WorldWideScience

Sample records for surface brightness sensitivity

  1. SURFACE PHOTOMETRY OF LOW SURFACE BRIGHTNESS GALAXIES

    NARCIS (Netherlands)

    DEBLOK, WJG; VANDERHULST, JM; BOTHUN, GD

    1995-01-01

    Low surface brightness (LSB) galaxies are galaxies dominated by an exponential disc whose central surface brightness is much fainter than the value of mu(B)(0) = 21.65 +/- 0.30 mag arcsec(-2) found by Freeman. In this paper we present broadband photometry of a sample of 21 late-type LSB galaxies.

  2. Giant Low Surface Brightness Galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  3. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  4. Does low surface brightness mean low density?

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS

    1996-01-01

    We compare the dynamical properties of two galaxies at identical positions on the Tully-Fisher relation, but with different surface brightnesses. We find that the low surface brightness galaxy UGC 128 has a higher mass-to-light ratio, and yet has lower mass densities than the high surface brightness

  5. The lowest surface brightness disc galaxy known

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1988-01-01

    The discovery of a galaxy with a prominent bulge and a dominant extremely low surface brightness disc component is reported. The profile of this galaxy is very similar to the recently discovered giant low surface brightness galaxy Malin 1. The disc central surface brightness is found to be ∼ 26.4 Rμ, some 1.5 mag fainter than Malin 1 and thus by far the lowest yet observed. (author)

  6. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)

  7. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Disney, M.; Phillipps, S.

    1985-01-01

    The intrinsic surface brightness Ssub(e) of 500 disc galaxies (0<=T<=9) drawn from the Second Reference Catalogue is computed and it is shown that Ssub(e) does not correlate significantly with Msub(B), (B-V) or type. This is consistent with the notion that there is a heavy selection bias in favour of disc galaxies with that particular surface brightness which allows inclusion in the catalogue over the largest volume of space. (author)

  8. Do Low Surface Brightness Galaxies Host Stellar Bars?

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-09-20

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  9. Do Low Surface Brightness Galaxies Host Stellar Bars?

    International Nuclear Information System (INIS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-01-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  10. The surface brightness of spiral galaxies: Pt. 4

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.; Ohio State Univ., Columbus

    1988-01-01

    Using measurements from IRAS correlations are found between optical surface brightness and both infrared-to-optical flux ratio and infrared colour temperature, in the sense that galaxies with high surface brightness have higher FIR emission and higher temperatures. (author)

  11. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  12. Low surface brightness galaxies in the Fornax Cluster: automated galaxy surface photometry

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1988-01-01

    A sample is presented of low surface brightness galaxies (with extrapolated central surface brightness fainter than 22.0 Bμ) in the Fornax Cluster region which has been measured by the APM machine. Photometric parameters, namely profile shape, scale length, central brightness and total magnitude, are derived for the sample galaxies and correlations between the parameters of low surface brightness dwarf galaxies are discussed, with particular reference to the selection limits. Contrary to previous authors we find no evidence for a luminosity-surface brightness correlation in the sense of lower surface brightness galaxies having lower luminosities and scale sizes. In fact, the present data suggest that it is the galaxies with the largest scale lengths which are more likely to be of very low surface brightness. In addition, the larger scale length galaxies occur preferentially towards the centre of the Cluster. (author)

  13. Low surface brightness galaxies in the cluster A1367

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1989-01-01

    We have obtained deep CCD frames of apparently blank regions of sky in the hope of detecting very low surface brightness (LSB) objects in the cluster A1367. We discuss our data reduction, and image detection and selection techniques. If the galaxies detected are actually cluster members then they are dwarfs and the conclusions of a previous paper on the Fornax cluster are essentially confirmed. One area of variance is that the lowest surface brightness galaxies do not appear to be preferentially concentrated towards the cluster centre. This can be explained by there being a much larger density of dwarf galaxies over this bright galaxy-rich region of the universe. We find over our small area approximately four times as many LSB galaxies as would be expected from our Fornax data. We speculate on the possible origin and likely intensity of intergalactic light within clusters. (author)

  14. A surface brightness analysis of eight RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III; Moffett, T.J.

    1987-01-01

    The authors have used a surface brightness, (V-R) relation to analyze new contemporaneous photometry and radial velocity data for 6 RR-ab type stars and to re-analyze previously published data for RR Lyrae and X Arietis. Systematic effects were found in the surface brightness at phases near minimum radius. Excluding these phases, they determine the slope of the surface brightness relation and the mean radius for each star. They also find a zero point which includes both a distance term and the zero point of the surface brightness relation. The sample includes stars with Preston's metallicity indicator ΔS = 0 to 9, with periods ranging from 0.397 days to 0.651 days. Their results indicate a log(R/R solar ) vs. log P relation in the sense that stars with longer periods have larger radii, in agreement with theoretical predictions. Their radii are consistent with bolometric magnitudes in the range 0.2 - 0.8 magnitude but accurate magnitudes must await a reliable T e - color calibration

  15. The morphology and surface brightness of extragalactic jets

    International Nuclear Information System (INIS)

    Bicknell, G.V.

    1983-01-01

    The problems associated with laminar flow models are reviewed, and an analogy between laboratory jets and astrophysical jets is given. The relationship between surface brightness and the jet full width half maximum is not in general as predicted by simple magnetohydrodynamic models. An alternative turbulent model is presented

  16. The visibility of galaxies as a function of central surface brightness

    International Nuclear Information System (INIS)

    Disney, M.; Phillipps, S.

    1983-01-01

    The likelihood of a galaxy with given intrinsic profile appearing in a photograph catalogue with limiting criteria on apparent magnitude and angular size will depend on the maximum distance at which such a galaxy can lie and still obey both criteria. It is demonstrated that the corresponding volume in which the galaxy will be visible is a sensitive function of the galaxy's central surface brightness as well as its absolute magnitude. Before the observed concentrations around preferred values of surface brightness can be regarded as real, it will be necessary to make allowance for this selection effect. (author)

  17. The surface brightness of 1550 galaxies in Fornax: automated galaxy surface photometry: Pt. 2

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.J.; Kibblewhite, E.J.; Cawson, M.G.M.

    1987-01-01

    A survey of a complete sample of galaxies in the region of the Fornax cluster is presented. Measurements with the Automatic Plate Measuring machine are used to derive the observed distribution of galaxy surface brightness for 1550 objects. Corrections for surface brightness dependent selection effects are then made in order to estimate the true distribution. It is found that the sample (with 16.6 ≤ Msub(APM) ≤ 19.1) is divided into two distinct populations. The 'normal' galaxies with extrapolated central surface brightness Ssub(x) ≤ 22.5 Bμ form a uniformly distributed background of field galaxies. Low surface brightness galaxies (Ssub(x) ≥ 22.5 Bμ), on the other hand, are strongly clumped about the cluster centre. There appear to be few low surface brightness field galaxies. (author)

  18. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    Science.gov (United States)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  19. A new, bright and hard aluminum surface produced by anodization

    Science.gov (United States)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  20. Unveiling the Low Surface Brightness Stellar Peripheries of Galaxies

    Science.gov (United States)

    Ferguson, Annette M. N.

    2018-01-01

    The low surface brightness peripheral regions of galaxies contain a gold mine of information about how minor mergers and accretions have influenced their evolution over cosmic time. Enormous stellar envelopes and copious amounts of faint tidal debris are natural outcomes of the hierarchical assembly process and the search for and study of these features, albeit highly challenging, offers the potential for unrivalled insight into the mechanisms of galaxy growth. Over the last two decades, there has been burgeoning interest in probing galaxy outskirts using resolved stellar populations. Wide-field surveys have uncovered vast tidal debris features and new populations of very remote globular clusters, while deep Hubble Space Telescope photometry has provided exquisite star formation histories back to the earliest epochs. I will highlight some recent results from studies within and beyond the Local Group and conclude by briefly discussing the great potential of future facilities, such as JWST, Euclid, LSST and WFIRST, for major breakthroughs in low surface brightness galaxy periphery science.

  1. Suzaku observations of low surface brightness cluster Abell 1631

    Science.gov (United States)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-06-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  2. IRAS surface brightness maps of reflection nebulae in the Pleiades

    Science.gov (United States)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  3. Suzaku observations of low surface brightness cluster Abell 1631

    Science.gov (United States)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-04-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  4. Characterizing bars in low surface brightness disc galaxies

    Science.gov (United States)

    Peters, Wesley; Kuzio de Naray, Rachel

    2018-05-01

    In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.

  5. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. I. PROFILES AND STATISTICS

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G.

    2013-01-01

    Radial surface brightness profiles of spiral galaxies are classified into three types: (I) single exponential, or the light falls off with one exponential to a break before falling off (II) more steeply, or (III) less steeply. Profile breaks are also found in dwarf disks, but some dwarf Type IIs are flat or increasing out to a break before falling off. Here we re-examine the stellar disk profiles of 141 dwarfs: 96 dwarf irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 19 Magellanic-type spirals (Sms). We fit single, double, or even triple exponential profiles in up to 11 passbands: GALEX FUV and NUV, ground-based UBVJHK and Hα, and Spitzer 3.6 and 4.5 μm. We find that more luminous galaxies have brighter centers, larger inner and outer scale lengths, and breaks at larger radii; dwarf trends with M B extend to spirals. However, the V-band break surface brightness is independent of break type, M B , and Hubble type. Dwarf Type II and III profiles fall off similarly beyond the breaks but have different interiors and IIs break ∼twice as far as IIIs. Outer Type II and III scale lengths may have weak trends with wavelength, but pure Type II inner scale lengths clearly decrease from the FUV to visible bands whereas Type III inner scale lengths increase with redder bands. This suggests the influence of different star formation histories on profile type, but nonetheless the break location is approximately the same in all passbands. Dwarfs continue trends between profile and Hubble types such that later-type galaxies have more Type II but fewer Type I and III profiles than early-type spirals. BCDs and Sms are over-represented as Types III and II, respectively, compared to dIms

  6. Bright galaxies in the Fornax cluster. Automated galaxy surface photometry: Pt. 7

    International Nuclear Information System (INIS)

    Disney, M.J.; Phillipps, S.; Davies, J.L.; Cawson, M.G.M.; Kibblewhite, E.J.

    1990-01-01

    We have determined surface-brightness profiles for all galaxies down to magnitude B = 16 in the central region of the Fornax cluster. Using existing redshift data, we have determined the distributions of surface brightness for both the whole sample and for cluster disc galaxies only. Although both distributions peak at extrapolated central surface brightness ∼ 21.7B mag/arcsec 2 (the canonical result), it is shown that they are, in fact, consistent with very broad distributions of disc central surface brightness once selection effects and the effects of bulge contamination of the profile are taken into account. (author)

  7. Observation of near-infrared surface brightness of the large Magellanic cloud

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Koizumi, Yutaka; Matsumoto, Toshio; Murakami, Hiroshi; Uyama, Kiichiro.

    1981-01-01

    The near-infrared surface brightness of the large Magellanic cloud was observed by an infrared telescope carried by a balloon. The balloon flight was made at Australian Balloon Launching Station. The brightness distribution of 2.4 Mu m radiation was obtained. A part of Bar was bright, and the expansion of the contour at the east end of Bar corresponded to the 30 Dor region. Many near-infrared sources distribute in this region. Discussions on the color and brightness of the center of Bar and the 30 Dor region are presented. (Kato, T.)

  8. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    Science.gov (United States)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  9. Giant Low Surface Brightness Galaxies: Evolution in Isolation M. Das

    Indian Academy of Sciences (India)

    rich in neutral hydrogen gas but low in star formation and hence low in surface ... The LSB dwarfs and irregulars form the larger fraction of LSB galax- ies. Studies ...... Navarro, J. F., Frenk, C. S., White, S. D. M. 1996, ApJ, 462, 563. Norman ...

  10. Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model

    Science.gov (United States)

    De Lannoy, Gabrielle J. M.; Reichle, Rolf H.

    2016-01-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  11. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    Science.gov (United States)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  12. Distribution of surface brightness in Seyfert galaxies. III. Analysis of data

    International Nuclear Information System (INIS)

    Afanas'ev, V.L.; Doroshenko, V.T.; Terebizh, V.Yu.

    1987-01-01

    The observational data on the distribution of the surface brightness μ(r) in normal and Seyfert galaxies given in the first two parts of the study [1,2] are considered. The general form of μ(r) for r ≤ approximately equals 2 kpc is the same for the two groups of galaxies. The values of the parameters that characterize the central part of the spherical component are found, namely, the surface brightness μ 1 /sup (0)/, the brightness, the brightness gradient n 1 , and the color indices (U-B) 1 /sup (0)/ and (B-V) 1 /sup (0)/ at distance 1 kpc from the center. The range of variation of the basic parameters and the correlations of the parameters with each other and with the absolute magnitudes M/sub B//sup (0)/ of the galaxies find a natural explanation in the framework of the standard models of the spherical subsystems of galaxies. The relationships have approximately the same form for normal and Seyfert galaxies. The photometric characteristics of the central regions of Sy 1 and Sy 2 type galaxies are similar. The obtained results do not contradict the idea that all sufficiently bright spiral galaxies can pass through a Seyfert stage with a characteristic time of ∼10 8 yr

  13. B and R CCD surface photometry of selected low surface brightness galaxies in the region of the Fornax cluster

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1990-01-01

    The recent discoveries of large numbers of low surface brightness (LSB) galaxies in clusters and of the extreme LSB giant galaxy Malin 1 are changing our view of the galactic contents of the Universe. In this paper we describe B and R band CCD photometry of a sample of LSB galaxies previously identified from photographic plates of the Fornax cluster. This sample contains some of the lowest surface brightness galaxies known, one having the same central surface brightness as Main 1. The objects in this sample have a wide range of morphologies, and galaxies of similar appearance may have very different (B-R) colours. The range of (B-R) colours for this sample (almost all of which would have been described as dE from their B band morphology alone) is as large as that of the entire Hubble sequence. (author)

  14. Extinction in the Galaxy from surface brightnesses of ESO-LV galaxies : Testing "standard" extinction maps

    NARCIS (Netherlands)

    Choloniewski, J.; Valentijn, E. A.

    A new method for the determination of the extinction in the Galaxy is proposed. The method uses surface brightnesses of external galaxies in the B and R-bands. The observational data have been taken from the ESO-LV galaxy catalog. As a first application of our model we derive the ratio of R-band to

  15. The outer disks of early-type galaxies. I. Surface-brightness profiles of barred galaxies

    NARCIS (Netherlands)

    Erwin, Peter; Pohlen, Michael; Beckman, John E.

    We present a study of 66 barred, early-type (S0-Sb) disk galaxies, focused on the disk surface brightness profile outside the bar region, with the aim of throwing light on the nature of Freeman type I and II profiles, their origins, and their possible relation to disk truncations. This paper

  16. Global Properties of M31's Stellar Halo from the SPLASH Survey. I. Surface Brightness Profile

    Science.gov (United States)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.; Bullock, James; Geha, Marla C.; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J.; Tollerud, Erik J.; Tanaka, Mikito; Chiba, Masashi

    2012-11-01

    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 ± 0.2 and extends to a projected distance of at least ~175 kpc (~2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California

  17. Stellar populations of bulges in galaxies with a low surface-brightness disc

    Science.gov (United States)

    Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.

    2015-03-01

    The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.

  18. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR

    Science.gov (United States)

    Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,

    2014-01-01

    Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an

  19. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  20. ON THE CLASSIFICATION OF UGC 1382 AS A GIANT LOW SURFACE BRIGHTNESS GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Lea M. Z.; Hagen, Alex [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Seibert, Mark; Rich, Jeffrey A.; Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nyland, Kristina; Young, Lisa M. [Physics Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Neill, James D. [California Institute of Technology, Pasadena, CA 91125 (United States); Treyer, Marie [Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, UMR 7326, 38 rue F. Joliot-Curie, F-13388 Marseille (France)

    2016-08-01

    We provide evidence that UGC 1382, long believed to be a passive elliptical galaxy, is actually a giant low surface brightness (GLSB) galaxy that rivals the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two components: a high surface brightness disk galaxy surrounded by an extended low surface brightness (LSB) disk. For UGC 1382, the central component is a lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk has an effective radius of ∼38 kpc and an extrapolated central surface brightness of ∼26 mag arcsec{sup 2}. Both components have a combined stellar mass of ∼8 × 10{sup 10} M {sub ⊙}, and are embedded in a massive (10{sup 10} M {sub ⊙}) low-density (<3 M {sub ⊙} pc{sup 2}) HI disk with a radius of 110 kpc, making this one of the largest isolated disk galaxies known. The system resides in a massive dark matter halo of at least 2 × 10{sup 12} M {sub ⊙}. Although possibly part of a small group, its low-density environment likely plays a role in the formation and retention of the giant LSB and HI disks. We model the spectral energy distributions and find that the LSB disk is likely older than the lenticular component. UGC 1382 has UV–optical colors typical of galaxies transitioning through the green valley. Within the LSB disk are spiral arms forming stars at extremely low efficiencies. The gas depletion timescale of ∼10{sup 11} years suggests that UGC 1382 may be a very-long-term resident of the green valley. We find that the formation and evolution of the LSB disk in UGC 1382 is best explained by the accretion of gas-rich LSB dwarf galaxies.

  1. Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey

    Science.gov (United States)

    Greco, Johnny P.; Greene, Jenny E.; Strauss, Michael A.; Macarthur, Lauren A.; Flowers, Xzavier; Goulding, Andy D.; Huang, Song; Kim, Ji Hoon; Komiyama, Yutaka; Leauthaud, Alexie; Leisman, Lukas; Lupton, Robert H.; Sifón, Cristóbal; Wang, Shiang-Yu

    2018-04-01

    We present a catalog of extended low surface brightness galaxies (LSBGs) identified in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ∼200 deg2 of the survey, we have uncovered 781 LSBGs, spanning red (g ‑ i ≥ 0.64) and blue (g ‑ i r eff = 2.″5–14″), our sample is likely dominated by low-redshift objects. We define LSBGs to have mean surface brightnesses {\\bar{μ }}eff}(g)> 24.3 mag arcsec‑2, which allows nucleated galaxies into our sample. As a result, the central surface brightness distribution spans a wide range of μ 0(g) = 18–27.4 mag arcsec‑2, with 50% and 95% of galaxies fainter than 24.3 and 22 mag arcsec‑2, respectively. Furthermore, the surface brightness distribution is a strong function of color, with the red distribution being much broader and generally fainter than that of the blue LSBGs, and this trend shows a clear correlation with galaxy morphology. Red LSBGs typically have smooth light profiles that are well characterized by single-component Sérsic functions. In contrast, blue LSBGs tend to have irregular morphologies and show evidence for ongoing star formation. We cross-match our sample with existing optical, H I, and ultraviolet catalogs to gain insight into the physical nature of the LSBGs. We find that our sample is diverse, ranging from dwarf spheroidals and ultradiffuse galaxies in nearby groups to gas-rich irregulars to giant LSB spirals, demonstrating the potential of the HSC-SSP to provide a truly unprecedented view of the LSBG population.

  2. The distribution of star formation and metals in the low surface brightness galaxy UGC 628

    Science.gov (United States)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.

    2015-09-01

    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.

  3. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. II. COLOR TRENDS AND MASS PROFILES

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Kimberly A. [Penn State Mont Alto, 1 Campus Drive, Mont Alto, PA 17237 (United States); Hunter, Deidre A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Elmegreen, Bruce G., E-mail: kah259@psu.edu, E-mail: dah@lowell.edu, E-mail: bge@us.ibm.com [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2016-06-01

    In this second paper of a series, we explore the B  −  V , U  −  B , and FUV−NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ∼1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (−9 >  M{sub B}  > −14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (−14 >  M{sub B}  > −19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1−2  M {sub ⊙} pc{sup −2} for Type II dwarfs but higher at 5.9  M {sub ⊙} pc{sup −2} or 27  M {sub ⊙} pc{sup −2} for

  4. SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING

    International Nuclear Information System (INIS)

    Vollmer, B.; Bonnarel, F.; Louys, M.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; Van Driel, W.; Sabatini, S.; MacArthur, L. A.

    2013-01-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings—typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg 2 in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ∼20% more mock LSB galaxies and ∼40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is

  5. Bright patches on chernozems - from space to surface and soil properties

    Science.gov (United States)

    Smetanova, Anna; Burian, Libor; Holec, Juraj; Minár, Jozef

    2016-04-01

    located in areas with slope gradient between 3 and 6°, which is consider as the higher slope in this part of the hilly land. In 1949 the distribution of bright patches was more strongly related to higher slope gradient, the convex forms of profile curvature, and upslope position than in 2004. In the studied catchment, 34 soil profiles were described in the bright patches (identified in 2004), and 73% of them were situated on the convex forms of profile curvature. The most of the profiles were eroded (88%), the mean soil loss was 0.36 m (in the comparison with the reference soil profile), and in 55% of described soil profiles the entire mollic horizon was removed. The typical surface horizon contained 2.3% of humus and 21% of carbonates. The soil profiles were further compared with these situated in the areas neighbouring with the bright patches, and soil profiles on two valley cross-sections, in order to understand the soil redistribution in the catchment, and describe the differences between the bright and black patches in the chernozem landscape. This work was supported by the Slovak Research and Development Agency under the contract ESF-EC-0006-07 and APVV-0625-11; Anna Smetanová has received the support of the AgreenSkills fellowship (under grant agreement n°267196).

  6. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Directory of Open Access Journals (Sweden)

    F. Richter

    2018-03-01

    Full Text Available Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  7. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Science.gov (United States)

    Richter, Friedrich; Drusch, Matthias; Kaleschke, Lars; Maaß, Nina; Tian-Kunze, Xiangshan; Mecklenburg, Susanne

    2018-03-01

    Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  8. A Survey for Low Surface Brightness Dwarf Galaxies Around M31

    OpenAIRE

    Armandroff, Taft E.; Davies, James E.; Jacoby, George H.

    1998-01-01

    By applying a digital filtering technique to 1550 square degrees of the POSS-II in the vicinity of M31, we found two previously unidentified very low surface brightness dwarf galaxies which we designate And V and VI. Follow-up imaging with the KPNO 4-m telescope resolved these into stars easily. The V- and I- band images of And V indicate a distance similar to that of M31, and approximately -1.5. All evidence strongly supports its classification as a dwarf spheroidal companion to M31. Data f...

  9. Calibrating the Type Ia Supernova Distance Scale Using Surface Brightness Fluctuations

    Science.gov (United States)

    Potter, Cicely; Jensen, Joseph B.; Blakeslee, John; Milne, Peter; Garnavich, Peter M.; Brown, Peter

    2018-06-01

    We have observed 20 supernova host galaxies with HST WFC3/IR in the F110W filter, and prepared the data for Surface Brightness Fluctuation (SBF) distance measurements. The purpose of this study is to determine if there are any discrepancies between the SBF distance scale and the type-Ia SN distance scale, for which local calibrators are scarce. We have now measured SBF magnitudes to all early-type galaxies that have hosted SN Ia within 80 Mpc for which SBF measurements are possible. SBF is the only distance measurement technique with statistical uncertainties comparable to SN Ia that can be applied to galaxies out to 80 Mpc.

  10. A MULTIWAVELENGTH STUDY OF THE HIGH SURFACE BRIGHTNESS HOT SPOT IN PKS 1421-490

    International Nuclear Information System (INIS)

    Godfrey, L. E. H.; Bicknell, G. V.; Lovell, J. E. J.; Jauncey, D. L.; Gelbord, J.; Schwartz, D. A.; Birkinshaw, M.; Worrall, D. M.; Marshall, H. L.; Georganopoulos, M.; Perlman, E. S.; Murphy, D. W.

    2009-01-01

    Long Baseline Array imaging of the z = 0.663 broadline radio galaxy PKS 1421-490 reveals a 400 pc diameter high surface brightness hot spot at a projected distance of ∼40 kpc from the active galactic nucleus. The isotropic X-ray luminosity of the hot spot, L 2-10keV = 3 x 10 44 ergs s -1 , is comparable to the isotropic X-ray luminosity of the entire X-ray jet of PKS 0637-752, and the peak radio surface brightness is hundreds of times greater than that of the brightest hot spot in Cygnus A. We model the radio to X-ray spectral energy distribution using a one-zone synchrotron self-Compton model with a near equipartition magnetic field strength of 3 mG. There is a strong brightness asymmetry between the approaching and receding hotspots and the hot spot spectrum remains flat (α ∼ 0.5) well beyond the predicted cooling break for a 3 mG magnetic field, indicating that the hotspot emission may be Doppler beamed. A high plasma velocity beyond the terminal jet shock could be the result of a dynamically important magnetic field in the jet. There is a change in the slope of the hotspot radio spectrum at GHz frequencies, which we model by incorporating a cutoff in the electron energy distribution at γ min ∼ 650, with higher values implied if the hotspot emission is Doppler beamed. We show that a sharp decrease in the electron number density below a Lorentz factor of 650 would arise from the dissipation of bulk kinetic energy in an electron/proton jet with a Lorentz factor Γ jet ∼> 5.

  11. Detecting edges in the X-ray surface brightness of galaxy clusters

    Science.gov (United States)

    Sanders, J. S.; Fabian, A. C.; Russell, H. R.; Walker, S. A.; Blundell, K. M.

    2016-08-01

    The effects of many physical processes in the intracluster medium of galaxy clusters imprint themselves in X-ray surface brightness images. It is therefore important to choose optimal methods for extracting information from and enhancing the interpretability of such images. We describe in detail a gradient filtering edge detection method that we previously applied to images of the Centaurus cluster of galaxies. The Gaussian gradient filter measures the gradient in the surface brightness distribution on particular spatial scales. We apply this filter on different scales to Chandra X-ray observatory images of two clusters with active galactic nucleus feedback, the Perseus cluster and M 87, and a merging system, A 3667. By combining filtered images on different scales using radial filters spectacular images of the edges in a cluster are produced. We describe how to assess the significance of features in filtered images. We find the gradient filtering technique to have significant advantages for detecting many kinds of features compared to other analysis techniques, such as unsharp masking. Filtering cluster images in this way in a hard energy band allows shocks to be detected.

  12. THE STABILITY OF LOW SURFACE BRIGHTNESS DISKS BASED ON MULTI-WAVELENGTH MODELING

    International Nuclear Information System (INIS)

    MacLachlan, J. M.; Wood, K.; Matthews, L. D.; Gallagher, J. S.

    2011-01-01

    To investigate the structure and composition of the dusty interstellar medium (ISM) of low surface brightness (LSB) disk galaxies, we have used multi-wavelength photometry to construct spectral energy distributions for three low-mass, edge-on LSB galaxies (V rot = 88-105 km s -1 ). We use Monte Carlo radiation transfer codes that include the effects of transiently heated small grains and polycyclic aromatic hydrocarbon molecules to model and interpret the data. We find that, unlike the high surface brightness galaxies previously modeled, the dust disks appear to have scale heights equal to or exceeding their stellar scale heights. This result supports the findings of previous studies that low-mass disk galaxies have dust scale heights comparable to their stellar scale heights and suggests that the cold ISM of low-mass, LSB disk galaxies may be stable against fragmentation and gravitational collapse. This may help to explain the lack of observed dust lanes in edge-on LSB galaxies and their low current star formation rates. Dust masses are found in the range (1.16-2.38) x 10 6 M sun , corresponding to face-on (edge-on), V-band, optical depths 0.034 ∼ face ∼ eq ∼< 1.99).

  13. Automated detection of very Low Surface Brightness galaxies in the Virgo Cluster

    Science.gov (United States)

    Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.

    2018-04-01

    We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree2 portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.

  14. SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, B.; Bonnarel, F.; Louys, M. [CDS, Observatoire Astronomique, UMR 7550, 11 rue de l' universite, F-67000 Strasbourg (France); Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch. [LSIIT, Universite de Strasbourg, 7, Rue Rene Descartes, F-67084 Strasbourg (France); Van Driel, W. [GEPI, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Sabatini, S. [INAF/IASF-Roma, via Fosso de Cavaliere 100, I-00133 Roma (Italy); MacArthur, L. A., E-mail: Bernd.Vollmer@astro.unistra.fr [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada)

    2013-02-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings-typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg{sup 2} in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered {approx}20% more mock LSB galaxies and {approx}40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of

  15. Discovery of megaparsec-scale, low surface brightness nonthermal emission in merging galaxy clusters using the green bank telescope

    Energy Technology Data Exchange (ETDEWEB)

    Farnsworth, Damon; Rudnick, Lawrence [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street S.E., Minneapolis, MN 55455 (United States); Brown, Shea [Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242 (United States); Brunetti, Gianfranco [INAF/Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy)

    2013-12-20

    We present results from a study of 12 X-ray bright clusters at 1.4 GHz with the 100 m Green Bank Telescope. After subtraction of point sources using existing interferometer data, we reach a median (best) 1σ rms sensitivity level of 0.01 (0.006) μJy arcsec{sup –2}, and find a significant excess of diffuse, low surface brightness emission in 11 of 12 Abell clusters observed. We also present initial results at 1.4 GHz of A2319 from the Very Large Array. In particular, we find: (1) four new detections of diffuse structures tentatively classified as two halos (A2065, A2069) and two relics (A2067, A2073); (2) the first detection of the radio halo in A2061 at 1.4 GHz, which qualifies this as a possible ultra-steep spectrum halo source with a synchrotron spectral index of α ∼ 1.8 between 327 MHz and 1.4 GHz; (3) a ∼2 Mpc radio halo in the sloshing, minor-merger cluster A2142; (4) a >2× increase of the giant radio halo extent and luminosity in the merging cluster A2319; (5) a ∼7× increase to the integrated radio flux and >4× increase to the observed extent of the peripheral radio relic in A1367 to ∼600 kpc, which we also observe to be polarized on a similar scale; (6) significant excess emission of ambiguous nature in three clusters with embedded tailed radio galaxies (A119, A400, A3744). Our radio halo detections agree with the well-known X-ray/radio luminosity correlation, but they are larger and fainter than current radio power correlation studies would predict. The corresponding volume-averaged synchrotron emissivities are 1-2 orders of magnitude below the characteristic value found in previous studies. Some of the halo-like detections may be some type of previously unseen, low surface brightness radio halo or blend of unresolved shock structures and sub-Mpc-scale turbulent regions associated with their respective cluster merging activity. Four of the five tentative halos contain one or more X-ray cold fronts, suggesting a possible connection between gas

  16. MOIRCS DEEP SURVEY. V. A UNIVERSAL RELATION FOR STELLAR MASS AND SURFACE BRIGHTNESS OF GALAXIES

    International Nuclear Information System (INIS)

    Ichikawa, Takashi; Kajisawa, Masaru; Yamada, Toru; Akiyama, Masayuki; Yoshikawa, Tomohiro; Onodera, Masato; Konishi, Masahiro

    2010-01-01

    We present a universal linear correlation between the stellar mass and surface brightness (SB) of galaxies at 0.3 -2.0∼-0.8 , in addition to dimming as (1 + z) 4 by the cosmological expansion effect. The brightening depends on galaxy color and stellar mass. The blue population (rest-frame U - V -0.8±0.3 in the rest-V band. On the other hand, the red population (U - V>0) and the massive galaxies (M * >10 10 M sun ) show stronger brightening, (1 + z) -1.5±0.1 . By comparison with galaxy evolution models, the phenomena are well understood by the pure luminosity evolution of galaxies out to z ∼ 3.

  17. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  18. A comparison of UV surface brightness and HI surface densities for spiral galaxies

    International Nuclear Information System (INIS)

    Federman, S.R.; Strom, C.

    1990-01-01

    Shaya and Federman (1987) suggested that the ambient ultraviolet flux at 1000 A permeating a spiral galaxy controls the neutral hydrogen (HI) surface density in the galaxy. They found that the atomic envelopes surrounding small molecular clouds, because of their great number, provide the major contribution to the HI surface density over the stellar disk. The increase in HI surface density with later Hubble types was ascribed to the stronger UV fields from more high-mass stars in later Hubble types. These hypotheses are based on the observations of nearby diffuse interstellar clouds, which show a sharp atomic-to-molecular transition (Savage et al. 1977), and on the theoretical framework introduced by Federman, Glassgold, and Kwan (1979). Atomic envelopes around interstellar clouds in the solar neighborhood arise when a steady state is reached between photodissociation of H2 and the formation of H2 on grains. The photodissociation process involves photons with wavelengths between 912 A and 1108 A. Shaya and Federman used H-alpha flux as an approximate measure for the far UV flux and made their comparisons based on averages over Hubble type. Here, researchers compare, on an individual basis, UV data obtained with space-borne and balloon-borne instruments for galaxies with measurements of HI surface density (Warmels 1988a, b). The comparisons substantiate the conclusion of Shaya and Federman that the far UV field controls the HI content of spiral galaxies

  19. Extracting Galaxy Cluster Gas Inhomogeneity from X-Ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    Science.gov (United States)

    Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2008-11-01

    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the

  20. The Star-forming Main Sequence of Dwarf Low Surface Brightness Galaxies

    Science.gov (United States)

    McGaugh, Stacy S.; Schombert, James M.; Lelli, Federico

    2017-12-01

    We explore the star-forming properties of late-type, low surface brightness (LSB) galaxies. The star-forming main sequence ({SFR}-{M}* ) of LSB dwarfs has a steep slope, indistinguishable from unity (1.04 ± 0.06). They form a distinct sequence from more massive spirals, which exhibit a shallower slope. The break occurs around {M}* ≈ {10}10 {M}⊙ , and can also be seen in the gas mass—stellar mass plane. The global Kennicutt-Schmidt law ({SFR}-{M}g) has a slope of 1.47 ± 0.11 without the break seen in the main sequence. There is an ample supply of gas in LSB galaxies, which have gas depletion times well in excess of a Hubble time, and often tens of Hubble times. Only ˜ 3 % of this cold gas needs be in the form of molecular gas to sustain the observed star formation. In analogy with the faint, long-lived stars of the lower stellar main sequence, it may be appropriate to consider the main sequence of star-forming galaxies to be defined by thriving dwarfs (with {M}* {10}10 {M}⊙ ) are weary giants that constitute more of a turn-off population.

  1. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebulae, and the peak flux occurs in the 60 or 100 micron bandpass in all 16 nebular. The 60 and 100 micron flux can be approximated by blackbodies with temperatures between 30 and 50 K, consistent with temperatures expected from extrapolation of greybody fits to the 60 and 100 micron data. The excess 12 and 25 micron emission is attributed to a nonequilibrium process such as emission from thermal fluctuations of very small grains excited by single ultraviolet photons, or emission from polycyclic aromatic hydrocarbons (PAHs) excited by ultraviolet radiation. The common features of the energy distributions of the 16 reflection nebulae, also seen in the reflection nebulae associated with the Pleiades, suggest that PAHs or very small grains may be found in most reflection nebulae

  2. CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher

    2009-01-01

    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  3. Difference in Dwarf Galaxy Surface Brightness Profiles as a Function of Environment

    Science.gov (United States)

    Lee, Youngdae; Park, Hong Soo; Kim, Sang Chul; Moon, Dae-Sik; Lee, Jae-Joon; Kim, Dong-Jin; Cha, Sang-Mok

    2018-05-01

    We investigate surface brightness profiles (SBPs) of dwarf galaxies in field, group, and cluster environments. With deep BV I images from the Korea Microlensing Telescope Network Supernova Program, SBPs of 38 dwarfs in the NGC 2784 group are fitted by a single-exponential or double-exponential model. We find that 53% of the dwarfs are fitted with single-exponential profiles (“Type I”), while 47% of the dwarfs show double-exponential profiles; 37% of all dwarfs have smaller sizes for the outer part than the inner part (“Type II”), while 10% have a larger outer than inner part (“Type III”). We compare these results with those in the field and in the Virgo cluster, where the SBP types of 102 field dwarfs are compiled from a previous study and the SBP types of 375 cluster dwarfs are measured using SDSS r-band images. As a result, the distributions of SBP types are different in the three environments. Common SBP types for the field, the NGC 2784 group, and the Virgo cluster are Type II, Type I and II, and Type I and III profiles, respectively. After comparing the sizes of dwarfs in different environments, we suggest that since the sizes of some dwarfs are changed due to environmental effects, SBP types are capable of being transformed and the distributions of SBP types in the three environments are different. We discuss possible environmental mechanisms for the transformation of SBP types. Based on data collected at KMTNet Telescopes and SDSS.

  4. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.

    Science.gov (United States)

    Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P

    2013-02-15

    We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

  5. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    Science.gov (United States)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  6. The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond)

    Science.gov (United States)

    Cantiello, Michele; Blakeslee, John P.; Ferrarese, Laura; Côté, Patrick; Roediger, Joel C.; Raimondo, Gabriella; Peng, Eric W.; Gwyn, Stephen; Durrell, Patrick R.; Cuillandre, Jean-Charles

    2018-04-01

    We describe a program to measure surface brightness fluctuation (SBF) distances to galaxies observed in the Next Generation Virgo Cluster Survey (NGVS), a photometric imaging survey covering 104 deg2 of the Virgo cluster in the u*, g, i, and z bandpasses with the Canada–France–Hawaii Telescope. We describe the selection of the sample galaxies, the procedures for measuring the apparent i-band SBF magnitude {\\overline{m}}i, and the calibration of the absolute Mibar as a function of observed stellar population properties. The multiband NGVS data set provides multiple options for calibrating the SBF distances, and we explore various calibrations involving individual color indices as well as combinations of two different colors. Within the color range of the present sample, the two-color calibrations do not significantly improve the scatter with respect to wide-baseline, single-color calibrations involving u*. We adopt the ({u}* -z) calibration as a reference for the present galaxy sample, with an observed scatter of 0.11 mag. For a few cases that lack good u* photometry, we use an alternative relation based on a combination of (g-i) and (g-z) colors, with only a slightly larger observed scatter of 0.12 mag. The agreement of our measurements with the best existing distance estimates provides confidence that our measurements are accurate. We present a preliminary catalog of distances for 89 galaxies brighter than B T ≈ 13.0 mag within the survey footprint, including members of the background M and W Clouds at roughly twice the distance of the main body of the Virgo cluster. The extension of the present work to fainter and bluer galaxies is in progress.

  7. GALAXY HALO TRUNCATION AND GIANT ARC SURFACE BRIGHTNESS RECONSTRUCTION IN THE CLUSTER MACSJ1206.2-0847

    Energy Technology Data Exchange (ETDEWEB)

    Eichner, Thomas; Seitz, Stella; Monna, Anna [Universitaets-Sternwarte Muenchen, Scheinerstr. 1, D-81679 Muenchen (Germany); Suyu, Sherry H. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Halkola, Aleksi [Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160 23562 Luebeck (Germany); Umetsu, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Zitrin, Adi [Institut fuer Theoretische Astrophysik, ZAH, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Coe, Dan; Postman, Marc; Koekemoer, Anton; Bradley, Larry [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Rosati, Piero [ESO-European Southern Observatory, D-85748 Garching bei Muenchen (Germany); Grillo, Claudio; Host, Ole [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Balestra, Italo [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Zheng, Wei; Lemze, Doron [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Broadhurst, Tom [Department of Theoretical Physics, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Moustakas, Leonidas [Jet Propulsion Laboratory, California Institute of Technology, MS 169-327, Pasadena, CA 91109 (United States); Molino, Alberto [Instituto de Astrofisica de Andalucia (CSIC), C/Camino Bajo de Huetor 24, Granada E-18008 (Spain); and others

    2013-09-10

    In this work, we analyze the mass distribution of MACSJ1206.2-0847, particularly focusing on the halo properties of its cluster members. The cluster appears relaxed in its X-ray emission, but has a significant amount of intracluster light that is not centrally concentrated, suggesting that galaxy-scale interactions are still ongoing despite the overall relaxed state. The cluster lenses 12 background galaxies into multiple images and one galaxy at z = 1.033 into a giant arc and its counterimage. The multiple image positions and the surface brightness (SFB) distribution of the arc, which is bent around several cluster members, are sensitive to the cluster galaxy halo properties. We model the cluster mass distribution with a Navarro-Frenk-White profile and the galaxy halos with two parameters for the mass normalization and the extent of a reference halo assuming scalings with their observed near-infrared light. We match the multiple image positions at an rms level of 0.''85 and can reconstruct the SFB distribution of the arc in several filters to a remarkable accuracy based on this cluster model. The length scale where the enclosed galaxy halo mass is best constrained is about 5 effective radii-a scale in between those accessible to dynamical and field strong-lensing mass estimates on the one hand and galaxy-galaxy weak-lensing results on the other hand. The velocity dispersion and halo size of a galaxy with m{sub 160W,AB} = 19.2 and M{sub B,Vega} = -20.7 are {sigma} = 150 km s{sup -1} and r Almost-Equal-To 26 {+-} 6 kpc, respectively, indicating that the halos of the cluster galaxies are tidally stripped. We also reconstruct the unlensed source, which is smaller by a factor of {approx}5.8 in area, demonstrating the increase in morphological information due to lensing. We conclude that this galaxy likely has star-forming spiral arms with a red (older) central component.

  8. Studying the ICM in clusters of galaxies via surface brightness fluctuations of the cosmic X-ray background

    Science.gov (United States)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2018-02-01

    We study surface brightness fluctuations of the cosmic X-ray background (CXB) using Chandra data of XBOOTES. After masking out resolved sources we compute the power spectrum of fluctuations of the unresolved CXB for angular scales from {≈ } 2 arcsec to ≈3°. The non-trivial large-scale structure (LSS) signal dominates over the shot noise of unresolved point sources on angular scales above {˜ } 1 arcmin and is produced mainly by the intracluster medium (ICM) of unresolved clusters and groups of galaxies, as shown in our previous publication. The shot-noise-subtracted power spectrum of CXB fluctuations has a power-law shape with the slope of Γ = 0.96 ± 0.06. Their energy spectrum is well described by the redshifted emission spectrum of optically thin plasma with the best-fitting temperature of T ≈ 1.3 keV and the best-fitting redshift of z ≈ 0.40. These numbers are in good agreement with theoretical expectations based on the X-ray luminosity function and scaling relations of clusters. From these values we estimate the typical mass and luminosity of the objects responsible for CXB fluctuations, M500 ∼ 1013.6 M⊙ h-1 and L0.5-2.0 keV ∼ 1042.5 erg s-1. On the other hand, the flux-weighted mean temperature and redshift of resolved clusters are T ≈ 2.4 keV and z ≈ 0.23 confirming that fluctuations of unresolved CXB are caused by cooler (i.e. less massive) and more distant clusters, as expected. We show that the power spectrum shape is sensitive to the ICM structure all the way to the outskirts, out to ∼few × R500. We also searched for possible contribution of the warm-hot intergalactic medium (WHIM) to the observed CXB fluctuations. Our results underline the significant diagnostic potential of the CXB fluctuation analysis in studying the ICM structure in clusters.

  9. GALAXY HALO TRUNCATION AND GIANT ARC SURFACE BRIGHTNESS RECONSTRUCTION IN THE CLUSTER MACSJ1206.2-0847

    International Nuclear Information System (INIS)

    Eichner, Thomas; Seitz, Stella; Monna, Anna; Suyu, Sherry H.; Halkola, Aleksi; Umetsu, Keiichi; Zitrin, Adi; Coe, Dan; Postman, Marc; Koekemoer, Anton; Bradley, Larry; Rosati, Piero; Grillo, Claudio; Høst, Ole; Balestra, Italo; Zheng, Wei; Lemze, Doron; Broadhurst, Tom; Moustakas, Leonidas; Molino, Alberto

    2013-01-01

    In this work, we analyze the mass distribution of MACSJ1206.2-0847, particularly focusing on the halo properties of its cluster members. The cluster appears relaxed in its X-ray emission, but has a significant amount of intracluster light that is not centrally concentrated, suggesting that galaxy-scale interactions are still ongoing despite the overall relaxed state. The cluster lenses 12 background galaxies into multiple images and one galaxy at z = 1.033 into a giant arc and its counterimage. The multiple image positions and the surface brightness (SFB) distribution of the arc, which is bent around several cluster members, are sensitive to the cluster galaxy halo properties. We model the cluster mass distribution with a Navarro-Frenk-White profile and the galaxy halos with two parameters for the mass normalization and the extent of a reference halo assuming scalings with their observed near-infrared light. We match the multiple image positions at an rms level of 0.''85 and can reconstruct the SFB distribution of the arc in several filters to a remarkable accuracy based on this cluster model. The length scale where the enclosed galaxy halo mass is best constrained is about 5 effective radii—a scale in between those accessible to dynamical and field strong-lensing mass estimates on the one hand and galaxy-galaxy weak-lensing results on the other hand. The velocity dispersion and halo size of a galaxy with m 160W,AB = 19.2 and M B,Vega = –20.7 are σ = 150 km s –1 and r ≈ 26 ± 6 kpc, respectively, indicating that the halos of the cluster galaxies are tidally stripped. We also reconstruct the unlensed source, which is smaller by a factor of ∼5.8 in area, demonstrating the increase in morphological information due to lensing. We conclude that this galaxy likely has star-forming spiral arms with a red (older) central component

  10. Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Blakeslee, J. P.; Broadhurst, T. J.; Franx, M.

    2004-08-01

    We use the exceptional depth of the Ultra Deep Field (UDF) and UDF-parallel Advanced Camera for Surveys fields to study the sizes of high-redshift (z~2-6) galaxies and address long-standing questions about possible biases in the cosmic star formation rate due to surface brightness dimming. Contrasting B-, V-, and i-dropout samples culled from the deeper data with those obtained from the shallower Great Observatories Origins Deep Survey fields, we demonstrate that the shallower data are essentially complete at bright magnitudes to z~0.4", >~3 kpc) low surface brightness galaxies are rare. A simple comparison of the half-light radii of the Hubble Deep Field-North + Hubble Deep Field-South U-dropouts with B-, V-, and i-dropouts from the UDF shows that the sizes follow a (1+z)-1.05+/-0.21 scaling toward high redshift. A more rigorous measurement compares different scalings of our U-dropout sample with the mean profiles for a set of intermediate-magnitude (26.0dropouts from the UDF. The best fit is found with a (1+z)-0.94+0.19-0.25 size scaling (for fixed luminosity). This result is then verified by repeating this experiment with different size measures, low-redshift samples, and magnitude ranges. Very similar scalings are found for all comparisons. A robust measurement of size evolution is thereby demonstrated for galaxies from z~6 to 2.5 using data from the UDF. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  11. Brightness and transparency in the early visual cortex.

    Science.gov (United States)

    Salmela, Viljami R; Vanni, Simo

    2013-06-24

    Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.

  12. The abundance properties of nearby late-type galaxies. II. The relation between abundance distributions and surface brightness profiles

    International Nuclear Information System (INIS)

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.; Kniazev, A. Y.

    2014-01-01

    The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W1 band are examined for nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric characteristics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH–SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R 25 ) and on the properties of a galaxy: the disk scale length h and the morphological T-type. We suggest a general, four-dimensional OH–SB relation with the values r, h, and T as parameters. The parametric OH–SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that of the simple relation. The influence of the parameters on the OH–SB relation varies with galactocentric distance. The influence of the T-type on the OH–SB relation is negligible at the centers of galaxies and increases with galactocentric distance. In contrast, the influence of the disk scale length on the OH–SB relation is at a maximum at the centers of galaxies and decreases with galactocentric distance, disappearing at the optical edges of galaxies. Two-dimensional relations can be used to reproduce the observed data at the optical edges of the disks and at the centers of the disks. The disk scale length should be used as a second parameter in the OH–SB relation at the center of the disk while the morphological T-type should be used as a second parameter in the relation at optical edge of the disk. The relations between oxygen abundance and disk surface brightness in the optical B and infrared K bands at the center of the disk and at optical edge of the disk are also considered. The general properties of the abundance–surface brightness relations are similar for the three

  13. Tracing the stellar component of low surface brightness Milky Way dwarf galaxies to their outskirts. I. Sextans

    Science.gov (United States)

    Cicuéndez, L.; Battaglia, G.; Irwin, M.; Bermejo-Climent, J. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Conn, A. R.; de Boer, T. J. L.; Gallart, C.; Guglielmo, M.; Ibata, R.; McConnachie, A.; Tolstoy, E.; Fernando, N.

