WorldWideScience

Sample records for surface boundary forcing

  1. Bottom boundary layer forced by finite amplitude long and short surface waves motions

    Science.gov (United States)

    Elsafty, H.; Lynett, P.

    2018-04-01

    A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave

  2. Radiative forcing from aircraft emissions of NOx: model calculations with CH4 surface flux boundary condition

    Directory of Open Access Journals (Sweden)

    Giovanni Pitari

    2017-12-01

    Full Text Available Two independent chemistry-transport models with troposphere-stratosphere coupling are used to quantify the different components of the radiative forcing (RF from aircraft emissions of NOx, i.e., the University of L'Aquila climate-chemistry model (ULAQ-CCM and the University of Oslo chemistry-transport model (Oslo-CTM3. The tropospheric NOx enhancement due to aircraft emissions produces a short-term O3 increase with a positive RF (+17.3 mW/m2 (as an average value of the two models. This is partly compensated by the CH4 decrease due to the OH enhancement (−9.4 mW/m2. The latter is a long-term response calculated using a surface CH4 flux boundary condition (FBC, with at least 50 years needed for the atmospheric CH4 to reach steady state. The radiative balance is also affected by the decreasing amount of CO2 produced at the end of the CH4 oxidation chain: an average CO2 accumulation change of −2.2 ppbv/yr is calculated on a 50 year time horizon (−1.6 mW/m2. The aviation perturbed amount of CH4 induces a long-term response of tropospheric O3 mostly due to less HO2 and CH3O2 being available for O3 production, compared with the reference case where a constant CH4 surface mixing ratio boundary condition is used (MBC (−3.9 mW/m2. The CH4 decrease induces a long-term response of stratospheric H2O (−1.4 mW/m2. The latter finally perturbs HOx and NOx in the stratosphere, with a more efficient NOx cycle for mid-stratospheric O3 depletion and a decreased O3 production from HO2+NO in the lower stratosphere. This produces a long-term stratospheric O3 loss, with a negative RF (−1.2 mW/m2, compared with the CH4 MBC case. Other contributions to the net NOx RF are those due to NO2 absorption of UV-A and aerosol perturbations (the latter calculated only in the ULAQ-CCM. These comprise: increasing sulfate due to more efficient oxidation of SO2, increasing inorganic and organic nitrates and the net aerosols indirect effect on warm clouds

  3. Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers

    Science.gov (United States)

    Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall

    The wind-driven stably stratified mid-latitude oceanic surface turbulent boundary layer is computationally simulated in the presence of a specified surface gravity-wave field. The gravity waves have broad wavenumber and frequency spectra typical of measured conditions in near-equilibrium with the mean wind speed. The simulation model is based on (i) an asymptotic theory for the conservative dynamical effects of waves on the wave-averaged boundary-layer currents and (ii) a boundary-layer forcing by a stochastic representation of the impulses and energy fluxes in a field of breaking waves. The wave influences are shown to be profound on both the mean current profile and turbulent statistics compared to a simulation without these wave influences and forced by an equivalent mean surface stress. As expected from previous studies with partial combinations of these wave influences, Langmuir circulations due to the wave-averaged vortex force make vertical eddy fluxes of momentum and material concentration much more efficient and non-local (i.e. with negative eddy viscosity near the surface), and they combine with the breakers to increase the turbulent energy and dissipation rate. They also combine in an unexpected positive feedback in which breaker-generated vorticity seeds the creation of a new Langmuir circulation and instigates a deep strong intermittent downwelling jet that penetrates through the boundary layer and increases the material entrainment rate at the base of the layer. These wave effects on the boundary layer are greater for smaller wave ages and higher mean wind speeds.

