 21.10.-k; 23.20.-g; 27.50.+e. 1. Introduction ... Transition charge density study of 70,72,74,76Ge nuclei models like Hartree–Fock, ...... [31] P N Tripathi and S K Sharma, Phys. Rev. C34, 1081 (1986). [32] P K Rath and S K Sharma ...

  1. Surface and charge transport characterization of polyaniline-cellulose acetate composite membranes.

    Science.gov (United States)

    Qaiser, Asif A; Hyland, Margaret M; Patterson, Darrell A

    2011-02-24

    This study elucidates the charge transport processes of polyaniline (PANI) composite membranes and correlates them to the PANI deposition site and the extent of PANI surface layering on the base microporous membranes. PANI was deposited either as a surface layer or inside the pores of cellulose acetate microporous membranes using various in situ chemical polymerization techniques. The extent of PANI layering at the surface of the base membrane and its oxidation and doping states were characterized using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). PANI deposition on the membranes showed a strong dependence on the polymerization technique and polymerization time within a single technique. In XPS, the deconvolution of C 1s and N 1s core-level spectra of the composite membranes was used to quantify the extent of PANI layering at the surface along with its oxidation and doping states. PANI incompletely covered the surface of the base microporous membranes for all the employed techniques. However, the extent of the layering increased with the polymerization time in a particular technique. The charge transport through the bulk membrane and charge transfer at the membrane/electrode interface were studied by electrochemical impedance spectroscopy (EIS). The data were analyzed using the equivalent circuit modeling technique. The modeling parameters revealed that PANI deposition at the surface enhanced the interfacial charge transfer but the process depended on the extent of the surface coverage of the membrane. In addition, the charge transport in the bulk membrane depended on the PANI intercalation level, which varied depending on the polymerization technique employed. In addition, the EIS of electrolyte-soaked membranes was also conducted to evaluate the effects of PANI deposition site on charge transport in the presence of an electrolyte. PANI layering at the pore walls of the base membrane from diaphragmatic polymerization

  2. Charge exchange, surface-induced dissociation and reactions of doubly charged molecular ions SF42+ upon impact on a stainless steel surface: A comparison with surface-induced dissociation of singly charged SF4+ molecular ions

    Czech Academy of Sciences Publication Activity Database

    Feketeová, L.; Grill, V.; Zappa, F.; Endstrasser, N.; Rasul, B.; Herman, Zdeněk; Scheier, P.; Märk, T. D.

    2008-01-01

    Roč. 276, č. 1 (2008), s. 37-42 ISSN 1387-3806 Institutional research plan: CEZ:AV0Z40400503 Keywords : doubly charged ion * surface-induced dissociations * surface-induced reaction * charge exchange Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.445, year: 2008

  3. Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance

    Science.gov (United States)

    Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael

    2018-01-01

    In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.

  4. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  5. Surface-confined electroactive molecules for multistate charge storage information.

    Science.gov (United States)

    Mas-Torrent, M; Rovira, C; Veciana, J

    2013-01-18

    Bi-stable molecular systems with potential for applications in binary memory devices are raising great interest for device miniaturization. Particular appealing are those systems that operate with electrical inputs since they are compatible with existing electronic technologies. The processing of higher memory densities in these devices could be accomplished by increasing the number of memory states in each cell, although this strategy has not been much explored yet. Here we highlight the recent advances devoted to the fabrication of charge-storage molecular surface-confined devices exhibiting multiple states. Mainly, this goal has been realized immobilizing a variety (or a combination) of electroactive molecules on a surface, although alternative approaches employing non-electroactive systems have also been described. Undoubtedly, the use of molecules with chemically tunable properties and nanoscale dimensions are raising great hopes for the devices of the future in which molecules can bring new perspectives such as multistability.

  6. Electrokinetics of nanochannels and porous membranes with dynamic surface charges

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo

    interesting because it relies on capillary filling, so it avoids the use of external forcing such as electric fields. Basically, during the filling of nanochannels by capillary action, the advancing electrolyte is titrated by deprotonation from the surface. This is observed using the pH-sensitive fluorescent....... Notably, we find that the conductance minimum is mainly caused by hydronium ions, and in our case almost exclusively due to carbonic acid generated from the dissolution of CO2 from the atmosphere. We carry out delicate experiments and measure the conductance of silica nanochannels as a function...... in the literature. Fourth, we use our model to predict a novel phenomenon called currentinduced membrane discharge (CIMD) to explain over-limiting current in ionexchange membranes. The model is based on dynamic surface charges in the membrane in equilibrium with the buffer. However, here we take the next step...

  7. Potential sputtering from a Si surface by very highly charged ion impact

    International Nuclear Information System (INIS)

    Tona, Masahide; Watanabe, Hirofumi; Takahashi, Satoshi; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Sakurai, Makoto; Yamada, Chikashi; Ohtani, Shunsuke

    2007-01-01

    We have observed radiation effect in collision of slow highly charged ions with the following target materials; a SiO 2 thin film, a Si(1 1 1)-(7 x 7) surface and a hydrogen terminated Si(1 1 1)-(1 x 1) surface. Secondary ion mass spectrometry and scanning tunneling microscopy revealed some features due to 'potential sputtering'; (a) strong dependence of secondary particle emission on the surface condition, (b) high yield of positive ion emission including cluster fragments and (c) creation of nanometer sized surface structure. The mechanism for the potential sputtering is briefly discussed, based on the 'Coulomb explosion' model

  8. Effect of random charge fluctuation on strongly coupled dusty Plasma

    Science.gov (United States)

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-01

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  9. String loop effect on the BRST charge

    International Nuclear Information System (INIS)

    Das, A.; Nishino, H.

    1987-07-01

    An effective BRST charge Q BRST which incorporates the string one-loop corrections is presented for the closed bosonic string in an arbitrary background. The effective σ-model action which leads to such a Q BRST is obtained and some consequences are discussed. (author). 14 refs, 1 fig

  10. Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge.

    Science.gov (United States)

    Dobrovolskaia, Marina A; Patri, Anil K; Potter, Timothy M; Rodriguez, Jamie C; Hall, Jennifer B; McNeil, Scott E

    2012-02-01

    Thrombogenicity associated with the induction of leukocyte procoagulant activity (PCA) is a common complication in sepsis and cancer. Since nanoparticles are increasingly used for drug delivery, their interaction with coagulation systems is an important part of the safety assessment. The purpose of this study was to investigate the effects of nanoparticle physicochemical properties on leukocyte PCA, and to get insight into the mechanism of PCA induction. A total of 12 formulations of polyamidoamine (PAMAM) dendrimers, varying in size and surface charge, were studied in vitro using recalcification time assay. Irrespective of their size, anionic and neutral dendrimers did not induce leukocyte PCA in vitro. Cationic particles induced PCA in a size- and charge-dependent manner. The mechanism of PCA induction was similar to that of doxorubicin. Cationic dendrimers were also found to exacerbate endotoxin-induced PCA. PAMAM dendrimer-induced leukocyte PCA depends on particle size, charge and density of surface groups.

  11. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge

    International Nuclear Information System (INIS)

    Baek, M; Kim, M K; Cho, H J; Lee, J A; Yu, J; Chung, H E; Choi, S J

    2011-01-01

    Zinc oxide (ZnO) nanoparticle is one of the most important materials in diverse applications, since it has UV light absorption, antimicrobial, catalytic, semi-conducting, and magnetic properties. However, there is little information about the toxicological effects of ZnO nanoparticles with respect to physicochemical properties. The aim of this study was, therefore, to evaluate the relationships between cytotoxicity and physicochemical properties of ZnO nanoparticle such as particle size and surface charge in human lung cells. Two different sizes of ZnO nanoparticles (20 and 70 nm) were prepared with positive (+) or negative (-) charge, and then, cytotoxicity of different ZnO nanoparticles was evaluated by measuring cell proliferation in short-term and long-term, membrane integrity, and generation of reactive oxygen species (ROS). The results demonstrated that smaller particles exhibited high cytotoxic effects compared to larger particles in terms of inhibition of cell proliferation, membrane damage, and ROS generation. In addition, positively charged ZnO showed greater ROS production than ZnO with negative charge. These findings suggest that the cytoxicity of ZnO nanoparticles are strongly affected by their particle size and surface charge, highlighting the role of the physicochemical properties of nanoparticles to understand and predict their potential adverse effects on human.

  12. Charge reversal of the rodlike colloidal fd virus through surface chemical modification.

    Science.gov (United States)

    Zhang, Zhenkun; Buitenhuis, Johan; Cukkemane, Abhishek; Brocker, Melanie; Bott, Michael; Dhont, Jan K G

    2010-07-06

    There is increasing interest in the use of viruses as model systems for fundamental research and as templates for nanomaterials. In this work, the rodlike fd virus was subjected to chemical modifications targeting different solvent-exposed functional groups in order to tune its surface properties, especially reversing the surface charge from negative to positive. The carboxyl groups of fd were coupled with different kinds of organic amines by carbodiimide chemistry, resulting in modified viruses that are positively charged over a wide range of pH. Care was taken to minimize intervirus cross linking, which often occurs because of such modifications. The surface amino groups were also grafted with poly(ethylene glycol) (PEG) end-functionalized with an active succinimidyl ester in order to introduce a steric stabilization effect. By combining charge reversal with PEG grafting, a reversible attraction between positively and negatively charged PEG-grafted fd viruses could be realized, which was tuned by the ionic strength of the solution. In addition, a charge-reversed fd virus forms only a pure nematic phase in contrast to the cholesteric phase of the wild type. These modified viruses might be used as model systems in soft condensed matter physics, for example, in the study of polyelectrolyte complexes or lyotropic liquid-crystalline phase behavior.

  13. Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution

    Science.gov (United States)

    Sin, Jun-Sik

    2017-12-01

    In this paper, we study electrostatic properties between two similar or oppositely charged surfaces immersed in an electrolyte solution by using the mean-field approach accounting for solvent polarization and non-uniform size effects. Applying a free energy formalism accounting for unequal ion sizes and orientational ordering of water dipoles, we derive coupled and self-consistent equations to calculate electrostatic properties between charged surfaces. Electrostatic properties for similarly charged surfaces depend on the counterion size but not on the coion size. Moreover, electrostatic potential and osmotic pressure between similarly charged surfaces are found to be increased with increasing counterion size. On the other hand, the corresponding ones between oppositely charged surfaces are related to both sizes of positive and negative ions. For oppositely charged surfaces, the electrostatic potential, number density of solvent molecules, and relative permittivity of an electrolyte having unequal ion sizes are not symmetric about the centerline between the charged surfaces. For either case, the consideration of solvent polarization results in a decrease in the electrostatic potential and the osmotic pressure compared to the case without the effect.

  14. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  15. Surface charge regulation upon polyelectrolyte adsorption, hematite, polystyrene sulfonate, surface charge regulation - Theoretical calculations and hematite-poly(styrene sulfonate) system

    NARCIS (Netherlands)

    Riemsdijk, van W.H.; Koopal, L.K.; Stuart, M.A.C.; Klein Wolterink, J.

    2006-01-01

    The charge regulation of a mineral surface upon adsorption of a strong polyelectrolyte is studied theoretically and experimentally. Self-consistent-field calculations were done to evaluate the charge characteristics of a model oxide surface in the absence and presence of a linear strong

  16. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive d...

  17. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    DEFF Research Database (Denmark)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...

  18. Hydrothermal assisted decoration of NiS2and CoS nanoparticles on the reduced graphene oxide nanosheets for sunlight driven photocatalytic degradation of azo dye: Effect of background electrolyte and surface charge.

    Science.gov (United States)

    Borthakur, Priyakshree; Das, Manash R

    2018-04-15

    The semiconductor NiS 2 nanoparticles with an average size of 10 ± 0.317 nm were successfully deposited on the reduced graphene oxide (rGO) sheets by simple hydrothermal method. The synthesized nanocomposite was characterized by various instrumental techniques like XRD, FTIR, FESEM, EDX, HRTEM, fluorescence spectrophotometer analysis. In this study we mainly focus on the determination of the surface potential values of NiS 2 -rGO and CoS-rGO nanocomposite under different experimental conditions and evaluated the photodegradation efficiency towards azo dye Congo Red (CR) molecule under natural sunlight irradiation. We found that the surface charge (zeta potential) of the both nanocomposite materials in presence of different inorganic ions salt solutions like NaCl, NaNO 3 , Na 2 SO 4 , MgCl 2 , CaCl 2 etc. is varied based on the polarizability of the ions as well as pH of the suspension. Different inorganic ions present in the catalyst suspension can alter the surface charge of the catalyst by forming a double layer around the molecule and thus change the electrostatic interaction between the dye molecule and the catalyst surface which change the degradation efficiency of the photocatalyst towards CR molecule. The photocatalytic efficiency of NiS 2 -rGO and CoS-rGO nanocomposite towards CR degradation was found to be 97.03% and 88.03% in 40 min, respectively under same experimental condition whereas NiS 2 and CoS nanoparticles without support exhibited photodegradation efficiency 57.89% and 50.52%, respectively. The observed improved photocatalytic activity of the metal sulfide-rGO nanocomposite results the presence of synergistic effect between the metal sulfide nanoparticles and the rGO sheets of the photocatalysts which inhibits the recombination rate of photogenerated electrons and holes. The mechanism of the degradation process was investigated by photoluminescence study in presence of terephthalic acid and also quenching experiment in presence of

  19. 'Bootstrap' charging of surfaces composed of multiple materials

    Science.gov (United States)

    Stannard, P. R.; Katz, I.; Parks, D. E.

    1981-01-01

    The paper examines the charging of a checkerboard array of two materials, only one of which tends to acquire a negative potential alone, using the NASA Charging Analyzer Program (NASCAP). The influence of the charging material's field causes the otherwise 'non-charging' material to acquire a negative potential due to the suppression of its secondary emission ('bootstrap' charging). The NASCAP predictions for the equilibrium potential difference between the two materials are compared to results based on an analytical model.

  20. Screening effect on nanostructure of charged gel

    DEFF Research Database (Denmark)

    Sugiyama, M; Annaka, M; Hino, M

    2004-01-01

    Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions....... The dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content. (C) 2004 Elsevier B. V. All rights...

  1. Screening effect on nanostructure of charged gel

    International Nuclear Information System (INIS)

    Sugiyama, Masaaki; Annaka, Masahiko; Hino, Masahiro; Fukunaga, Toshiharu; Vigild, Martin E.; Hara, Kazuhiro

    2004-01-01

    Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions. The dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content

  2. Screening effect on nanostructure of charged gel

    Science.gov (United States)

    Sugiyama, Masaaki; Annaka, Masahiko; Hino, Masahiro; Fukunaga, Toshiharu; E. Vigild, Martin; Hara, Kazuhiro

    2004-07-01

    Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions. The dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content.

  3. Effects of fibre dimension and charge density on nanocellulose gels.

    Science.gov (United States)

    Mendoza, Llyza; Gunawardhana, Thilina; Batchelor, Warren; Garnier, Gil

    2018-04-18

    Carboxylated cellulose nanofibres can produce gels at low concentrations. The effect of pulp source on the nanocellulose fibre dimension and gel rheology are studied. It is hypothesised that fibre length and surface charge influence aspects of the gel rheological properties. TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)- mediated oxidised cellulose nanofibres from never-dried hardwood and softwood pulp and containing different charge levels were produced and characterized. Steady-state and dynamic rheological studies were performed to ascertain the effects of pulp type on gel behavior and properties. Nanocellulose fibres extracted from softwood (SW-TOCN) and hardwood (HW-TOCN) pulp exhibit similar widths but different length dimensions as shown via AFM analysis. Rheological measurements show that the dynamic moduli (G' and G'') of nanocellulose gels are independent of pulp source and are mostly influenced by fibre concentration. Differences in the steady-state behavior (i.e. viscosity) at constant surface charge can be attributed to differences in fibre length. Increasing the surface charge density influences the critical strain and the viscosity at the percolation concentration (0.1 wt%) due to higher electrostatic interactions. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  4. Surface charge method for molecular surfaces with curved areal elements I. Spherical triangles

    Science.gov (United States)

    Yu, Yi-Kuo

    2018-03-01

    Parametrizing a curved surface with flat triangles in electrostatics problems creates a diverging electric field. One way to avoid this is to have curved areal elements. However, charge density integration over curved patches appears difficult. This paper, dealing with spherical triangles, is the first in a series aiming to solve this problem. Here, we lay the ground work for employing curved patches for applying the surface charge method to electrostatics. We show analytically how one may control the accuracy by expanding in powers of the the arc length (multiplied by the curvature). To accommodate not extremely small curved areal elements, we have provided enough details to include higher order corrections that are needed for better accuracy when slightly larger surface elements are used.

  5. Mobile colloid generation induced by a cementitious plume: mineral surface-charge controls on mobilization.

    Science.gov (United States)

    Li, Dien; Kaplan, Daniel I; Roberts, Kimberly A; Seaman, John C

    2012-03-06

    Cementitious materials are increasingly used as engineered barriers and waste forms for radiological waste disposal. Yet their potential effect on mobile colloid generation is not well-known, especially as it may influence colloid-facilitated contaminant transport. Whereas previous papers have studied the introduction of cement colloids into sediments, this study examined the influence of cement leachate chemistry on the mobilization of colloids from a subsurface sediment collected from the Savannah River Site, USA. A sharp mobile colloid plume formed with the introduction of a cement leachate simulant. Colloid concentrations decreased to background concentrations even though the aqueous chemical conditions (pH and ionic strength) remained unchanged. Mobile colloids were mainly goethite and to a lesser extent kaolinite. The released colloids had negative surface charges and the mean particle sizes ranged primarily from 200 to 470 nm. Inherent mineralogical electrostatic forces appeared to be the controlling colloid removal mechanism in this system. In the background pH of ~6.0, goethite had a positive surface charge, whereas quartz (the dominant mineral in the immobile sediment) and kaolinite had negative surface charges. Goethite acted as a cementing agent, holding kaolinite and itself onto the quartz surfaces due to the electrostatic attraction. Once the pH of the system was elevated, as in the cementitious high pH plume front, the goethite reversed to a negative charge, along with quartz and kaolinite, then goethite and kaolinite colloids were mobilized and a sharp spike in turbidity was observed. Simulating conditions away from the cementitious source, essentially no colloids were mobilized at 1:1000 dilution of the cement leachate or when the leachate pH was ≤ 8. Extreme alkaline pH environments of cementitious leachate may change mineral surface charges, temporarily promoting the formation of mobile colloids.

  6. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    Science.gov (United States)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Xie, Qin; Ren, Chengyan; Shao, Tao

    2017-10-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level.

  7. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    International Nuclear Information System (INIS)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Ren, Chengyan; Shao, Tao; Xie, Qin

    2017-01-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level. (paper)

  8. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces...

  9. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  10. Negligible water surface charge determined using Kelvin probe and total reflection X-ray fluorescence techniques.

    Science.gov (United States)

    Shapovalov, Vladimir L; Möhwald, Helmuth; Konovalov, Oleg V; Knecht, Volker

    2013-09-07

    The water surface charge has been extensively debated in recent decades. Electrophoretic mobilities of air bubbles in water and disjoining pressures between the surfaces of aqueous films suggest that the surface of water exhibits a significant negative charge. This is commonly attributed to a strong adsorption of hydroxide ions at the interface, though spectroscopic measurements and simulation studies suggest surface depletion of hydroxide ions. Alternatively, the negative surface charge could arise from surface contamination with trace charged surfactants. We have probed the variation in the surface charge of water with pH by measuring surface potentials using the Kelvin probe technique. Independently, the abundance in the interfacial layer of "reporter ions" (Rb(+) and Br(-)), which must be affected by a charged surface, has been monitored using the total reflection X-ray fluorescence (TRXF) technique. Special care was taken to prove the high sensitivity of this technique as well as to avoid surface contaminants. The magnitude of the surface charge was found to be below 1 e per 500 nm(2) (TRXF). No evidence of variations in the surface potential between pH 2-3 and pH 9-12 was detected within the accuracies of the methods (5 mV for Kelvin probe and 2 mV for TRXF). Hence, our findings suggest that the clean water surface exhibits negligible charge in a wide pH range.

  11. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  12. Specification of the Surface Charging Environment with SHIELDS

    Science.gov (United States)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.

    2016-12-01

    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.

  13. Interaction of slow and highly charged ions with surfaces: formation of hollow atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Grether, M.; Spieler, A.; Niemann, D. [Hahn-Meitner Institut, Berlin (Germany). Bereich Festkoerperphysik; Arnau, A.

    1997-03-01

    The method of Auger spectroscopy was used to study the interaction of highly charged ions with Al and C surfaces. The formation of hollow Ne atoms in the first surface layers was evaluated by means of a Density Functional theory including non-linear screening effects. The time-dependent filling of the hollow atom was determined from a cascade model yielding information about the structure of the K-Auger spectra. Variation of total intensities of the L- and K-Auger peaks were interpreted by the cascade model in terms of attenuation effects on the electrons in the solid. (author)

  14. Controlling charges distribution at the surface of a single GaN nanowire by in-situ strain

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-08-01

    Full Text Available Effect of the strain on the charge distribution at the surface of a GaN semiconductor nanowire (NW has been investigated inside transmission electron microscope (TEM by in-situ off-axis electron holography. The outer and inner surfaces of the NW bent axially under compression of two Au electrodes were differently strained, resulting in difference of their Fermi levels. Consequently, the free electrons flow from the high Fermi level to the low level until the two Fermi levels aligned in a line. The potential distributions induced by charge redistribution in the two vacuum sides of the bent NW were examined respectively, and the opposite nature of the bounded charges on the outer and inner surfaces of the bent NW was identified. The results provide experimental evidence that the charge distribution at the surfaces of a single GaN NW can be controlled by different strains created along the NW.

  15. Energy spectra and charge states of light atoms scattered by solid surface

    International Nuclear Information System (INIS)

    Parilis, E.S.; Verleger, V.K.

    1980-01-01

    The theories of backscattering and charge state formation of light atoms (H, D, and He) for the energy range 1 keV 0 0 and theta. The dependence of epsilonsub(max) on theta determines the mean effective range for the scattering at the angle theta. The appearance of surface peaks in the energy spectra of neutrals below energy E 0 + , Hsup(*), and H - . (orig.)

  16. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    Directory of Open Access Journals (Sweden)

    Fröhlich E

    2012-11-01

    Full Text Available Eleonore FröhlichCenter for Medical Research, Medical University of Graz, Graz, AustriaAbstract: Many types of nanoparticles (NPs are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.Keywords: endocytosis, plasma membrane, lysosomes, polystyrene particles, quantum dots, dendrimers

  17. Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Lek, Jun Yan; Xi, Lifei; Kardynal, Beata

    2011-01-01

    For hybrid solar cells, interfacial chemistry is one of the most critical factors for good device performance. We have demonstrated that the size of the surface ligands and the dispersion of nanoparticles in the solvent and in the polymer are important criteria in obtaining optimized device...

  18. An algorithm for three-dimensional Monte-Carlo simulation of charge distribution at biofunctionalized surfaces

    KAUST Repository

    Bulyha, Alena

    2011-01-01

    In this work, a Monte-Carlo algorithm in the constant-voltage ensemble for the calculation of 3d charge concentrations at charged surfaces functionalized with biomolecules is presented. The motivation for this work is the theoretical understanding of biofunctionalized surfaces in nanowire field-effect biosensors (BioFETs). This work provides the simulation capability for the boundary layer that is crucial in the detection mechanism of these sensors; slight changes in the charge concentration in the boundary layer upon binding of analyte molecules modulate the conductance of nanowire transducers. The simulation of biofunctionalized surfaces poses special requirements on the Monte-Carlo simulations and these are addressed by the algorithm. The constant-voltage ensemble enables us to include the right boundary conditions; the dna strands can be rotated with respect to the surface; and several molecules can be placed in a single simulation box to achieve good statistics in the case of low ionic concentrations relevant in experiments. Simulation results are presented for the leading example of surfaces functionalized with pna and with single- and double-stranded dna in a sodium-chloride electrolyte. These quantitative results make it possible to quantify the screening of the biomolecule charge due to the counter-ions around the biomolecules and the electrical double layer. The resulting concentration profiles show a three-layer structure and non-trivial interactions between the electric double layer and the counter-ions. The numerical results are also important as a reference for the development of simpler screening models. © 2011 The Royal Society of Chemistry.

  19. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density.

    Science.gov (United States)

    He, Xianming; Guo, Hengyu; Yue, Xule; Gao, Jun; Xi, Yi; Hu, Chenguo

    2015-02-07

    Nanogenerators with capacitor structures based on piezoelectricity, pyroelectricity, triboelectricity and electrostatic induction have been extensively investigated. Although the electron flow on electrodes is well understood, the maximum efficiency-dependent structure design is not clearly known. In this paper, a clear understanding of triboelectric generators with capacitor structures is presented by the investigation of polydimethylsiloxane-based composite film nanogenerators, indicating that the generator, in fact, acts as both an energy storage and output device. Maximum energy storage and output depend on the maximum charge density on the dielectric polymer surface, which is determined by the capacitance of the device. The effective thickness of polydimethylsiloxane can be greatly reduced by mixing a suitable amount of conductive nanoparticles into the polymer, through which the charge density on the polymer surface can be greatly increased. This finding can be applied to all the triboelectric nanogenerators with capacitor structures, and it provides an important guide to the structural design for nanogenerators. It is demonstrated that graphite particles with sizes of 20-40 nm and 3.0% mass mixed into the polydimethylsiloxane can reduce 34.68% of the effective thickness of the dielectric film and increase the surface charges by 111.27% on the dielectric film. The output power density of the triboelectric nanogenerator with the composite polydimethylsiloxane film is 3.7 W m(-2), which is 2.6 times as much as that of the pure polydimethylsiloxane film.

  20. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses

    Science.gov (United States)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao

    2011-05-01

    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  1. Colloids from oppositely charged polymers: reversibility and surface activity

    NARCIS (Netherlands)

    Hofs, P.S.

    2009-01-01

    The research described in this thesis concerns the formation, solution properties, and adsorption of polyelectrolyte complexes composed of at least one diblock copolymer with a neutral and a charged block and either an oppositely charged homopolyelectrolyte or a diblock copolymer, with a neutral

  2. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  3. Highly charged ions impinging on a stepped metal surface under grazing incidence

    NARCIS (Netherlands)

    Robin, A; Niemann, D; Stolterfoht, N; Heiland, W

    We report on energy loss measurements and charge state distributions for 60 keV N6+ and 75 keV N5+ ions scattered off a Pt(110)(1x2) single crystal surface. In particular, the influence of surface steps on the energy loss and the outgoing charge states is discussed. The scattering angle and the

  4. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    Science.gov (United States)

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  5. Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions.

    Science.gov (United States)

    Mancusso, Romina; Cruz, Eduardo; Cataldi, Marcela; Mendoza, Carla; Fuchs, James; Wang, Hsin; Yang, Xiaomin; Tasayco, María Luisa

    2004-04-06

    Recent studies of proteins with reversed charged residues have demonstrated that electrostatic interactions on the surface can contribute significantly to protein stability. We have used the approach of reversing negatively charged residues using Arg to evaluate the effect of the electrostatics context on the transition temperature (T(m)), the unfolding Gibbs free energy change (DeltaG), and the unfolding enthalpy change (DeltaH). We have reversed negatively charged residues at a pocket (Asp9) and protrusions (Asp10, Asp20, Glu85), all located in interconnecting segments between elements of secondary structure on the surface of Arg73Ala Escherichia coli thioredoxin. DSC measurements indicate that reversal of Asp in a pocket (Asp9Arg/Arg73Ala, DeltaT(m) = -7.3 degrees C) produces a larger effect in thermal stability than reversal at protrusions: Asp10Arg/Arg73Ala, DeltaT(m) = -3.1 degrees C, Asp20Arg/Arg73Ala, DeltaT(m) = 2.0 degrees C, Glu85Arg/Arg73Ala, DeltaT(m) = 3.9 degrees ). The 3D structure of thioredoxin indicates that Asp20 and Glu85 have no nearby charges within 8 A, while Asp9 does not only have Asp10 as sequential neighbor, but it also forms a 5-A long-range ion pair with the solvent-exposed Lys69. Further DSC measurements indicate that neutralization of the individual charges of the ion pair Asp9-Lys69 with nonpolar residues produces a significant decrease in stability in both cases: Asp9Ala/Arg73Ala, DeltaT(m) = -3.7 degrees C, Asp9Met/Arg73Ala, DeltaT(m) = -5.5 degrees C, Lys69Leu/Arg73Ala, DeltaT(m) = -5.1 degrees C. However, thermodynamic analysis shows that reversal or neutralization of Asp9 produces a 9-15% decrease in DeltaH, while both reversal of Asp at protrusions and neutralization of Lys69 produce negligible changes. These results correlate well with the NMR analysis, which demonstrates that only the substitution of Asp9 produces extensive conformational changes and these changes occur in the surroundings of Lys69. Our results led us to

  6. Explaining electrostatic charging and flow of surface-modified acetaminophen powders as a function of relative humidity through surface energetics.

    Science.gov (United States)

    Jallo, Laila J; Dave, Rajesh N

    2015-07-01

    Powder flow involves particle-particle and particle-vessel contacts and separation resulting in electrostatic charging. This important phenomenon was studied for uncoated and dry-coated micronized acetaminophen (MAPAP) as a function of relative humidity. The main hypothesis is that by modifying powder surface energy via dry coating of MAPAP performed using magnetically assisted impaction coating, its charging tendency, flow can be controlled. The examination of the relationship between electrostatic charging, powder flow, and the surface energies of the powders revealed that an improvement in flow because of dry coating corresponded to a decrease in the charging of the particles. A general trend of reduction in both electrostatic charging and dispersive surface energy with dry coating and relative humidity were also observed, except that a divergent behavior was observed at higher relative humidities (≥55% RH). The uncoated powder was found to have strong electron acceptor characteristic as compared with the dry coated. The adhesion energy between the particles and the tubes used for the electrostatic charging qualitatively predicted the decreasing trend in electrostatic charging from plastic tubes to stainless steel. In summary, the surface energies of the powders and the vessel could explain the electrostatic charging behavior and charge reduction because of dry coating. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Electrophoresis of a polarizable charged colloid with hydrophobic surface: A numerical study

    Science.gov (United States)

    Bhattacharyya, Somnath; Majee, Partha Sarathi

    2017-04-01

    We consider the electrophoresis of a charged colloid for a generalized situation in which the particle is considered to be polarizable and the surface exhibits hydrophobicity. The dielectric polarization of the particle creates a nonlinear dependence of the electrophoretic velocity on the applied electric field, and the core hydrophobicity amplifies the fluid convection in the Debye layer. Thus, a linear analysis is no longer applicable for this situation. The present analysis is based on the numerical solution of the nonlinear electrokinetic equations based on the Navier-Stokes-Nernst-Planck-Poisson equations coupled with the Laplace equation for the electric field within the dielectric particle. The hydrophobicity of the particle may influence its electric polarization by enhancing the convective transport of ions. The nonlinear effects, such as double-layer polarization and relaxation, are also influenced by the hydrophobicity of the particle surface. The present results compare well for a lower range of the applied electric field and surface charge density with the existing results for a perfectly dielectric particle with a hydrophobic surface based on the first-order perturbation analysis due to Khair and Squires [Phys. Fluids 21, 042001 (2009), 10.1063/1.3116664]. Dielectric polarization creates a reduction in particle electrophoretic velocity, and its impact is strong for a moderate range of Debye length. A quantitative measure of the nonlinear effects is demonstrated by comparing the electrophoretic velocity with an existing linear model.

  8. Modified colloidal primitive model as a homogeneous surface charge distribution: ζ-potential.

    Science.gov (United States)

    Manzanilla-Granados, Héctor M; Lozada-Cassou, Marcelo

    2013-10-03

    An integral equations theory is derived and applied to a modified colloidal primitive model (MCPM), for finite concentration colloidal dispersions. In MCPM, the charge on the colloidal particle is assumed to be smeared on its surface. We find important quantitative and qualitative differences of the ζ-potential, induced charge, and the colloid-colloid electric effective force, calculated in the MCPM, with those obtained from the colloidal primitive model (CPM), where the colloidal charge is assumed to be in the center of the particle, in spite of the fact that, due to Gauss's law, both models have the same particle distribution function. In particular, for the same parameters, while the ζ-potential is positive in MCPM, is negative in the CPM, implying opposite electrophoretic mobilities, μ. An inverse μ has been theoretically predicted in the past, for infinite dilution colloidal dispersions. The MCPM could be a better model for some colloidal particles. In both models, the CPM and the MCPM, it is found a very long-range colloid-colloid correlation, in accordance with previous Monte Carlo simulations. The electrostatic, as well as entropic, like-charged colloid-colloid forces are oscillatory, implying a long-range attraction.

  9. Nonlinear space charge effect of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao

    1992-02-01

    The nonlinear space charge effect due to the nonuniform particle density distribution in bunched beam of a linac is discussed. The formulae of nonlinear space charge effect and nonlinear focusing forces were derived for the bunched beam with Kapchinskij-Vladimirskij (K-V) distribution, waterbag (WB) distribution, parabolic (PA) distribution, and Gauss (GA) distribution in both of the space charge disk model and space charge cylinder model in the waveguide of a linac

  10. Surface charges for gravity and electromagnetism in the first order formalism

    Science.gov (United States)

    Frodden, Ernesto; Hidalgo, Diego

    2018-02-01

    A new derivation of surface charges for 3  +  1 gravity coupled to electromagnetism is obtained. Gravity theory is written in the tetrad-connection variables. The general derivation starts from the Lagrangian, and uses the covariant symplectic formalism in the language of forms. For gauge theories, surface charges disentangle physical from gauge symmetries through the use of Noether identities and the exactness symmetry condition. The surface charges are quasilocal, explicitly coordinate independent, gauge invariant and background independent. For a black hole family solution, the surface charge conservation implies the first law of black hole mechanics. As a check, we show the first law for an electrically charged, rotating black hole with an asymptotically constant curvature (the Kerr–Newman (anti-)de Sitter family). The charges, including the would-be mass term appearing in the first law, are quasilocal. No reference to the asymptotic structure of the spacetime nor the boundary conditions is required and therefore topological terms do not play a rôle. Finally, surface charge formulae for Lovelock gravity coupled to electromagnetism are exhibited, generalizing the one derived in a recent work by Barnich et al Proc. Workshop ‘ About Various Kinds of Interactions’ in honour of Philippe Spindel (4–5 June 2015, Mons, Belgium) C15-06-04 (2016 (arXiv:1611.01777 [gr-qc])). The two different symplectic methods to define surface charges are compared and shown equivalent.