    2018-01-01

    Aims: We present results from deep and very spatially extended CTIO/DECam g and r photometry (reaching out to 2 mag below the oldest main-sequence turn-off and covering 20 deg2) around the Sextans dwarf spheroidal galaxy. We aim to use this dataset to study the structural properties of Sextans overall stellar population and its member stars in different evolutionary phases, as well as to search for possible signs of tidal disturbance from the Milky Way, which would indicate departure from dynamical equilibrium. Methods: We performed the most accurate and quantitative structural analysis to-date of Sextans' stellar components by applying Bayesian Monte Carlo Markov chain methods to the individual stars' positions. Surface density maps are built by statistically decontaminating the sample through a matched filter analysis of the colour-magnitude diagram, and then analysed for departures from axisymmetry. Results: Sextans is found to be significantly less spatially extended and more centrally concentrated than early studies suggested. No statistically significant distortions or signs of tidal disturbances were found down to a surface brightness limit of 31.8 mag/arcsec2 in V-band. We identify an overdensity in the central regions that may correspond to previously reported kinematic substructure(s). In agreement with previous findings, old and metal-poor stars such as Blue Horizontal Branch stars cover a much larger area than stars in other evolutionary phases, and bright Blue Stragglers (BSs) are less spatially extended than faint ones. However, the different spatial distribution of bright and faint BSs appears consistent with the general age and metallicity gradients found in Sextans' stellar component. This is compatible with Sextans BSs having formed by evolution of binaries and not necessarily due to the presence of a central disrupted globular cluster, as suggested in the literature. We provide structural parameters for the various populations analysed and make

  14. A study of the H I and optical properties of Low Surface Brightness galaxies: spirals, dwarfs, and irregulars

    Science.gov (United States)

    Honey, M.; van Driel, W.; Das, M.; Martin, J.-M.

    2018-06-01

    We present a study of the H I and optical properties of nearby (z ≤ 0.1) Low Surface Brightness galaxies (LSBGs). We started with a literature sample of ˜900 LSBGs and divided them into three morphological classes: spirals, irregulars, and dwarfs. Of these, we could use ˜490 LSBGs to study their H I and stellar masses, colours, and colour-magnitude diagrams, and local environment, compare them with normal, High Surface Brightness (HSB) galaxies and determine the differences between the three morphological classes. We found that LSB and HSB galaxies span a similar range in H I and stellar masses, and have a similar M_{H I}/M⋆-M⋆ relationship. Among the LSBGs, as expected, the spirals have the highest average H I and stellar masses, both of about 109.8 M⊙. The LSGBs' (g - r) integrated colour is nearly constant as function of H I mass for all classes. In the colour-magnitude diagram, the spirals are spread over the red and blue regions whereas the irregulars and dwarfs are confined to the blue region. The spirals also exhibit a steeper slope in the M_{H I}/M⋆-M⋆ plane. Within their local environment, we confirmed that LSBGs are more isolated than HSB galaxies, and LSB spirals more isolated than irregulars and dwarfs. Kolmogorov-Smirnov statistical tests on the H I mass, stellar mass, and number of neighbours indicate that the spirals are a statistically different population from the dwarfs and irregulars. This suggests that the spirals may have different formation and H I evolution than the dwarfs and irregulars.

  15. Land surface sensitivity of mesoscale convective systems

    Science.gov (United States)

    Tournay, Robert C.

    Mesoscale convective systems (MCSs) are important contributors to the hydrologic cycle in many regions of the world as well as major sources of severe weather. MCSs continue to challenge forecasters and researchers alike, arising from difficulties in understanding system initiation, propagation, and demise. One distinct type of MCS is that formed from individual convective cells initiated primarily by daytime heating over high terrain. This work is aimed at improving our understanding of the land surface sensitivity of this class of MCS in the contiguous United States. First, a climatology of mesoscale convective systems originating in the Rocky Mountains and adjacent high plains from Wyoming southward to New Mexico is developed through a combination of objective and subjective methods. This class of MCS is most important, in terms of total warm season precipitation, in the 500 to 1300m elevations of the Great Plains (GP) to the east in eastern Colorado to central Nebraska and northwest Kansas. Examining MCSs by longevity, short lasting MCSs (15 hrs) reveals that longer lasting systems tend to form further south and have a longer track with a more southerly track. The environment into which the MCS is moving showed differences across commonly used variables in convection forecasting, with some variables showing more favorable conditions throughout (convective inhibition, 0-6 km shear and 250 hPa wind speed) ahead of longer lasting MCSs. Other variables, such as convective available potential energy, showed improving conditions through time for longer lasting MCSs. Some variables showed no difference across longevity of MCS (precipitable water and large-scale vertical motion). From subsets of this MCS climatology, three regions of origin were chosen based on the presence of ridgelines extending eastward from the Rocky Mountains known to be foci for convection initiation and subsequent MCS formation: Southern Wyoming (Cheyenne Ridge), Colorado (Palmer divide) and

  16. The way we measure: comparison of methods to derive radial surface brightness profiles

    NARCIS (Netherlands)

    Peters, S. P. C.; van der Kruit, P. C.; de Jong, R. S.

    The breaks and truncations in the luminosity profile of face-on spiral galaxies offer valuable insights in their formation history. The traditional method of deriving the surface photometry profile for face-on galaxies is to use elliptical averaging. In this paper, we explore the question whether

  17. Density wave induced star formation: The optical surface brightness of galaxies

    International Nuclear Information System (INIS)

    Bash, F.N.

    1979-01-01

    A model for the galactic orbits of molecular clouds has been devised. The molecular clouds are assumed to be launched from the two-armed spiral-shock wave, to orbit in the Galaxy like ballistic particles with gravitational perturbations due to the density-wave spiral-potential, and each cloud is assumed to produce a cluster of stars. Each cloud radiates detectable 12 C 16 O (J=0→1) spectral line radiation from birth for 40 million years. Stars are seen in the cloud about 25 million years after birth, and the star cluster is assumed to continue in ballistic orbit around the Galaxy.The model has been tested by comparing its predicted velocity-longitude diagram for CO against that observed for the Galaxy and by comparing the model's predicted distribution of light in the UBV photometric bands against observed surface photometry for Sb and SC galaxies. The interpolation of the initial velocities in the model was corrected, and the model was examined to see whether preshock or postshock initial velocities better fit the observations. The model gives very good general agreement and reproduces many of the features observed in the CO velocity-longitude diagram

  18. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  19. THE CASE AGAINST WARM OR SELF-INTERACTING DARK MATTER AS EXPLANATIONS FOR CORES IN LOW SURFACE BRIGHTNESS GALAXIES

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj

    2010-01-01

    Warm dark matter (WDM) and self-interacting dark matter (SIDM) are often motivated by the inferred cores in the dark matter halos of low surface brightness (LSB) galaxies. We test thermal WDM, non-thermal WDM, and SIDM using high-resolution rotation curves of nine LSB galaxies. We fit these dark matter models to the data and determine the halo core radii and central densities. While the minimum core size in WDM models is predicted to decrease with halo mass, we find that the inferred core radii increase with halo mass and also cannot be explained with a single value of the primordial phase-space density. Moreover, if the core size is set by WDM particle properties, then even the smallest cores we infer would require primordial phase-space density values that are orders of magnitude smaller than lower limits obtained from the Lyα forest power spectra. We also find that the dark matter halo core densities vary by a factor of about 30 from system to system while showing no systematic trend with the maximum rotation velocity of the galaxy. This strongly argues against the core size being directly set by large self-interactions (scattering or annihilation) of dark matter. We therefore conclude that the inferred cores do not provide motivation to prefer WDM or SIDM over other dark matter models.

  20. Enabling HST UV Exploration of the Low Surface Brightness Universe: A Pilot Study with the WFC3 X Filter Set

    Science.gov (United States)

    Thilker, David

    2017-08-01

    We request 17 orbits to conduct a pilot study to examine the effectiveness of the WFC3/UVIS F300X filter for studying fundamental problems in star formation in the low density regime. In principle, the broader bandpass and higher throughput of F300X can halve the required observing time relative to F275W, the filter of choice for studying young stellar populations in nearby galaxies. Together with F475W and F600LP, this X filter set may be as effective as standard UVIS broadband filters for characterizing the physical properties of such populations. We will observe 5 low surface brightness targets with a range of properties to test potential issues with F300X: the red tail to 4000A and a red leak beyond, ghosts, and the wider bandpass. Masses and ages of massive stars, young star clusters, and clumps derived from photometry from the X filter set will be compared with corresponding measurements from standard filters. Beyond testing, our program will provide the first sample spanning a range of LSB galaxy properties for which HST UV imaging will be obtained, and a glimpse into the ensemble properties of the quanta of star formation in these strange environments. The increased observing efficiency would make more tractable programs which require several tens to hundreds of orbits to aggregate sufficient numbers of massive stars, young star clusters, and clumps to build statistical samples. We are hopeful that our pilot observations will broadly enable high-resolution UV imaging exploration of the low density frontier of star formation while HST is still in good health.

  1. Surface sensitivity of nuclear-knock-out form factors

    International Nuclear Information System (INIS)

    Fratamico, G.

    1984-01-01

    A numerical calculation has been performed to investigate the sensitivity of nuclear-knock-out form factors to nuclear-surface behaviour of bound-state wave functions. The result of our investigation suggests that one can extract the bound-state behaviour at the surface from experimental information on nuclear-knock-out form factors

  2. Temperature sensitive surfaces and methods of making same

    Science.gov (United States)

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  3. Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany

    Directory of Open Access Journals (Sweden)

    F. Schlenz

    2012-10-01

    Full Text Available Soil Moisture and Ocean Salinity (SMOS L1c brightness temperature and L2 optical depth data are analysed with a coupled land surface (PROMET and radiative transfer model (L-MEB. The coupled models are validated with ground and airborne measurements under contrasting soil moisture, vegetation and land surface temperature conditions during the SMOS Validation Campaign in May and June 2010 in the SMOS test site Upper Danube Catchment in southern Germany. The brightness temperature root-mean-squared errors are between 6 K and 9 K. The L-MEB parameterisation is considered appropriate under local conditions even though it might possibly be further optimised. SMOS L1c brightness temperature data are processed and analysed in the Upper Danube Catchment using the coupled models in 2011 and during the SMOS Validation Campaign 2010 together with airborne L-band brightness temperature data. Only low to fair correlations are found for this comparison (R between 0.1–0.41. SMOS L1c brightness temperature data do not show the expected seasonal behaviour and are positively biased. It is concluded that RFI is responsible for a considerable part of the observed problems in the SMOS data products in the Upper Danube Catchment. This is consistent with the observed dry bias in the SMOS L2 soil moisture products which can also be related to RFI. It is confirmed that the brightness temperature data from the lower SMOS look angles and the horizontal polarisation are less reliable. This information could be used to improve the brightness temperature data filtering before the soil moisture retrieval. SMOS L2 optical depth values have been compared to modelled data and are not considered a reliable source of information about vegetation due to missing seasonal behaviour and a very high mean value. A fairly strong correlation between SMOS L2 soil moisture and optical depth was found (R = 0.65 even though the two variables are considered independent in the

  4. Morning Versus Evening Bright Light Treatment at Home to Improve Function and Pain Sensitivity for Women with Fibromyalgia: A Pilot Study.

    Science.gov (United States)

    Burgess, Helen J; Park, Margaret; Ong, Jason C; Shakoor, Najia; Williams, David A; Burns, John

    2017-01-01

    To test the feasibility, acceptability, and effects of a home-based morning versus evening bright light treatment on function and pain sensitivity in women with fibromyalgia. A single blind randomized study with two treatment arms: 6 days of a 1 hour morning light treatment or 6 days of a 1 hour evening light treatment. Function, pain sensitivity, and circadian timing were assessed before and after treatment. Participants slept at home, except for two nights in Sleep Center. Ten women meeting the American College of Rheumatology's diagnostic criteria for fibromyalgia, including normal blood test results. Self-reported function was assessed with the Fibromyalgia Impact Questionnaire (FIQ). Pain sensitivity was assessed using a heat stimulus that gave measures of threshold and tolerance. Circadian timing was assessed with the dim light melatonin onset. Both morning and evening light treatments led to improvements in function and pain sensitivity. However, only the morning light treatment led to a clinically meaningful improvement in function (>14% reduction from baseline FIQ) and morning light significantly increased pain threshold more than evening light ( P  treatment appears to be a feasible and acceptable adjunctive treatment to women with fibromyalgia. Those who undergo morning light treatment may show improvements in function and pain sensitivity. Advances in circadian timing may be one mechanism by which morning light improves pain sensitivity. Findings can inform the design of a randomized controlled trial. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  5. Plasmodium falciparum transfected with ultra bright NanoLuc luciferase offers high sensitivity detection for the screening of growth and cellular trafficking inhibitors.

    Directory of Open Access Journals (Sweden)

    Mauro F Azevedo

    Full Text Available Drug discovery is a key part of malaria control and eradication strategies, and could benefit from sensitive and affordable assays to quantify parasite growth and to help identify the targets of potential anti-malarial compounds. Bioluminescence, achieved through expression of exogenous luciferases, is a powerful tool that has been applied in studies of several aspects of parasite biology and high throughput growth assays. We have expressed the new reporter NanoLuc (Nluc luciferase in Plasmodium falciparum and showed it is at least 100 times brighter than the commonly used firefly luciferase. Nluc brightness was explored as a means to achieve a growth assay with higher sensitivity and lower cost. In addition we attempted to develop other screening assays that may help interrogate libraries of inhibitory compounds for their mechanism of action. To this end parasites were engineered to express Nluc in the cytoplasm, the parasitophorous vacuole that surrounds the intraerythrocytic parasite or exported to the red blood cell cytosol. As proof-of-concept, these parasites were used to develop functional screening assays for quantifying the effects of Brefeldin A, an inhibitor of protein secretion, and Furosemide, an inhibitor of new permeation pathways used by parasites to acquire plasma nutrients.

  6. Surface brightness and color distributions in blue compact dwarf galaxies. I. Haro 2, an extreme example of a star-forming young elliptical galaxy

    International Nuclear Information System (INIS)

    Loose, H.H.; Thuan, T.X.; Virginia Univ., Charlottesville, VA)

    1986-01-01

    The first results of a large-scale program to study the morphology and structure of blue compact dwarf galaxies from CCD observations are presented. The observations and reduction procedures are described, and surface brightness and color profiles are shown. The results are used to discuss the morphological type of Haro 2 and its stellar populations. It is found that Haro 2 appears to be an extreme example of an elliptical galaxy undergoing intense star formation in its central regions, and that the oldest stars it contains were made only about four million yr ago. The missing mass problem of Haro 2 is also discussed. 28 references

  7. Color constancy in a scene with bright colors that do not have a fully natural surface appearance.

    Science.gov (United States)

    Fukuda, Kazuho; Uchikawa, Keiji

    2014-04-01

    Theoretical and experimental approaches have proposed that color constancy involves a correction related to some average of stimulation over the scene, and some of the studies showed that the average gives greater weight to surrounding bright colors. However, in a natural scene, high-luminance elements do not necessarily carry information about the scene illuminant when the luminance is too high for it to appear as a natural object color. The question is how a surrounding color's appearance mode influences its contribution to the degree of color constancy. Here the stimuli were simple geometric patterns, and the luminance of surrounding colors was tested over the range beyond the luminosity threshold. Observers performed perceptual achromatic setting on the test patch in order to measure the degree of color constancy and evaluated the surrounding bright colors' appearance mode. Broadly, our results support the assumption that the visual system counts only the colors in the object-color appearance for color constancy. However, detailed analysis indicated that surrounding colors without a fully natural object-color appearance had some sort of influence on color constancy. Consideration of this contribution of unnatural object color might be important for precise modeling of human color constancy.

  8. Non-spectroscopic surface plasmon sensor with a tunable sensitivity

    International Nuclear Information System (INIS)

    Wen, Qiuling; Han, Xu; Hu, Chuang; Zhang, Jiasen

    2015-01-01

    We demonstrate a non-spectroscopic surface plasmon sensor with a tunable sensitivity which is based on the relationship between the wave number of surface plasmon polaritons (SPPs) on metal film and the refractive index of the specimen in contact with the metal film. A change in the wave number of the SPPs results in a variation in the propagation angle of the leakage radiation of the SPPs. A reference light is used to interfere with the leakage radiation, and the refractive index of the specimen can be obtained by measuring the period of the interference fringes. The sensitivity of the sensor can be tuned by changing the incident direction of the reference light and this cannot be realized by conventional surface plasmon sensors. For a reference angle of 1.007°, the sensitivity and resolution of the sensor are 4629 μm/RIU (RIU stands for refractive index unit) and 3.6 × 10 −4 RIU, respectively. In addition, the sensor only needs a monochromatic light source, which simplifies the measurement setup and reduces the cost

  9. Surface plasmon optics for biosensors with advanced sensitivity and throughput

    International Nuclear Information System (INIS)

    Toma, M.

    2012-01-01

    Plasmonic biosensors represent a rapidly advancing technology which enables rapid and sensitive analysis of target analytes. This thesis focuses on novel metallic and polymer structures for plasmonic biosensors based on surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence (SPF). It comprises four projects addressing key challenges concerning the enhancement of sensitivity and throughput. In the project 1, an advanced optical platform is developed which relies on reference-compensated angular spectroscopy of hydrogel-guided waves. The developed optical setup provides superior refractive index resolution of 1.2×10 -7 RIU and offers an attractive platform for direct detection of small analytes which cannot be analyzed by regular SPR biosensors. The project 2 carries out theoretical study of SPR imaging with advanced lateral resolution by utilizing Bragg scattered surface plasmons (BSSPs) on sub-wavelength metallic gratings. The results reveal that the proposed concept provides better lateral resolution and fidelity of the images. This feature opens ways for high-throughput SPR biosensors with denser arrays of sensing spots. The project 3 investigates surface plasmon coupled-emission from fluorophores in the vicinity of plasmonic Bragg-gratings. The experimental results provide leads on advancing the collection efficiency of fluorescence light by controlling the directions of fluorescence emission. This functionality can directly improve the sensitivity of fluorescence-based assays. In the last project 4, a novel sensing scheme with actively tuneable plasmonic structures is developed by employing thermo-responsive hydrogel binding matrix. The hydrogel film simultaneously serves as a large capacity binding matrix and provides means for actuating of surface plasmons through reversible swelling and collapsing of the hydrogel. This characteristic is suitable for multiplexing of sensing channels in fluorescence-based biosensor scheme (author)

  10. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin; Vanderborght, Jan P.; Kostov, K. G.; Jadoon, Khan; Weihermü ller, Lutz; Jackson, Thomas J.; Bindlish, Rajat; Pachepsky, Ya A.; Schwank, Mike; Vereecken, Harry

    2014-01-01

    model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related

  11. A new surface resistance measurement method with ultrahigh sensitivity

    International Nuclear Information System (INIS)

    Liang, Changnian.

    1993-01-01

    A superconducting niobium triaxial cavity has been designed and fabricated to study residual surface resistance of planar superconducting materials. The edge of a 25.4 mm or larger diameter sample in the triaxial cavity is located outside the strong field region. Therefore, the edge effects and possible losses between the thin film and the substrate have been minimized, ensuring that induced RF losses are intrinsic to the test material. The fundamental resonant frequency of the cavity is the same as the working frequency of CEBAF cavities. The cavity has a compact size compared to its TE 011 counterpart, which makes it more sensitive to the sample's loss. For even higher sensitivity, a calorimetry method has been used to measure the RF losses on the superconducting sample. At 2 K, a 2 μK temperature change can be resolved by using carbon resistor sensors. The temperature distribution caused by RF heating is measured by 16 carbon composition resistor sensors. A 0.05 μW heating power can be detected as such a resolution, which translates to a surface resistance of 0.02 nΩ at a surface magnetic field of 52 Oe. This is the most sensitive device for surface resistance measurements to date. In addition, losses due to the indium seal, coupling probes, field emission sites other than the sample, and all of the high field resonator surface, are excluded in the measurement. Surface resistance of both niobium and high-Tc superconducting thin films has been measured. A low R s of 35.2 μΩ was measured for a 25.4 mm diameter YBa 2 Cu 3 O 7 thin film at 1.5 GHz and at 2 K. The measurement result is the first result for a large area epitaxially grown thin film sample at such a low RF frequency. The abrupt disappearance of multipacting between two parallel plates has been observed and monitored with the 16 temperature mapping sensors. Field emission or some field dependent anomalous RF losses on the niobium plate have also been observed

  12. Highly sensitive BTX detection using surface functionalized QCM sensor

    Energy Technology Data Exchange (ETDEWEB)

    Bozkurt, Asuman Aşıkoğlu; Özdemir, Okan; Altındal, Ahmet, E-mail: altindal@yildiz.edu.tr [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2016-03-25

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of the resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.

  13. Surface Sensitive Bolometer for the CUORE background reduction

    International Nuclear Information System (INIS)

    Pedretti, M.; Foggetta, L.; Giuliani, A.; Nones, C.; Sangiorgio, S.

    2005-01-01

    The most critical point of the CUORE Project [CUORE Proposal, see the web page: http://crio.mib.infn.it/wig] is the background level (BKGL) in the neutrinoless double beta decay (0νββ) region that is dominated by degraded particles coming from materials that face the detectors. Surface Sensitive Bolometers (SSBs) have been developed in order to reduce the BKGL by means of an active background discrimination. The principle of this technique and the first results obtained are briefly described in the following paper

  14. Sensitivity of surface meteorological analyses to observation networks

    Science.gov (United States)

    Tyndall, Daniel Paul

    A computationally efficient variational analysis system for two-dimensional meteorological fields is developed and described. This analysis approach is most efficient when the number of analysis grid points is much larger than the number of available observations, such as for large domain mesoscale analyses. The analysis system is developed using MATLAB software and can take advantage of multiple processors or processor cores. A version of the analysis system has been exported as a platform independent application (i.e., can be run on Windows, Linux, or Macintosh OS X desktop computers without a MATLAB license) with input/output operations handled by commonly available internet software combined with data archives at the University of Utah. The impact of observation networks on the meteorological analyses is assessed by utilizing a percentile ranking of individual observation sensitivity and impact, which is computed by using the adjoint of the variational surface assimilation system. This methodology is demonstrated using a case study of the analysis from 1400 UTC 27 October 2010 over the entire contiguous United States domain. The sensitivity of this approach to the dependence of the background error covariance on observation density is examined. Observation sensitivity and impact provide insight on the influence of observations from heterogeneous observing networks as well as serve as objective metrics for quality control procedures that may help to identify stations with significant siting, reporting, or representativeness issues.

  15. An Hα Imaging Survey of the Low-surface-brightness Galaxies Selected from the Fall Sky Region of the 40% ALFALFA H I Survey

    Science.gov (United States)

    Lei, Feng-Jie; Wu, Hong; Du, Wei; Zhu, Yi-Nan; Lam, Man-I.; Zhou, Zhi-Min; He, Min; Jin, Jun-Jie; Cao, Tian-Wen; Zhao, Pin-Song; Yang, Fan; Wu, Chao-Jian; Li, Hong-Bin; Ren, Juan-Juan

    2018-03-01

    We present the observed Hα flux and derived star formation rates (SFRs) for a fall sample of low-surface-brightness galaxies (LSBGs). The sample is selected from the fall sky region of the 40% ALFALFA H I Survey–SDSS DR7 photometric data, and all the Hα images were obtained using the 2.16 m telescope, operated by the National Astronomy Observatories, Chinese Academy of Sciences. A total of 111 LSBGs were observed and Hα flux was measured in 92 of them. Though almost all the LSBGs in our sample are H I-rich, their SFRs, derived from the extinction and filter-transmission-corrected Hα flux, are less than 1 M ⊙ yr‑1. LSBGs and star-forming galaxies have similar H I surface densities, but LSBGs have much lower SFRs and SFR surface densities than star-forming galaxies. Our results show that LSBGs deviate from the Kennicutt–Schmidt law significantly, which indicates that they have low star formation efficiency. The SFRs of LSBGs are close to average SFRs in Hubble time and support previous arguments that most of the LSBGs are stable systems and they tend to seldom contain strong interactions or major mergers in their star formation histories.

  16. Sensitivity of LUCC on the Surface Temperature of Tibetan Plateau

    Science.gov (United States)

    Qi, W.; Deng, X.; Wu, F.

    2016-12-01

    The Tibetan Plateau has an important effect on the ecological security in China, even in Asia, which makes the region become the hot spot in recently research. Under the joint influence of global change and human activities, ecosystem destabilizing and the increasing pressure on resources and environment emerge on the Tibetan Plateau, but the potential spatial sensitivity of land use and land cover changes(LUCC) on surface temperature has not been quantitatively analyzed. This study analyzed the mainly types of LUCC, urbanization, grassland degradation, deforestation on Tibetan Plateau along with Representative Concentration Pathways (RCPs) of the Intergovernmental Panel on Climate Change (IPCC). The LUCC in recent decades was first quantitatively analyzed in this study to give the basic fact with a significant increase in temperatures, reduced precipitation and increased evaporation. This study focused on the future spatio-temporal heterogeneity of the temperature and precipitation. Finally, the influencing factors with LUCC on Tibetan Plateau were simulated with the Weather Research and Forecasting (WRF) model, and the sensitivity of different land use types was spatially analyzed with Singular Value Decomposition (SVD). The results indicate that the large-area alpine grassland plays a more important role in alleviating global warming than other vegetation types do. The changes of the landscape structure resulting from the urban expansion play a significant role in intensifying regional temperature increase. In addition, the effects of LUCC on monthly average temperature change would vary from month to month with obviously spatial heterogeneity.

  17. Sensitivity of point scale surface runoff predictions to rainfall resolution

    Directory of Open Access Journals (Sweden)

    A. J. Hearman

    2007-01-01

    Full Text Available This paper investigates the effects of using non-linear, high resolution rainfall, compared to time averaged rainfall on the triggering of hydrologic thresholds and therefore model predictions of infiltration excess and saturation excess runoff at the point scale. The bounded random cascade model, parameterized to three locations in Western Australia, was used to scale rainfall intensities at various time resolutions ranging from 1.875 min to 2 h. A one dimensional, conceptual rainfall partitioning model was used that instantaneously partitioned water into infiltration excess, infiltration, storage, deep drainage, saturation excess and surface runoff, where the fluxes into and out of the soil store were controlled by thresholds. The results of the numerical modelling were scaled by relating soil infiltration properties to soil draining properties, and in turn, relating these to average storm intensities. For all soil types, we related maximum infiltration capacities to average storm intensities (k* and were able to show where model predictions of infiltration excess were most sensitive to rainfall resolution (ln k*=0.4 and where using time averaged rainfall data can lead to an under prediction of infiltration excess and an over prediction of the amount of water entering the soil (ln k*>2 for all three rainfall locations tested. For soils susceptible to both infiltration excess and saturation excess, total runoff sensitivity was scaled by relating drainage coefficients to average storm intensities (g* and parameter ranges where predicted runoff was dominated by infiltration excess or saturation excess depending on the resolution of rainfall data were determined (ln g*<2. Infiltration excess predicted from high resolution rainfall was short and intense, whereas saturation excess produced from low resolution rainfall was more constant and less intense. This has important implications for the accuracy of current hydrological models that use time

  18. Interdependencies of Arctic land surface processes: A uniquely sensitive environment

    Science.gov (United States)

    Bowling, L. C.

    2007-12-01

    The circumpolar arctic drainage basin is composed of several distinct ecoregions including steppe grassland and cropland, boreal forest and tundra. Land surface hydrology throughout this diverse region shares several unique features such as dramatic seasonal runoff differences controlled by snowmelt and ice break-up; the storage of significant portions of annual precipitation as snow and in lakes and wetlands; and the effects of ephemeral and permanently frozen soils. These arctic land processes are delicately balanced with the climate and are therefore important indicators of change. The litany of recently-detected changes in the Arctic includes changes in snow precipitation, trends and seasonal shifts in river discharge, increases and decreases in the extent of surface water, and warming soil temperatures. Although not unique to the arctic, increasing anthropogenic pressures represent an additional element of change in the form of resource extraction, fire threat and reservoir construction. The interdependence of the physical, biological and social systems mean that changes in primary indicators have large implications for land cover, animal populations and the regional carbon balance, all of which have the potential to feed back and induce further change. In fact, the complex relationships between the hydrological processes that make the Artic unique also render observed historical change difficult to interpret and predict, leading to conflicting explanations. For example, a decrease in snow accumulation may provide less insulation to the underlying soil resulting in greater frost development and increased spring runoff. Similarly, melting permafrost and ground ice may lead to ground subsidence and increased surface saturation and methane production, while more complete thaw may enhance drainage and result in drier soil conditions. The threshold nature of phase change around the freezing point makes the system especially sensitive to change. In addition, spatial

  19. The Surface Brightness-color Relations Based on Eclipsing Binary Stars: Toward Precision Better than 1% in Angular Diameter Predictions

    International Nuclear Information System (INIS)

    Graczyk, Dariusz; Gieren, Wolfgang; Konorski, Piotr; Pietrzyński, Grzegorz; Storm, Jesper; Nardetto, Nicolas; Gallenne, Alexandre; Maxted, Pierre F. L.; Kervella, Pierre; Kołaczkowski, Zbigniew

    2017-01-01

    In this study we investigate the calibration of surface brightness–color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos whose absolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with a precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances (∼5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.

  20. The Surface Brightness-color Relations Based on Eclipsing Binary Stars: Toward Precision Better than 1% in Angular Diameter Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Graczyk, Dariusz; Gieren, Wolfgang [Millennium Institute of Astrophysics (MAS) (Chile); Konorski, Piotr [Obserwatorium Astronomiczne, Uniwersytet Warszawski, Al. Ujazdowskie 4, 00-478, Warsaw (Poland); Pietrzyński, Grzegorz [Universidad de Concepción, Departamento de Astronomia, Casilla 160-C, Concepción (Chile); Storm, Jesper [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Nardetto, Nicolas [Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, UMR7293, Nice (France); Gallenne, Alexandre [European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Santiago 19 (Chile); Maxted, Pierre F. L. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); Kervella, Pierre [Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Kołaczkowski, Zbigniew, E-mail: darek@astro-udec.cl, E-mail: darek@ncac.torun.pl [Instytut Astronomiczny, Uniwersytet Wrocławski, Kopernika 11, 51-622 Wrocław (Poland)

    2017-03-01

    In this study we investigate the calibration of surface brightness–color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos whose absolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with a precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances (∼5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.

  1. Surface science study of selective ethylene epoxidation catalyzed by the Ag(110) surface: Structural sensitivity

    International Nuclear Information System (INIS)

    Campbell, C.T.

    1984-01-01

    The selective oxidation of ethylene to ethylene epoxide (C 2 H 4 +1/2O 2 →C 2 H 4 O) over Ag is the simplest example of kinetically controlled, selective heterogeneous catalysis. We have studied the steady-state kinetics and selectivity of this reaction for the first time on a clean, well-characterized Ag(110) surface by using a special apparatus which allows rapid (approx.20 s) transfer between a high-pressure catalytic microreactor and an ultrahigh vacuum surface analysis (AES, XPS, LEED, TDS) chamber. The effects of temperature and reactant pressures upon the rate and selectivity are virtually identical on Ag(110) and supported, high surface area Ag catalysts. The absolute specific rate (per Ag surface atom) is, however, some 100-fold higher for Ag(110) than for high surface area catalysts. This is related to the well-known structural sensitivity of this reaction. It is postulated that a small percentage of (110) planes (or [110]-like sites) are responsible for most of the catalytic activity of high surface area catalysts. The high activity of the (110) plane is attributed to its high sticking probability for dissociative oxygen adsorption, since the rate of ethylene epoxidation is shown in a related work [Ref. 1: C. T. Campbell and M. T. Paffett, Surf. Sci. (in press)] to be proportional to the coverage of atomically adsorbed oxygen at constant temperature and ethylene pressure

  2. CARMA SURVEY TOWARD INFRARED-BRIGHT NEARBY GALAXIES (STING). III. THE DEPENDENCE OF ATOMIC AND MOLECULAR GAS SURFACE DENSITIES ON GALAXY PROPERTIES

    International Nuclear Information System (INIS)

    Wong, Tony; Xue, Rui; Bolatto, Alberto D.; Fisher, David B.; Vogel, Stuart N.; Leroy, Adam K.; Blitz, Leo; Rosolowsky, Erik; Bigiel, Frank; Ott, Jürgen; Rahman, Nurur; Walter, Fabian

    2013-01-01

    We investigate the correlation between CO and H I emission in 18 nearby galaxies from the CARMA Survey Toward IR-Bright Nearby Galaxies (STING) at sub-kpc and kpc scales. Our sample, spanning a wide range in stellar mass and metallicity, reveals evidence for a metallicity dependence of the H I column density measured in regions exhibiting CO emission. Such a dependence is predicted by the equilibrium model of McKee and Krumholz, which balances H 2 formation and dissociation. The observed H I column density is often smaller than predicted by the model, an effect we attribute to unresolved clumping, although values close to the model prediction are also seen. We do not observe H I column densities much larger than predicted, as might be expected were there a diffuse H I component that did not contribute to H 2 shielding. We also find that the H 2 column density inferred from CO correlates strongly with the stellar surface density, suggesting that the local supply of molecular gas is tightly regulated by the stellar disk

  3. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  4. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  5. Structure sensitivity of CO dissociation on Rh surfaces

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Baumer, M.; Freund, H.J.

    2002-01-01

    than the flat surface, but the effect is considerably weaker than the effect of surface structure on the dissociation barrier. Our findings are compared with available experimental data, and the consequences for CO activation in methanation and Fischer-Tropsch reactions are discussed.......Using periodic self-consistent density functional calculations it is shown that the barrier for CO dissociation is similar to120 kJ/mol lower on the stepped Rh(211) surface than on the close-packed Rh(111) surface. The stepped surface binds molecular CO and the dissociation products more strongly...

  6. Track sensitivity and the surface roughness measurements of CR-39 with atomic force microscope

    CERN Document Server

    Yasuda, N; Amemiya, K; Takahashi, H; Kyan, A; Ogura, K

    1999-01-01

    Atomic Force Microscope (AFM) has been applied to evaluate the surface roughness and the track sensitivity of CR-39 track detector. We experimentally confirmed the inverse correlation between the track sensitivity and the roughness of the detector surface after etching. The surface of CR-39 (CR-39 doped with antioxidant (HARZLAS (TD-1)) and copolymer of CR-39/NIPAAm (TNF-1)) with high sensitivity becomes rough by the etching, while the pure CR-39 (BARYOTRAK) with low sensitivity keeps its original surface clarity even for the long etching.

  7. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    NARCIS (Netherlands)

    Nijboer, T.C.W.; Nys, G.M.S.; van der Smagt, M.J.; de Haan, E.H.F.

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level

  8. Burkina Faso - BRIGHT II

    Data.gov (United States)

    Millennium Challenge Corporation — Millennium Challenge Corporation hired Mathematica Policy Research to conduct an independent evaluation of the BRIGHT II program. The three main research questions...

  9. Selection effects in the bivariate brightness distribution for spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1986-01-01

    The joint distribution of total luminosity and characteristic surface brightness (the bivariate brightness distribution) is investigated for a complete sample of spiral galaxies in the Virgo cluster. The influence of selection and physical limits of various kinds on the apparent distribution are detailed. While the distribution of surface brightness for bright galaxies may be genuinely fairly narrow, faint galaxies exist right across the (quite small) range of accessible surface brightnesses so no statement can be made about the true extent of the distribution. The lack of high surface brightness bright galaxies in the Virgo sample relative to an overall RC2 sample (mostly field galaxies) supports the contention that the star-formation rate is reduced in the inner region of the cluster for environmental reasons. (author)

  10. BrightFocus Foundation

    Science.gov (United States)

    ... About BrightFocus Foundation Featured Content BrightFocus: Investing in Science to Save Mind and Sight We're here to help. Explore ... recognition is very important. Monday, November 6, 2017 New Diagnosis? Managing a mind and sight disease is a journey. And you’ ...

  11. Surface sensitization mechanism on negative electron affinity p-GaN nanowires

    Science.gov (United States)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei

    2018-03-01

    The surface sensitization is the key to prepare negative electron affinity photocathode. The thesis emphasizes on the study of surface sensitization mechanism of p-type doping GaN nanowires utilizing first principles based on density function theory. The adsorption energy, work function, dipole moment, geometry structure, electronic structure and optical properties of Mg-doped GaN nanowires surfaces with various coverages of Cs atoms are investigated. The GaN nanowire with Mg doped in core position is taken as the sensitization base. At the initial stage of sensitization, the best adsorption site for Cs atom on GaN nanowire surface is BN, the bridge site of two adjacent N atoms. Surface sensitization generates a p-type internal surface with an n-type surface state, introducing a band bending region which can help reduce surface barrier and work function. With increasing Cs coverage, work functions decrease monotonously and the "Cs-kill" phenomenon disappears. For Cs coverage of 0.75 ML and 1 ML, the corresponding sensitization systems reach negative electron affinity state. Through surface sensitization, the absorption curves are red shifted and the absorption coefficient is cut down. All theoretical calculations can guide the design of negative electron affinity Mg doped GaN nanowires photocathode.

  12. Sensitivity of surface radiation budget to clouds over the Asian ...

    Indian Academy of Sciences (India)

    National Climate Centre, India Meteorological Department, Pune 400 005. ... down on the earth surface–atmosphere system also as an imbalance between surface netcloud ... the clouds produce more cooling effect in short-wave band than the warming effect in long-wave .... In the present study, we use the analysis method.

  13. Stunningly bright optical emission

    Science.gov (United States)

    Heinke, Craig O.

    2017-12-01

    The detection of bright, rapid optical pulsations from pulsar PSR J1023+0038 have provided a surprise for researchers working on neutron stars. This discovery poses more questions than it answers and will spur on future work and instrumentation.

  14. A new method for background rejection with surface sensitive bolometers

    International Nuclear Information System (INIS)

    Nones, C.; Foggetta, L.; Giuliani, A.; Pedretti, M.; Salvioni, C.; Sangiorgio, S.

    2006-01-01

    We report the performance of three prototype TeO 2 macrobolometers, able to identify events due to energy deposited at the detector surface. This capability is obtained by thermally coupling thin active layers to the main absorber of the bolometer, and is proved by irradiating the detectors with alpha particles. This technique can be very useful in view of background study and reduction for the CUORE experiment, a next generation Double Beta Decay search based on TeO 2 macrobolometers and to be installed in the Laboratori Nazionali del Gran Sasso

  15. Ocular surface sensitivity repeatability with Cochet-Bonnet esthesiometer.

    Science.gov (United States)

    Chao, Cecilia; Stapleton, Fiona; Badarudin, Ezailina; Golebiowski, Blanka

    2015-02-01

    To determine the repeatability of ocular surface threshold measurements using the Cochet-Bonnet esthesiometer on the same day and 3 months apart. Two separate studies were conducted to determine the repeatability of ocular surface threshold measurements made on the same day (n = 20 subjects) and 3 months apart (n = 29 subjects). The Cochet-Bonnet esthesiometer was used to measure corneal and inferior conjunctival thresholds using the ascending method of limits. The pressure exerted by the Cochet-Bonnet esthesiometer was determined using an analytical balance, for both the 0.08- and 0.12-mm-diameter filaments. This calibration was then used to convert filament length measurements to pressure. Repeatability was determined using a Bland and Altman analysis. The pressure exerted at each filament length differed between the two filament diameters. The measured pressure also differed from values provided by the manufacturer. Repeatability of threshold measurements at the central cornea was shown to be good, with better repeatability for same-day measurements (coefficient of repeatability [CoR] = ±0.23 g/mm²) than for those 3 months apart (CoR = ±0.52 g/mm²). Threshold measurements at the inferior conjunctiva, in contrast, were poorly repeatable (CoR = ±12.78 g/mm²). Cochet-Bonnet esthesiometry is repeatable when performed on the central cornea on the same day and 3 months apart, but this instrument is not recommended for conjunctival threshold measurements.

  16. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    Science.gov (United States)

    Nijboer, Tanja C W; Nys, Gudrun M S; van der Smagt, Maarten J; de Haan, Edward H F

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level sensory impairments. The patient was not able to indicate the darker or the lighter of two grey squares, even though she was able to see that they differed. In addition, she could not indicate whether the lights in a room were switched on or off, nor was she able to differentiate between normal greyscale images and inverted greyscale images. As the patient recognised objects, colours, and shapes correctly, the impairment is specific for brightness. As low-level, sensory processing is normal, this specific deficit in the recognition and appreciation of brightness appears to be of a higher, cognitive level, the level of semantic knowledge. This appears to be the first report of 'brightness agnosia'.

  17. Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions

    Science.gov (United States)

    Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron

    2004-01-01

    We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.

  18. In-vacuum scattered light reduction with black cupric oxide surfaces for sensitive fluorescence detection.

    Science.gov (United States)

    Norrgard, E B; Sitaraman, N; Barry, J F; McCarron, D J; Steinecker, M H; DeMille, D

    2016-05-01

    We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping, and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We describe a vacuum apparatus which uses multiple blackened copper surfaces for sensitive, low-background detection of molecules using laser-induced fluorescence.

  19. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    DEFF Research Database (Denmark)

    Rinker, Jennifer M.

    2016-01-01

    at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four......This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a high-dimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data...... turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project...

  20. Brightness masking is modulated by disparity structure.

    Science.gov (United States)

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    Science.gov (United States)

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  2. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  3. Edge integration and the perception of brightness and darkness

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2006-01-01

    How do induced brightness and darkness signals from local and remote surfaces interact to determine the final achromatic color percept of a target surface? An emerging theory of achromatic color perception posits that brightness and darkness percepts are computed by weighting and summing the

  4. Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Manapuram, R K; Larin, K V; Baranov, S A; Manne, V G R; Mashiatulla, M; Sudheendran, N; Aglyamov, S; Emelianov, S

    2011-01-01

    We propose a real-time technique based on phase-sensitive swept source optical coherence tomography (PhS-SSOCT) modality for noninvasive quantification of very small optical path length changes produced on the surface of a mouse crystalline lens. Propagation of submicron mechanical waves on the surface of the lens was induced by periodic mechanical stimulation. Obtained results demonstrate that the described method is capable of detecting minute damped vibrations with amplitudes as small as 30 nanometers on the lens surface and hence, PhS-SSOCT could be potentially used to assess biomechanical properties of a crystalline lens with high accuracy and sensitivity

  5. THE EFFECT OF BONDING AND SURFACE SEALANT APPLICATION ON POSTOPERATIVE SENSITIVITY FROM POSTERIOR COMPOSITES

    Directory of Open Access Journals (Sweden)

    Neslihan TEKÇE

    2015-10-01

    Full Text Available Purpose: The purpose of the study was to evaluate the postoperative sensitivity of posterior Class I composite restoration at short-term, restorated with two different all-in-one self-etch adhesives with or without surface sealant application. Materials and Methods: 44 restorations were inserted in 11 patients who required Class I restorations in their molars. Each patient received 4 restorations, thus four groups were formed; (1 G-Aenial Bond (GC, Japan; (2 Clearfil S3 Bond (Kuraray, Japan; (3 G-Aenial Bond+Fortify Plus (Bisco, USA, (4 Clearfil S3 Bond+Fortify Plus. Sensitivity was evaluated at 24h, 7, 15, and 30 days using cold air, ice, and pressure stimuli using a visual analog scale. Comparisons of continuous variables between the sensitivity evaluations were performed using the Friedman’s One-Way Analysis of Variance with repeated measures test (p0.05. The use of Clearfil S3 Bond resulted in almost the same level of postoperative sensitivity as did the use of G-Aenial Bond. The highest sensitivity scores were observed for the surface sealant applied teeth without any statistical significance (p>0.05. Conclusions: Self etch adhesives displayed postoperative sensitivity. The sensitivity scores slightly decreased at the end of 30 days (p>0.05. Surface sealant application did not result in a decrease in sensitivity scores for either dentin adhesives.

  6. Unperturbed moderator brightness in pulsed neutron sources

    International Nuclear Information System (INIS)

    Batkov, K.; Takibayev, A.; Zanini, L.; Mezei, F.

    2013-01-01

    The unperturbed neutron brightness of a moderator can be defined from the number of neutrons leaving the surface of a moderator completely surrounded by a reflector. Without openings for beam extraction, it is the maximum brightness that can be theoretically achieved in a moderator. The unperturbed brightness of a cylindrical cold moderator filled with pure para-H 2 was calculated using MCNPX; the moderator dimensions were optimised, for a fixed target and reflector geometry corresponding to the present concept for the ESS spallation source. This quantity does not depend on openings for beam extraction and therefore can be used for a first-round optimisation of a moderator, before effects due to beam openings are considered. We find that such an optimisation yields to a factor of 2 increase with respect to a conventional volume moderator, large enough to accommodate a viewed surface of 12×12 cm 2 : the unperturbed neutron brightness is maximum for a disc-shaped moderator of 15 cm diameter, 1.4 cm height. The reasons for this increase can be related to the properties of the scattering cross-section of para-H 2 , to the added reflector around the exit surface in the case of a compact moderator, and to a directionality effect. This large optimisation gain in the unperturbed brightness hints towards similar potentials for the perturbed neutron brightness, in particular in conjunction with advancing the optical quality of neutron delivery from the moderator to the sample, where by Liouville theorem the brightness is conserved over the beam trajectory, except for absorption and similar type losses

  7. High Brightness OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC; Kondakova, Marina [OLEDWorks LLC; Boroson, Michael [OLEDWorks LLC; Hamer, John [OLEDWorks LLC

    2016-05-25

    In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.

  8. High brightness ion source

    International Nuclear Information System (INIS)

    Dreyfus, R.W.; Hodgson, R.T.

    1975-01-01

    A high brightness ion beam is obtainable by using lasers to excite atoms or molecules from the ground state to an ionized state in increments, rather than in one step. The spectroscopic resonances of the atom or molecule are used so that relatively long wavelength, low power lasers can be used to obtain such ion beam

  9. THE ACS FORNAX CLUSTER SURVEY. IV. DEPROJECTION OF THE SURFACE BRIGHTNESS PROFILES OF EARLY-TYPE GALAXIES IN THE VIRGO AND FORNAX CLUSTERS: INVESTIGATING THE 'CORE/POWER-LAW DICHOTOMY'

    International Nuclear Information System (INIS)

    Glass, Lisa; Ferrarese, Laura; Cote, Patrick; Blakeslee, John P.; Chen, Chin-Wei; Jordan, Andres; Infante, Leopoldo; Peng, Eric; Mei, Simona; Tonry, John L.; West, Michael J.