  4. The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus.

    Science.gov (United States)

    Yu, Jing; Banquy, Xavier; Greene, George W; Lowrey, Daniel D; Israelachvili, Jacob N

    2012-01-31

    High molecular weight hyaluronic acid (HA) is present in articular joints and synovial fluid at high concentrations; yet despite numerous studies, the role of HA in joint lubrication is still not clear. Free HA in solution does not appear to be a good lubricant, being negatively charged and therefore repelled from most biological, including cartilage, surfaces. Recent enzymatic experiments suggested that mechanically or physically (rather than chemically) trapped HA could function as an "adaptive" or "emergency" boundary lubricant to eliminate wear damage in shearing cartilage surfaces. In this work, HA was chemically grafted to a layer of self-assembled amino-propyl-triethoxy-silane (APTES) on mica and then cross-linked. The boundary lubrication behavior of APTES and of chemically grafted and cross-linked HA in both electrolyte and lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) solutions was tested with a surface forces apparatus (SFA). Despite the high coefficient of friction (COF) of μ ≈ 0.50, the chemically grafted HA gel significantly improved the lubrication behavior of HA, particularly the wear resistance, in comparison to free HA. Adding more DOPC lipid to the solution did not improve the lubrication of the chemically grafted and cross-linked HA layer. Damage of the underlying mica surface became visible at higher loads (pressure >2 MPa) after prolonged sliding times. It has generally been assumed that damage caused by or during sliding, also known as "abrasive friction", which is the main biomedical/clinical/morphological manifestation of arthritis, is due to a high friction force and, therefore, a large COF, and that to prevent surface damage or wear (abrasion) one should therefore aim to reduce the COF, which has been the traditional focus of basic research in biolubrication, particularly in cartilage and joint lubrication. Here we combine our results with previous ones on grafted and cross-linked HA on lipid bilayers, and lubricin

  5. Intermolecular and surface forces

    CERN Document Server

    Israelachvili, Jacob N

    2011-01-01

    This reference describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition.· starts fr

  6. Boundary denoising for open surface meshes

    Science.gov (United States)

    Lee, Wei Zhe; Lim, Wee Keong; Soo, Wooi King

    2013-04-01

    Recently, applications of open surfaces in 3D have emerged to be an interesting research topic due to the popularity of range cameras such as the Microsoft Kinect. However, surface meshes representing such open surfaces are often corrupted with noises especially at the boundary. Such deformity needs to be treated to facilitate further applications such as texture mapping and zippering of multiple open surface meshes. Conventional methods perform denoising by removing components with high frequencies, thus smoothing the boundaries. However, this may result in loss of information, as not all high frequency transitions at the boundaries correspond to noises. To overcome such shortcoming, we propose a combination of local information and geometric features to single out the noises or unusual vertices at the mesh boundaries. The local shape of the selected mesh boundaries regions, characterized by the mean curvature value, is compared with that of the neighbouring interior region. The neighbouring interior region is chosen such that it is the closest to the corresponding boundary region, while curvature evaluation is independent of the boundary. The smoothing processing is done via Laplacian smoothing with our modified weights to reduce boundary shrinkage. The evaluation of the algorithm is done by noisy meshes generated from controlled model clean meshes. The Hausdorff distance is used as the measurement between the meshes. We show that our method produces better results than conventional smoothing of the whole boundary loop.

  7. Similarity Solution for Combined Free-Forced Convection Past a Vertical Porous Plate in a Porous Medium with a Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    Garg P.

    2016-12-01

    Full Text Available This paper studies the mathematical implications of the two dimensional viscous steady laminar combined free-forced convective flow of an incompressible fluid over a semi infinite fixed vertical porous plate embedded in a porous medium. It is assumed that the left surface of the plate is heated by convection from a hot fluid which is at a temperature higher than the temperature of the fluid on the right surface of the vertical plate. To achieve numerical consistency for the problem under consideration, the governing non linear partial differential equations are first transformed into a system of ordinary differential equations using a similarity variable and then solved numerically under conditions admitting similarity solutions. The effects of the physical parameters of both the incompressible fluid and the vertical plate on the dimensionless velocity and temperature profiles are studied and analysed and the results are depicted both graphically and in a tabular form. Finally, algebraic expressions and the numerical values are obtained for the local skin-friction coefficient and the local Nusselt number.

  8. Forced and free convection turbulent boundary layers in gas lasers

    International Nuclear Information System (INIS)

    Woodroffe, J.A.