  11. Enhanced charge recombination due to surfaces and twin defects in GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Evan; Sheng, Chunyang; Nakano, Aiichiro [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Shimamura, Kohei; Shimojo, Fuyuki [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan)

    2015-02-07

    Power conversion efficiency of gallium arsenide (GaAs) nanowire (NW) solar cells is severely limited by enhanced charge recombination (CR) at sidewall surfaces, but its atomistic mechanisms are not well understood. In addition, GaAs NWs usually contain a high density of twin defects that form a twin superlattice, but its effects on CR dynamics are largely unknown. Here, quantum molecular dynamics (QMD) simulations reveal the existence of an intrinsic type-II heterostructure at the (110) GaAs surface. Nonadiabatic quantum molecular dynamics (NAQMD) simulations show that the resulting staggered band alignment causes a photoexcited electron in the bulk to rapidly transfer to the surface. We have found orders-of-magnitude enhancement of the CR rate at the surface compared with the bulk value. Furthermore, QMD and NAQMD simulations show unique surface electronic states at alternating (111)A and (111)B sidewall surfaces of a twinned [111]-oriented GaAs NW, which act as effective CR centers. The calculated large surface recombination velocity quantitatively explains recent experimental observations and provides microscopic understanding of the underlying CR processes.

  12. Extracting dielectric fixed charge density on highly doped crystalline-silicon surfaces using photoconductance measurements

    Science.gov (United States)

    To, A.; Hoex, B.

    2017-11-01

    A novel method for the extraction of fixed interface charge, Qf, and the surface recombination parameters, Sn0 and Sp0, from the injection-level dependent effective minority carrier lifetime measurements is presented. Unlike conventional capacitance-voltage measurements, this technique can be applied to highly doped surfaces provided the surface carrier concentration transitions into strong depletion or inversion with increased carrier injection. By simulating the injection level dependent Auger-corrected inverse lifetime curve of symmetrically passivated and diffused samples after sequential annealing and corona charging, it was revealed that Qf, Sn0, and Sp0 have unique signatures. Therefore, these important electronic parameters, in some instances, can independently be resolved. Furthermore, it was shown that this non-linear lifetime behaviour is exhibited on both p-type and n-type diffused inverted surfaces, by demonstrating the approach with phosphorous diffused n+pn+ structures and boron diffused p+np+ structures passivated with aluminium oxide (AlOx) and silicon nitride, respectively (SiNx). The results show that the approximation of a mid-gap Shockley-Read-Hall defect level with equal capture cross sections is able to, in the samples studied in this work, reproduce the observed injection level dependent lifetime behaviour.

  13. Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface

    Science.gov (United States)

    Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

    2014-07-15

    A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

  14. Influence of Surface Charge/Potential of a Gold Electrode on the Adsorptive/Desorptive Behaviour of Fibrinogen

    International Nuclear Information System (INIS)

    Dargahi, Mahdi; Konkov, Evgeny; Omanovic, Sasha

    2015-01-01

    Highlights: • Adsorptive/desorptive behavior of fibrinogen (FG) on an electrochemically-polarized gold substrate is reported. • The adsorption affinity of FG (afFG) is constant on a negatively-charged substrate surface. • The afFG increases linearly with an increase in positive substrate surface charge. • The FG adsorption kinetics is strongly dependant on substrate surface charge. • The adsorbed FG layer can be desorbed by electrochemical evolution of hydrogen and oxygen. - Abstract: The effect of gold substrate surface charge (potential) on adsorptive/desorptive behaviour of fibrinogen (FG) was studied by employing differential capacitance (DC) and polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), in terms of FG adsorption thermodynamics, kinetics, and desorption kinetics. The gold substrate surface charge was modulated in-situ within the electrochemical double-layer region by means of electrochemical potentiostatic polarization in a FG-containing electrolyte, thus avoiding the interference of other physico-chemical properties of the gold surface on FG’s interfacial behaviour. The FG adsorption equilibrium was modeled using the Langmuir isotherm. Highly negative values of apparent Gibbs free energy of adsorption (ranging from from −52.1 ± 0.4 to −55.8 ± 0.8 kJ mol −1 , depending on the FG adsorption potential) indicated a highly spontaneous and strong adsorption of FG onto the gold surface. The apparent Gibbs free energy of adsorption was found to be independent of surface charge when the surface was negatively charged. However, when the gold surface was positively charged, the apparent Gibbs free energy of adsorption exhibited a pronounced linear relationship with the surface charge, shifting to more negative values with an increase in positive electrode potential. The adsorption kinetics of FG was also found to be dependent on gold surface charge in a similar manner to the apparent Gibbs free energy of adsorption

  15. Theoretical study of the amphoteric oxide nanoparticle surface charge during multi-particle interactions in aqueous solutions

    Science.gov (United States)

    Alfimov, A. V.; Aryslanova, E. M.; Chivilikhin, S. A.

    2015-11-01

    Nanoparticle surface charge plays an important role in many biological applications. In this study, an analytical surface charging model for the amphoteric oxide nanoparticles has been presented. The model accounts for the particle's electric double layer self-action on the charging process and the charge regulation during multi-particle interactions in aqueous solutions. The employment of the model allows to explicitly describe the nanoparticle agglomeration process and the accompanying agglomerate surface charge variation.

  16. Space charge effects and electronic bistability

    International Nuclear Information System (INIS)

    Ruffini, A.; Strumia, F.; Tommasi, O.

    1996-01-01

    The excitation of metastable states in an atomic beam apparatus by means of electron collision is a widespread technique. The authors have observed a large bistable behaviour in apparatus designed to provide an intense and collimated beam of metastable helium by excitation with orthogonally impinging electrons. This bistable behaviour largely affects the efficiency of the apparatus and is therefore worth of being carefully investigated. The apparatus has an electrode configuration equivalent to that of a tetrode valve with large intergrid distances. The bistability consists in a hysteresis cycle in the curve of the anode current vs. grid voltage. Experimental measurements, supported by a simple theoretical model and by numerical simulation, stress out the crucial role played by space charge effects for the onset of bistability. A comparison with previous observations of this phenomenon is given. Spontaneous current oscillations with various shapes have been recorded in one of the two curves of the hysteresis cycle

  17. Physics of new methods of charged particle acceleration collective effects in dense charged particle ensembles

    CERN Document Server

    Bonch-Osmolovsky, A G

    1994-01-01

    This volume discusses the theory of new methods of charged particle acceleration and its physical and mathematical descriptions. It examines some collective effects in dense charged particle ensembles, and traces the history of the development of the field of accelerator physics.

  18. A numerical method for calculation of electrostatic charge distribution induced on conducting surfaces

    OpenAIRE

    Saeed Hatamzadeh-Varmazyar; Zahra Masouri

    2014-01-01

    The focus of this article is on calculation of electrostatic charge distribution induced on conducting surfaces. For this purpose, the integral equation concept is used for mathematical modeling of the problem. A special set of exponential basis functions is introduced and defined to be used in formulation of a numerical method for solving the integral equation to obtain the charge distribution. The method is numerically evaluated via calculation of charge density for some structures by which...

  19. Separation of effects of oxide-trapped charge and interface-trapped charge on mobility in irradiated power MOSFETs

    International Nuclear Information System (INIS)

    Zupac, D.; Galloway, K.F.; Khosropour, P.; Anderson, S.R.; Schrimpf, R.D.

    1993-01-01

    An effective approach to separating the effects of oxide-trapped charge and interface-trapped charge on mobility degradation in irradiated MOSFETs is demonstrated. It is based on analyzing mobility data sets which have different functional relationships between the radiation-induced-oxide-trapped charge and interface-trapped charge. Separation of effects of oxide-trapped charge and interface-trapped charge is possible only if these two trapped charge components are not linearly dependent. A significant contribution of oxide-trapped charge to mobility degradation is demonstrated and quantified

  20. Charge Retention by Monodisperse Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    Science.gov (United States)

    Johnson, Grant; Priest, Thomas; Laskin, Julia

    2012-02-01

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.

  1. Graphene Surface Acoustic Wave Sensor for Simultaneous Detection of Charge and Mass.

    Science.gov (United States)

    Okuda, Satoshi; Ono, Takao; Kanai, Yasushi; Ikuta, Takashi; Shimatani, Masaaki; Ogawa, Shinpei; Maehashi, Kenzo; Inoue, Koichi; Matsumoto, Kazuhiko

    2018-01-26

    We have combined a graphene field-effect transistor (GFET) and a surface acoustic wave (SAW) sensor on a LiTaO 3 substrate to create a graphene surface acoustic wave (GSAW) sensor. When a SAW propagates in graphene, an acoustoelectric current (I A ) flows between two attached electrodes. This current has unique electrical characteristics, having both positive and negative peak values with respect to the electrolyte-gate voltage (V Eg ) in solution. We found that I A is controlled by V Eg and the amplitude of the SAW. It was also confirmed that the GSAW sensor detects changes of electrical charge in solution like conventional GFET sensors. Furthermore, the detection of amino-group-modified microbeads was performed by employing a GSAW sensor in a phthalate buffer solution at pH 4.1. The hole current peak shifted to the lower left in the I A -V Eg characteristics. The left shift was caused by charge detection by the GFET and can be explained by an increase of amino groups that have positive charges at pH 4.1. In contrast, the downward shift is thought to be due to a reduction in the amplitude of the propagating SAW because of an increase in the mass loading of microbeads. This mass loading was detected by the SAW sensor. Thus, we have demonstrated that the GSAW sensor is a transducer capable of the simultaneous detection of charge and mass, which indicates that it is an attractive platform for highly sensitive and multifunctional solution sensing.

  2. Evidence of Space-Charge Effects in Thermal Poling

    DEFF Research Database (Denmark)

    Wu, X.; Arentoft, Jesper; Wong, D.

    1999-01-01

    The in situ thermal poling processes in germanosilicate fibers for positive and negative poling voltages are significantly different. Thermal poling of silica fibers consists of two processes: the faster linear process of charge migration and the subsequent single exponential process of charge...... ionization. Both the shielding electrical field due to charge migration and the ionization electrical field due to charge ionization are able to be frozen-in at room temperature acid lead to the residual linear electrooptic effects, The observations support that the mechanism of the induced electrooptic...... effects is based on space charge electrical fields instead of dipole/bond orientation....

  3. Cryogenic germanium detectors for dark matter search: Surface events rejection by charge measurements

    International Nuclear Information System (INIS)

    Broniatowski, A.; Censier, B.; Juillard, A.; Berge, L.

    2006-01-01

    Test experiments have been performed on a Ge detector of the Edelweiss collaboration, combining time-resolved acquisition of the ionization signals with heat measurements. Pulse-shape analysis of the charge signals demonstrates the capability to reject surface events of poor charge collection with energies larger than 50 keV in ionization

  4. Adhesion of Mycobacterium smegmatis to Charged Surfaces and Diagnostics Implications

    Science.gov (United States)

    Gorse, Diane; Dhinojwala, Ali; Moore, Francisco

    Pulmonary tuberculosis (PTB) causes more than 1 million deaths annually. Smear microscopy is a primary rapid detection tool in areas where 95 % of PTB cases occur. This technique, in which the sputum of a symptomatic patient is stained and examined using a light microscope for Mycobacterium tuberculosis (MTB) shows sensitivity between 20 and 60 %. Insufficient bacterial isolation during sample preparation may be a reason for low sensitivity. We are optimizing a system to capture bacteria on the basis of electrostatic interactions to more thoroughly isolate bacteria from suspension and facilitate more accurate detection. Silica supports coated with positively-charged polyelectrolyte, poly(diallyldimethylammonium chloride), captured approximately 4.1 times more Mycobacterium smegmatis, a model organism for MTB, than was captured on negatively-charged silica substrates. Future experimentation will employ branched polymer systems and seek to justify the use of colloidal stability theories to describe initial capture. Supported by University of Akron, Department of Polymer Science, Department of Biology; LORD Corporation.

  5. Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces

    Science.gov (United States)

    Bautista, Oscar; Sanchez, Salvador; Mendez, Federico

    2015-11-01

    In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.

  6. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy

    NARCIS (Netherlands)

    Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram Harold; van den Ende, Henricus T.M.; Mugele, Friedrich Gunther; Sîretanu, Igor

    2016-01-01

    Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the

  7. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    Energy Technology Data Exchange (ETDEWEB)

    Illias, Hazlee A [Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chen, George; Lewin, Paul L, E-mail: h.illias@um.edu.my [Tony Davies High Voltage Laboratory, School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2011-06-22

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  8. LEO Orbit Surface Charging and Its Relationship to Environment, Vehicle Geometry, and Ionospheric Conditions

    National Research Council Canada - National Science Library

    Fennell, Joseph F; Anderson, Phillip C

    2008-01-01

    .... Such surfaces can be both in shadow and in the satellite wake at the same time, which enhances the chances of charging in the dusk to pre-noon sector of the auroral oval, depending on plasma density...

  9. Wafer Surface Charge Reversal as a Method of Simplifying Nanosphere Lithography for Reactive Ion Etch Texturing of Solar Cells

    Directory of Open Access Journals (Sweden)

    Daniel Inns

    2007-01-01

    Full Text Available A simplified nanosphere lithography process has been developed which allows fast and low-waste maskings of Si surfaces for subsequent reactive ion etching (RIE texturing. Initially, a positive surface charge is applied to a wafer surface by dipping in a solution of aluminum nitrate. Dipping the positive-coated wafer into a solution of negatively charged silica beads (nanospheres results in the spheres becoming electrostatically attracted to the wafer surface. These nanospheres form an etch mask for RIE. After RIE texturing, the reflection of the surface is reduced as effectively as any other nanosphere lithography method, while this batch process used for masking is much faster, making it more industrially relevant.

  10. Charge modification of the endothelial surface layer modulates the permeability barrier of isolated rat mesenteric small arteries

    NARCIS (Netherlands)

    van Haaren, Paul M. A.; VanBavel, Ed; Vink, Hans; Spaan, Jos A. E.

    2005-01-01

    We hypothesized that modulation of the effective charge density of the endothelial surface layer ( ESL) results in altered arterial barrier properties to transport of anionic solutes. Rat mesenteric small arteries ( diameter similar to 190 mu m) were isolated, cannulated, perfused, and superfused

  11. The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model

    NARCIS (Netherlands)

    Wolthers, M.; Charlet, L.; Van Cappellen, P.

    2008-01-01

    The Charge Distribution MUltiSite Ion Complexation or CD–MUSIC modeling approach is used to describe the chemical structure of carbonate mineralaqueous solution interfaces. The new model extends existing surface complexation models of carbonate minerals, by including atomic scale information on

  12. Counterion Condensation and Effective Charge of PAMAM Dendrimers

    Directory of Open Access Journals (Sweden)

    Ulrich Scheler

    2011-04-01

    Full Text Available PAMAM dendrimers are used as a model system to investigate the effects of counterion condensation and the effective charge for spherical polyelectrolytes. Because of their amino groups, PAMAM dendrimers are weak polyelectrolytes. Lowering the pH results in an increasing protonation of the amino groups which is monitored via the proton chemical shifts of the adjacent CH2 groups. The effective charge is determined from a combination of diffusion and electrophoresis NMR. The fraction of the charges, which are effective for the interaction with an external electric field or other charges, decreases with increasing generation (size of the dendrimers.

  13. Charging effects in the inductively shunted Josephson junction.

    Science.gov (United States)

    Koch, Jens; Manucharyan, V; Devoret, M H; Glazman, L I

    2009-11-20

    The choice of impedance used to shunt a Josephson junction determines if the charge transferred through the circuit is quantized: a capacitive shunt renders the charge discrete, whereas an inductive shunt gives continuous charge. This discrepancy leads to a paradox in the limit of large inductances L. We show that while the energy spectra of the capacitively and inductively shunted junction are vastly different, their high-frequency responses become identical for large L. Inductive shunting thus opens the possibility to observe charging effects unimpeded by charge noise.

  14. Enterococcus faecalis strains show culture heterogeneity in cell surface charge

    NARCIS (Netherlands)

    van Merode, Annet; van der Mei, HC; Busscher, HJ; Waar, K; Krom, BP

    Adhesion of micro-organisms to biotic and abiotic surfaces is an important virulence factor and involves different types of interactions. Enterococcus faecalis, a human commensal and an important opportunistic pathogen, has the ability to adhere to surfaces. Biliary stents frequently become clogged

  15. Unipolar charging of nanoparticles by the Surface-discharge Microplasma Aerosol Charger (SMAC)

    Science.gov (United States)

    Kwon, Soon-Bark; Sakurai, Hiromu; Seto, Takafumi

    2007-08-01

    In this paper, we report the development of a novel unipolar charger for nanoparticles, a system that achieves low particle loss and high charging efficiency without the use of sheath air. The efficient unipolar charging of the system is realized mainly by the surface-discharge microplasma unit, a device previously applied with good success to the neutralization or charging of submicron particles [Kwon et al., 2005, Aerosol Sci. Technol., 39, 987-1001; 2006, J. Aerosol Sci., 37, 483-499]. The unipolar charger generates unipolar ions using the surface discharge of a single electrode with a DC pulse supply. This marks an advance from our previous method of generating bipolar ions with the use of dual electrodes in earlier studies. We evaluated the efficiency of the penetration (or loss) and charging of nanoparticles in the size range of 3-15 nm, then compared the charging efficiencies measured with those predicted by diffusion charging theory. More than 90% of inlet nanoparticles penetrated the charger (less than 10% of the particle were lost) without the use of sheath air. Other chargers have only realized this high penetration efficiency by relying on sheath air flow. Moreover, the measured charging efficiencies agreed well with those predicted by diffusion charging theory and were somewhat higher and more size-dependent than the charging efficiencies of other nanoparticle chargers.

  16. Unipolar charging of nanoparticles by the Surface-discharge Microplasma Aerosol Charger (SMAC)

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soon-Bark [Korea Railroad Research Institute, Environment and Fire Control Research Team (Korea, Republic of); Sakurai, Hiromu [National Institute of Advanced Industrial Science and Technology, National Metrology Institute of Japan (Japan); Seto, Takafumi [National Institute of Advanced Industrial Science and Technology, Advanced Manufacturing Research Institute (Japan)], E-mail: t.seto@aist.go.jp

    2007-08-15

    In this paper, we report the development of a novel unipolar charger for nanoparticles, a system that achieves low particle loss and high charging efficiency without the use of sheath air. The efficient unipolar charging of the system is realized mainly by the surface-discharge microplasma unit, a device previously applied with good success to the neutralization or charging of submicron particles [Kwon et al., 2005, Aerosol Sci. Technol., 39, 987-1001; 2006, J. Aerosol Sci., 37, 483-499]. The unipolar charger generates unipolar ions using the surface discharge of a single electrode with a DC pulse supply. This marks an advance from our previous method of generating bipolar ions with the use of dual electrodes in earlier studies. We evaluated the efficiency of the penetration (or loss) and charging of nanoparticles in the size range of 3-15 nm, then compared the charging efficiencies measured with those predicted by diffusion charging theory. More than 90% of inlet nanoparticles penetrated the charger (less than 10% of the particle were lost) without the use of sheath air. Other chargers have only realized this high penetration efficiency by relying on sheath air flow. Moreover, the measured charging efficiencies agreed well with those predicted by diffusion charging theory and were somewhat higher and more size-dependent than the charging efficiencies of other nanoparticle chargers.

  17. Unipolar charging of nanoparticles by the Surface-discharge Microplasma Aerosol Charger (SMAC)

    International Nuclear Information System (INIS)

    Kwon, Soon-Bark; Sakurai, Hiromu; Seto, Takafumi

    2007-01-01

    In this paper, we report the development of a novel unipolar charger for nanoparticles, a system that achieves low particle loss and high charging efficiency without the use of sheath air. The efficient unipolar charging of the system is realized mainly by the surface-discharge microplasma unit, a device previously applied with good success to the neutralization or charging of submicron particles [Kwon et al., 2005, Aerosol Sci. Technol., 39, 987-1001; 2006, J. Aerosol Sci., 37, 483-499]. The unipolar charger generates unipolar ions using the surface discharge of a single electrode with a DC pulse supply. This marks an advance from our previous method of generating bipolar ions with the use of dual electrodes in earlier studies. We evaluated the efficiency of the penetration (or loss) and charging of nanoparticles in the size range of 3-15 nm, then compared the charging efficiencies measured with those predicted by diffusion charging theory. More than 90% of inlet nanoparticles penetrated the charger (less than 10% of the particle were lost) without the use of sheath air. Other chargers have only realized this high penetration efficiency by relying on sheath air flow. Moreover, the measured charging efficiencies agreed well with those predicted by diffusion charging theory and were somewhat higher and more size-dependent than the charging efficiencies of other nanoparticle chargers

  18. A study of charge transfer kinetics in dye-sensitized surface conductivity solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Dennis

    2011-05-15

    The efficiency of the quasi-solid-state dye-sensitized solar cell developed by Junghaenel and Tributsch, the so-called Nano Surface Conductivity Solar Cell (NSCSC), was improved from 2% to 3.5% introducing a compact TiO{sub 2} underlayer, modifying the surface of the mesoporous TiO{sub 2} electrode, optimizing the deposition process of the electrolyte film, and replacing the platinum counter electrode by a carbon layer. Space-resolved photocurrent images revealed the importance of a homogeneous distribution of the electrolyte film. An uneven dispersion led to localized areas of high and low photocurrents, whereas the latter were attributed to an insufficient concentration of the redox couple. Impedance spectroscopy was performed on cells containing different concentrations of the redox couple. By modeling the spectra using an equivalent circuit with a transmission line of resistive and capacitive elements, the characteristic parameters of electron transport in the TiO{sub 2}, such as diffusion length and electron lifetime were obtained. The measurements indicated that the transport of the positive charge to the counter electrode is the main process limiting the efficiency of the cells. Excess charge carrier decay in functioning devices was analyzed by contactless transient photoconductance measurements in the microwave frequency range (TRMC). The lifetime of the photogenerated charge carriers was observed to decrease with increasing applied potential, reaching its maximum close to the opencircuit potential of the cell, where the photocurrent density was minimal, i.e. the potential dependent decay observed was limited by the injection of electrons into the front contact. The functioning of this NSCSC indicated that the transport of the positive charge occurs by solid-state diffusion at the surface of the TiO{sub 2} particles. TRMC measurements on subset devices in the form of sensitized TiO{sub 2} layers revealed charge carrier kinetics strongly dependent on the

  19. Solvent Role in the Formation of Electric Double Layers with Surface Charge Regulation: A Bystander or a Key Participant?

    Science.gov (United States)

    Fleharty, Mark E.; van Swol, Frank; Petsev, Dimiter N.

    2016-01-01

    The charge formation at interfaces involving electrolyte solutions is due to the chemical equilibrium between the surface reactive groups and the potential determining ions in the solution (i.e., charge regulation). In this Letter we report our findings that this equilibrium is strongly coupled to the precise molecular structure of the solution near the charged interface. The neutral solvent molecules dominate this structure due to their overwhelmingly large number. Treating the solvent as a structureless continuum leads to a fundamentally inadequate physical picture of charged interfaces. We show that a proper account of the solvent effect leads to an unexpected and complex system behavior that is affected by the molecular and ionic excluded volumes and van der Waals interactions.

  20. Suppression of surface charge accumulation on Al{sub 2}O{sub 3}-filled epoxy resin insulator under dc voltage by direct fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boya; Zhang, Guixin, E-mail: guixin@mail.tsinghua.edu.cn; Li, Chuanyang; He, Jinliang [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Wang, Qiang [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081 (China); An, Zhenlian [Department of Electrical Engineering, Tongji University, Shanghai 201804 (China)

    2015-12-15

    Surface charge accumulation on insulators under high dc voltage is a major factor that may lead to the reduction of insulation levels in gas insulated devices. In this paper, disc insulators made of Al{sub 2}O{sub 3}-filled epoxy resin were surface fluorinated using a F{sub 2}/N{sub 2} mixture (12.5% F{sub 2}) at 50 °C and 0.1 MPa for different durations of 15 min, 30 min and 60 min. A dc voltage was applied to the insulator for 30 min and the charge density on its surface was measured by an electrostatic probe. The results revealed significant lower surface charge densities on the fluorinated insulators in comparison with the original one. Surface conductivity measurements indicated a higher surface conductivity by over three orders of magnitude after fluorination, which would allow the charges to transfer along the surface and thus may suppress their accumulation. Further, attenuated total reflection infrared analysis and surface morphology observations of the samples revealed that the introduction of fluoride groups altered the surface physicochemical properties. These structure changes, especially the physical defects reduced the depth of charge traps in the surface layer, which was verified by the measurement of energy distributions of the electron and hole traps based on the isothermal current theory. The results in this paper demonstrate that fluorination can be a promising and effective method to suppress surface charge accumulation on epoxy insulators in gas insulated devices.

  1. Biofouling in membrane bioreactors: nexus between polyacrylonitrile surface charge and community composition.

    Science.gov (United States)

    Marbelia, Lisendra; Hernalsteens, Marie-Aline; Ilyas, Shazia; Öztürk, Basak; Szymczyk, Anthony; Springael, Dirk; Vankelecom, Ivo

    2018-02-15

    The influence of membrane surface charge on biofouling community composition during activated sludge filtration in a membrane bioreactor was investigated in this study using polyacrylonitrile-based membranes. Membranes with different surface properties were synthesized by phase inversion followed by a layer-by-layer modification. Various characterization results showed that the membranes differed only in their surface chemical composition and charge, ie two of them were negative, one neutral and one positive. Membrane fouling experiments were performed for 40 days and the biofouling communities were analyzed. PCR-DGGE fingerprinting indicated selective enrichment of bacterial populations from the sludge suspension within the biofilms at any time point. The biofilm community composition seemed to change with time. However, no difference was observed between the biofilm community of differently charged membranes at specific time points. It could be concluded that membrane charges do not play a decisive role in the long-term selection of the key bacterial foulants.

  2. InN/GaN quantum dot superlattices: Charge-carrier states and surface electronic structure

    Science.gov (United States)

    Kanouni, F.; Brezini, A.; Djenane, M.; Zou, Q.

    2018-03-01

    We have theoretically investigated the electron energy spectra and surface states energy in the three dimensionally ordered quantum dot superlattices (QDSLs) made of InN and GaN semiconductors. The QDSL is assumed in this model to be a matrix of GaN containing cubic dots of InN of the same size and uniformly distributed. For the miniband’s structure calculation, the resolution of the effective mass Schrödinger equation is done by decoupling it in the three directions within the framework of Kronig-Penney model. We found that the electrons minibands in infinite ODSLs are clearly different from those in the conventional quantum-well superlattices. The electrons localization and charge-carrier states are very dependent on the quasicrystallographic directions, the size and the shape of the dots which play a role of the artificial atoms in such QD supracrystal. The energy spectrum of the electron states localized at the surface of InN/GaN QDSL is represented by Kronig-Penney like-model, calculated via direct matching procedure. The calculation results show that the substrate breaks symmetrical shape of QDSL on which some localized electronic surface states can be produced in minigap regions. Furthermore, we have noticed that the surface states degeneracy is achieved in like very thin bands located in the minigaps, identified by different quantum numbers nx, ny, nz. Moreover, the surface energy bands split due to the reduction of the symmetry of the QDSL in z-direction.

  3. Electron holography study of the charging effect in microfibrils of sciatic nerve tissues.

    Science.gov (United States)

    Kim, Ki Hyun; Akase, Zentaro; Shindo, Daisuke; Ohno, Nobuhiko; Fujii, Yasuhisa; Terada, Nobuo; Ohno, Shinichi

    2013-08-01

    The charging effects of microfibrils of sciatic nerve tissues due to electron irradiation are investigated using electron holography. The phenomenon that the charging effects are enhanced with an increase of electron intensity is visualized through direct observations of the electric potential distribution around the specimen. The electric potential at the surface of the specimen could be quantitatively evaluated by simulation, which takes into account the reference wave modulation due to the long-range electric field.

  4. Buffer-eliminated, charge-neutral epitaxial graphene on oxidized 4H-SiC (0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Sirikumara, Hansika I., E-mail: hansi.sirikumara@siu.edu; Jayasekera, Thushari, E-mail: thushari@siu.edu [Department of Physics, Southern Illinois University, Carbondale, Illinois 62901 (United States)

    2016-06-07

    Buffer-eliminated, charge-neutral epitaxial graphene (EG) is important to enhance its potential in device applications. Using the first principles Density Functional Theory calculations, we investigated the effect of oxidation on the electronic and structural properties of EG on 4H-SiC (0001) surface. Our investigation reveals that the buffer layer decouples from the substrate in the presence of both silicate and silicon oxy-nitride at the interface, and the resultant monolayer EG is charge-neutral in both cases. The interface at 4H-SiC/silicate/EG is characterized by surface dangling electrons, which opens up another route for further engineering EG on 4H-SiC. Dangling electron-free 4H-SiC/silicon oxy-nitride/EG is ideal for achieving charge-neutral EG.

  5. Mathematical Heat Transfer Model of Surface Quenching Process for Hot Charging

    Science.gov (United States)

    Zhong, Jing; Wang, Qian; Li, Yugang; Zhang, Shaoda; Yan, Chen

    Online surface quenching technology has been developed for the hot charging process to prevent the surface cracks in high strength low-alloy steel slabs. In this paper, a two-dimensional heat transfer model of surface quenching process was presented. This finite element model includes nonlinear thermodynamic properties, by which the slab temperature distributions were computed. The model predicted temperatures show reasonable agreement with the measurements. The effects of the water flow rate and slab movement velocity on temperature variation during the quenching and subsequent tempering process were investigated. The result shows that the temperature drop increases but the tempering temperature changes slightly with increasing water flow rate and decreasing slab velocity. Keeping the slab movement velocity at 1.2-2.1m/min and the water flow rate at 55-70m3/h, the slab surface experiences a temperature drop of 400-600°C firstly, then recovers above 650°C, the quenching and energy-saving effect are remarkable.

  6. Advanced portrayal of SMIL coating by allying CZE performance with in-capillary topographic and charge-related surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Stock, Lorenz G. [Division of Chemistry and Bioanalytics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Leitner, Michael; Traxler, Lukas [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Bonazza, Klaus [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria); Leclercq, Laurent; Cottet, Hervé [Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Place Eugène Bataillon, CC 1706, 34095 Montpellier (France); Friedbacher, Gernot [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria); Ebner, Andreas [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Stutz, Hanno, E-mail: hanno.stutz@sbg.ac.at [Division of Chemistry and Bioanalytics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, Hellbrunnerstrasse 34, 5020 Salzburg (Austria)

    2017-01-25

    A successive multiple ionic polymer layer (SMIL) coating composed of four layers improved the capillary electrophoretic separation of a recombinant major birch pollen allergen and closely related variants when poly(acrylamide-co-2-acrylamido-2-methyl-1-propansulfonate) (55% PAMAMPS) replaced dextran sulfate as terminal SMIL layer. 55% PAMAMPS decelerated the electroosmotic flow (EOF) due to its lower charge density. Atomic force microscopy (AFM) was used to investigate SMIL properties directly on the inner capillary surface and to relate them to EOF measurements and results of associated CZE separations of a mixture of model proteins and peptides that were performed in the same capillary. For the first time, AFM-based biosensing topography and recognition imaging mode (TREC) under liquid conditions was applied for a sequential characterization of the inner surface of a SMIL coated capillary after selected treatments including pristine SMIL, SMIL after contact with the model mixture, after alkaline rinsing, and the replenishment of the terminal polyelectrolyte layer. A cantilever with tip-tethered avidin was used to determine the charge homogeneity of the SMIL surface in the TREC mode. SMIL coated rectangular capillaries with 100 μm internal diameter assured accessibility of the inner surface for this cantilever type. Observed changes in CZE performance and EOF mobility during capillary treatment were also reflected by alterations in surface roughness and charge distribution of the SMIL coating. A renewal of the terminal SMIL layer restored the original surface properties of SMIL and the separation performance. The alliance of the novel TREC approach and CZE results allows for an improved understanding and a comprehensive insight in effects occurring on capillary coatings. - Highlights: • SMIL coating with a terminal layer of reduced charge density improves CZE separation. • Capillaries with rectangular diameter allow for in-capillary TREC-AFM measurement.

  7. Characterizing the effects of regolith surface roughness on photoemission from surfaces in space

    Science.gov (United States)

    Dove, A.; Horanyi, M.; Wang, X.

    2017-12-01

    Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.

  8. The gauge-independent QCD effective charge

    International Nuclear Information System (INIS)

    Watson, N.J.

    1999-01-01

    It is shown how the QCD concept of a gauge-, scale-and scheme-independent one-loop effective charge can be extended directly at the diagrammatic level to QCD, thus justifying explicitly the 'naive non-abelialization' prescription used in renormalon calculus. It is first argued that, for one-shell external fields and at the strictly one-loop level, the required gluon self-energy-like function is precisely that obtained from S-matrix elements via the pinch technique. The generalization of the pinch technique to explicitly off-shell processes is then introduced. It is shown how, as a result of a fundamental cancellation among conventional perturbation theory diagrams encoded in the QCD Ward identities, the pinch technique one-loop gluon self-energy iΠ μν ab (q) remains gauge-independent and universal regardless of the fact that the 'external' fields in the given process are off-shell. This demonstration involves a simple technique enabling the isolation in a arbitrary gauge, of iΠ μν ab (q) from subclasses of up to several hundreds diagrams at once. Furthermore, it is shown how this one-loop cancellation mechanism iterates for the subclasses of n-loop diagrams containing implicitly the Dyson chains of n-loop self energies iΠ μν ab (q). The gauge cancellation required for the Dyson summation of iΠ μν ab (q) is thus demonstrated explicitly in the class of ghost-free gauges for all orders n. (authors)

  9. The gauge-independent QCD effective charge

    International Nuclear Information System (INIS)

    Watson, N.J.