    2011-01-01

    Although early observations with the Hubble Space Telescope (HST) pointed to a sharp dichotomy among early-type galaxies in terms of the logarithmic slope γ' of their central surface brightness profiles, several studies in the past few years have called this finding into question. In particular, recent imaging surveys of 143 early-type galaxies belonging to the Virgo and Fornax Clusters using the Advanced Camera for Surveys (ACS) on board HST have not found a dichotomy in γ', but instead a systematic progression from central luminosity deficit to excess relative to the inward extrapolation of the best-fitting global Sersic model. Given that earlier studies also found that the dichotomy persisted when analyzing the deprojected density profile slopes, we investigate the distribution of the three-dimensional luminosity density profiles of the ACS Virgo and Fornax Cluster Survey galaxies. Having fitted the surface brightness profiles with modified Sersic models, we then deproject the galaxies using an Abel integral and measure the inner slopes γ 3D of the resulting luminosity density profiles at various fractions of the effective radius R e . We find no evidence of a dichotomy, but rather, a continuous variation in the central luminosity profiles as a function of galaxy magnitude. We introduce a parameter, Δ 3D , that measures the central deviation of the deprojected luminosity profiles from the global Sersic fit, showing that this parameter varies smoothly and systematically along the luminosity function.

  10. Lamp spectrum and spatial brightness at photopic levels

    DEFF Research Database (Denmark)

    Fotios, Steve; Atli, Deniz; Cheal, Chris

    2015-01-01

    Light sources are available in a variety of spectral power distributions (SPDs) and this affects spatial brightness in a manner not predicted by quantities such as illuminance. Tuning light source SPD to better match the sensitivity of visual perception may allow the same spatial brightness but a...

  11. The brightness of colour.

    Directory of Open Access Journals (Sweden)

    David Corney

    Full Text Available The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies.Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1, if not earlier in the visual system, since the brightness of colours (as opposed to their luminance accords with activity in V1 as measured with fMRI.The data suggest that perceptions of brightness represent a robust

  12. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    International Nuclear Information System (INIS)

    Rinker, Jennifer M.

    2016-01-01

    This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity. (paper)

  13. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  14. On the sensitivity of mesoscale models to surface-layer parameterization constants

    Science.gov (United States)

    Garratt, J. R.; Pielke, R. A.

    1989-09-01

    The Colorado State University standard mesoscale model is used to evaluate the sensitivity of one-dimensional (1D) and two-dimensional (2D) fields to differences in surface-layer parameterization “constants”. Such differences reflect the range in the published values of the von Karman constant, Monin-Obukhov stability functions and the temperature roughness length at the surface. The sensitivity of 1D boundary-layer structure, and 2D sea-breeze intensity, is generally less than that found in published comparisons related to turbulence closure schemes generally.

  15. The observed sensitivity of the global hydrological cycle to changes in surface temperature

    International Nuclear Information System (INIS)

    Arkin, Phillip A; Janowiak, John; Smith, Thomas M; Sapiano, Mathew R P

    2010-01-01

    Climate models project large changes in global surface temperature in coming decades that are expected to be accompanied by significant changes in the global hydrological cycle. Validation of model simulations is essential to support their use in decision making, but observing the elements of the hydrological cycle is challenging, and model-independent global data sets exist only for precipitation. We compute the sensitivity of the global hydrological cycle to changes in surface temperature using available global precipitation data sets and compare the results against the sensitivities derived from model simulations of 20th century climate. The implications of the results for the global climate observing system are discussed.

  16. The Bright Universe Cosmology

    International Nuclear Information System (INIS)

    Surdin, M.

    1980-01-01

    It is shown that viewed from the 'outside', our universe is a black hole. Hence the 'inside' cosmology considered is termed as the Bright Universe Cosmology. The model proposed avoids the singularities of cosmologies of the Big Bang variety, it gives a good account of the redshifts, the cosmic background radiation, the number counts; it also gives a satisfactory explanation of the 'large numbers coincidence' and of the variation in time of fundamental constants. (Auth.)

  17. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    OpenAIRE

    Angelen, J. H.; Lenaerts, J. T. M.; Lhermitte, S.; Fettweis, X.; Kuipers Munneke, P.; Broeke, M. R.; Meijgaard, E.; Smeets, C. J. P. P.

    2012-01-01

    We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6%) at the K-transect (west Greenland) for the period 2004–2009 is...

  18. A monolayer of hierarchical silver hemi-mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju

    2016-02-01

    We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 107 and the detection limit can reach 10-10M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.

  19. Kiloamp high-brightness beams

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1987-01-01

    Brightness preservation of high-current relativistic electron beams under two different types of transport is discussed. Recent progress in improving the brightness of laser-guided beams in the Advanced Test Accelerator is reviewed. A strategy for the preservation of the brightness of space-charge-dominated beams in a solenoidal transport system is presented

  20. Brightness Alteration with Interweaving Contours

    Directory of Open Access Journals (Sweden)

    Sergio Roncato

    2012-12-01

    Full Text Available Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation or when lines of different colours are collinear (neon effect or adjacent (watercolour to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread. The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975 and Kanizsa (1979 in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  1. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  2. Sensitivity of Pseudomonas fluorescens to gamma irradiation following surface inoculations on romaine lettuce and baby spinach

    Science.gov (United States)

    Irradiation of fresh fruits and vegetables is a post-harvest intervention measure often used to inactivate pathogenic food-borne microbes. We evaluated the sensitivity of Pseudomonas fluorescens strains (2-79, Q8R1, Q287) to gamma irradiation following surface inoculations on romaine lettuce and spi...

  3. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    NARCIS (Netherlands)

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This

  4. The night sky brightness at McDonald Observatory

    Science.gov (United States)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.

    1975-01-01

    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  5. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Wu Wei; Hu Min; Ou Fungsuong; Li Zhiyong; Williams, R Stanley

    2010-01-01

    We demonstrated a cost-effective and deterministic method of patterning 3D cone arrays over a large area by using nanoimprint lithography (NIL). Cones with tip radius of less than 10 nm were successfully duplicated onto the UV-curable imprint resist materials from the silicon cone templates. Such cone structures were shown to be a versatile platform for developing reliable, highly sensitive surface enhanced Raman spectroscopy (SERS) substrates. In contrast to the silicon nanocones, the SERS substrates based on the Au coated cones made by the NIL offered significant improvement of the SERS signal. A further improvement of the SERS signal was observed when the polymer cones were imprinted onto a reflective metallic mirror surface. A sub-zeptomole detection sensitivity for a model molecule, trans-1,2-bis(4-pyridyl)-ethylene (BPE), on the Au coated NIL cone surfaces was achieved.

  6. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    Science.gov (United States)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  7. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  8. Bright point study

    International Nuclear Information System (INIS)

    Tang, F.; Harvey, K.; Bruner, M.; Kent, B.; Antonucci, E.

    1982-01-01

    Transition region and coronal observations of bright points by instruments aboard the Solar Maximum Mission and high resolution photospheric magnetograph observations on September 11, 1980 are presented. A total of 31 bipolar ephemeral regions were found in the photosphere from birth in 9.3 hours of combined magnetograph observations from three observatories. Two of the three ephemeral regions present in the field of view of the Ultraviolet Spectrometer-Polarimeter were observed in the C IV 1548 line. The unobserved ephemeral region was determined to be the shortest-lived (2.5 hr) and lowest in magnetic flux density (13G) of the three regions. The Flat Crystal Spectrometer observed only low level signals in the O VIII 18.969 A line, which were not statistically significant to be positively identified with any of the 16 ephemeral regions detected in the photosphere. In addition, the data indicate that at any given time there lacked a one-to-one correspondence between observable bright points and photospheric ephemeral regions, while more ephemeral regions were observed than their counterparts in the transition region and the corona

  9. Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion

    Science.gov (United States)

    Cercato, Michele

    2018-04-01

    The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.

  10. Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates

    Directory of Open Access Journals (Sweden)

    Sharma Vipul

    2017-01-01

    Full Text Available Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.

  11. Enhancing dye-sensitized solar cell efficiency by anode surface treatments

    International Nuclear Information System (INIS)

    Chang, Chao-Hsuan; Lin, Hsin-Han; Chen, Chin-Cheng; Hong, Franklin C.-N.

    2014-01-01

    In this study, titanium substrates treated with HF solution and KOH solution sequentially forming micro- and nano-structures were used for the fabrication of flexible dye-sensitized solar cells (DSSCs). After wet etching treatments, the titanium substrates were then exposed to the O 2 plasma treatment and further immersed in titanium tetrachloride (TiCl 4 ) solution. The process conditions for producing a very thin TiO 2 blocking layer were studied, in order to avoid solar cell current leakage for increasing the solar cell efficiency. Subsequently, TiO 2 nanoparticles were spin-coated on Ti substrates with varied thickness. The dye-sensitized solar cells on the titanium substrates were subjected to simulate AM 1.5 G irradiation of 100 mW/cm 2 using backside illumination mode. Surface treatments of Ti substrate and TiO 2 anode were found to play a significant role in improving the efficiency of DSSC. The efficiencies of the backside illumination solar cells were raised from 4.6% to 7.8% by integrating these surface treatments. - Highlights: • The flexible dye-sensitized solar cell (DSSC) device can be fabricated. • Many effective surface treatment methods to improve DSSC efficiency are elucidated. • The efficiency is dramatically enhanced by integrating surface treatment methods. • The back-illuminated DSSC efficiency was raised from 4.6% to 7.8%

  12. Bloch surface wave structures for high sensitivity detection and compact waveguiding

    Science.gov (United States)

    Khan, Muhammad Umar; Corbett, Brian

    2016-01-01

    Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.

  13. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  14. pH-sensitive diamond field-effect transistors (FETs) with directly aminated channel surface

    International Nuclear Information System (INIS)

    Song, Kwang-Soup; Nakamura, Yusuke; Sasaki, Yuichi; Degawa, Munenori; Yang, Jung-Hoon; Kawarada, Hiroshi

    2006-01-01

    We have introduced pH sensors fabricated on diamond thin films through modification of the surface-terminated atom. We directly modified the diamond surface from hydrogen to amine or oxygen with ultraviolet (UV) irradiation under ammonia gas. The quantified amine site based on the spectra obtained by X-ray photoelectron spectroscopy (XPS) is 26% (2.6 x 10 14 cm -2 ) with UV irradiation for 8 h and its coverage is dependent on the UV irradiation time. This directly aminated diamond surface is stable with long-term exposure in air and electrolyte solution. We fabricated diamond solution-gate field-effect transistors (SGFETs) without insulating layers on the channel surface. These diamond SGFETs with amine modified by direct amination are sensitive to pH (45 mV/pH) over a wide range from pH 2 to 12 and their sensitivity is dependent on the density of binding sites corresponding to UV irradiation time on the channel surface

  15. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  16. Important radionuclides and their sensitivity for groundwater pathway of a hypothetical near-surface disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Chang, K.; Kim, C. L. [Nuclear Enviroment Technology Institute, Taejon (Korea, Republic of)

    2001-04-01

    A radiological safety assessment was performed for a hypothetical near-surface radioactive waste repository as a simple screening calculation to identify important nuclides and to provide insights on the data needs for a successful demonstration of compliance. Individual effective doses were calculated for a conservative groundwater pathway scenario considering well drilling near the site boundary. Sensitivity of resulting ingestion dose to input parameter values was also analyzed using Monte Carlo sampling. Considering peak dose rate and assessment timescale, C-14 and I-129 were identified as important nuclides and U-235 and U-238 as potentially important nuclides. For C-14, the does was most sensitive to Darcy velocity in aquifer. The distribution coefficient showed high degree of sensitivity for I-129 release.

  17. Important radionuclides and their sensitivity for groundwater pathway of a hypothetical near-surface disposal facility

    International Nuclear Information System (INIS)

    Park, J. W.; Chang, K.; Kim, C. L.

    2001-01-01

    A radiological safety assessment was performed for a hypothetical near-surface radioactive waste repository as a simple screening calculation to identify important nuclides and to provide insights on the data needs for a successful demonstration of compliance. Individual effective doses were calculated for a conservative groundwater pathway scenario considering well drilling near the site boundary. Sensitivity of resulting ingestion dose to input parameter values was also analyzed using Monte Carlo sampling. Considering peak dose rate and assessment timescale, C-14 and I-129 were identified as important nuclides and U-235 and U-238 as potentially important nuclides. For C-14, the does was most sensitive to Darcy velocity in aquifer. The distribution coefficient showed high degree of sensitivity for I-129 release

  18. Enhanced photovoltaic performance of Sb2S3-sensitized solar cells through surface treatments

    Science.gov (United States)

    Ye, Qing; Xu, Yafeng; Chen, Wenyong; Yang, Shangfeng; Zhu, Jun; Weng, Jian

    2018-05-01

    Efficient antimony sulfide (Sb2S3)-sensitized solar cells were obtained by a sequential treatment with thioacetamide (TA) and 1-decylphosphonic acid (DPA). Compared with the untreated Sb2S3-sensitized solar cells, the power conversion efficiency of the treated Sb2S3 solar cells was improved by 1.80% to 3.23%. The TA treatment improved the Sb2S3 films by reducing impurities and decreasing the film's surface defects, which inhibited the emergence of recombination centers. The DPA treatment reduced the recombination between hole transport materials (HTMs) and the Sb2S3. Therefore, we have presented an efficient strategy to improve the performance of Sb2S3-sensitized solar cells.

  19. The Effect of Ocular Surface Regularity on Contrast Sensitivity and Straylight in Dry Eye

    OpenAIRE

    Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Asonuma, Sanae; Ogawa, Mai; Hiraoka, Takahiro; Oshika, Tetsuro; Nishida, Kohji

    2017-01-01

    Purpose: To investigate the association between visual function and ocular surface regularity in dry eye.Methods: We enrolled 52 eyes of 52 dry eye patients (34 dry eyes with superficial punctate keratopathy [SPK] in the central corneal region [central SPK] and 18 dry eyes without central SPK) and 20 eyes of 20 normal control subjects. All eyes had a best-corrected distance visual acuity better than 20/20. We measured two indices of contrast sensitivity function under photopic conditions: con...

  20. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    OpenAIRE

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This project, conducted in cooperation between the TNO Institute for Applied Scientific Research (IGG-TNO) and !he Winand Staring Centre for Integrated Land, Soil and Water Research (SC-DLO), is aimed at defin...

  1. SENSITIVITY OF BODY SWAY PARAMETERS DURING QUIET STANDING TO MANIPULATION OF SUPPORT SURFACE SIZE

    Directory of Open Access Journals (Sweden)

    Sarabon Nejc

    2010-09-01

    Full Text Available The centre of pressure (COP movement during stance maintenance on a stable surface is commonly used to describe and evaluate static balance. The aim of our study was to test sensitivity of individual COP parameters to different stance positions which were used to address size specific changes in the support surface. Twenty-nine subjects participated in the study. They carried out three 60-second repetitions of each of the five balance tasks (parallel stance, semi-tandem stance, tandem stance, contra-tandem stance, single leg stance. Using the force plate, the monitored parameters included the total COP distance, the distance covered in antero-posterior and medio-lateral directions, the maximum oscillation amplitude in antero-posterior and medio-lateral directions, the total frequency of oscillation, as well as the frequency of oscillation in antero-posterior and medio-lateral directions. The parameters which describe the total COP distance were the most sensitive to changes in the balance task, whereas the frequency of oscillation proved to be sensitive to a slightly lesser extent. Reductions in the support surface size in each of the directions resulted in proportional changes of antero-posterior and medio- lateral directions. The frequency of oscillation did not increase evenly with the increase in the level of difficulty of the balance task, but reached a certain value, above which it did not increase. Our study revealed the monitored parameters of the COP to be sensitive to the support surface size manipulations. The results of the study provide an important source for clinical and research use of the body sway measurements.

  2. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    CEAWMT), ... temperatures clearly discriminates the cloud pixels of deep convective and ... utilized in the modelling of the histogram of infrared brightness temperature of deep convective and ..... Henderson-Sellers A 1978 Surface type and its effect.

  3. Response surfaces and sensitivity analyses for an environmental model of dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Iooss, Bertrand [CEA Cadarache, DEN/DER/SESI/LCFR, 13108 Saint Paul lez Durance, Cedex (France)]. E-mail: bertrand.iooss@cea.fr; Van Dorpe, Francois [CEA Cadarache, DEN/DTN/SMTM/LMTE, 13108 Saint Paul lez Durance, Cedex (France); Devictor, Nicolas [CEA Cadarache, DEN/DER/SESI/LCFR, 13108 Saint Paul lez Durance, Cedex (France)

    2006-10-15

    A parametric sensitivity analysis is carried out on GASCON, a radiological impact software describing the radionuclides transfer to the man following a chronic gas release of a nuclear facility. An effective dose received by age group can thus be calculated according to a specific radionuclide and to the duration of the release. In this study, we are concerned by 18 output variables, each depending of approximately 50 uncertain input parameters. First, the generation of 1000 Monte-Carlo simulations allows us to calculate correlation coefficients between input parameters and output variables, which give a first overview of important factors. Response surfaces are then constructed in polynomial form, and used to predict system responses at reduced computation time cost; this response surface will be very useful for global sensitivity analysis where thousands of runs are required. Using the response surfaces, we calculate the total sensitivity indices of Sobol by the Monte-Carlo method. We demonstrate the application of this method to one site of study and to one reference group near the nuclear research Center of Cadarache (France), for two radionuclides: iodine 129 and uranium 238. It is thus shown that the most influential parameters are all related to the food chain of the goat's milk, in decreasing order of importance: dose coefficient 'effective ingestion', goat's milk ration of the individuals of the reference group, grass ration of the goat, dry deposition velocity and transfer factor to the goat's milk.

  4. Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.

    Science.gov (United States)

    Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo

    2017-06-01

    Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.

  5. UV sensitivity of planktonic net community production in ocean surface waters

    Science.gov (United States)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-05-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  6. Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chun; Huang, Maoyi; Fast, Jerome D.; Berg, Larry K.; Qian, Yun; Guenther, Alex; Gu, Dasa; Shrivastava, Manish; Liu, Ying; Walters, Stacy; Pfister, Gabriele; Jin, Jiming; Shilling, John E.; Warneke, Carsten

    2016-01-01

    Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.

  7. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  8. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  9. High sensitivity, high surface area Enzyme-linked Immunosorbent Assay (ELISA).

    Science.gov (United States)

    Singh, Harpal; Morita, Takahiro; Suzuki, Yuma; Shimojima, Masayuki; Le Van, An; Sugamata, Masami; Yang, Ming

    2015-01-01

    Enzyme-linked immunosorbent assays (ELISA) are considered the gold standard in the demonstration of various immunological reactions with an application in the detection of infectious diseases such as during outbreaks or in patient care. This study aimed to produce an ELISA-based diagnostic with an increased sensitivity of detection compared to the standard 96-well method in the immunologic diagnosis of infectious diseases. A '3DStack' was developed using readily available, low cost fabrication technologies namely nanoimprinting and press stamping with an increased surface area of 4 to 6 times more compared to 96-well plates. This was achieved by stacking multiple nanoimprinted polymer sheets. The flow of analytes between the sheets was enhanced by rotating the 3DStack and confirmed by Finite-Element (FE) simulation. An Immunoglobulin G (IgG) ELISA for the detection of antibodies in human serum raised against Rubella virus was performed for validation. An improved sensitivity of up to 1.9 folds higher was observed using the 3DStack compared to the standard method. The increased surface area of the 3DStack developed using nanoimprinting and press stamping technologies, and the flow pattern between sheets generated by rotating the 3DStack were potential contributors to a more sensitive ELISA-based diagnostic device.

  10. Surface plasmon resonance biosensors for highly sensitive detection in real samples

    Science.gov (United States)

    Sepúlveda, B.; Carrascosa, L. G.; Regatos, D.; Otte, M. A.; Fariña, D.; Lechuga, L. M.

    2009-08-01

    In this work we summarize the main results obtained with the portable surface plasmon resonance (SPR) device developed in our group (commercialised by SENSIA, SL, Spain), highlighting its applicability for the real-time detection of extremely low concentrations of toxic pesticides in environmental water samples. In addition, we show applications in clinical diagnosis as, on the one hand, the real-time and label-free detection of DNA hybridization and single point mutations at the gene BRCA-1, related to the predisposition in women to develop an inherited breast cancer and, on the other hand, the analysis of protein biomarkers in biological samples (urine, serum) for early detection of diseases. Despite the large number of applications already proven, the SPR technology has two main drawbacks: (i) not enough sensitivity for some specific applications (where pM-fM or single-molecule detection are needed) (ii) low multiplexing capabilities. In order solve such drawbacks, we work in several alternative configurations as the Magneto-optical Surface Plasmon Resonance sensor (MOSPR) based on a combination of magnetooptical and ferromagnetic materials, to improve the SPR sensitivity, or the Localized Surface Plasmon Resonance (LSPR) based on nanostructures (nanoparticles, nanoholes,...), for higher multiplexing capabilities.

  11. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites

  12. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  13. Mitigating the surface urban heat island: Mechanism study and sensitivity analysis

    Science.gov (United States)

    Meng, Chunlei

    2017-08-01

    In a surface urban heat island (SUHI), the urban land surface temperature (LST) is usually higher than the temperature of the surrounding rural areas due to human activities and surface characteristics. Because a SUHI has many adverse impacts on urban environment and human health, SUHI mitigation strategies are very important. This paper investigates the mechanism of a SUHI based on the basic physical laws that control the formation of a SUHI; five mitigation strategies are proposed, namely: sprinkling and watering; paving a pervious surface; reducing the anthropogenic heat (AH) release; using a "white roof"; increasing the fractional vegetation cover or leaf area index (LAI). To quantify the effect of these mitigation strategies, 26 sets of experiments are designed and implemented by running the integrated urban land model (IUM). The results of the sensitivity analysis indicate that sprinkling and watering is an effective measure for mitigating a SUHI for an entire day. Decreasing the AH release is also useful for both night- and daytime SUHI mitigation; however, the cooling extent is proportional to the diurnal cycle of AH. Increasing the albedo can reduce the LST in the daytime, especially when the solar radiation is significant; the cooling extent is approximately proportional to the diurnal cycle of the net radiation. Increasing the pervious surface percentage can mitigate the SUHI especially in the daytime. Increasing the fractional vegetation cover can mitigate the SUHI in the daytime but may aggravate the SUHI at night.

  14. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    Directory of Open Access Journals (Sweden)

    Zeng Youjun

    2017-06-01

    Full Text Available Surface plasmon resonance (SPR biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  15. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    Science.gov (United States)

    Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong

    2017-06-01

    Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  16. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor.

    Science.gov (United States)

    Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee

    2007-05-08

    A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.

  17. A surface plasmon resonance-based immunosensors for sensitive detection of heroin

    International Nuclear Information System (INIS)

    Wu Zhongcheng; Wang Lianchao; Ge Yu; Yu Chengduan; Fang Tingjian; Chen Wenge

    2000-01-01

    A simple technique for sensitive detection of heroine based on surface-plasmon resonance has been theoretically and experimentally investigated. The experiment was realized by using an anti-MO monoclonal antibody and a morphine (MO)-bovine serum albumin (MO-BSA) conjugate (antigen). The reason for using MO-BSA in the detection of heroine was also discussed. MO-BSA was immobilized on a gold thin film of SPR sensor chip by physical adsorption. The configuration of the device is allowed to be further miniaturized, which is required for the construction of a portable SPR device in the application of in-situ analysis

  18. Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, E N; Krotova, L I; Minaev, N V; Minaeva, S A; Mironov, A V; Popov, V K [Institute on Laser and Information Technologies of the Russian Academy of Sciencies, Troitsk, Moscow (Russian Federation); Bagratashvili, V N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 – 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering. (interaction of laser radiation with matter. laser plasma)

  19. Spatial resolution in depth-controlled surface sensitive x-ray techniques

    International Nuclear Information System (INIS)

    Yun, W.B.; Viccaro, P.J.

    1992-01-01

    The spatial resolution along the surface normal and the total depth probed are two important parameters in depth-controlled surface sensitive X-ray techniques employing grazing incidence geometry. The two parameters are analyzed in terms of optical properties (refractive indices) of the media involved and parameters of the incident X-ray beam: beam divergence, X-ray energy, and spectral bandwidth. We derive analytical expressions of the required beam divergence and spectral bandwidth of the incident beam as a function of the two parameters. Sample calculations are made for X-ray energies between 0.1 and 100 keV and for solid Be, Cu, and Au, representing material matrices consisting of low, medium, and high atomic number elements. A brief discussion on obtaining the required beam divergence and spectral bandwidth from present X-ray sources and optics is given

  20. Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Kuo, Huei Pei; Hu, Min; Li, Zhiyong; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Ou, Fung Suong [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Rice University, Department of Applied Physics, Houston, TX (United States); Stickle, William F. [Hewlett-Packard Company, Advanced Diagnostic Lab, Corvallis, OR (United States)

    2009-09-15

    We created novel surface-enhanced Raman spectroscopy (SERS) substrates by metalization (Ag) of Si nanograss prepared by a Bosch process which involves deep reactive ion etching of single crystalline silicon. No template or lithography was needed for making the Si nanograss, thus providing a simple and inexpensive method to achieve highly sensitive large-area SERS substrates. The dependence of the SERS effect on the thickness of the metal deposition and on the surface morphology and topology of the substrate prior to metal deposition was studied in order to optimize the SERS signals. We observed that the Ag-coated Si nanograss can achieve uniform SERS enhancement over large area ({proportional_to}1 cm x 1 cm) with an average EF (enhancement factor) of 4.2 x 10{sup 8} for 4-mercaptophenol probe molecules. (orig.)

  1. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David

    2017-01-01

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement....... These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the “micropipette interfacial area-expansion method” was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion...... for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2 ± 0.8 × 10−6 cm2/s, showed excellent agreement with the result from an alternative method, “single microdroplet catching method”, to measure the diffusion coefficient from diffusion-controlled microdroplet...

  2. Assessing modeled Greenland surface mass balance in the GISS Model E2 and its sensitivity to surface albedo

    Science.gov (United States)

    Alexander, Patrick; LeGrande, Allegra N.; Koenig, Lora S.; Tedesco, Marco; Moustafa, Samiah E.; Ivanoff, Alvaro; Fischer, Robert P.; Fettweis, Xavier

    2016-04-01

    The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) plays an important role in global sea level change. Regional Climate Models (RCMs) such as the Modèle Atmosphérique Régionale (MAR) have been employed at high spatial resolution with relatively complex physics to simulate ice sheet SMB. Global climate models (GCMs) incorporate less sophisticated physical schemes and provide outputs at a lower spatial resolution, but have the advantage of modeling the interaction between different components of the earth's oceans, climate, and land surface at a global scale. Improving the ability of GCMs to represent ice sheet SMB is important for making predictions of future changes in global sea level. With the ultimate goal of improving SMB simulated by the Goddard Institute for Space Studies (GISS) Model E2 GCM, we compare simulated GrIS SMB against the outputs of the MAR model and radar-derived estimates of snow accumulation. In order to reproduce present-day climate variability in the Model E2 simulation, winds are constrained to match the reanalysis datasets used to force MAR at the lateral boundaries. We conduct a preliminary assessment of the sensitivity of the simulated Model E2 SMB to surface albedo, a parameter that is known to strongly influence SMB. Model E2 albedo is set to a fixed value of 0.8 over the entire ice sheet in the initial configuration of the model (control case). We adjust this fixed value in an ensemble of simulations over a range of 0.4 to 0.8 (roughly the range of observed summer GrIS albedo values) to examine the sensitivity of ice-sheet-wide SMB to albedo. We prescribe albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A3 v6 to examine the impact of a more realistic spatial and temporal variations in albedo. An age-dependent snow albedo parameterization is applied, and its impact on SMB relative to observations and the RCM is assessed.

  3. Microwave remote sensing of temporal variations of brightness temperature and near-surface soil water content during a watershed-scale field experiment, and its application to the estimation of soil physical properties

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Jackson, T.J.; Ahuja, L.R.

    1998-01-01

    Passive microwave airborne remote sensing was employed to collect daily brightness temperature (T(B)) and near-surface (0-5 cm depth) soil water content (referred to as 'soil water content') data during June 10-18, 1992, in the Little Washita watershed, Oklahoma. A comparison of multitemporal data with the soils data revealed a direct correlation between changes in T(B) and soil water content, and soil texture. Regression relationships were developed for the ratio of percent sand to percent clay (RSC) and effective saturated hydraulic conductivity (K(sat)) in terms of T(B) and soil water content change. Validation of results indicated that both RSC and K(sat) can be estimated with adequate accuracy. The relationships are valid for the region with small variation of soil organic matter content, soils with fewer macropores, and limiting experimental conditions. However, the findings have potential to employ microwave remote sensing for obtaining quick estimates of soil properties over large areas

  4. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    International Nuclear Information System (INIS)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran

    2007-11-01

    between measured and calculated surface water discharges, but the model generally underestimates the total runoff from the area. The model also overestimates the groundwater levels, and the modelled groundwater level amplitudes are too small in many boreholes. A number of likely or potential reasons for these deviations can be identified: The surface stream network description in the model is incomplete. This implies that too little overland water is drained from the area by the streams, which creates ponded areas in the model that do not exist in reality. These areas are characterized by large evaporation and infiltration, contributing to groundwater recharge and reducing transpiration from the groundwater table, in turn creating high and relatively stable groundwater levels compared to those measured at the site. In order to improve the agreement between measured and modelled surface water discharges, the evapotranspiration was reduced in the model; in effect, this implied a reduction of the potential evapotranspiration. This probably caused a larger groundwater recharge and less transpiration during summer, thereby reducing the variations in the modelled groundwater levels. If the MIKE 11 stream network is updated, the potential evapotranspiration could be increased again, such that the modelling of groundwater dynamics is improved. The bottom boundary condition and the hydraulic conductivity of the bedrock may have a large effect on model-calculated near-surface/surface water flows in Laxemar. A sensitivity analysis shows that lowering the hydraulic head at the bottom boundary (located at 150 metres below sea level) lowers the groundwater levels in the Quaternary deposits, but also implies smaller surface water discharges. Lowering the hydraulic conductivity of the bedrock would increase groundwater flows to Quaternary deposits in groundwater discharge areas, which raises groundwater levels and reduces fluctuation amplitudes. An alternative model approach, using a

  5. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers.

    Science.gov (United States)

    Yu, Xiantong; He, XiaoXiao; Yang, Taiqun; Zhao, Litao; Chen, Qichen; Zhang, Sanjun; Chen, Jinquan; Xu, Jianhua

    2018-01-01

    Dopamine (DA) is an important neurotransmitter in the hypothalamus and pituitary gland, which can produce a direct influence on mammals' emotions in midbrain. Additionally, the level of DA is highly related with some important neurologic diseases such as schizophrenia, Parkinson, and Huntington's diseases, etc. In light of the important roles that DA plays in the disease modulation, it is of considerable significance to develop a sensitive and reproducible approach for monitoring DA. The objective of this study was to develop an efficient approach to quantitatively monitor the level of DA using Ag nanoparticle (NP) dimers and enhanced Raman spectroscopy. Ag NP dimers were synthesized for the sensitive detection of DA via surface-enhanced Raman scattering (SERS). Citrate was used as both the capping agent of NPs and sensing agent to DA, which is self-assembled on the surface of Ag NP dimers by reacting with the surface carboxyl group to form a stable amide bond. To improve accuracy and precision, the multiplicative effects model for surface-enhanced Raman spectroscopy was utilized to analyze the SERS assays. A low limits of detection (LOD) of 20 pM and a wide linear response range from 30 pM to 300 nM were obtained for DA quantitative detection. The SERS enhancement factor was theoretically valued at approximately 10 7 by discrete dipole approximation. DA was self-assembled on the citrate capped surface of Ag NPs dimers through the amide bond. The adsorption energy was estimated to be 256 KJ/mol using the Langmuir isotherm model. The density functional theory was used to simulate the spectral characteristics of SERS during the adsorption of DA on the surface of the Ag dimers. Furthermore, to improve the accuracy and precision of quantitative analysis of SERS assays with a multiplicative effects model for surface-enhanced Raman spectroscopy. A LOD of 20 pM DA-level was obtained, and the linear response ranged from 30 pM to 300 nM for quantitative DA detection. The

  6. 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin

    2013-11-21

    A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.

  7. An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2017-09-01

    Full Text Available Observations and climate model simulations consistently show a higher climate sensitivity of land surfaces compared to ocean surfaces. Here we show that this difference in temperature sensitivity can be explained by the different means by which the diurnal variation in solar radiation is buffered. While ocean surfaces buffer the diurnal variations by heat storage changes below the surface, land surfaces buffer it mostly by heat storage changes above the surface in the lower atmosphere that are reflected in the diurnal growth of a convective boundary layer. Storage changes below the surface allow the ocean surface–atmosphere system to maintain turbulent fluxes over day and night, while the land surface–atmosphere system maintains turbulent fluxes only during the daytime hours, when the surface is heated by absorption of solar radiation. This shorter duration of turbulent fluxes on land results in a greater sensitivity of the land surface–atmosphere system to changes in the greenhouse forcing because nighttime temperatures are shaped by radiative exchange only, which are more sensitive to changes in greenhouse forcing. We use a simple, analytic energy balance model of the surface–atmosphere system in which turbulent fluxes are constrained by the maximum power limit to estimate the effects of these different means to buffer the diurnal cycle on the resulting temperature sensitivities. The model predicts that land surfaces have a 50 % greater climate sensitivity than ocean surfaces, and that the nighttime temperatures on land increase about twice as much as daytime temperatures because of the absence of turbulent fluxes at night. Both predictions compare very well with observations and CMIP5 climate model simulations. Hence, the greater climate sensitivity of land surfaces can be explained by its buffering of diurnal variations in solar radiation in the lower atmosphere.

  8. Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)

    Science.gov (United States)

    Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer

    2009-02-01

    Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.

  9. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  10. The clear-sky greenhouse effect sensitivity to a sea surface temperature change

    Science.gov (United States)

    Duvel, J. PH.; Breon, F. M.

    1991-01-01

    The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.

  11. Visible Color and Photometry of Bright Materials on Vesta

    Science.gov (United States)

    Schroder, S. E.; Li, J. Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.

    2012-01-01

    The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of 70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5].

  12. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference.

    Science.gov (United States)

    Yeom, Se-Hyuk; Kim, Ok-Geun; Kang, Byoung-Ho; Kim, Kyu-Jin; Yuan, Heng; Kwon, Dae-Hyuk; Kim, Hak-Rin; Kang, Shin-Won

    2011-11-07

    We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.

  13. Measurements of skin friction in water using surface stress sensitive films

    International Nuclear Information System (INIS)

    Crafton, J W; Fonov, S D; Jones, E G; Goss, L P; Forlines, R A; Fontaine, A

    2008-01-01

    The measurement of skin friction on hydrodynamic surfaces is of significant value for the design of advanced naval technology, particularly at high Reynolds numbers. Here we report on the development of a new sensor for measurement of skin friction and pressure that operates in both air and water. This sensor is based on an elastic polymer film that deforms under the action of applied normal and tangential loads. Skin friction and pressure gradients are determined by monitoring these deformations and then solving an inverse problem using a finite element model of the elastic film. This technique is known as surface stress sensitive films. In this paper, we describe the development of a sensor package specifically designed for two-dimensional skin friction measurements at a single point. The package has been developed with the goal of making two-dimensional measurements of skin friction in water. Quantitative measurements of skin friction are performed on a high Reynolds number turbulent boundary layer in the 12 inch water tunnel at Penn State University. These skin friction measurements are verified by comparing them to measurements obtained with a drag plate as well as by performing two-dimensional velocity measurements above the sensor using a laser Doppler velocimetry system. The results indicate that the sensor skin friction measurements are accurate to better than 5% and repeatable to better than 2%. The directional sensitivity of the sensor is demonstrated by positioning the sensor at several orientations to the flow. A final interesting feature of this sensor is that it is sensitive to pressure gradients, not to static pressure changes. This feature should prove useful for monitoring the skin friction on a seafaring vessel as the operating depth is changed

  14. Enhanced Sensitivity of Anti-Symmetrically Structured Surface Plasmon Resonance Sensors with Zinc Oxide Intermediate Layers

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chiu

    2013-12-01

    Full Text Available We report a novel design wherein high-refractive-index zinc oxide (ZnO intermediary layers are used in anti-symmetrically structured surface plasmon resonance (SPR devices to enhance signal quality and improve the full width at half maximum (FWHM of the SPR reflectivity curve. The surface plasmon (SP modes of the ZnO intermediary layer were excited by irradiating both sides of the Au film, thus inducing a high electric field at the Au/ZnO interface. We demonstrated that an improvement in the ZnO (002 crystal orientation led to a decrease in the FWHM of the SPR reflectivity curves. We optimized the design of ZnO thin films using different parameters and performed analytical comparisons of the ZnO with conventional chromium (Cr and indium tin oxide (ITO intermediary layers. The present study is based on application of the Fresnel equation, which provides an explanation and verification for the observed narrow SPR reflectivity curve and optical transmittance spectra exhibited by (ZnO/Au, (Cr/Au, and (ITO/Au devices. On exposure to ethanol, the anti-symmetrically structured showed a huge electric field at the Au/ZnO interface and a 2-fold decrease in the FWHM value and a 1.3-fold larger shift in angle interrogation and a 4.5-fold high-sensitivity shift in intensity interrogation. The anti-symmetrically structured of ZnO intermediate layers exhibited a wider linearity range and much higher sensitivity. It also exhibited a good linear relationship between the incident angle and ethanol concentration in the tested range. Thus, we demonstrated a novel and simple method for fabricating high-sensitivity, high-resolution SPR biosensors that provide high accuracy and precision over relevant ranges of analyte measurement.

  15. Sensitivity of Distributions of Climate System Properties to Surface Temperature Datasets

    Science.gov (United States)

    Libardoni, A. G.; Forest, C. E.

    2011-12-01

    Predictions of climate change from models depend strongly on the representation of climate system properties emerging from the processes and feedbacks in the models. The quality of any model prediction can be evaluated by determining how well its output reproduces the observed climate system. With this evaluation, the reliability of climate projections derived from the model and provided for policy makers is assessed and quantified. In this study, surface temperature, upper-air temperature, and ocean heat content data are used to constrain the distributions of the parameters that define three climate system properties in the MIT Integrated Global Systems Model: climate sensitivity, the rate of ocean heat uptake into the deep ocean, and net anthropogenic aerosol forcing. In particular, we explore the sensitivity of the distributions to the surface temperature dataset used to estimate the likelihood of model output given the observed climate records. In total, five different reconstructions of past surface temperatures are used and the resulting parameter distribution functions differ from each other. Differences in estimates of climate sensitivity mode and mean are as great as 1 K between the datasets, with an overall range of 1.2 to 5.3 K using the 5-95 confidence intervals. Ocean effective diffusivity is poorly constrained regardless of which dataset is used. All distributions show broad distributions and only three show signs of a distribution mode. When a mode is present, they tend to be for low diffusivity values. Distributions for the net aerosol forcing show similar shapes and cluster into two groups that are shifted by approximately 0.1 watts per square meter. However, the overall spread of forcing values from the 5-95 confidence interval, -0.19 to -0.83 watts per square meter, is small compared to other uncertainties in climate forcings. Transient climate response estimates derived from these distributions range between 0.87 and 2.41 K. Similar to the

  16. The ZTF Bright Transient Survey

    Science.gov (United States)

    Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Miller, A. A.; Taggart, K.; Perley, D. A.; Gooba, A.

    2018-06-01

    As a supplement to the Zwicky Transient Facility (ZTF; ATel #11266) public alerts (ATel #11685) we plan to report (following ATel #11615) bright probable supernovae identified in the raw alert stream from the ZTF Northern Sky Survey ("Celestial Cinematography"; see Bellm & Kulkarni, 2017, Nature Astronomy 1, 71) to the Transient Name Server (https://wis-tns.weizmann.ac.il) on a daily basis; the ZTF Bright Transient Survey (BTS; see Kulkarni et al., 2018; arXiv:1710.04223).

  17. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran (DHI Sverige AB, Lilla Bommen 1, SE-411 04 Goeteborg (Sweden))

    2007-11-15

    between measured and calculated surface water discharges, but the model generally underestimates the total runoff from the area. The model also overestimates the groundwater levels, and the modelled groundwater level amplitudes are too small in many boreholes. A number of likely or potential reasons for these deviations can be identified: The surface stream network description in the model is incomplete. This implies that too little overland water is drained from the area by the streams, which creates ponded areas in the model that do not exist in reality. These areas are characterized by large evaporation and infiltration, contributing to groundwater recharge and reducing transpiration from the groundwater table, in turn creating high and relatively stable groundwater levels compared to those measured at the site. In order to improve the agreement between measured and modelled surface water discharges, the evapotranspiration was reduced in the model; in effect, this implied a reduction of the potential evapotranspiration. This probably caused a larger groundwater recharge and less transpiration during summer, thereby reducing the variations in the modelled groundwater levels. If the MIKE 11 stream network is updated, the potential evapotranspiration could be increased again, such that the modelling of groundwater dynamics is improved. The bottom boundary condition and the hydraulic conductivity of the bedrock may have a large effect on model-calculated near-surface/surface water flows in Laxemar. A sensitivity analysis shows that lowering the hydraulic head at the bottom boundary (located at 150 metres below sea level) lowers the groundwater levels in the Quaternary deposits, but also implies smaller surface water discharges. Lowering the hydraulic conductivity of the bedrock would increase groundwater flows to Quaternary deposits in groundwater discharge areas, which raises groundwater levels and reduces fluctuation amplitudes. An alternative model approach, using a

  18. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    Science.gov (United States)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates

  19. A Monte Carlo/response surface strategy for sensitivity analysis: application to a dynamic model of vegetative plant growth

    Science.gov (United States)

    Lim, J. T.; Gold, H. J.; Wilkerson, G. G.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    We describe the application of a strategy for conducting a sensitivity analysis for a complex dynamic model. The procedure involves preliminary screening of parameter sensitivities by numerical estimation of linear sensitivity coefficients, followed by generation of a response surface based on Monte Carlo simulation. Application is to a physiological model of the vegetative growth of soybean plants. The analysis provides insights as to the relative importance of certain physiological processes in controlling plant growth. Advantages and disadvantages of the strategy are discussed.

  20. Bright new world

    Energy Technology Data Exchange (ETDEWEB)

    Kroó, Norbert; Rácz, Péter [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Institute for Solid State Physics and Optics, H-1525 Budapest, Pf. 49 (Hungary); Varró, Sándor [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Institute for Solid State Physics and Optics, H-1525 Budapest, Pf. 49 (Hungary); ELI-ALPS, ELI-Hu Nonprofit Kft., Dugonics tér 13, H-6720 Szeged (Hungary)

    2016-02-15

    Surface plasmons (SPOs) have been excited by intense femtosecond laser pulses on a gold film at room temperature and their near field has been analyzed by the intensity dependent response of an STM and by studying the spectra of multiplasmon emitted electrons. Around 80 GW/cm{sup 2} laser intensity, anomalies have been found in both cases, interpreted as the stepping in of electron pairing, transition to a diamagnetic state, and by anomalous Faraday rotation.

  1. IASI's sensitivity to near-surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases

    Science.gov (United States)

    Bauduin, Sophie; Clarisse, Lieven; Theunissen, Michael; George, Maya; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2017-03-01

    Separating concentrations of carbon monoxide (CO) in the boundary layer from the rest of the atmosphere with nadir satellite measurements is of particular importance to differentiate emission from transport. Although thermal infrared (TIR) satellite sounders are considered to have limited sensitivity to the composition of the near-surface atmosphere, previous studies show that they can provide information on CO close to the ground in case of high thermal contrast. In this work we investigate the capability of IASI (Infrared Atmospheric Sounding Interferometer) to retrieve near-surface CO concentrations, and we quantitatively assess the influence of thermal contrast on such retrievals. We present a 3-part analysis, which relies on both theoretical forward simulations and retrievals on real data, performed for a large range of negative and positive thermal contrast situations. First, we derive theoretically the IASI detection threshold of CO enhancement in the boundary layer, and we assess its dependence on thermal contrast. Then, using the optimal estimation formalism, we quantify the role of thermal contrast on the error budget and information content of near-surface CO retrievals. We demonstrate that, contrary to what is usually accepted, large negative thermal contrast values (ground cooler than air) lead to a better decorrelation between CO concentrations in the low and the high troposphere than large positive thermal contrast (ground warmer than the air). In the last part of the paper we use Mexico City and Barrow as test cases to contrast our theoretical predictions with real retrievals, and to assess the accuracy of IASI surface CO retrievals through comparisons to ground-based in-situ measurements.

  2. In situ spectroscopic ellipsometry as a surface sensitive tool to probe thin film growth

    International Nuclear Information System (INIS)

    Liu, C.

    1999-01-01

    Sputtered thin film and multilayer x-ray mirrors are made routinely at the Advanced Photon Source (APS) for the APS users. Precise film growth control and characterization are very critical in fabricating high-quality x-ray mirrors. Film thickness calibrations are carried out using in situ and ex situ spectroscopic ellipsometry, interferometry, and x-ray scattering. To better understand the growth and optical properties of different thin film systems, we have carried out a systematic study of sputtered thin films of Au, Rh, Pg Pd, Cu, and Cr, using in situ ellipsometry. Multiple data sets were obtained in situ for each film material with incremental thicknesses and were analyzed with their correlation in mind. We found that in situ spectroscopic ellipsometry as a surface-sensitive tool can also be used to probe the growth and morphology of the thin film system. This application of in situ spectroscopic ellipsometry for metal thin film systems will be discussed

  3. Highly sensitive radioimmunoassay technique for subtyping the antibody to hepatitis B surface antigen

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C T; Nath, N; Berberian, H; Dodd, R Y [American Red Cross, Blood Research Laboratory, Bethesda, MD, USA

    1978-12-01

    A highly sensitive technique for determining the subtype specificity of antibody to hepatitis B surface antigen (anti-HBs) is described. Immunoadsorbent consisting of controlled pore glass coated with subtype specific HBsAg was used to remove homologous antibody from the test samples before testing them for residual antibody by a commercially available radioimmunoassay (RIA). A total of 73 anti-HBs-positive samples from asymptomatic blood donors were tested. In nearly 80% of these samples the subtype reactivity could be determined by this technique. Only 67% could be typed by conventional liquid phase absorption RIA and 22% by passive hemagglutination inhibition techniques. Among the samples with low anti-HBs titer, ad and ay subtypes were found with equal frequency; however, with the increase in anti-HBs titer, considerably higher proportion of ad specificity was detected.

  4. A highly sensitive radioimmunoassay technique for subtyping the antibody to hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Fang, C.T.; Nath, N.; Berberian, H.; Dodd, R.Y.

    1978-01-01

    A highly sensitive technique for determining the subtype specificity of antibody to hepatitis B surface antigen (anti-HBs) is described. Immunoadsorbent consisting of controlled pore glass coated with subtype specific HBsAg was used to remove homologous antibody from the test samples before testing them for residual antibody by a commercially available radioimmunoassay (RIA). A total of 73 anti-HBs-positive samples from asymptomatic blood donors were tested. In nearly 80% of these samples the subtype reactivity could be determined by this technique. Only 67% could be typed by conventional liquid phase absorption RIA and 22% by passive hemagglutination inhibition techniques. Among the samples with low anti-HBs titer, ad and ay subtypes were found with equal frequency; however, with the increase in anti-HBs titer, considerably higher proportion of ad specificity was detected. (Auth.)

  5. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  6. Land surface temperature downscaling using random forest regression: primary result and sensitivity analysis

    Science.gov (United States)

    Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi

    2018-04-01

    The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.