    1975-01-01

    Approximate expressions for the effect on optical path length through a turbulent vertical boundary layer caused by the combined presence of forced and free convection were obtained to first order in the asymptotic cases of dominant forced convection and dominant free convection. The effect in both cases is a reduction of the boundary-layer thickness. Characteristic scaling lengths are presented which aid in the optical analysis of the flowfield

  9. Boundary Element Analysis of the Steady-state Response of an Elastic Half-Space to a Moving Force on its Surface

    DEFF Research Database (Denmark)

    Andersen, Lars; Nielsen, Søren R. K.

    2003-01-01

    The paper deals with the boundary element method formulation of the steady-state wave propagation through elastic media due to a source moving with constant velocity. The Greens' function for the three-dimensional full-space is formulated in a local frame of reference following the source. This i...

  10. Riemann surfaces with boundaries and string theory

    International Nuclear Information System (INIS)

    Morozov, A.Yu.; Roslyj, A.A.

    1989-01-01

    A consideration of the cutting and joining operations for Riemann surfaces permits one to express the functional integral on a Riemann surface in terms of integrals over its pieces which are suarfaces with boundaries. This yields an expression for the determinant of the Laplacian on a Riemann surface in terms of Krichever maps for its pieces. Possible applications of the methods proposed to a study of the string perturbation theory in terms of an universal moduli space are mentioned

  11. The surface roughness and planetary boundary layer

    Science.gov (United States)

    Telford, James W.

    1980-03-01

    Applications of the entrainment process to layers at the boundary, which meet the self similarity requirements of the logarithmic profile, have been studied. By accepting that turbulence has dominating scales related in scale length to the height above the surface, a layer structure is postulated wherein exchange is rapid enough to keep the layers internally uniform. The diffusion rate is then controlled by entrainment between layers. It has been shown that theoretical relationships derived on the basis of using a single layer of this type give quantitatively correct factors relating the turbulence, wind and shear stress for very rough surface conditions. For less rough surfaces, the surface boundary layer can be divided into several layers interacting by entrainment across each interface. This analysis leads to the following quantitatively correct formula compared to published measurements. 1 24_2004_Article_BF00877766_TeX2GIFE1.gif {σ _w }/{u^* } = ( {2/{9Aa}} )^{{1/4}} ( {1 - 3^{{1/2}{ a/k{d_n }/z{σ _w }/{u^* }z/L} )^{{1/4}} = 1.28(1 - 0.945({{σ _w }/{u^* }}}) {{z/L}})^{{1/4 where u^* = ( {{tau/ρ}}^{{1/2}}, σ w is the standard deviation of the vertical velocity, z is the height and L is the Obukhov scale lenght. The constants a, A, k and d n are the entrainment constant, the turbulence decay constant, Von Karman's constant, and the layer depth derived from the theory. Of these, a and A, are universal constants and not empirically determined for the boundary layer. Thus the turbulence needed for the plume model of convection, which resides above these layers and reaches to the inversion, is determined by the shear stress and the heat flux in the surface layers. This model applies to convection in cool air over a warm sea. The whole field is now determined except for the temperature of the air relative to the water, and the wind, which need a further parameter describing sea surface roughness. As a first stop to describing a surface where roughness elements

  12. Effects of boundary layer forcing on wing-tip vortices

    Science.gov (United States)