    1997-01-01

    It is shown how the QED concept of a gauge-, scale- and scheme-independent one-loop effective charge can be extended directly at the diagrammatic level to QCD, thus justifying explicitly the ''naive non-abelianization'' prescription used in renormalon calculus. It is first argued that, for on-shell external fields and at the strictly one-loop level, the required gluon self-energy-like function is precisely that obtained from S-matrix elements via the pinch technique. The generalization of the pinch technique to explicitly off-shell processes is then introduced. It is shown how, as a result of a fundamental cancellation among conventional perturbation theory diagrams, encoded in the QCD Ward identities, the pinch technique one-loop gluon self-energy iΠ μν ab (q) remains gauge-independent and universal regardless of the fact that the ''external'' fields in the given process are off-shell. This demonstration involves a simple technique enabling the isolation, in an arbitrary gauge, of iΠ μν ab (q) from subclasses of up to several hundred diagrams at once. Furthermore, it is shown how this one-loop cancellation mechanism iterates for the subclasses of n-loop diagrams containing implicitly the Dyson chains of n one-loop self-energies iΠ μν ab (q). The gauge cancellation required for the Dyson summation of iΠ μν ab (q) is thus demonstrated explicitly in a general class of ghost-free gauges for all orders n. (orig.)

  10. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    2014-01-01

    Full Text Available Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges.

  11. Interaction of singly and multiply charged ions with a lithium-fluoride surface

    CERN Document Server

    Wirtz, L

    2001-01-01

    Charge transfer between slow ions and an ionic crystal surface still poses a considerable challenge to theory due to the intrinsic many-body character of the system. For the neutralization of multiply charged ions in front of metal surfaces, the Classical Over the Barrier (COB) model is a widely used tool. We present an extension of this model to ionic crystal surfaces where the localization of valence electrons at the anion sites and the lack of cylindrical symmetry of the ion-surface system impede a simple analytical estimate of electron transfer rates. We use a classical trajectory Monte Carlo approach to calculate electron transfer rates for different charge states of the projectile ion. With these rates we perform a Monte Carlo simulation of the neutralization of slow Ne10+ ions in vertical incidence on an LiF surface. Capture of one or several electrons may lead to a local positive charge up of the surface. The projectile dynamics depends on the balance between the repulsion due to this charge and the a...

  12. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O2 alone, and in

  13. Space charge effects in proton linear accelerators

    International Nuclear Information System (INIS)

    Prome, Michel

    1971-01-01

    Space charge difficulties are relatively well known because of the inconveniences they cause, but the physical mechanisms by which they operate are obscure; an attempt was made to explain some of these mechanisms. The method chosen involves a numerical simulation of the beam; computer programs describing beam dynamics with space charge are presented; they are used to check results obtained elsewhere. A series of experiments was performed demonstrating that coupling phenomena produce an equalization of r. m. s. velocities in the 3 directions; new quantity (sort of hyper-emittance) is introduced: its growth between the input and output of a given linac is proportional to the beam intensity. (author) [fr

  14. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  15. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  16. Growth and decay of surface charges in grafts of Teflon in electrets states

    International Nuclear Information System (INIS)

    Spinelli, I.M.M.

    1971-01-01

    The greatest problem founded in a cardiovascular implant is the thrombus formation. Teflon grafts were used in electret state for prothesis in vena cava of dogs. To put these grafts in an electret state a corona discharge in air was used and homocharge was formed predominantly. To measure the formed surface charge the oscillating capacitor technique was used. In the electret state the grafts have showed an initial density of charge of 10- 8 C/cm 2 and the charge decay and time decay of the samples were measured under many conditions. We found two activation energies, E 2 =0.17 e V and E 3 =1.12 e V, due to rapid and slow decay, respectively. The charged grafts were sterilized with ethilene gas oxide and this process apparently did not influence the charges

  17. Screening charge localization at LiNbO{sub 3} surface with Schottky junction

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Takahiro, E-mail: NAGATA.Takahiro@nims.go.jp; Chikyow, Toyohiro [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Kitamura, Kenji [Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2016-04-25

    Screening charge localization was demonstrated by using a Schottky contact with LiNbO{sub 3} (LN). A Cr/LN stack structure with a 2 μm diameter hole array penetrating the Cr layer localized the screening charge of LN in the hole, although the Al/LN stack structure exhibited no surface charge localization behavior. X-ray photoelectron spectroscopy revealed that Cr formed a Schottky contact with LN, which prevents the screening charge from escaping from the hole arrays. The screening charge localization was enhanced by inserting SiO{sub 2} between the metal and LN, which moved the position of the Fermi level to mid gap.

  18. Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions.

    Science.gov (United States)

    Johnson, Grant E; Priest, Thomas; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas phase, and mass selection was employed to isolate a single ionic cluster species (Au(11)L(5)(3+), L = 1,3-bis(diphenylphosphino)propane), which was delivered to surfaces at well-controlled kinetic energies. Using in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS), it is demonstrated that the Au(11)L(5)(3+) cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-perfluorodecanethiol self-assembled monolayer (FSAM) on gold. In contrast, when deposited onto 16-mercaptohexadecanoic acid (COOH-SAM) and 1-dodecanethiol (HSAM) surfaces on gold, the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the FSAM and HSAM surfaces are investigated using in situ Fourier transform ion cyclotron resonance (FT-ICR) SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the FSAM surface while an almost instantaneous neutralization takes place on the surface of the HSAM. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto carefully selected substrates. © 2011 American Chemical Society

  19. The effects of ion adsorption on the potential of zero charge and the differential capacitance of charged aqueous interfaces

    Science.gov (United States)

    Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan

    2018-02-01

    Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson–Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights.

  20. Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica

    Science.gov (United States)

    Kim, Kyoung-Min; Kim, Hye Min; Lee, Won-Jae; Lee, Chang-Woo; Kim, Tae-il; Lee, Jong-Kwon; Jeong, Jayoung; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    An attempt was made to control the surface charge of colloidal silica nanoparticles with 20 nm and 100 nm diameters. Untreated silica nanoparticles were determined to be highly negatively charged and have stable hydrodynamic sizes in a wide pH range. To change the surface to a positively charged form, various coating agents, such as amine containing molecules, multivalent metal cation, or amino acids, were used to treat the colloidal silica nanoparticles. Molecules with chelating amine sites were determined to have high affinity with the silica surface to make agglomerations or gel-like networks. Amino acid coatings resulted in relatively stable silica colloids with a modified surface charge. Three amino acid moiety coatings (L-serine, L-histidine, and L-arginine) exhibited surface charge modifying efficacy of L-histidine > L-arginine > L-serine and hydrodynamic size preservation efficacy of L-serine > L-arginine > L-histidine. The time dependent change in L-arginine coated colloidal silica was investigated by measuring the pattern of the backscattered light in a Turbiscan™. The results indicated that both the 20 nm and 100 nm L-arginine coated silica samples were fairly stable in terms of colloidal homogeneity, showing only slight coalescence and sedimentation. PMID:25565824

  1. Systematic investigation of the barrier discharge operation in helium, nitrogen, and mixtures: discharge development, formation and decay of surface charges

    Science.gov (United States)

    Tschiersch, R.; Bogaczyk, M.; Wagner, H.-E.

    2014-09-01

    As a logical extension to previous investigations of the barrier discharge (BD) in helium and nitrogen, the present work reports on the operation in any mixtures of both pure gases. Using a well-established plane-parallel discharge cell configuration allows to study the influence of the He/N2 mixing ratio on the formation of different discharge modes. Their characterization was made by measuring the discharge emission development together with the formation and decay of surface charges on a bismuth silicon oxide (Bi12SiO20, BSO) crystal. This was realized by the simultaneous application of the spatio-temporally resolved optical emission spectroscopy, and the electro-optic Pockels effect in combination with a CCD high speed camera. The existence diagram for diffuse and filamentary BDs was determined by varying the amplitude and shape of the applied voltage. Over the entire range of the He/N2 ratio, the diffuse mode can be operated at moderate voltage amplitudes whereas filamentation occurs at significant overvoltage and is favoured by a high voltage slew rate. Irrespective of the discharge mode, the overall charge transfer during a discharge breakdown is found to be in excellent agreement with the amount of accumulated surface charges. An exponential decay of the surface charge deposited on the BSO crystal is induced by LED illumination beyond a typical discharge cycle. During the decay process, a broadening of the radial profiles of positive as well as negative surface charge spots originating from previous microdischarges is observed. The investigations contribute to a better understanding of the charge accumulation at a dielectric.

  2. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    International Nuclear Information System (INIS)

    Liu, Shijie; Shao, Chen; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao

    2015-01-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml −1 , compared with the free Ce6 value of 29.85 μg ml −1 . Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects. (paper)

  3. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  4. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    Science.gov (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  5. The Natural Charge On The Surface Of The Earth | Mamah | Global ...

    African Journals Online (AJOL)

    The natural electric charge or its artificial analogue as the fundamental unit of exploration has been fundamentally derived and compared for both the equatorial region and the polar region. The ratio of the unit charge on the surface of the earth at the equatorial region (ω ± ω0) = 0.59 rad where ω0 = 1.65; to that at the polar ...

  6. Behaviour of total surface charge in SiO2-Si system under short-pulsed ultraviolet irradiation cycles characterised by surface photo voltage technique

    International Nuclear Information System (INIS)

    Kang, Ban-Hong; Lee, Wah-Pheng; Yow, Ho-Kwang; Tou, Teck-Yong

    2009-01-01

    Effects of time-accumulated ultraviolet (UV) irradiation and surface treatment on thermally oxidized p-type silicon wafers were investigated by using the surface photo voltage (SPV) technique via the direct measurement of the total surface charge, Q SC . The rise and fall times of Q sc curves, as a function of accumulated UV irradiation, depended on the thermal oxide thickness. A simple model was proposed to explain the time-varying characteristics of Q sc based on the UV-induced bond breaking of SiOH and SiH, and photoemission of bulk electrons to wafer surface where O 2 - charges were formed. While these mechanisms resulted in charge variations and hence in Q sc , these could be removed by rinsing the silicon wafers in de-ionized water followed by spin-dry or blow-dry by an ionizer fan. Empirical parameters were used in the model simulations and curve-fitting of Q SC . The simulated results suggested that initial changes in the characteristic behaviour of Q sc were mainly due to the net changes in the positive and negative charges, but subsequently were dominated by the accumulation of O 2 - during the UV irradiation.

  7. Application of »Mass Titration« to Determination of Surface Charge of Metal Oxides

    OpenAIRE

    1998-01-01

    The mass titration method, used for the point of zero charge determination, was extended to the measurement of the surface charge density. The results agree with the common method, which is the acid-base titration of the colloidal suspension. The advantage of mass titration is that one does not need to perform blank titration, instead one simply adds metal oxide powder to the electrolyte aqueous solution of known pH. To cover the pH range above and below the point of zero charge, two experime...

  8. Charges for plastic bags : Motivational and behavioral effects

    NARCIS (Netherlands)

    Jakovcevic, Adriana; Steg, Linda; Mazzeo, Nadia; Caballero, Romina; Franco, Paul; Putrino, Natalia; Favara, Jesica

    2014-01-01

    Two field studies tested the effects of a charge for single-use plastic bags recently implemented in Buenos Aires City, Argentina. Study 1 showed a greater increase in consumers' own bag use after the charge was introduced in supermarkets where the policy was introduced, in comparison to control

  9. Effect of dielectronic recombination on the charge-state distribution ...

    Indian Academy of Sciences (India)

    either neglecting dielectronic recombination [6] or later is taken to be proportional to radiative recombination [7]. Since the theoretically calculated population density of an ionic charge state depends on the rate coefficients used, it is interesting to investigate their effect on the charge-state distribution and spectral line ...

  10. Charging effects of PET under electron beam irradiation in a SEM

    International Nuclear Information System (INIS)

    Jbara, O; Rondot, S; Hadjadj, A; Patat, J M; Fakhfakh, S; Belhaj, M

    2008-01-01

    This paper deals with charge trapping and charge transport of polyethylene terephthalate (PET) polymer subjected to electron irradiation in a scanning electron microscope (SEM). Measurement of displacement current and leakage current using an arrangement adapted to the SEM allows the amount of trapped charge during and after electron irradiation to be determined and the charge mechanisms regulation to be studied. These mechanisms involve several parameters related to the electronic injection, the characteristics of insulator and the effects of the trapped charge itself. The dynamic trapping properties of PET samples are investigated and the time constants of charging are evaluated for various conditions of irradiation. The determination of the trapping cross section for electrons is possible by using the trapping rate at the onset of irradiation. Many physical processes are involved in the charging and discharging mechanisms; among them surface conduction is outlined. Through the control of irradiation conditions, various types of surface discharging (flashover phenomenon) behaviour are also observed. The strength of the electric field initiating surface discharge is estimated.

  11. Charging effects of PET under electron beam irradiation in a SEM

    Energy Technology Data Exchange (ETDEWEB)

    Jbara, O; Rondot, S; Hadjadj, A; Patat, J M [GRESPI/LASSI, Faculte des Sciences BP 1039, 51687 Reims Cedex 2 (France); Fakhfakh, S [LaMaCop, Faculte des sciences de SFAX, Route Soukra Km 3, BP 802, CP 3018 Sfax (Tunisia); Belhaj, M [INSAT, Departement de Physique et Instrumentation, Centre Urbain Nord BP 676-1080 Tunis Cedex (Tunisia)], E-mail: omar.jbara@univ-reims.fr

    2008-12-21

    This paper deals with charge trapping and charge transport of polyethylene terephthalate (PET) polymer subjected to electron irradiation in a scanning electron microscope (SEM). Measurement of displacement current and leakage current using an arrangement adapted to the SEM allows the amount of trapped charge during and after electron irradiation to be determined and the charge mechanisms regulation to be studied. These mechanisms involve several parameters related to the electronic injection, the characteristics of insulator and the effects of the trapped charge itself. The dynamic trapping properties of PET samples are investigated and the time constants of charging are evaluated for various conditions of irradiation. The determination of the trapping cross section for electrons is possible by using the trapping rate at the onset of irradiation. Many physical processes are involved in the charging and discharging mechanisms; among them surface conduction is outlined. Through the control of irradiation conditions, various types of surface discharging (flashover phenomenon) behaviour are also observed. The strength of the electric field initiating surface discharge is estimated.

  12. Intrinsic Charge Transport in Organic Field-Effect Transistors

    Science.gov (United States)

    Podzorov, Vitaly

    2005-03-01

    Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).

  13. The impact of membrane surface charges on the ion transport in MoS2 nanopore power generators

    Science.gov (United States)

    Huang, Zhuo; Zhang, Yan; Hayashida, Tomoki; Ji, Ziwei; He, Yuhui; Tsutsui, Makusu; Miao, Xiang Shui; Taniguchi, Masateru

    2017-12-01

    Recent experiments demonstrated giant osmotic effects induced in a single-atomic-layer MoS2 nanopore by imposing a KCl concentration bias, thereby highlighting the prospect of ultrathin nanopores as power generators. In this work, we report on an electrokinetic analysis of the ionic transport in the MoS2 nanopore system. By taking membrane surface chemistry into account, we found profound roles of surface charges in and out of the nanopore on the cross-pore ion transport, which shed light on the intriguing experimental observations of a high pore conductance with a large open-circuit voltage in the MoS2 system. The present work establishes a theoretical model capable of dealing with ultrathin membrane surface charges for evaluating the energy conversion performance of nanopore power generators constructed with two-dimensional materials.

  14. Proton migration along the membrane surface in the absence of charged or titratable groups

    International Nuclear Information System (INIS)

    Springer, A.

    2011-01-01

    Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. For example, proton diffusion along membrane surfaces is considered to be the dominant mechanism of proton exchange between membrane sites of high and low proton concentrations. For the investigation of this mechanism, kinetic experiments on proton diffusion are evaluated to determine the ability of lipid membranes to retain protons on their surfaces. Experiments on different lipid bilayer membranes (DPhPC, DPhPE and GMO) are performed under the influence of two types of mobile buffer molecules (Capso, NH4CL). During these experiments the surface diffusion of photolytically released protons is visualized in terms of fluorescence changes of a lipid bound pH-sensitive dye (DHPE +fluorescein). The protons under investigation are released by flash photolysis of a hydrophobic caged compound (DMCM, caged diethyl phosphate). The experimental data confirm the existence of an energy barrier, which prevents the protons from escaping into the bulk. So far this effect was attributed to the proton binding to titrateable groups (e.g. ethanolamine) or electrostatic forces created by charged moieties (e.g. phosphate groups) on the membrane/water interface. However, upon removal of the titrateable groups and charged moieties from the membrane surface, a significant energy barrier remained as indicated by the experiments with glycerol monooleate (GMO) bilayers. To estimate the size of the barrier a semi-analytical model is presented that describes the two and three dimensional proton diffusion and the related physical and chemical processes. Common models describe surface proton diffusion as a series of subsequent hopping processes between membrane-anchored buffer molecules. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites s by fluorescence

  15. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.

    Science.gov (United States)

    Ku, Bon Ki; Kulkarni, Pramod

    2012-05-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.

  16. the effect of surface polarity

    Indian Academy of Sciences (India)

    Abstract. An implant material when comes in contact with blood fluids (e.g., blood and lymph), adsorb proteins spontaneously on its surface. Notably, blood coagulation is influenced by many factors, including mainly chemical structure and polarity (charge) of the material. The present study describes the methodology to ...

  17. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  18. Proton surface charge determination in Spodosol horizons with organically bound aluminum

    Science.gov (United States)

    Skyllberg, Ulf; Borggaard, Ole K.

    1998-05-01

    Net proton surface charge densities were determined in O, E, Bh, and Bs horizons of a sandy till, Spodosol from Denmark, by means of acid-base titration combined with ion adsorption in 0.005 M Ca(NO 3) 2 and independent permanent charge determination. The release of organic anions exceeded the adsorption of NO 3-, resulting in a desorption of anions in all horizons. Data were found to obey the law of balance between surface charges and adsorbed ions only when charges pertaining to Al and organic anions released during the titration experiments were accounted for, in addition to charges pertaining the potential determining ions (PDI) H + and OH - and the index ions Ca 2+ and NO 3-. It was furthermore shown that the point of zero net proton charge (PZNPC) in soils highly depends on the concentration of organically bound Al. Approaches previously used in soils, in which adsorbed Al n+ has been ignored (i.e., considered equivalent to nH + as a PDI), resulted in a PZNPC of 4.1 in the Bs horizon. If instead organically bound Al was accounted for as a counter-ion similar to 3/2Ca 2+, a PZNPC of 2.9 was obtained for the same Bs horizon. Based on PZNPC values estimated by the latter approach, combined with a weak-acid analog, it was shown that organic proton surface charges buffered pH with a similar intensity in the O, E, Bh, and Bs horizons of this study. Because the acidity of Al adsorbed to conjugate bases of soil organic acids is substantially weaker than the acidity of the corresponding protonated form of the organic acids, the point of zero net proton charge (PZNPC) will increase if the concentration of organically adsorbed Al increases at the expense of adsorbed H. This means that PZNPC values determined for soils with unknown concentrations of organically adsorbed Al are highly operational and not very meaningful as references.

  19. Charge transfer dynamics from adsorbates to surfaces with single active electron and configuration interaction based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan, E-mail: r.ramakrishnan@unibas.ch [Institute of Physical Chemistry, National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Nest, Mathias [Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany)

    2015-01-13

    Highlights: • We model electron dynamics across cyano alkanethiolates attached to gold cluster. • We present electron transfer time scales from TD-DFT and TD-CI based simulations. • Both DFT and CI methods qualitatively predict the trend in time scales. • TD-CI predicts the experimental relative time scale very accurately. - Abstract: We employ wavepacket simulations based on many-body time-dependent configuration interaction (TD-CI), and single active electron theories, to predict the ultrafast molecule/metal electron transfer time scales, in cyano alkanethiolates bonded to model gold clusters. The initial states represent two excited states where a valence electron is promoted to one of the two virtual π{sup ∗} molecular orbitals localized on the cyanide fragment. The ratio of the two time scales indicate the efficiency of one charge transfer channel over the other. In both our one-and many-electron simulations, this ratio agree qualitatively with each other as well as with the previously reported experimental time scales (Blobner et al., 2012), measured for a macroscopic metal surface. We study the effect of cluster size and the description of electron correlation on the charge transfer process.

  20. Controlling DNA Translocation Speed through Solid-State Nanopores by Surface Charge Modulation

    Science.gov (United States)

    Meller, Amit

    2013-03-01

    The Nanopore method is an emerging technique, which extends gel-electrophoresis to the single-molecule level and allows the analysis of DNAs, RNAs and DNA-protein complexes. The strength of the technique stems from two fundamental facts: First, nanopores due to their nanoscale size can be used to uncoil biopolymers, such as DNA or RNA and slide them in a single file manner that allows scanning their properties. Consequently, the method can be used to probe short as well as extremely long biopolymers, such as genomic DNA with high efficiency. Second, electrostatic focusing of charged biopolymers into the nanopore overcomes thermally driven diffusion, thus facilitating an extremely efficient end-threading (or capture) of DNA. Thus, nanopores can be used to detect minute DNA copy numbers, circumventing costly molecular amplification such as Polymerase Chain Reaction. A critical factor, which determines the ability of nanopore to distinguish fine properties within biopolymers, such as the location of bound small-molecules, proteins, or even the nucleic acid's sequence, is the speed at which molecules are translocated through the pore. When the translocation speed is too high the electrical noise masks the desired signal, thus limiting the utility of the method. Here I will discuss new experimental results showing that modulating the surface charge inside the pore can effectively reduce the translocation speed through solid-state nanopores fabricated in thin silicon nitride membranes. I will present a simple physical model to account for these results.

  1. Phase behavior of charged colloids on spherical surfaces

    Science.gov (United States)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.

  2. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  3. Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems

    Science.gov (United States)

    Bzdušek, Tomáš; Sigrist, Manfred

    2017-10-01

    Weyl points in three spatial dimensions are characterized by a Z -valued charge—the Chern number—which makes them stable against a wide range of perturbations. A set of Weyl points can mutually annihilate only if their net charge vanishes, a property we refer to as robustness. While nodal loops are usually not robust in this sense, it has recently been shown using homotopy arguments that in the centrosymmetric extension of the AI symmetry class they nevertheless develop a Z2 charge analogous to the Chern number. Nodal loops carrying a nontrivial value of this Z2 charge are robust, i.e., they can be gapped out only by a pairwise annihilation and not on their own. As this is an additional charge independent of the Berry π -phase flowing along the band degeneracy, such nodal loops are, in fact, doubly charged. In this manuscript, we generalize the homotopy discussion to the centrosymmetric extensions of all Atland-Zirnbauer classes. We develop a tailored mathematical framework dubbed the AZ +I classification and show that in three spatial dimensions such robust and multiply charged nodes appear in four of such centrosymmetric extensions, namely, AZ +I classes CI and AI lead to doubly charged nodal lines, while D and BDI support doubly charged nodal surfaces. We remark that no further crystalline symmetries apart from the spatial inversion are necessary for their stability. We provide a description of the corresponding topological charges, and develop simple tight-binding models of various semimetallic and superconducting phases that exhibit these nodes. We also indicate how the concept of robust and multiply charged nodes generalizes to other spatial dimensions.

  4. An attempt to apply the inelastic thermal spike model to surface modifications of CaF2 induced by highly charged ions: comparison to swift heavy ions effects and extension to some others material.

    Science.gov (United States)

    Dufour, C; Khomrenkov, V; Wang, Y Y; Wang, Z G; Aumayr, F; Toulemonde, M

    2017-03-08

    Surface damage appears on materials irradiated by highly charged ions (HCI). Since a direct link has been found between surface damage created by HCI with the one created by swift heavy ions (SHI), the inelastic thermal spike model (i-TS model) developed to explain track creation resulting from the electron excitation induced by SHI can also be applied to describe the response of materials under HCI which transfers its potential energy to electrons of the target. An experimental description of the appearance of the hillock-like nanoscale protrusions induced by SHI at the surface of CaF 2 is presented in comparison with track formation in bulk which shows that the only parameter on which we can be confident is the electronic energy loss threshold. Track size and electronic energy loss threshold resulting from SHI irradiation of CaF 2 is described by the i-TS model in a 2D geometry. Based on this description the i-TS model is extended to three dimensions to describe the potential threshold of appearance of protrusions by HCI in CaF 2 and to other crystalline materials (LiF, crystalline SiO 2 , mica, LiNbO 3 , SrTiO 3 , ZnO, TiO 2 , HOPG). The strength of the electron-phonon coupling and the depth in which the potential energy is deposited near the surface combined with the energy necessary to melt the material defines the classification of the material sensitivity. As done for SHI, the band gap of the material may play an important role in the determination of the depth in which the potential energy is deposited. Moreover larger is the initial potential energy and larger is the depth in which it is deposited.

  5. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  6. Role of plasma membrane surface charges in dictating the feasibility of membrane-nanoparticle interactions

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha

    2017-12-01

    Receptor-ligand (R-L) binding mediated interactions between the plasma membrane (PM) and a nanoparticle (NP) require the ligand-functionalized NPs to come to a distance of separation (DOS) of at least dRL (length of the R-L complex) from the receptor-bearing membranes. In this letter, we establish that the membrane surface charges and the surrounding ionic environment dictate whether or not the attainment of such a critical DOS is possible. The negatively charged membrane invariably induces a negative electrostatic potential at the NP surface, repelling the NP from the membrane. This is countered by the attractive influences of the thermal fluctuations and van der Waals (vdw) interactions that drive the NP close to the membrane. For a NP approaching the membrane from a distance, the ratio of the repulsive (electrostatic) and attractive (thermal and vdW) effects balances at a critical NP-membrane DOS of dg,c. For a given set of parameters, there can be two possible values of dg,c, namely, dg,c,1 and dg,c,2 with dg,c,1 ≫ dg,c,2. We establish that any R-L mediated NP-membrane interaction is possible only if dRL > dg,c,1. Therefore, our study proposes a design criterion for engineering ligands for a NP that will ensure the appropriate length of the R-L complex in order to ensure the successful membrane-NP interaction in the presence of a given electrostatic environment. Finally, we discuss the manner in which our theory can help designing ligand-grafted NPs for targeted drug delivery, design biomimetics NPs, and also explain various experimental results.

  7. Mergers in the GB Electricity Market: effects on Retail Charges

    International Nuclear Information System (INIS)

    Salies, Evens

    2006-05-01

    The opening up of the UK residential electricity sector in 1999 prompted several studies of the impact this had on both the level and structuring of retail charges, and on incumbent players' market power. Drawing on observations of regional tariffs for the month of January 2004, this paper supports previous conclusions based on simulated retail charges, looking at the response of real tariffs to distribution and transmission costs, customer density, and the length of low voltage underground circuit. We also investigate whether vertically integrated suppliers have a particular effect on charges ceteris paribus the effect of cost drivers and supplier-related factors. (author)

  8. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada)

    2016-04-10

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  9. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Directory of Open Access Journals (Sweden)

    Behnam Pourhassan

    2016-04-01

    Full Text Available In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  10. Effect of radiative cooling on a hot charged dusty grains with charging fluctuation

    International Nuclear Information System (INIS)

    ElWakil, S.A.; El-Shewy, E.K.; El-Basyouny, S.T.

    2005-01-01

    The effect of the radiative cooling of electrons on the gravitational collapse of hot dust grains with fluctuating electric charge is investigated. Propagation of linear solitary radiation in an unmagnetized collisionless dusty plasma is studied. The standard normal-mode analysis is used to study the stability condition of linear wave

  11. Neutralization and equilibration of highly charged argon ions at grazing incidence on a graphite surface

    International Nuclear Information System (INIS)

    Winecki, S.; Cocke, C.L.; Stoeckli, M.P.; Fry, D.

    1996-01-01

    Final charge state distributions of argon ions, scattered grazingly from a smooth highly oriented pyrolytic graphite (HOPG) surface, have been measured as a function of initial charge state (q=4-17) and impact velocity (v=0.15-0.62 a.u.). The final charge state distribution changes strongly with the impact velocity, but is almost independent of the initial charge state. The neutralization during grazing-angle scattering is compared to the charge state equilibration experienced by ions passing through a solid (carbon foil), and these two processes seem to have common properties. A K x-ray spectrum from the K-shell vacancy decay of 51 keV Ar 17+ projectiles was obtained as a function of the angle between the ion beam and the surface. First measurements of x-ray spectra in coincidence with grazingly scattered ions are reported. A simple model for argon neutralization near and below the surface is proposed. The model assumes a direct side-feeding into the Ar M-shell followed by Auger and radiative L and K-shell filling

  12. Effective Area and Charge Density of Iridium Oxide Neural Electrodes

    International Nuclear Information System (INIS)

    Harris, Alexander R.; Paolini, Antonio G.; Wallace, Gordon G.

    2017-01-01

    The effective electrode area and charge density of iridium metal and anodically activated iridium has been measured by optical and electrochemical techniques. The degree of electrode activation could be assessed by changes in electrode colour. The reduction charge, activation charge, number of activation pulses and charge density were all strongly correlated. Activated iridium showed slow electron transfer kinetics for reduction of a dissolved redox species. At fast voltammetric scan rates the linear diffusion electroactive area was unaffected by iridium activation. At slow voltammetric scan rates, the steady state diffusion electroactive area was reduced by iridium activation. The steady state current was consistent with a ring electrode geometry, with lateral resistance reducing the electrode area. Slow electron transfer on activated iridium would require a larger overpotential to reduce or oxidise dissolved species in tissue, limiting the electrodes charge capacity but also reducing the likelihood of generating toxic species in vivo.

  13. Cutaneous and mucosal human papillomaviruses differ in net surface charge, potential impact on tropism

    Directory of Open Access Journals (Sweden)

    Wibom Carl

    2008-10-01

    Full Text Available Abstract Papillomaviruses can roughly be divided into two tropism groups, those infecting the skin, including the genus beta PVs, and those infecting the mucosa, predominantly genus alpha PVs. The L1 capsid protein determines the phylogenetic separation between beta types and alpha types and the L1 protein is most probably responsible for the first interaction with the cell surface. Virus entry is a known determinant for tissue tropism and to study if interactions of the viral capsid with the cell surface could affect HPV tropism, the net surface charge of the HPV L1 capsid proteins was analyzed and HPV-16 (alpha and HPV-5 (beta with a mucosal and cutaneous tropism respectively were used to study heparin inhibition of uptake. The negatively charged L1 proteins were all found among HPVs with cutaneous tropism from the beta- and gamma-PV genus, while all alpha HPVs were positively charged at pH 7.4. The linear sequence of the HPV-5 L1 capsid protein had a predicted isoelectric point (pI of 6.59 and a charge of -2.74 at pH 7.4, while HPV-16 had a pI of 7.95 with a charge of +2.98, suggesting no interaction between HPV-5 and the highly negative charged heparin. Furthermore, 3D-modelling indicated that HPV-5 L1 exposed more negatively charged amino acids than HPV-16. Uptake of HPV-5 (beta and HPV-16 (alpha was studied in vitro by using a pseudovirus (PsV assay. Uptake of HPV-5 PsV was not inhibited by heparin in C33A cells and only minor inhibition was detected in HaCaT cells. HPV-16 PsV uptake was significantly more inhibited by heparin in both cells and completely blocked in C33A cells.

  14. Nano-scale surface modification of materials with slow, highly charged ion beams

    International Nuclear Information System (INIS)

    Sakurai, M.; Tona, M.; Takahashi, S.; Watanabe, H.; Nakamura, N.; Yoshiyasu, N.; Yamada, C.; Ohtani, S.; Sakaue, H.A.; Kawase, Y.; Mitsumori, K.; Terui, T.; Mashiko, S.

    2007-01-01

    Some results on surface modification of Si and graphite with highly charged ions (HCIs) are presented. Modified surfaces were observed using scanning tunneling microscopy. Crater-like structure with a diameter in nm region is formed on a Si(1 1 1)-(7 x 7) surface by the incidence of a single HCI. The protrusion structure is formed on a highly oriented pyrolytic graphite surface on the other hand, and the structure becomes an active site for molecular adsorption. A new, intense HCI source and an experimental apparatus are under development in order to process and observe aligned nanostructures created by the impact of collimated HCI beam

  15. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets

    Science.gov (United States)

    Soltani, Sepideh; Oh, Myong In; Consta, Styliani

    2015-03-01

    We examine the effect of solvent on the charging mechanisms of a macromolecule in a droplet by using molecular dynamics simulations. The droplet contains excess charge that is carried by sodium ions. To investigate the principles of the charging mechanisms of a macromolecule in a droplet, we simulate aqueous and methanol droplets that contain a poly(ethylene glycol) (PEG) molecule. We find that the solvent plays a critical role in the charging mechanism and in the manner that the sodiated PEG emerges from a droplet. In the aqueous droplets, the sodiated PEG is released from the droplet while it is being charged at a droplet charge state below the Rayleigh limit. The charging of PEG occurs on the surface of the droplet. In contrast to the aqueous droplets, in the methanol droplet, the sodiated PEG resides in the interior of the droplet and it may become charged at any location in the droplet, interior or surface. The sodiated PEG emerges from the droplet by drying-out of the solvent. Even though these two mechanisms appear to be phenomenologically similar to the widely accepted ion-evaporation and charge-residue mechanisms, they have fundamental differences from those. An integral part of the mechanism that the macromolecular ions emerge from droplets is the droplet morphology. Droplet morphologies give rise to different solvation interactions between the solvent and the macromolecule. In the water-sodiated PEG system, we find the extrusion of the PEG morphology, while in methanol-sodiated droplet, we find the "pearl-on-the-necklace" morphology and the extrusion of the sodiated PEG in the last stage of the desolvation process. These findings provide insight into the mechanisms that macromolecules acquire their charge in droplets produced in electrospray ionization experiments.