  7. Sensitivity Enhancement of Benzene Sensor Using Ethyl Cellulose-Coated Surface-Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Thanattha Chobsilp

    2018-01-01

    Full Text Available A hybrid sensor based on the integration of functionalized multiwalled carbon nanotubes (MWCNTs with ethyl cellulose (EC was fabricated for sensitivity enhancement of benzene detection. To functionalize the surface of MWCNTs, MWCNTs were treated with hydrochloric acid for 60 min (A60-MWCNTs, while other MWCNTs were treated with oxygen plasma for 30, 60, 90, and 120 min (P30-MWCNTs, P60-MWCNTs, P90-MWCNTs, and P120-MWCNTs, resp.. Pristine MWCNTs, A-MWCNTs, and P-MWCNTs were dispersed in 1,2-dichloroethane, then dropped onto a printed circuit board consisting of Cu/Au electrodes used as the sensor platform. Next, EC was separately spin coated on the pristine MWCNTs, A-MWCNTs, and P-MWCNTs (EC/MWCNTs, EC/A-MWCNTs, and EC/P-MWCNTs, resp.. All sensors responded to benzene vapor at room temperature by increasing their electrical resistance which was sensitive to benzene vapor. The EC/P90-MWCNTs enabled an approximately 11-fold improvement in benzene detection compared to EC/MWCNTs. The sensitivity of all sensors would be attributed to the swelling of EC, resulting in the loosening of the MWCNT network after benzene vapor exposure. The differences of the sensing responses of the EC/MWCNTs, EC/A-MWCNTs, and EC/P-MWCNTs would be ascribed to the differences in crystallinity and functionalization of MWCNT sidewalls, suggesting that acid and oxygen plasma treatments of MWCNTs would be promising techniques for the improvement of benzene detection.

  8. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    International Nuclear Information System (INIS)

    Aneljung, Maria; Gustafsson, Lars-Goeran

    2007-04-01

    . Differences in the aquifer refilling process subsequent to dry periods, for example a too slow refill when the groundwater table rises after dry summers. This may be due to local deviations in the applied pF-curves in the unsaturated zone description. Differences in near-surface groundwater elevations. For example, the calculated groundwater level reaches the ground surface during the fall and spring at locations where the measured groundwater depth is just below the ground surface. This may be due to the presence of near-surface high-conductive layers. A sensitivity analysis has been made on calibration parameters. For parameters that have 'global' effects, such as the hydraulic conductivity in the saturated zone, the analysis was performed using the 'full' model. For parameters with more local effects, such as parameters influencing the evapotranspiration and the net recharge, the model was scaled down to a column model, representing two different type areas. The most important conclusions that can be drawn from the sensitivity analysis are the following: The results indicate that the horizontal hydraulic conductivity generally should be increased at topographic highs, and reduced at local depressions in the topography. The results indicate that no changes should be made to the vertical hydraulic conductivity at locations where the horizontal conductivity has been increased, and that the vertical conductivity generally should be decreased where the horizontal conductivity has been decreased. The vegetation parameters that have the largest influence on the total groundwater recharge are the root mass distribution and the crop coefficient. The unsaturated zone parameter that have the largest influence on the total groundwater recharge is the effective porosity given in the pF-curve. In addition, the shape of the pF-curve above the water content at field capacity is also of great importance. The general conclusion is that the surrounding conditions have large effects on water

  9. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Goeteborg (Sweden)

    2007-04-15

    . Differences in the aquifer refilling process subsequent to dry periods, for example a too slow refill when the groundwater table rises after dry summers. This may be due to local deviations in the applied pF-curves in the unsaturated zone description. Differences in near-surface groundwater elevations. For example, the calculated groundwater level reaches the ground surface during the fall and spring at locations where the measured groundwater depth is just below the ground surface. This may be due to the presence of near-surface high-conductive layers. A sensitivity analysis has been made on calibration parameters. For parameters that have 'global' effects, such as the hydraulic conductivity in the saturated zone, the analysis was performed using the 'full' model. For parameters with more local effects, such as parameters influencing the evapotranspiration and the net recharge, the model was scaled down to a column model, representing two different type areas. The most important conclusions that can be drawn from the sensitivity analysis are the following: The results indicate that the horizontal hydraulic conductivity generally should be increased at topographic highs, and reduced at local depressions in the topography. The results indicate that no changes should be made to the vertical hydraulic conductivity at locations where the horizontal conductivity has been increased, and that the vertical conductivity generally should be decreased where the horizontal conductivity has been decreased. The vegetation parameters that have the largest influence on the total groundwater recharge are the root mass distribution and the crop coefficient. The unsaturated zone parameter that have the largest influence on the total groundwater recharge is the effective porosity given in the pF-curve. In addition, the shape of the pF-curve above the water content at field capacity is also of great importance. The general conclusion is that the surrounding conditions have

  10. Combining inkjet printing and sol-gel chemistry for making pH-sensitive surfaces.

    Science.gov (United States)

    Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Chauhan, Veeren M; Aylott, Jonathan W; Vozzi, Giovanni

    2015-01-01

    Today biomedical sciences are experiencing the importance of imaging biological parameters with luminescence methods. Studying 2D pH distribution with those methods allows building knowledge about complex cellular processes. Immobilizing pH sensitive nanoparticles inside hydrogel matrixes, in order to guarantee a proper SNR, could easily make stable and biocompatible 2D sensors. Inkjet printing is also well known as tool for printing images onto porous surfaces. Recently it has been used as a free-form fabrication method for building three-dimensional parts, and now is being explored as a way of printing electrical and optical devices. Inkjet printing was used either as a rapid prototyping method for custom biosensors. Sol-gel method is naturally bound with inkjet, because the picoliter-sized ink droplets evaporate quickly, thus allowing quick sol-gel transitions on the printed surface. In this work will be shown how to merge those technologies, in order to make a nanoparticles doped printable hydrogel, which could be used for making 2D/3D smart scaffolds able to monitor cell activities. An automated image analysis system was developed in order to quickly have the pH measurements from pH nanosensors fluorescence images.

  11. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    Science.gov (United States)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground

  12. O2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties.

    Science.gov (United States)

    Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill

    2017-05-16

    Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.

  13. Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell

    International Nuclear Information System (INIS)

    Dhonde, Mahesh; Sahu, Kirti; Murty, V.V.S.; Nemala, Siva Sankar; Bhargava, Parag

    2017-01-01

    Highlights: •Pure and Cu-doped TiO 2 Nanoparticles are synthesized and incorporated in DSSCs. •Addition of Cu provided high surface area and reduced charge recombination due to LSPR effect. •The highest photo conversion efficiency achieved is 8.65% with J sc of 18.8 mA cm −2 . •This efficiency is 26% higher than that of pure TiO 2 DSSC. -- Abstract: Pure and copper doped titanium dioxide nanoparticles (TiO 2 NPs) for Dye Sensitized Solar Cell (DSSC) photo anodes with different doping amounts of copper (Cu) 0.1, 0.3 and 0.5 mole% are synthesized using modified sol-gel route. Addition of Cu in TiO 2 matrix can enhance absorption towards visible spectrum and can reduce the charge carrier recombination due to Localized Surface Plasmon Resonance (LSPR). The samples are characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), UV–vis spectroscopy (UV-VIS), X-ray Photoelectron Spectroscopy (XPS), Electro Chemical Impedance Spectroscopy (EIS). The crystallite size is measured by XRD and surface morphology of the samples is analyzed using SEM. UV–vis measurement shows that the influence of Cu in TiO 2 lattice altered its optical properties and extended absorption in the visible region. The resistances between different junctions of the cell are measured by EIS. The J-V measurement of the cell prepared using pure and Cu-doped TiO 2 NPs is carried out by solar simulator. The optimized Cu doped DSSC with 0.3 mole% Cu in TiO 2 shows the best power conversion efficiency of 8.65% which is approximately 26% greater than the efficiency of undoped DSSC (6.41%).

  14. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  15. A study of charge transfer kinetics in dye-sensitized surface conductivity solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Dennis

    2011-05-15

    The efficiency of the quasi-solid-state dye-sensitized solar cell developed by Junghaenel and Tributsch, the so-called Nano Surface Conductivity Solar Cell (NSCSC), was improved from 2% to 3.5% introducing a compact TiO{sub 2} underlayer, modifying the surface of the mesoporous TiO{sub 2} electrode, optimizing the deposition process of the electrolyte film, and replacing the platinum counter electrode by a carbon layer. Space-resolved photocurrent images revealed the importance of a homogeneous distribution of the electrolyte film. An uneven dispersion led to localized areas of high and low photocurrents, whereas the latter were attributed to an insufficient concentration of the redox couple. Impedance spectroscopy was performed on cells containing different concentrations of the redox couple. By modeling the spectra using an equivalent circuit with a transmission line of resistive and capacitive elements, the characteristic parameters of electron transport in the TiO{sub 2}, such as diffusion length and electron lifetime were obtained. The measurements indicated that the transport of the positive charge to the counter electrode is the main process limiting the efficiency of the cells. Excess charge carrier decay in functioning devices was analyzed by contactless transient photoconductance measurements in the microwave frequency range (TRMC). The lifetime of the photogenerated charge carriers was observed to decrease with increasing applied potential, reaching its maximum close to the opencircuit potential of the cell, where the photocurrent density was minimal, i.e. the potential dependent decay observed was limited by the injection of electrons into the front contact. The functioning of this NSCSC indicated that the transport of the positive charge occurs by solid-state diffusion at the surface of the TiO{sub 2} particles. TRMC measurements on subset devices in the form of sensitized TiO{sub 2} layers revealed charge carrier kinetics strongly dependent on the

  16. Smart structure with elastomeric contact surface for prosthetic fingertip sensitivity development

    Science.gov (United States)

    Gu, Chunxin; Liu, Weiting; Yu, Ping; Cheng, Xiaoying; Fu, Xin

    2017-09-01

    Current flexible/compliant tactile sensors suffer from low sensitivity and high hysteresis introduced by the essential viscosity characteristic of soft material, either used as compliant sensing element or as flexible coverage. To overcome these disadvantages, this paper focuses on developing a tactile sensor with a smart hybrid structure to obtain comprehensive properties in terms of size, compliance, robustness and pressure sensing ability so as to meet the requirements of limited space applications such as prosthetic fingertips. Employing micro-fabricated tiny silicon-based pressure die as the sensing element, it is easy to have both small size and good mechanical performance. To protect it from potential damage and maintain the compliant surface, a rigid base and a soft layer form a sealed chamber and encapsulate the fixed die together with fluid. The fluid serves as highly efficient pressure propagation media of mechanical stimulus from the compliant skin to the pressure die without any hazard impacting the vulnerable connecting wires. To understand the pressure transmission mechanism, a simplified and concise analytic model of a spring system is proposed. Using easy fabrication technologies, a prototype of a 3 × 3 sensor array with total dimensions of 14 mm × 14 mm × 6.5 mm was developed. Based on the quasi-linear relationship between fluid volume and pressure, finite element modeling was developed to analyze the chamber deformation and pressure output of the sensor cell. Experimental tests of the sensor prototype were implemented. The results showed that the sensor cell had good sensing performance with sensitivity of 19.9 mV N-1, linearity of 0.998, repeatability error of 3.41%, and hysteresis error of 3.34%. The force sensing range was from 5 mN to 1.6 N.

  17. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells.

    Science.gov (United States)

    Prasad, Rajendra M B; Pathan, Habib M

    2016-04-08

    In spite of the promising design and architecture, quantum dot sensitized solar cells (QDSSCs) have a long way to go before they attain the actual projected photoconversion efficiencies. Such an inferior performance displayed by QDSSCs is primarily because of many unwanted recombination losses of charge carriers at various interfaces of the cell. Electron recombination due to back electron transfer at the photoanode/electrolyte interface is an important one that needs to be addressed, to improve the efficiency of these third generation nanostructured solar cells. The present work highlights the importance of conformal coverage of CdS quantum dots (QDs) on the surface of the nanocrystalline titania photoanode in arresting such recombinations, leading to improvement in the performance of the cells. Using the successive ionic layer adsorption and reaction (SILAR) process, photoanodes are subjected to different amounts of CdS QD sensitization by varying the number of cycles of deposition. The sensitized electrodes are characterized using UV-visible spectroscopy, cyclic voltammetry and transmission electron microscopy to evaluate the extent of surface coverage of titania electrodes by QDs. Sandwich solar cells are then fabricated using these electrodes and characterized employing electrochemical impedance spectroscopy and J-V characteristics. It is observed that maximum solar cell efficiency is obtained for photoanodes with conformal coating of QDs and any further deposition of sensitizer leads to QD aggregation and so reduces the performance of the solar cells.

  18. A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films

    International Nuclear Information System (INIS)

    Lei Sheng; Chen Dajing; Chen Yuquan

    2011-01-01

    Humidity detection has been widely used in a variety of fields. A humidity sensor with high sensitivity is reported in this paper. A surface acoustic wave resonator (SAWR) with high resonance frequency was fabricated as a basic sensitive component. Various nanotechnologies were used to improve the sensor's performance. A multi-walled carbon nanotube/Nafion (MWCNT/Nafion) composite material was prepared as humidity-sensitive films, deposited on the surface of an SAWR by the electrospinning method. The electrospun MWCNT/Nafion nanofiber films showed a three-dimensional (3D) porous structure, which was profitable for improving the sensor's performance. The new nano-water-channel model of Nafion was also applied in the humidity sensing process. Compared to other research, the present sensor showed excellent sensitivity (above 400 kHz/% relative humidity (RH) in the range from 10% RH to 80% RH), good linearity (R 2 > 0.98) and a short response time (∼3 s-63%).

  19. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-02-01

    Full Text Available A new surface acoustic wave (SAW-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s−1 and good linearity were observed.

  20. Response surface methodology for sensitivity and uncertainty analysis: performance and perspectives

    International Nuclear Information System (INIS)

    Olivi, L.; Brunelli, F.; Cacciabue, P.C.; Parisi, P.

    1985-01-01

    Two main aspects have to be taken into account in studying a nuclear accident scenario when using nuclear safety codes as an information source. The first one concerns the behavior of the code response and the set of assumptions to be introduced for its modelling. The second one is connected with the uncertainty features of the code input, often modelled as a probability density function (pdf). The analyst can apply two well-defined approaches depending on whether he wants major emphasis put on either of the aspects. Response Surface Methodology uses polynomial and inverse polynomial models together with the theory of experimental design, expressly developed for the identification procedure. It constitutes a well-established body of techniques able to cover a wide spectrum of requirements, when the first aspect plays the crucial role in the definition of the objectives. Other techniques such as Latin hypercube sampling, stratified sampling or even random sampling can fit better, when the second aspect affects the reliability of the analysis. The ultimate goal for both approaches is the selection of the variable, i.e. the identification of the code input variables most effective on the output and the uncertainty propagation, i.e. the assessment of the pdf to be attributed to the code response. The main aim of this work is to present a sensitivity analysis method, already tested on a real case, sufficiently flexible to be applied in both approaches mentioned

  1. Sensitivity-Based Modeling of Evaluating Surface Runoff and Sediment Load using Digital and Analog Mechanisms

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya

    2014-07-01

    Full Text Available Analyses of runoff- sediment measurement and evaluation using automated and convectional runoff-meters was carried out at Meteorological and Hydrological Station of Auchi Polytechnic, Auchi using two runoff plots (ABCDa and EFGHm of area 2m 2 each, depth 0.26 m and driven into the soil to the depth of 0.13m. Runoff depths and intensities were measured from each of the positioned runoff plot. Automated runoff-meter has a measuring accuracy of ±0.001l/±0.025 mm and rainfall depth-intensity was measured using tipping-bucket rainguage during the period of 14-month of experimentation. Minimum and maximum rainfall depths of 1.2 and 190.3 mm correspond to measured runoff depths (MRo of 0.0 mm for both measurement approaches and 60.4 mm and 48.9 mm respectively. Automated runoffmeter provides precise, accurate and instantaneous result over the convectional measurement of surface runoff. Runoff measuring accuracy for automated runoff-meter from the plot (ABCDa produces R 2 = 0.99; while R 2 = 0.96 for manual evaluation in plot (EFGHm. WEPP and SWAT models were used to simulate the obtained hydrological variables from the applied measurement mechanisms. The outputs of sensitivity simulation analysis indicate that data from automated measuring systems gives a better modelling index and such could be used for running robust runoff-sediment predictive modelling technique under different reservoir sedimentation and water management scenarios.

  2. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations

    DEFF Research Database (Denmark)

    Kern, Stefan; Rösel, Anja; Pedersen, Leif Toudal

    2016-01-01

    % sea-ice concentration. None of the algorithms investigated performs best based on our investigation of data from summer 2009. We suggest that those algorithms which are more sensitive to melt ponds could be optimized more easily because the influence of unknown snow and sea-ice surface property...... of eight sea-ice concentration retrieval algorithms to melt ponds by comparing sea-ice concentration with the melt-pond fraction. We derive gridded daily sea-ice concentrations from microwave brightness temperatures of summer 2009. We derive the daily fraction of melt ponds, open water between ice floes......, and the ice-surface fraction from contemporary Moderate Resolution Spectroradiometer (MODIS) reflectance data. We only use grid cells where the MODIS sea ice concentration, which is the melt-pond fraction plus the ice-surface fraction, exceeds 90 %. For one group of algorithms, e.g., Bristol and Comiso...

  3. Major and trace elements in mouse bone measured by surface and bulk sensitive methods

    International Nuclear Information System (INIS)

    Benkoe, I.; Geresi, K.; Ungvari, E.; Szabo, B.; Paripas, B.

    2011-01-01

    Complete text of publication follows. In the past years an increasing research interest turned to the accurate determination of the components of bone samples. These investigations focused on both the major and trace elements in the bone. Work in this field is strongly motivated because various major and trace element concentrations can be good indicators of several diseases. Number of studies also focused on the determination of the components both in the organic and inorganic parts of the bone separately, because they both have role during bone remodeling processes. Also important to note that bone can be one of the final destinations in the body where toxic elements are deposited. In this work we performed various surface and bulk sensitive analyses for the mouse bone samples to determine its major and trace element components. We have shown concentration profiles for various major and observable trace elements of the mouse bone. We found, in accordance with our expectation, that the mostly surface sensitive XPS technique is not suitable to determine the concentration of the trace elements in bone samples. It was also shown that XPS is a valuable tool not only in the determination of the chemical states of the major components of the bone powder but in the quantitative determination of their relative concentrations. Both the major and the trace elements of the bone samples are determined using PIXE and SNMS spectra. Although the information depths are very different for PIXE (a few tens of micrometer) and for XPS analysis (a few nanometers), our present PIXE result, using the bone sample in its original form for the concentration ratio between Ca and P is in excellent agreement with the XPS results using calcinated mouse bone powder. Discrepancy in Ca/Mg ratio (PIXE: 35.7 and XPS: 12.7) maybe due to many factors, which influence this ratio in bone samples. In the case of PIXE we studied native bones and determined composition of the compact bone at outside

  4. On understanding the relationship between structure in the potential surface and observables in classical dynamics: A functional sensitivity analysis approach

    International Nuclear Information System (INIS)

    Judson, R.S.; Rabitz, H.

    1987-01-01

    The relationship between structure in the potential surface and classical mechanical observables is examined by means of functional sensitivity analysis. Functional sensitivities provide maps of the potential surface, highlighting those regions that play the greatest role in determining the behavior of observables. A set of differential equations for the sensitivities of the trajectory components are derived. These are then solved using a Green's function method. It is found that the sensitivities become singular at the trajectory turning points with the singularities going as eta -3 /sup // 2 , with eta being the distance from the nearest turning point. The sensitivities are zero outside of the energetically and dynamically allowed region of phase space. A second set of equations is derived from which the sensitivities of observables can be directly calculated. An adjoint Green's function technique is employed, providing an efficient method for numerically calculating these quantities. Sensitivity maps are presented for a simple collinear atom--diatom inelastic scattering problem and for two Henon--Heiles type Hamiltonians modeling

  5. Variation reduction of brightness and pH of pulp sent to a paper mill

    Directory of Open Access Journals (Sweden)

    Napassavong Rojanarowan

    2015-03-01

    Full Text Available The variance of the brightness of pulp sent to the paper mill during the changing period of dry pulp grades affects the chemical control in the paper mill. This research aims to determine the mixing formula of pulp with different brightness from the EOP and D1 stages to handle this variation issue. This research uses response surface design with Central Composite Design type, regression technique and optimization technique to find the optimal setting of the mixing formula for each of the seven brightness levels to obtain the target brightness of 86% and the pH of 5.25. The mixing formulas are determined by the pulp mixing percentage and the sulfuric acid consumption. The experimental results reveal that when using higher EOP mixing ratio, the brightness decreases and the pH increases. Regarding the effect of the sulfuric acid, increasing the sulfuric acid makes the brightness and the pH decrease. After implementing the optimal formula in the production line, the mean of pulp brightness is closer to the target compared with the brightness before improvement and the brightness variation decreases without affecting the quality of other pulp grades, average of brightness decreased from 87.4% to 86.3% and standard deviation of brightness decreased from 1.09 to 0.46.

  6. Sensitivity of airborne geophysical data to sublacustrine and near-surface permafrost thaw

    Science.gov (United States)

    Minsley, Burke J.; Wellman, Tristan; Walvoord, Michelle Ann; Revil, Andre

    2014-01-01

    A coupled hydrogeophysical forward and inverse modeling approach is developed to illustrate the ability of frequency-domain airborne electromagnetic (AEM) data to characterize subsurface physical properties associated with sublacustrine permafrost thaw during lake-talik formation. Numerical modeling scenarios are evaluated that consider non-isothermal hydrologic responses to variable forcing from different lake depths and for different hydrologic gradients. A novel physical property relationship connects the dynamic distribution of electrical resistivity to ice saturation and temperature outputs from the SUTRA groundwater simulator with freeze–thaw physics. The influence of lithology on electrical resistivity is controlled by a surface conduction term in the physical property relationship. Resistivity models, which reflect changes in subsurface conditions, are used as inputs to simulate AEM data in order to explore the sensitivity of geophysical observations to permafrost thaw. Simulations of sublacustrine talik formation over a 1000-year period are modeled after conditions found in the Yukon Flats, Alaska. Synthetic AEM data are analyzed with a Bayesian Markov chain Monte Carlo algorithm that quantifies geophysical parameter uncertainty and resolution. Major lithological and permafrost features are well resolved by AEM data in the examples considered. The subtle geometry of partial ice saturation beneath lakes during talik formation cannot be resolved using AEM data, but the gross characteristics of sub-lake resistivity models reflect bulk changes in ice content and can identify the presence of a talik. A final synthetic example compares AEM and ground-based electromagnetic responses for their ability to resolve shallow permafrost and thaw features in the upper 1–2 m below ground outside the lake margin.

  7. Changes in antibiotic sensitivity and cell surface hydrophobicity in Escherichia coli injured by heating, freezing, drying or gamma radiation

    International Nuclear Information System (INIS)

    Mackey, B.M.

    1983-01-01

    Escherichia coli cells exposed to mild heating, freezing and thawing, drying or γ-radiation were sensitised to hydrophobic antibiotics and sodium deoxycholate but not to small hydrophilic antibiotics. These stress treatments also caused increases in cell surface hydrophobicity broadly reflecting the degree of sensitivity to hydrophobic antibiotics. (Auth.)

  8. Limit to mass sensitivity of nanoresonators with random rough surfaces due to intrinsic sources and interactions with the surrounding gas

    NARCIS (Netherlands)

    Palasantzas, G.

    2008-01-01

    We investigate initially the influence of thermomechanical and momentum exchange noise on the limit to mass sensitivity Delta m of nanoresonators with random rough surfaces, which are characterized by the roughness amplitude w, the correlation length xi, and the roughness exponent 0

  9. Helmholtz bright and boundary solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2007-02-16

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.

  10. A New Sky Brightness Monitor

    Science.gov (United States)

    Crawford, David L.; McKenna, D.

    2006-12-01

    A good estimate of sky brightness and its variations throughout the night, the months, and even the years is an essential bit of knowledge both for good observing and especially as a tool in efforts to minimize sky brightness through local action. Hence a stable and accurate monitor can be a valuable and necessary tool. We have developed such a monitor, with the financial help of Vatican Observatory and Walker Management. The device is now undergoing its Beta test in preparation for production. It is simple, accurate, well calibrated, and automatic, sending its data directly to IDA over the internet via E-mail . Approximately 50 such monitors will be ready soon for deployment worldwide including most major observatories. Those interested in having one should enquire of IDA about details.

  11. High-brightness injector modeling

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    There are many aspects to the successful conception, design, fabrication, and operation of high-brightness electron beam sources. Accurate and efficient modeling of the injector are critical to all phases of the process, from evaluating initial ideas to successful diagnosis of problems during routine operation. The basic modeling tasks will vary from design to design, according to the basic nature of the injector (dc, rf, hybrid, etc.), the type of cathode used (thermionic, photo, field emitter, etc.), and 'macro' factors such as average beam current and duty factor, as well as the usual list of desired beam properties. The injector designer must be at least aware of, if not proficient at addressing, the multitude of issues that arise from these considerations; and, as high-brightness injectors continue to move out of the laboratory, the number of such issues will continue to expand.

  12. Helmholtz bright and boundary solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2007-01-01

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts

  13. Fabrication of an SPR Sensor Surface with Antifouling Properties for Highly Sensitive Detection of 2,4,6-Trinitrotoluene Using Surface-Initiated Atom Transfer Polymerization

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2013-07-01

    Full Text Available In this study, we modified a surface plasmon resonance immunosensor chip with a polymer using surface-initiated atom transfer polymerization (SI-ATRP for the highly sensitive detection of 2,4,6-trinitrotoluene (TNT. To immobilize a TNT analogue on the polymer, mono-2-(methacryloyloxyethylsuccinate (MES, which has a carboxyl group, was used in this study. However, the anti-TNT antibody may adsorb non-specifically on the polymer surface by an electrostatic interaction because MES is negatively charged. Therefore, a mixed monomer with MES and diethylaminoethylmethacrylate (DEAEM, which has a tertiary amino group and is positively charged, was prepared to obtain electroneutrality for suppressing the nonspecific adsorption. The detection of TNT was performed by inhibition assay using the polymer surface. To ensure high sensitivity to TNT, the affinity between the surface and the antibody was optimized by controlling the density of the initiator for ATRP by mixing two types of self-assembled monolayer reagents. As a result, a limit of detection of 5.7 pg/mL (ppt for TNT was achieved using the optimized surface.

  14. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance

    Science.gov (United States)

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-01

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)—a chelating agent of copper II ions—was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  15. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  16. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  17. Near-infrared photometry of bright elliptical galaxies

    NARCIS (Netherlands)

    Peletier, R. F.; Valentijn, E. A.; Jameson, R. F.

    High-quality visual-infrared color profiles have been determined for elliptical galaxies for the first time. Surface photometry in J and K is presented for 12 bright elliptical galaxies, and the results have been combined with CCD data in visual passbands. It is shown that the galaxies become bluer

  18. 150 southern compact and bright-nucleus galaxies

    International Nuclear Information System (INIS)

    Fairall, A.P.

    1977-01-01

    Galaxies having regions of exceptionally high surface brightness have been selected from the ESO Quick Blue Survey and investigated by 'grating photography' -direct photography plus low-dispersion slitless spectroscopy. Two new Seyfert galaxies and a peculiar multiple system have been discovered. Differences in red continua are also noted. (author)

  19. In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO 2 Surface of Dye-Sensitized Solar Cells

    KAUST Repository

    Voï tchovsky, Kislon; Ashari-Astani, Negar; Tavernelli, Ivano; Té treault, Nicolas; Rothlisberger, Ursula; Stellacci, Francesco; Grä tzel, Michael; Harms, Hauke A.

    2015-01-01

    © 2015 American Chemical Society. Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell's performance depends on the molecular arrangement and the density of the dye on the semiconductor surface

  20. Next generation diode lasers with enhanced brightness

    Science.gov (United States)

    Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.

    2018-02-01

    High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).

  1. On the sensitivity of Land Surface Temperature estimates in arid irrigated lands using MODTRAN

    KAUST Repository

    Rosas, Jorge; Houborg, Rasmus; McCabe, Matthew

    2015-01-01

    Land surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of evapotranspiration (ET) and surface moisture status. However, in order to retrieve the ET with an accuracy approaching

  2. Electron beam brightness with field immersed emission

    International Nuclear Information System (INIS)

    Boyd, J.K.; Neil, V.K.

    1985-01-01

    The beam quality or brightness of an electron beam produced with field immersed emission is studied with two models. First, an envelope formulation is used to determine the scaling of brightness with current, magnetic field and cathode radius, and examine the equilibrium beam radius. Second, the DPC computer code is used to calculate the brightness of two electron beam sources

  3. High-brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines

  4. Classifying Multi-Model Wheat Yield Impact Response Surfaces Showing Sensitivity to Temperature and Precipitation Change

    Science.gov (United States)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; hide

    2017-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the

  5. Sensitivities of surface wave velocities to the medium parameters in a radially anisotropic spherical Earth and inversion strategies

    Directory of Open Access Journals (Sweden)

    Sankar N. Bhattacharya

    2015-11-01

    Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.

  6. Research Note: The sensitivity of surface seismic P-wave data in transversely isotropic media to reflector depth

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-12-17

    The leading component of the high-frequency asymptotic description of the wavefield, given by the travel time, is governed by the eikonal equation. In anisotropic media, traveltime measurements from seismic experiments conducted along one surface cannot constrain the long-wavelength attribute of the medium along the orthogonal-to-the-surface direction, as anisotropy introduces an independent parameter controlling wave propagation in the orthogonal direction. Since travel times measured on the Earth\\'s surface in transversely isotropic media with a vertical symmetry axis are mainly insensitive to the absolute value of the anisotropic parameter responsible for relating these observations to depth δ, the travel time was perturbed laterally to investigate the traveltime sensitivity to lateral variations in δ. This formulation can be used to develop inversion strategies for lateral variations in δ in acoustic transversely isotropic media, as the surface-recorded data are sensitive to it even if the model is described by the normal moveout velocity and horizontal velocity, or the anellipticity parameter η. Numerical tests demonstrate the enhanced sensitivity of our data when the model is parameterised with a lateral change in δ.

  7. Atmospheric sensitivity to land surface changes: comparing the impact of albedo, roughness, and evaporative resistance on near-surface air temperature using an idealized land model.

    Science.gov (United States)

    Lague, M. M.; Swann, A. L. S.; Bonan, G. B.

    2017-12-01

    Past studies have demonstrated how changes in vegetation can impact the atmosphere; however, it is often difficult to identify the exact physical pathway through which vegetation changes drive an atmospheric response. Surface properties (such as vegetation color, or height) control surface energy fluxes, which feed back on the atmosphere on both local and global scales by modifying temperatures, cloud cover, and energy gradients. Understanding how land surface properties influence energy fluxes is crucial for improving our understanding of how vegetation change - past, present, and future - impacts the atmosphere, global climate, and people. We explore the sensitivity of the atmosphere to perturbations of three land surface properties - albedo, roughness, and evaporative resistance - using an idealized land model coupled to an Earth System Model. We derive a relationship telling us how large a change in each surface property is required to drive a local 0.1 K change in 2m air temperature. Using this idealized framework, we are able to separate the influence on the atmosphere of each individual surface property. We demonstrate that the impact of each surface property on the atmosphere is spatially variable - that is, a similar change in vegetation can have different climate impacts if made in different locations. This analysis not only improves our understanding of how the land system can influence climate, but also provides us with a set of theoretical limits on the potential climate impact of arbitrary vegetation change (natural or anthropogenic).

  8. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  9. Bright Stuff on Ceres = Sulfates and Carbonates on CI Chondrites

    Science.gov (United States)

    Zolensky, Michael; Chan, Queenie H. S.; Gounelle, Matthieu; Fries, Marc

    2016-01-01

    Recent reports of the DAWN spacecraft's observations of the surface of Ceres indicate that there are bright areas, which can be explained by large amounts of the Mg sulfate hexahydrate (MgSO4•6(H2O)), although the identification appears tenuous. There are preliminary indications that water is being evolved from these bright areas, and some have inferred that these might be sites of contemporary hydro-volcanism. A heat source for such modern activity is not obvious, given the small size of Ceres, lack of any tidal forces from nearby giant planets, probable age and presumed bulk composition. We contend that observations of chondritic materials in the lab shed light on the nature of the bright spots on Ceres

  10. Sensitivity analysis for near-surface disposal in argillaceous media using NAMMU-HYROCOIN Level 3-Test case 1

    International Nuclear Information System (INIS)

    Miller, D.R.; Paige, R.W.

    1988-07-01

    HYDROCOIN is an international project for comparing groundwater flow models and modelling strategies. Level 3 of the project concerns the application of groundwater flow models to repository performance assessment with emphasis on the treatment of sensitivity and uncertainty in models and data. Level 3, test case 1 concerns sensitivity analysis of the groundwater flow around a radioactive waste repository situated in a near surface argillaceous formation. Work on this test case has been carried out by Harwell and will be reported in full in the near future. This report presents the results obtained using the computer program NAMMU. (author)

  11. Developments of sensitive immunoassays for detection of antibodies against hepatitis B surface antigen

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu-Matiu, I; Sanchez, Y; Dreesman, G R [Baylor Univ., Houston, TX (USA). Coll. of Medicine; Fields, H A [Centers for Disease Control, Public Health Service, Department of Health and Human Services, Phoenix, AZ (USA)

    1983-01-01

    Three micro solid phase immunoassays (a micro-SPRIA and two ELISA techniques) were developed and tested for the detection of anti-HBs antibodies. Two different crosslinkers (glutaraldehyde and N-succinimidyl 3-(2-pyridyldithio) propionate) were used to couple a goat anti-mouse IgG reagent to alkaline phosphatase for use as enzyme-labeled probes in the two ELISA tests. With the latter cross-linker, a defined conjugate with a 1 : 1 antibody-enzyme molar ratio was obtained. The sensitivities of micro-SPRIA and the two types of ELISA were compared to that of the commercial solid phase radioimmunoassay AUSAB test. All three microtests were significantly more sensitive than the AUSAB test. The ELISA using the glutaraldehyde cross-linked conjugate was 3-5 times less sensitive than micro-SPRIA, while the ELISA using the disulfide-linked conjugate was 2.6-4.0 times more sensitive than micro-SPRIA.

  12. A self-amplified transistor immunosensor under dual gate operation: highly sensitive detection of hepatitis B surface antigen

    Science.gov (United States)

    Lee, I.-K.; Jeun, M.; Jang, H.-J.; Cho, W.-J.; Lee, K. H.

    2015-10-01

    Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor based on a self-amplified transistor under dual gate operation (immuno-DG ISFET) for the detection of hepatitis B surface antigen. To address the challenges in current ISFET-based immunosensors, we have enhanced the sensitivity of an immunosensor by precisely tailoring the nanostructure of the transistor. In the pH sensing test, the immuno-DG ISFET showed superior sensitivity (2085.53 mV per pH) to both standard ISFET under single gate operation (58.88 mV per pH) and DG ISFET with a non-tailored transistor (381.14 mV per pH). Moreover, concerning the detection of hepatitis B surface antigens (HBsAg) using the immuno-DG ISFET, we have successfully detected trace amounts of HBsAg (22.5 fg mL-1) in a non-diluted 1× PBS medium with a high sensitivity of 690 mV. Our results demonstrate that the proposed immuno-DG ISFET can be a biosensor platform for practical use in the diagnosis of various diseases.Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor

  13. UV sensitivity of planktonic net community production in ocean surface waters

    OpenAIRE

    Regaudie de Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-01-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we tes...

  14. High brightness beams and applications

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1995-01-01

    This paper describes the present research on attaining intense bright electron beams. Thermionic systems are briefly covered. Recent and past results from the photoinjector programs are given. The performance advantages and difficulties presently faced by researchers using photoinjectors is discussed. The progress that has been made in photocathode materials, both in lifetime and quantum efficiency, is covered. Finally, a discussion of emittance measurements of photoinjector systems and how the measurement is complicated by the non-thermal nature of the electron beam is presented

  15. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1987-01-01

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  16. Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-A Review.

    Science.gov (United States)

    Garratt, J. R.

    1993-03-01

    Aspects of the land-surface and boundary-layer treatments in some 20 or so atmospheric general circulation models (GCMS) are summarized. In only a small fraction of these have significant sensitivity studies been carried out and published. Predominantly, the sensitivity studies focus upon the parameterization of land-surface processes and specification of land-surface properties-the most important of these include albedo, roughness length, soil moisture status, and vegetation density. The impacts of surface albedo and soil moisture upon the climate simulated in GCMs with bare-soil land surfaces are well known. Continental evaporation and precipitation tend to decrease with increased albedo and decreased soil moisture availability. For example, results from numerous studies give an average decrease in continental precipitation of 1 mm day1 in response to an average albedo increase of 0.13. Few conclusive studies have been carried out on the impact of a gross roughness-length change-the primary study included an important statistical assessment of the impact upon the mean July climate around the globe of a decreased continental roughness (by three orders of magnitude). For example, such a decrease reduced the precipitation over Amazonia by 1 to 2 mm day1.The inclusion of a canopy scheme in a GCM ensures the combined impacts of roughness (canopies tend to be rougher than bare soil), albedo (canopies tend to be less reflective than bare soil), and soil-moisture availability (canopies prevent the near-surface soil region from drying out and can access the deep soil moisture) upon the simulated climate. The most revealing studies to date involve the regional impact of Amazonian deforestation. The results of four such studies show that replacing tropical forest with a degraded pasture results in decreased evaporation ( 1 mm day1) and precipitation (1-2 mm day1), and increased near-surface air temperatures (2 K).Sensitivity studies as a whole suggest the need for a

  17. Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations.

    Science.gov (United States)

    Novakovic, Dunja; Saarinen, Jukka; Rojalin, Tatu; Antikainen, Osmo; Fraser-Miller, Sara J; Laaksonen, Timo; Peltonen, Leena; Isomäki, Antti; Strachan, Clare J

    2017-11-07

    Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches. Simultaneous narrowband CARS and SFG imaging was faster, but hyperspectral CARS and SFG imaging has the potential to be applied to a wider variety of more complex samples. These methodologies were further used to follow crystallization of indomethacin on tablet surfaces under two storage conditions: 30 °C/23% RH and 30 °C/75% RH. Imaging with (sub)micron resolution showed that the approach allowed detection of very early stage surface crystallization. The surfaces progressively crystallized to predominantly (but not exclusively) the gamma form at lower humidity and the alpha form at higher humidity. Overall, this study suggests that multimodal nonlinear imaging is a highly sensitive, solid-state (and chemically) specific, rapid, and versatile imaging technique for understanding and hence controlling (surface) solid-state forms and their complex changes in pharmaceuticals.

  18. Pulsed-laser-activated impulse response encoder: Sensitive detection of surface elastic waves on biomimetic microsized gel spheres

    Science.gov (United States)

    Yasukuni, Ryohei; Fukushima, Ryosuke; Iino, Takanori; Hosokawa, Yoichiroh

    2017-11-01

    A femtosecond-laser-induced impulsive force was applied to microsized calcium alginate (CaAlg) gel spheres as an external force to excite elastic waves. To evaluate elasticity, atomic force microscopy (AFM) was applied to detect vibration propagation. The sphere size dependence of the vibration was well reproduced by finite element method (FEM) simulation for pressure waves and surface acoustic waves. The obtained results indicate that the pulsed-laser-activated impulse response encoder (PLAIRE) enables the sensitive detection of elasticities, not only on inside but also on the surface.

  19. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fabrication and characterization of gold nanocrown arrays on a gold film for a high-sensitivity surface plasmon resonance biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Munsik; Kim, Nak-hyeon; Eom, Seyoung [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Tae Woo [School of East–West Medical Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Byun, Kyung Min, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Park, Hyeong-Ho, E-mail: hyeongho.park@kanc.re.kr [Nano Process Division, Korea Advanced Nano Fab Center, Suwon 443-270 (Korea, Republic of)

    2015-07-31

    We report on a versatile method to fabricate gold nanocrown arrays on a thin gold film based on ultraviolet nanoimprint lithography and tilted evaporation technique. We realize highly ordered 2-dimensional nanocrown arrays and characterize their sizes and morphologies using scanning electron microscopy. To demonstrate an enhanced surface plasmon resonance (SPR) detection by the fabricated gold nanocrown samples, biosensing experiments are performed by measuring SPR angle shift for biotin–streptavidin interaction and bulk refractive index change of dielectric medium. We hope that the suggested plasmonic platform with a high sensitivity could be extended to a variety of biomolecular binding reactions. - Highlights: • Gold nanocrown arrays are produced by nanoimprint lithography and tilted evaporation. • Use of gold nanocrown arrays can improve the sensor sensitivity significantly. • Improved sensitivity is due to enhanced field–matter interaction at gold nanocrowns.

  1. A factorial assessment of the sensitivity of the BATS land-surface parameterization scheme. [BATS (Biosphere-Atmosphere Transfer Scheme)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A. (Macquarie Univ., North Ryde, New South Wales (Australia))

    1993-02-01

    Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology and (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.

  2. Preparation and surface modification of hierarchical nanosheets-based ZnO microstructures for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Yongming; Lin, Yu, E-mail: linyuyrr@163.com; Lin, Yibing; Yang, Jiyuan

    2014-02-15

    This paper reports a simple one-step hydrothermal route for the preparation of hierarchical nanosheets-based ZnO microstructures and their application to dye-sensitized solar cells. The morphologies of the products were controlled by the dosage of the reactants. Their physical characteristics were detected by X-ray diffraction, a field-emission scanning electron microscope and a surface analyzer. It is proved that the sample of ZnO microspheres with larger surface area and stronger light-trapping capacity since the superiority of their entirely spherical structures exhibits better photoelectrochemical properties than the mixtures of ZnO microspheres and ZnO microflowers. A dye-sensitized solar cell assembled by the ZnO microspheres as photoanode shows an energy conversion efficiency of 2.94% after surface modification by tetrabutyl titanate solution at 90 {sup °}C. This result is over 1.6 times higher than the non-modified cell fabricated by the ZnO microspheres on the basis of the external improvement and the stability enhancement for the dye-sensitized ZnO photoanode. - Graphical abstract: Influences on energy conversion efficiency of the dye-sensitized solar cells assembled by decorating hierarchical nanosheets-based ZnO microstructures with tetrabutyl titanate solution at different temperatures. Display Omitted - Highlights: • Hierarchical nanosheets-based ZnO microstructures were controllably synthesized. • The ZnO microspheres show good optical and electrochemical properties. • The ZnO microspheres were modified by C{sub 16}H{sub 36}O{sub 4}Ti solution. • Remarkable increase of conversion efficiency is observed after surface modification.

  3. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    Directory of Open Access Journals (Sweden)

    Matthew R. McCurry

    2015-06-01

    Full Text Available The reliability of finite element analysis (FEA in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context.

  4. Influence of surface states of CuInS{sub 2} quantum dots in quantum dots sensitized photo-electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Wu, Lei [School of Electronic and Electrical, Wuhan Railway Vocational College of Technology, Wuhan 430205 (China); Zhao, Yinghan; Chen, Keqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-12-01

    Graphical abstract: J–V curves of different ligands capped CuInS{sub 2} QDs sensitized TiO{sub 2} photo-electrodes. - Highlights: • DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared. • Surface states of quantum dots greatly influence the electrochemical performance of CuInS{sub 2} quantum dot sensitized photo-electrodes. • S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes. - Abstract: Surface states are significant factor for the enhancement of electrochemical performance in CuInS{sub 2} quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S{sup 2−} ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S{sup 2−}-capped CuInS{sub 2} quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  5. T1 bright appendix sign to exclude acute appendicitis in pregnant women.

    Science.gov (United States)

    Shin, Ilah; An, Chansik; Lim, Joon Seok; Kim, Myeong-Jin; Chung, Yong Eun

    2017-08-01

    To evaluate the diagnostic value of the T1 bright appendix sign for the diagnosis of acute appendicitis in pregnant women. This retrospective study included 125 pregnant women with suspected appendicitis who underwent magnetic resonance (MR) imaging. The T1 bright appendix sign was defined as a high intensity signal filling more than half length of the appendix on T1-weighted imaging. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the T1 bright appendix sign for normal appendix identification were calculated in all patients and in those with borderline-sized appendices (6-7 mm). The T1 bright appendix sign was seen in 51% of patients with normal appendices, but only in 4.5% of patients with acute appendicitis. The overall sensitivity, specificity, PPV, and NPV of the T1 bright appendix sign for normal appendix diagnosis were 44.9%, 95.5%, 97.6%, and 30.0%, respectively. All four patients with borderline sized appendix with appendicitis showed negative T1 bright appendix sign. The T1 bright appendix sign is a specific finding for the diagnosis of a normal appendix in pregnant women with suspected acute appendicitis. • Magnetic resonance imaging is increasingly used in emergency settings. • Acute appendicitis is the most common cause of acute abdomen. • Magnetic resonance imaging is widely used in pregnant population. • T1 bright appendix sign can be a specific sign representing normal appendix.

  6. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Lin Bing; Min Qilong; Sun Wenbo; Hu Yongxiang; Fan, Tai-Fang

    2011-01-01

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  7. Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Vlčková Živcová, Zuzana; Bartoň, Jan; Petrák, Václav; Nesladek, M.; Cígler, Petr; Kavan, Ladislav

    2015-01-01

    Roč. 17, č. 2 (2015), s. 1165-1172 ISSN 1463-9076 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 ; RVO:61388963 ; RVO:68378271 Keywords : nanocrystallines * visible-light sensitization * boron-doped diamond Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015

  8. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

    NARCIS (Netherlands)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; Asseng, Senthold; Baranowski, Piotr; Basso, Bruno; Bodin, Per; Buis, Samuel; Cammarano, Davide; Deligios, Paola; Destain, Marie France; Dumont, Benjamin; Ewert, Frank; Ferrise, Roberto; François, Louis; Gaiser, Thomas; Hlavinka, Petr; Jacquemin, Ingrid; Kersebaum, Kurt Christian; Kollas, Chris; Krzyszczak, Jaromir; Lorite, Ignacio J.; Minet, Julien; Minguez, M.I.; Montesino, Manuel; Moriondo, Marco; Müller, Christoph; Nendel, Claas; Öztürk, Isik; Perego, Alessia; Rodríguez, Alfredo; Ruane, Alex C.; Ruget, Françoise; Sanna, Mattia; Semenov, Mikhail A.; Slawinski, Cezary; Stratonovitch, Pierre; Supit, Iwan; Waha, Katharina; Wang, Enli; Wu, Lianhai; Zhao, Zhigan; Rötter, Reimund P.

    2018-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in

  9. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

    Czech Academy of Sciences Publication Activity Database

    Fronzek, S.; Pirttioja, N. K.; Carter, T. R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, Miroslav; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M. F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, Petr; Jacquemin, I.; Kersebaum, K. C.; Kollas, C.; Krzyszczak, J.; Lorite, I. J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodriguez, A.; Ruane, A. C.; Ruget, F.; Sanna, M.; Semenov, M. A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.

    2018-01-01

    Roč. 159, jan (2018), s. 209-224 ISSN 0308-521X Institutional support: RVO:86652079 Keywords : climate - change * crop models * probabilistic assessment * simulating impacts * british catchments * uncertainty * europe * productivity * calibration * adaptation * Classification * Climate change * Crop model * Ensemble * Sensitivity analysis * Wheat Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 2.571, year: 2016

  10. A Novel Experimental Set-Up for Improving the Sensitivity of SV Waves to Shallow Surface-Breaking Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Pecorari, Claudio [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Aeronautical and Vehicle Engineering

    2006-03-15

    Conventional inspection procedures to detect surface-breaking defects in train axels and thick pipes often employ 45-degree incidence shear vertical (SV) waves as probing tool. Recently obtained theoretical and experimental results indicate that this method is considerably less sensitivity to shallow surface-breaking defects, than the one in which the angle of incidence is selected to be close to the critical angle of the longitudinal wave. This project has confirmed this thesis by experimentally investigating the backscattering of SV waves by surface-breaking cracks as a function o t the angle of incidence. To this end, three cracks of depth approximately equal to 0.3 mm, 0.5 mm and 0.7 were introduced on the surface of steel samples with a thickness of 47 mm. These cracks were insonified with transducers operating at 2.25 MHz, 3.5 MHz, and 5 MHz, which correspond to wavelengths in steel of 1.38 mm, 0.88 mm, and 0.62 mm, respectively. The increase in sensitivity has been assessed in the order of 15 dB.

  11. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications

    International Nuclear Information System (INIS)

    Feng, Ying; Chen, Ke

    2015-01-01

    We report a dry transfer method that can tranfer chemical vapor deposition (CVD) grown graphene onto liquid-sensitive surfaces. The graphene grown on copper (Cu) foil substrate was first transferred onto a freestanding 4 μm thick sputtered Cu film using the conventional wet transfer process, followed by a dry transfer process onto the target surface using a polydimethylsiloxane stamp. The dry-transferred graphene has similar properties to traditional wet-transferred graphene, characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and electrical transport measurements. It has a sheet resistance of 1.6 ∼ 3.4 kΩ/□, hole density of (4.1 ∼ 5.3) × 10 12 cm −2 , and hole mobility of 460 ∼ 760 cm 2 V −1 s −1 without doping at room temperature. The results suggest that large-scale CVD-grown graphene can be transferred with good quality and without contaminating the target surface by any liquid. Mg/MgO/graphene tunnel junctions were fabricated using this transfer method. The junctions show good tunneling characteristics, which demonstrates the transfer technique can also be used to fabricate graphene devices on liquid-sensitive surfaces. (paper)

  12. An investigation of the sensitivity of a land surface model to climate change using a reduced form model

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, A.H.; McIlwaine, S. [PAOS/CIRES, Univ. of Colorado, Boulder, CO (United States); Beringer, J. [Inst. of Arctic Biology, Univ. of Alaska, Fairbanks (United States); Bonan, G.B. [National Center for Atmospheric Research, Boulder, CO (United States)

    2001-05-01

    In an illustration of a model evaluation methodology, a multivariate reduced form model is developed to evaluate the sensitivity of a land surface model to changes in atmospheric forcing. The reduced form model is constructed in terms of a set of ten integrative response metrics, including the timing of spring snow melt, sensible and latent heat fluxes in summer, and soil temperature. The responses are evaluated as a function of a selected set of six atmospheric forcing perturbations which are varied simultaneously, and hence each may be thought of as a six-dimensional response surface. The sensitivities of the land surface model are interdependent and in some cases illustrate a physically plausible feedback process. The important predictors of land surface response in a changing climate are the atmospheric temperature and downwelling longwave radiation. Scenarios characterized by warming and drying produce a large relative response compared to warm, moist scenarios. The insensitivity of the model to increases in precipitation and atmospheric humidity is expected to change in applications to coupled models, since these parameters are also strongly implicated, through the representation of clouds, in the simulation of both longwave and shortwave radiation. (orig.)

  13. Silver nanoparticles-incorporated Nb2O5 surface passivation layer for efficiency enhancement in dye-sensitized solar cells.

    Science.gov (United States)

    Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P

    2018-08-15

    Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Comparison of the sensitivity of surface downward longwave radiation to changes in water vapor at two high elevation sites

    International Nuclear Information System (INIS)

    Chen, Yonghua; Naud, Catherine M; Rangwala, Imtiaz; Landry, Christopher C; Miller, James R

    2014-01-01

    Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 km apart horizontally and 348 m vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR–q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here. (letter)

  15. Comparison of the Sensitivity of Surface Downward Longwave Radiation to Changes in Water Vapor at Two High Elevation Sites

    Science.gov (United States)

    Chen, Yonghua; Naud, Catherine M.; Rangwala, Imtiaz; Landry, Christopher C.; Miller, James R.

    2014-01-01

    Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 kilometers apart horizontally and 348 meters vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR-q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here.

  16. Improved performance of dye-sensitized solar cells with surface-treated TiO2 as a photoelectrode

    International Nuclear Information System (INIS)

    Park, Su Kyung; Chung, Chinkap; Kim, Dae-Hwan; Kim, Cham; Lee, Sang-Ju; Han, Yoon Soo

    2012-01-01

    We report on the effects of surface-modified TiO 2 on the performance of dye-sensitized solar cells (DSSCs). TiO 2 surface was modified with Na 2 CO 3 via a simple dip coating process and the modified TiO 2 was applied to photoelectrodes of DSSCs. By dipping of TiO 2 layer into aqueous Na 2 CO 3 solution, the DSSC showed a power conversion efficiency of 9.98%, compared to that (7.75%) of the reference device without surface treatment. The UV–vis absorption spectra, the impedance spectra and the dark current studies revealed that the increase of all parameters was attributed to the enhanced dye adsorption, the prolonged electron lifetime and the reduced interfacial resistance.

  17. Sensitivity analysis of brain morphometry based on MRI-derived surface models

    Science.gov (United States)

    Klein, Gregory J.; Teng, Xia; Schoenemann, P. T.; Budinger, Thomas F.

    1998-07-01

    Quantification of brain structure is important for evaluating changes in brain size with growth and aging and for characterizing neurodegeneration disorders. Previous quantification efforts using ex vivo techniques suffered considerable error due to shrinkage of the cerebrum after extraction from the skull, deformation of slices during sectioning, and numerous other factors. In vivo imaging studies of brain anatomy avoid these problems and allow repetitive studies following progression of brain structure changes due to disease or natural processes. We have developed a methodology for obtaining triangular mesh models of the cortical surface from MRI brain datasets. The cortex is segmented from nonbrain tissue using a 2D region-growing technique combined with occasional manual edits. Once segmented, thresholding and image morphological operations (erosions and openings) are used to expose the regions between adjacent surfaces in deep cortical folds. A 2D region- following procedure is then used to find a set of contours outlining the cortical boundary on each slice. The contours on all slices are tiled together to form a closed triangular mesh model approximating the cortical surface. This model can be used for calculation of cortical surface area and volume, as well as other parameters of interest. Except for the initial segmentation of the cortex from the skull, the technique is automatic and requires only modest computation time on modern workstations. Though the use of image data avoids many of the pitfalls of ex vivo and sectioning techniques, our MRI-based technique is still vulnerable to errors that may impact the accuracy of estimated brain structure parameters. Potential inaccuracies include segmentation errors due to incorrect thresholding, missed deep sulcal surfaces, falsely segmented holes due to image noise and surface tiling artifacts. The focus of this paper is the characterization of these errors and how they affect measurements of cortical surface

  18. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  19. Fundamental Factors Impacting the Stability of Phosphonate-Derivatized Ruthenium Polypyridyl Sensitizers Adsorbed on Metal Oxide Surfaces.

    Science.gov (United States)

    Raber, McKenzie; Brady, Matthew David; Troian-Gautier, Ludovic; Dickenson, John; Marquard, Seth L; Hyde, Jacob; Lopez, Santiago; Meyer, Gerald J; Meyer, Thomas J; Harrison, Daniel P

    2018-06-08

    A series of 18 ruthenium(II) polypyridyl complexes were synthesized and evaluated under electrochemically oxidative conditions, which generates the Ru(III) oxidation state and mimics the harsh conditions experienced during the kinetically-limited regime that can occur in dye-sensitized solar cells (DSSCs) and dye-sensitized photoelectrosynthesis cells (DSPECs), to further develop fundamental insights into the factors governing molecular sensitizer surface stability in aqueous 0.1 M HClO4 (aq). Both desorption and oxidatively induced ligand substitution were observed on planar fluorine doped tin oxide, FTO, electrodes, with a dependence on the E1/2 Ru(III/II) redox potential dictating the comparative ratios of the processes. Complexes such as RuP4OMe (E1/2 = 0.91 vs Ag/AgCl) displayed virtually only desorption, while complexes such as RuPbpz (E1/2 > 1.62 V vs Ag/AgCl) displayed only chemical decomposition. Comparing isomers of 4,4'- and 5,5-disubstituted-2,2'-bipyridine ancillary polypyridyl ligands, a dramatic increase in the rate of desorption of the Ru(III) complexes was observed for the 5,5'-ligands. Nanoscopic indium doped tin oxide thin films, nanoITO, were also sensitized and analyzed with cyclic voltammetry, UV-Vis absorption spectroscopy, and XPS, allowing for further distinction of desorption versus ligand substitution processes. Desorption loss to bulk solution associated with the planar surface of FTO is essentially non-existent on nanoITO, where both desorption and ligand substitution are shut down with RuP4OMe. These results revealed that minimizing time spent in the oxidized form, incorporating electron donating groups, maximizing hydrophobicity, and minimizing molecular bulk near the adsorbed ligand are critical to optimizing the performance of ruthenium(II) polypyridyl complexes in dye-sensitized solar cell devices.

  20. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    Science.gov (United States)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model

  1. Increasing the Brightness of Light Sources

    OpenAIRE

    Fu, Ling

    2006-01-01

    In modern illumination systems, compact size and high brightness are important features. Light recycling allows an increase of the spectral radiance (brightness) emitted by a light source for the price of reducing the total radiant power. Light recycling means returning part of the emitted light to the source where part of it will escape absorption. As a result, the output brightness can be increased in a restricted phase space, ...

  2. Subnanomolar Sensitivity of Filter Paper-Based SERS Sensor for Pesticide Detection by Hydrophobicity Change of Paper Surface.

    Science.gov (United States)

    Lee, Minwoo; Oh, Kyudeok; Choi, Han-Kyu; Lee, Sung Gun; Youn, Hye Jung; Lee, Hak Lae; Jeong, Dae Hong

    2018-01-26

    As a cost-effective approach for detecting trace amounts of pesticides, filter paper-based SERS sensors have been the subject of intensive research. One of the hurdles to overcome is the difficulty of retaining nanoparticles on the surface of the paper because of the hydrophilic nature of the cellulose fibers in paper. This reduces the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles and short retention time of analytes on the paper surface. In this study, filter paper was treated with alkyl ketene dimer (AKD) to modify its property from hydrophilic to hydrophobic. AKD treatment increased the contact angle of the aqueous silver nanoparticle (AgNP) dispersion, which consequently increased the density of AgNPs. The retention time of the analyte was also increased by preventing its rapid absorption into the filter paper. The SERS signal was strongly enhanced by the increased number of SERS hot spots owing to the increased density of AgNPs on a small contact area of the filter surface. The reproducibility and sensitivity of the SERS signal were optimized by controlling the distribution of AgNPs on the surface of the filter paper by adjusting the concentration of the AgNP solution. Using this SERS sensor with a hydrophobicity-modified filter paper, the spot-to-spot variation of the SERS intensity of 25 spots of 4-aminothiophenol was 6.19%, and the limits of detection of thiram and ferbam as test pesticides were measured to be 0.46 nM and 0.49 nM, respectively. These proof-of-concept results indicate that this paper-based SERS sensor can serve for highly sensitive pesticide detection with low cost and easy fabrication.

  3. Polarization-sensitive surface plasmon enhanced ellipsometry biosensor using the photoelastic modulation technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Wu, S.Y.

    2009-01-01

    A surface plasmon enhanced ellipsometry (SPEE) biosensor scheme based on the use of a photoelastic modulator (PEM) is reported. We show that the polarization parameters of a laser beam, tan , cos and ellipse orientation angle , can be directly measured by detecting the modulation signals at the f......A surface plasmon enhanced ellipsometry (SPEE) biosensor scheme based on the use of a photoelastic modulator (PEM) is reported. We show that the polarization parameters of a laser beam, tan , cos and ellipse orientation angle , can be directly measured by detecting the modulation signals...... at the first and second harmonics of the modulated frequency under a certain birefringence geometry. This leads to accurate measurement of refractive index variations within the evanescent field region close to the gold sensor surface, thereby enabling biosensing applications. Our experimental results confirm...

  4. Reliability and Sensitivity Analysis for Laminated Composite Plate Using Response Surface Method

    International Nuclear Information System (INIS)

    Lee, Seokje; Kim, Ingul; Jang, Moonho; Kim, Jaeki; Moon, Jungwon

    2013-01-01

    Advanced fiber-reinforced laminated composites are widely used in various fields of engineering to reduce weight. The material property of each ply is well known; specifically, it is known that ply is less reliable than metallic materials and very sensitive to the loading direction. Therefore, it is important to consider this uncertainty in the design of laminated composites. In this study, reliability analysis is conducted using Callosum and Meatball interactions for a laminated composite plate for the case in which the tip deflection is the design requirement and the material property is a random variable. Furthermore, the efficiency and accuracy of the approximation method is identified, and a probabilistic sensitivity analysis is conducted. As a result, we can prove the applicability of the advanced design method for the stabilizer of an underwater vehicle

  5. Reliability and Sensitivity Analysis for Laminated Composite Plate Using Response Surface Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seokje; Kim, Ingul [Chungnam National Univ., Daejeon (Korea, Republic of); Jang, Moonho; Kim, Jaeki; Moon, Jungwon [LIG Nex1, Yongin (Korea, Republic of)

    2013-04-15

    Advanced fiber-reinforced laminated composites are widely used in various fields of engineering to reduce weight. The material property of each ply is well known; specifically, it is known that ply is less reliable than metallic materials and very sensitive to the loading direction. Therefore, it is important to consider this uncertainty in the design of laminated composites. In this study, reliability analysis is conducted using Callosum and Meatball interactions for a laminated composite plate for the case in which the tip deflection is the design requirement and the material property is a random variable. Furthermore, the efficiency and accuracy of the approximation method is identified, and a probabilistic sensitivity analysis is conducted. As a result, we can prove the applicability of the advanced design method for the stabilizer of an underwater vehicle.

  6. Automated Measurement for Sensitivity Analysis of Runoff-Sediment Load at Varying Surface Gradients

    Directory of Open Access Journals (Sweden)

    Imanogor P.A.

    2015-07-01

    Full Text Available Direct measurement of surface runoff is often associated with errors and inaccuracies which results to unreliable hydrological data. An automatic Runoff-meter using tipping buckets arrangement calibrated to tip 0.14 liter of runoff water per tip with an accuracy of ± 0.001 litre was used to measure surface runoff from a steel bounded soil tray of dimension (1200 mm X 900 mm X 260 mm filled with sand loamy to the depth of 130 mm and inclined at angle (0 0 , 5 0 ,12 0 and 15 0 horizontal to the instrument. The effect of varying angles of inclination on runoff intensity, sediment loss rate and sediment loss is significant at 5 % confidence level, while surface runoff is not significant at 5 % confidence level. Total highest sediment loss of 458.2 g and 313.4 g were observed at angle 15 0 and 12 0 respectively. Total surface runoff of 361.5 mm and 445.8 mm were generated at inclined angle of 0 0 and 5 0 , while at angle 12 0 and 15 0 , 564.3 mm and 590.0 mm of surface runoff were generated. In addition, runoff intensity and sediment loss rate were highest at angle 15 0 , while the lowest values of 1.5mm/min and 5.43 g/min were obtained at angle of inclination 5 0 . The results showed that strong relationship existed among the hydrological variables as a result of subjecting the steel bounded soil tray to different angles of inclination. Such results would provide useful data for the running of physics-based deterministic model of surface runoff and erosion which will be useful for the design of hydrological structures, land use planning and management.

  7. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    Science.gov (United States)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; van der Marel, Cees; Koole, Leo H.

    2014-10-01

    Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional "spacers", hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups from amine-treated surfaces. The application of PEI spacer in comparison to HMDA has shown much higher intensity of detection signal in ELISA experiment, indicating better immobilization efficiency and preservation of antibody activity upon attachment to the

  8. Brightness of the photosphere and faculae at the limb based on eclipse observations

    Energy Technology Data Exchange (ETDEWEB)

    Akimov, L.A.; Belkina, I.L.; Dyatel, N.P.

    1982-05-01

    The absolute distributions of integral and surface brightness of the photospheric continuum (lambdaroughly-equal5870 A) and in faculae at the very limb are obtained from slitless spectrograms of the total solar eclipse of July 10, 1972. Several possible reasons for the brightness increase toward the limb in the distribution of photospheric surface brightness are discussed. The faculae showed high contrasts, up to 1.76 at a height of 200 km from the limb. A comparison of the times of local contacts observed and calculated with allowance for lunar relief showed that the active regions are at about 300 km above the photosphere. A schematic model of a facula is proposed.

  9. A sensitive immunoradiometric assay for the detection of hepatitis B surface antigen

    International Nuclear Information System (INIS)

    Cameron, C.H.; Combridge, B.S.; Howell, D.R.; Barbara, J.A.J.

    1980-01-01

    A solid-phase immunoradiometric assay for hepatitis B surface antigen is described which has been in use since 1972. Initially it was used for reference laboratory work, but from 1974 it has also been used for screening blood and blood products. Methods for the production of reagents and their use in blood transfusion and reference work, are outlined. (Auth.)

  10. Studies of ultrathin magnetic films and particle-surface interactions with spin-sensitive electron spectroscopies

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1991-06-01

    Research during the current grant year has focused on: Investigation of probing depth in electron scattering from epitaxially grown paramagnetic films by means of Spin-Polarized Electron Energy Loss Spectroscopy; and studies of the dynamics of metastable He(2 3 S) deexcitation at surfaces utilizing Spin-Polarized Metastable Deexcitation Spectroscopy . This report discussed this research

  11. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors

    NARCIS (Netherlands)

    Maljaars, C.E.P.; de Souza, A.C.; Halkes, K.M.; Upton, P.J.; Reeman, S.M.; André, S.; Gabius, H.-J.; McDonnell, M.B.; Kamerling, J.P.

    2008-01-01

    The development of a biosensor based on surface plasmon resonance is described for the detection of carbohydrate-binding proteins in solution on a Biacore 2000 instrument, using immobilized glycopeptides as ligands. Their selection was based on previous screenings of solid-phase glycopeptide

  12. Sensitivity of Global Methane Bayesian Inversion to Surface Observation Data Sets and Chemical-Transport Model Resolution

    Science.gov (United States)

    Lew, E. J.; Butenhoff, C. L.; Karmakar, S.; Rice, A. L.; Khalil, A. K.

    2017-12-01

    Methane is the second most important greenhouse gas after carbon dioxide. In efforts to control emissions, a careful examination of the methane budget and source strengths is required. To determine methane surface fluxes, Bayesian methods are often used to provide top-down constraints. Inverse modeling derives unknown fluxes using observed methane concentrations, a chemical transport model (CTM) and prior information. The Bayesian inversion reduces prior flux uncertainties by exploiting information content in the data. While the Bayesian formalism produces internal error estimates of source fluxes, systematic or external errors that arise from user choices in the inversion scheme are often much larger. Here we examine model sensitivity and uncertainty of our inversion under different observation data sets and CTM grid resolution. We compare posterior surface fluxes using the data product GLOBALVIEW-CH4 against the event-level molar mixing ratio data available from NOAA. GLOBALVIEW-CH4 is a collection of CH4 concentration estimates from 221 sites, collected by 12 laboratories, that have been interpolated and extracted to provide weekly records from 1984-2008. Differently, the event-level NOAA data records methane mixing ratios field measurements from 102 sites, containing sampling frequency irregularities and gaps in time. Furthermore, the sampling platform types used by the data sets may influence the posterior flux estimates, namely fixed surface, tower, ship and aircraft sites. To explore the sensitivity of the posterior surface fluxes to the observation network geometry, inversions composed of all sites, only aircraft, only ship, only tower and only fixed surface sites, are performed and compared. Also, we investigate the sensitivity of the error reduction associated with the resolution of the GEOS-Chem simulation (4°×5° vs 2°×2.5°) used to calculate the response matrix. Using a higher resolution grid decreased the model-data error at most sites, thereby

  13. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    Science.gov (United States)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  14. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.

    Science.gov (United States)

    Chinga-Carrasco, Gary; Syverud, Kristin

    2014-09-01

    Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Surface Grafting of Ru(II) Diazonium-Based Sensitizers on Metal Oxides Enhances Alkaline Stability for Solar Energy Conversion.

    Science.gov (United States)

    Bangle, Rachel; Sampaio, Renato N; Troian-Gautier, Ludovic; Meyer, Gerald J

    2018-01-24

    The electrografting of [Ru(ttt)(tpy-C 6 H 4 -N 2 + )] 3+ , where "ttt" is 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine, was investigated on several wide band gap metal oxide surfaces (TiO 2 , SnO 2 , ZrO 2 , ZnO, In 2 O 3 :Sn) and compared to structurally analogous sensitizers that differed only by the anchoring group, i.e., -PO 3 H 2 and -COOH. An optimized procedure for diazonium electrografting to semiconductor metal oxides is presented that allowed surface coverages that ranged between 4.7 × 10 -8 and 10.6 × 10 -8 mol cm -2 depending on the nature of the metal oxide. FTIR analysis showed the disappearance of the diazonium stretch at 2266 cm -1 after electrografting. XPS analysis revealed a characteristic peak of Ru 3d at 285 eV as well as a peak at 531.6 eV that was attributed to O 1s in Ti-O-C bonds. Photocurrents were measured to assess electron injection efficiency of these modified surfaces. The electrografted sensitizers exhibited excellent stability across a range of pHs spanning from 1 to 14, where classical binding groups such as carboxylic and phosphonic derivatives were hydrolyzed.

  16. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells.

    Science.gov (United States)

    Bassoy, Esen Yonca; Kasahara, Atsuko; Chiusolo, Valentina; Jacquemin, Guillaume; Boydell, Emma; Zamorano, Sebastian; Riccadonna, Cristina; Pellegatta, Serena; Hulo, Nicolas; Dutoit, Valérie; Derouazi, Madiha; Dietrich, Pierre Yves; Walker, Paul R; Martinvalet, Denis

    2017-06-01

    Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma. © 2017 The Authors.

  17. West-WRF Sensitivity to Sea Surface Temperature Boundary Condition in California Precipitation Forecasts of AR Related Events

    Science.gov (United States)

    Zhang, X.; Cornuelle, B. D.; Martin, A.; Weihs, R. R.; Ralph, M.

    2017-12-01

    We evaluated the merit in coastal precipitation forecasts by inclusion of high resolution sea surface temperature (SST) from blended satellite and in situ observations as a boundary condition (BC) to the Weather Research and Forecast (WRF) mesoscale model through simple perturbation tests. Our sensitivity analyses shows that the limited improvement of watershed scale precipitation forecast is credible. When only SST BC is changed, there is an uncertainty introduced because of artificial model state equilibrium and the nonlinear nature of the WRF model system. With the change of SST on the order of a fraction of a degree centigrade, we found that the part of random perturbation forecast response is saturated after 48 hours when it reaches to the order magnitude of the linear response. It is important to update the SST at a shorter time period, so that the independent excited nonlinear modes can cancel each other. The uncertainty in our SST configuration is quantitatively equivalent to adding to a spatially uncorrelated Guasian noise of zero mean and 0.05 degree of standard deviation to the SST. At this random noise perturbation magnitude, the ensemble average behaves well within a convergent range. It is also found that the sensitivity of forecast changes in response to SST changes. This is measured by the ratio of the spatial variability of mean of the ensemble perturbations over the spatial variability of the corresponding forecast. The ratio is about 10% for surface latent heat flux, 5 % for IWV, and less than 1% for surface pressure.

  18. Rapid and Sensitive Detection of Lung Cancer Biomarker Using Nanoporous Biosensor Based on Localized Surface Plasmon Resonance Coupled with Interferometry

    Directory of Open Access Journals (Sweden)

    Jae-Sung Lee

    2015-01-01

    Full Text Available We propose a nanobiosensor to evaluate a lung cancer-specific biomarker. The nanobiosensor is based on an anodic aluminum oxide (AAO chip and functions on the principles of localized surface plasmon resonance (LSPR and interferometry. The pore-depth of the fabricated nanoporous AAO chip was 1 µm and was obtained using a two-step electrochemical anodization process. The sensor chip is sensitive to the refractive index (RI changes of the surrounding medium and also provides simple and label-free detection when specific antibodies are immobilized on the gold-deposited surface of the AAO chip. In order to confirm the effectiveness of the sensor, the antibodies were immobilized on the surface of the AAO chip, and the lung cancer-specific biomarker was applied atop of the immobilized-antibody layer using the self-assembled monolayer method. The nanoporous AAO chip was used as a sensor system to detect serum amyloid A1, which is a lung cancer-specific biomarker. The specific reaction of the antigen-antibody contributes to the change in the RI. This in turn causes a shift in the resonance spectrum in the refractive interference pattern. The limit of detection (LOD was found to be 100 ag/mL and the biosensor had high sensitivity over a wide concentration range.

  19. Sensitivity Analysis of the Surface Runoff Coefficient of HiPIMS in Simulating Flood Processes in a Large Basin

    Directory of Open Access Journals (Sweden)

    Yueling Wang

    2018-03-01

    Full Text Available To simulate flood processes at the basin level, the GPU-based High-Performance Integrated Hydrodynamic Modelling System (HiPIMS is gaining interest as computational capability increases. However, the difficulty of coping with rainfall input to HiPIMS reduces the possibility of acquiring a satisfactory simulation accuracy. The objective of this study is to test the sensitivity of the surface runoff coefficient in the HiPIMS source term in the Misai basin with an area of 797 km2 in south China. To achieve this, the basin was divided into 909,824 grid cells, to each of which a Manning coefficient was assigned based on its land use type interpreted from remote sensing data. A sensitivity analysis was conducted for three typical flood processes under four types of surface runoff coefficients, assumed a priori, upon three error functions. The results demonstrate the crucial role of the surface runoff coefficient in achieving better simulation accuracy and reveal that this coefficient varies with flood scale and is unevenly distributed over the basin.

  20. The bright-bright and bright-dark mode coupling-based planar metamaterial for plasmonic EIT-like effect

    Science.gov (United States)

    Yu, Wei; Meng, Hongyun; Chen, Zhangjie; Li, Xianping; Zhang, Xing; Wang, Faqiang; Wei, Zhongchao; Tan, Chunhua; Huang, Xuguang; Li, Shuti

    2018-05-01

    In this paper, we propose a novel planar metamaterial structure for the electromagnetically induced transparency (EIT)-like effect, which consists of a split-ring resonator (SRR) and a pair of metal strips. The simulated results indicate that a single transparency window can be realized in the symmetry situation, which originates from the bright-bright mode coupling. Further, a dual-band EIT-like effect can be achieved in the asymmetry situation, which is due to the bright-bright mode coupling and bright-dark mode coupling, respectively. Different EIT-like effect can be simultaneously achieved in the proposed structure with the different situations. It is of certain significance for the study of EIT-like effect.

  1. Rapid and sensitive detection of synthetic cannabinoids AMB-FUBINACA and α-PVP using surface enhanced Raman scattering (SERS)

    Science.gov (United States)

    Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.

    2018-04-01

    The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.

  2. Sensitivity study of surface wind flow of a limited area model simulating the extratropical storm Delta affecting the Canary Islands

    Directory of Open Access Journals (Sweden)

    C. Marrero

    2009-04-01

    Full Text Available In November 2005 an extratropical storm named Delta affected the Canary Islands (Spain. The high sustained wind and intense gusts experienced caused significant damage. A numerical sensitivity study of Delta was conducted using the Weather Research & Forecasting Model (WRF-ARW. A total of 27 simulations were performed. Non-hydrostatic and hydrostatic experiments were designed taking into account physical parameterizations and geometrical factors (size and position of the outer domain, definition or not of nested grids, horizontal resolution and number of vertical levels. The Factor Separation Method was applied in order to identify the major model sensitivity parameters under this unusual meteorological situation. Results associated to percentage changes relatives to a control run simulation demonstrated that boundary layer and surface layer schemes, horizontal resolutions, hydrostaticity option and nesting grid activation were the model configuration parameters with the greatest impact on the 48 h maximum 10 m horizontal wind speed solution.

  3. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Center for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Center for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Rothan, Hussin A.; Yusof, Rohana [Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Marel, Cees van der [Philips Materials Analysis, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Koole, Leo H. [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Center for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Faculty of Health, Medicine and Life Sciences, Maastricht University (Netherlands)

    2014-10-30

    Highlights: • Polyacrylate coatings with controlled surface functionalities. • Impact of surface chemistry and morphology on dengue antibody immobilization. • Enhancement of detection signal as a result of bio-activation of polymer surface. - Abstract: Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional “spacers”, hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups

  4. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    International Nuclear Information System (INIS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; Marel, Cees van der; Koole, Leo H.

    2014-01-01

    Highlights: • Polyacrylate coatings with controlled surface functionalities. • Impact of surface chemistry and morphology on dengue antibody immobilization. • Enhancement of detection signal as a result of bio-activation of polymer surface. - Abstract: Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional “spacers”, hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups

  5. A preliminary study of the tropical water cycle and its sensitivity to surface warming

    Science.gov (United States)

    Lau, K. M.; Sui, C. H.; Tao, W. K.

    1993-01-01

    The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.

  6. Parameter sensitivity analysis of a 1-D cold region lake model for land-surface schemes

    Science.gov (United States)

    Guerrero, José-Luis; Pernica, Patricia; Wheater, Howard; Mackay, Murray; Spence, Chris

    2017-12-01

    Lakes might be sentinels of climate change, but the uncertainty in their main feedback to the atmosphere - heat-exchange fluxes - is often not considered within climate models. Additionally, these fluxes are seldom measured, hindering critical evaluation of model output. Analysis of the Canadian Small Lake Model (CSLM), a one-dimensional integral lake model, was performed to assess its ability to reproduce diurnal and seasonal variations in heat fluxes and the sensitivity of simulated fluxes to changes in model parameters, i.e., turbulent transport parameters and the light extinction coefficient (Kd). A C++ open-source software package, Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), was used to perform sensitivity analysis (SA) and identify the parameters that dominate model behavior. The generalized likelihood uncertainty estimation (GLUE) was applied to quantify the fluxes' uncertainty, comparing daily-averaged eddy-covariance observations to the output of CSLM. Seven qualitative and two quantitative SA methods were tested, and the posterior likelihoods of the modeled parameters, obtained from the GLUE analysis, were used to determine the dominant parameters and the uncertainty in the modeled fluxes. Despite the ubiquity of the equifinality issue - different parameter-value combinations yielding equivalent results - the answer to the question was unequivocal: Kd, a measure of how much light penetrates the lake, dominates sensible and latent heat fluxes, and the uncertainty in their estimates is strongly related to the accuracy with which Kd is determined. This is important since accurate and continuous measurements of Kd could reduce modeling uncertainty.

  7. Optimization of dye extraction from Cordyline fruticosa via response surface methodology to produce a natural sensitizer for dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Mahmoud A.M. Al-Alwani

    Full Text Available In the present work, the application of response surface methodology (RSM for the optimization of process parameters in the chlorophyll extraction from Cordyline fruticosa leaves was performed. The absorbance of the extract obtained from the extraction process under different conditions was estimated using the D-optimal design in RSM. Three different process parameters such as the nature of organic solvent based on their boiling point (ethanol, methanol, and acetonitrile, pH (4–8 and extraction temperature (50–90 °C were optimized for chlorophyll extraction. The effects of these parameters on the absorbance or concentration of the extract were evaluated using ANOVA results of quadratic polynomial regression. The results showed a high R2 and adjusted R2 correlation coefficients of 0.9963 and 0.9921 respectively. Moreover, the analysis of the final quadric model based on the design experiments indicated an optimal extraction condition of pH of 7.99, extraction temperature of 78.33 °C, and a solvent boiling point, 78 °C. The predicted absorbance was 1.006, which is in good agreement with the experimentally obtained result of 1.04 at 665 nm wavelength. The application of pigment obtained under the optimal condition was further evaluated as a sensitizer for the dye sensitized solar cells. Maximum solar conversion efficiency (η of 0.5% was achieved for the C. fruticosa leaf extract obtained under the optimum extraction conditions. Furthermore, the exposure of the leaf pigment to 100 mW/cm2 simulated sunlight yielded a short circuit photocurrent density (Isc of 1.3 mA, open circuit voltage (Voc of 616 mV, and a fill factor (ff of 60.16%. Keywords: Optimization, Cordyline fruticosa, Chlorophyll, Process variables, D-optimal design, Solar cells

  8. Brightness and darkness as perceptual dimensions

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2007-01-01

    A common-sense assumption concerning visual perception states that brightness and darkness cannot coexist at a given spatial location. One corollary of this assumption is that achromatic colors, or perceived grey shades, are contained in a one-dimensional (1-D) space varying from bright to dark. The

  9. The sensitivity of the Late Saalian (140 ka) and LGM (21 ka) Eurasian ice sheets to sea surface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Florence [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); UJF, CNRS, Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres Cedex (France); Stockholm University, Department of Geological Sciences, Stockhlom (Sweden); Liakka, Johan [Stockholm University, Department of Meteorology, Stockholm (Sweden); Krinner, Gerhard; Peyaud, Vincent [UJF, CNRS, Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres Cedex (France); Jakobsson, Martin [Stockholm University, Department of Geological Sciences, Stockhlom (Sweden); Masina, Simona [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-08-15

    This work focuses on the Late Saalian (140 ka) Eurasian ice sheets' surface mass balance (SMB) sensitivity to changes in sea surface temperatures (SST). An Atmospheric General Circulation Model (AGCM), forced with two preexisting Last Glacial Maximum (LGM, 21 ka) SST reconstructions, is used to compute climate at 140 and 21 ka (reference glaciation). Contrary to the LGM, the ablation almost stopped at 140 ka due to the climatic cooling effect from the large ice sheet topography. Late Saalian SST are simulated using an AGCM coupled with a mixed layer ocean. Compared to the LGM, these 140 ka SST show an inter-hemispheric asymmetry caused by the larger ice-albedo feedback, cooling climate. The resulting Late Saalian ice sheet SMB is smaller due to the extensive simulated sea ice reducing the precipitation. In conclusion, SST are important for the stability and growth of the Late Saalian Eurasian ice sheet. (orig.)

  10. T1 bright appendix sign to exclude acute appendicitis in pregnant women

    International Nuclear Information System (INIS)

    Shin, Ilah; An, Chansik; Lim, Joon Seok; Kim, Myeong-Jin; Chung, Yong Eun

    2017-01-01

    To evaluate the diagnostic value of the T1 bright appendix sign for the diagnosis of acute appendicitis in pregnant women. This retrospective study included 125 pregnant women with suspected appendicitis who underwent magnetic resonance (MR) imaging. The T1 bright appendix sign was defined as a high intensity signal filling more than half length of the appendix on T1-weighted imaging. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the T1 bright appendix sign for normal appendix identification were calculated in all patients and in those with borderline-sized appendices (6-7 mm). The T1 bright appendix sign was seen in 51% of patients with normal appendices, but only in 4.5% of patients with acute appendicitis. The overall sensitivity, specificity, PPV, and NPV of the T1 bright appendix sign for normal appendix diagnosis were 44.9%, 95.5%, 97.6%, and 30.0%, respectively. All four patients with borderline sized appendix with appendicitis showed negative T1 bright appendix sign. The T1 bright appendix sign is a specific finding for the diagnosis of a normal appendix in pregnant women with suspected acute appendicitis. (orig.)

  11. T1 bright appendix sign to exclude acute appendicitis in pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ilah; An, Chansik; Lim, Joon Seok; Kim, Myeong-Jin; Chung, Yong Eun [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul (Korea, Republic of)

    2017-08-15

    To evaluate the diagnostic value of the T1 bright appendix sign for the diagnosis of acute appendicitis in pregnant women. This retrospective study included 125 pregnant women with suspected appendicitis who underwent magnetic resonance (MR) imaging. The T1 bright appendix sign was defined as a high intensity signal filling more than half length of the appendix on T1-weighted imaging. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the T1 bright appendix sign for normal appendix identification were calculated in all patients and in those with borderline-sized appendices (6-7 mm). The T1 bright appendix sign was seen in 51% of patients with normal appendices, but only in 4.5% of patients with acute appendicitis. The overall sensitivity, specificity, PPV, and NPV of the T1 bright appendix sign for normal appendix diagnosis were 44.9%, 95.5%, 97.6%, and 30.0%, respectively. All four patients with borderline sized appendix with appendicitis showed negative T1 bright appendix sign. The T1 bright appendix sign is a specific finding for the diagnosis of a normal appendix in pregnant women with suspected acute appendicitis. (orig.)

  12. SKYMONITOR: A Global Network for Sky Brightness Measurements

    Science.gov (United States)

    Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.

    2010-01-01

    We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.

  13. Surface-sensitive conductivity measurement using a micro multi-point probe approach

    DEFF Research Database (Denmark)

    Perkins, Edward; Barreto, Lucas; Wells, Justin

    2013-01-01

    An instrument for microscale electrical transport measurements in ultra-high vacuum is presented. The setup is constructed around collinear lithographically-created multi-point probes with a contact spacing down to 500 nm. Most commonly, twelve-point probes are used. These probes are approached...... measurements with an equidistant four-point probe for a wide range of contact spacings. In this way, it is possible to distinguish between bulk-like and surface-like conduction. The paper describes the design of the instrument and the approach to data and error analysis. Application examples are given...

  14. On correct evaluation techniques of brightness enhancement effect measurement data

    Science.gov (United States)

    Kukačka, Leoš; Dupuis, Pascal; Motomura, Hideki; Rozkovec, Jiří; Kolář, Milan; Zissis, Georges; Jinno, Masafumi

    2017-11-01

    This paper aims to establish confidence intervals of the quantification of brightness enhancement effects resulting from the use of pulsing bright light. It is found that the methods used so far may yield significant bias in the published results, overestimating or underestimating the enhancement effect. The authors propose to use a linear algebra method called the total least squares. Upon an example dataset, it is shown that this method does not yield biased results. The statistical significance of the results is also computed. It is concluded over an observation set that the currently used linear algebra methods present many patterns of noise sensitivity. Changing algorithm details leads to inconsistent results. It is thus recommended to use the method with the lowest noise sensitivity. Moreover, it is shown that this method also permits one to obtain an estimate of the confidence interval. This paper neither aims to publish results about a particular experiment nor to draw any particular conclusion about existence or nonexistence of the brightness enhancement effect.

  15. Tactile surface classification for limbed robots using a pressure sensitive robot skin

    International Nuclear Information System (INIS)

    Shill, Jacob J; Collins Jr, Emmanuel G; Coyle, Eric; Clark, Jonathan

    2015-01-01

    This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies >98%. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies ≈99%. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains. (paper)

  16. Sensitivity of Horn of Africa Rainfall to Regional Sea Surface Temperature Forcing

    Directory of Open Access Journals (Sweden)

    Zewdu T. Segele

    2015-05-01

    Full Text Available The Abdus Salam International Center for Theoretical Physics (ICTP version 4.4 Regional Climate Model (RegCM4 is used to investigate the rainfall response to cooler/warmer sea surface temperature anomaly (SSTA forcing in the Indian and Atlantic Oceans. The effect of SSTA forcing in a specific ocean basin is identified by ensemble, averaging 10 individual simulations in which a constant or linearly zonally varying SSTA is prescribed in individual basins while specifying the 1971–2000 monthly varying climatological sea surface temperature (SST across the remaining model domain. The nonlinear rainfall response to SSTA amplitude also is investigated by separately specifying +1K, +2K, and +4K SSTA forcing in the Atlantic and Indian Oceans. The simulation results show that warm SSTs over the entire Indian Ocean produce drier conditions across the larger Blue Nile catchment, whereas warming ≥ +2K generates large positive rainfall anomalies exceeding 10 mm·day−1 over drought prone regions of Northeastern Ethiopia. However, the June–September rainy season tends to be wetter (drier when the SST warming (cooling is limited to either the Northern or Southern Indian Ocean. Wet rainy seasons generally are characterized by deepening of the monsoon trough, east of 40°E, intensification of the Mascarene high, strengthening of the Somali low level jet and the tropical easterly jet, enhanced zonal and meridional vertically integrated moisture fluxes, and steeply vertically decreasing moist static energy. The opposite conditions hold for dry monsoon seasons.

  17. Influence of Different Surface Modifications on the Photovoltaic Performance and Dark Current of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    XU Weiwei; DAI Songyuan; HU Linhua; ZHANG Changneng; XIAO Shangfeng; LUO Xiangdong; JING Weiping; WANG Kongjia

    2007-01-01

    The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. One was to apply a compact layer between the conductive glass substrate and nanoporous TiO2 film. Another was to produce TiO2 nanoparticles among the microstructure by TiCU treatment. A suitable concentration and number of times for TiCU treatment were found in our experiment. The dark current is suppressed by surface modifications, leading to a significant improvement in the solar cells performance. An excessive concentration of TiCU will produce more surface states and introduce a larger dark current reversely. The dye is also regarded as a source of charge recombination in dark to some extent, due to an amount of surface protonations introduced by the interfacial link in the conductive glass substrate/dye interface and dye/TiO2 interface.

  18. Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein.

    Science.gov (United States)

    Wang, Wenjie; Ding, Xiaofan; Xu, Qing; Wang, Jing; Wang, Lei; Lou, Xinhui

    2016-12-01

    Zeta potentials (ZP) of gold nanoparticle bioconjugates (AuNP-bios) provide important information on surface charge that is critical for many applications including drug delivery, biosensing, and cell imaging. The ZP measurements (ZPMs) are conducted under an alternative electrical field at a high frequency under laser irradiation, which may strongly affect the status of surface coating of AuNP-bios and generate unreliable data. In this study, we systemically evaluated the ZP data reliability (ZPDR) of citrate-, thiolated single stranded DNA-, and protein-coated AuNPs mainly according to the consistence of ZPs in the repeated ZPMs and the changes of the hydrodynamic size before and after the ZPMs. We found that the ZPDR was highly dependent on both buffer conditions and surface modifications. Overall, the higher ionic strength of the buffer and the lower affinity of surface bounders were related with the worse ZPDR. The ZPDR of citrate-coated AuNP was good in water, but bad in 10mM phosphate buffer (PB), showing substantially decrease of the absolute ZP values after each measurement, probably due to the electrical field facilitated adsorption of negatively charged phosphate ions on AuNPs. The significant desorption of DNAs from AuNP was observed in the PB containing medium concentration of NaCl, but not in PB. The excellent ZPDR of bovine serum albumin (BSA)-coated AuNP was observed at high salt concentrations and low surface coverage, enabling ZPM as an ultra-sensitive tool for protein quantification on the surface of AuNPs with a single molecule resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    International Nuclear Information System (INIS)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-01-01

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ( f licker ) of stars can be used to measure log g to a high accuracy of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T eff = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested

  20. Effect of surface plasmon polaritons on the sensitivity of refractive index measurement using total internal reflection method

    International Nuclear Information System (INIS)

    Roshan Entezar, S.

    2015-01-01

    The phase difference between two p-polarized and s-polarized plane waves which are reflected under total internal reflection from the base of a prism with a thin metal coating is studied. Typically such a quantity can be used to measure the refractive index of a test material using the total internal reflection method. It is shown that due to the excitation of surface plasmon polaritons at the interface between the tested dielectric material and the thin metal layer, the p-polarized light experiences a large phase shift which enlarges the phase difference between the p-polarized and the s-polarized waves. As a result, the sensitivity of refractive index measurement increases and the error in determining the refractive index decreases. - Highlights: • Phase difference of totally internally reflected p and s polarized beams is studied. • Excitation of the surface wave increases the phase shift of the p-polarized light. • The sensitivity of refractive index measurement increases by using a coated prism. • The error in determining the refractive index decreases using the coated prism

  1. Surface functionalization of quantum dots with fine-structured pH-sensitive phospholipid polymer chains.

    Science.gov (United States)

    Liu, Yihua; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-11-01

    To add novel functionality to quantum dots (QDs), we synthesized water-soluble and pH-responsive block-type polymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were composed of cytocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer segments, which contain a small fraction of active ester groups and can be used to conjugate biologically active compounds to the polymer, and pH-responsive poly(2-(N,N-diethylamino) ethyl methacrylate (DEAEMA)) segments. One terminal of the polymer chain had a hydrophobic alkyl group that originated from the RAFT initiator. This hydrophobic group can bind to the hydrophobic layer on the QD surface. A fluorescent dye was conjugated to the polymer chains via the active ester group. The block-type polymers have an amphiphilic nature in aqueous medium. The polymers were thus easily bound to the QD surface upon evaporation of the solvent from a solution containing the block-type polymer and QDs, yielding QD/fluorescence dye-conjugated polymer hybrid nanoparticles. Fluorescence resonance energy transfer (FRET) between the QDs (donors) and the fluorescent dye molecules (acceptors) was used to obtain information on the conformational dynamics of the immobilized polymers. Higher FRET efficiency of the QD/fluorescent dye-conjugated polymer hybrid nanoparticles was observed at pH 7.4 as compared to pH 5.0 due to a stretching-shrinking conformational motion of the poly(DEAEMA) segments in response to changes in pH. We concluded that the block-type MPC polymer-modified nanoparticles could be used to evaluate the pH of cells via FRET fluorescence based on the cytocompatibility of the MPC polymer. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. On the sensitivity of Land Surface Temperature estimates in arid irrigated lands using MODTRAN

    KAUST Repository

    Rosas, Jorge

    2015-11-29

    Land surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of evapotranspiration (ET) and surface moisture status. However, in order to retrieve the ET with an accuracy approaching 10%, LST should be retrieved to within 1 ◦C or better, disregarding other elements of uncertainty. The removal of atmospheric effects is key towards achieving a precise estimation of LST and it requires detailed information on water vapor. The Thermal Infrared Sensor (TIRS) onboard Landsat 8 captures data in two long wave thermal bands with 100-meter resolution. However, the US Geological Survey has reported a calibration problem of TIRS bands caused by stray light, resulting in a higher bias in one of its two bands (4% in band 11, 2% in band 10). Therefore, split-window algorithms for the estimation of LST might not be reliable. Our work will focus on the impact of using different atmospheric profiles (e.g. weather prediction models, satellite) for the estimation of LST derived from MODTRAN by using one of the TIRS bands onboard Landsat 8 (band 10). Sites with in-situ measurements of LST are used as evaluation sources. Comparisons between the measured LST and LST derived based on different atmospheric profile inputs to MODTRAN are carried out from 2 Landsat-overpass days (DOY 153 and 160 2015). Preliminary results show a mean absolute error of around 3 ◦C between in-situ and estimated LST over two different crops (alfalfa and carrot) and bare soil.

  3. Improvement of thermal stability of UV curable pressure sensitive adhesive by surface modified silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Beili; Ryu, Chong-Min; Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr

    2013-11-01

    Highlights: • Silica nanoparticles were modified to carry the vinyl groups for photo-crosslinking. • Acrylic copolymer was modified to have the vinyl groups for photo-crosslinking. • Strong and extensive interfacial bondings were formed between polymer and silica. • Thermal stability of PSA was improved by forming nanocomposite with modified silica. -- Abstract: Pressure sensitive adhesives (PSAs) with higher thermal stability were successfully prepared by forming composite with the silica nanoparticles modified via reaction with 3-methacryloxypropyltrimethoxysilane. The acrylic copolymer was synthesized as a base resin for PSAs by solution polymerization of 2-EHA, EA, and AA with AIBN as an initiator. The acrylic copolymer was further modified with GMA to have the vinyl groups available for UV curing. The peel strength decreased with the increase of gel content which was dependent on both silica content and UV dose. Thermal stability of the composite PSAs was improved noticeably with increasing silica content and UV dose mainly due to the strong and extensive interfacial bonding between the organic polymer matrix and silica.