  16. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NARCIS (Netherlands)

    Bhattacharjee, S.; Opstal, van E.J.; Alink, G.M.; Marcelis, A.T.M.; Zuilhof, H.; Rietjens, I.M.C.M.

    2013-01-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles

  17. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  18. Using the lambda function to evaluate probe measurements of charged dielectric surfaces

    DEFF Research Database (Denmark)

    Rerup, T. O.; Crichton, George C; McAllister, Iain Wilson

    1996-01-01

    The use of Pedersen's λ function to evaluate electrostatic probe measurements of charged dielectric surfaces is demonstrated. With a knowledge of the probe λ function, the procedure by which this function is employed is developed, and thereafter applied to a set of experimental measurements avail...

  19. Counterion condensation and effective charge of poly(styrenesulfonate).

    Science.gov (United States)

    Böhme, Ute; Scheler, Ulrich

    2010-07-12

    The effective charge of poly(styrenesulfonate) has been investigated by diffusion and electrophoresis nuclear magnetic resonance (NMR). While the electrophoretic mobility is determined in the electrophoresis NMR experiment, the hydrodynamic friction is determined from diffusion NMR using Einstein's formula. On the timescale of the NMR experiment a steady state is reached, which results from the force balance between the electric field and the hydrodynamic friction from that the effective charge is calculated without any further model. For the monomer and short polymers the effective charge is equal to the nominal charge, the difference increases with an increasing degree of polymerisation. Increasing the ionic strength of the solution leads to enhanced counterion condensation. If the dielectric constant of the solution is lowered, condensation of counterions is enhanced as well. A lowered effective charge results in reduced repelling forces along the polymer chain and thus in a more compact conformation of the polymer as reflected in the hydrodynamic size. The effective charge of poly(styrenesulfonate) has been studied experimentally as a function of the degree of polymerisation, of the ionic strength and the dielectric constant of the solution. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Simulation of the dielectric charging-up effect in a GEM detector

    International Nuclear Information System (INIS)

    Alfonsi, M.; Croci, G.; Duarte Pinto, S.; Rocco, E.; Ropelewski, L.; Sauli, F.; Veenhof, R.; Villa, M.

    2012-01-01

    The charging up effect is well-known in detectors containing dielectric materials and it is due to electrons and ions liberated in an avalanche and collected on the dielectric surfaces. In particular in Gas Electron Multiplier (GEM) based detectors, charges can be captured by the Kapton that separates top and bottom electrodes. The collection of a substantial number of charges on the dielectric surfaces induces a modification of the field inside the GEM holes that implies important consequences on some fundamental parameters such as the electron transparency and the effective gain. The correct simulation of this effect opens new ways to the detailed study of the processes that happens in a GEM-based detector and gives the possibility to optimise the GEM geometry in order to avoid it. This paper compares results of the measurements and the simulations, with and without the introduction of the charging-up effect, of the GEM electron transparency in the case of a single GEM detector. The introduction of the charging up effect in the simulation resulted to be crucial in order to get the proper agreement with the measurements. The measurements and simulations of the GEM effective gain will be the subject of a future work.

  1. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Science.gov (United States)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  2. Sorption of poly(vinyl alcohol) and its cationic derivative on silica oxide: effect of charge

    NARCIS (Netherlands)

    Liesiene, J.; Matulioniene, J.; Aniulyte, J.; Keizer, de A.

    2005-01-01

    Adsorption of poly(vinyl alcohol)-based cationic polyelectrolyte (DEAE-PVA) as well as unmodified poly(vinyl alcohol) (PVA) onto silica oxide surface was studied by means of reflectometry. The study was focused on the effect of charge of polymer segments on their adsorption on silica oxide. The

  3. Charged Particle Environments in Earth's Magnetosphere and their Effects on Space System

    Science.gov (United States)

    Minow, Joseph I.

    2009-01-01

    This slide presentation reviews information on space radiation environments important to magnetospheric missions including trapped radiation, solar particle events, cosmic rays, and solar winds. It also includes information about ion penetration of the magnetosphere, galactic cosmic rays, solar particle environments, CRRES internal discharge monitor, surface charging and radiation effects.

  4. Method of impressing and reading out a surface charge on a multilayered detector structure

    International Nuclear Information System (INIS)

    Zermeno, A.; Marsh, L.M.; Cowart, R.W.

    1981-01-01

    A latent charge image is recorded on and reproduced from a multilayered detector. Firstly the detector is given a uniform surface charge on its photoconductive layer. This layer is then biased with an electric field of opposite polarity to the surface charge. The detector is then exposed to a modulated radiation flux to cause at least partial discharge of the photoconductive layer. The latent charge image of the modulated radiation flux is thus stored and later read by scanning the surface of the photoconductive layer with a small diameter photon beam to discharge further sequentially the photoconductive layer. The changing electrical potential of this discharge is detected and processed into a video signal by a processor for storage or display. This invention provides a method and apparatus capable of replacing conventional photographic and radiographic films. It also provides an X-ray sensing system which produces radiographic images of a patient using a lower radiation dosage. The output is an analog or digital video signal that may be displayed on a television monitor, recorded on film or directly stored or processed in a computer for image enhancement or pattern recognition. Other aspects are detailed. (U.K.)

  5. One-Step Synthesis of PEGylated Gold Nanoparticles with Tunable Surface Charge

    Directory of Open Access Journals (Sweden)

    Rares Stiufiuc

    2013-01-01

    Full Text Available The present work reports a rapid, simple and efficient one-step synthesis and detailed characterisation of stable aqueous colloids of gold nanoparticles (AuNPs coated with unmodified poly(ethyleneglycol (PEG molecules of different molecular weights and surface charges. By mixing and heating aqueous solutions of PEG with variable molecular chain and gold(III chloride hydrate (HAuCl4 in the presence of NaOH, we have successfully produced uniform colloidal 5 nm PEG coated AuNPs of spherical shape with tunable surface charge and an average diameter of 30 nm within a few minutes. It has been found out that PEGylated AuNPs provide optical enhancement of the characteristic vibrational bands of PEG molecules attached to the gold surface when they are excited with both visible (532 nm and NIR (785 nm laser lines. The surface enhanced Raman scattering (SERS signal does not depend on the length of the PEG molecular chain enveloping the AuNPs, and the stability of the colloid is not affected by the addition of concentrated salt solution (0.1 M NaCl, thus suggesting their potential use for in vitro and in vivo applications. Moreover, by gradually changing the chain length of the biopolymer, we were able to control nanoparticles’ surface charge from −28 to −2 mV, without any modification of the Raman enhancement properties and of the colloidal stability.

  6. Electrostatic Deformation of Liquid Surfaces by a Charged Rod and a Van de Graaff Generator

    OpenAIRE

    Slisko, Josip; García Molina, Rafael; Abril Sánchez, Isabel

    2014-01-01

    Authors of physics textbooks frequently use the deflection of a thin, vertically falling water jet by a charged balloon, 1–3 comb, 4–6 or rod 7–9 as a visually appealing and conceptually relevant example of electrostatic attraction. Nevertheless, no attempts are made to explore whether these charged bodies could cause visible deformation of a horizontal water surface. That being so, we were quite surprised when we discovered that a 19th-century French book 10 contained a drawing showing an ap...

  7. Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides

    Science.gov (United States)

    Stepanov, V. P.

    2018-03-01

    Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle's dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.

  8. Calculation of the surface potential and surface charge density by measurement of the three-phase contact angle.

    Science.gov (United States)

    Horiuchi, H; Nikolov, A; Wasan, D T

    2012-11-01

    The silica/silicon wafer is widely used in the semiconductor industry in the manufacture of electronic devices, so it is essential to understand its physical chemistry and determine the surface potential at the silica wafer/water interface. However, it is difficult to measure the surface potential of a silica/silicon wafer directly due to its high electric resistance. In the present study, the three-phase contact angle (TPCA) on silica is measured as a function of the pH. The surface potential and surface charge density at the silica/water surface are calculated by a model based on the Young-Lippmann equation in conjunction with the Gouy-Chapman model for the electric double layer. In measurements of the TPCA on silica, two distinct regions were identified with a boundary at pH 9.5-showing a dominance of the surface ionization of silanol groups below pH 9.5 and a dominance of the dissolution of silica into the aqueous solution above pH 9.5. Since the surface chemistry changes above pH 9.5, the model is applied to solutions below pH 9.5 (ionization dominant) for the calculation of the surface potential and surface charge density at the silica/aqueous interface. In order to evaluate the model, a galvanic mica cell was made of a mica sheet and the surface potential was measured directly at the mica/water interface. The model results are also validated by experimental data from the literature, as well as the results obtained by the potentiometric titration method and the electro-kinetic measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Nanofabrication on a Si surface by slow highly charged ion impact

    International Nuclear Information System (INIS)

    Tona, Masahide; Watanabe, Hirofumi; Takahashi, Satoshi; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Sakurai, Makoto; Terui, Toshifumi; Mashiko, Shinro; Yamada, Chikashi; Ohtani, Shunsuke

    2007-01-01

    We have observed surface chemical reactions which occur at the impact sites on a Si(1 1 1)-(7 x 7) surface and a highly oriented pyrolytic graphite (HOPG) surface bombarded by highly charged ions (HCIs) by using a scanning tunneling microscope (STM). Crater structures are formed on the Si(1 1 1)-(7 x 7) surface by single I 50+ -impacts. STM-observation for the early step of oxidation on the surface suggests that the impact site is so active that dangling bonds created by HCI impacts are immediately quenched by reaction with residual gas molecules. We show also the selective adsorption of organic molecules at a HCI-induced impact site on the HOPG surface

  10. Implementation and interpretation of surface potential decay measurements on corona-charged non-woven fabrics

    International Nuclear Information System (INIS)

    Tabti, B; Antoniu, A; Plopeanu, M; Dascalescu, L; Yahiaoui, B; Bendahmane, B

    2011-01-01

    The aim of this paper is to discuss the peculiarities of the surface potential decay (SPD) curves obtained for certain non-woven media. The experiments were performed on samples of non-woven poly-propylene (PP) sheets, which are typically employed in the construction of air filters for heat, ventilation and air conditioning. The samples were in contact with a grounded plane, in order to: (1) ensure better charging and measurement reproducibility; (2) simulate the worst situation of practical interest. They were charged using either a high-voltage wire-type dual electrode or a triode-type electrode arrangement. The aspect of the SPD curves depends on the electrode configuration. When the electric field is strong enough, it can activate charge injection at the insulator-metal interface and extrinsic conduction.

  11. Implementation and interpretation of surface potential decay measurements on corona-charged non-woven fabrics

    Science.gov (United States)

    Tabti, B.; Antoniu, A.; Plopeanu, M.; Yahiaoui, B.; Bendahmane, B.; Dascalescu, L.

    2011-06-01

    The aim of this paper is to discuss the peculiarities of the surface potential decay (SPD) curves obtained for certain non-woven media. The experiments were performed on samples of non-woven poly-propylene (PP) sheets, which are typically employed in the construction of air filters for heat, ventilation and air conditioning. The samples were in contact with a grounded plane, in order to: (1) ensure better charging and measurement reproducibility; (2) simulate the worst situation of practical interest. They were charged using either a high-voltage wire-type dual electrode or a triode-type electrode arrangement. The aspect of the SPD curves depends on the electrode configuration. When the electric field is strong enough, it can activate charge injection at the insulator-metal interface and extrinsic conduction.

  12. Probing the surface charge on the basal planes of Kaolinite particles with high resolution Atomic Force Microscopy

    NARCIS (Netherlands)

    Kumar, Naveen; Andersson, M.P.; van den Ende, Henricus T.M.; Mugele, Friedrich Gunther; Sîretanu, Igor

    2017-01-01

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl2 concentration. Using DLVO theory with charge regulation, we determine from the measured force–distance curves the surface

  13. Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and quadrupolar couplings in bicelles.

    Science.gov (United States)

    Semchyschyn, Darlene J; Macdonald, Peter M

    2004-02-01

    The effects of bilayer surface charge on the conformation of the phosphocholine group of phosphatidylcholine were investigated using a torsion angle analysis of quadrupolar and dipolar splittings in, respectively, (2)H and (13)C NMR spectra of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) labelled in the phosphocholine group with either deuterons (POPC-alpha-d(2), POPC-beta-d(2) and POPC-gamma-d(9)) or carbon-13 (POPC-alpha-(13)C and POPC-alphabeta-(13)C(2)) and incorporated into magnetically aligned bicelles containing various amounts of either the cationic amphiphile 1,2-dimyristoyl-3-trimethylammoniumpropane (DMTAP) or the anionic amphiphile 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). Three sets of quadrupolar splittings, one from each of the three deuteron labelling positions, and three sets of dipolar splittings ((13)C(alpha)-(31)P, (13)C(alpha)-(13)C(beta), (13)C(beta)-(14)N), were measured at each surface charge, along with the (31)P residual chemical shift anisotropy. The torsion angle analysis assumed fast anisotropic rotation of POPC about its long molecular axis, thus projecting all NMR interactions onto that director axis of motion. Dipolar, quadrupolar and chemical shift anisotropies were calculated as a function of the phosphocholine internal torsion angles by first transforming into a common reference frame affixed to the phosphocholine group prior to motional averaging about the director axis. A comparison of experiment and calculation provided the two order parameters specifying the director orientation relative to the molecule, plus the torsion angles alpha(3), alpha(4) and alpha(5). Surface charge was found to have little effect on the torsion angle alpha(5) (rotations about C(alpha)-C(beta)), but to have large and inverse effects on torsion angles alpha(3) [rotations about P-O(11)] and alpha(4) [rotations about O(11)-C(alpha)], yielding a net upwards tilt of the P-N vector in the presence of cationic surface charge, and a

  14. Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach.

    Science.gov (United States)

    Yang, Min-Quan; Weng, Bo; Xu, Yi-Jun

    2013-08-20

    We report an efficient and easily accessible self-assembly route to synthesize In2S3-GR nanocomposites via electrostatic interaction of positively charged In2S3 nanoparticles with negatively charged graphene oxide (GO) followed by a hydrothermal process for reduction of GO to graphene (GR). The as-synthesized In2S3-GR nanocomposites exhibit much higher visible light photocatalytic activity toward selective reduction of nitroaromatic compounds in water than bare In2S3 nanoparticles and In2S3-GR-H that is obtained from the simple "hard" integration of GR nanosheets with solid In2S3 nanoparticles without modification of surface charge. On the basis of the joint characterizations and structure-photoactivity correlation it is disclosed that the enhanced photocatalytic performance of In2S3-GR is mainly ascribed to the more efficient interfacial contact between In2S3 and the GR nanosheets than In2S3-GR-H, which would amplify the use of electron conductivity and mobility of GR to improve the lifetime and transfer of photogenerated charge carriers more efficiently and thus boost the photoactivity more effectively. This work highlights the significant effect of preparation methods on the photoactivity of GR-semiconductor nanocomposites. It is expected that such a simple electrostatic self-assembly strategy could aid to rationally fabricate more efficient GR-semiconductor nanocomposites with improved interfacial contact and photocatalytic performance toward various photocatalytic selective transformations.

  15. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    Directory of Open Access Journals (Sweden)

    Shutthanandan V

    2008-06-01

    Full Text Available Abstract Molybdenum disulfide (MoS2, a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Rutherford backscattering spectrometry (RBS, and nuclear reaction analysis (NRA. Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and

  16. Effects of kinematic cuts on net electric charge fluctuations

    Science.gov (United States)

    Karsch, Frithjof; Morita, Kenji; Redlich, Krzysztof

    2016-03-01

    The effects of kinematic cuts on electric charge fluctuations in a gas of charged particles are discussed. We consider a very transparent example of an ideal pion gas with quantum statistics, which can be viewed as a multicomponent gas of Boltzmann particles with different charges, masses, and degeneracies. Cumulants of net electric charge fluctuations χnQ are calculated in a static and expanding medium with flow parameters adjusted to the experimental data. We show that the transverse momentum cut, ptmin≤pt≤ptmax , weakens the effects of Bose statistics, i.e., contributions of effectively multicharged states to higher order moments. Consequently, cuts in pt modify the experimentally measured cumulants and their ratios. We discuss the influence of kinematic cuts on the ratio of mean and variance of electric charge fluctuations in a hadron resonance gas, in the light of recent data from the STAR and PHENIX Collaborations. We find that the different momentum cuts of ptmin=0.2GeV (STAR) and pt min=0.3 GeV (PHENIX) are responsible for more than 30% of the difference between these two data sets. We argue that the pt cuts imposed on charged particles will influence the normalized kurtosis κQσQ2=χ4Q/χ2Q of the electric charge fluctuations. In particular, the reduction of κQσQ2 with increasing pt min will lead to differences between PHENIX and STAR data of O (6 %) , which currently are buried under large statistical and systematic errors. We furthermore introduce the relation between momentum cutoff and finite volume effects, which is of relevance for the comparison between experimental data and lattice QCD calculations.

  17. Bacterial resistance control on mineral surfaces of hydroxyapatite and human teeth via surface charge-driven antifouling coatings.

    Science.gov (United States)

    Venault, Antoine; Yang, Hui-Shan; Chiang, Yen-Che; Lee, Bor-Shuinn; Ruaan, Ruoh-Chyu; Chang, Yung

    2014-03-12

    This works reports a set of new functionalized polyethyleneimine (PEI) polymers, including a neutral PEGylated polymer PEI-g-PEGMA, a negatively charged polymer PEI-g-SA, and a zwitterionic polymer PEI-g-SBMA, and their use as antibiofouling coating agent for human teeth protection. Polymers were synthesized by Michael addition, XPS analysis revealed that each polymer could be efficiently coated onto hydroxyapatite, ceramic material used as a model tooth. Polymers carrying a negative net charge were more efficiently adsorbed, because of the establishment of electrostatic interactions with calcium ions. Protein adsorption tests revealed that two factors were important in the reduction of protein adsorption. Both the surface charge and the surface ability to bind and entrap water molecules had to be considered. PEI-g-SBMA, which zeta potential in PBS solution was negative, was efficient to inhibit the adsorption of BSA, a negative protein. On the other hand, it also resisted the adsorption of lysozyme, a positive protein, because zwitterionic molecules can easily entrap water and provide a very hydrophilic environment. Streptococcus mutans attachment tests performed unveiled that all modified polymers were efficient to resist this type of bacteria responsible for dental carries. Best results were also obtained with PEI-g-SBMA coating. This polymer was also shown to efficiently resist the adsorption of positively charged bacteria (Stenotrophomonas maltophilia). Tests performed on real human tooth showed that PEI-g-SBMA could inhibit up to 70% of bacteria adhesion, which constitutes a major result considering that surface of teeth is very rough, therefore physically promoting the attachment of proteins and bacteria.

  18. Surface Effects in Magnetic Nanoparticles

    CERN Document Server

    Fiorani, Dino

    2005-01-01

    This volume is a collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book aims to provide an overview of progress in the understanding of surface properties and surface driven effects in magnetic nanoparticles through recent results of different modeling, simulation, and experimental investigations.

  19. Specification of electron radiation environment at GEO and MEO for surface charging estimates

    Science.gov (United States)

    Ganushkina, N.; Dubyagin, S.; Mateo Velez, J. C.; Liemohn, M. W.

    2017-12-01

    A series of anomalies at GEO have been attributed to electrons of energy below 100 keV, responsible for surface charging. The process at play is charge deposition on covering insulating surfaces and is directly linked to the space environment at a time scale of a few tens of seconds. Even though modern satellites benefited from the analysis of past flight anomalies and losses, it appears that surface charging remains a source of problems. Accurate specification of the space environment at different orbits is of a key importance. We present the operational model for low energy (index. The presented model provides the low energy electron flux at all L-shells and at all satellite orbits, when necessary. IMPTAM is used to simulate the fluxes of low energy electrons inside the Earth's magnetosphere at the time of severe events measured on LANL satellites at GEO. There is no easy way to say what will be the flux of keV electrons at MEO when surface charging events are detected at GEO than to use a model. The maximal electron fluxes obtained at MEO (L = 4.6) within a few tens of minutes hours following the LANL events at GEO have been extracted to feed a database of theoretical/numerical worst-case environments for surface charging at MEO. All IMPTAM results are instantaneous, data have not been average. In order to validate the IMPTAM output at MEO, we conduct the statistical analysis of measured electron fluxes onboard Van Allen Probes (ECT HOPE (20 eV-45 keV) and ECT MagEIS (30 - 300 keV) at distances of 4.6 Re. IMPTAM e- flux at MEO is used as input to SPIS, the Spacecraft Plasma Interaction System Software toolkit for spacecraft-plasma interactions and spacecraft charging modelling (http://dev.spis.org/projects/spine/home/spis). The research leading to these results was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No 606716 SPACESTORM and by the European Union's Horizon 2020 research and innovation programme under

  20. A Small Angle Neutron Scattering Study of Cylindrical nanoparticle with Controlled Surface Charge Density

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Choi, Sung-Min; Kline, Steven R.

    2007-01-01

    Surfactant molecules in aqueous solution self assemble into various micellar structures such as sphere, rod, vesicle, and lamellar, above critical micelle concentration (CMC). Self-assembled surfactants systems, therefore, have been very popular as templates for preparing various nanostructured materials. Due to their dynamic nature, however, micellar structures are very susceptible to solution conditions such as temperature, concentration, pH and pressure, limiting their applications. In this study, we have developed rigid rod-like nanoparticles with controlled surface charge density by the free radical polymerization of cationic surfactants with polymerizable counterions, cetyltrimethylammonium 4- vinylbenzoate (CTVB), with varying concentration of sodium styrenesulfonate (NaSS). The structure and surface charge density of the nanoparticles were characterized by small angle neutron scattering (SANS) and zeta potential measurements

  1. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  2. Dynamical image potential and induced forces for charged particles moving parallel to a solid surface

    International Nuclear Information System (INIS)

    Arista, N.R.

    1994-01-01

    The dynamical image potential and ensuing forces induced by a charged particle moving parallel to a solid surface are investigated by using a dielectric formulation for semi-infinite dispersive media. The adiabatic behavior of the field in the asymptotic range is discussed in a general way using a multipole expansion. Several calculations illustrate the behavior of the field using both a simple model, where the surface response is approximated by a single plasma resonance, and a more realistic representation of the medium based upon the empirical information on the optical constants for various solids (Al, Cu, Ag, and Au). The model parameters may be adjusted to provide very good agreement with the optical-data integrations of the stopping and lateral forces on the moving charge. On the other hand, important differences in the description of the wake potential using either the simple plasma resonance model, or the optical-data representation, are obtained for Cu, Ag, and Au

  3. Charge carrier velocity in graphene field-effect transistors

    Science.gov (United States)

    Bonmann, Marlene; Vorobiev, Andrei; Andersson, Michael A.; Stake, Jan

    2017-12-01

    To extend the frequency range of transistors into the terahertz domain, new transistor technologies, materials, and device concepts must be continuously developed. The quality of the interface between the involved materials is a highly critical factor. The presence of impurities can degrade device performance and reliability. In this paper, we present a method that allows the study of the charge carrier velocity in a field-effect transistor vs impurity levels. The charge carrier velocity is found using high-frequency scattering parameter measurements followed by delay time analysis. The limiting factors of the saturation velocity and the effect of impurities are then analysed by applying analytical models of the field-dependent and phonon-limited carrier velocity. As an example, this method is applied to a top-gated graphene field-effect transistor (GFET). We find that the extracted saturation velocity is ca. 1.4 ×107 cm/s and is mainly limited by silicon oxide substrate phonons. Within the considered range of residual charge carrier concentrations, charged impurities do not limit the saturation velocity directly by the phonon mechanism. Instead, the impurities act as traps that emit charge carriers at high fields, preventing the current from saturation and thus limiting power gain of the GFETs. The method described in this work helps to better understand the influence of impurities and clarifies methods of further transistor development. High quality interfaces are required to achieve current saturation via velocity saturation in GFETs.

  4. Development of GaN-based nanosensors using surface charge lithography

    International Nuclear Information System (INIS)

    Popa, Veaceslav; Braniste, Tudor; Volciuc, Olesea; Pavlidis, Dimitris; Sarua, Andrei; Kuball, Martin; Heard, Peter

    2011-01-01

    Semiconductor nanotechnology is a fast developing branch of modern engineering that offers perspectives for the development of electronic devices with superior parameters. A special and important niche in nanotechnology is allocated to the fabrication of nanosensors which are expected to exhibit higher sensitivity in comparison with classical microelectronic sensors. Various aspects of fabrication of GaN based nanosensors using Surface Charge Lithography are discussed and preliminary tests for gas sensors applications are presented.

  5. Analysis of charge injection and contact resistance as a function of electrode surface treatment in ambipolar polymer transistors

    Science.gov (United States)

    Lee, Seon Jeng; Kim, Chaewon; Jung, Seok-Heon; Di Pietro, Riccardo; Lee, Jin-Kyun; Kim, Jiyoung; Kim, Miso; Lee, Mi Jung

    2018-01-01

    Ambipolar organic field-effect transistors (OFETs) have both of hole and electron enhancements in charge transport. The characteristics of conjugated diketopyrrolopyrrole ambipolar OFETs depend on the metal-contact surface treatment for charge injection. To investigate the charge-injection characteristics of ambipolar transistors, these devices are processed via various types of self-assembled monolayer treatments and annealing. We conclude that treatment by the self-assembled monolayer 1-decanethiol gives the best enhancement of electron charge injection at both 100 and 300 °C annealing temperature. In addition, the contact resistance is calculated by using two methods: One is the gated four-point probe (gFPP) method that gives the voltage drop between channels, and the other is the simultaneous contact resistance extraction method, which extracts the contact resistance from the general transfer curve. We confirm that the gFPP method and the simultaneous extraction method give similar contact resistance, which means that we can extract contact resistance from the general transfer curve without any special contact pattern. Based on these characteristics of ambipolar p- and n-type transistors, we fabricate inverter devices with only one active layer. [Figure not available: see fulltext.

  6. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Science.gov (United States)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  7. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  8. Developing an optical chopper-modulated capacitive probe for measuring surface charge.

    Science.gov (United States)

    Ugolini, D; McKinney, R; Harry, G M

    2007-04-01

    Gravitational-wave observatories such as Laser Interferometer Gravitational-Wave Observatory (LIGO) use suspended optics in a Michelson interferometer configuration to measure strains in space between 10 Hz and 3 kHz. One potential noise source in this frequency range is the buildup and motion of surface charge on the optics, which can generate fluctuating electric fields, interfere with position control, and reduce reflectance by attracting dust to the optical surface. We have developed a capacitive probe to measure the magnitude and relaxation time of surface charge deposited on smaller test optics in high vacuum ( approximately 10(-5) Torr). Our device modulates capacitance with a tuning-fork optical chopper between probe and sample, chosen for vacuum compatibility and minimal cost. We have found that the probe has a resolution of (3.5+/-0.5)x10(5) e(-)cm(2) in air, on the order of charging levels that could contribute noise to Advanced LIGO, and sufficient for measuring relaxation times on test optics.

  9. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    International Nuclear Information System (INIS)

    Bhattacharjee, Sourav; Opstal, Edward J. van; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-01-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size ∼45 nm) and polystyrene nanoparticles (PSNPs/size ∼50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  10. Surface-plasmon dispersion relation for the inhomogeneous charge-density medium

    International Nuclear Information System (INIS)

    Harsh, O.K.; Agarwal, B.K.

    1989-01-01

    The surface-plasmon dispersion relation is derived for the plane-bounded electron gas when there is an inhomogeneous charge-density distribution in the plasma. The hydrodynamical model is used. Both cphi and dcphi/dx are taken to be continuous at the surface of the slab, where cphi is the scalar potential. The dispersion relation is compared with the theoretical works of Stern and Ferrell and of Harsh and Agarwal. It is also compared with the observations of Kunz. A dispersion relation for the volume-plasmon oscillations is derived which resembles the well-known relation of Bohm and Pines

  11. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.

    2009-01-01

    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the

  12. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges

    Science.gov (United States)

    Zhong, Yong; Huang, Lihong; Zhang, Zhisen; Xiong, Yunjing; Sun, Liping; Weng, Jian

    2016-01-01

    Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR. PMID:27956830

  13. Determination of charged particles and their polarity in XLPE by temperature gradient thermally stimulated surface potential measurement

    International Nuclear Information System (INIS)

    Iwamoto, Mitsumasa; Kato, Keizo; Kook, Sang-Hoon; Hino, Taro

    1985-01-01

    By the thermally stimulated surface potential measurement with a temperature gradient in the insulator specimen, various information not possible by the uniform heating is obtained. Determination of polarity of the carriers is capable of providing a knowledge on space charge in power cables, for example. For the cross-linked polyethylene (XLPE) film as cable insulation, polarity of the carriers trapped in it was determined, thereby demonstrating effectiveness of the method. The determination of polarity of mobile ions forming polarization of the ion space charge was also studied. In the ion C-peak appearing in the thermally stimulated current are involved straight-polarity mobile ions, and in the trap D-peak, hole carriers. (Mori, K.)

  14. Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation

    Science.gov (United States)

    Guobao, FENG; Wanzhao, CUI; Lu, LIU

    2018-03-01

    A series of synthetic variations of material intrinsic properties always come with charging phenomena due to electron beam irradiation. The effects of charging on the dielectric constant will influence the charging dynamic in return. In this paper, we propose a numerical simulation for investigating the dynamic characteristics of charging effects on the dielectric constant due to electron beam irradiation. The scattering process between electrons and atoms is calculated considering elastic and inelastic collisions via the Rutherford model and the fast secondary electron model, respectively. Internal charge drift due to E-field, density gradient caused diffusion, charges trap by material defect, free electron and hole neutralization, and variation in the internal dielectric constant are considered when simulating the transport process. The dynamics of electron and hole distributions and charging states are demonstrated during E-beam irradiation. As a function of material nonlinear susceptibility and primary energy, the dynamics of charging states and dielectric constants are then presented in the charging process. It is found that the variation in the internal dielectric constant is more with respect to the depth and irradiation time. Material with a larger nonlinear susceptibility corresponds a faster charging enhancement. In addition, the effective dielectric constant and the surface potential have a linear relationship in the charging balance. Nevertheless, with shrinking charging affect range, the situation with a higher energy primary electron comes with less dielectric constant variation. The proposed numerical simulation mode of the charging process and the results presented in this study offer a comprehensive insight into the complicated charging phenomena in electron irradiation related fields.

  15. The surface charge of oxides and its role in deposition and transport of radioactivity in water-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Tewari, P.H.; Campbell, A.B.

    1972-01-01

    The role of surface charges in the deposition of suspended oxides on surfaces is discussed. Results of deposition of corrosion-product oxides on surfaces at room temperature and 200 o C are reported. These, together with results of the specific adsorption of Co(II) on negatively charged Fe 3 O 4 suspensions are used to explain the growth of Co-60 radiation fields in water-cooled reactors. (author)

  16. Evaluation of surface charge density and surface potential by electrophoretic mobility for solid lipid nanoparticles and human brain-microvascular endothelial cells.

    Science.gov (United States)

    Kuo, Yung-Chih; Chen, I-Chun

    2007-09-27

    Electrophoretic mobility, zeta potential, surface charge density, and surface potential of cacao butter-based solid lipid nanoparticles (SLN) and human brain-microvascular endothelial cells (HBMEC) were analyzed in this study. Electrophoretic mobility and zeta potential were determined experimentally. Surface charge density and surface potential were evaluated theoretically via incorporation of ion condensation theory with the relationship between surface charge density and surface potential. The results revealed that the lower the pH value, the weaker the electrostatic properties of the negatively charged SLN and HBMEC. A higher content of cacao butter or a slower stirring rate yielded a larger SLN and stronger surface electricity. On the contrary, storage led to instability of SLN suspension and weaker electrical behavior because of hydrolysis of ionogenic groups on the particle surfaces. Also, high H+ concentration resulted in excess adsorption of H+ onto HBMEC, rendering charge reversal and cell death. The largest normalized discrepancy between surface potential and zeta potential occurred at pH = 7. For a fixed biocolloidal species, the discrepancy was nearly invariant at high pH value. However, the discrepancy followed the order of electrical intensity for HBMEC system at low pH value because mammalian cells were sensitive to H+. The present study provided a practical method to obtain surface charge properties by capillary electrophoresis.

  17. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays.

    Science.gov (United States)

    Yuan, Yuan; Zhang, Yugen

    2017-10-01

    Cicada wing surfaces are covered with dense patterns of nano-pillar structure that prevent bacterial growth by rupturing adhered microbial cells. To mimic the natural nano-pillar structure, we developed a general and simple method to grow metal organic framework (MOF) nano-dagger arrays on a wide range of surfaces. These nano-daggers possess high bactericidal activity, with log reduction >7 for Escherichia coli and Staphylococcus aureus. It was hypothesized that the positively-charged ZIF-L nano-dagger surfaces enhance bacterial cell adhesion, facilitating selective and efficient bacteria killing by the rigid and sharp nano-dagger tips. This research provides a safe and clean antimicrobial surface technology which does not require external chemicals and will not cause drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A smoothed particle hydrodynamics model for electrostatic transport of charged lunar dust on the moon surface

    Science.gov (United States)

    Mao, Zirui; Liu, G. R.

    2018-02-01

    The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic-perfectly plastic constitutive equation and Drucker-Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil's natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.