  4. Validation and sensitivity tests on improved parametrizations of a land surface process model (LSPM) in the Po Valley

    International Nuclear Information System (INIS)

    Cassardo, C.; Carena, E.; Longhetto, A.

    1998-01-01

    The Land Surface Process Model (LSPM) has been improved with respect to the 1. version of 1994. The modifications have involved the parametrizations of the radiation terms and of turbulent heat fluxes. A parametrization of runoff has also been developed, in order to close the hydrologic balance. This 2. version of LSPM has been validated against experimental data gathered at Mottarone (Verbania, Northern Italy) during a field experiment. The results of this validation show that this new version is able to apportionate the energy into sensible and latent heat fluxes. LSPM has also been submitted to a series of sensitivity tests in order to investigate the hydrological part of the model. The physical quantities selected in these sensitivity experiments have been the initial soil moisture content and the rainfall intensity. In each experiment, the model has been forced by using the observations carried out at the synoptic stations of San Pietro Capofiume (Po Valley, Italy). The observed characteristics of soil and vegetation (not involved in the sensitivity tests) have been used as initial and boundary conditions. The results of the simulation show that LSPM can reproduce well the energy, heat and water budgets and their behaviours with varying the selected parameters. A careful analysis of the LSPM output shows also the importance to identify the effective soil type

  5. Surface Acoustic Wave Nebulisation Mass Spectrometry for the Fast and Highly Sensitive Characterisation of Synthetic Dyes in Textile Samples

    Science.gov (United States)

    Astefanei, Alina; van Bommel, Maarten; Corthals, Garry L.

    2017-10-01

    Surface acoustic wave nebulisation (SAWN) mass spectrometry (MS) is a method to generate gaseous ions compatible with direct MS of minute samples at femtomole sensitivity. To perform SAWN, acoustic waves are propagated through a LiNbO3 sampling chip, and are conducted to the liquid sample, which ultimately leads to the generation of a fine mist containing droplets of nanometre to micrometre diameter. Through fission and evaporation, the droplets undergo a phase change from liquid to gaseous analyte ions in a non-destructive manner. We have developed SAWN technology for the characterisation of organic colourants in textiles. It generates electrospray-ionisation-like ions in a non-destructive manner during ionisation, as can be observed by the unmodified chemical structure. The sample size is decreased by tenfold to 1000-fold when compared with currently used liquid chromatography-MS methods, with equal or better sensitivity. This work underscores SAWN-MS as an ideal tool for molecular analysis of art objects as it is non-destructive, is rapid, involves minimally invasive sampling and is more sensitive than current MS-based methods. [Figure not available: see fulltext.

  6. Real-Time Characterization of Electrospun PVP Nanofibers as Sensitive Layer of a Surface Acoustic Wave Device for Gas Detection

    Directory of Open Access Journals (Sweden)

    D. Matatagui

    2014-01-01

    Full Text Available The goal of this work has been to study the polyvinylpyrrolidone (PVP fibers deposited by means of the electrospinning technique for using as sensitive layer in surface acoustic wave (SAW sensors to detect volatile organic compounds (VOCs. The electrospinning process of the fibers has been monitored and RF characterized in real time, and it has been shown that the diameters of the fibers depend mainly on two variables: the applied voltage and the distance between the needle and the collector, since all the electrospun fibers have been characterized by a scanning electron microscopy (SEM. Real-time measurement during the fiber coating process has shown that the depth of penetration of mechanical perturbation in the fiber layer has a limit. It has been demonstrated that once this saturation has been reached, the increase of the thickness of the fibers coating does not improve the sensitivity of the sensor. Finally, the parameters used to deposit the electrospun fibers of smaller diameters have been used to deposit fibers on a SAW device to obtain a sensor to measure different concentrations of toluene at room temperature. The present sensor exhibited excellent sensitivity, good linearity and repeatability, and high and fast response to toluene at room temperature.

  7. Surface acidity and solid-state compatibility of excipients with an acid-sensitive API: case study of atorvastatin calcium.

    Science.gov (United States)

    Govindarajan, Ramprakash; Landis, Margaret; Hancock, Bruno; Gatlin, Larry A; Suryanarayanan, Raj; Shalaev, Evgenyi Y

    2015-04-01

    The objectives of this study were to measure the apparent surface acidity of common excipients and to correlate the acidity with the chemical stability of an acid-sensitive active pharmaceutical ingredient (API) in binary API-excipient powder mixtures. The acidity of 26 solid excipients was determined by two methods, (i) by measuring the pH of their suspensions or solutions and (ii) the pH equivalent (pHeq) measured via ionization of probe molecules deposited on the surface of the excipients. The chemical stability of an API, atorvastatin calcium (AC), in mixtures with the excipients was evaluated by monitoring the appearance of an acid-induced degradant, atorvastatin lactone, under accelerated storage conditions. The extent of lactone formation in AC-excipient mixtures was presented as a function of either solution/suspension pH or pHeq. No lactone formation was observed in mixtures with excipients having pHeq > 6, while the lactone levels were pronounced (> 0.6% after 6 weeks at 50°C/20% RH) with excipients exhibiting pHeq 6, 3-6, and < 3) were consistent with the reported solution pH-stability profile of AC. In contrast to the pHeq scale, lactone formation did not show any clear trend when plotted as a function of the suspension/solution pH. Two mechanisms to explain the discrepancy between the suspension/solution pH and the chemical stability data were discussed. Acidic excipients, which are expected to be incompatible with an acid-sensitive API, were identified based on pHeq measurements. The incompatibility prediction was confirmed in the chemical stability tests using AC as an example of an acid-sensitive API.

  8. Bright Sparks of Our Future!

    Science.gov (United States)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  9. Designers predict a bright future

    International Nuclear Information System (INIS)

    Statton, T.D.

    1996-01-01

    As power plant designers and builders, there is a bright future for the industry. The demand for electricity will continue to grow, and the need for new plants will increase accordingly. But companies that develop and supply these plants must adapt to new ways of doing business if they expect to see the dawn of this new age. Several factors will have a profound effect on the generation and use of electricity in future years. Instant communications now reach all corners of the globe, making people everywhere aspire to a higher standard of living. The economic surge needed to satisfy these appetites will, in turn, be fed by a network of suppliers who are themselves restructuring to serve global markets, unimpeded by past nationalistic barriers to trade. The strong correlation between economic progress and the growing demand for electricity is well recognized. A ready supply of affordable electricity is a necessary underpinning for any economic expansion. As economies advance and jobs increase, electric demand grows geometrically, fueled by an ever-improving quality of life. Coupled with increasing demand is the worldwide trend toward privatization of the generation industry. The reasons may vary in different parts of the world, but the effect is the same--companies are battling intensely for the right to build or purchase generating facilities. Those companies, like the industry they serve, are themselves in a period of transition. Once a closed, monopolistic group of owners in a predominantly services-based market, they are, thanks to competitive forces, being driven steadily toward a product-based structure

  10. Site-specific growth of Au-Pd alloy horns on Au nanorods: A platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy

    KAUST Repository

    Huang, Jianfeng; Zhu, Yihan; Lin, Ming; Wang, Qingxiao; Zhao, Lan; Yang, Yang; Yao, Kexin; Han, Yu

    2013-01-01

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized

  11. Satellite retrieved cloud optical thickness sensitive to surface wind speed in the subarctic marine boundary layer

    International Nuclear Information System (INIS)

    Glantz, Paul

    2010-01-01

    The optical and microphysical properties of low level marine clouds, presented over the Norwegian Sea and Barents Sea, have been investigated for the period 2000-2006. The air masses were transported for more or less seven days over the warmer North Atlantic before they arrived at the area investigated. The main focus in this study is on investigating the relationship between cloud optical thickness (COT) and surface wind speed (U 10m ) using satellite retrievals in combination with operational meteorological data. A relatively strong correlation (R 2 = 0.97) is obtained for wind speeds up to 12 m s -1 , in air masses that were probably to a major degree influenced by wind shears and to a minor degree by buoyancy. The relationship (U 2.5 ) is also in between those most commonly found in the literature for water vapor (∼U 1 ) and sea salt (∼U 3.4 ). The present results highlight the magnitude of marine sea-spray influence on COT and their global climatic importance.

  12. Phytochelatin Modified Electrode Surface as a Sensitive Heavy- Metal Ion Biosensor

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2005-02-01

    Full Text Available Electrochemical biosensors have superior properties over other existingmeasurement systems because they can provide rapid, simple and low-cost on-fielddetermination of many biological active species and a number of dangerous pollutants. Inour work, we suggested a new heavy metal biosensor based on interaction of heavy metalions (Cd2+ and Zn2+ with phytochelatin, which was adsorbed on the surface of the hangingmercury drop electrode, using adsorptive transfer stripping differential pulse voltammetry.In addition, we applied the suggested technique for the determination of heavy metals in abiological sample – human urine and platinum in a pharmaceutical drug. The detectionlimits (3 S/N of Cd(II, Zn(II and cis-platin were about 1.0, 13.3 and 1.9 pmole in 5 μl,respectively. On the basis of the obtained results, we propose that the suggested techniqueoffers simple, rapid, and low-cost detection of heavy metals in environmental, biologicaland medical samples.

  13. Testate amoebae communities sensitive to surface moisture conditions in Patagonian peatlands

    Science.gov (United States)

    Loisel, J.; Booth, R.; Charman, D.; van Bellen, S.; Yu, Z.

    2017-12-01

    Here we examine moss surface samples that were collected during three field campaigns (2005, 2010, 2014) across southern Patagonian peatlands to assess the potential use of testate amoebae and 13C isotope data as proxy indicators of soil moisture. These proxies have been widely tested across North America, but their use as paleoecological tools remains sparse in the southern hemisphere. Samples were collected along a hydrological gradient spanning a range of water table depth from 0cm in wet hollows to over 85cm in dry hummocks. Moss moisture content was measured in the field. Over 25 taxa were identified, with many of them not found in North America. Ordinations indicate statistically significant and dominant effects of soil moisture and water table depth on testate assemblages, though interestingly 13C is even more strongly correlated with testates amoebae than direct soil conditions. It is possible that moss 13C signature constitutes a compound indicator that represents seasonal soil moisture better than opportunistic sampling during field campaigns. There is no significant effect of year or site across the dataset. In addition to providing a training set that translates testate amoebae moisture tolerance range into water tabel depth for Patagonian peatlands, we also compare our results with those from the North American training set to show that, despite 'novel' Patagonian taxa, the robustness of international training sets is probably sufficient to quantify most changes in soil moisture from any site around the world. We also identify key indicator species that are shown to be of universal value in peat-based hydrological reconstructions.

  14. Effects of QD surface coverage in solid-state PbS quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.; Brennan, Thomas P.; Trejo, Orlando; Xu, John; Prinz, Fritz B.; Bent, Stacey F.

    2013-01-01

    Lead sulfide quantum dots (QDs) were grown in situ on nanoporous TiO 2 by successive ion layer adsorption and reaction (SILAR) and by atomic layer deposition (ALD), to fabricate solid-state quantum-dot sensitized solar cells (QDSSCs). With the ultimate goal of increasing QD surface coverage, this work compares the impact of these two synthetic routes on the light absorption and electrical properties of devices. A higher current density was observed in the SILAR-grown QD devices under reverse bias, as compared to ALD-grown QD devices, attributed to injection problems of the lower-band-gap QDs present in the SILAR-grown QD device. To understand the effects of QD surface coverage on device performance, particularly interfacial recombination, electron lifetimes were measured for varying QD deposition cycles. Electron lifetimes were found to decrease with increasing SILAR cycles, indicating that the expected decrease in recombination between electrons in the TiO2 and holes in the hole-transport material, due to increased QD surface coverage, is not the dominant effect of increased deposition cycles. © 2013 IEEE.

  15. Effects of QD surface coverage in solid-state PbS quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2013-06-01

    Lead sulfide quantum dots (QDs) were grown in situ on nanoporous TiO 2 by successive ion layer adsorption and reaction (SILAR) and by atomic layer deposition (ALD), to fabricate solid-state quantum-dot sensitized solar cells (QDSSCs). With the ultimate goal of increasing QD surface coverage, this work compares the impact of these two synthetic routes on the light absorption and electrical properties of devices. A higher current density was observed in the SILAR-grown QD devices under reverse bias, as compared to ALD-grown QD devices, attributed to injection problems of the lower-band-gap QDs present in the SILAR-grown QD device. To understand the effects of QD surface coverage on device performance, particularly interfacial recombination, electron lifetimes were measured for varying QD deposition cycles. Electron lifetimes were found to decrease with increasing SILAR cycles, indicating that the expected decrease in recombination between electrons in the TiO2 and holes in the hole-transport material, due to increased QD surface coverage, is not the dominant effect of increased deposition cycles. © 2013 IEEE.

  16. Bright boys the making of information technology

    CERN Document Server

    Green, Tom

    2010-01-01

    Everything has a beginning. None was more profound-and quite as unexpected-than Information Technology. Here for the first time is the untold story of how our new age came to be and the bright boys who made it happen. What began on the bare floor of an old laundry building eventually grew to rival in size the Manhattan Project. The unexpected consequence of that journey was huge---what we now know as Information Technology. For sixty years the bright boys have been totally anonymous while their achievements have become a way of life for all of us. "Bright Boys" brings them home. By 1950 they'd

  17. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    Science.gov (United States)

    Williams, Charles; Turner, Andrew

    2015-04-01

    It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i

  18. AXIAL RATIO OF EDGE-ON SPIRAL GALAXIES AS A TEST FOR BRIGHT RADIO HALOS

    International Nuclear Information System (INIS)

    Singal, J.; Jones, E.; Dunlap, H.; Kogut, A.

    2015-01-01

    We use surface brightness contour maps of nearby edge-on spiral galaxies to determine whether extended bright radio halos are common. In particular, we test a recent model of the spatial structure of the diffuse radio continuum by Subrahmanyan and Cowsik which posits that a substantial fraction of the observed high-latitude surface brightness originates from an extended Galactic halo of uniform emissivity. Measurements of the axial ratio of emission contours within a sample of normal spiral galaxies at 1500 MHz and below show no evidence for such a bright, extended radio halo. Either the Galaxy is atypical compared to nearby quiescent spirals or the bulk of the observed high-latitude emission does not originate from this type of extended halo. (letters)

  19. Critical issues in enhancing brightness in thin film phosphors for flat-panel display applications

    International Nuclear Information System (INIS)

    Singh, R.K.; Chen, Z.; Kumar, D.; Cho, K.; Ollinger, M.

    2002-01-01

    Thin film phosphors have potential applications in field emission flat-panel displays. However, they are limited by the lower cathodoluminescent brightness in comparison to phosphor powders. In this paper, we have investigated the critical parameters that need to be optimized to increase the brightness of phosphor thin films. Specifically, we studied the role of surface roughness and optical properties of the substrate on the brightness of the phosphor films. Thin Y 2 O 3 :Eu phosphor films were deposited on various substrates (lanthanum aluminate, quartz, sapphire, and silicon) with thicknesses varying from 50 to 500 nm. A model that accounts for diffuse and specular or scattering effects has been developed to understand the effects of the microstructure on the emission characteristics of the cathodoluminescent films. The results from the model show that both the optical properties of the substrate and the surface roughness of the films play a critical role in controlling the brightness of laser deposited phosphor films

  20. Recent advances in high-brightness electron guns at AES

    International Nuclear Information System (INIS)

    Bluem, H.; Todd, A.M.M.; Cole, M.D.; Rathke, J.; Schultheiss, T.

    2003-01-01

    We describe a number of active Advanced Energy Systems projects pertaining to the development of advanced, high-brightness electron guns for various applications. These projects include a fully superconducting, CW RF gun, nearing test, that utilizes the niobium surface as the photocathode material. An integrated 100 mA, low emittance DC/SRF gun, ideal as an injector for ERL-type light sources and intended as the injector for a 100 kW FEL, is in late design stage. A parallel high-power, CW, normal-conducting L-band RF gun project has just begun. The early performance analysis for this gun also shows good promise as an injector for ERL-type light sources. Lastly, a fully axisymmetric RF gun, operating in X-band, is being studied as a source of extremely bright electron bunches

  1. Modifying TiO{sub 2} surface architecture by oxygen plasma to increase dye sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rajmohan, Gayathri Devi [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Dai, Xiujuan J., E-mail: jane.dai@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Tsuzuki, Takuya; Lamb, Peter R. [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Plessis, Johan du [School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001 (Australia); Huang, Fuzhi; Cheng, Yi-Bing [Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia)

    2013-10-31

    Oxygen plasma treatment of TiO{sub 2} films has been used to improve the efficiency of dye sensitized solar cells. Both a commercial TiO{sub 2} sample and a TiO{sub 2} thin film synthesized by a sol-gel technique were treated using a custom built inductively coupled plasma apparatus. X-ray photoelectron spectroscopy revealed that oxygen-plasma treatment increased the number of oxygen functional groups (hydroxyl groups) and introduced some Ti{sup 3+} species on the surface of TiO{sub 2}. A sample solar cell with plasma treated TiO{sub 2} showed an overall solar-to-electricity conversion efficiency of 4.3%, about a 13% increase over untreated TiO{sub 2}. The photon conversion efficiency for the plasma treated TiO{sub 2} was 34% higher than untreated TiO{sub 2}. This enhanced cell-performance is partly due to increased dye adsorption from an increase in surface oxygen functional groups and also may be partly due to Ti{sup 3+} states on the surface of TiO{sub 2}. - Highlights: • Oxygen plasma is used to generate hydroxyl groups on the surface of TiO{sub 2} • Parallel study was conducted using a spin coated TiO{sub 2} and a Commercial TiO{sub 2} film. • The plasma functionalization caused increased dye uptake. • Some species in Ti{sup 3+} state are also generated after oxygen plasma. • Dye sensitised solar cell with functionalised electrode showed improved efficiency.

  2. Brightness/darkness induction and the genesis of a contour

    Directory of Open Access Journals (Sweden)

    Sergio eRoncato

    2014-10-01

    Full Text Available Visual contours often result from the integration or interpolation of fragmented edges.The strength of the completion increases when the edges share the same contrast polarity (CP. Here we demonstrate that the appearance in the perceptual field of this integrated unit, or contour of invariant CP, is concomitant with a vivid brightness alteration of the surfaces at its opposite sides. To observe this effect requires some stratagems because the formation in the visual field of a contour of invariant CP normally engenders the formation of a second contour and then the rise of two streams of induction signals that interfere in different ways. Particular configurations have been introduced that allow us to observe the induction effects of one contour taken in isolation. I documented these effects by phenomenological observations and psychophysical measurement of the brightness alteration in relation to luminance contrast. When the edges of the same CP complete to form a contour, the background of homogeneous luminance appears to dim at one side and to brighten at the opposite side (in accord with the CP. The strength of the phenomenon is proportional to the local luminance contrast. This effect weakens or nulls when the contour of the invariant CP separates surfaces filled with different grey shades.These conflicting results stimulate a deeper exploration of the induction phenomena and their role in the computation of brightness contrast. An alternative perspective is offered to account for some brightness illusions and their relation to the phenomenal transparency. The main assumption asserts that, when in the same region induction signals of opposite CP overlap, the filling-in are blocked unless the image is stratified into different layers, one for each signal of the same polarity. Phenomenological observations document this solution by the visual system

  3. Seismic sensitivity to sub-surface solar activity from 18 yr of GOLF/SoHO observations

    Science.gov (United States)

    Salabert, D.; García, R. A.; Turck-Chièze, S.

    2015-06-01

    Solar activity has significantly changed over the last two Schwabe cycles. After a long and deep minimum at the end of Cycle 23, the weaker activity of Cycle 24 contrasts with the previous cycles. In this work, the response of the solar acoustic oscillations to solar activity is used in order to provide insights into the structural and magnetic changes in the sub-surface layers of the Sun during this on-going unusual period of low activity. We analyze 18 yr of continuous observations of the solar acoustic oscillations collected by the Sun-as-a-star GOLF instrument on board the SoHO spacecraft. From the fitted mode frequencies, the temporal variability of the frequency shifts of the radial, dipolar, and quadrupolar modes are studied for different frequency ranges that are sensitive to different layers in the solar sub-surface interior. The low-frequency modes show nearly unchanged frequency shifts between Cycles 23 and 24, with a time evolving signature of the quasi-biennial oscillation, which is particularly visible for the quadrupole component revealing the presence of a complex magnetic structure. The modes at higher frequencies show frequency shifts that are 30% smaller during Cycle 24, which is in agreement with the decrease observed in the surface activity between Cycles 23 and 24. The analysis of 18 yr of GOLF oscillations indicates that the structural and magnetic changes responsible for the frequency shifts remained comparable between Cycle 23 and Cycle 24 in the deeper sub-surface layers below 1400 km as revealed by the low-frequency modes. The frequency shifts of the higher-frequency modes, sensitive to shallower regions, show that Cycle 24 is magnetically weaker in the upper layers of Sun. Appendices are available in electronic form at http://www.aanda.orgThe following 68 GOLF frequency tables are available and Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  4. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  5. BrightStat.com: free statistics online.

    Science.gov (United States)

    Stricker, Daniel

    2008-10-01

    Powerful software for statistical analysis is expensive. Here I present BrightStat, a statistical software running on the Internet which is free of charge. BrightStat's goals, its main capabilities and functionalities are outlined. Three different sample runs, a Friedman test, a chi-square test, and a step-wise multiple regression are presented. The results obtained by BrightStat are compared with results computed by SPSS, one of the global leader in providing statistical software, and VassarStats, a collection of scripts for data analysis running on the Internet. Elementary statistics is an inherent part of academic education and BrightStat is an alternative to commercial products.

  6. Sensitive spectrophotometric determination of ascorbic acid in drugs and foods using surface plasmon resonance band of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Kobra Zarei

    2015-12-01

    Full Text Available A simple and sensitive procedure was proposed for spectrophotometric determination of ascorbic acid. It was found that the reduction of Ag+ to silver nanoparticles (Ag-NPs by ascorbic acid in the presence of polyvinylpyrrolidone (PVP as a stabilizing agent produce very intense surface plasmon resonance peak of Ag-NPs. The plasmon absorbance of the Ag-NPs at λ = 440 nm allows the quantitative spectrophotometric detection of the ascorbic acid. The calibration curve was linear with concentration of ascorbic acid in the range of 0.5–60 μM. The detection limit was obtained as 0.08 μM. The influence of potential interfering substances on the determination of ascorbic acid was studied. The proposed method was successfully applied for the determination of ascorbic acid in some powdered drink mixtures, commercial orange juice, natural orange juice, vitamin C injection, effervescent tablet, and multivitamin tablet.

  7. Highly Sensitive Detection of Clenbuterol in Animal Urine Using Immunomagnetic Bead Treatment and Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Cheng, Jie; Su, Xiao-Ou; Wang, Shi; Zhao, Yiping

    2016-09-01

    Combining surface-enhanced Raman spectroscopy (SERS) of aggregated graphene oxide/gold nanoparticle hybrids with immunomagnetic bead sample preparation method, a highly sensitive strategy to determine the clenbuterol content in animal urine was developed. Based on a linear calibration curve of the SERS characteristic peak intensity of clenbuterol at Δv = 1474 cm-1 versus the spiked clenbuterol concentration in the range of 0.5-20 ng·mL-1, the quantity of clenbuterol in real animal urine samples can be determined and matches well with those determined by LC-MS/MS, while the detection time is significantly reduced to 15 min/sample. The limits of detection and quantification in the urine are 0.5 ng·mL-1 and 1 ng·mL-1, respectively, and the recovery clenbuterol rates are 82.8-92.4% with coefficients of variation farming.

  8. Measuring brightness temperature distributions of plasma bunches

    International Nuclear Information System (INIS)

    Kirko, V.I.; Stadnichenko, I.A.

    1981-01-01

    The possibility of restoration of brightness temperature distribution along plasma jet on the base of a simple ultra high- speed photography and subsequent photometric treatment is shown. The developed technique has been applied for finding spectral radiation intensity and brightness temperature of plasma jets of a tubular gas-cumulative charge and explosive plasma compressor. The problem of shock wave front has been successfully solved and thus distribution of above parameters beginning from the region preceeding the shock wave has been obtained [ru

  9. Bright THz Instrument and Nonlinear THz Science

    Science.gov (United States)

    2017-10-30

    Report: Bright THz Instrument and Nonlinear THz Science The views, opinions and/or findings contained in this report are those of the author(s) and...Number: W911NF-16-1-0436 Organization: University of Rochester Title: Bright THz Instrument and Nonlinear THz Science Report Term: 0-Other Email: xi...exploring new cutting-edge research and broader applications, following the significant development of THz science and technology in the late 80’s, is the

  10. Uncertainty Quantification and Regional Sensitivity Analysis of Snow-related Parameters in the Canadian LAnd Surface Scheme (CLASS)

    Science.gov (United States)

    Badawy, B.; Fletcher, C. G.

    2017-12-01

    The parameterization of snow processes in land surface models is an important source of uncertainty in climate simulations. Quantifying the importance of snow-related parameters, and their uncertainties, may therefore lead to better understanding and quantification of uncertainty within integrated earth system models. However, quantifying the uncertainty arising from parameterized snow processes is challenging due to the high-dimensional parameter space, poor observational constraints, and parameter interaction. In this study, we investigate the sensitivity of the land simulation to uncertainty in snow microphysical parameters in the Canadian LAnd Surface Scheme (CLASS) using an uncertainty quantification (UQ) approach. A set of training cases (n=400) from CLASS is used to sample each parameter across its full range of empirical uncertainty, as determined from available observations and expert elicitation. A statistical learning model using support vector regression (SVR) is then constructed from the training data (CLASS output variables) to efficiently emulate the dynamical CLASS simulations over a much larger (n=220) set of cases. This approach is used to constrain the plausible range for each parameter using a skill score, and to identify the parameters with largest influence on the land simulation in CLASS at global and regional scales, using a random forest (RF) permutation importance algorithm. Preliminary sensitivity tests indicate that snow albedo refreshment threshold and the limiting snow depth, below which bare patches begin to appear, have the highest impact on snow output variables. The results also show a considerable reduction of the plausible ranges of the parameters values and hence reducing their uncertainty ranges, which can lead to a significant reduction of the model uncertainty. The implementation and results of this study will be presented and discussed in details.

  11. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF

    Directory of Open Access Journals (Sweden)

    Cevahir Kilic

    2013-12-01

    Full Text Available The influence of sea surface temperature (SST anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east, with increasing (decreasing SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.

  12. Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers

    International Nuclear Information System (INIS)

    Lin Qianqian; Li Yang; Yang Mujie

    2012-01-01

    Highlights: ► Polyanline/poly(vinyl butyral) nanofibers are prepared by electrospinning. ► Nanofiber-based SAW humidity sensor show high sensitivity and ultrafast response. ► The SAW sensor can detect very low humidity. - Abstract: Polyaniline (PANi) composite nanofibers were deposited on surface acoustic wave (SAW) resonator with a central frequency of 433 MHz to construct humidity sensors. Electrospun nanofibers of poly(methyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(vinylidene fluoride), poly(vinyl butyral) (PVB) were characterized by scanning electron microscopy, and humidity response of corresponding SAW humidity sensors were investigated. The results indicated that PVB was suitable as a matrix to form nanofibers with PANi by electrospinning (ES). Electrospun PANi/PVB nanofibers exhibited a core–sheath structure as revealed by transmittance electron microscopy. Effects of ES collection time on humidity response of SAW sensor based on PANi/PVB nanofibers were examined at room temperature. The composite nanofiber sensor exhibited very high sensitivity of ∼75 kHz/%RH from 20 to 90%RH, ultrafast response (1 s and 2 s for humidification and desiccation, respectively) and good sensing linearity. Furthermore, the sensor could detect humidity as low as 0.5%RH, suggesting its potentials for low humidity detection. Attempts were done to explain the attractive humidity sensing performance of the sensor by considering conductivity, hydrophilicity, viscoelasticity and morphology of the polymer composite nanofibers.

  13. Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering

    Science.gov (United States)

    Xu, Yongda; Li, Xin; Jiang, Lan; Meng, Ge; Ran, Peng; Lu, Yongfeng

    2017-05-01

    This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20-40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.

  14. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  15. A sensitivity-based approach to optimize the surface treatment of a low-height tramway noise barrier

    Science.gov (United States)

    Jolibois, Alexandre

    Transportation noise has become a main nuisance in urban areas, in the industrialized world and across the world, to the point that according to the World Health Organization 65% of the European population is exposed to excessive noise and 20% to night-time levels that may harm their health. There is therefore a need to find new ways to mitigate transportation noise in urban areas. In this work, a possible device to achieve this goal is studied: a low-height noise barrier. It consists of a barrier typically less than one meter high placed close to the source, designed to decrease significantly the noise level for nearby pedestrians and cyclists. A numerical method which optimizes the surface treatment of a low-height barrier in order to increase its insertion loss is presented. Tramway noise barriers are especially studied since the noise sources are in this case close to the ground and would be attenuated more by the barrier. The acoustic behavior of the surface treatment is modeled via its admittance. It can be itself described by a few parameters (flow resistivity, geometrical dimensions...), which can then be optimized. It is proposed to couple porous layers and micro-perforated panel (MPP) resonators in order to take advantage of their different acoustic properties. Moreover, the optimization is achieved using a sensitivity-based method, since in this framework the gradient of the attenuation can be evaluated accurately and efficiently. Several shapes are considered: half-cylinder, quarter-cylinder, straight wall, T-shape and square shape. In the case of a half-cylindrical geometry, a semi-analytical solution for the sound field in terms of a series of cylindrical waves is derived, which simplifies the sensitivity calculation and optimization process. The boundary element method (BEM) is used to evaluate the attenuation for the remaining shapes, and in this case the sensitivity is evaluated using the adjoint state approach. For all considered geometries, it is

  16. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games.

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen

    2012-01-01

    The regional air quality modeling system RAMS (regional atmospheric modeling system)-CMAQ (community multi-scale air quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008. Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind, temperature and ozone, but NOx concentration is overestimated. Although ozone concentration decreased during Olympics, high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 microg/m3 at Aoyuncun site, respectively. The analysis of sensitive test, with and without emission controls, shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning. The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate. Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August, horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer. On 24 July, as the wind velocity was smaller, the impact of transport on the rural place was not obvious.

  17. Dynamical Orientation of Large Molecules on Oxide Surfaces and its Implications for Dye-Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2013-11-12

    A dual experimental-computational approach utilizing near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory-molecular dynamics (DFT-MD) is presented for determining the orientation of a large adsorbate on an oxide substrate. A system of interest in the field of dye-sensitized solar cells is studied: an organic cyanoacrylic acid-based donor-π-acceptor dye (WN1) bound to anatase TiO2. Assessment of nitrogen K-edge NEXAFS spectra is supported by calculations of the electronic structure that indicate energetically discrete transitions associated with the two π systems of the C-N triple bond in the cyanoacrylic acid portion of the dye. Angle-resolved NEXAFS spectra are fitted to determine the orientation of these two orbital systems, and the results indicate an upright orientation of the adsorbed dye, 63 from the TiO2 surface plane. These experimental results are then compared to computational studies of the WN1 dye on an anatase (101) TiO2 slab. The ground state structure obtained from standard DFT optimization is less upright (45 from the surface) than the NEXAFS results. However, DFT-MD simulations, which provide a more realistic depiction of the dye at room temperature, exhibit excellent agreement - within 2 on average - with the angles determined via NEXAFS, demonstrating the importance of accounting for the dynamic nature of adsorbate-substrate interactions and DFT-MD\\'s powerful predictive abilities. © 2013 American Chemical Society.

  18. Dynamical Orientation of Large Molecules on Oxide Surfaces and its Implications for Dye-Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.; Tanskanen, Jukka T.; Bakke, Jonathan R.; Nguyen, William H.; Nordlund, Dennis; Toney, Michael F.; McGehee, Michael D.; Sellinger, Alan; Bent, Stacey F.

    2013-01-01

    A dual experimental-computational approach utilizing near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory-molecular dynamics (DFT-MD) is presented for determining the orientation of a large adsorbate on an oxide substrate. A system of interest in the field of dye-sensitized solar cells is studied: an organic cyanoacrylic acid-based donor-π-acceptor dye (WN1) bound to anatase TiO2. Assessment of nitrogen K-edge NEXAFS spectra is supported by calculations of the electronic structure that indicate energetically discrete transitions associated with the two π systems of the C-N triple bond in the cyanoacrylic acid portion of the dye. Angle-resolved NEXAFS spectra are fitted to determine the orientation of these two orbital systems, and the results indicate an upright orientation of the adsorbed dye, 63 from the TiO2 surface plane. These experimental results are then compared to computational studies of the WN1 dye on an anatase (101) TiO2 slab. The ground state structure obtained from standard DFT optimization is less upright (45 from the surface) than the NEXAFS results. However, DFT-MD simulations, which provide a more realistic depiction of the dye at room temperature, exhibit excellent agreement - within 2 on average - with the angles determined via NEXAFS, demonstrating the importance of accounting for the dynamic nature of adsorbate-substrate interactions and DFT-MD's powerful predictive abilities. © 2013 American Chemical Society.

  19. A case study on large-scale dynamical influence on bright band using cloud radar during the Indian summer monsoon

    Science.gov (United States)

    Jha, Ambuj K.; Kalapureddy, M. C. R.; Devisetty, Hari Krishna; Deshpande, Sachin M.; Pandithurai, G.

    2018-02-01

    The present study is a first of its kind attempt in exploring the physical features (e.g., height, width, intensity, duration) of tropical Indian bright band using a Ka-band cloud radar under the influence of large-scale cyclonic circulation and attempts to explain the abrupt changes in bright band features, viz., rise in the bright band height by 430 m and deepening of the bright band by about 300 m observed at around 14:00 UTC on Sep 14, 2016, synoptically as well as locally. The study extends the utility of cloud radar to understand how the bright band features are associated with light precipitation, ranging from 0 to 1.5 mm/h. Our analysis of the precipitation event of Sep 14-15, 2016 shows that the bright band above (below) 3.7 km, thickness less (more) than 300 m can potentially lead to light drizzle of 0-0.25 mm/h (drizzle/light rain) at the surface. It is also seen that the cloud radar may be suitable for bright band study within light drizzle limits than under higher rain conditions. Further, the study illustrates that the bright band features can be determined using the polarimetric capability of the cloud radar. It is shown that an LDR value of - 22 dB can be associated with the top height of bright band in the Ka-band observations which is useful in the extraction of the bright band top height and its width. This study is useful for understanding the bright band phenomenon and could be potentially useful in establishing the bright band-surface rain relationship through the perspective of a cloud radar, which would be helpful to enhance the cloud radar-based quantitative estimates of precipitation.

  20. Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport.

    Science.gov (United States)

    Orgovan, Norbert; Patko, Daniel; Hos, Csaba; Kurunczi, Sándor; Szabó, Bálint; Ramsden, Jeremy J; Horvath, Robert

    2014-09-01

    This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The SMOS Validation Campaign 2010 in the Upper Danube Catchment: A Data Set for Studies of Soil Moisture, Brightness Temperature, and Their Spatial Variability Over a Heterogeneous Land Surface

    DEFF Research Database (Denmark)

    T. dall' Amico, Johanna; Schlenz, Florian; Loew, Alexander

    2013-01-01

    resolutions from roughly 400 m to 2 km. The contemporaneous distributed ground measurements include surface soil moisture, a detailed land cover map, vegetation height, phenology, and biomass. Furthermore, several ground stations provide continuous measurements of soil moisture and soil temperature as well...... infrared and L-band passive microwave data were collected together with spatially distributed in situ measurements. Two airborne radiometers, EMIRAD and HUT-2D, were used during the campaigns providing two complementary sets of measurements at incidence angles from 0$^{circ}$ to 40$^{circ}$ and with ground...

  2. Bright perspectives for nuclear photonics

    Science.gov (United States)

    Thirolf, P. G.; Habs, D.

    2014-05-01

    With the advent of new high-power, short-pulse laser facilities in combination with novel technologies for the production of highly brilliant, intense γ beams (like, e.g., Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Bucharest, MEGaRay in Livermore or a planned upgrade of the HIγS facility at Duke University), unprecedented perspectives will open up in the coming years for photonuclear physics both in basic sciences as in various fields of applications. Ultra-high sensitivity will be enabled by an envisaged increase of the γ-beam spectral density from the presently typical 102γ/eVs to about 104γ/eVs, thus enabling a new quality of nuclear photonics [1], assisted by new γ-optical elements [2]. Photonuclear reactions with highly brilliant γ beams will allow to produce radioisotopes for nuclear medicine with much higher specific activity and/or more economically than with conventional methods. This will open the door for completely new clinical applications of radioisotopes [3]. The isotopic, state-selective sensitivity of the well-established technique of nuclear resonance fluorescence (NRF) will be boosted by the drastically reduced energy bandwidth (tomography and microscopy, assisting the management of nuclear materials, such as radioactive waste management, the detection of nuclear fissile material in the recycling process or the detection of clandestine fissile materials. Moreover, also secondary sources like low-energy, pulsed, polarized neutron beams of high intensity and high brilliance [4] or a new type of positron source with significantly increased brilliance, for the first time fully polarized [5], can be realized and lead to new applications in solid state physics or material sciences.

  3. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light.

    Science.gov (United States)

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.

  4. Corneal sensitivity, ocular surface health and tear film stability after punctal plug therapy of aqueous deficient dry eye

    Directory of Open Access Journals (Sweden)

    Azza Mohamed Ahmed Said

    2016-11-01

    Full Text Available AIM: To evaluate the effect of punctal occlusion using thermosensitive (smart plug versus silicone plug for management of aqueous deficient dry eye on corneal sensitivity, ocular surface health and tear film stability. METHODS: A comparative prospective interventional case study included 45 patients with bilateral severe form of aqueous deficient dry eye. In each patient, the smart plug was inserted in the lower punctum of the right eye which was considered as study group 1 and silicone plug was inserted in the lower punctum of the left eye of the same patient which was considered as study group 2. All patients were subjected to careful history taking and questionnaire for subjective assessment of severity of symptoms. Corneal sensitivity, corneal fluorescein, rose bengal staining, Schirmer’s I test, tear film break up time and conjunctival impression cytology were performed pre and 1, 3 and 6mo post plug insertion. RESULTS: A statistically significant improvement in subjective and objective manifestations occurred following treatment with both types of plugs (P<0.01. The thermosensitive plug caused significant overall improvement, decrease in frequency of application of tear substitutes and improvement of conjunctival impression cytology parameters in the inserted side (P<0.01. Canaliculitis was reported in two eyes (4.4% following punctal occlusion using thermosensitive plug (study group 1. Spontaneous plug loss occurred in 21 eyes (46.6% in the silicone plug group (study group 2. CONCLUSION: Improvement of subjective and objective manifestations of aqueous deficient dry eye occurs following punctal plug occlusion. Thermosensitive plug has good patient's compliance with fewer complications and lower rates of loss compared to the silicone plug.

  5. Numerical Simulation of Heavy Rainfall in August 2014 over Japan and Analysis of Its Sensitivity to Sea Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yuki Minamiguchi

    2018-02-01

    Full Text Available This study evaluated the performance of the Weather Research and Forecasting (WRF model version 3.7 for simulating a series of rainfall events in August 2014 over Japan and investigated the impact of uncertainty in sea surface temperature (SST on simulated rainfall in the record-high precipitation period. WRF simulations for the heavy rainfall were conducted for six different cases. The heavy rainfall events caused by typhoons and rain fronts were similarly accurately reproduced by three cases: the TQW_5km case with grid nudging for air temperature, humidity, and wind and with a horizontal resolution of 5 km; W_5km with wind nudging and 5-km resolution; and W_2.5km with wind nudging and 2.5-km resolution. Because the nudging for air temperature and humidity in TQW_5km suppresses the influence of SST change, and because W_2.5km requires larger computational load, W_5km was selected as the baseline case for a sensitivity analysis of SST. In the sensitivity analysis, SST around Japan was homogeneously changed by 1 K from the original SST data. The analysis showed that the SST increase led to a larger amount of precipitation in the study period in Japan, with the mean increase rate of precipitation being 13 ± 8% K−1. In addition, 99 percentile precipitation (100 mm d−1 in the baseline case increased by 13% K−1 of SST warming. These results also indicate that an uncertainty of approximately 13% in the simulated heavy rainfall corresponds to an uncertainty of 1 K in SST data around Japan in the study period.

  6. Colors and Photometry of Bright Materials on Vesta as Seen by the Dawn Framing Camera

    Science.gov (United States)

    Schroeder, S. E.; Li, J.-Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.; hide

    2012-01-01

    The Dawn spacecraft has been in orbit around the asteroid Vesta since July, 2011. The on-board Framing Camera has acquired thousands of high-resolution images of the regolith-covered surface through one clear and seven narrow-band filters in the visible and near-IR wavelength range. It has observed bright and dark materials that have a range of reflectance that is unusually wide for an asteroid. Material brighter than average is predominantly found on crater walls, and in ejecta surrounding caters in the southern hemisphere. Most likely, the brightest material identified on the Vesta surface so far is located on the inside of a crater at 64.27deg S, 1.54deg . The apparent brightness of a regolith is influenced by factors such as particle size, mineralogical composition, and viewing geometry. As such, the presence of bright material can indicate differences in lithology and/or degree of space weathering. We retrieve the spectral and photometric properties of various bright terrains from false-color images acquired in the High Altitude Mapping Orbit (HAMO). We find that most bright material has a deeper 1-m pyroxene band than average. However, the aforementioned brightest material appears to have a 1-m band that is actually less deep, a result that awaits confirmation by the on-board VIR spectrometer. This site may harbor a class of material unique for Vesta. We discuss the implications of our spectral findings for the origin of bright materials.

  7. Evaluations of the new LiF-scintillator and optional brightness enhancement films for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Iikura, H., E-mail: Iikura.hiroshi@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan); Tsutsui, N. [Chichibu Fuji Co., Ltd., Ogano, Chichibu, Saitama 368-0193 (Japan); Nakamura, T.; Katagiri, M.; Kureta, M. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan); Kubo, J. [Nissan Motor Co., Ltd., Atsugi, Kanagawa 243-0126 (Japan); Matsubayashi, M. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2011-09-21

    Japan Atomic Energy Agency has developed the neutron scintillator jointly with Chichibu Fuji Co., Ltd. In this study, we evaluated the new ZnS(Ag):Al/{sup 6}Li scintillator developed for neutron imaging. It was confirmed that the brightness increased by about double while maintaining equal performance for the spatial resolution as compared with a conventional scintillator. High frame-rate imaging using a high-speed video camera system and this new scintillator made it possible to image beyond 10 000 frames per second while still having enough brightness. This technique allowed us to obtain a high-frame-rate visualization of oil flow in a running car engine. Furthermore, we devised a technique to increase the light intensity of reception for a camera by adding brightness enhancement films on the output surface of the scintillator. It was confirmed that the spatial resolution degraded more than double, but the brightness increased by about three times.

  8. Proxy magnetometry of the photosphere: why are G-band bright points so bright?

    NARCIS (Netherlands)

    Rutten, R.J.; Kiselman, Dan; Voort, Luc Rouppe van der; Plez, Bertrand

    2000-01-01

    We discuss the formation of G-band bright points in terms of standard uxtube modeling, in particular the 1D LTE models constructed by Solanki and coworkers. Combined with LTE spectral synthesis they explain observed G-band bright point contrasts quite well. The G-band contrast increase over the

  9. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    International Nuclear Information System (INIS)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de

    2013-02-01

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of 135 Cs, 59 Ni, 230 Th and 226 Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a tendency to

  10. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de [Amphos 21 Consulting S.L., Barcelona (Spain)

    2013-02-15

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of {sup 135}Cs, {sup 59}Ni, {sup 230}Th and {sup 226}Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a

  11. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Meigen Zhang

    2012-01-01

    The regional air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Community Multi-scale Air Quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008.Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind,temperature and ozone,but NOx concentration is overestimated.Although ozone concentration decreased during Olympics,high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 μg/m3 at Aoyuncun site,respectively.The analysis of sensitive test,with and without emission controls,shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning.The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate.Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August,horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer.On 24 July,as the wind velocity was smaller,the impact of transport on the rural place was not obvious.

  12. Detection of small-amplitude periodic surface pressure fluctuation by pressure-sensitive paint measurements using frequency-domain methods

    Science.gov (United States)

    Noda, Takahiro; Nakakita, Kazuyki; Wakahara, Masaki; Kameda, Masaharu

    2018-06-01

    Image measurement using pressure-sensitive paint (PSP) is an effective tool for analyzing the unsteady pressure field on the surface of a body in a low-speed air flow, which is associated with wind noise. In this study, the surface pressure fluctuation due to the tonal trailing edge (TE) noise for a two-dimensional NACA 0012 airfoil was quantitatively detected using a porous anodized aluminum PSP (AA-PSP). The emission from the PSP upon illumination by a blue laser diode was captured using a 12-bit high-speed complementary metal-oxide-semiconductor (CMOS) camera. The intensities of the captured images were converted to pressures using a standard intensity-based method. Three image-processing methods based on the fast Fourier transform (FFT) were tested to determine their efficiency in improving the signal-to-noise ratio (SNR) of the unsteady PSP data. In addition to two fundamental FFT techniques (the full data and ensemble averaging FFTs), a technique using the coherent output power (COP), which involves the cross correlation between the PSP data and the signal measured using a pointwise sound-level meter, was tested. Preliminary tests indicated that random photon shot noise dominates the intensity fluctuations in the captured PSP emissions above 200 Hz. Pressure fluctuations associated with the TE noise, whose dominant frequency is approximately 940 Hz, were successfully measured by analyzing 40,960 sequential PSP images recorded at 10 kfps. Quantitative validation using the power spectrum indicates that the COP technique is the most effective method of identification of the pressure fluctuation directly related to TE noise. It is possible to distinguish power differences with a resolution of 10 Pa^2 (4 Pa in amplitude) when the COP was employed without use of another wind-off data. This resolution cannot be achieved by the ensemble averaging FFT because of an insufficient elimination of the background noise.

  13. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.

    Science.gov (United States)

    Chen, Junxue; Wang, Pei; Chen, Chuncong; Lu, Yonghua; Ming, Hai; Zhan, Qiwen

    2011-03-28

    In this paper we report the study of the electromagnetically induced transparency (EIT)-like transmission in the bright-dark-bright plasmon resonators. It is demonstrated that the interferences between the dark plasmons excited by two bright plasmon resonators can be controlled by the incident light polarization. The constructive interference strengthens the coupling between the bright and dark resonators, leading to a more prominent EIT-like transparency window of the metamaterial. In contrary, destructive interference suppresses the coupling between the bright and dark resonators, destroying the interference pathway that forms the EIT-like transmission. Based on this observation, the plasmonic EIT switching can be realized by changing the polarization of incident light. This phenomenon may find applications in optical switching and plasmon-based information processing.