  19. Adsorption of tetracycline on kaolinite with pH-dependent surface charges.

    Science.gov (United States)

    Li, Zhaohui; Schulz, Laura; Ackley, Caren; Fenske, Nancy

    2010-11-01

    Kaolinite is a major type of clay minerals in soils of warm and humid climate. Although it has a much lower cation exchange capacity (CEC) and specific surface area compared to swelling clays, its ubiquitous existence as well as its pH-dependent surface charge makes it an important component to study the interactions between contaminants and soils. Tetracycline (TC) is a group of broad spectrum antibiotics used extensively in human and veterinary medicine. It has a high aqueous solubility and a long environmental half-life. In this study, the interactions between TC and kaolinite in aqueous solution were investigated in batch tests and supplemented by FTIR analyses. The adsorption of TC on kaolinite was mainly on the external surfaces via cation exchange as confirmed by stoichiometric desorption of exchangeable cations and simultaneous adsorption of H(+) rather than due to complexation. Under acidic conditions, a reduction in surface charge, thus the CEC, resulted in more desorption of exchangeable cations compared to TC adsorption. Fitting of the experimental data to the adsorption of different species revealed that TC(+) accounted for 4/5 of the total TC adsorbed with the remaining by zwitterion TC(0), possible via hydrogen bonding. At higher temperature, the pKa2 and pKa3 values seem to shift a pH unit lower. Due to its pH-dependent charge of kaolinite, TC adsorption is more pH dependent. The TC adsorption capacity on kaolinite was much lower compared to that on swelling clays. However, the adsorption rate constant was faster than that on swelling clays owing to surface adsorption instead of intercalation. Despite its low TC adsorption capacity, the ubiquitous existence of kaolinite in soils of warm climate may play a vital role in the fate and transport of TC in these soils. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Effect of hydrogen charging on the mechanical properties of medium strength aluminium alloys 2091 and 2014

    DEFF Research Database (Denmark)

    Bandopadhyay, A.; Ambat, Rajan; Dwarakadasa, E.S.

    1992-01-01

    Cathodic hydrogen charging in 3.5% NaCl solution altered the mechanical properties of 2091-T351 (Al-Cu-Li-Mg-Zr) determined by a slow (10(-3)/s) strain rate tensile testing technique. UTS and YS decreased in the caw of 2091-T351 and 2014-T6(Al-Cu-Mn-Si-Mg) with increase in charging current density...... surface (brittle) to the core (ductile) was observed. The presence of hydrogen increased the hardness, mostly indicative of solution strengthening and it decreased with depth confirming the existence of hydrogen concentration gradient. The effects were similar in 2014-T6, but to a slightly smaller extent....

  1. The effect of contrast medium SonoVue® on the electric charge density of blood cells.

    Science.gov (United States)

    Petelska, Aneta D; Janica, Jacek R; Kotynska, Joanna; Łebkowska, Urszula; Figaszewski, Zbigniew A

    2012-01-01

    The effect of contrast medium SonoVue® on the electric charge density of blood cells (erythrocytes and thrombocytes) was measured using a microelectrophoretic method. We examined the effect of adsorbed H⁺ and OH⁻ ions on the surface charge of erythrocytes or thrombocytes. Surface charge density values were determined from electrophoretic mobility measurements of blood cells performed at various pH levels. The interaction between solution ions and the erythrocyte's or thrombocyte's surface was described by a four-component equilibrium model. The agreement between the experimental and theoretical charge variation curves of the erythrocytes and thrombocytes was good at pH 2-9. The deviation observed at a higher pH may be caused by disregarding interactions between the functional groups of blood cells.

  2. Effect of dielectronic recombination on the charge-state distribution ...

    Indian Academy of Sciences (India)

    Abstract. The effect of dielectronic recombination in determining charge-state distribu- tion and radiative emission from a laser-produced carbon plasma has been investigated in the collisional radiative ionization equilibrium. It is observed that the relative abundances of different ions in the plasma, and soft X-ray emission ...

  3. Charging effect of aluminum nitride thin films containing Al nanocrystals.

    Science.gov (United States)

    Liu, Y; Chen, T P; Ding, L; Wong, J I; Yang, M; Liu, Z; Li, Y B; Zhang, S

    2010-01-01

    In this work, the Al-rich AIN thin film is deposited on Si substrate by radio frequency (RF) sputtering to form a metal-insulator-semiconductor (MIS) structure. Al nanocrystals (nc-Al) are formed and embedded in the AIN thin film. Charge trapping/detrapping in the nc-Al leads to a shift in the flat-band voltage (VFB) of the MIS structure. The charge storage ability of the AIN thin films containing Al nanocrystals provides the possibility of memory applications. On the other hand, charge trapping in nc-Al reduces the current conduction because of the breaking of some tunneling paths due to Coulomb blockade effect and the current conduction evolves with a trend towards one-dimensional transport.

  4. Probing the Surface Charge on the Basal Planes of Kaolinite Particles with High-Resolution Atomic Force Microscopy

    Science.gov (United States)

    2017-01-01

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl2 concentration. Using DLVO theory with charge regulation, we determine from the measured force–distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca2+ ion adsorption, while Cl– adsorption at higher CaCl2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl– ions will co-adsorb, thereby changing the observed ordered surface structure. PMID:29140711

  5. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

    International Nuclear Information System (INIS)

    Jiang Jingkun; Oberdoerster, Guenter; Biswas, Pratim

    2009-01-01

    Characterizing the state of nanoparticles (such as size, surface charge, and degree of agglomeration) in aqueous suspensions and understanding the parameters that affect this state are imperative for toxicity investigations. In this study, the role of important factors such as solution ionic strength, pH, and particle surface chemistry that control nanoparticle dispersion was examined. The size and zeta potential of four TiO 2 and three quantum dot samples dispersed in different solutions (including one physiological medium) were characterized. For 15 nm TiO 2 dispersions, the increase of ionic strength from 0.001 M to 0.1 M led to a 50-fold increase in the hydrodynamic diameter, and the variation of pH resulted in significant change of particle surface charge and the hydrodynamic size. It was shown that both adsorbing multiply charged ions (e.g., pyrophosphate ions) onto the TiO 2 nanoparticle surface and coating quantum dot nanocrystals with polymers (e.g., polyethylene glycol) suppressed agglomeration and stabilized the dispersions. DLVO theory was used to qualitatively understand nanoparticle dispersion stability. A methodology using different ultrasonication techniques (bath and probe) was developed to distinguish agglomerates from aggregates (strong bonds), and to estimate the extent of particle agglomeration. Probe ultrasonication performed better than bath ultrasonication in dispersing TiO 2 agglomerates when the stabilizing agent sodium pyrophosphate was used. Commercially available Degussa P25 and in-house synthesized TiO 2 nanoparticles were used to demonstrate identification of aggregated and agglomerated samples.

  6. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    Science.gov (United States)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  7. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels.

    Science.gov (United States)

    Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M

    2014-07-16

    Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.

  8. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar

    2010-01-01

    electrons useful for driving chemical reactions at surfaces. Using the binary collision approximation and a nonadiabatic model that takes into account the time-varying nature of the ion–surface interaction, the energy loss of the ions is reproduced. The energy loss for Na + ions incident on the devices......We have made Na + and He + ions incident on the surface of solid state tunnel junctions and measured the energy loss due to atomic displacement and electronic excitations. Each tunnel junction consists of an ultrathin film metal–oxide–semiconductor device which can be biased to create a band of hot...... shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange....

  9. Intrinsic Charge Trapping Observed as Surface Potential Variations in diF-TES-ADT Films.

    Science.gov (United States)

    Hoffman, Benjamin C; McAfee, Terry; Conrad, Brad R; Loth, Marsha A; Anthony, John E; Ade, Harald W; Dougherty, Daniel B

    2016-08-24

    Spatial variations in surface potential are measured with Kelvin probe force microscopy for thin films of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophenes (diF-TES-ADT) grown on SiO2 and silane-treated SiO2 substrates by organic molecular beam deposition. The variations are observed both between and within grains of the polycrystalline organic film and are quantitatively different than electrostatic variations on the substrate surfaces. The skewness of surface potential distributions is larger on SiO2 than on HMDS-treated substrates. This observation is attributed to the impact of substrate functionalization on minimizing intrinsic crystallographic defects in the organic film that can trap charge.

  10. Peltier effect in multilayered nanopillars under high density charge current

    International Nuclear Information System (INIS)

    Gravier, L; Fukushima, A; Kubota, H; Yamamoto, A; Yuasa, S

    2006-01-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements

  11. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp [Environment and Resource System Engineering, Kyoto University, Kyoto 615-8540 (Japan); Sakka, Tetsuo [Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510 (Japan)

    2014-04-14

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  12. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  13. Multiple charge density wave states at the surface of TbT e3

    Science.gov (United States)

    Fu, Ling; Kraft, Aaron M.; Sharma, Bishnu; Singh, Manoj; Walmsley, Philip; Fisher, Ian R.; Boyer, Michael C.

    2016-11-01

    We studied TbT e3 using scanning tunneling microscopy (STM) in the temperature range of 298-355 K. Our measurements detect a unidirectional charge density wave (CDW) state in the surface Te layer with a wave vector consistent with that of the bulk qCDW=0.30 ±0.01 c* . However, unlike previous STM measurements, and differing from measurements probing the bulk, we detect two perpendicular orientations for the unidirectional CDW with no directional preference for the in-plane crystal axes (a or c axis) and no noticeable difference in wave vector magnitude. In addition, we find regions in which the bidirectional CDW states coexist. We propose that observation of two unidirectional CDW states indicates a decoupling of the surface Te layer from the rare-earth block layer below, and that strain variations in the Te surface layer drive the local CDW direction to the specific unidirectional or, in rare occurrences, bidirectional CDW orders observed. This indicates that similar driving mechanisms for CDW formation in the bulk, where anisotropic lattice strain energy is important, are at play at the surface. Furthermore, the wave vectors for the bidirectional order we observe differ from those theoretically predicted for checkerboard order competing with stripe order in a Fermi-surface nesting scenario, suggesting that factors beyond Fermi-surface nesting drive CDW order in TbT e3 . Finally, our temperature-dependent measurements provide evidence for localized CDW formation above the bulk transition temperature TCDW.

  14. Characterizing the surface charge of clay minerals with Atomic Force Microscope (AFM

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2017-05-01

    Full Text Available The engineering properties of clayey soils, including fluid permeability, erosion resistance and cohesive strength, are quite different from those of non-cohesive soils. This is mainly due to their small platy particle shape and the surrounding diffuse double layer structure. By using the Atomic Force Microscopy (AFM, the surface topography and the interaction force between the silicon dioxide tip and the kaolinite/montmorillonite clay minerals have been measured in the 1.0 mM NaCl solution at neutral pH. From this, the surface potential of the clay minerals is determined by mathematical regression analyses using the DLVO model. The length/thickness ratio of kaolinite and montmorillonite particles measured ranges from 8.0 to 15.0. The surface potential and surface charge density vary with particles. The average surface potential of montmorillonite is −62.8 ± 10.6 mV, and the average surface potential of kaolinite is −40.9 ± 15.5 mV. The measured results help to understand the clay sediment interaction, and will be used to develop interparticle force model to simulate sediment transport during erosion process.

  15. Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles.

    Science.gov (United States)

    Long, Run; Prezhdo, Oleg V

    2014-03-19

    Photoexcitation of the plasmon band in metallic nanoparticles adsorbed on a TiO2 surface initiates many important photovoltaic and photocatalytic processes. The traditional view on the photoinduced charge separation involves excitation of a surface plasmon, its subsequent dephasing into electron-hole pairs, followed by electron transfer (ET) from the metal nanoparticle into TiO2. We use nonadiabatic molecular dynamics combined with time-domain density functional theory to demonstrate that an electron appears inside TiO2 immediately upon photoexcitation with a high probability (~50%), bypassing the intermediate step of electron-hole thermalization inside the nanoparticle. By providing a detailed, atomistic description of the charge separation, energy relaxation, and electron-hole recombination processes, the simulation rationalizes why the experimentally observed ultrafast photoinduced ET in an Au-TiO2 system is possible in spite of the fast energy relaxation. The simulation shows that the photogenerated plasmon is highly delocalized onto TiO2, and thus, it is shared by the electron donor and acceptor materials. In the 50% of the cases remaining after the instantaneous photogeneration of the charge-separated state, the electron injects into TiO2 on a sub-100 fs time scale by the nonadiabatic mechanism due to high density of acceptor states. The electron-phonon relaxation parallels the injection and is slower, resulting in a transient heating of the TiO2 surface by 40 K. Driven by entropy, the electron moves further into TiO2 bulk. If the electron remains trapped at the TiO2 surface, it recombines with the hole on a picosecond time scale. The obtained ET and recombination times are in excellent agreement with the experiment. The delocalized plasmon state observed in our study establishes a novel concept for plasmonic photosensitization of wide band gap semiconductors, leading to efficient conversion of photons to charge carriers and to hybrid materials with a wide

  16. Manipulation of K center charge states in silicon nitride films to achieve excellent surface passivation for silicon solar cells

    Science.gov (United States)

    Sharma, Vivek; Tracy, Clarence; Schroder, Dieter; Herasimenka, Stanislau; Dauksher, William; Bowden, Stuart

    2014-02-01

    High quality surface passivation (Seff textured p- and n-type solar grade Czochralski silicon substrates by externally injecting and storing positive or negative charges (>±8 × 1012 cm-2) into a dual layer stack of Plasma Enhanced Chemical Vapor Deposition (PECVD) Silicon Nitride (SiNx)/PECVD Silicon Oxide (SiO2) films using a corona charging tool. We demonstrate long term stability and uniform charge distribution in the SiNx film by manipulating the charge on K center defects while negating the requirement of a high temperature thermal oxide step.

  17. Effect of Titanium Dioxide Dopping on Charge Trapping in ...

    African Journals Online (AJOL)

    The charge storage properties of corona charged pure and TiO2 doped polystyrene (PS) films have been studied. Thermally stimulated charge decay and open circuit thermally stimulated charges were measured. A half-value charge decay temperature T1/2 ∼ 140oC is optimum at 3 wt % TiO2 doping. This implies that ...

  18. Analysis of beam envelope by transverse space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shin`ichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-09-01

    It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up. The application of an envelope equation is examined in previous report in which the beam is just coasting beam (non accelerating). The analysis of space charge effect is necessary for the comparison in coming accelerator test in PNC. In order to evaluate the beam behavior in high current, the beam dynamics and beam parameters which are input to the equation for the evaluation are developed and make it ready to estimate the beam transverse dynamics by the space charge. The estimate needs to have enough accuracy for advanced code calculation. After the preparation of the analytic expression of transverse motion, the non-linear differential equation of beam dynamics is solved by a numerical method on a personal computer. The beam envelope from the equation is estimated by means of the beam emittance, current and energy. The result from the analysis shows that the transverse beam broadening is scarecely small around the beam current value of PNC design. The contribution to the beam broadening of PNC linac comes from its beam emittance. The beam broadening in 100 MeV case is almost negligible in the view of transverse space charge effect. Therefore, the electron beam is stable up to 10 A order in PNC linac design. Of course, the problem for RF supply is out of consideration here. It is important to estimate other longitudinal effect such as beam bunch effect which is lasting unevaluated. (author)

  19. Crystal structure of the gamma-2 herpesvirus LANA DNA binding domain identifies charged surface residues which impact viral latency.

    Directory of Open Access Journals (Sweden)

    Bruno Correia

    Full Text Available Latency-associated nuclear antigen (LANA mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Å resolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s.

  20. The effect of Fermi energy on reaction of water with oxide surfaces

    Science.gov (United States)

    Mullins, W. M.

    1989-07-01

    The experimental relationship found between oxide Fermi level and aqueous point of zero charge (pzc) is modeled by the generalized Lewis acid-base theory. This model describes a nearly linear relationship between the position of the Fermi level in the band gap and the net charge transferred in a surface acid-base reaction. The situation of a water molecule adsorbed onto an uncharged, insulator (alumina) surface is examined. The charge in the reaction is assumed to shift the dissociation equilibrium of the water molecule, resulting in a net surface charge on the insulator. The pzc of the surface is calculated as a function of insulator Fermi level from these equilibria. This model predicts very strong effects of doping, surface states and surface space charges on pzc of insulators but possibly small effects of structure and stoichiometry.

  1. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  2. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  3. Creation of surface nanostructures in Al{sub 2}O{sub 3} by slow highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A.S., E-mail: a.s.el-said@hzdr.de [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Lab, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Wilhelm, R.A. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Heller, R.; Akhmadaliev, Sh.; Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany)

    2013-12-15

    Al{sub 2}O{sub 3} single crystals were irradiated with slow highly charged Xe ions of various charge states from an EBIT (Electron Beam Ion Trap) source at the Dresden two source facility. The irradiations were performed at room temperature and under normal incidence. Scanning force microscopy (SFM) was utilized to investigate the topography of the irradiated surfaces. The measurements showed that above a potential energy threshold, each ion creates a nanohillock protruding from the surface. These structures are compared to those created by swift heavy ions (SHI). The results are discussed in terms of potential energy deposition of highly charged ions (HCI) and electronic energy loss of SHI.

  4. Quantum electrodynamical effects in heavy highly-charged ions

    International Nuclear Information System (INIS)

    Yerokhin, V.A.; Artemyev, A.N.; Indelicato, P.; Shabaev, V.M.

    2003-01-01

    The present status of theoretical calculations of QED effects in highly charged ions is reviewed for several important cases: the Lamb shift in heavy H-like ions, the 2p 1/2 -2s transition energy in heavy Li-like ions, and the bound-electron g factor in H-like ions. Theoretical predictions are compared with experimental results. Special attention is paid to the discussion of uncertainties of theoretical predictions

  5. Generalized polymer effective charge measurement by capillary isotachophoresis

    Czech Academy of Sciences Publication Activity Database

    Chamieh, J.; Koval, Dušan; Besson, A.; Kašička, Václav; Cottet, H.

    2014-01-01

    Roč. 1370, Nov 28 (2014), s. 255-262 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA13-17224S; GA MŠk 7AMB12FR012 Grant - others:GA AV ČR(CZ) M200551207 Institutional support: RVO:61388963 Keywords : polymer effective charge * polyelectrolyte * isotachophoresis * counter-ion condensation * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.169, year: 2014

  6. Cost-effective electric vehicle charging infrastructure siting for Delhi

    OpenAIRE

    Sheppard, CJR; Gopal, AR; Harris, A; Jacobson, A

    2016-01-01

    © 2016 IOP Publishing Ltd. Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a re...

  7. Negatively charged ions on Mg(0001) surfaces: appearance and origin of attractive adsorbate-adsorbate interactions.

    Science.gov (United States)

    Cheng, Su-Ting; Todorova, Mira; Freysoldt, Christoph; Neugebauer, Jörg

    2014-09-26

    Adsorption of electronegative elements on a metal surface usually leads to an increase in the work function and decrease in the binding energy as the adsorbate coverage rises. Using density-functional theory calculations, we show that Cl adsorbed on a Mg(0001) surface complies with these expectations, but adsorption of {N,O,F} causes a decrease in the work function and an increase in the binding energy. Analyzing the electronic structure, we show that the presence of a highly polarizable electron spill-out in front of Mg(0001) causes this unusual adsorption behavior and is responsible for the appearance of a hitherto unknown net-attractive lateral electrostatic interaction between same charged adsorbates.

  8. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    KAUST Repository

    Ndiaye, Papa Birame

    2017-07-07

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  9. Charge-scaling effect in ionic liquids from the charge-density analysis of N,N'-dimethylimidazolium methylsulfate.

    Science.gov (United States)

    Beichel, Witali; Trapp, Nils; Hauf, Christoph; Kohler, Oliver; Eickerling, Georg; Scherer, Wolfgang; Krossing, Ingo

    2014-03-17

    The charge scaling effect in ionic liquids was explored on the basis of experimental and theoretical chargedensity analyses of [C1MIM][C1SO4] employing the quantum theory of atoms in molecules (QTAIM) approach. Integrated QTAIM charges of the experimental (calculated) charge density of the cation and anion resulted in non-integer values of ±0.90 (±0.87) e. Efficient charge transfer along the bond paths of the hydrogen bonds between the imidazolium ring and the anion was considered as the origin of these reduced charges. In addition, a detailed QTAIM analysis of the bonding situation in the [C1SO4]- anion revealed the presence of negative πO→σ*S-O hyperconjugation.

  10. Proximity effect and charging in mesoscopic normal metal-superconductor junction systems

    International Nuclear Information System (INIS)

    Bruder, C.; Fazio, R.; Schoen, G.

    1994-01-01

    The proximity effect influences the transport properties of normal metal-superconductor heterostructures. If these systems are small they exhibit pronounced charging effects. We show that charging suppresses the proximity effect. The effect can be made visible since the charging energy and hence the proximity effect can be modulated by gate voltages. We derive these results in a unified formulation which also describes single electron tunneling, Andreev reflection and the supercurrent through normal-superconductor systems in the presence of charging effects. (orig.)

  11. Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition.

    Science.gov (United States)

    Weber, Matthieu; Koonkaew, Boonprakrong; Balme, Sebastien; Utke, Ivo; Picaud, Fabien; Iatsunskyi, Igor; Coy, Emerson; Miele, Philippe; Bechelany, Mikhael

    2017-05-17

    In this work, we report the design and the fine-tuning of boron nitride single nanopore and nanoporous membranes by atomic layer deposition (ALD). First, we developed an ALD process based on the use of BBr 3 and NH 3 as precursors in order to synthesize BN thin films. The deposited films were characterized in terms of thickness, composition, and microstructure. Next, we used the newly developed process to grow BN films on anodic aluminum oxide nanoporous templates, demonstrating the conformality benefit of BN prepared by ALD, and its scalability for the manufacturing of membranes. For the first time, the ALD process was then used to tune the diameter of fabricated single transmembrane nanopores by adjusting the BN thickness and to enable studies of the fundamental aspects of ionic transport on a single nanopore. At pH = 7, we estimated a surface charge density of 0.16 C·m -2 without slip and 0.07 C·m -2 considering a reasonable slip length of 3 nm. Molecular dynamics simulations performed with experimental conditions confirmed the conductivities and the sign of surface charges measured. The high ion transport results obtained and the ability to fine-tune nanoporous membranes by such a scalable method pave the way toward applications such as ionic separation, energy harvesting, and ultrafiltration devices.

  12. Measurement of the electric potential at the surface of nonuniformly charged polypropylene nonwoven media

    Science.gov (United States)

    Fatihou, Ali; Zouzou, Noureddine; Iuga, Gheorghe; Dascalescu, Lucian

    2015-10-01

    The aim of this paper is to establish the conditions in which the vibrating capacitive probe of an electrostatic voltmeter could be employed for mapping the electric potential at the surface of non-uniformly charged insulating bodies. A first set of experiments are performed on polypropylene non-woven media (thickness: 0.4 mm; fiber diameter: 20 μm) in ambient air. In a second set of experiments the non-uniformity of charge is simulated using five copper strips (width: 2 mm or 3 mm; distance between strips: 2 mm). All the strips are connected to a high-voltage supply (Vs = 1000 V). The sample carrier is attached to a computer-controlled positioning system that transfers it under the capacitive probe (TREK, model 3451) of an electrostatic voltmeter (TREK, model 1341B). The measurements are performed at various relative speeds Vb between the sample and the probe, and for various sample rates Fe. A first set of experiments point out that the electric potential displayed by the electrostatic voltmeter depends on the spacing h between the sample and the probe. The diameter D of the spot “seen” by the probe is approximately D ≈ 8h/3. From the second set of experiments performed with the test plate, it can be concluded that the surface potential can be measured with the media in motion, but the accuracy is limited by the spatial resolution defined by k = Vb/Fe.

  13. Comparisons Between Model Predictions and Spectral Measurements of Charged and Neutral Particles on the Martian Surface

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; hide

    2014-01-01

    Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Radiation Assessment Detector (RAD) on the Curiosity rover since August 2012. RAD is a particle detector that measures the energy spectrum of charged particles (10 to approx. 200 MeV/u) and high energy neutrons (approx 8 to 200 MeV). The data obtained on the surface of Mars for 300 sols are compared to the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used. For describing the daily column depth of atmosphere, daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station (REMS) are implemented into transport calculations. Particle flux at RAD after traversing varying depths of atmosphere depends on the slant angles, and the model accounts for shielding of the RAD "E" dosimetry detector by the rest of the instrument. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and suggest that future radiation environments on Mars can be predicted accurately. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios

  14. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    Adelmann, A.

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 10 9 protons/cm 3 ) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  15. Simulation of space charge effects in a synchrotron

    International Nuclear Information System (INIS)

    Machida, Shinji; Ikegami, Masanori

    1998-01-01

    We have studied space charge effects in a synchrotron with multi-particle tracking in 2-D and 3-D configuration space (4-D and 6-D phase space, respectively). First, we will describe the modelling of space charge fields in the simulation and a procedure of tracking. Several ways of presenting tracking results will be also mentioned. Secondly, it is discussed as a demonstration of the simulation study that coherent modes of a beam play a major role in beam stability and intensity limit. The incoherent tune in a resonance condition should be replaced by the coherent tune. Finally, we consider the coherent motion of a beam core as a driving force of halo formation. The mechanism is familiar in linac, and we apply it in a synchrotron

  16. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  17. Cost-effective electric vehicle charging infrastructure siting for Delhi

    Science.gov (United States)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ˜10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  18. Surface-charge-induced orientation of interfacial water suppresses heterogeneous ice nucleation on α-alumina (0001)

    Science.gov (United States)

    Abdelmonem, Ahmed; Backus, Ellen H. G.; Hoffmann, Nadine; Sánchez, M. Alejandra; Cyran, Jenée D.; Kiselev, Alexei; Bonn, Mischa

    2017-06-01

    Surface charge is one of the surface properties of atmospheric aerosols, which has been linked to heterogeneous ice nucleation and hence cloud formation, microphysics, and optical properties. Despite the importance of surface charge for ice nucleation, many questions remain on the molecular-level mechanisms at work. Here, we combine droplet-freezing assay studies with vibrational sum frequency generation (SFG) spectroscopy to correlate interfacial water structure to surface nucleation strength. We study immersion freezing of aqueous solutions of various pHs on the atmospherically relevant aluminum oxide α-Al2O3 (0001) surface using an isolated droplet on the surface. The high-pH solutions freeze at temperatures higher than that of the low-pH solution, while the neutral pH has the highest freezing temperature. On the molecular level, the SFG spectrum of the interfacial water changes substantially upon freezing. At all pHs, crystallization leads to a reduction of intensity of the 3400 cm-1 water resonance, while the 3200 cm-1 intensity drops for low pH but increases for neutral and high pHs. We find that charge-induced surface templating suppresses nucleation, irrespective of the sign of the surface charge. Heterogeneous nucleation is most efficient for the nominally neutral surface.

  19. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    Mauser, Christian

    2011-01-01

    In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the

  20. On the molecular mechanism of surface charge amplification and related phenomena at aqueous polyelectrolyte-graphene interfaces

    Directory of Open Access Journals (Sweden)

    J.M. Simonson

    2011-09-01

    Full Text Available In this communication we illustrate the occurrence of a recently reported new phenomenon of surface-charge amplification, SCA, (originally dubbed overcharging, OC, [Jimenez-Angeles F. and Lozada-Cassou M., J. Phys. Chem. B, 2004, 108, 7286] by means of molecular dynamics simulation of aqueous electrolytes solutions involving multivalent cations in contact with charged graphene walls and the presence of short-chain lithium polystyrene sulfonates where the solvent water is described explicitly with a realistic molecular model. We show that the occurrence of SCA in these systems, in contrast to that observed in primitive models, involves neither contact co-adsorption of the negatively charged macroions nor divalent cations with a large size and charge asymmetry as required in the case of implicit solvents. In fact the SCA phenomenon hinges around the preferential adsorption of water (over the hydrated ions with an average dipolar orientation such that the charges of the water's hydrogen and oxygen sites induce magnification rather than screening of the positive-charged graphene surface, within a limited range of surface-charge density.

  1. Cataractogenic effects of heavy charged particles in mice

    International Nuclear Information System (INIS)

    Ainsworth, E.J.; Jose, J.G.; Yang, V.V.; Barker, M.E.

    1980-01-01

    The effects of heavy charged particles on the crystalline lens of the eye of mice are important because this tissue has proven susceptible to other forms of high-LET radiation. This report summarizes the results currently available from a prospectively designed study to explore the LET dependence of the cataractogenic process. The present results are consistent with a high cataractogenic effect at 100 keV/μm, because plateau argon 40 ions, with an LET in this range, produce higher average cataracts scores at 9, 11 and 13 months than do carbon 12 or neon 20 ions. In the electron micrographs, significant changes were observed from the controls

  2. Charge exchange effect on laser isotope separation of atomic uranium

    International Nuclear Information System (INIS)

    Niki, Hideaki; Izawa, Yasukazu; Otani, Hiroyasu; Yamanaka, Chiyoe

    1982-01-01

    Uranium isotope separating experiment was performed using the two-step photoionization technique with dye laser and nitrogen laser by heating uranium metal with electron beam and producing atomic beam using generated vapour. The experimental results are described after explaining the two-step photoionization by laser, experimental apparatus, the selection of exciting wavelength and others. Enrichment factor depends largely on the spectrum purity of dye laser which is the exciting source. A large enrichment factor of 48.3 times was obtained for spectrum width 0.03A. To put the uranium isotope separation with laser into practice, the increase of uranium atomic density is considered to be necessary for improving the yield. Experimental investigation was first carried out on the charge exchange effect that seems most likely to affect the decrease of enrichment factor, and the charge exchange cross-section was determined. The charge exchange cross-section depends on the relative kinetic energy between ions and atoms. The experimental result showed that the cross-section was about 5 x 10 -13 cm 2 at 1 eV and 10 -13 cm 2 at 90 eV. These values are roughly ten times as great as those calculated in Lawrence Livermore Laboratory, and it is expected that they become the greatest factor for giving the upper limit of uranium atomic density in a process of practical application. (Wakatsuki, Y.)

  3. A space-charge treatment of the increased concentration of reactive species at the surface of a ceria solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zurhelle, Alexander F.; Souza, Roger A. de [Institute of Physical Chemistry, RWTH Aachen University (Germany); Tong, Xiaorui; Mebane, David S. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Klein, Andreas [Institute of Materials Science, TU Darmstadt (Germany)

    2017-11-13

    A space-charge theory applicable to concentrated solid solutions (Poisson-Cahn theory) was applied to describe quantitatively as a function of temperature and oxygen partial pressure published data obtained by in situ X-ray photoelectron spectroscopy (XPS) for the concentration of Ce{sup 3+} (the reactive species) at the surface of the oxide catalyst Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}. In contrast to previous theoretical treatments, these calculations clearly indicate that the surface is positively charged and compensated by an attendant negative space-charge zone. The high space-charge potential that develops at the surface (>0.8 V) is demonstrated to be hardly detectable by XPS measurements because of the short extent of the space-charge layer. This approach emphasizes the need to take into account defect interactions and to allow deviations from local charge neutrality when considering the surfaces of oxide catalysts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In2S3 nanoflowers: dye charge-dependent roles of reactive species

    Science.gov (United States)

    Ge, Suxiang; Cai, Lejuan; Li, Dapeng; Fa, Wenjun; Zhang, Yange; Zheng, Zhi

    2015-12-01

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In2S3 nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In2S3 nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  5. Effect of ionic charge on flexoelectric deformations in planar nematic layers

    Science.gov (United States)

    Felczak, Mariola; Derfel, Grzegorz

    2004-09-01

    Elastic deformations of nematic liquid crystal layers subjected to d.c. electric field were studied numerically. Nearly planar alignment with 1° tilt angle and with finite surface anchoring strength was assumed. The flexoelectric properties of the nematic material as well as the ionic space charge were taken into account. Perfectly blocking electrodes were adopted. The director orientation, the electric potential distribution and the space charge density were calculated. The optical transmission of the layer placed between crossed polarizers was also determined. The deformations had nearly threshold character due to the low value of the surface tilt. It was found that the threshold voltage strongly depended on the parameters of the system. When the nematic was not flexoelectric, the value of the threshold voltage was independent of the ion concentration and was equal to about 1 volt. In the case of a flexoelectric nematic, the threshold as low as a few tenths of a volt occurred when the ion concentration was sufficiently high, and given sufficiently large magnitudes of the flexoelectric coefficients. These results can be explained as the effect of the inhomogeneous electric field arising in vicinity of the surfaces created by the ionic space charge redistributed by the external voltage.

  6. Controlling surface charge and spin density oscillations by Dirac plasmon interaction in thin topological insulators

    Science.gov (United States)

    Poyli, M. Ameen; Hrtoň, M.; Nechaev, I. A.; Nikitin, A. Y.; Echenique, P. M.; Silkin, V. M.; Aizpurua, J.; Esteban, R.

    2018-03-01

    Thin topological insulator (TI) films support optical and acoustic plasmonic modes characterized by effective net charge or net spin density, respectively. We combine many-body and electromagnetic calculations to study how these modes can be selectively excited at films and nanodisks at infrared and THz frequencies. We first discuss the excitation of propagating plasmons in a thin film by a point dipolar source. We emphasize how changing the distance between the dipolar source and the film allows us to control the relative strength of the acoustic and optical plasmons and thus to excite net-spin or net-charge waves on demand. The acoustic and optical modes in a nanodisk structure can be efficiently tuned by changing the size of the disk or by applying electrostatic gating. Furthermore, these modes can be confined to regions of dimensions much smaller than the wavelength. The control of the excitation of acoustic and optical modes indicates that thin topological insulators are a promising system to manipulate the spin and charge properties of the plasmonic response, with potential applications in fast, compact, and electrically-controlled spintronic devices.

  7. Disorder Effects in Charge Transport and Spin Response of Topological Insulators

    Science.gov (United States)

    Zhao, Lukas Zhonghua

    Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity backscattering. First principle calculations predicted Bi2Te3, Sb2Te3 and Bi2Se3 to be three-dimensional (3D) topological insulators with a single Dirac cone on the surface. The topological surface states were subsequently observed by angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). The investigations of charge transport through topological surfaces of 3D topological insulators, however, have faced a major challenge due to large charge carrier densities in the bulk donated by randomly distributed defects such as vacancies and antisites. This bulk disorder intermixes surface and bulk conduction channels, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response and resulting in the relatively low measured carrier mobilities. Moreover, charge inhomogeneity arising from bulk disorder can result in pronounced nanoscale spatial fluctuations of energy on the surface, leading to the formation of surface `puddles' of different carrier types. Great efforts have been made to combat the undesirable effects of disorder in 3D topological insulators and to reduce bulk carriers through chemical doping, nanostructure fabrication, and electric gating. In this work we have developed a new way to reduce bulk carrier densities using high-energy electron irradiation, thereby allowing us access to the topological surface quantum channels. We also found that disorder in 3D topological insulators can be beneficial. It can play an important part in enabling detection of unusual magnetic response from Dirac fermions and in uncovering new excitations, namely surface superconductivity in Dirac `puddles'. In Chapter 3 we show how by using differential magnetometry we could probe spin rotation in the 3D topological material family (Bi2Se 3, Bi2Te3 and Sb2Te3

  8. Determination of surface charge density of α-alumina by acid-base titration

    Directory of Open Access Journals (Sweden)

    Justin W. Ntalikwa

    2007-04-01

    Full Text Available The surface charge density (σo of colloidal alpha alumina suspended in various 1:1 electrolytes was measured using acid-base titration. An autotitrator capable of dispensing accurately 25 plus or minus 0.1 μL of titrant was used. The pH and temperature in the titration cell were monitored using single junction electrodes and platinum resistance thermometers, respectively. A constant supply of nitrogen gas in the cell was used to maintain inert conditions. The whole set up was interfaced with a computer for easy data acquisition. It was observed that the material exhibits a point of zero charge (PZC, this occurred at pH of 7.8 plus or minus 0.1, 7.6 plus or minus 0.2, 8.5 plus or minus 0.1, 8.3 plus or minus 0.1 for NaCl, NaNO3, CsCl and CsNO3 systems, respectively. It was also observed that below PZC, σo increases with increase in electrolyte concentration (Co whereas above PZC, σo decreases with increase in Co. It was concluded that σo of this material is a function of pH and Co and that its polarity can be varied through zero by varying these parameters.

  9. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    Science.gov (United States)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  10. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    International Nuclear Information System (INIS)

    Rana, Aniket; Lochan, Abhiram; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.; Gupta, Neeraj; Sharma, G. D.

    2016-01-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  11. Nanocapsule of cationic liposomes obtained using "in situ" acrylic acid polymerization: stability, surface charge and biocompatibility.

    Science.gov (United States)

    Scarioti, Giovana Danieli; Lubambo, Adriana; Feitosa, Judith P A; Sierakowski, Maria Rita; Bresolin, Tania M B; de Freitas, Rilton Alves

    2011-10-15

    In this work, didecyldimethylammonium bromide (DDAB) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (2.5:1) were used to prepare liposomes coated with polyacrylic acid (PAA) using "in situ" polymerization with 2.5, 5 and 25 mM of acrylic acid (AA). The PAA concentrations were chosen to achieve partially to fully covered capsules, and the polymerization reaction was observed with real-time monitoring using dynamic light scattering (NanoDLS). The DDAB:DOPE liposomes showed stability in the tested temperature range (25-70°C), whereas the results confirmed the success of the polymerization according to superficial charge (zeta potential of +66.7±1.2 mV) results and AFM images. For the liposomes that were fully coated with PAA (zeta potential of +0.3±3.9 mV), cytotoxicity was independent of the concentration of albumin. Cationic liposomes and nanocapsules of the stable liposomes coated with PAA were obtained by controlling the surface charge, which was the most important factor related to cytotoxicity. Thus, a potential, safe drug nanocarrier was successfully developed in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging

    Science.gov (United States)

    Kilic, Mustafa Sabri; Bazant, Martin Z.; Ajdari, Armand

    2007-02-01

    The classical Poisson-Boltzmann (PB) theory of electrolytes assumes a dilute solution of point charges with mean-field electrostatic forces. Even for very dilute solutions, however, it predicts absurdly large ion concentrations (exceeding close packing) for surface potentials of only a few tenths of a volt, which are often exceeded, e.g., in microfluidic pumps and electrochemical sensors. Since the 1950s, several modifications of the PB equation have been proposed to account for the finite size of ions in equilibrium, but in this two-part series, we consider steric effects on diffuse charge dynamics (in the absence of electro-osmotic flow). In this first part, we review the literature and analyze two simple models for the charging of a thin double layer, which must form a condensed layer of close-packed ions near the surface at high voltage. A surprising prediction is that the differential capacitance typically varies nonmonotonically with the applied voltage, and thus so does the response time of an electrolytic system. In PB theory, the differential capacitance blows up exponentially with voltage, but steric effects actually cause it to decrease while remaining positive above a threshold voltage where ions become crowded near the surface. Other nonlinear effects in PB theory are also strongly suppressed by steric effects: The net salt adsorption by the double layers in response to the applied voltage is greatly reduced, and so is the tangential “surface conduction” in the diffuse layer, to the point that it can often be neglected compared to bulk conduction (small Dukhin number).

  13. Proximity effects in cold gases of multiply charged atoms (Review)

    Science.gov (United States)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) 0 and for the alkali and alkaline-earth elements Eproxi theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for

  14. Fermi Surface Evolution Across Multiple Charge Density Wave Transitions in ErTe3

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.G.; /SLAC, SSRL /Stanford U., Geballe Lab.; Brouet, V.; /Orsay, LPS; He, R.; /SLAC, SSRL /Stanford U., Geballe Lab.; Lu, D.H.; /SLAC, SSRL; Ru, N.; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.; Shen, Z.-X.; /SLAC, SSRL /Stanford U., Geballe Lab.

    2010-02-15

    The Fermi surface (FS) of ErTe{sub 3} is investigated using angle-resolved photoemission spectroscopy (ARPES). Low temperature measurements reveal two incommensurate charge density wave (CDW) gaps created by perpendicular FS nesting vectors. A large {Delta}{sub 1} = 175 meV gap arising from a CDW with c* - q{sub CDW1} {approx} 0.70(0)c* is in good agreement with the expected value. A second, smaller {Delta}{sub 2} = 50 meV gap is due to a second CDW with a* - q{sub CDW2} {approx} 0.68(5)a*. The temperature dependence of the FS, the two gaps and possible interaction between the CDWs are examined.

  15. Potential and Kinetic Electron Emissions from HOPG Surface Irradiated by Highly Charged Xenon and Neon Ions

    International Nuclear Information System (INIS)

    Yu-Yu, Wang; Yong-Tao, Zhao; Jian-Rong, Sun; De-Hui, Li; Jin-Yu, Li; Ping-Zhi, Wang; Guo-Qing, Xiao; Abdul, Qayyum

    2011-01-01

    Highly charged 129 Xe q+ (q = 10−30) and 40 Ne q+ (q = 4−8) ion-induced secondary electron emissions on the surface of highly oriented pyrolytic graphite (HOPG) are reported. The total secondary electron yield is measured as a function of the potential energy of incident ions. The experimental data are used to separate contributions of kinetic and potential electron yields. Our results show that about 4.5% and 13.2% of ion's potential energies are consumed in potential electron emission due to different Xe q+ -HOPG and Ne q+ -HOPG combinations. A simple formula is introduced to estimate the fraction of ion's potential energy for potential electron emission. (atomic and molecular physics)

  16. X-ray emission in collisions of highly charged I, Pr, Ho, and Bi ions with a W surface

    International Nuclear Information System (INIS)

    Watanabe, H.; Tona, M.; Ohtani, S.; Sun, J.; Nakamura, N.; Yamada, C.; Yoshiyasu, N.; Sakurai, M.

    2007-01-01

    X-ray emission yields, which are defined as the total number of emitted x-ray photons per incident ion, and dissipated fractions of potential energies through x-ray emission have been measured for slow highly charged ions of I, Pr, Ho, and Bi colliding with a W surface. A larger amount of potential energy was consumed for the x-ray emission with increasing the atomic number and the charge state. The present measurements show that x-ray emission is one of the main decay channels of hollow atoms produced in collisions of very highly charged ions of heavy elements

  17. Charge correlation effects on ionization of weak polyelectrolytes

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2009-01-01

    Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.

  18. Surface morphology effects in a vibration based triboelectric energy harvester

    Science.gov (United States)

    Nafari, A.; Sodano, H. A.

    2018-01-01

    Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.

  19. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    Science.gov (United States)

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Charge Effect on the Quantum Dots-Peptide Self-Assembly Using Fluorescence Coupled Capillary Electrophoresis.

    Science.gov (United States)

    Wang, Jianhao; Li, Jingyan; Teng, Yiwan; Bi, Yanhua; Hu, Wei; Li, Jinchen; Wang, Cheli; Qiu, Lin; Jiang, Pengju

    2016-04-01

    We present a molecular characterization of metal-affinity driven self-assembly between CdSe-ZnS quantum dots and a series of hexahistidine peptides with different charges. In particular, we uti- lized fluorescence coupled capillary electrophoresis to test the self-assembly process of quantum dots with peptides in solution. Four peptides with different charges can be efficiently separated by fluorescence coupled capillary electrophoresis. The migration time appeared to be influenced by the charges of the peptide. In addition, the kinetics of self-assembly process of quantum dots with one of the peptides manifested a bi-phasic kinetics followed by a saturating stage. This work revealed that there exist two types of binding sites on the surface of quantum dots for peptide 1: one type termed "high priority" binding site and a "low priority" site which is occupied after the first binding sites are fully occupied. The total self-assembly process finishes in solution within 80 s. Our work represents the systematic investigation of the details of self-assembly kinetics utilizing high-resolution fluorescence coupled capillary electrophoresis. The charge effect of peptide coating quantum dots provides a new way of preparing bioprobes.

  1. Electric Double Layer Composed of an Antagonistic Salt in an Aqueous Mixture: Local Charge Separation and Surface Phase Transition.

    Science.gov (United States)

    Yabunaka, Shunsuke; Onuki, Akira

    2017-09-15

    We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ>0 the anions remain accumulated, but for σ<0 the cations are attracted to the wall with increasing |σ|. Furthermore, the electric potential drop Ψ(σ) is nonmonotonic when the solvent interaction parameter χ(T) exceeds a critical value χ_{c} determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ. In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.

  2. Linear instabilities of a planar liquid sheet in a static electric field for intermediate relaxation and convection of surface charges

    Science.gov (United States)

    Yoshinaga, Takao

    2018-04-01

    Linear temporal instabilities of a two-dimensional planar liquid sheet in a static electric field are investigated when the relaxation and convection of surface electric charges are considered. Both viscous sheet liquid and inviscid surrounding liquid are placed between two parallel sheath walls, on which an external electric field is imposed. In particular, effects of the electric Peclet number {Pe} (charge relaxation time/convection time) and the electric Euler number Λ (electric pressure/liquid inertial) on the instabilities are emphasized for the symmetric and antisymmetric deformations of the sheet. It is found that the unstable mode is composed of the aerodynamic and electric modes, which are merged with each other for the symmetric deformation and separated for the antisymmetric deformation. For the symmetric deformation, the combined mode is more destabilized with the decrease of {Pe} and the increase of Λ. On the other hand, for the antisymmetric deformation, the electric mode is more destabilized and the aerodynamic mode is left unchanged with the decrease of {Pe}, while the electric mode is more destabilized but the aerodynamic mode is more stabilized with the increase of Λ. It is also found for both symmetric and antisymmetric deformations that the instabilities are most suppressed when {σ }R≃ 1/{ε }P ({σ }R: conductivity ratio of the surrounding to the sheet liquid, {ε }P: permittivity ratio of the sheet to the surrounding liquid), whose trend of the instabilities is more enhanced with the decrease of {Pe} except for vanishingly small {Pe}.

  3. Observation of the charge distribution on the surface of polypropylene with spherulites charged by contact with mercury; Kyushoka polypropylene no suigin tono sesshoku taiden ni yoru hyomen denka bunpu

    Energy Technology Data Exchange (ETDEWEB)

    Goto, T.; Kubota, K.; Murata, Y. [Science University of Tokyo, Tokyo (Japan)

    1999-06-12

    The surface charge distribution of polypropylene with spherulites was investigated using charged sub-micron solid particles after the surface was charged by contact with mercury. The charge polarity of the sample surface after contact was negative and that of solid particles was positive. We observed that many particles accumulated in the interface region between spherulites as well as that between spherulites and outer non-spherulitic region, and also in the non-spherulitic region. These results can be explained by means of distribution of electron traps. (author)

  4. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  5. Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles

    KAUST Repository

    Jain, Rohan

    2015-02-03

    © 2014 American Chemical Society. The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  6. Measuring the equity effects of a carbon charge on car commuters: A case study of Manchester Airport

    NARCIS (Netherlands)

    Miyoshi, C.; Rietveld, P.

    2015-01-01

    This papers attempts to quantify the equity effect of a hypothesized economic instrument, a carbon charge on car commuters, for reducing carbon dioxide emissions produced by commuters on airport surface access. Manchester Airport is taken as a case study using staff Survey data from 2008 and 2010.

  7. Hall effect in quantum critical charge-cluster glass

    Science.gov (United States)

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-01

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ˜ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ˜ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ˜ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  8. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  9. Effects of cytosine methylation on DNA charge transport

    International Nuclear Information System (INIS)

    Hihath, Joshua; Guo Shaoyin; Tao Nongjian; Zhang Peiming

    2012-01-01

    The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements. (paper)

  10. Stochastic effects in real and simulated charged particle beams

    Directory of Open Access Journals (Sweden)

    Jürgen Struckmeier

    2000-03-01

    Full Text Available The Vlasov equation embodies the smooth field approximation of the self-consistent equation of motion for charged particle beams. This framework is fundamentally altered if we include the fluctuating forces that originate from the actual charge granularity. We thereby perform the transition from a reversible description to a statistical mechanics description covering also the irreversible aspects of beam dynamics. Taking into account contributions from fluctuating forces is mandatory if we want to describe effects such as intrabeam scattering or temperature balancing within beams. Furthermore, the appearance of “discreteness errors” in computer simulations of beams can be modeled as “exact” beam dynamics that are being modified by fluctuating “error forces.” It will be shown that the related emittance increase depends on two distinct quantities: the magnitude of the fluctuating forces embodied in a friction coefficient, γ, and the correlation time dependent average temperature anisotropy. These analytical results are verified by various computer simulations.

  11. Mécanismes d'écoulement des charges à la surface des polymères granulaires

    Directory of Open Access Journals (Sweden)

    M. Kachi

    2014-09-01

    Full Text Available Les forces électriques s’exerçant sur des polymères granulaires chargés sont mises à profit dans plusieurs processus électrostatiques. La dynamique de charges de surface de ces matériaux est très importante pour ce type de processus. Le but de ce papier est d’analyser l’écoulement des charges à la surface de couches compactes de polymères granulaires, en interprétant les mesures sans contact réalisées par trois sondes de potentiel, de champ et de charge, ayant chacune une taille différente. Des mesures du profile de potentiel à différents instants sont également réalisées afin d’expliquer les différences entre les vitesses de déclin de potentiel, de champ et de charge mesurées par les trois sondes. Les résultats mettent en évidence un écoulement transversal et longitudinal de la charge surfacique.

  12. Effects of radiation on charge-coupled devices

    Science.gov (United States)

    Carnes, J. E.; Cope, A. D.; Rockett, L. R.; Schlesier, K. M.

    1975-01-01

    The effects of 1 MeV electron irradiation upon the performance of two phase, polysilicon aluminum gate CCDs are reported. Both n- and p-surface channel and n-buried channel devices are investigated using 64- and 128-stage line arrays. Characteristics measured as a function of radiation dose include: Transfer inefficiency, threshold voltage, field effect mobility, interface state density, full well signal level and dark current. Surface channel devices are found to degrade considerably at less than 10 to the 5th power rads (Si) due to the large increase in fast interface state density caused by radiation. Buried channel devices maintain efficient operation to the highest dose levels used.

  13. Effect of surface strain on oxygen adsorption on Zr (0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xing [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Engineering Physics; Khafizov, Marat [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Szlufarska, Izabela [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Engineering Physics; Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Materials Science and Engineering

    2014-02-01

    The effect of surface strain on oxygen adsorption on Zr (0 0 0 1) surface is investigated by density functional theory (DFT) calculations. It is demonstrated that both surface strain and interactions between oxygen adsorbates influence the adsorption process. Oxygen binding to zirconium becomes stronger as the strain changes from compressive to tensile. When oxygen coverage is low and the oxygen interactions are negligible, surface face-centered cubic sites are the most stable for O binding. At high coverage and under compression, octahedral sites between second and third Zr layers become most favorable because the interactions between adsorbates are weakened by positive charge screening. Calculations with both single-layer adsorption model and multiple-layer adsorption model demonstrate that compressive strain at the Zr/oxide interface will provide a thermodynamic driving force for oxygen to incorporate from the surface into the bulk of Zr, while binding oxygen to the Zr surface will be easier when tensile strain is applied.

  14. An algorithm for removing charging effects from X-ray photoelectron spectra of nanoscaled non-conductive materials

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, R.V., E-mail: gulyaev@catalysis.ru [Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Koscheev, S.V. [Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090 (Russian Federation); Malykhin, S.E. [Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2015-07-15

    Graphical abstract: - Highlights: • Algorithm for restoration of XP-spectra distorted by surface charging was developed. • Pd3d spectra of Pd/SnO{sub 2}, Pd/CeO{sub 2}–SnO{sub 2} catalysts were successfully restored. • Algorithm performance is comparable with “hardware” charging neutralization technique. - Abstract: Inhomogeneous surface charging could lead to a distortion of X-ray photoelectron (XP) spectra, which complicates the spectra analysis and sometimes results in an incorrect interpretation of elements chemical states of the sample. The charging effects might be especially strong in the case of XPS application for the characterization of heterogeneous catalysts, which are usually based on the dielectric or semiconductor materials with complex morphology. In this paper, we propose an algorithm to restore XP spectra when distortion is caused by inhomogeneous and/or non-constant surface charging effects. A photoelectron line of a reference element can be used to eliminate the distortions from experimental spectra of other elements by an iterative deconvolution procedure. The successful application of the algorithm for the restoration of a Pd3d line shape using a reference Sn3d{sub 5/2} line was demonstrated for the Pd/SnO{sub 2} and Pd/CeO{sub 2}–SnO{sub 2} catalysts.

  15. Hydrogen storage by adsorption on activated carbon: Investigation of the thermal effects during the charging process

    Energy Technology Data Exchange (ETDEWEB)

    Hermosilla-Lara, G. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS UPR 1311-Universite Paris 13, 93430 Villetaneuse (France); Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9 (France); Momen, G.; Le Neindre, B.; Hassouni, K. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS UPR 1311-Universite Paris 13, 93430 Villetaneuse (France); Marty, P.H. [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9 (France)

    2007-07-15

    This paper presents an investigation of the thermal effects during high-pressure charging of a packed bed hydrogen storage tank. The studied column is packed with activated IRH3 carbon, which has an average surface area of 2600m{sup 2}g{sup -1} and is fed with hydrogen or helium from an external high-pressure source. The temperature at six locations in the storage tank and the pressure value at the bottom of the tank are recorded during the charging stage. Several experiments were carried out to investigate the effect of the initial flow rate on the temperature field in the reservoir and on the duration of the charging process. A study of the respective contribution of adsorption and mechanical dissipation effects to the thermal phenomena is done in the case of hydrogen. Experimental results are compared to those obtained with the commercial code Fluent. A fair agreement is found when comparing typical pressure and temperature evolutions during the tank filling. (author)

  16. Surface effects and electrochemical cell capacitance in desorption electrospray ionization.

    Science.gov (United States)

    Volný, Michael; Venter, Andre; Smith, Scott A; Pazzi, Marco; Cooks, R Graham

    2008-04-01

    Time resolved measurements show that during a desorption electrospray ionization (DESI) experiment, the current initially rises sharply, followed by an exponential decrease to a relatively steady current. When the high voltage on the spray emitter is switched off, the current drops to negative values, suggesting that the direction of current flow in the equivalent DESI circuit is reversed. These data demonstrate that the DESI source behaves as a dc capacitor and that the addition of a surface between the sprayer and the counter electrode in DESI introduces a new electrically active element into the system. The charging and discharging behavior was observed using different surfaces and it could be seen both by making current measurements on a plate at the entrance to the mass spectrometer as well as by measuring ion current in the linear ion trap within the vacuum system of the mass spectrometer. The magnitude of the steady state current obtained without analyte present on the surface is different for different surface materials, and different capacitor time constants of the equivalent RC circuits were calculated for different DESI surfaces. The PTFE surface has by far the greatest time constant and is also able to produce the highest DESI currents. Surface properties play a crucial role in charge transfer during DESI in addition to the effects of the chemical properties of the analyte. It is suggested that surface energy (wettability) is an important factor controlling droplet behavior on the surface. The experimental data are correlated with critical surface tension values of different materials. It is proposed, based on the results presented, that super-hydrophobic materials with extremely high contact angles have the potential to be excellent DESI substrates. It is also demonstrated, using the example of the neurotransmitter dopamine, that the surface charge that develops during a DESI-MS experiment can cause electrochemical oxidation of the analyte.

  17. Effect produced by the charge collection time upon the time and energy resolution of semiconductor detectors

    International Nuclear Information System (INIS)

    Morozov, V.A.; Stegailov, V.I.; Zinov, V.G.; Yashin, S.N.

    1986-01-01

    The effect produced by the charge collection time upon the time and energy resolution of semiconductor detectors has been studied. It is shown that sampling of pulse rise times permits one to identify in coaxial detectors a group of pulses corresponding to the detection of radiation in surface layers of the detector. Choosing pulses with the maximum rise time rate allows one to improve the time resolution of the coincidence sepectrometer and achieve 2tau=1.65 ns, instead of the 2tau=5.50 ns for coincidences of the 1332 keV gamma line and β - particles from 60 Co. (orig.)

  18. Charge uncovering effects on flute instabilities in hot electron plasmas

    International Nuclear Information System (INIS)

    Spong, D.A.

    1985-01-01

    Recent measurements and concurrent theoretical equilibrium models of the ELMO Bumpy Torus (EBT) edge plasma region [as described by E. F. Jaeger et al. in Magnetic Well Depth in EBT and Sensitivity to Hot Electron Ring Geometry, ORNL/TM-9185 (1984)] have indicated that the hot electron ring beta β/sub hot/ at the C-T transition may not always be sufficient to produce the local minimum in the magnetic field thought to be necessary for MHD stability. This has led to the examination of other mechanisms that could account for the observed stability of the T-mode. In this report, an effect known as charge uncovering, which depends not on the value of β/sub hot/ but rather on the ratio n/sub hot//n/sub core/, is studied

  19. Reversible redox reaction and water configuration on a positively charged platinum surface: first principles molecular dynamics simulation.

    Science.gov (United States)

    Ikeshoji, Tamio; Otani, Minoru; Hamada, Ikutaro; Okamoto, Yasuharu

    2011-12-07

    The water dissociation reaction and water molecule configuration on a positively charged platinum (111) surface were investigated by means of first principles molecular dynamics under periodic boundary conditions. Water molecules on the Pt surface were mostly in the O-down orientation but some H-down structures were also found. OH(-) ion, generated by removing H from H(2)O in the bulk region, moved to the Pt surface, on which a positive charge is induced, by a Grotthuss-like proton-relay mechanism and adsorbed on it as OH(Pt). Hydrogen atom exchange between OH(Pt) and a near-by water molecule frequently occurred on the Pt surface and had a low activation energy of the same order as room temperature energy. When a positive charge (7 μC cm(-2)) was added to the Pt surface, H(3)O(+) and OH(Pt) were generated from 2H(2)O on the Pt. This may be coupled with an electron transfer to the Pt electrode [2H(2)O → H(3)O(+) + OH(Pt) + e(-)]. The opposite reaction was also observed on the same charged surface during a simulation of duration about 10 ps; it is a reversible redox reaction. When further positive charge (14 μC cm(-2)) was added, the reaction shifted to the right hand side completely. Thus, this one-electron transfer reaction, which is a part of the oxygen electrode reaction in fuel cells and water electrolysis, was confirmed to be a low activation energy process.

  20. On Developing Field-Effect-Tunable Nanofluidic Ion Diodes with Bipolar, Induced-Charge Electrokinetics

    Directory of Open Access Journals (Sweden)

    Ye Tao

    2018-04-01

    Full Text Available We introduce herein the induced-charge electrokinetic phenomenon to nanometer fluidic systems; the design of the nanofluidic ion diode for field-effect ionic current control of the nanometer dimension is developed by enhancing internal ion concentration polarization through electrochemical transport of inhomogeneous inducing-counterions resulting from double gate terminals mounted on top of a thin dielectric layer, which covers the nanochannel connected to microfluidic reservoirs on both sides. A mathematical model based on the fully-coupled Poisson-Nernst-Plank-Navier-Stokes equations is developed to study the feasibility of this structural configuration causing effective ionic current rectification. The effect of various physiochemical and geometrical parameters, such as the native surface charge density on the nanochannel sidewalls, the number of gate electrodes (GE, the gate voltage magnitude, and the solution conductivity, permittivity, and thickness of the dielectric coating, as well as the size and position of the GE pair of opposite gate polarity, on the resulted rectification performance of the presented nanoscale ionic device is numerically analyzed by using a commercial software package, COMSOL Multiphysics (version 5.2. Three types of electrohydrodynamic flow, including electroosmosis of 1st kind, induced-charge electroosmosis, and electroosmosis of 2nd kind that were originated by the Coulomb force within three distinct charge layers coexist in the micro/nanofluidic hybrid network and are shown to simultaneously influence the output current flux in a complex manner. The rectification factor of a contrast between the ‘on’ and ‘off’ working states can even exceed one thousand-fold in the case of choosing a suitable combination of several key parameters. Our demonstration of field-effect-tunable nanofluidic ion diodes of double external gate electrodes proves invaluable for the construction of a flexible electrokinetic platform

  1. Charge diffusion and the butterfly effect in striped holographic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-26

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  2. Continuous agglomerate model for identifying the solute- indifferent part of colloid nanoparticle's surface charge

    International Nuclear Information System (INIS)

    Alfimov, A V; Aryslanova, E M; Chivilikhin, S A

    2016-01-01

    This work proposes an explicit analytical model for the surface potential of a colloidal nano-agglomerate. The model predicts that when an agglomerate reaches a certain critical size, its surface potential becomes independent of the agglomerate radius. The model also provides a method for identifying and quantifying the solute-indifferent charge in nanocolloids, that allows to assess the stability of toxicologically significant parameters of the system. (paper)

  3. Poly-l-lysine-Coated Silver Nanoparticles as Positively Charged Substrates for Surface-Enhanced Raman Scattering

    NARCIS (Netherlands)

    Marsich, L.; Bonifacio, A.; Mandal, S.; Krol, S.; Beleites, C.; Sergo, V.

    2012-01-01

    Positively charged nanoparticles to be used as substrates for surface-enhanced Raman scattering (SERS) were prepared by coating citrate-reduced silver nanoparticles with the cationic polymer poly-l-lysine. The average diameter of the coated nanoparticles is 75 nm, and their zeta potential is +62.3

  4. Evolution of Surface Temperature of a 13 Amp Hour Nano Lithium-Titanate Battery Cell under Fast Charging

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    is to study the surface temperature evolution of a 13 Ah Nano Lithium-Titanate battery cell for the usage of rechargeable energy storage system under fast charging conditions. The nominal voltage of the cell is 2.26V and the nominal capacity is 13.4 Ah. In this research, contact thermocouples were employed...

  5. Tailoring the surface charge of an ultrafiltration hollow fiber by addition of a polyanion to the coagulation bore liquid

    NARCIS (Netherlands)

    Kopec, K.K.; Dutczak, S.M.; Wessling, Matthias; Stamatialis, Dimitrios

    2011-01-01

    In this work, we report a new in-line method to tailor the surface properties of porous ultrafiltration membranes in a one-step spinning process. A highly charged polyimide P84 hollow fiber membrane can be obtained by dissolving as less as 3% of sulphonated poly(ether ether ketone) (SPEEK) in the

  6. Ionic self-assembly of porphyrin nanostructures on the surface of charge-altered track-etched membranes

    CSIR Research Space (South Africa)

    Mongwaketsi, N

    2010-01-01

    Full Text Available and Sn(IV) tetrakis(4-pyridyl)porphyrin were used to synthesize ionic self-assembled porphyrin nanorods. The track-etched membranes surface charge was changed from negative to positive using polyethyleneimine. The porphyrin nanorods were either filtered...

  7. Investigating the parameters affecting the adsorption of amino acids onto AgCl nanoparticles with different surface charges.

    Science.gov (United States)

    Absalan, Ghodratollah; Ghaemi, Maryam

    2012-11-01

    In this paper, adsorption behaviors of typical neutral (alanine), acidic (glutamic acid) and basic (lysine) amino acids onto the surfaces of neutral as well as positively and negatively charged silver chloride nanoparticles were examined. Silver chloride nanoparticles with different charges and different water content were synthesized by reverse micelle method. The adsorptions of the above mentioned amino acids onto the surfaces of differently charged silver chloride nanoparticles were found to depend strongly on various parameters including pH of the aqueous solution, type of amino acid, water to surfactant mole ratio, and type of charges on the surfaces of silver chloride nanoparticles. It was found that the interaction of -NH(3) (+) groups of the amino acids with silver ion could be a driving force for adsorption of amino acids. Alanine and Glutamic acid showed almost similar trend for being adsorbed on the surface of silver chloride nanoparticles. Electrostatic interaction, hydrophobicity of both nanoparticle and amino acid, complex formation between amine group and silver ion, interaction between protonated amine and silver ion as well as the number of nanoparticles per unit volume of solution were considered for interpreting the observed results.

  8. Selective Surface Charge Sign Reversal on Metallic Carbon Nanotubes for Facile Ultrahigh Purity Nanotube Sorting.

    Science.gov (United States)

    Wang, Jing; Nguyen, Tuan Dat; Cao, Qing; Wang, Yilei; Tan, Marcus Y C; Chan-Park, Mary B

    2016-03-22

    Semiconducting (semi-) single-walled carbon nanotubes (SWNTs) must be purified of their metallic (met-) counterparts for most applications including nanoelectronics, solar cells, chemical sensors, and artificial skins. Previous bulk sorting techniques are based on subtle contrasts between properties of different nanotube/dispersing agent complexes. We report here a method which directly exploits the nanotube band structure differences. For the heterogeneous redox reaction of SWNTs with oxygen/water couple, the aqueous pH can be tuned so that the redox kinetics is determined by the availability of nanotube electrons only at/near the Fermi level, as predicted quantitatively by the Marcus-Gerischer (MG) theory. Consequently, met-SWNTs oxidize much faster than semi-SWNTs and only met-SWNTs selectively reverse the sign of their measured surface zeta potential from negative to positive at the optimized acidic pH when suspended with nonionic surfactants. By passing the redox-reacted nanotubes through anionic hydrogel beads, we isolate semi-SWNTs to record high electrically verified purity above 99.94% ± 0.04%. This facile charge sign reversal (CSR)-based sorting technique is robust and can sort SWNTs with a broad diameter range.

  9. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility

    Science.gov (United States)

    Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin

    2012-01-01

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947

  10. Mechanical Properties of Surface-Charged Poly(Methyl Methacrylate as Denture Resins

    Directory of Open Access Journals (Sweden)

    Sang E. Park

    2009-01-01

    Full Text Available The aim of this study was to examine the mechanical properties of a new surface-modified denture resin for its suitability as denture base material. This experimental resin is made by copolymerization of methacrylic acid (MA to poly(methyl methacrylate (PMMA to produce a negative charge. Four experimental groups consisted of Orthodontic Dental Resin (DENTSPLY Caulk as a control and three groups of modified PMMA (mPMMA produced at differing ratios of methacrylic acid (5 : 95, 10 : 90, and 20 : 80 MA : MMA. A 3-point flexural test using the Instron Universal Testing Machine (Instron Corp. measured force-deflection curves and a complete stress versus strain history to calculate the transverse strength, transverse deflection, flexural strength, and modulus of elasticity. Analysis of Variance and Scheffe Post-test were performed on the data. Resins with increased methacrylic acid content exhibited lower strength values for the measured physical properties. The most significant decrease occurred as the methacrylic acid content was increased to 20% mPMMA. No significant differences at P<.05 were found in all parameters tested between the Control and 5% mPMMA.

  11. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  12. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    Science.gov (United States)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  13. Meissner effect for axially symmetric charged black holes

    Science.gov (United States)

    Gürlebeck, Norman; Scholtz, Martin

    2018-04-01

    In our previous work [N. Gürlebeck and M. Scholtz, Phys. Rev. D 95, 064010 (2017), 10.1103/PhysRevD.95.064010], we have shown that electric and magnetic fields are expelled from the horizons of extremal, stationary and axially symmetric uncharged black holes; this is called the Meissner effect for black holes. Here, we generalize this result in several directions. First, we allow that the black hole carries charge, which requires a generalization of the definition of the Meissner effect. Next, we introduce the notion of almost isolated horizons, which is weaker than the usual notion of isolated horizons, since the geometry of the former is not necessarily completely time independent. Moreover, we allow the horizon to be pierced by strings, thereby violating the usual assumption on the spherical topology made in the definition of the weakly isolated horizon. Finally, we spell out in detail all assumptions entering the proof and show that the Meissner effect is an inherent property of black holes even in full nonlinear theory.

  14. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    Orifjon Ganiev

    2017-05-30

    May 30, 2017 ... It is shown that the scattering of polaronic charge carriers and bosonic Cooper pairs at acoustic and optical phonons are responsible for the charge carrier mobility above and below the PG temperature. We show that the energy scales of the binding energies of large polarons and polaronic Cooper pairs.

  15. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    It is shown that the scattering of polaronic charge carriers and bosonic Cooper pairs at acoustic and optical phonons are responsible for the charge carrier mobility above and below the PG temperature. We show that the energy scales of the binding energies of large polarons and polaronic Cooper pairs can be identified by ...