  14. STARS4ALL Night Sky Brightness Photometer

    Directory of Open Access Journals (Sweden)

    Jaime Zamorano

    2017-06-01

    Full Text Available We present the main features of TESS-W, the first version of a series of inexpensive but reliable photometers that will be used to measure night sky brightness. The bandpass is extended to the red with respect of that of the Sky Quality Meter (SQM. TESS-W connects to a router via WIFI and it sends automatically the brightness values to a data repository using Internet of Things protocols. The device includes an infrared sensor to estimate the cloud coverage. It is designed for fixed stations to monitor the evolution of the sky brightness. The photometer could also be used in local mode connected to a computer or tablet to gather data from a moving vehicle. The photometer is being developed within STARS4ALL project, a collective awareness platform for promoting dark skies in Europe, funded by the EU. We intend to extend the existing professional networks to a citizen-based network of photometers. 

  15. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  16. A sensitive and quantitative biosensing method for the determination of {gamma}-ray emitting radionuclides in surface water

    Energy Technology Data Exchange (ETDEWEB)

    Wolterbeek, H.Th.; Meer, A.J.G.M. van der [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-11-01

    A quantitative and sensitive biosensing method has been developed for the determination of {gamma}-ray emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the element in the biosensor and the determination of the element level in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Measurements were performed with floating water plants (Azolla filiculoides Lamk., Spirodela polyrhiza/Lemna sp.) and the fully submerged water plant Ceratophyllum demersum L., which were sampled from ditch water. Concentrations of elements and radionuclides were determined in both water and biosensor plants, using Neutron Activation Analysis (NAA), ICP-MS, and {gamma}-ray spectrometry, respectively. For the latter, both 1 litre samples (Marinelli-geometry) and 1 cm{sup 3} samples (well-type detectors) were applied in measurements. (author).

  17. Bloch Surface Waves Biosensors for High Sensitivity Detection of Soluble ERBB2 in a Complex Biological Environment.

    Science.gov (United States)

    Sinibaldi, Alberto; Sampaoli, Camilla; Danz, Norbert; Munzert, Peter; Sonntag, Frank; Centola, Fabio; Occhicone, Agostino; Tremante, Elisa; Giacomini, Patrizio; Michelotti, Francesco

    2017-08-17

    We report on the use of one-dimensional photonic crystals to detect clinically relevant concentrations of the cancer biomarker ERBB2 in cell lysates. Overexpression of the ERBB2 protein is associated with aggressive breast cancer subtypes. To detect soluble ERBB2, we developed an optical set-up which operates in both label-free and fluorescence modes. The detection approach makes use of a sandwich assay, in which the one-dimensional photonic crystals sustaining Bloch surface waves are modified with monoclonal antibodies, in order to guarantee high specificity during the biological recognition. We present the results of exemplary protein G based label-free assays in complex biological matrices, reaching an estimated limit of detection of 0.5 ng/mL. On-chip and chip-to-chip variability of the results is addressed too, providing repeatability rates. Moreover, results on fluorescence operation demonstrate the capability to perform high sensitive cancer biomarker assays reaching a resolution of 0.6 ng/mL, without protein G assistance. The resolution obtained in both modes meets international guidelines and recommendations (15 ng/mL) for ERBB2 quantification assays, providing an alternative tool to phenotype and diagnose molecular cancer subtypes.

  18. A sensitive and quantitative biosensing method for the determination of γ-ray emitting radionuclides in surface water

    International Nuclear Information System (INIS)

    Wolterbeek, H.Th.; Meer, A.J.G.M. van der

    1996-01-01

    A quantitative and sensitive biosensing method has been developed for the determination of γ-ray emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the element in the biosensor and the determination of the element level in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Measurements were performed with floating water plants (Azolla filiculoides Lamk., Spirodela polyrhiza/Lemna sp.) and the fully submerged water plant Ceratophyllum demersum L., which were sampled from ditch water. Concentrations of elements and radionuclides were determined in both water and biosensor plants, using Neutron Activation Analysis (NAA), ICP-MS, and γ-ray spectrometry, respectively. For the latter, both 1 litre samples (Marinelli-geometry) and 1 cm 3 samples (well-type detectors) were applied in measurements. (author)

  19. Sensitive detection of capsaicinoids using a surface plasmon resonance sensor with anti-homovanillic Acid polyclonal antibodies.

    Science.gov (United States)

    Nakamura, Shingo; Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi

    2013-11-13

    Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR) immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH) for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes.

  20. investigating acid production by Streptococcus mutans with a surface-displayed pH-sensitive green fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Lihong Guo

    Full Text Available Acidogenicity and aciduricity are the main virulence factors of the cavity-causing bacterium Streptococcus mutans. Monitoring at the individual cell level the temporal and spatial distribution of acid produced by this important oral pathogen is central for our understanding of these key virulence factors especially when S. mutans resides in multi-species microbial communities. In this study, we explored the application of pH-sensitive green fluorescent proteins (pHluorins to investigate these important features. Ecliptic pHluorin was functionally displayed on the cell surface of S. mutans as a fusion protein with SpaP. The resulting strain (O87 was used to monitor temporal and spatial pH changes in the microenvironment of S. mutans cells under both planktonic and biofilm conditions. Using strain O87, we revealed a rapid pH drop in the microenviroment of S. mutans microcolonies prior to the decrease in the macro-environment pH following sucrose fermentation. Meanwhile, a non-uniform pH distribution was observed within S. mutans biofilms, reflecting differences in microbial metabolic activity. Furthermore, strain O87 was successfully used to monitor the S. mutans acid production profiles within dual- and multispecies oral biofilms. Based on these findings, the ecliptic pHluorin allows us to investigate in vivo and in situ acid production and distribution by the cariogenic species S. mutans.

  1. Sensitive Detection of Capsaicinoids Using a Surface Plasmon Resonance Sensor with Anti-Homovanillic Acid Polyclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2013-11-01

    Full Text Available Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes.

  2. Surface plasmon resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells

    Science.gov (United States)

    Jung, Haeng-Yun; Yeo, In-Seon; Kim, Tae-Un; Ki, Hyun-Chul; Gu, Hal-Bon

    2018-02-01

    In this study, we exploit local surface plasmon resonance (LSPR) in order to improve the efficiency of dye-sensitized solar cells (DSSCs). In order to investigate the effect of LSPR, Ag nanoparticles of several sizes were formed using electro-beam equipment; sizes were varied by changing the annealing time. DSSCs were fabricated by coating Ag nanoparticles onto a TiO2 thin film. Finally, TiO2 nanoparticles were layered onto the Ag nanoparticles via a titanium tetra-isopropoxide (TTIP) treatment. This study used nanoparticle-coated TiO2 thin films as photoelectrodes, and manufactured the cell in the unit of the DSSCs. We compared the behavior of the electrical properties of DSSCs depending on the presence or absence of Ag nanoparticles, as well as on the nanoparticle size. The Ag particles did not affect dye adsorption because the content of Ag particles is very low (0.13%) compared to that in TiO2 in the photoelectrode. The DSSCs with LSPR showed increased electric current density compared to those without LSPR, and improved the solar conversion efficiency (η) by 24%. The current density of the DSSCs increased because the light absorption of the dye increased. Therefore, we determined that LSPR affects the electrical properties of DSSCs.

  3. Richard Bright and his neurological studies.

    Science.gov (United States)

    Pearce, J M S

    2009-01-01

    Richard Bright was one of the famous triumvirate of Guy's Hospital physicians in the Victorian era. Remembered for his account of glomerulonephritis (Bright's disease) he also made many important and original contributions to medicine and neurology. These included his work on cortical epileptogenesis, descriptions of simple partial (Jacksonian) seizures, infantile convulsions, and a variety of nervous diseases. Most notable were his reports of neurological studies including papers on traumatic tetanus, syringomyelia, arteries of the brain, contractures of spinal origin, tumours of the base of the brain, and narcolepsy. His career and these contributions are outlined. Copyright 2009 S. Karger AG, Basel.

  4. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become c...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  5. Diagnostics for high-brightness beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1990-01-01

    Special techniques are required for beam diagnostics on high-brightness particle beams. Examples of high-brightness beams include low-emittance proton linacs (either pulsed or CW), electron linacs suitable for free-electron-laser applications, and future linear colliders. Non-interceptive and minimally-interceptive techniques for measuring beam current, position, profile, and transverse and longitudinal emittance will be reviewed. Included will be stripline, wire scanner, laser neutralization, beam-beam scattering, interceptive microgratings, spontaneous emission, optical transition radiation, and other techniques. 24 refs

  6. TIGER Burned Brightly in JAMIC

    Science.gov (United States)

    Olson, Sandra L.; Kashiwagi, Takashi

    2001-01-01

    The Transition From Ignition to Flame Growth Under External Radiation in 3D (TIGER- 3D) experiment, which is slated to fly aboard the International Space Station, conducted a series of highly successful tests in collaboration with the University of Hokkaido using Japan's 10-sec JAMIC drop tower. The tests were conducted to test engineering versions of advanced flight diagnostics such as an infrared camera for detailed surface temperature measurements and an infrared spectroscopic array for gas-phase species concentrations and temperatures based on detailed spectral emissions in the near infrared. Shown in the top figure is a visible light image and in the bottom figure is an infrared image at 3.8 mm obtained during the microgravity tests. The images show flames burning across cellulose samples against a slow wind of a few centimeters per second (wind is from right to left). These flow velocities are typical of spacecraft ventilation systems that provide fresh air for the astronauts. The samples are ignited across the center with a hot wire, and the flame is allowed to spread upwind and/or downwind. As these images show, the flames prefer to spread upwind, into the fresh air, which is the exact opposite of flames on Earth, which spread much faster downwind, or with the airflow, as in forest fires.

  7. Characterizing the Motion of Solar Magnetic Bright Points at High Resolution

    Science.gov (United States)

    Van Kooten, Samuel J.; Cranmer, Steven R.

    2017-11-01

    Magnetic bright points in the solar photosphere, visible in both continuum and G-band images, indicate footpoints of kilogauss magnetic flux tubes extending to the corona. The power spectrum of bright-point motion is thus also the power spectrum of Alfvén wave excitation, transporting energy up flux tubes into the corona. This spectrum is a key input in coronal and heliospheric models. We produce a power spectrum of bright-point motion using radiative magnetohydrodynamic simulations, exploiting spatial resolution higher than can be obtained in present-day observations, while using automated tracking to produce large data quantities. We find slightly higher amounts of power at all frequencies compared to observation-based spectra, while confirming the spectrum shape of recent observations. This also provides a prediction for observations of bright points with DKIST, which will achieve similar resolution and high sensitivity. We also find a granule size distribution in support of an observed two-population distribution, and we present results from tracking passive tracers, which show a similar power spectrum to that of bright points. Finally, we introduce a simplified, laminar model of granulation, with which we explore the roles of turbulence and of the properties of the granulation pattern in determining bright-point motion.

  8. Expression of surface markers on the human monocytic leukaemia cell line, THP-1, as indicators for the sensitizing potential of chemicals.

    Science.gov (United States)

    An, Susun; Kim, Seoyoung; Huh, Yong; Lee, Tae Ryong; Kim, Han-Kon; Park, Kui-Lea; Eun, Hee Chul

    2009-04-01

    Evaluation of skin sensitization potential is an important part of the safety assessment of cosmetic ingredients and topical drugs. Recently, evaluation of changes in surface marker expression induced in dendritic cells (DC) or DC surrogate cell lines following exposure to chemicals represents one approach for in vitro test methods. The study aimed to test the change of expression patterns of surface markers on THP-1 cells by chemicals as a predictive in vitro method for contact sensitization. We investigated the expression of CD54, CD86, CD83, CD80, and CD40 after a 1-day exposure to sensitizers (1-chloro-2,4-dinitrobenzene; 2,4-dinitrofluorobenzene; benzocaine; 5-chloro-2-methyl-4-isothiazolin-3-one; hexyl cinnamic aldehyde; eugenol; nickel sulfate hexahydrate; potassium dichromate; cobalt sulfate; 2-mercaptobenzothiazole; and ammonium tetrachloroplatinate) and non-sensitizers (sodium lauryl sulfate, benzalkonium chloride, lactic acid, salicylic acid, isopropanol, and dimethyl sulphoxide). The test concentrations were 0.1x, 0.5x, and 1x of the 50% inhibitory concentration, and the relative fluorescence intensity was used as an expression indicator. By evaluating the expression patterns of CD54, CD86, and CD40, we could classify the chemicals as sensitizers or non-sensitizers, but CD80 and CD83 showed non-specific patterns of expression. These data suggest that the THP-1 cells are good model for screening contact sensitizers and CD40 could be a useful marker complementary to CD54 and CD86.

  9. The Eindhoven High-Brightness Electron Programme

    NARCIS (Netherlands)

    Brussaard, G.J.H.; Wiel, van der M.J.

    2004-01-01

    The Eindhoven High-Brightness programme is aimed at producing ultra-short intense electron bunches from compact accelerators. The RF electron gun is capable of producing 100 fs electron bunches at 7.5 MeV and 10 pC bunch charge. The DC/RF hybrid gun under development will produce bunches <75 fs at

  10. Discussion of high brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    The fundamental aspects of high-brightness rf linacs are outlined, showing the breadth and complexity of the technology and indicating that synergism with advancements in other areas is important. Areas of technology reviewed include ion sources, injectors, rf accelerator structures, beam dynamics, rf power, and automatic control

  11. Simultaneous brightness contrast of foraging Papilio butterflies

    Science.gov (United States)

    Kinoshita, Michiyo; Takahashi, Yuki; Arikawa, Kentaro

    2012-01-01

    This study focuses on the sense of brightness in the foraging Japanese yellow swallowtail butterfly, Papilio xuthus. We presented two red discs of different intensity on a grey background to butterflies, and trained them to select one of the discs. They were successfully trained to select either a high intensity or a low intensity disc. The trained butterflies were tested on their ability to perceive brightness in two different protocols: (i) two orange discs of different intensity presented on the same intensity grey background and (ii) two orange discs of the same intensity separately presented on a grey background that was either higher or lower in intensity than the training background. The butterflies trained to high intensity red selected the orange disc of high intensity in protocol 1, and the disc on the background of low intensity grey in protocol 2. We obtained similar results in another set of experiments with purple discs instead of orange discs. The choices of the butterflies trained to low intensity red were opposite to those just described. Taken together, we conclude that Papilio has the ability to learn brightness and darkness of targets independent of colour, and that they have the so-called simultaneous brightness contrast. PMID:22179808

  12. Robust fitting of diurnal brightness temperature cycle

    CSIR Research Space (South Africa)

    Udahemuka, G

    2007-11-01

    Full Text Available for a pixel concerned. Robust fitting of observed Diurnal Temperature Cycle (DTC) taken over a day of a given pixel without cloud cover and other abnormally conditions such as fire can give a data based brightness temperature model for a given pixel...

  13. Intermittent Episodes of Bright Light Suppress Myopia in the Chicken More than Continuous Bright Light

    OpenAIRE

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    PURPOSE: Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. METHODS: Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows....

  14. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    Science.gov (United States)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  15. The local surface plasmon resonance property and refractive index sensitivity of metal elliptical nano-ring arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Weihua, E-mail: linwh-whu@hotmail.com; Wang, Qian; Dong, Anhua [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Li, Qiuze [School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan (China)

    2014-11-15

    In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPW is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems.

  16. The local surface plasmon resonance property and refractive index sensitivity of metal elliptical nano-ring arrays

    International Nuclear Information System (INIS)

    Lin, Weihua; Wang, Qian; Dong, Anhua; Li, Qiuze

    2014-01-01

    In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPW is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems

  17. Enhancement of sensitivity and specificity of the fluoroimmunoassay of Hepatitis B virus surface antigen through "flexible" coupling between quantum dots and antibody

    NARCIS (Netherlands)

    Zeng, Qinghui; Zhang, Youlin; Song, Kai; Kong, Xianggui; Aalders, Maurice C. G.; Zhang, Hong

    2009-01-01

    Quantum dots (QDs) are widely used in the immune detection. Yet, the sensitivity and specificity of the immune detection are not satisfactory because the binding sites of QDs onto antibody (Ab) are often arbitrary and the influence of the large surface electronic potential energy of QDs on the

  18. Modeling Ruthenium-Dye-Sensitized TiO2 Surfaces Exposing the (001) or (101) Faces: A First-Principles Investigation

    Czech Academy of Sciences Publication Activity Database

    De Angelis, F.; Vitillaro, G.; Kavan, Ladislav; Nazeeruddin, M. K.; Grätzel, M.

    2012-01-01

    Roč. 116, č. 34 (2012), s. 18124-18131 ISSN 1932-7447 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional support: RVO:61388955 Keywords : Dye-sensitized solar cells * density-functional theory * anatase TiO2 surfaces Subject RIV: CG - Electrochemistry Impact factor: 4.814, year: 2012

  19. Passivation of nanocrystalline TiO2 junctions by surface adsorbed phosphinate amphiphiles enhances the photovoltaic performance of dye sensitized solar cells

    KAUST Repository

    Wang, Mingkui

    2009-01-01

    We report a new class of molecular insulators that electronically passivate the surface of nanocrystalline titania films for high performance dye sensitized solar cells (DSC). Using electrical impedance measurements we demonstrate that co-adsorption of dineohexyl bis-(3,3-dimethyl-butyl)-phosphinic acid (DINHOP), along with the amphiphilic ruthenium sensitizer Z907Na increased substantially the power output of the cells mainly due to a retardation of interfacial recombination of photo-generated charge carriers. The use of phosphinates as anchoring groups opens up new avenues for modification of the surface by molecular insulators, sensitizers and other electro-active molecules to realize the desired optoelectronic performance of devices based on oxide junctions. © 2009 The Royal Society of Chemistry.

  20. Comparison between linear and nonlinear trends in NOAA-15 AMSU-A brightness temperatures during 1998-2010

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Z. [Nanjing University of Information Science and Technology, Center of Data Assimilation for Research and Application, Nanjing (China); Zou, X. [Nanjing University of Information Science and Technology, Center of Data Assimilation for Research and Application, Nanjing (China); Florida State University, Department of Earth, Ocean and Atmospheric Sciences, Tallahassee, FL (United States); Weng, F. [NOAA/NESDIS, Center for Satellite Applications and Research, Camp Springs, MD (United States)

    2012-10-15

    Brightness temperature observations from Microwave Sounding Unit and Advanced Microwave Sounding Unit-A (AMSU-A) on board National Oceanic and Atmospheric Administration (NOAA) satellites have been widely utilized for estimating the global climate trend in the troposphere and stratosphere. A common approach for deriving the trend is linear regression, which implicitly assumes the trend being a straight line over the whole length of a time series and is often highly sensitive to the data record length. This study explores a new adaptive and temporally local data analysis method - Ensemble Empirical Mode Decomposition (EEMD) - for estimating the global trends. In EEMD, a non-stationary time series is decomposed adaptively and locally into a sequence of amplitude-frequency modulated oscillatory components and a time-varying trend. The AMSU-A data from the NOAA-15 satellite over the time period from October 26, 1998 to August 7, 2010 are employed for this study. Using data over Amazon rainforest areas, it is shown that channel 3 is least sensitive to the orbital drift among four AMSU-A surface sensitive channels. The decadal trends of AMSU-A channel 3 and other eight channels in the troposphere and stratosphere are deduced and compared using both methods. It is shown that the decadal climate trends of most AMSU-A channels are nonlinear except for channels 3-4 in Northern Hemisphere only and channels 12-13. Although the decadal trend variation of the global average brightness temperature is no more than 0.2 K, the regional decadal trend variation could be more (less) than 3 K (-3 K) in high latitudes and over high terrains. (orig.)

  1. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light.

    Directory of Open Access Journals (Sweden)

    Weizhong Lan

    Full Text Available PURPOSE: Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. METHODS: Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8 was kept under office-like illuminance (500 lux at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5, 2 hours (n = 5, 5 hours (n = 4 or 10 hours (n = 4. Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7, 30 minutes (n = 8, 15 minutes (n = 6, 7 minutes (n = 7 or 1 minute (n = 7 periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. RESULTS: Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. CONCLUSIONS: The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.

  2. In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO 2 Surface of Dye-Sensitized Solar Cells

    KAUST Repository

    Voïtchovsky, Kislon

    2015-05-27

    © 2015 American Chemical Society. Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell\\'s performance depends on the molecular arrangement and the density of the dye on the semiconductor surface, but a molecular-level picture of the cell-electrolyte interface is still lacking. Here, we present subnanometer in situ atomic force microscopy images of the Z907 dye at the surface of TiO2 in a relevant liquid. Our results reveal changes in the conformation and the lateral arrangement of the dye molecules, depending on their average packing density on the surface. Complementary quantitative measurements on the ensemble of the film are obtained by the quartz-crystal microbalance with dissipation technique. An atomistic picture of the dye coverage-dependent packing, the effectiveness of the hydrophobic alkyl chains as blocking layer, and the solvent accessibility is obtained from molecular dynamics simulations. (Figure Presented).

  3. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    Science.gov (United States)

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-02-26

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  4. Dynamics of annular bright field imaging in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Findlay, S.D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y.

    2010-01-01

    We explore the dynamics of image formation in the so-called annular bright field mode in scanning transmission electron microscopy, whereby an annular detector is used with detector collection range lying within the cone of illumination, i.e. the bright field region. We show that this imaging mode allows us to reliably image both light and heavy columns over a range of thickness and defocus values, and we explain the contrast mechanisms involved. The role of probe and detector aperture sizes is considered, as is the sensitivity of the method to intercolumn spacing and local disorder.

  5. Spectrophotometry of four galaxies of high surface brightness

    International Nuclear Information System (INIS)

    Arakelyan, M.A.; Magtesyan, A.P.

    1982-01-01

    Spectrophotometry has been performed for the emission lines in the nuclei of Arakelyan galaxies Nos. 428, 449, 454, 532. In the first two objects, H II clouds occur roughly-equal2 kpc out from the nucleus. No. 449 may contain another cloud moving at roughly-equal1500 km/sec radial velocity. radial

  6. Rediscovering the Giant Low Surface Brightness Spiral Galaxy Malin 1

    Science.gov (United States)

    Galaz, Gaspar

    2018-01-01

    I summarize the latest discoveries regarding this ramarkable diffuse and giant galaxy, the largest single spiral in the universe so far. I describe how the latest discoveries could have been done easily 20 years ago, but an incredible summation of facts and some astronomical sociology, keeped many of them undisclosed. I present the most conspicuous features of the giant spiral arms of Malin 1, including stellar density, colors, stellar populations and some modeling describing their past evolution to the current state. I conclude with pending issues regarding stellar formation in Malin 1, and the efforts to detect its elusive molecular gas.

  7. X-ray surface brightness of Kepler's supernova remnant

    International Nuclear Information System (INIS)

    White, R.L.; Long, K.S.

    1983-01-01

    We have observed Kepler's supernova remnant (SNR) with the imaging instruments on board the Einstein Observatory. The 0.15-4.5 keV flux incident on the Earth is 1.2 x 10 - 10 ergs cm - 2 s - 1 ; the flux corrected for interstellar absorption is 3.4 x 10 - 10 ergs cm - 2 s - 1 (L/sub x/ = 1.0 x 10 36 ergs s - 1 at D = 5 kpc) if the absorbing column density is N/sub H/ = 2.8 x 10 21 cm - 2 . The remnant is circular and shows a strong shell which is at least 5 times brighter in the north than in the south. The X-ray observations do not unambiguously determine whether the remnant is in the adiabatic or the free expansion phase. If the remnant is in the adiabatic phase, the density of the interstellar medium (ISM) ( 2 /sub e/>/sup 1/2/) surrounding Kepler's SNR must be about 5 cm - 3 . If the remnant is in the free expansion phase, where most of the emission arises from shock-heated ejecta, the ISM density must still be relatively high, n/sub i/> or approx. =0.1 cm - 3 . Even if the ISM is very inhomogeneous, with very many small, dense clouds, we show that the mean density of the ISM must be greater than approx.0.1 cm - 3 . In any case, the density of the x-ray emitting gas must be high ( 2 /sub e/>/sup 1/2/ > or approx. =10 cm - 3 ), and the temperature must be fairly low (T/sub e/ 7 K). The relatively high ISM density which is required is surprising in view of Kepler's distance above the galactic plane, approx.600 pc. Possibly the ISM around Kepler's SNR and around other type i SNRs is dominated by the mass lost from the presupernova star

  8. Deep learning for galaxy surface brightness profile fitting

    Science.gov (United States)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.; Domínguez Sánchez, H.; Dimauro, P.

    2018-03-01

    Numerous ongoing and future large area surveys (e.g. Dark Energy Survey, EUCLID, Large Synoptic Survey Telescope, Wide Field Infrared Survey Telescope) will increase by several orders of magnitude the volume of data that can be exploited for galaxy morphology studies. The full potential of these surveys can be unlocked only with the development of automated, fast, and reliable analysis methods. In this paper, we present DeepLeGATo, a new method for 2-D photometric galaxy profile modelling, based on convolutional neural networks. Our code is trained and validated on analytic profiles (HST/CANDELS F160W filter) and it is able to retrieve the full set of parameters of one-component Sérsic models: total magnitude, effective radius, Sérsic index, and axis ratio. We show detailed comparisons between our code and GALFIT. On simulated data, our method is more accurate than GALFIT and ˜3000 time faster on GPU (˜50 times when running on the same CPU). On real data, DeepLeGATo trained on simulations behaves similarly to GALFIT on isolated galaxies. With a fast domain adaptation step made with the 0.1-0.8 per cent the size of the training set, our code is easily capable to reproduce the results obtained with GALFIT even on crowded regions. DeepLeGATo does not require any human intervention beyond the training step, rendering it much automated than traditional profiling methods. The development of this method for more complex models (two-component galaxies, variable point spread function, dense sky regions) could constitute a fundamental tool in the era of big data in astronomy.

  9. Bright solitons in Bose-Fermi mixtures

    International Nuclear Information System (INIS)

    Karpiuk, Tomasz; Brewczyk, Miroslaw; RzaPewski, Kazimierz

    2006-01-01

    We consider the formation of bright solitons in a mixture of Bose and Fermi degenerate gases confined in a three-dimensional elongated harmonic trap. The Bose and Fermi atoms are assumed to effectively attract each other whereas bosonic atoms repel each other. Strong enough attraction between bosonic and fermionic components can change the character of the interaction within the bosonic cloud from repulsive to attractive making thus possible the generation of bright solitons in the mixture. On the other hand, such structures might be in danger due to the collapse phenomenon existing in attractive gases. We show, however, that under some conditions (defined by the strength of the Bose-Fermi components attraction) the structures which neither spread nor collapse can be generated. For elongated enough traps the formation of solitons is possible even at the 'natural' value of the mutual Bose-Fermi ( 87 Rb- 40 K in our case) scattering length

  10. Extreme Ultraviolet Explorer Bright Source List

    Science.gov (United States)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  11. High-brightness H/sup -/ accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    Neutral particle beam (NPB) devices based on high-brightness H/sup -/ accelerators are an important component of proposed strategic defense systems. The basic rational and R and D program are outlined and examples given of the underlying technology thrusts toward advanced systems. Much of the research accomplished in the past year is applicable to accelerator systems in general; some of these activities are discussed

  12. Brightness of synchrotron radiation from wigglers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2014-12-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called 'depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. In the geometrical optics limit computations can be performed analytically. Within this limit, we restrict ourselves to the case of the beam size-dominated regime, which is typical for synchrotron radiation facilities in the X-ray wavelength range. We give a direct demonstration of the fact that the apparent horizontal source size is broadened in proportion to the beamline opening angle and to the length of the wiggler. While this effect is well-understood, a direct proof appears not to have been given elsewhere. We consider the problem of the calculation of the wiggler source size by means of numerical simulations alone, which play the same role of an experiment. We report a significant numerical disagreement between exact calculations and approximations currently used in literature.

  13. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Steven Winter Associates, Inc., Norwalk, CT (United States); Butterfield, Karla [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2016-03-01

    With funding from the Building America Program, part of the U.S. Department of Energy Building Technologies Office, the Consortium for Advanced Residential Buildings (CARB) worked with BrightBuilt Home (BBH) to evaluate and optimize building systems. CARB’s work focused on a home built by Black Bros. Builders in Lincolnville, Maine (International Energy Conservation Code Climate Zone 6). As with most BBH projects to date, modular boxes were built by Keiser Homes in Oxford, Maine.

  14. Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response.

    Science.gov (United States)

    Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S

    2016-10-15

    We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Search for bright stars with infrared excess

    Energy Technology Data Exchange (ETDEWEB)

    Raharto, Moedji, E-mail: moedji@as.itb.ac.id [Astronomy Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Bright stars, stars with visual magnitude smaller than 6.5, can be studied using small telescope. In general, if stars are assumed as black body radiator, then the color in infrared (IR) region is usually equal to zero. Infrared data from IRAS observations at 12 and 25μm (micron) with good flux quality are used to search for bright stars (from Bright Stars Catalogues) with infrared excess. In magnitude scale, stars with IR excess is defined as stars with IR color m{sub 12}−m{sub 25}>0; where m{sub 12}−m{sub 25} = −2.5log(F{sub 12}/F{sub 25})+1.56, where F{sub 12} and F{sub 25} are flux density in Jansky at 12 and 25μm, respectively. Stars with similar spectral type are expected to have similar color. The existence of infrared excess in the same spectral type indicates the existence of circum-stellar dust, the origin of which is probably due to the remnant of pre main-sequence evolution during star formation or post AGB evolution or due to physical process such as the rotation of those stars.

  16. Condensate bright solitons under transverse confinement

    International Nuclear Information System (INIS)

    Salasnich, L.; Reatto, L.; Parola, A.

    2002-01-01

    We investigate the dynamics of Bose-Einstein condensate bright solitons made of alkali-metal atoms with negative scattering length and under harmonic confinement in the transverse direction. Contrary to the one-dimensional (1D) case, the 3D bright soliton exists only below a critical attractive interaction that depends on the extent of confinement. Such a behavior is also found in multisoliton condensates with box boundary conditions. We obtain numerical and analytical estimates of the critical strength beyond which the solitons do not exist. By using an effective 1D nonpolynomial nonlinear Schroedinger equation, which accurately takes into account the transverse dynamics of cigarlike condensates, we numerically simulate the dynamics of the 'soliton train' reported in a recent experiment [Nature (London) 417, 150 (2002)]. Then, analyzing the macroscopic quantum tunneling of the bright soliton on a Gaussian barrier, we find that its interference in the tunneling region is strongly suppressed with respect to nonsolitonic case; moreover, the tunneling through a barrier breaks the shape invariance of the matter wave. Finally, we show that the collapse of the soliton is induced by the scattering on the barrier or by the collision with another matter wave when the density reaches a critical value, for which we derive an accurate analytical formula

  17. Possible Bright Starspots on TRAPPIST-1

    Science.gov (United States)

    Morris, Brett M.; Agol, Eric; Davenport, James R. A.; Hawley, Suzanne L.

    2018-04-01

    The M8V star TRAPPIST-1 hosts seven roughly Earth-sized planets and is a promising target for exoplanet characterization. Kepler/K2 Campaign 12 observations of TRAPPIST-1 in the optical show an apparent rotational modulation with a 3.3-day period, though that rotational signal is not readily detected in the Spitzer light curve at 4.5 μm. If the rotational modulation is due to starspots, persistent dark spots can be excluded from the lack of photometric variability in the Spitzer light curve. We construct a photometric model for rotational modulation due to photospheric bright spots on TRAPPIST-1 that is consistent with both the Kepler and Spitzer light curves. The maximum-likelihood model with three spots has typical spot sizes of R spot/R ⋆ ≈ 0.004 at temperature T spot ≳ 5300 ± 200 K. We also find that large flares are observed more often when the brightest spot is facing the observer, suggesting a correlation between the position of the bright spots and flare events. In addition, these flares may occur preferentially when the spots are increasing in brightness, which suggests that the 3.3-day periodicity may not be a rotational signal, but rather a characteristic timescale of active regions.

  18. Surface pressure retrieval from SCIAMACHY measurements in the O2 A Band: validation of the measurements and sensitivity on aerosols

    Directory of Open Access Journals (Sweden)

    B. van Diedenhoven

    2005-01-01

    Full Text Available We perform surface pressure retrievals from cloud-free Oxygen A band measurements of SCIAMACHY. These retrievals can be well validated because surface pressure is a quantity that is, in general, accurately known from meteorological models. Therefore, surface pressure retrievals and their validation provide important insight into the quality of the instrument calibration. Furthermore, they can provide insight into retrievals which are affected by similar radiation transport processes, for example the retrieval of total columns of H2O, CO, CO2 and CH4. In our retrieval aerosols are neglected. Using synthetic measurements, it is shown that for low to moderate surface albedos this leads to an underestimation of the retrieved surface pressures. For high surface albedos this generally leads to an overestimation of the retrieved surface pressures. The surface pressures retrieved from the SCIAMACHY measurements indeed show this dependence on surface albedo, when compared to the corresponding pressures from a meteorological database. However, an offset of about 20 hPa was found, which can not be caused by neglecting aerosols in the retrieval. The same offset was found when comparing the retrieved surface pressures to those retrieved from co-located GOME Oxygen A band measurements. This implies a calibration error in the SCIAMACHY measurements. By adding an offset of 0.86% of the continuum reflectance at 756 nm to the SCIAMACHY reflectance measurements, this systematic bias vanishes.

  19. Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. Application to a biomaterial surface

    International Nuclear Information System (INIS)

    Mendez-Vilas, A.; Bruque, J.M.; Gonzalez-Martin, M.L.

    2007-01-01

    In the field of biomaterials surfaces, the ability of the atomic force microscope (AFM) to access the surface structure at unprecedented spatial (vertical and lateral) resolution, is helping in a better understanding on how topography affects the overall interaction of biological cells with the material surface. Since cells in a wide range of sizes are in contact with the biomaterial surface, a quantification of the surface structure in such a wide range of dimensional scales is needed. With the advent of the AFM, this can be routinely done in the lab. In this work, we show that even when it is clear that such a scale-dependent study is needed, AFM maps of the biomaterial surface taken at different scanning lengths are not completely consistent when they are taken at the same scanning resolution, as it is usually done: AFM images of different scanning areas have different point-to-point physical distances. We show that this effect influences the quantification of the average (R a ) and rms (R q ) roughness parameters determined at different length scales. This is the first time this inconsistency is reported and should be taken into account when roughness is measured in this way. Since differences will be in general in the range of nanometres, this is especially interesting for those processes involving the interaction of the biomaterial surface with small biocolloids as bacteria, while this effect should not represent any problems for larger animal cells

  20. A three-layer model of self-assembly induced surface-energy variation experimentally extracted by using nanomechanically sensitive cantilevers

    International Nuclear Information System (INIS)

    Zuo Guomin; Li Xinxin

    2011-01-01

    This research is aimed at elucidating surface-energy (or interfacial energy) variation during the process of molecule-layer self-assembly on a solid surface. A quasi-quantitative plotting model is proposed and established to distinguish the surface-energy variation contributed by the three characteristic layers of a thiol-on-gold self-assembled monolayer (SAM), namely the assembly-medium correlative gold/head-group layer, the chain/chain interaction layer and the tail/medium layer, respectively. The data for building the model are experimentally extracted from a set of correlative thiol self-assemblies in different media. The variation in surface-energy during self-assembly is obtained by in situ recording of the self-assembly induced nanomechanical surface-stress using integrated micro-cantilever sensors. Based on the correlative self-assembly experiment, and by using the nanomechanically sensitive self-sensing cantilevers to monitor the self-assembly induced surface-stressin situ, the experimentally extracted separate contributions of the three layers to the overall surface-energy change aid a comprehensive understanding of the self-assembly mechanism. Moreover, the quasi-quantitative modeling method is helpful for optimal design, molecule synthesis and performance evaluation of molecule self-assembly for application-specific surface functionalization.

  1. Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance

    KAUST Repository

    Wang, Mingkui; Grä tzel, Carole; Moon, Soo-Jin; Humphry-Baker, Robin; Rossier-Iten, Nathalie; Zakeeruddin, Shaik M.; Grä tzel, Michael

    2009-01-01

    In solid-state dye sensitized solar cells (SSDSCs) charge recombination at the dye-hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar coadsorbents

  2. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    Science.gov (United States)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for

  3. ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazumasa [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Loukitcheva, Maria [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Shimojo, Masumi [Chile Observatory, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Solanki, Sami K. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37073 Göttingen (Germany); White, Stephen M., E-mail: k.iwai@isee.nagoya-u.ac.jp [Space Vehicles Directorate, Air Force Research Laboratory, Albuquerque, NM (United States)

    2017-06-01

    We report the discovery of a brightness enhancement in the center of a large sunspot umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). Sunspots are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large sunspot within the active region AR12470, on 2015 December 16. The 3 mm map has a 300″ × 300″ field of view and 4.″9 × 2.″2 spatial resolution, which is the highest spatial resolution map of an entire sunspot in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K relative to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph ( IRIS ), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the sunspot umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be related to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.

  4. Urban Surface Temperature Reduction via the Urban Aerosol Direct Effect: A Remote Sensing and WRF Model Sensitivity Study

    Directory of Open Access Journals (Sweden)

    Menglin Jin

    2010-01-01

    Full Text Available The aerosol direct effect, namely, scattering and absorption of sunlight in the atmosphere, can lower surface temperature by reducing surface insolation. By combining National Aeronautics and Space Administration (NASA AERONET (AErosol RObotic NETwork observations in large cities with Weather Research and Forecasting (WRF model simulations, we find that the aerosol direct reduction of surface insolation ranges from 40–100Wm−2, depending on aerosol loading and land-atmosphere conditions. To elucidate the maximum possible effect, values are calculated using a radiative transfer model based on the top quartile of the multiyear instantaneous aerosol data observed by AERONET sites. As a result, surface skin temperature can be reduced by 1°C-2°C while 2-m surface air temperature reductions are generally on the order of 0.5°C–1°C.

  5. Adaptation of an urban land surface model to a tropical suburban area: Offline evaluation, sensitivity analysis, and optimization of TEB/ISBA (SURFEX)

    Science.gov (United States)

    Harshan, Suraj

    The main objective of the present thesis is the improvement of the TEB/ISBA (SURFEX) urban land surface model (ULSM) through comprehensive evaluation, sensitivity analysis, and optimization experiments using energy balance and radiative and air temperature data observed during 11 months at a tropical sub-urban site in Singapore. Overall the performance of the model is satisfactory, with a small underestimation of net radiation and an overestimation of sensible heat flux. Weaknesses in predicting the latent heat flux are apparent with smaller model values during daytime and the model also significantly underpredicts both the daytime peak and nighttime storage heat. Surface temperatures of all facets are generally overpredicted. Significant variation exists in the model behaviour between dry and wet seasons. The vegetation parametrization used in the model is inadequate to represent the moisture dynamics, producing unrealistically low latent heat fluxes during a particularly dry period. The comprehensive evaluation of the USLM shows the need for accurate estimation of input parameter values for present site. Since obtaining many of these parameters through empirical methods is not feasible, the present study employed a two step approach aimed at providing information about the most sensitive parameters and an optimized parameter set from model calibration. Two well established sensitivity analysis methods (global: Sobol and local: Morris) and a state-of-the-art multiobjective evolutionary algorithm (Borg) were employed for sensitivity analysis and parameter estimation. Experiments were carried out for three different weather periods. The analysis indicates that roof related parameters are the most important ones in controlling the behaviour of the sensible heat flux and net radiation flux, with roof and road albedo as the most influential parameters. Soil moisture initialization parameters are important in controlling the latent heat flux. The built (town) fraction

  6. BRITE-Constellation: Nanosatellites for precision photometry of bright stars

    Science.gov (United States)

    Weiss, W. W.; Moffat, A. F. J.; Schwarzenberg-Czerny, A.; Koudelka, O. F.; Grant, C. C.; Zee, R. E.; Kuschnig, R.; Mochnacki, St.; Rucinski, S. M.; Matthews, J. M.; Orleański, P.; Pamyatnykh, A. A.; Pigulski, A.; Alves, J.; Guedel, M.; Handler, G.; Wade, G. A.; Scholtz, A. L.; Scholtz

    2014-02-01

    will be selected is shown in Fig. 1. This sample falls into two principal classes of stars: (1) Hot luminous H-burning stars (O to F stars). Analyses of OB star variability have the potential to help solve two outstanding problems: the sizes of convective (mixed) cores in massive stars and the influence of rapid rotation on their structure and evolution. (2) Cool luminous stars (AGB stars, cool giants and cool supergiants). Measurements of the time scales involved in surface granulation and differential rotation will constrain turbulent convection models. Mass loss from these stars (especially the massive supernova progenitors) is a major contributor to the evolution of the interstellar medium, so in a sense, this sample dominates cosmic ``ecology'' in terms of future generations of star formation. The massive stars are believed to share many characteristics of the lower mass range of the first generation of stars ever formed (although the original examples are of course long gone). BRITE observations will also be used to detect some Jupiter- and even Neptune-sized planets around bright host stars via transits, as expected on the basis of statistics from the Kepler exoplanet mission. Detecting planets around such very bright stars will greatly facilitate their subsequent characterization. BRITE will also use surface spots to investigate stellar rotation. The following Table summarizes launch and orbit parameters of BRITE-Constellation components. The full version of this paper describing in more detail BRITE-Constellation will be published separately in a journal. The symposium presentation is available at http://iaus301.astro.uni.wroc.pl/program.php

  7. Hydroxy-Al and cell-surface negativity are responsible for the enhanced sensitivity of Rhodotorula taiwanensis to aluminum by increased medium pH.

    Science.gov (United States)

    Zhao, Xue Qiang; Bao, Xue Min; Wang, Chao; Xiao, Zuo Yi; Hu, Zhen Min; Zheng, Chun Li; Shen, Ren Fang

    2017-10-01

    Aluminum (Al) is ubiquitous and toxic to microbes. High Al 3+ concentration and low pH are two key factors responsible for Al toxicity, but our present results contradict this idea. Here, an Al-tolerant yeast strain Rhodotorula taiwanensis RS1 was incubated in glucose media containing Al with a continuous pH gradient from pH 3.1-4.2. The cells became more sensitive to Al and accumulated more Al when pH increased. Calculations using an electrostatic model Speciation Gouy Chapman Stern indicated that, the increased Al sensitivity of cells was associated with AlOH 2+ and Al(OH) 2 + rather than Al 3+ . The alcian blue (a positively charged dye) adsorption and zeta potential determination of cell surface indicated that, higher pH than 3.1 increased the negative charge and Al adsorption at the cell surface. Taken together, the enhanced sensitivity of R. taiwanensis RS1 to Al from pH 3.1-4.2 was associated with increased hydroxy-Al and cell-surface negativity.

  8. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

    Science.gov (United States)

    Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.

    2018-04-01

    We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).

  9. A Brightness-Referenced Star Identification Algorithm for APS Star Trackers

    Science.gov (United States)

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950

  10. Effect of Gold (Au) Doping on the Surface of CeO2 Materials Surface Gas Sensor to NH3, CO and HNO3 Detection Sensitivity

    International Nuclear Information System (INIS)

    Sayono; Tjipto Sujitno; Agus Santoso; Sunardi

    2002-01-01

    Research on the effect of various dose and energy of gold ions (1.2 x 10 16 ion/cm 2 , 40 keV; 4.4 x 10 16 ion/cm 2 , 60 keV and 4.6 x 10 16 ion/cm 2 , 80 keV) implanted into CeO 2 thin layer gas sensor has been carried out using ion accelerator. The effect such as their resistance and sensitivity for various temperature and gas sensor such as NH 3 , CO and HNO 3 has been done. It was found that the best resistance and sensitivity was achieved at ion dose 1.2 x 10 16 ion/cm 2 and 40 keV. At this conditions, the resistance was 2.22 MΩ and sensitivity was (70.3 ± 8.38)% for NH 3 ; (45 ± 6.78)% for CO and (30.3 ± 5.5)% for HNO 3 gas, at the sensor temperature of 325 o C and concentration of 4800 ppm. (author)

  11. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien; Amani, Matin; Desai, Sujay B.; Ahn, Geun Ho; Han, Kevin; He, Jr-Hau; Ager, Joel W.; Wu, Ming C.; Javey, Ali

    2018-01-01

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  12. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien

    2018-04-04

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  13. Investigating the Bright End of LSST Photometry

    Science.gov (United States)

    Ojala, Elle; Pepper, Joshua; LSST Collaboration

    2018-01-01

    The Large Synoptic Survey Telescope (LSST) will begin operations in 2022, conducting a wide-field, synoptic multiband survey of the southern sky. Some fraction of objects at the bright end of the magnitude regime observed by LSST will overlap with other wide-sky surveys, allowing for calibration and cross-checking between surveys. The LSST is optimized for observations of very faint objects, so much of this data overlap will be comprised of saturated images. This project provides the first in-depth analysis of saturation in LSST images. Using the PhoSim package to create simulated LSST images, we evaluate saturation properties of several types of stars to determine the brightness limitations of LSST. We also collect metadata from many wide-field photometric surveys to provide cross-survey accounting and comparison. Additionally, we evaluate the accuracy of the PhoSim modeling parameters to determine the reliability of the software. These efforts will allow us to determine the expected useable data overlap between bright-end LSST images and faint-end images in other wide-sky surveys. Our next steps are developing methods to extract photometry from saturated images.This material is based upon work supported in part by the National Science Foundation through Cooperative Agreement 1258333 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-76SF00515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members.Thanks to NSF grant PHY-135195 and the 2017 LSSTC Grant Award #2017-UG06 for making this project possible.

  14. Raman beam combining for laser brightness enhancement

    Science.gov (United States)

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  15. Bright emission lines in new Seyfert galaxies

    International Nuclear Information System (INIS)

    Afanasev, V.L.; Denisiuk, E.K.; Lipovetskii, V.A.; Shapovalova, A.I.

    1983-01-01

    Observational data are given on bright emission lines (H-alpha, H-beta, and forbidden N II, S II, and O III) for 14 recently discovered Seyfert galaxies. The investigated objects can be divided into three groups, which correspond approximately to the first (5 objects), the intermediate (4 objects), and the second (4 objects) Seyfert types. Attention is drawn to the properties of the galaxy Markaryan 1018, which has features of both the first and the second type and is distinguished by the weakness of its emission lines, which is probably due to a gas deficit. 7 references

  16. Research Note: The sensitivity of surface seismic P-wave data in transversely isotropic media to reflector depth

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-01-01

    The leading component of the high-frequency asymptotic description of the wavefield, given by the travel time, is governed by the eikonal equation. In anisotropic media, traveltime measurements from seismic experiments conducted along one surface

  17. Surface Enrichment by Conventional and Polymerizable Sulfated Nonylphenol Ethoxylate Emulsifiers in Water-Based Pressure-Sensitive Adhesive

    Science.gov (United States)

    Jilin Zhang; Yuxi Zhao; Matthew R. Dubay; Steven J. Severtson; Larry E. Gwin; Carl J. Houtman

    2013-01-01

    Comparisons of properties are made for pressure-sensitive adhesives (PSAs) generated via emulsion polymerization using both conventional and reactive emulsifiers. The emulsifiers are ammonium salts of sulfated nonylphenol ethoxylates with similar chemical structures and hydrophilic−lipophilic balances. The polymerizable surfactant possesses a reactive double...

  18. Sensitivity enhancement for nitrophenols using cationic surfactant-modified activated carbon for solid-phase extraction surface-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Chen, Y C; Tsai, M F

    2000-01-01

    Previous work has demonstrated that a combination of solid-phase extraction with surface-assisted laser desorption/ionization (SPE-SALDI) mass spectrometry can be applied to the determination of trace nitrophenols in water. An improved method to lower the detection limit of this hyphenated technique is described in this present study. Activated carbon powder is used as both the SPE adsorbent and the SALDI solid in the analysis by SPE-SALDI. The surface of the activated carbon is modified by passing an aqueous solution of a cationic surfactant through the SPE cartridge. The results demonstrate that the sensitivity for nitrophenols in the analysis by SPE-SALDI can be improved by using cationic surfactants to modify the surface of the activated carbon. The detection limit for nitrophenols is about 25 ppt based on a signal-to-noise ratio of 3 by sampling from 100 mL of solution. Copyright 2000 John Wiley & Sons, Ltd.

  19. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  20. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    Science.gov (United States)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that

  1. Bright point study. [of solar corona

    Science.gov (United States)

    Tang, F.; Harvey, K.; Bruner, M.; Kent, B.; Antonucci, E.

    1982-01-01

    Transition region and coronal observations of bright points by instruments aboard the Solar Maximum Mission and high resolution photospheric magnetograph observations on September 11, 1980 are presented. A total of 31 bipolar ephemeral regions were found in the photosphere from birth in 9.3 hours of combined magnetograph observations from three observatories. Two of the three ephemeral regions present in the field of view of the Ultraviolet Spectrometer-Polarimeter were observed in the C IV 1548 line. The unobserved ephemeral region was determined to be the shortest-lived (2.5 hr) and lowest in magnetic flux density (13G) of the three regions. The Flat Crystal Spectrometer observed only low level signals in the O VIII 18.969 A line, which were not statistically significant to be positively identified with any of the 16 ephemeral regions detected in the photosphere. In addition, the data indicate that at any given time there lacked a one-to-one correspondence between observable bright points and photospheric ephemeral regions, while more ephemeral regions were observed than their counterparts in the transition region and the corona.

  2. Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers

    Directory of Open Access Journals (Sweden)

    Evandro Leite de Souza

    2014-01-01

    Full Text Available This study assessed the capacity of adhesion, the detachment kinetic and the biofilm formation by Staphylococcus aureus isolated from food services on stainless steel and polypropylene surfaces (2 x 2 cm when cultivated in a meat-based broth at 28 and 7 ºC. It was also to study the efficacy of the sanitizers sodium hypochlorite (250 mg/L and peracetic acid (30 mg/L in inactivating the bacterial cells in the preformed biofilm. S. aureus strains adhered in high numbers regardless the assayed surface kind and incubation temperature over 72 h. Cells detachment of surfaces revealed high persistence over the incubation period. Number of cells needed for biofilm formation was noted at all experimental systems already after 3 days. Peracetic acid and sodium hypochlorite were not efficient in completely removing the cells of S. aureus adhered on polypropylene and stainless steel surfaces. From these results, the assayed strains revealed high capacity to adhere and form biofilm on polypropylene and stainless steel surfaces under different growth conditions. Moreover, the cells in biofilm matrix were resistant for total removal when submitted to the exposure to sanitizers.

  3. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  4. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  5. Sensitivity study of surface wind flow of a limited area model simulating the extratropical storm Delta affecting the Canary Islands

    OpenAIRE

    Marrero, C.; Jorba, O.; Cuevas, E.; Baldasano, J. M.

    2009-01-01

    In November 2005 an extratropical storm named Delta affected the Canary Islands (Spain). The high sustained wind and intense gusts experienced caused significant damage. A numerical sensitivity study of Delta was conducted using the Weather Research & Forecasting Model (WRF-ARW). A total of 27 simulations were performed. Non-hydrostatic and hydrostatic experiments were designed taking into account physical parameterizations and geometrical factors (size and position of the outer domain, d...

  6. Calibration of an integrated land surface process and radiobrightness (LSP/R) model during summertime

    Science.gov (United States)

    Judge, Jasmeet; England, Anthony W.; Metcalfe, John R.; McNichol, David; Goodison, Barry E.

    2008-01-01

    In this study, a soil vegetation and atmosphere transfer (SVAT) model was linked with a microwave emission model to simulate microwave signatures for different terrain during summertime, when the energy and moisture fluxes at the land surface are strong. The integrated model, land surface process/radiobrightness (LSP/R), was forced with weather and initial conditions observed during a field experiment. It simulated the fluxes and brightness temperatures for bare soil and brome grass in the Northern Great Plains. The model estimates of soil temperature and moisture profiles and terrain brightness temperatures were compared with the observed values. Overall, the LSP model provides realistic estimates of soil moisture and temperature profiles to be used with a microwave model. The maximum mean differences and standard deviations between the modeled and the observed temperatures (canopy and soil) were 2.6 K and 6.8 K, respectively; those for the volumetric soil moisture were 0.9% and 1.5%, respectively. Brightness temperatures at 19 GHz matched well with the observations for bare soil, when a rough surface model was incorporated indicating reduced dielectric sensitivity to soil moisture by surface roughness. The brightness temperatures of the brome grass matched well with the observations indicating that a simple emission model was sufficient to simulate accurate brightness temperatures for grass typical of that region and surface roughness was not a significant issue for grass-covered soil at 19 GHz. Such integrated SVAT-microwave models allow for direct assimilation of microwave observations and can also be used to understand sensitivity of microwave signatures to changes in weather forcings and soil conditions for different terrain types.

  7. Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study

    International Nuclear Information System (INIS)

    Dwivedi, Yogendra S.; Sharma, Anuj K.; Gupta, Banshi D.

    2007-01-01

    We have theoretically analyzed the influence of skew rays on the performance of a fiber-optic sensor based on surface plasmon resonance. The performance of the sensor has been evaluated in terms of its sensitivity and signal-to-noise ratio (SNR). The theoretical model for skewness dependence includes the material dispersion in fiber cores and metal layers, simultaneous excitation of skew rays, and meridional rays in the fiber core along with all guided rays launching from a collimated light source. The effect of skew rays on the SNR and the sensitivity of the sensor with two different metals has been compared. The same comparison is carried out for the different values of design parameters such as numerical aperture, fiber core diameter, and the length of the surface-plasmon-resonance (SPR)active sensing region. This detailed analysis for the effect of skewness on the SNR and the sensitivity of the sensor leads us to achieve the best possible performance from a fiber-optic SPR sensor against the skewness in the optical fiber

  8. Chemical surface treatment with toluene to enhance sensitivity of NO2 gas sensors based on CuPcTs/Alq3 thin films

    Directory of Open Access Journals (Sweden)

    Mahdi H. Suhail

    2017-09-01

    Full Text Available A nitrogen dioxide (NO2 gas sensor based on the blend of copper phthalocyanine-tetrasulfonic acid tetrasodium/tris-(8-hydroxyquinolinealuminum (CuPcTs/Alq3 thin films was fabricated. The effect of chemical surface treatment with toluene on the structural, surface morphology and device sensitivity has been examined. The X-ray diffraction (XRD patterns of as-deposited and toluene-treated films exhibit a broad hump peak at 2θ = 24°. The atomic force microscopy (AFM measurements show that the average particle diameter decreases with immersing time. The needle like shapes can be seen from scanning electron microscopy (SEM images for films treated with toluene for an immersing time of 60 min. Gas sensor characterizations demonstrate that all samples have superior NO2 gas sensitivity at a operating temperature of 373 K. The increase of the sensor sensitivity with increasing chemical treatment time up to 60 min was observed. All films show the stable and repeatable response patterns.

  9. Skin Sensitive Difference of Human Body Sections under Clothing--Multiple Analysis of Skin Surface Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    李俊; 吴海燕; 张渭源

    2003-01-01

    A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.

  10. A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots.

    Science.gov (United States)

    Pan, Jiahong; Zheng, Zengyao; Yang, Jianying; Wu, Yaoyu; Lu, Fushen; Chen, Yaowen; Gao, Wenhua

    2017-05-01

    A novel fluorescence sensor based on controlling the surface passivation degree of carbon quantum dots (CQDs) was developed for glutathione (GSH) detection. First, we found that the fluorescence intensity of the CQDs which was obtained by directly pyrolyzing citric acid would increased largely after the surface passivation treatment by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). In the light of this phenomenon, we designed a simple, rapid and selective fluorescence sensor based on the surface passivated CQDs. A certain and excess amount of EDC were mixed with GSH, part of EDC would form a stable complex with GSH owing to the exposed sulfhydryl group of GSH. As the synthesized CQDs were added into the above mixture solution, the fluorescence intensity of the (EDC/GSH)/CQDs mixture solution could be directly related to the amount of GSH. Compared to other fluorescence analytical methods, the fluorescence sensor we design is neither the traditional fluorescent "turn on" probes nor "turn off" probes. It is a new fluorescence analytical method that target object indirectly control the surface passivation degree of CQDs so that it can realize the detection of the target object. Moreover, the proposed method manifested great advantages including short analysis time, low cost and ease of operation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1 - Model Development and sensitivity analysis

    Science.gov (United States)

    Soil heat flux at the surface (G0) is strongly influenced by whether the soil is shaded or sunlit, and therefore can have large spatial variability for incomplete vegetation cover, such as across the interrows of row crops. Most practical soil-plant-atmosphere energy balance models calculate G0 as a...

  12. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.

    Science.gov (United States)

    Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum

    2014-01-15

    We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.

  13. Brightness checkerboard lattice method for the calibration of the coaxial reverse Hartmann test

    Science.gov (United States)

    Li, Xinji; Hui, Mei; Li, Ning; Hu, Shinan; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin

    2018-01-01

    The coaxial reverse Hartmann test (RHT) is widely used in the measurement of large aspheric surfaces as an auxiliary method for interference measurement, because of its large dynamic range, highly flexible test with low frequency of surface errors, and low cost. And the accuracy of the coaxial RHT depends on the calibration. However, the calibration process remains inefficient, and the signal-to-noise ratio limits the accuracy of the calibration. In this paper, brightness checkerboard lattices were used to replace the traditional dot matrix. The brightness checkerboard method can reduce the number of dot matrix projections in the calibration process, thus improving efficiency. An LCD screen displayed a brightness checkerboard lattice, in which the brighter checkerboard and the darker checkerboard alternately arranged. Based on the image on the detector, the relationship between the rays at certain angles and the photosensitive positions of the detector coordinates can be obtained. And a differential de-noising method can effectively reduce the impact of noise on the measurement results. Simulation and experimentation proved the feasibility of the method. Theoretical analysis and experimental results show that the efficiency of the brightness checkerboard lattices is about four times that of the traditional dot matrix, and the signal-to-noise ratio of the calibration is significantly improved.

  14. Pulsed laser deposition of Ag nanoparticles on titanium hydroxide/oxide nanobelt arrays for highly sensitive surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Jing, Yuting; Wang, Huanwen; Zhao, Jie; Yi, Huan; Wang, Xuefeng

    2015-01-01

    Highlights: • Silver nanoparticles (NPs) were deposited on Ti(OH) 4 nanobelt by pulsed laser deposition (PLD). • The highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18. • Ag 2 O play important role for the high sensitivity Raman phenomenon. • Charge transfer from Ag NPs is also responsible for the enhancement ability. - Abstract: Surface-enhanced Raman scattering (SERS) substrate of Ti(OH) 4 nanobelt arrays (NBAs) was synthesized by a hydrothermal reaction, on which silver nanoparticles (NPs) were deposited by pulsed laser deposition (PLD). Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed the effective high specific surface area with silver NPs decorated on three-dimensional NBAs. Using rhodamine 6G (R6G) as an analyte molecule, the highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18 were obtained. It has been found that the specific morphology of these composite nanobelt arrays and the formation of Ag 2 O play important role for the high sensitivity Raman phenomenon. In addition, the surface plasmon resonance wavelength of Ag decorated Ti(OH) 4 NBAs and the charge transfer from Ag NPs are also responsible for the enhancement ability. For comparison SERS was investigated with silver particles decorated on TiO 2 NBAs, which is much less active

  15. Toward selective, sensitive, and discriminative detection of Hg(2+) and Cd(2+)via pH-modulated surface chemistry of glutathione-capped gold nanoclusters.

    Science.gov (United States)

    Huang, Pengcheng; Li, Sha; Gao, Nan; Wu, Fangying

    2015-11-07

    Heavy metal pollution can exert severe effects on the environment and human health. Simple, selective, and sensitive detection of heavy metal ions, especially two or more, using a single probe, is thereby of great importance. In this study, we report a new and facile strategy for discriminative detection of Hg(2+) and Cd(2+) with high selectivity and sensitivity via pH-modulated surface chemistry of the glutathione-capped gold NCs (GSH-Au NCs). By simply adjusting pH values of the colloidal solution of the NCs, Hg(2+) could specifically turn off the fluorescence under acidic pH, however, Cd(2+) could exclusively turn on the fluorescence under alkaline pH. This enables the NCs to serve as a dual fluorescent sensor for Hg(2+) and Cd(2+). We demonstrate that these two opposing sensing modes are presumably due to different interaction mechanisms: Hg(2+) induces aggregation by dissociating GSH from the Au surface via robust coordination and, Cd(2+) could passivate the Au surface by forming a Cd-GSH complex with a compact structure. Finally, the present strategy is successfully exploited to separately determine Hg(2+) and Cd(2+) in environmental water samples.

  16. Transition between bulk and surface refractive index sensitivity of micro-cavity in-line Mach-Zehnder interferometer induced by thin film deposition.

    Science.gov (United States)

    Śmietana, Mateusz; Janik, Monika; Koba, Marcin; Bock, Wojtek J

    2017-10-16

    In this work we discuss the refractive index (RI) sensitivity of a micro-cavity in-line Mach-Zehnder interferometer in the form of a cylindrical hole (40-50 μm in diameter) fabricated in a standard single-mode optical fiber using a femtosecond laser. The surface of the micro-cavity was coated with up to 400 nm aluminum oxide thin film using the atomic layer deposition method. Next, the film was progressively chemically etched and the influence on changes in the RI of liquid in the micro-cavity was determined at different stages of the experiment, i.e., at different thicknesses of the film. An effect of transition between sensitivity to the film thickness (surface) and the RI of liquid in the cavity (bulk) is demonstrated for the first time. We have found that depending on the interferometer working conditions determined by thin film properties, the device can be used for investigation of phenomena taking place at the surface, such as in case of specific label-free biosensing applications, or for small-volume RI analysis as required in analytical chemistry.

  17. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2017-01-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  18. Surface-Sensitive and Bulk Studies on the Complexation and Photosensitized Degradation of Catechol by Iron(III) as a Model for Multicomponent Aerosol Systems

    Science.gov (United States)

    Al-abadleh, H. A.; Tofan-Lazar, J.; Situm, A.; Ruffolo, J.; Slikboer, S.

    2013-12-01

    Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.

  19. Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO2 Supported Pt Electrodes

    Science.gov (United States)

    Meng, Chenhui; Wang, Bing; Gao, Ziyue; Liu, Zhaoyue; Zhang, Qianqian; Zhai, Jin

    2017-02-01

    Surface wettability is of importance for electrochemical reactions. Herein, its role in electrochemical hydrogen evolution reactions is investigated using light-sensitive nanotubular TiO2 supported Pt as hydrogen evolution electrodes (HEEs). The HEEs are fabricated by photocatalytic deposition of Pt particles on TiO2 nanotubes followed by hydrophobization with vaporized octadecyltrimethoxysilane (OTS) molecules. The surface wettability of HEEs is subsequently regulated in situ from hydrophobicity to hydrophilicity by photocatalytic decomposition of OTS molecules using ultraviolet light. It is found that hydrophilic HEEs demonstrate a larger electrochemical active area of Pt and a lower adhesion force to a gas bubble when compared with hydrophobic ones. The former allows more protons to react on the electrode surface at small overpotential so that a larger current is produced. The latter leads to a quick release of hydrogen gas bubbles from the electrode surface at large overpotential, which ensures the contact between catalysts and electrolyte. These two characteristics make hydrophilic HEEs generate a much high current density for HERs. Our results imply that the optimization of surface wettability is of significance for improving the electrocatalytic activity of HEEs.

  20. Self-assembled two-dimensional gold nanoparticle film for sensitive nontargeted analysis of food additives with surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wu, Yiping; Yu, Wenfang; Yang, Benhong; Li, Pan

    2018-05-15

    The use of different food additives and their active metabolites has been found to cause serious problems to human health. Thus, considering the potential effects on human health, developing a sensitive and credible analytical method for different foods is important. Herein, the application of solvent-driven self-assembled Au nanoparticles (Au NPs) for the rapid and sensitive detection of food additives in different commercial products is reported. The assembled substrates are highly sensitive and exhibit excellent uniformity and reproducibility because of uniformly distributed and high-density hot spots. The sensitive analyses of ciprofloxacin (CF), diethylhexyl phthalate (DEHP), tartrazine and azodicarbonamide at the 0.1 ppm level using this surface-enhanced Raman spectroscopy (SERS) substrate are given, and the results show that Au NP arrays can serve as efficient SERS substrates for the detection of food additives. More importantly, SERS spectra of several commercial liquors and sweet drinks are obtained to evaluate the addition of illegal additives. This SERS active platform can be used as an effective strategy in the detection of prohibited additives in food.

  1. On the sensitivity of numerical weather prediction to remotely sensed marine surface wind data - A simulation study

    Science.gov (United States)

    Cane, M. A.; Cardone, V. J.; Halem, M.; Halberstam, I.

    1981-01-01

    The reported investigation has the objective to assess the potential impact on numerical weather prediction (NWP) of remotely sensed surface wind data. Other investigations conducted with similar objectives have not been satisfactory in connection with a use of procedures providing an unrealistic distribution of initial errors. In the current study, care has been taken to duplicate the actual distribution of information in the conventional observing system, thus shifting the emphasis from accuracy of the data to the data coverage. It is pointed out that this is an important consideration in assessing satellite observing systems since experience with sounder data has shown that improvements in forecasts due to satellite-derived information is due less to a general error reduction than to the ability to fill data-sparse regions. The reported study concentrates on the evaluation of the observing system simulation experimental design and on the assessment of the potential of remotely sensed marine surface wind data.

  2. M13 Bacteriophage/Silver Nanowire Surface-Enhanced Raman Scattering Sensor for Sensitive and Selective Pesticide Detection.

    Science.gov (United States)

    Koh, Eun Hye; Mun, ChaeWon; Kim, ChunTae; Park, Sung-Gyu; Choi, Eun Jung; Kim, Sun Ho; Dang, Jaejeung; Choo, Jaebum; Oh, Jin-Woo; Kim, Dong-Ho; Jung, Ho Sang

    2018-03-28

    A surface-enhanced Raman scattering (SERS) sensor comprising silver nanowires (AgNWs) and genetically engineered M13 bacteriophages expressing a tryptophan-histidine-tryptophan (WHW) peptide sequence (BPWHW) was fabricated by simple mixing of BPWHW and AgNW solutions, followed by vacuum filtration onto a glass-fiber filter paper (GFFP) membrane. The AgNWs stacked on the GFFP formed a high density of SERS-active hot spots at the points of nanowire intersections, and the surface-coated BPWHW functioned as a bioreceptor for selective pesticide detection. The BPWHW-functionalized AgNW (BPWHW/AgNW) sensor was characterized by scanning electron microscopy, confocal scanning fluorescence microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. The Raman signal enhancement and the selective pesticide SERS detection properties of the BPWHW/AgNW sensor were investigated in the presence of control substrates such as wild-type M13 bacteriophage-decorated AgNWs (BPWT/AgNW) and undecorated AgNWs (AgNW). The BPWHW/AgNW sensor exhibited a significantly higher capture capability for pesticides, especially paraquat (PQ), than the control SERS substrates, and it also showed a relatively higher selectivity for PQ than for other bipyridylium pesticides such as diquat and difenzoquat. Furthermore, as a field application test, PQ was detected on the surface of PQ-pretreated apple peels, and the results demonstrated the feasibility of using a paper-based SERS substrate for on-site residual pesticide detection. The developed M13 bacteriophage-functionalized AgNW SERS sensor might be applicable for the detection of various pesticides and chemicals through modification of the M13 bacteriophage surface peptide sequence.

  3. Very-High-Brightness Picosecond Electron Source

    International Nuclear Information System (INIS)

    Bluem, H.

    2003-01-01

    Bright, RF photocathode electron guns are the source of choice for most high-performance research accelerator applications. Some of these applications are pushing the performance boundaries of the present state-of-the-art guns. Advanced Energy Systems is developing a novel photocathode RF gun that shows excellent promise for extending gun performance. Initial gun simulations with only a short booster accelerator easily break the benchmark emittance of one micron for 1 nC of bunch charge. The pulse length in these simulations is less than 2 ps. It is expected that with more detailed optimization studies, the performance can be further improved. The performance details of the gun will be presented. In addition, we will discuss the present design concept along with the status of the project

  4. New redshifts of bright galaxies. III

    International Nuclear Information System (INIS)

    de Vaucouleurs, G.; de Vaucouleurs, A.; Nieto, J.

    1979-01-01

    Redshifts of 196 bright galaxies, and 2 QSO's are derived from 246 spectrograms obtained from 1972 to 1977 with the Galaxy meter's two-state image tube grism spectrograph attached at the Cassegrain focus of the McDonald Observatory Struve reflector. The reciprocal dispersion in 335 A/mm at Hα and the wavelength range lambdalambda 4500--8000 A. The galaxy redshifts are in the range -28 -1 , but few exceed 5,000 km s -1 . The internal mean errors of the weighted mean velocities range from 22 to 140 km s -1 . Comparisons with other systems of redshifts, particularly the RC2, 21-cm and Sandage systems, indicate a mean systematic error of -35 +- 16 km s -1 , but it is probably variable with V. The external mean error is sigma*=90 km s -1 for velocities V -1 having a mean weight =4.0

  5. Dark Skies, Bright Kids Year 8

    Science.gov (United States)

    Bittle, Lauren E.; Wenger, Trey; Johnson, Kelsey E.; Angell, Dylan; Burkhardt, Andrew; Davis, Blair; Firebaugh, Ariel; Hancock, Danielle; Richardson, Whitney; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; McNair, Shunlante; Prager, Brian; Pryal, Matthew; Troup, Nicholas William

    2017-01-01

    We present activities from the eighth year of Dark Skies Bright Kids (DSBK), an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Over the past seven years, our primary focus has been hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools, and over the past several years, we have partnered with local businesses to host our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows. This past summer we expanded our reach through a new initiative to bring week-long summer day camps to south and southwest Virginia, home to some of the most underserved communities in the commonwealth.

  6. Dark Skies, Bright Kids Year 7

    Science.gov (United States)

    Bittle, Lauren E.; Johnson, Kelsey E.; Borish, H. Jacob; Burkhardt, Andrew; Firebaugh, Ariel; Hancock, Danielle; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; Prager, Brian; Pryal, Matthew; Sokal, Kimberly R.; Troup, Nicholas William; Wenger, Trey

    2016-01-01

    We present updates from our seventh year of operation including new club content, continued assessments, and our fifth annual Star Party. Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.

  7. Considerations for high-brightness electron sources

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are now used in many areas of physics research and in industrial and medical applications. New uses are being studied to address major societal needs in energy production, materials research, generation of intense beams of radiation at optical and suboptical wavelengths, treatment of various kinds of waste, and so on. Many of these modern applications require a high intensity beam at the desired energy, along with a very good beam quality in terms of the beam confinement, aiming, or focusing. Considerations for ion and electron accelerators are often different, but there are also many commonalties, and in fact, techniques derived for one should perhaps more often be considered for the other as well. We discuss some aspects of high-brightness electron sources here from that point of view. 6 refs

  8. Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance

    KAUST Repository

    Wang, Mingkui

    2009-07-10

    In solid-state dye sensitized solar cells (SSDSCs) charge recombination at the dye-hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar coadsorbents on the photovoltaic performance of sensitized hetero-junction solar cells. In the present study, we investigated the effect of two zwitterionic butyric acid derivatives differing only in the polar moiety attached to their common 4 carbon-chain acid, i.e., 4-guanidinobutyric acid (GBA) and 4-aminobutyric acid (ABA). These two molecules were implemented as coadsorbents in conjunction with Z907Na dye on the SSDSC. It was found that a Z907Na/GBA dye/co-adsorbent combination increases both the open circuit voltage (V oc) and short-circuit current density ( Jsc) as compared to using Z907Na dye alone. The Z907Na/ABA dye/co-adsorbent combination increases the Jsc. Impedance and transient photovoltage investigations elucidate the cause of these remarkable observations. ©2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Agarwala, S.; Ho, G.W.

    2012-01-01

    In the present work, electrochemical anodization has been used to prepare uniform TiO 2 nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is ∼180 nm, 14 μm and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO 2 nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO 2 nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO 2 nanotube array with Ag nanoparticles. Highlights: ► Uniform array of TiO 2 nanotubes synthesized via electrochemical anodization. ► Back illuminated DSSC gave a cell performance of 4.5%. ► TiO 2 nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  10. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwala, S., E-mail: agarwala.shweta@gmail.com [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore); Ho, G.W. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore)

    2012-05-15

    In the present work, electrochemical anodization has been used to prepare uniform TiO{sub 2} nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is {approx}180 nm, 14 {mu}m and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO{sub 2} nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO{sub 2} nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO{sub 2} nanotube array with Ag nanoparticles. Highlights: Black-Right-Pointing-Pointer Uniform array of TiO{sub 2} nanotubes synthesized via electrochemical anodization. Black-Right-Pointing-Pointer Back illuminated DSSC gave a cell performance of 4.5%. Black-Right-Pointing-Pointer TiO{sub 2} nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  11. A performance test of a new high-surface-quality and high-sensitivity CR-39 plastic nuclear track detector – TechnoTrak

    Energy Technology Data Exchange (ETDEWEB)

    Kodaira, S., E-mail: kodaira.satoshi@qst.go.jp [Radiation Measurement Research Team, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba (Japan); Morishige, K. [Research Institute for Science and Engineering, Waseda University, Tokyo (Japan); Kawashima, H.; Kitamura, H.; Kurano, M. [Radiation Measurement Research Team, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba (Japan); Hasebe, N. [Research Institute for Science and Engineering, Waseda University, Tokyo (Japan); Koguchi, Y.; Shinozaki, W. [Oarai Research Center, Chiyoda Technol Corporation, Ibaraki (Japan); Ogura, K. [College of Industrial Technology, Nihon University, Chiba (Japan)

    2016-09-15

    We have studied the performance of a newly-commercialized CR-39 plastic nuclear track detector (PNTD), “TechnoTrak”, in energetic heavy ion measurements. The advantages of TechnoTrak are derived from its use of a purified CR-39 monomer to improve surface quality combined with an antioxidant to improve sensitivity to low-linear-energy-transfer (LET) particles. We irradiated these detectors with various heavy ions (from protons to krypton) with various energies (30–500 MeV/u) at the heavy ion accelerator facilities in the National Institute of Radiological Sciences (NIRS). The surface roughness after chemical etching was improved to be 59% of that of the conventional high-sensitivity CR-39 detector (HARZLAS/TD-1). The detectable dynamic range of LET was found to be 3.5–600 keV/μm. The LET and charge resolutions for three ions tested ranged from 5.1% to 1.5% and 0.14 to 0.22 c.u. (charge unit), respectively, in the LET range of 17–230 keV/μm, which represents an improvement over conventional products (HARZLAS/TD-1 and BARYOTRAK). A correction factor for the angular dependence was determined for correcting the LET spectrum in an isotropic radiation field. We have demonstrated the potential of TechnoTrak, with its two key features of high surface quality and high sensitivity to low-LET particles, to improve automatic analysis protocols in radiation dosimetry and various other radiological applications.

  12. Life-threatening motor vehicle crashes in bright sunlight

    OpenAIRE

    Redelmeier, Donald A.; Raza, Sheharyar

    2017-01-01

    Abstract Bright sunlight may create visual illusions that lead to driver error, including fallible distance judgment from aerial perspective. We tested whether the risk of a life-threatening motor vehicle crash was increased when driving in bright sunlight. This longitudinal, case-only, paired-comparison analysis evaluated patients hospitalized because of a motor vehicle crash between January 1, 1995 and December 31, 2014. The relative risk of a crash associated with bright sunlight was estim...

  13. Bright intracranial lesions on diffusion-weighted images: a pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dae Seob [Gyeongsang National University College of Medicine, Jinju (Korea, Republic of)

    2006-06-15

    Diffusion-weighted imaging (DWI) is a MR sequence that is used to evaluate the rate of microscopic water diffusion within the tissues. The ability to measure the rate of water diffusion is important because this is frequently altered in various disease processes. Generally, the lesions with restricted water diffusion show bright intensity on DWI, but the lesions without restricted water diffusion can also show bright intensity on DWI, which is called the 'T2 shine through effect'. With DWI, we can sensitively detect hyperacute infarction (within 6 hours after symptom onset), and this is difficult to detect with using CT and the conventional MR sequenced. The acute and subacute lesions of hypoxic-ischemic encephalopathy and carbon monoxide intoxication also show bright intensity on the DWI. The other diseases that can show bright intensity on the DWI include acute and subacute diffuse axonal injury lesion, hyperacute and late subacute hematomas, cerebral abscess, subdural empyema, acute herpes encephalitis, various tumors and such degenerative and demyelinating diseases as multiple sclerosis, posterior reversible encephalopathy syndrome, Wilson's disease and Wernicke's encephalopathy.

  14. Bright intracranial lesions on diffusion-weighted images: a pictorial review

    International Nuclear Information System (INIS)

    Choi, Dae Seob

    2006-01-01

    Diffusion-weighted imaging (DWI) is a MR sequence that is used to evaluate the rate of microscopic water diffusion within the tissues. The ability to measure the rate of water diffusion is important because this is frequently altered in various disease processes. Generally, the lesions with restricted water diffusion show bright intensity on DWI, but the lesions without restricted water diffusion can also show bright intensity on DWI, which is called the 'T2 shine through effect'. With DWI, we can sensitively detect hyperacute infarction (within 6 hours after symptom onset), and this is difficult to detect with using CT and the conventional MR sequenced. The acute and subacute lesions of hypoxic-ischemic encephalopathy and carbon monoxide intoxication also show bright intensity on the DWI. The other diseases that can show bright intensity on the DWI include acute and subacute diffuse axonal injury lesion, hyperacute and late subacute hematomas, cerebral abscess, subdural empyema, acute herpes encephalitis, various tumors and such degenerative and demyelinating diseases as multiple sclerosis, posterior reversible encephalopathy syndrome, Wilson's disease and Wernicke's encephalopathy

  15. Bright luminance from silicon dioxide film with carbon nanotube electron beam exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Woong; Hong, Ji Hwan; Kang, Jung Su; Callixte, Shikili; Park, Kyu Chang, E-mail: kyupark@khu.ac.kr

    2016-02-15

    We observed the bright bluish-white luminescence with naked eye from carbon nanotube electron beam exposed silicon dioxide (SiO{sub 2}) thin film on Si substrate. The luminescence shows a peak intensity at 2.7 eV (460 nm) with wide spread up to 600 nm after the C-beam exposed on SiO{sub 2} thin film. The C-beam exposure system is composed of carbon nanotube emitters as electron beam source. The brightness strongly depend on the exposure condition. Luminescence characteristic was optimized by C-beam adjustment to observe with the naked eye. The cause of luminescence in the C-beam exposed SiO{sub 2} thin film is analyzed by CL microscopy, FT-IR, AFM and ellipsometer. Decrease of Si–O bonding was observed after C-beam exposure, and this reveals that oxygen deficient defects which are irradiation-sensitive cause 2.7 eV peak of luminescence. - Highlights: • We observed bright luminescence for SiO{sub 2} thin film with naked eye by carbon nanotube electron beam (C-beam) exposure technique. • The bright luminance from C-beam exposed SiO{sub 2} film will open novel silicon optoelectronics.

  16. Study of Three-Dimensional Image Brightness Loss in Stereoscopy

    Directory of Open Access Journals (Sweden)

    Hsing-Cheng Yu

    2015-10-01

    Full Text Available When viewing three-dimensional (3D images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D images in order to adjust the 3D-image brightness values. In addition, the photographic principle is used in this study to measure metering values by capturing 2D and 3D images on television screens. By analyzing these images with statistical product and service solutions (SPSS software, the image brightness values can be estimated using the statistical regression model, which can also indicate the impact of various environmental factors or hardware on the image brightness. In analysis of the experimental results, comparison of the image brightness between 2D and 3D images indicates 60.8% degradation in the 3D image brightness amplitude. The experimental values, from 52.4% to 69.2%, are within the 95% confidence interval

  17. H3PO4 treated surface modified CuS counter electrodes with high electrocatalytic activity for enhancing photovoltaic performance of quantum dot-sensitized solar cells

    Science.gov (United States)

    Panthakkal Abdul Muthalif, Mohammed; Sunesh, Chozhidakath Damodharan; Choe, Youngson

    2018-05-01

    Herein we report a simple synthetic strategy to prepare highly efficient and surface modified CuS counter electrodes (CEs) for quantum dot-sensitized solar cells (QDSSCs) in the presence of phosphoric acid (H3PO4) using the chemical bath deposition method. This is the first report of successful treatment of H3PO4 on the surface of CuS CEs for designing a high-performance QDSSCs with improved photovoltaic properties. After optimization, the 4 ml H3PO4 treated CuS CE-based QDSSC exhibits excellent photovoltaic performance with a conversion efficiency (η) of 4.20% (Voc = 0.592 V, Jsc = 13.35 mA cm-2, FF = 0.532) under one full-sun illumination (100 mW cm-2, AM 1.5 G).

  18. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection.

    Science.gov (United States)

    Wu, Mei-Sheng; Yuan, Da-Jing; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-12-17

    Here we developed a novel hybrid bipolar electrode (BPE)-electrochemiluminescence (ECL) biosensor based on hybrid bipolar electrode (BPE) for the measurement of cancer cell surface protein using ferrocence (Fc) labeled aptamer as signal recognition and amplification probe. According to the electric neutrality of BPE, the cathode of U-shaped ITO BPE was electrochemically deposited by Au nanoparticles (NPs) to enhance its conductivity and surface area, decrease the overpotential of O2 reduction, which would correspondingly increase the oxidation current of Ru(bpy)3(2+)/tripropylamine (TPA) on the anode of BPE and resulting a ∼4-fold enhancement of ECL intensity. Then a signal amplification strategy was designed by introducing Fc modified aptamer on the anode surface of BPE through hybridization for detecting the amount of mucin-1 on MCF-7 cells. The presence of Fc could not only inhibit the oxidation of Ru(bpy)3(2+) because of its lower oxidation potential, its oxidation product Fc(+) could also quench the ECL of Ru(bpy)3(2+)/TPA by efficient energy-transfer from the excited-state Ru(bpy)3(2+)* to Fc(+), making the ECL intensity greatly quenched. On the basis of the cathodic Au NPs induced ECL enhancing coupled with anodic Fc induced signal quenching amplification, the approach allowed detection of mucin-1 aptamer at a concentration down to 0.5 fM and was capable of detecting a minimum of 20 MCF-7 cells. Besides, the amount of mucin-1 on MCF-7 cells was calculated to be 9041 ± 388 molecules/cell. This approach therefore shows great promise in bioanalysis.

  19. Improving microstructured TiO{sub 2} photoanodes for dye sensitized solar cells by simple surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Saquib; Birnie, Dunbar P. III [Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, 607 Taylor Road, Piscataway, NJ 08854 (United States); Du Pasquier, Aurelien [Energy Storage Research Group (ESRG), Rutgers, The State University of New Jersey, 671 US Highway 1, North Brunswick, NJ 08902 (United States); Asefa, Tewodros [Department of Chemistry and Chemical Biology and Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854 (United States)

    2011-10-15

    TiCl{sub 4} surface treatment studies of porous electrode structure of TiO{sub 2} aggregates synthesized using an acidic precursor and CTAB as a templating agent are carried out in order to understand and improve upon recombination kinetics in the photonanode film matrix, together with enhancing the intrinsic light scattering. The key beneficial features of the photoanode included high surface roughness, necessary for superior dye adsorption, nanocrystallite aggregates leading to diffuse light scattering within the film matrix, and a hierarchical macro- and mesopore structure allowing good access of electrolyte to the dye, thereby assisting in dye regeneration (enhanced charge transfer). Pre-treatment of the TiO{sub 2} electrodes reduced recombination at the fluorine-doped tin oxide (FTO)/electrolyte interface. The post-treatment study showed enhanced surface roughness through the deposition of a thin overlayer of amorphous TiO{sub 2} on the film structure. This led to a notable improvement in both dye adsorption and inherent light scattering effects by the TiO{sub 2} aggregates, resulting in enhanced energy harvesting. The thin TiO{sub 2} overlayer also acted as a barrier in a core-shell configuration within the porous TiO{sub 2} matrix, and thereby reduced recombination. This allowed the hierarchical macro- and mesoporosity of the film matrix to be utilized more effectively for enhanced charge transfer during dye regeneration. Post-treatment of the aggregated TiO{sub 2} matrix resulted in a 36% enhancement in power conversion efficiency from 4.41% of untreated cells to 6.01%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Site-specific growth of Au-Pd alloy horns on Au nanorods: A platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy

    KAUST Repository

    Huang, Jianfeng

    2013-06-12

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized a novel Au-Pd bimetallic nanostructure (HIF-AuNR@AuPd) through site-specific epitaxial growth of Au-Pd alloy horns as catalytic sites at the ends of Au nanorods. Using high-resolution electron microscopy and tomography, we successfully reconstructed the complex three-dimensional morphology of HIF-AuNR@AuPd and identified that the horns are bound with high-index {11l} (0.25 < l < 0.43) facets. With an electron beam probe, we visualized the distribution of surface plasmon over the HIF-AuNR@AuPd nanorods, finding that strong longitudinal surface plasmon resonance concentrated at the rod ends. This unique crystal morphology led to the coupling of high catalytic activity with a strong SERS effect at the rod ends, making HIF-AuNR@AuPd an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. Using the hydrogenation of 4-nitrothiophenol as a model reaction, we demonstrated that its first-order reaction kinetics could be accurately determined from this platform. Moreover, we clearly identified the superior catalytic activity of the rod ends relative to that of the rod bodies, owing to the different SERS activities at the two positions. In comparison with other reported Au-Pd bimetallic nanostructures, HIF-AuNR@AuPd offered both higher catalytic activity and greater detection sensitivity. © 2013 American Chemical Society.

  1. Temperature sensitivity to the land-surface model in MM5 climate simulations over the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Jerez, Sonia; Montavez, Juan P.; Gomez-Navarro, Juan J.; Jimenez-Guerrero, Pedro [Dept. de Fisica, Univ. de Murcia (Spain); Jimenez, Jose M.; Gonzalez-Rouco, Jesus F. [Dept. de Astrofisica y CC. de la Atmosfera, Univ. Complutense de Madrid (Spain)

    2010-06-15

    Three different Land Surface Models have been used in three high resolution climate simulations performed with the mesoscale model MM5 over the Iberian Peninsula. The main difference among them lies in the soil moisture treatment, which is dynamically modelled by only two of them (Noah and Pleim and Xiu models), while in the simplest model (Simple Five-Layers) it is fixed to climatological values. The simulated period covers 1958-2002, using the ERA40 reanalysis data as driving conditions. Focusing on near-surface air temperature, this work evaluates the skill of each simulation in reproducing mean values and temporal variability, by comparing the simulations with observed temperature series. When the simplest simulation was analyzed, the greatest discrepances were observed for the summer season, when both, the mean values and the temporal variability of the temperature series, were badly underestimated. These weaknesses are largely overcome in the other two simulations (performed by coupling a more advanced soil model to MM5), and there was greater concordance between the simulated and observed spatial patterns. The influence of a dynamic soil moisture parameterization and, therefore, a more realistic simulation of the latent and sensible heat fluxes between the land and the atmosphere, helps to explain these results. (orig.)

  2. Sensitive and rapid detection of anti-PEG in blood using surface plasmon resonance sensor (Conference Presentation)

    Science.gov (United States)

    Sun, Fang; Jiang, Shaoyi; Yu, Qiuming

    2016-03-01

    Polyethylene glycol (PEG) is widely used to modify many therapeutic proteins and nanoparticles to reduce their immunogenicity and to improve their pharmacokinetic and therapeutic properties. It is generally accepted that PEG is non-immunogenic and non-antigenic. However, an emerging of literature and studies shows that the immune system can generate specific antibodies binding PEG. These anti-PEG antibodies not only correlate with adverse reactions appeared after patient infusions, but are also found to be the reason for therapeutic efficacy loss during chronical administrations. In addition, because of constant exposure to PEG in daily consumer products including detergents, processed food and cosmetics, a substantial proportion of the population has likely developed anti-PEG immunity. Thus a method to quickly and accurately measure the anti-PEG antibody level is desired. Nevertheless, the gold standard to detect anti-PEG antibodies is ELISA, which is costly and time-consuming especially for quantification. Herein, we demonstrated the anti-PEG measurement in blood serum using surface plasmon resonance (SPR) sensor. Several PEG-based surface functionalization on SPR sensor chip were studied in terms of protein resistance and the limit of detection (LOD) of anti-PEG. The quantitative detection can be achieved in less than 30 min with LOD comparable to ELISA. Furthermore, the IgG and IgM of anti-PEG can be differentiated by following the secondary antibody.

  3. Combined embedding of N-doping and CaCO{sub 3} surface modification in the TiO{sub 2} photoelectrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Kyung; Yun, Tae Kwan [Department of Chemistry, Keimyung University, Daegu 704-701 (Korea, Republic of); Bae, Jae Young, E-mail: jybae@kmu.ac.kr [Department of Chemistry, Keimyung University, Daegu 704-701 (Korea, Republic of); Won, Yong Sun, E-mail: yswon@pknu.ac.kr [Department of Chemical Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of)

    2013-11-15

    A successive embedding of N-doping and CaCO{sub 3} surface modification was carried out in the TiO{sub 2} photoelectrodes for dye-sensitized solar cells (DSSCs). The combined effect was revealed with the great increase of the open-circuit voltage (V{sub oc}), short-circuit current (J{sub sc}), and photoelectric conversion efficiency (η) of the prepared cells; the efficiency (η) was improved from 5.42% of a commercial TiO{sub 2} photoelectrode to 7.47% of an unmodified N-doped electrode, and to 9.03% of a N-doped and CaCO{sub 3} surface modified electrode. An enhanced photoresponse in N-doped TiO{sub 2} nanoparticles generate more photo-excited electrons in adsorbed dye, as supported by measured UV–vis diffuse reflectance spectra and incident photon to current conversion efficiency (IPCE). A successive CaCO{sub 3} surface modification then form a barrier on the surface of N-doped TiO{sub 2} particles, suppressing charge recombination of photo-generated electrons from N-doped TiO{sub 2} to dye or electrolyte, and thus extending their life time in the electrode, as supported by electron impedance spectroscopy (EIS). Furthermore, the higher basicity of the CaCO{sub 3} modified TiO{sub 2} facilitates the dye adsorption, as supported by the direct measurement of the amount of adsorbed dye.

  4. Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems

    KAUST Repository

    Rosas, Jorge

    2017-09-26

    The land surface temperature (LST) represents a critical element in efforts to characterize global surface energy and water fluxes, as well as being an essential climate variable in its own right. Current satellite platforms provide a range of spatial and temporal resolution radiance data from which LST can be determined. One of the most complete records of data comes via the Landsat series of satellites, which provide a continuous sequence that extends back to 1982. However, for much of this time, Landsat thermal data were provided through a single broadband thermal channel, making surface temperature retrieval challenging. To fully exploit the valuable time-series of thermal information that is available from these satellites requires efforts to better describe and understand the accuracy of temperature retrievals. Here, we contribute to these efforts by examining the impact of atmospheric correction on the estimation of LST, using atmospheric profiles derived from a range of in-situ, reanalysis, and satellite data. Radiance data from the thermal infrared (TIR) sensor onboard Landsat 8 was converted to LST by using the MODTRAN version 5.2 radiative transfer model, allowing the production of an LST time series based upon 28 Landsat overpasses. LST retrievals were then evaluated against in-situ thermal measurements collected over an arid zone farmland comprising both bare soil and vegetated surface types. Atmospheric profiles derived from AIRS, MOD07, ECMWF, NCEP, and balloon-based radiosonde data were used to drive the MODTRAN simulations. In addition to examining the direct impact of using various profile data on LST retrievals, randomly distributed errors were introduced into a range of forcing variables to better understand retrieval uncertainty. Results indicated differences in LST of up to 1 K for perturbations in emissivity and profile measurements, with the analysis also highlighting the challenges in modeling aerosol optical depth (AOD) over arid lands and

  5. Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems

    KAUST Repository

    Rosas, Jorge; Houborg, Rasmus; McCabe, Matthew

    2017-01-01

    The land surface temperature (LST) represents a critical element in efforts to characterize global surface energy and water fluxes, as well as being an essential climate variable in its own right. Current satellite platforms provide a range of spatial and temporal resolution radiance data from which LST can be determined. One of the most complete records of data comes via the Landsat series of satellites, which provide a continuous sequence that extends back to 1982. However, for much of this time, Landsat thermal data were provided through a single broadband thermal channel, making surface temperature retrieval challenging. To fully exploit the valuable time-series of thermal information that is available from these satellites requires efforts to better describe and understand the accuracy of temperature retrievals. Here, we contribute to these efforts by examining the impact of atmospheric correction on the estimation of LST, using atmospheric profiles derived from a range of in-situ, reanalysis, and satellite data. Radiance data from the thermal infrared (TIR) sensor onboard Landsat 8 was converted to LST by using the MODTRAN version 5.2 radiative transfer model, allowing the production of an LST time series based upon 28 Landsat overpasses. LST retrievals were then evaluated against in-situ thermal measurements collected over an arid zone farmland comprising both bare soil and vegetated surface types. Atmospheric profiles derived from AIRS, MOD07, ECMWF, NCEP, and balloon-based radiosonde data were used to drive the MODTRAN simulations. In addition to examining the direct impact of using various profile data on LST retrievals, randomly distributed errors were introduced into a range of forcing variables to better understand retrieval uncertainty. Results indicated differences in LST of up to 1 K for perturbations in emissivity and profile measurements, with the analysis also highlighting the challenges in modeling aerosol optical depth (AOD) over arid lands and

  6. A new method to detect and correct sample tilt in scanning transmission electron microscopy bright-field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ishikawa, R.; Sánchez-Santolino, G. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Lugg, N.R., E-mail: shibata@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan)

    2017-02-15

    Important properties of functional materials, such as ferroelectric shifts and octahedral distortions, are associated with displacements of the positions of lighter atoms in the unit cell. Annular bright-field scanning transmission electron microscopy is a good experimental method for investigating such phenomena due to its ability to image light and heavy atoms simultaneously. To map atomic positions at the required accuracy precise angular alignment of the sample with the microscope optical axis is necessary, since misalignment (tilt) of the specimen contributes to errors in position measurements of lighter elements in annular bright-field imaging. In this paper it is shown that it is possible to detect tilt with the aid of images recorded using a central bright-field detector placed within the inner radius of the annular bright-field detector. For a probe focus near the middle of the specimen the central bright-field image becomes especially sensitive to tilt and we demonstrate experimentally that misalignment can be detected with a precision of less than a milliradian, as we also confirm in simulation. Coma in the probe, an aberration that can be misidentified as tilt of the specimen, is also investigated and it is shown how the effects of coma and tilt can be differentiated. The effects of tilt may be offset to a large extent by shifting the diffraction plane detector an amount equivalent to the specimen tilt and we provide an experimental proof of principle of this using a segmented detector system. - Highlights: • Octahedral distortions are associated with displacements of lighter atoms. • Annular bright-field imaging is sensitive to light and heavy atoms simultaneously. • Mistilt of the specimen leads to errors in position measurements of lighter elements. • It is possible to detect tilt using images taken by a central bright-field detector. • Tilt may be offset by shifting th