  16. User charges in health care: Evidence of effect on service utilization & equity from north India

    Science.gov (United States)

    Prinja, Shankar; Aggarwal, Arun Kumar; Kumar, Rajesh; Kanavos, Panos

    2012-01-01

    Background & objectives: User charges have been advocated on efficiency grounds despite the widespread criticism about their adverse effect on equity. We assessed the effect of user charges on inpatient hospitalizations rate and equity in Haryana State. Methods: The inpatient department (IPD) statistics of the public sector facilities in Yamuna Nagar district where user charges had been introduced were analysed and compared with Rohtak district which did not have user charge between 2000 and 2006. National Sample Survey data of Haryana for the 2004-2005 period were analyzed to compare utilization of public sector facilities for hospitalization, cost of hospitalization, and prevalence of catastrophic out-of-pocket (OOP) expenditure by income quintiles in three districts which had user charges and 17 districts of Haryana which did not levy user charges. Results: During 2000 and 2006, hospital admissions declined by 23.8 per cent in Yamuna Nagar district where user charges had been introduced compared to an almost static hospitalization rate in Rohtak district which did not have user charges (Pcharges and pro-poor (concentration index -0.047) in the 17 districts without user charges. Significantly higher prevalence of catastrophic health expenditure was observed in public sector institutions with user charges (48%) compared to those without user charges (35.4%) (Pcharges had a negative influence on hospitalizations in Haryana especially among the poor. Public policies for revenue generation should avoid user charges. PMID:23287137

  17. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  18. Electrochemical Surface Potential due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Marcel D.; Stern, Abraham C.; Levin, Yan; Tobias, Douglas J.; Mundy, Christopher J.

    2012-06-07

    Herein, we present research that suggests that the underlying physics that drive simple empirical models of anions (e.g. point charge, no polarization) to the air-water interface, with water described by SPC/E, or related partial charge models is different than when both ions and water are modeled with quantum mechanical based interactions. Specifically, we will show that the driving force of ions to the air-water interface for point charge models results from both cavitation and the negative electrochemical surface potential. We will demonstrate that we can fully characterize the role of the free energy due to the electrochemical surface potential computed from simple empirical models and its role in ionic adsorption within the context of dielectric continuum theory (DCT). Our research suggests that a significant part of the electrochemical surface potential in empirical models appears to be an artifact of the failure of point charge models in the vicinity of a broken symmetry. This work was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle.

  19. Electrostatic Deformation of Liquid Surfaces by a Charged Rod and a Van De Graaff Generator

    Science.gov (United States)

    Slisko, Josip; García-Molina, Rafael; Abril, Isabel

    2014-01-01

    Authors of physics textbooks frequently use the deflection of a thin, vertically falling water jet by a charged balloon, comb, or rod as a visually appealing and conceptually relevant example of electrostatic attraction. Nevertheless, no attempts are made to explore whether these charged bodies could cause visible deformation of a horizontal water…

  20. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  1. Effect of Coulomb scattering from trapped charges on the mobility in an organic field-effect transistor

    NARCIS (Netherlands)

    Sharma, A.; Janssen, N.M.A.; Matthijssen, S.J.G.; de Leeuw, D.M.; Kemerink, M.; Bobbert, P.A.

    2011-01-01

    We investigate the effect of Coulomb scattering from trapped charges on the mobility in the two-dimensional channel of an organic field-effect transistor. The number of trapped charges can be tuned by applying a prolonged gate bias. Surprisingly, after increasing the number of trapped charges to a

  2. Effective charge model in the theory of infrared intensities and its application for study of charge di.stribution in the molecules of organometallic compounds

    International Nuclear Information System (INIS)

    Aleksanyan, V.T.; Samvelyan, S.Kh.

    1984-01-01

    General principles of plotting the parametric theory of IR spectrum intensities of polyatomic molecules are outlined. The development of the effective charges model in this theory is considered and the mathematical formalism of the first approximation of the method of effective atom charges is described in detail. The results of calculations of charges distribution in the Mo(CO) 6 , W(CO) 6 , Cp 2 V, Cp 2 Ru and others (Cp-cyclopentadiene), performed in the frame work of the outlined scheme are presented. It is shown that in the investigated carbonyles the effective charge on oxygen and metal atoms is negative, on carbon atom - positive. In dicyclopentavienyl complexes the effective charge on the metal atom is positive and is not over 0.6e; charge values on hydrogen and carbon atoms do not exceed, 0.10-0.15e. The notions of ''electrovalence'' of coordination bond and charge distribution in the case of metallocenes are not correlated

  3. Surface Adsorption of Oppositely Charged SDS:C(12)TAB Mixtures and the Relation to Foam Film Formation and Stability.

    Science.gov (United States)

    Fauser, Heiko; Uhlig, Martin; Miller, Reinhard; von Klitzing, Regine

    2015-10-08

    The complexation, surface adsorption, and foam film stabiliztation of the oppositely charged surfactants, sodium dodecyl sulfate (SDS) and dodecyl trimethylammonium bromide (C12TAB), is analyzed. The SDS:C12TAB mixing ratio is systematically varied to investigate whether the adsorption of equimolar or irregular catanionic surfactant complexes, and thus a variation in surface charge (i.e., surface excess of either SDS or C12TAB), governs foam film properties. Surface tension measurements indicate that SDS and C12TAB interact electrostatically in order to form stoichometric catanionic surfactant complexes and enhance surface adsorption. On the other hand it can be demonstrated that the SDS:C12TAB mixing ratio and, thus, a change in surface charge and composition plays a decisive role in foam film stabilization. The present study demonstrates that varying the mixing ratio between SDS and C12TAB offers a tool for tailoring surface composition and foam film properties, which are therefore not exclusively mediated by the presence of equimolar catanionic surfactant complexes. The SDS:C12TAB net amount and mixing ratio determine the type, stability, and thinning behavior of the corresponding foam film. These observations indicate the formation of a mixed surface layer, composed of the catanionic surfactant species surrounded by either free SDS or C12TAB molecules in excess. Furthermore, a systematic variation in CBF-NBF transition kinetics is rationalized on the basis of a microscopic phase transition within the foam films. Fundamental knowlegde gained from this research gives insight into the surface adsorption and foam film formation of catanionic surfactant mixtures. The study helps researchers to understand basic mechanisms of foam film stabilization and to use resources more efficiently.

  4. Secondary charging effects due to icy dust particle impacts on rocket payloads

    Science.gov (United States)

    Kassa, M.; Rapp, M.; Hartquist, T. W.; Havnes, O.

    2012-03-01

    We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE) dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  5. Secondary charging effects due to icy dust particle impacts on rocket payloads

    Directory of Open Access Journals (Sweden)

    M. Kassa

    2012-03-01

    Full Text Available We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  6. Effective-range function methods for charged particle collisions

    Science.gov (United States)

    Gaspard, David; Sparenberg, Jean-Marc

    2018-04-01

    Different versions of the effective-range function method for charged particle collisions are studied and compared. In addition, a novel derivation of the standard effective-range function is presented from the analysis of Coulomb wave functions in the complex plane of the energy. The recently proposed effective-range function denoted as Δℓ [Ramírez Suárez and Sparenberg, Phys. Rev. C 96, 034601 (2017), 10.1103/PhysRevC.96.034601] and an earlier variant [Hamilton et al., Nucl. Phys. B 60, 443 (1973), 10.1016/0550-3213(73)90193-4] are related to the standard function. The potential interest of Δℓ for the study of low-energy cross sections and weakly bound states is discussed in the framework of the proton-proton S10 collision. The resonant state of the proton-proton collision is successfully computed from the extrapolation of Δℓ instead of the standard function. It is shown that interpolating Δℓ can lead to useful extrapolation to negative energies, provided scattering data are known below one nuclear Rydberg energy (12.5 keV for the proton-proton system). This property is due to the connection between Δℓ and the effective-range function by Hamilton et al. that is discussed in detail. Nevertheless, such extrapolations to negative energies should be used with caution because Δℓ is not analytic at zero energy. The expected analytic properties of the main functions are verified in the complex energy plane by graphical color-based representations.

  7. The effect of temperature on charge movement repriming in amphibian skeletal muscle fibers.

    Science.gov (United States)

    Gonzalez, A; Caputo, C

    1996-03-01

    Cut twitch muscle fibers, mounted in a triple Vaseline-gap chamber, were used to study the effects of temperature on intramembranous charge movement and, in particular, on the repriming of charge 1 (the intramembranous charge that normally moves in the potential range between -100 and +40 mV). Changing the holding potential from -90 to 0 mV modified the voltage distribution of charge movement but not the maximum movable charge. Temperature changes between 16 and 5 degrees C did not modify the fiber linear capacitance, the maximum nonlinear intramembranous charge, or the voltage distribution of charge 1 and charge 2 (the intramembranous charge moving in the membrane potential range between approximately -4 and -160 mV). We used a pulse protocol designed to study the repriming time course of charge 1, with little contamination from charge 2. The time course of charge movement repriming at 15 degrees C is described by a double exponential with time constants of 4.2 and 25 s. Repriming kinetics were found to be highly temperature dependent, with two rate-limiting steps having Q10 (increase in rate of a process by raising temperature 10 degrees C) values of 1.7 and 7.1 above and below 11.5 degrees C, respectively. This is characteristic of processes with a high energy of activation and could be associated with a conformational change of the voltage sensor or with the interaction between the voltage sensor and the calcium release channel.

  8. The effect of charge exchange with neutral deuterium on carbon emission in JET divertor plasmas

    International Nuclear Information System (INIS)

    Maggi, C.; Horton, L.; Summers, H.

    1999-11-01

    High density, low temperature divertor plasma operation in tokamaks results in large neutral deuterium concentrations in the divertor volume. In these conditions, low energy charge transfer reactions between neutral deuterium and the impurity ions can in principle enhance the impurity radiative losses and thus help to reduce the maximum heat load to the divertor target. A quantitative study of the effect of charge exchange on carbon emission is presented, applied to the JET divertor. Total and state selective effective charge exchange recombination rate coefficients were calculated in the collisional radiative picture. These coefficients were coupled to divertor and impurity transport models to study the effect of charge exchange on the measured carbon spectral emission in JET divertor discharges. The sensitivity of the effect of charge exchange to the assumptions in the impurity transport model was also investigated. A reassessment was made of fundamental charge exchange cross section data in support of this study. (author)

  9. The effect of charge exchange with neutral deuterium on carbon emission in JET divertor plasmas

    International Nuclear Information System (INIS)

    Maggi, C.F.; Horton, L.D.; Summers, H.P.

    2000-01-01

    High-density, low-temperature divertor plasma operation in tokamaks results in large neutral deuterium concentrations in the divertor volume. Under these conditions, low-energy charge transfer reactions between neutral deuterium and the impurity ions can, in principle, enhance the impurity radiative losses and thus help to reduce the maximum heat load to the divertor target. A quantitative study of the effect of charge exchange on carbon emission is presented, and applied to the JET divertor. Total and state-selective effective charge exchange recombination rate coefficients were calculated in the collisional radiative picture. These coefficients were coupled to divertor and impurity transport models in order to study the effect of charge exchange on the measured carbon spectral emission in JET divertor discharges. The sensitivity of the effect of charge exchange to the assumptions in the impurity transport model was also investigated. A reassessment of fundamental charge exchange cross section data in support of this study was made. (author)

  10. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    HTSCs) have been investigated theoretically. The appropriate Boltzmann transport equations under relaxation time approximation were used to calculate the mobility of polaronic charge carriers and bosonic Cooper pairs above and below the ...

  11. Intramolecular charge transfer effects on 3-aminobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Stalin, T. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India); Rajendiran, N. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India)], E-mail: drrajendiran@rediffmail.com

    2006-03-20

    Effect of solvents, buffer solutions of different pH and {beta}-cyclodextrin on the absorption and fluorescence spectra of 3-aminobenzoic acid (3ABA) have been investigated. The solid inclusion complex of 3ABA with {beta}-CD is discussed by UV-Vis, fluorimetry, semiempirical quantum calculations (AM1), FT-IR, {sup 1}H NMR and Scanning Electron Microscope (SEM). The thermodynamic parameters ({delta}H, {delta}G and {delta}S) of the inclusion process are also determined. The experimental results indicated that the inclusion processes is an exothermic and spontaneous. The large Stokes shift emission in solvents with 3ABA are correlated with different solvent polarity scales suggest that, 3ABA molecule is more polar in the S{sub 1} state. Solvent, {beta}-CD studies and excited state dipole moment values confirms that the presence of intramolecular charge transfer (ICT) in 3ABA. Acidity constants for different prototropic equilibria of 3ABA in the S{sub 0} and S{sub 1} states are calculated. {beta}-Cyclodextrin studies shows that 3ABA forms a 1:1 inclusion complex with {beta}-CD. {beta}-CD studies suggest COOH group present in non-polar part and amino group present in hydrophilic part of the {beta}-CD cavity. A mechanism is proposed to explain the inclusion process.

  12. Interference effects in the nonlinear charge density wave dynamics

    International Nuclear Information System (INIS)

    Jelcic, D.; Batistic, I.; Bjelis, A.

    1987-12-01

    The main features of the nonlinear charge density wave transport in the external dc-ac field are shown to be the natural consequences of resonant phase slip diffusion. This process is treated numerically within the time dependent Landau-Ginzburg model, developed by Gor'kov. The resonances in the ac field are manifested as Shapiro steps in I-V characteristics, present at all rational ratios of internal frequency of current oscillations and external ac frequency. The origin of Shapiro steps, as well as their forms and heights, are cosidered in detail. In particular, it is shown that close to resonances the phase slip voltage acquires a highly nonsinusoidal modulation which leads to the appearance of low frequency and satellite peaks in the Fourier spectrum. Taking into account the interference of adjacent phase slips and the segment or domain structure of physical samples, we interpret the finite width of steps, side wings, synchronization, incomplete and complete mode locking and some other effects observed in numerous experiments on NbSe 3 and other CDW materials. (author). 36 refs, 12 figs

  13. Effect of charging on silicene with alkali metal atom adsorption

    Science.gov (United States)

    Li, Manman; Li, Zhongyao; Gong, Shi-Jing

    2018-02-01

    Based on first-principles calculations, we studied the effects of charging on the structure, binding energy and electronic properties of silicene with alkali metal (AM) atom (Li, Na or K) adsorption. In AMSi2, electron doping enlarges the lattice constant of silicene, while the influence of hole doping is non-monotonic. In AMSi8, the lattice constant increases/decreases almost linearly with the increase in electron/hole doping. In addition, the AM-Si vertical distance can be greatly enlarged by excessive hole doping in both AMSi2 and AMSi8 systems. When the hole doping is as large as  +e per unit cell, both AMSi2 and AMSi8 can be transformed from metal to semiconductor. However, the binding energy would be negative in the AM+ Si2 semiconductor. It suggests AM+ Si2 is unstable in this case. In addition, the electron doping and the AM-Si vertical distance would greatly influence the band gap of silicene in LiSi8 and NaSi8, while the band gap in KSi8 is relatively stable. Therefore, KSi8 may be a more practicable material in nanotechnology.

  14. Effect of surfactant hydrophile-lipophile balance (HLB) value on mineral oxide charging in apolar media.

    Science.gov (United States)

    Gacek, Matthew Michael; Berg, John C

    2015-07-01

    The current work examines the role of surfactant hydrophile-lipophile balance (HLB) on the ability for surfactant reverse micelles to impart charge to particles dispersed in an apolar medium, a study motivated by a number of applications that seek to maximize particle charge in such systems. Previous investigations have shown that relative acid-base properties of the particles and surfactants, as well as surfactant concentration and trace water content, all play a major role in the particle charge obtained. However, the ability of a surfactant to stabilize charge in reverse micelles is also an important aspect of creating charge on a particle surface. It has been previously shown that surfactant HLB value is an important parameter in assessing the size of the polar core of the reverse micelles, thereby impacting the total charge that is generated in the bulk solution as determined by conductivity. In the current study, this theory is extended to investigate the impact on particle charging. To accomplish this, the electrophoretic mobility is determined for a series of mineral oxides dispersed in Isopar-L with either Span 20, Span 80, or Span 85. These three surfactants all have the same head group chemistry, but their HLB value ranges from 1.8 to 8.6. It is found that the maximum observed particle electrophoretic mobility does scale directly with the HLB of the accompanying surfactant. This indicates that there is a direct correlation between a surfactant's ability to stabilize charge and its ability to impart charge to a particle. However, the largest HLB surfactant, Span 20, also exhibited a large amount of charge screening or neutralization at larger surfactant concentrations. This highlights the competition between particle charging and micelle-micelle charging that remains one of the largest obstacles to maximizing particle charge in apolar systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Effects of XPS operational parameters on investigated sample surfaces

    International Nuclear Information System (INIS)

    Mrad, O.; Ismail, I.

    2013-04-01

    In this work, we studied the effects of the operating conditions of the xray photoelectron spectroscopy analysis technique (XPS) on the investigated samples. Firstly, the performances of the whole system have been verified as well as the accuracy of the analysis. Afterwards, the problem of the analysis of insulating samples caused by the charge buildup on the surface has been studied. The use of low-energy electron beam (<100 eV) to compensate the surface charge has been applied. The effect of X-ray on the samples have been assessed and was found to be nondestructive within the analysis time. The effect of low- and high-energy electron beams on the sample surface have been investigated. Highenergy electrons were found to have destructive effect on organic samples. The sample heating procedure has been tested and its effect on the chemical stat of the surface was followed. Finally, the ion source was used to determine the elements distribution and the chemical stat of different depths of the sample. A method has been proposed to determine these depths (author).

  16. Charge reversal and surface charge amplification in asymmetric valence restricted primitive model planar electric double layers in the modified Poisson-Boltzmann theory

    Directory of Open Access Journals (Sweden)

    L.B. Bhuiyan

    2017-12-01

    Full Text Available The modified Poisson-Boltzmann theory of the restricted primitive model double layer is revisited and recast in a fresh, slightly broader perspective. Derivation of relevant equations follow the techniques utilized in the earlier MPB4 and MPB5 formulations and clarifies the relationship between these. The MPB4, MPB5, and a new formulation of the theory are employed in an analysis of the structure and charge reversal phenomenon in asymmetric 2:1/1:2 valence electrolytes. Furthermore, polarization induced surface charge amplification is studied in 3:1/1:3 systems. The results are compared to the corresponding Monte Carlo simulations. The theories are seen to predict the "exact" simulation data to varying degrees of accuracy ranging from qualitative to almost quantitative. The results from a new version of the theory are found to be of comparable accuracy as the MPB5 results in many situations. However, in some cases involving low electrolyte concentrations, theoretical artifacts in the form of un-physical "shoulders" in the singlet ionic distribution functions are observed.

  17. Interaction of slow, highly charged ions with the surface of ionic crystals; Wechselwirkung langsamer hochgeladener Ionen mit der Oberflaeche von Ionenkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Rene

    2009-08-15

    In this thesis the creation of permanent nanostructures induced by the impact of very slow (v{<=}5 x 10{sup 5} m/s) highly charged (q{<=}40) ions on the ionic crystal surfaces of CaF{sub 2} and KBr is investigated. The systematic analysis of the samples surfaces by means of atomic force microscopy supplies information on the influence of the potential as well as the kinetic projectile energy on the process of structure creation. The individual impact of highly charged ions on the KBr(001) surface can initiate the creation of mono-atomic deep pit-like structures -nanopits- with a lateral size of a few 10 nm. The volume of these pits and the corresponding number of sputtered secondary particles show a linear dependence on the projectiles potential energy. For the onset of pit formation a kinetic energy dependent threshold in the potential energy E{sup grenz}{sub pot}(E{sub kin}) could be identified. Based on the defect-mediated desorption by electrons and by including effects of defect agglomeration a consistent model for the process of pit formation was drawn. In this work the recently discovered creation of hillock-like structures by impact of highly charged ions on CaF{sub 2}(111) surfaces could be verified for lowest kinetic energies (E{sub kin}{<=}150 eV x q). For the first time the potential energy of impinging projectiles could be identified to be exclusively responsible for the creation of nanostructures. Furthermore, a shift of potential energy threshold for hillock formation was observed for very small projectile velocities. Within the framework of cooperation with the Vienna University of Technology simulations based on the inelastic thermal spike model were performed, which allowed to interlink the individual hillock formation with a local melting of the ionic lattice. The essential influence of electron emission during the interaction of the highly charged ions with the surface on the process of nanostructuring was taken into consideration by

  18. Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function

    International Nuclear Information System (INIS)

    Chen Lin; Wu Wen-Bin; Liu Pin-Yang; Xiao Yun-Qing; Li Guo-Peng; Liu Yi-Ran; Jiang Hao-Yu; Guo Yan-Ling; Chen Xi-Meng

    2016-01-01

    For Li + and Na + ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako–Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li + and Na + ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states. (paper)

  19. High-resolution peptide mapping separations with MS-friendly mobile phases and charge-surface-modified C18.

    Science.gov (United States)

    Lauber, Matthew A; Koza, Stephan M; McCall, Scott A; Alden, Bonnie A; Iraneta, Pamela C; Fountain, Kenneth J

    2013-07-16

    Ionic analytes, such as peptides, can be challenging to separate by reverse-phase chromatography with optimal efficiency. They tend, for instance, to exhibit poor peak shapes, particularly when eluted with mobile phases preferred for electrospray ionization mass spectrometry. We demonstrate that a novel charged-surface C18 stationary phase alleviates some of the challenges associated with reverse-phase peptide separations. This column chemistry, known as CSH (charged-surface hybrid) C18, improves upon an already robust organosilica hybrid stationary phase, BEH (ethylene-bridged hybrid) C18. Based on separations of a nine-peptide standard, CSH C18 was found to exhibit improved loadability, greater peak capacities, and unique selectivity compared to BEH C18. Its performance was also seen to be significantly less dependent on TFA-ion pairing, making it ideal for MS applications where high sensitivity is desired. These performance advantages were evaluated through application to peptide mapping, wherein CSH C18 was found to aid the development of a high-resolution, high-sensitivity LC-UV-MS peptide mapping method for the therapeutic antibody, trastuzumab. From these results, the use of a C18 stationary phase with a charged surface, such as CSH C18, holds significant promise for facilitating challenging peptide analyses.

  20. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging

    Directory of Open Access Journals (Sweden)

    Weitong Chen

    2016-11-01

    Full Text Available This paper presents a cost-effectiveness comparison of coupler designs for wireless power transfer (WPT, meant for electric vehicle (EV dynamic charging. The design comparison of three common types of couplers is first based on the raw material cost, output power, transfer efficiency, tolerance of horizontal offset, and flux density. Then, the optimal cost-effectiveness combination is selected for EV dynamic charging. The corresponding performances of the proposed charging system are compared and analyzed by both simulation and experimentation. The results verify the validity of the proposed dynamic charging system for EVs.

  1. Measurements of Charge Sharing Effects in Pixilated CZT/CdTe Detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2007-01-01

    In this paper, charge sharing and charge loss effects in pixilated CZT/CdTe detectors are investigated by measurements. We measured charge sharing effects function of the inter-pixel gap (with same pixel pitch), the photon energy and the detector bias voltage for a large numbers of CZT and CdTe...... pixel detector samples. The results are used for the development of the large area X-ray and Gamma ray detector for the Atmosphere-Space Interactions Monitor (ASIM) planned for the ISS ESA Columbus module. Charge sharing measurements on detector samples with identical size and pixel geometry...

  2. Salivary pellicles equalise surfaces' charges and modulate the virulence of Candida albicans biofilm.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Williams, David; Senna, Plínio Mendes; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José

    2016-06-01

    Numerous environmental factors influence the pathogenesis of Candida biofilms and an understanding of these is necessary for appropriate clinical management. To investigate the role of material type, pellicle and stage of biofilm development on the viability, bioactivity, virulence and structure of C. albicans biofilms. The surface roughness (SR) and surface free energy (SFE) of acrylic and titanium discs was measured. Pellicles of saliva, or saliva supplemented with plasma, were formed on acrylic and titanium discs. Candida albicans biofilms were then generated for 1.5 h, 24h, 48 h and 72 h. The cell viability in biofilms was analysed by culture, whilst DNA concentration and the expression of Candida virulence genes (ALS1, ALS3 and HWP1) were evaluated using qPCR. Biofilm metabolic activity was determined using XTT reduction assay, and biofilm structure analysed by Scanning Electron Microscopy (SEM). Whilst the SR of acrylic and titanium did not significantly differ, the saliva with plasma pellicle increased significantly the total SFE of both surface. The number of viable microorganisms and DNA concentration increased with biofilm development, not differing within materials and pellicles. Biofilms developed on saliva with plasma pellicle surfaces had significantly higher activity after 24h and this was accompanied with higher expression of virulence genes at all periods. Induction of C. albicans virulence occurs with the presence of plasma proteins in pellicles, throughout biofilm growth. To mitigate such effects, reduction of increased plasmatic exudate, related to chronic inflammatory response, could aid the management of candidal biofilm-related infections. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Analysis of effective pulse current charging method for lithium ion battery

    Science.gov (United States)

    Majid, N.; Hafiz, S.; Arianto, S.; Yuono, R. Y.; Astuti, E. T.; Prihandoko, B.

    2017-04-01

    Pulse charging methods has been developed as one of the fast charging methods for Lithium ion battery. This technique applies the continuous constant current pulse with certain pulse width until the battery fully charged. In this research, four Lithium polymer batteries of same type and capacity were used and subjected by several current pulses as a variable. The phenomenon of capacity loss as an effect of charging method was analysed every ten charge-discharge cycles. Four batteries were charged using constant current (1C) for 30 minutes to fill half of the total capacity, which then continued by pulse current of different pulse width in order to reach full capacity of each battery. Constant current charging for one hour was also applied to each battery as a comparison with that of pulse current charging data. The similar degradation patterns on battery capacity were observed. Nevertheless, the percentage of capacity loss is different. In conclusion, this method can be considered as one of the effective charging method, owing to the smallest capacity loss and shorter charging time.

  4. Near-neutral surface charge and hydrophilicity prevent mineral encrustation of Fe-oxidizing micro-organisms.

    Science.gov (United States)

    Saini, G; Chan, C S

    2013-03-01

    Microbial survival in mineralizing environments depends on the ability to evade surface encrustation by minerals, which could obstruct nutrient uptake and waste output. Some organisms localize mineral precipitation away from the cell; however, cell surface properties - charge and hydrophobicity - must also play a role in preventing surface mineralization. This is especially relevant for iron-oxidizing bacteria (FeOB), which face an encrustation threat from both biotic and abiotic mineralization. We used electron microscopy and surface characterization techniques to study the surfaces of two stalk-forming neutrophilic FeOB: the marine Zetaproteobacterium Mariprofundus ferrooxydans PV-1 and the recently isolated freshwater Betaproteobacterium Gallionellales strain R-1. Both organisms lack detectable iron on cell surfaces. Live and azide-inhibited M. ferrooxydans PV-1 cells had small negative zeta potentials (-0.34 to -2.73 mV), over the pH range 4.2-9.4; Gallionellales strain R-1 cells exhibited an even smaller zeta potential (-0.10 to -0.19 mV) over pH 4.2-8.8. Cells have hydrophilic surfaces, according to water contact angle measurements and microbial adhesion to hydrocarbons tests. Thermodynamic and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) calculations showed that as low charge causes low electrostatic attraction, hydrophilic repulsion dominates cell-mineral interactions. Therefore, we conclude that surface properties help enable these FeOB to survive in highly mineralizing environments. Given both mineral-repelling surface properties and the ability to sequester Fe(III) biominerals in an organomineral stalk, these two FeOB have a well-coordinated system to localize both biotic and abiotic mineral distribution. © 2012 Blackwell Publishing Ltd.

  5. Relating the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles (SPIONs to Their Bactericidal Effect towards a Biofilm of Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Taraneh Javanbakht

    Full Text Available This study was designed to determine the effects of superparamagnetic iron oxide nanoparticles (SPIONs on the biological activity of a bacterial biofilm (Streptococcus mutans. Our hypothesis was that the diffusion of the SPIONs into biofilms would depend on their surface properties, which in turn would largely be determined by their surface functionality. Bare, positively charged and negatively charged SPIONs, with hydrodynamic diameters of 14.6 ± 1.4 nm, 20.4 ± 1.3 nm and 21.2 ± 1.6 nm were evaluated. Time-of-flight secondary ion mass spectrometry (TOF-SIMS and electrophoretic mobility (EPM measurements were used to confirm that carboxylic functional groups predominated on the negatively charged SPIONS, whereas amine functional groups predominated on the positively charged particles. Transmission electron microscopy (TEM showed the morphology and sizes of SPIONs. Scanning electron microscopy (SEM and EPM measurements indicated that the surfaces of the SPIONs were covered with biomolecules following their incubation with the biofilm. Bare SPIONs killed bacteria less than the positively charged SPIONs at the highest exposure concentrations, but the toxicity of the bare and positively charged SPIONs was the same for lower SPION concentrations. The positively charged SPIONs were more effective in killing bacteria than the negatively charged ones. Nonetheless, electrophoretic mobilities of all three SPIONs (negative, bare and positively charged became more negative following incubation with the (negatively-charged biofilm. Therefore, while the surface charge of SPIONS was important in determining their biological activity, the initial surface charge was not constant in the presence of the biofilm, leading eventually to SPIONS with fairly similar surface charges in situ. The study nonetheless suggests that the surface characteristics of the SPIONS is an important parameter controlling the efficiency of antimicrobial agents. The analysis of the CFU

  6. Image Charge Effects in the Wetting Behavior of Alkanes on Water with Accounting for Water Solubility

    Directory of Open Access Journals (Sweden)

    Kirill A. Emelyanenko

    2016-03-01

    Full Text Available Different types of surface forces, acting in the films of pentane, hexane, and heptane on water are discussed. It is shown that an important contribution to the surface forces originates from the solubility of water in alkanes. The equations for the distribution of electric potential inside the film are derived within the Debye-Hückel approximation, taking into account the polarization of the film boundaries by discrete charges at water-alkane interface and by the dipoles of water molecules dissolved in the film. On the basis of above equations we estimate the image charge contribution to the surface forces, excess free energy, isotherms of water adsorption in alkane film, and the total isotherms of disjoining pressure in alkane film. The results indicate the essential influence of water/alkane interface charging on the disjoining pressure in alkane films, and the wettability of water surface by different alkanes is discussed.

  7. Particle Emission and Charging Effects Induced by Fracture

    Science.gov (United States)

    1989-06-15

    12 Fracture induced charge separation is particularly intense in piezo-electric crystals such as SiO2 and BaTiO3 . PETN has a non-centrosymmetric...fracture induced charge carriers. Commercial boron doped (111) Si wafers, with one face polished and having resistivities of 10 to 20 ohm-cm, were...levels. Letting nI and no represent the respective populations, we have: I 1316/1335 - nl/no - exp(-(El-E 0 )/kT] where El and Eo are the known vibrational

  8. Potential sputtering of protons from hydrogen- and H sub 2 O-terminated Si(1 0 0) surfaces with slow highly charged ions

    CERN Document Server

    Kuroki, K; Yamazaki, Y

    2003-01-01

    A potential sputtering mechanism of hydrogen has been studied for impacts of slow highly charged Xe sup q sup + ions (<5 keV, q=4-12) on well-defined H-terminated and water-saturated Si(1 0 0) surfaces. It was found that the sputtering yields of protons were proportional to q supgamma (gamma approx 5) for both the Si(1 0 0)2x1-H and Si(1 0 0)1x1-H surfaces, although the absolute yield for the Si(1 0 0)1x1-H surface was 10 times larger than that for the Si(1 0 0)2x1-H surface, i.e. the sputtering efficiency per one H-Si bond for the Si(1 0 0)1x1-H surface is five times larger that for the Si(1 0 0)2x1-H surface. The proton sputtering efficiency from a H-O-Si bond was extracted from measurements of the water-saturated surface, which was approx 8 times larger than the H-Si bond of the Si(1 0 0)2x1-H surface. An effective distance of the proton from its substrate was proposed to be the key parameter to govern the yield, which also influences the energy distributions of sputtered protons. These findings are con...

  9. Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

    Science.gov (United States)

    Mori, K.; Lee, E. W.; Frazier, W. E.; Niji, K.; Battel, G.; Tran, A.; Iriarte, E.; Perez, O.; Ruiz, H.; Choi, T.; Stoyanov, P.; Ogren, J.; Alrashaid, J.; Es-Said, O. S.

    2015-01-01

    Tempered AISI 4340 steel was hydrogen charged and tested for impact energy. It was found that samples tempered above 468 °C (875 °F) and subjected to hydrogen charging exhibited lower impact energy values when compared to uncharged samples. No significant difference between charged and uncharged samples tempered below 468 °C (875 °F) was observed. Neither exposure nor bake time had any significant effect on impact energy within the tested ranges.

  10. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    Science.gov (United States)

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael; Dellis, Jean-Luc

    2013-09-01

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  11. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes

    Science.gov (United States)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-01

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  12. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes.

    Science.gov (United States)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-18

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  13. Gate effect in charge-density wave nanowires

    NARCIS (Netherlands)

    Slot, E.; Holst, M.A.; Van der Zant, H.S.J.

    2005-01-01

    We have investigated transport characteristics of charge-density wave nanowires with a few hundred parallel chains. At temperatures below50K, these samples show power-law behavior in temperature and voltage, characteristic for one-dimensional transport. In this regime, gate dependent transport has

  14. Effect of radiative cooling on collapsing charged grains

    Indian Academy of Sciences (India)

    the clouds above Jeans mass may be caused by the electrostatic interaction of the plasma clouds [4,5], the condensation of the sub critical Jeans matter can be achieved via radiative cooling of its plasma particles [6–8] which along with the charged and neutral grains form its other constituents. The precise nature of cooling ...

  15. Dynamical image-charge effect in molecular tunnel junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    the finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z(2), where Z is the quasiparticle renormalization factor, compared to the static IC approximation...

  16. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    Orifjon Ganiev

    2017-05-30

    May 30, 2017 ... copper oxides (cuprates) remains one of the most intriguing phenomena in strongly-correlated electron ... of the Knight shift and spin-lattice relaxation rate. The. Knight shift is proportional to the density of ... due to the charge carrier localization by strong magnetic fields [26]. A similar explanation of these ...

  17. Effects of acid concentration on intramolecular charge transfer ...

    Indian Academy of Sciences (India)

    of P4C molecule.7 Temperature-assisted aggregation of alcohol has also been observed by following the fluo- rescence response of the same solute.20 Electrolyte- induced modulation of intramolecular charge transfer rate of P4C molecule in pure solvent has been explored and a non-monotonic dependence observed.18.

  18. Surface Polarization Effects on Ion-Containing Emulsions

    Science.gov (United States)

    Shen, Meng; Li, Honghao; Olvera de la Cruz, Monica

    2017-09-01

    Surface polarization in ion-containing heterogeneous dielectric media such as cell media and emulsions is determined by and determines the positions of the ions. We compute the surface polarization self-consistently as the ions move and analyze their effects on the interactions between electro-neutral, ion-containing droplets using coarse-grained molecular dynamics simulations based on the true energy functional. For water droplets immersed in oil, the interdroplet interaction is attractive, and the surface polarization makes the major contribution. By contrast, for oil droplets in water, the ion-surface induced charge interaction is repulsive and counteracts the attraction between the ions, leading to a small attractive interaction between the droplets. This research improves our understanding of self-assembly in mixed phases such as metal extraction for recovering rare earth elements and nuclear waste as well as water purification.

  19. Semiconductor surface diffusion: Nonthermal effects of photon illumination

    International Nuclear Information System (INIS)

    Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E. G.

    2000-01-01

    Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally. Activation energies and pre-exponential factors for diffusion of germanium, indium, and antimony on silicon change by up to 0.3 eV and two orders of magnitude, respectively, in response to illumination by photons having energies greater than the substrate band gap. The parameters decrease for n-type material and increase for p-type material. Aided by results from photoreflectance spectroscopy, we suggest that motion of the surface quasi-Fermi-level for minority carriers accounts for much of the effect by changing the charge states of surface vacancies. An additional adatom-vacancy complexation mechanism appears to operate on p-type substrates. The results have significant implications for aspects of microelectronics fabrication by rapid thermal processing that are governed by surface mobility. (c) 2000 The American Physical Society

  20. Ion adsorption on oxides : surface charge formation and cadmium binding on rutile and hematite

    NARCIS (Netherlands)

    Fokkink, L.G.J.

    1987-01-01

    The adsorption of charge-determining (H +and OH -) and cadmium ions on rutile (TiO 2 ) and hematite (α-Fe

  1. Acceptor-compensated charge transport and surface chemical reactions in Au-implanted SnO₂ nanowires.

    Science.gov (United States)

    Katoch, Akash; Sun, Gun-Joo; Choi, Sun-Woo; Hishita, Shunichi; Kulish, Vadym V; Wu, Ping; Kim, Sang Sub

    2014-04-09

    A new deep acceptor state is identified by density functional theory calculations, and physically activated by an Au ion implantation technique to overcome the high energy barriers. And an acceptor-compensated charge transport mechanism that controls the chemical sensing performance of Au-implanted SnO2 nanowires is established. Subsequently, an equation of electrical resistance is set up as a function of the thermal vibrations, structural defects (Au implantation), surface chemistry (1 ppm NO2), and solute concentration. We show that the electrical resistivity is affected predominantly not by the thermal vibrations, structural defects, or solid solution, but the surface chemistry, which is the source of the improved chemical sensing. The response and recovery time of chemical sensing is respectively interpreted from the transport behaviors of major and minor semiconductor carriers. This acceptor-compensated charge transport mechanism provides novel insights not only for sensor development but also for research in charge and chemical dynamics of nano-semiconductors.

  2. DNA Condensation by Partially Acetylated Poly(amido amine Dendrimers: Effects of Dendrimer Charge Density on Complex Formation

    Directory of Open Access Journals (Sweden)

    Ronald G. Larson

    2013-09-01

    Full Text Available The ability of poly(amido amine (or PAMAM dendrimers to condense semiflexible dsDNA and penetrate cell membranes gives them great potential in gene therapy and drug delivery but their high positive surface charge makes them cytotoxic. Here, we describe the effects of partial neutralization by acetylation on DNA condensation using light scattering, circular dichroism, and single molecule imaging of dendrimer-DNA complexes combed onto surfaces and tethered to those surfaces under flow. We find that DNA can be condensed by generation-five (G5 dendrimers even when the surface charges are more than 65% neutralized, but that such dendrimers bind negligibly when an end-tethered DNA is stretched in flow. We also find that when fully charged dendrimers are introduced by flow to end-tethered DNA, all DNA molecules become equally highly coated with dendrimers at a rate that becomes very fast at high dendrimer concentration, and that dendrimers remain bound during subsequent flow of dendrimer-free buffer. These results suggest that the presence of dendrimer-free DNA coexisting with dendrimer-bound DNA after bulk mixing of the two in solution may result from diffusion-limited irreversible dendrimer-DNA binding, rather than, or in addition to, the previously proposed cooperative binding mechanism of dendrimers to DNA.

  3. Effect of Layer Charge on CO2 and H2O Intercalations in Swelling Clays.

    Science.gov (United States)

    Rao, Qi; Leng, Yongsheng

    2016-11-08

    The effect of layer charge on the intercalation of supercritical carbon dioxide (scCO 2 )-H 2 O mixture in Na-montmorillonite clay interlayers under T = 323 K and P = 90 bar geologic sequestration conditions has been further investigated. This effect includes the charge amount and its location (within either octahedral or tetrahedral layers due to isomorphic substitutions). Two clay models with different layer charges are used in this study. Simulation results show that the increase of charge amount shifts the monolayer-to-bilayer (1W-to-2W) hydration transition toward the lower relative humidity (RH), increasing water sorption at the expense of reducing the overall sorption amount of CO 2 in the clay interlayer. However, the combination of the influence of charge amount and charge location leads to insignificant changes in equilibrium basal spacings of the high- and low-charge clays. Molecular dynamics simulations show that the CO 2 dimers, which are frequently seen in low-charge clay interlayers, vanish in high-charge clay interlayers even at low RH of 30%.

  4. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  5. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, S.; Chanda, Sourayon; Eijkel, Jan C.T.; Tas, Niels Roelof; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  6. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water–surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface–water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of

  7. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  8. Connecting membrane fluidity and surface charge to pore-forming antimicrobial peptides resistance by an ANN-based predictive model.

    Science.gov (United States)

    Mehla, Jitender; Sood, S K

    2013-05-01

    Efficiency of antibacterial chemotherapy is gradually more challenged by the emergence of pathogenic strains exhibiting high levels of antibiotic resistance. Pore-forming antimicrobial peptides (PF-AMPs) such as alamethicin (Alm) are therefore in the focus of extensive research efforts. In the present study, an artificial neural network (ANN)-based quantitative structure-activity relationship (SAR) modeling of membrane phospholipids vs. PF-AMPs, in context to membrane fluidity and surface charge, was carried out. We observed that the potency of PF-AMPs depends on the fatty acyl chain and polar head group of phospholipids. Alm showed surface interactions with zwitterionic phospholipids however could penetrate deeper inside the hydrophobic core of anionic membranes. Here, the resistance developed in bacterial cells was coupled to membrane fluidity and surface charge, and simultaneously, these principles could be applied for combating resistance against PF-AMPs. The correlation coefficient between observed CR and predicted CR using ANN was found to be 0.757. Thus, ANN could be used as a reliable modeling method for predicting CR, given the structure of the biomimetic membrane in terms of membrane fluidity and surface charge. Fully explored mechanisms of resistance, a forward modeling step in the design cycle of AMPs, can be cross-linked to the inward modeling using ANN to complete the peptide design cycle. The SAR between membrane phospholipids and PF-AMPs could furnish valuable information regarding their design to provide us efficacious peptides against premier pathogens. So far, this is the only report available to predict and quantify interactions of PF-AMPs with membrane phospholipids.

  9. Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly(ε-caprolactone nanoparticles

    Directory of Open Access Journals (Sweden)

    Sathyamoorthy Nandhakumar

    2017-12-01

    Full Text Available The biokinetic fate of polymeric nanoparticles in the physiological milieu is strongly influenced by its properties such as size, surface charge and surface affinity. The electrostatic properties of the polymeric nanoparticles and, thereby, the reliant properties such as cellular interactions, reactivity and toxicity, can be tailored by modulating the surface charge. Therefore, the present study aimed at studying the influence of surface charge on the physicochemical properties, in vitro protein adsorption and cell cytotoxicity of poly(ε-caprolactone (PCL nanoparticles (NPs. Paclitaxel loaded PCL nanoparticles were obtained by emulsion solvent evaporation extraction technique and differently charged using ionic surfactants. The NPs were characterized for size, zeta potential, morphology, entrapment and release. In vitro protein adsorption and cytotoxicity of NPs with different surface charge was investigated. The prepared NPs were rounded with a smooth surface and had a particle size less than 250 nm with narrow distribution and high entrapment efficiency (>80%. The zeta potential of the particles varied between −22 mV and +16 mV depending on its composition. The in vitro protein adsorption studies revealed that positively charged NPs adsorbed more proteins than other formulations. The cytotoxicity studies on MCF-7 cells exhibited that positively charged NPs engender the highest cell inhibition due to preferential uptake based on electrostatic interactions with cell membranes. The results suggest that surface charge could be undeniably significant in determining the protein adsorption and cellular interactions and must be intently considered during the design of colloidal particles to impart better performance in the physiological system. Keywords: Poly(ε-caprolactone, Nanoparticles, Surface charge, Protein adsorption, Cytotoxicity

  10. The effect of shape and roughness on the maximum induction charge for small particles

    International Nuclear Information System (INIS)

    Yu Deying; Adamiak, K; Castle, G S P

    2008-01-01

    Considerable analytical and numerical work has already been done on the charging characteristics of spherical and cylindrical particles. However, the majority of industrial processes involve irregular particles with rough surfaces. In this paper, the relationships between the magnitude of the induction charge and electric field on conductive particles in a uniform electric field as a function of the particle shape and roughness have been investigated. The COMSOL program based on the Finite Element Method was used in the numerical modelling. The results show that in evaluating the value of induction charge for a fixed applied electric field, as particle shape changes care must be taken to ensure that surface fields do not exceed breakdown. With this limitation it is shown that, for a given volume, a smooth sphere will gain more induction charge than either a fibrous or flake shaped particle. However for particles with rough surfaces for some levels of roughness it is possible to obtain a higher charge than an equivalent smooth sphere. These results suggest that the degree of surface roughness may be important in certain coating applications.

  11. Behavior of charged particles in lower ionosphere with acoustical effects

    International Nuclear Information System (INIS)

    Devyaterikov, I.A.; Ivanov, Y.A.; Koslov, S.I.; Kudryavtsev, V.P.

    1984-10-01

    The behavior of charged particles (electrons and positive and negative ions) in the D-region during the passage of weak shock and acoustic waves was studied. It is shown that under such conditions the photochemical equilibrium can be disrupted in the lower part of the D-region, which results in a condition under which the electron density does not follow the variations of neutral gas density

  12. Effects of electric vehicles charging on the power system

    OpenAIRE

    Makkonen; Tarmo

    2013-01-01

    Oil is very important fuel for transportation vehicles, but oil reserves are decreasing in the future. Furthermore, transportation fuel causes greenhouse gas emissions, so renewable energy sources are needed. Using of Electric Vehicles (EVs) offers one solution for this problem. Remarkable reducing of greenhouse gas emissions in the world level require that the majority of all cars should be electric cars. Large-scale charging of different EVs cause problems on power system peak load and char...

  13. Space-charge effects in Penning ion traps

    Czech Academy of Sciences Publication Activity Database

    Porobic, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Flechard, X.; Lienard, E.; Ban, G.; Zákoucký, Dalibor; Soti, G.; Van Gorp, S.; Weinheimer, C.; Wursten, E.; Severijns, N.

    2015-01-01

    Roč. 785, JUN (2015), s. 153-162 ISSN 0168-9002 R&D Projects: GA MŠk LA08015; GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Penning trap * space-charge * magnetron motion * ion trapping * buffer gas cooling * ion cyclotron resonance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.200, year: 2015

  14. Lattices with minimal space charge effects for crystalline beams

    Energy Technology Data Exchange (ETDEWEB)

    Channell, P.J.; Neri, F.R.

    1995-12-31

    There are numerous techniques for cooling beams of charged particles including stochastic cooling, electron beam cooling, ionization (foil) cooling (for lepton beams only), and laser cooling which works only with ions with some electrons still attached. The successful implementation of laser cooling at Aarhus, has led to interest in crystalline beams, and it certainly seems that crystallization of small numbers of stored particles should be possible. There are limits, however, that may restrict the total number of charged particles stored; these include the limit on the space-charge tune shift, {vert_bar}{triangle}{nu}{vert_bar} < 0.25 (though the precise number is subject to debate) and intrabeam scattering. In this paper we will be concerned with the possibility of intense crystalline beams; for simplicity we treat only the nonrelativistic case, though the relativistic case is a simple extension of this work. In the next section we review the limits on the number of particles stored and observe that the beam size scaling with beam temperature is the important dependence that determines the limits on the stored current as a function of beam temperature. In section 3 we use a general formalism to determine the beam size scaling and apply it to various kinds of focusing lattices and determine the relevant limits. In section 4 we use simulations that include lattice elements, a cooling model, and an N-body space-charge model to confirm the predictions of section 3 and to explore the details of various schemes. In the final section we summarize and discuss our results.

  15. Space-charge effects in vacuum-deposited polyimide layer

    Czech Academy of Sciences Publication Activity Database

    Zhivkov, I.; Strijkova, V.; Spassova, E.; Danev, G.; Nešpůrek, Stanislav; Iwamoto, M.

    2005-01-01

    Roč. 7, č. 1 (2005), s. 245-248 ISSN 1454-4164 R&D Projects: GA MŠk ME 558 Grant - others:Ministry of Education and Science(BG) X-1322 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyimide * electrical conductivity * space-charge spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.138, year: 2005

  16. Development and characterisation of semi-crystalline composite granules: The effect of particle chemistry and the electrostatic charging

    Science.gov (United States)

    Haque, Syed N.; Hussain, Tariq; Chowdhry, Babur Z.; Douroumis, Dennis; Scoutaris, Nikolaos; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-12-01

    This study investigated the surface of semi-crystalline composite granules produced via a novel mechano-chemical process and assessed the effect of electrostatic charging. Ibuprofen (IBU), a model drug with low solubility and known associated processing challenges was loaded in composite granules to improve its processibility and dissolution rates. Synthetic amorphous mesoporous magnesium alumina metasilicate (MAS) was co-processed with hydrophilic HPMC polymer in the presence of polyethylene glycol 2000 (PEG) and deionised water. The solid state analyses conducted by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed the existence of semi-crystalline IBU in the complex composite structures. Dynamic vapour sorption (DVS) study showed the water sorption and desorption profiles of the manufactured composite granules as well as the effect of water on the solid-state stability of IBU in various formulations. Advanced surface analysis conducted via energy dispersive X-ray (EDS) revealed homogenous distribution of the drug/excipients on the surface of the granules while atomic force microscopy (AFM) complemented the findings. The electrostatic charge analysis showed variable charge property which is affected by the size of the particles/granules. As expected, the in vitro dissolution study showed about 5 fold increase in the release rates of IBU compared to that of the bulk drug. The mechanochemical processing has been demonstrated as an efficient technique to develop semi-crystalline composite granules with enhanced dissolution rates of water insoluble drugs.

  17. Primary Phenomenon in the Network Formation of Endothelial Cells: Effect of Charge.

    Science.gov (United States)

    Arai, Shunto

    2015-12-07

    Blood vessels are essential organs that are involved in the supply of nutrients and oxygen and play an important role in regulating the body's internal environment, including pH, body temperature, and water homeostasis. Many studies have examined the formation of networks of endothelial cells. The results of these studies have revealed that vascular endothelial growth factor (VEGF) affects the interactions of these cells and modulates the network structure. Though almost all previous simulation studies have assumed that the chemoattractant VEGF is present before network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate. This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple experiment, we find chain-like structures which last quite longer than it is expected, unless the energetically stable cluster should be compact. Using a purely physical model and simulation, we find that the hydrodynamic interaction retard the compaction of clusters and that the chains are stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding the cells may also be involved in this process.

  18. Surface potential, charging and local current transport of individual Ge quantum dots grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Singha, R.K. [Department of Physics, Visva-Bharati, Santiniketan 731235 (India); Manna, S.; Bar, R.; Das, S. [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India); Ray, S.K., E-mail: physkr@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India)

    2017-06-15

    Highlights: We have elaborately explained the individual Ge QD charging phenomena and current transport, which is very important to understand the Ge/Si nano devices. This paper will give a flavor to properly understand these phenomena linked together along with the photocurrent mechanism which is related to the Ge/Si valence band offset. • Both the CAFM and KPFM techniques point out the functionality of doping nature of the underneath Si substrate on the aforementioned characteristics of Ge QDs. • Analysis of the surface potential mapping using KPFM technique yields an approximate valence band offset measurement which is required to understand the intra-valence transition of holes for the realization of long wavelength infrared photodetector. • KPFM and CAFM can be utilized to explore the charging/discharging phenomena of dots and their composition variations. • Current-voltage (I–V) characteristics of the individual Ge QD strongly depends on the individual QD size. • Energy band diagrams for diamond tip and Ge QD shows the higher barrier for electrons and lower barrier for holes allowing the easy tunneling for holes to dominate the transport. - Abstract: It is fundamentally important to understand the nanoscale electronic properties of a single quantum dot (QD) contrary to an ensemble of QDs. Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (CAFM) are two important tools, which could be employed to probe surface potential, charging phenomena, and current transport mechanism of individual QD. We demonstrate the aforementioned characteristics of self-assembled Ge QDs, which was grown on Si substrates by solid source molecular beam epitaxy driven by the Stranski-Krastanov method. Study reveals that each Ge QD acts as charge storage node even at zero applied bias. The shape, size and density of QDs could be well probed by CAFM and KPFM, whereas QD facets could be better resolved by the conductive tip. The CAFM investigation

  19. Effect of paraelectrode processes on contraction of space charge in periodic-pulse lasers

    Science.gov (United States)

    Arytyunyan, R. V.; Baranov, V. Yu.; Borisov, V. M.; Vinokhodov, A. Yu.; Kiryukhin, Yu. B.

    1986-05-01

    A characteristic feature of periodic-pulse electric-discharge CO2-lasers and excimer lasers is contraction of the space charge as the pulse repetition rate increases. The emission energy per pulse decreases as a consequence, with the average laser power first ceasing to increase linearly beyond a certain corner repetition rate and then decreasing beyond a certain critical repetition rate. A study of this phenomenon was made, for the purpose of separating the effect of paracathode processes from the effect of gas dynamics and then evaluating the effect of the former alone. Paraelectrode perturbations were simulated by focusing the radiation from the an XeCl-laser on the cathode surface in an atmosphere of nonabsorbing gases. Laser pulses of up to approximately 0.5 J energy and of approximately 50 ns duration were focused within a spot of 1 mm(2) area on a cathode inside a discharge chamber, with the power density of incident radiation regulated by means of an attenuator. A space charge within a volume of 2.5x4.5x9 cm(3) was generated between this specially shaped cathode and a mesh anode with an approximately 50% optical transmission coefficient. The space charge in helium and in neon was photographed, and the time lag of a discharge pulse behind a contracting laser pulse was measured as a function of the laser pulse energy for these two gases, as well as for a He+C12 gas mixture. The general trend was found to be the same in each case, the time lag increasing with increasing energy first at a slower rate up to a critical energy level and then faster. It has been established that plasma does not build up on the cathode before the laser pulse energy reaches 30 mJ (for a 3 mm(2) surface area), while plasma glow begins as the laser pulse energy reaches 150 mJ. A contracted channel begins to form within the laser-cathode interaction space, with an attendant fast increase of the time lag owing to evaporation of the cathode metal.

  20. Repulsion between oppositely charged planar macroions.

    Directory of Open Access Journals (Sweden)

    YongSeok Jho

    Full Text Available The repulsive interaction between oppositely charged macroions is investigated using Grand Canonical Monte Carlo simulations of an unrestricted primitive model, including the effect of inhomogeneous surface charge and its density, the depth of surface charge, the cation size, and the dielectric permittivity of solvent and macroions, and their contrast. The origin of the repulsion is a combination of osmotic pressure and ionic screening resulting from excess salt between the macroions. The excess charge over-reduces the electrostatic attraction between macroions and raises the entropic repulsion. The magnitude of the repulsion increases when the dielectric constant of the solvent is lowered (below that of water and/or the surface charge density is increased, in good agreement with experiment. Smaller size of surface charge and the cation, their discreteness and mobility are other factors that enhance the repulsion and charge inversion phenomenons.

  1. In vitro cytotoxicity of SiO2 or ZnO nanoparticles with different sizes and surface charges on U373MG human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Kim JE

    2014-12-01

    Full Text Available Jung-Eun Kim,1,* Hyejin Kim,1,* Seong Soo A An,2 Eun Ho Maeng,3 Meyoung-Kon Kim,4 Yoon-Jae Song1 1Department of Life Science, 2Department of Bionano Technology, Gachon University, Seongnam-Si, South Korea; 3Korea Testing and Research Institute, Seoul, South Korea; 4Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea *These authors contributed equally to this work Abstract: Silicon dioxide (SiO2 and zinc oxide (ZnO nanoparticles are widely used in various applications, raising issues regarding the possible adverse effects of these metal oxide nanoparticles on human cells. In this study, we determined the cytotoxic effects of differently charged SiO2 and ZnO nanoparticles, with mean sizes of either 100 or 20 nm, on the U373MG human glioblastoma cell line. The overall cytotoxicity of ZnO nanoparticles against U373MG cells was significantly higher than that of SiO2 nanoparticles. Neither the size nor the surface charge of the ZnO nanoparticles affected their cytotoxicity against U373MG cells. The 20 nm SiO2 nanoparticles were more toxic than the 100 nm nanoparticles against U373MG cells, but the surface charge had little or no effect on their cytotoxicity. Both SiO2 and ZnO nanoparticles activated caspase-3 and induced DNA fragmentation in U373MG cells, suggesting the induction of apoptosis. Thus, SiO2 and ZnO nanoparticles appear to exert cytotoxic effects against U373MG cells, possibly via apoptosis. Keyword: apoptosis

  2. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    Mang, M.

    1993-01-01

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z 4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  3. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Kevin B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, Otis R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benjamin, Russ [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, William H [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-29

    A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled as a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth

  4. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  5. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    Science.gov (United States)

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats

    Directory of Open Access Journals (Sweden)

    Campos-Martorell M

    2016-06-01

    Full Text Available Mireia Campos-Martorell,1 Mary Cano-Sarabia,2 Alba Simats,1 Mar Hernández-Guillamon,1 Anna Rosell,1 Daniel Maspoch,2,3 Joan Montaner1,4 1Neurovascular Research Laboratory, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, 2Catalan Institute of Nanoscience and Nanotechnology (ICN2, CSIC and The Barcelona Institute of Science and Technology, Universitat Autònoma de Barcelona, Barcelona, 3Institució Catalana de Recerca i Estudis Avançats (ICREA, 4Neurovascular Unit, Department of Neurology, Universitat Autònoma de Barcelona, Hospital Vall d’Hebron, Barcelona, Spain Background and aims: Although the beneficial effects of statins on stroke have been widely demonstrated both in experimental studies and in clinical trials, the aim of this study is to prepare and characterize a new liposomal delivery system that encapsulates simvastatin to improve its delivery into the brain. Materials and methods: In order to select the optimal liposome lipid composition with the highest capacity to reach the brain, male Wistar rats were submitted to sham or transitory middle cerebral arterial occlusion (MCAOt surgery and treated (intravenous [IV] with fluorescent-labeled liposomes with different net surface charges. Ninety minutes after the administration of liposomes, the brain, blood, liver, lungs, spleen, and kidneys were evaluated ex vivo using the Xenogen IVIS® Spectrum imaging system to detect the load of fluorescent liposomes. In a second substudy, simvastatin was assessed upon reaching the brain, comparing free and encapsulated simvastatin (IV administration. For this purpose, simvastatin levels in brain homogenates from sham or MCAOt rats at 2 hours or 4 hours after receiving the treatment were detected through ultra-high-protein liquid chromatography. Results: Whereas positively charged liposomes were not detected in brain or plasma 90 minutes after their administration, neutral and negatively charged liposomes

  7. On Beam Matching and the Space-Charge Effect in protoDUNE-SP

    CERN Document Server

    Mandalia, Jesal Paresh

    2017-01-01

    In this project simulations using LArSoft have been analysed in particular looking at how the space-charge effect will affect the matching of particle tracks from the beam line monitor to the TPC and the TPC's performance measuring $\\frac{dE}{dx}$ in protoDUNE-SP. The analysis here provides some preliminary calibrations for protoDUNE-SP to account for the impact the space charge effect will have. Many areas of pion cross section analysis will be affected by the space charge effect so it is vital for a calibration to be developed.

  8. Effective potentials for charge-helium and charge-singly-ionized helium interactions in a dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T.S.; Amirov, S.M.; Moldabekov, Zh.A. [Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan)

    2016-06-15

    The effective electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials arising as a result of partial screening of the helium nucleus field by bound electrons, taking into account both screening by free charged particles and quantum diffraction effect in dense plasmas were derived. The impact of quantum effects on screening was analyzed. It was shown that plasma polarization around the atom leads to the additional repulsion (attraction) between the electron (proton) and the helium atom. The method of constructing the full electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials as the sum of the derived potentials with the polarization potential and exchange potential is discussed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    Science.gov (United States)

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  10. Effect of the space charge layer on pre-transition corrosion rate of Zr alloys

    International Nuclear Information System (INIS)

    Nanikawa, S.; Etoh, Y.

    1998-01-01

    The pre- and post-transition oxide films formed in steam at 673 K were investigated by an AC impedance method. The results showed that the space charge layer was present in the pre-transition oxide film and it was absent in the post-transition oxide film. The oxidation kinetics was simulated by oxygen diffusion in the space charge layer. Cubic or one-fourth power law was explained by the effect of the space charge layer. Supposing that the space charge layer formed the potential difference through the oxide film by 0.7 V, calculated oxidation kinetics agreed with the experimental one before transition. This potential difference corresponded to the measured value by AC impedance method within the experimental error. Shadow effect could be explained by this simulation supposing the disappearance of the space charge layer due to the formation of a negative electric field by β-rays. (author)

  11. Effects of bulk and surface conductivity on the performance of CdZnTe pixel detectors

    DEFF Research Database (Denmark)

    Bolotnikov, A.E.; Chen, C.M.H.; Cook, W.R.

    2002-01-01

    We studied the effects of bulk and surface conductivity on the performance of high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize the difference in mechanisms of the bulk and surface conductivity as indicated by their different temperature behaviors. In addition...... with two back-to-back Schottky-barrier contacts. The high-surface leakage. current is apparently due to the presence of a low-resistivity surface layer that has characteristics that differ considerably from those of the bulk material. This surface layer has a profound effect on the charge......-collection efficiency in detectors with multicontact geometry; some fraction of the electric field lines that originated on the cathode intersects the surface areas between the pixel contacts where the charge produced by an ionizing particle gets trapped. To overcome this effect, we place a grid of thin electrodes...

  12. Coherent charge fluctuations in Josephson junctions and the oscillations of the effective capacitance

    International Nuclear Information System (INIS)

    Krive, I.V.; Rozhavsky, A.S.

    1990-07-01

    We predict novel voltage oscillations of the effective capacitance of small Josephson junctions. This macroscopic effect involves coherent charge fluctuations with charge 2e, leading to a period of oscillations, V c = 2e/C, where C is the junction capacitance. The amplitude of the effect decreases with temperature as exp(-π 2 T/ε c ), where ε c = (2e) 2 /C. (author). 6 refs

  13. Modulation effect of hydrogen and fluorine decoration on the surface work function of BN sheets

    Directory of Open Access Journals (Sweden)

    N Jiao

    2012-06-01

    Full Text Available Using first-principles calculations within the framework of density-functional theory, we studied the modulation effect of hydrogen/fluorine chemical decoration on the surface work function of BN sheets. We found that the difference in the work function (ΔWBN between two surfaces of the chair structure varies with the different decoration. Geometric distortion and chemical effects cause opposite modulation effects, and the chemical effect plays a leading role by inducing charge redistribution in the system.

  14. Influence of carbonate intercalation in the surface-charging behavior of Zn-Cr layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, R., E-mail: rrojas@mail.fcq.unc.edu.ar [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Barriga, C. [Departamento de Quimica Inorganica e Ingenieria Quimica, Edificio Marie Curie, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); De Pauli, C.P. [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Avena, M.J. [Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahia Blanca (Argentina)

    2010-01-15

    The influence of interlayer composition in the surface charge and reactivity of layered double hydroxides (LDHs) has been explored. With this purpose, a chloride-intercalated Zn-Cr-LDH has been synthesized by the constant pH coprecipitation method and afterwards exchanged with carbonate to obtain solids with different Cl{sup -}/CO{sub 3}{sup 2-} ratios. The solids structure has been characterized by elemental chemical analysis, powder X-ray diffraction and infrared spectroscopy, while its surface-charging behavior and reactivity have been studied by acid-base potentiometric titrations and electrophoretic mobility determinations. The chloride-intercalated sample shows an increasing hydroxyl adsorption with increasing pH and decreasing support electrolyte concentration and the particles present positive electrophoretic mobility in the measured pH range. As carbonate content increases in the samples, the total OH{sup -} uptake diminishes and the samples show an isoelectric point at pH around 10. When the gallery is totally occupied by carbonate anions, the OH uptake vs. pH curves registered at different electrolyte concentrations merge at around pH 10. A LDH-water interface model has been used to give an interpretation to the experimental data. The model indicates that as carbonate content increases, the sample behavior becomes similar to that of a metal (hydr)oxide and that surface (bi)carbonate anions undergo acid-base reactions.

  15. Measurement of charge with an active integrator in the presence of noise and pileup effects. A choice of parameters in the charge division method

    International Nuclear Information System (INIS)

    Fanet, H.; Lugol, J.C.

    1991-01-01

    In the presence of electronics noise and pileup effects it is possible to measure charge with an active integrator. The subject of this paper is to deal with the choice of measurement parameters. An application of position sensing with the charge division method is studied and results are compared to those obtained with POMME polarimeter electronics. (orig.)

  16. CHANGES IN THE ELECTRICAL SURFACE CHARGE AND TRANSPLANTATION PROPERTIES OF TA3 ASCITES TUMOR CELLS DURING SHORT-TERM MAINTENANCE IN AN ISOTONIC SALT SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T. S.; Richards, W. R.; Kelly, L. S.

    1980-12-01

    TA3 ascites tumor cells maintained in vitro as a dilute suspension in 0.9% NaCl solution (physiological saline) were found to undergo time-dependent degenerative processes leading to alterations in both membrane characteristics and tumor transplantation properties. A 30% decrease in the negative cellular surface charge density occurred within 2 hr. when TA3 cells were incubated in a 0.9% NaCl solution at 23 °C. A similar reduction in negative surface charge density occurred within 0.5 hr. when the medium was maintained at 37 °C. This time-dependent reduction in surface charge was prevented when cellular metabolism was blocked either by maintaining the medium at 4 °C. or by adding 1 mM cyanide ion to a 23 °C medium. TA3 cells incubated as a dilute suspension in 0.9% NaCl solution at 23 °C also exhibited a large 9 time-dependent reduction in proliferative capacity in isogeneic LAF1/J hosts, as indicated by an increase in the tumor dose for 50% mortality (TD50). Lowering the temperature of the medium to 4 °C was observed to slow the onset of the degenerative processes that lead to a decreased transplantability of TA3 cells. The modification in growth properties of TA3 cells maintained in vitro was found to be attributable in part to an alteration in tumor histocompatibility. This effect was demonstrated by comparing the tumor growth kinetics and TD50 values in normal hosts versus hosts that had been immunosuppressed by whole-body irradiation. Following the in vitro maintenance of TA3 cells, nigrosin dye exclusion tests were performed as a means of assessing cell viability. Evidence obtained in this series of experiments indicated that vital staining is an inadequate criterion for judging either the extent of cell membrane damage or the loss of cellular proliferative capacity.

  17. Electro-osmosis in kaolinite with pH-dependent surface charge modelling by homogenization

    Directory of Open Access Journals (Sweden)

    Sidarta A. Lima

    2010-03-01

    Full Text Available A new three-scale model to describe the coupling between pH-dependent flows and transient ion transport, including adsorption phenomena in kaolinite clays, is proposed. The kaolinite is characterized by three separate nano/micro and macroscopic length scales. The pore (micro-scale is characterized by micro-pores saturated by an aqueous solution containing four monovalent ions and charged solid particles surrounded by thin electrical double layers. The movement of the ions is governed by the Nernst-Planck equations, and the influence of the double layers upon the flow is dictated by the Helmholtz-Smoluchowski slip boundary condition on the tangential velocity. In addition, an adsorption interface condition for the Na+ transportis postulated to capture its retention in the electrical double layer. Thetwo-scalenano/micro model including salt adsorption and slip boundary condition is homogenized to the Darcy scale and leads to the derivation of macroscopic governing equations. One of the notable features of the three-scale model is there construction of the constitutive law of effective partition coefficient that governs the sodium adsorption in the double layer. To illustrate the feasibility of the three-scale model in simulating soil decontamination by electrokinetics, the macroscopic model is discretized by the finite volume method and the desalination of a kaolinite sample by electrokinetics is simulated.Neste artigo propomos um modelo em três escalas para descrever o acoplamento entre o fluxo eletroosmótico e o transporte de íons incluindo fenômenos de adsorção em uma caulinita. A argila é caracterizada por três escalas nano/micro e macroscópica. A escala microscópica é constituída por micro-poros saturados por uma solução aquosa contendo quatro íons monovalentes e partículas sólidas carregadas eletricamente circundadas por uma dupla camada elétrica fina. O movimento dos íons é governado pelas equações de Nernst-Planck e a