    Shaw-Ward, Samantha

    The nature of turbulence within wing-tip vortices has been a topic of research for decades, yet accurate measurements of Reynolds stresses within the core are inherently difficult due to the bulk motion wandering caused by initial and boundary conditions in wind tunnels. As a result, characterization of a vortex as laminar or turbulent is inconclusive and highly contradicting. This research uses several experimental techniques to study the effects of broadband turbulence, introduced within the wing boundary layer, on the development of wing-tip vortices. Two rectangular wings with a NACA 0012 profile were fabricated for the use of this research. One wing had a smooth finish and the other rough, introduced by P80 grade sandpaper. Force balance measurements showed a small reduction in wing performance due to surface roughness for both 2D and 3D configurations, although stall characteristics remained relatively unchanged. Seven-hole probes were purpose-built and used to assess the mean velocity profiles of the vortices five chord lengths downstream of the wing at multiple angles of attack. Above an incidence of 4 degrees, the vortices were nearly axisymmetric, and the wing roughness reduced both velocity gradients and peak velocity magnitudes within the vortex. Laser Doppler velocimetry was used to further assess the time-resolved vortex at an incidence of 5 degrees. Evidence of wake shedding frequencies and wing shear layer instabilities at higher frequencies were seen in power spectra within the vortex. Unlike the introduction of freestream turbulence, wing surface roughness did not appear to increase wandering amplitude. A new method for removing the effects of vortex wandering is proposed with the use of carefully selected high-pass filters. The filtered data revealed that the Reynolds stress profiles of the vortex produced by the smooth and rough wing were similar in shape, with a peak occurring away from the vortex centre but inside of the core. Single hot

  13. Repulsive Casimir force from fractional Neumann boundary conditions

    International Nuclear Information System (INIS)

    Lim, S.C.; Teo, L.P.

    2009-01-01

    This Letter studies the finite temperature Casimir force acting on a rectangular piston associated with a massless fractional Klein-Gordon field at finite temperature. Dirichlet boundary conditions are imposed on the walls of a d-dimensional rectangular cavity, and a fractional Neumann condition is imposed on the piston that moves freely inside the cavity. The fractional Neumann condition gives an interpolation between the Dirichlet and Neumann conditions, where the Casimir force is known to be always attractive and always repulsive respectively. For the fractional Neumann boundary condition, the attractive or repulsive nature of the Casimir force is governed by the fractional order which takes values from zero (Dirichlet) to one (Neumann). When the fractional order is larger than 1/2, the Casimir force is always repulsive. For some fractional orders that are less than but close to 1/2, it is shown that the Casimir force can be either attractive or repulsive depending on the aspect ratio of the cavity and the temperature.

  14. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  15. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  16. Grain boundary sliding quantification by atomic force microscopy: contribution to high temperature embrittlement analyses

    International Nuclear Information System (INIS)

    Lenci, Matthieu

    2009-01-01

    We developed an original experimental method for measuring grain boundary sliding by atomic force microscopy. The analysed alloys were previously tested at high temperatures and low strain rates, for short time tests. We measured grain boundary sliding along his perpendicular component to the sample surface. The detection limit is of 10 nm. Thin and flat austenitic stainless steels and superalloys samples were tested at high temperature (360 C to 750 C), under ultra high vacuum atmosphere, with slow rate tensile tests and constant load tests. After short times tests, AFM characterization showed that grain boundary sliding could be activated at the loading, within amplitudes of several tens of nm. Furthermore, after short time tests, grain boundary sliding amplitudes are independent of the geometrical orientation of the boundary trace compared with loading direction. On the other hand crystallographic misorientation has a strong influence on boundaries propensity to slide. Intergranular segregation was also analyzed by AES for two alloys (304H austenitic stainless steel and X- 750 nickel-base alloy), previously submitted to high temperature slow strain rate tensile tests. AES analysis showed preferential segregation of S and P near 304H triple junctions. Whereas, AES analysis on X-750 alloy showed P segregation at the bottom of microvoids distributed on a micro-ductile grain facet and a strong segregation of S at the location of grain boundary precipitate. Our experimental methods allows the study of the correlation between two main phenomena contributing to high temperature embrittlement: grain boundary sliding and intergranular segregation embrittlement. Determining grain boundary sliding kinetics should confirm our method of step measure by AFM as a way to indicate high temperature embrittlement sensitivity of alloys in service conditions and also give information about the contribution of grain boundary sliding to stress corrosion cracking initiation and

  17. System and method for free-boundary surface extraction

    KAUST Repository

    Algarni, Marei

    2017-10-26

    A method of extracting surfaces in three-dimensional data includes receiving as inputs three-dimensional data and a seed point p located on a surface to be extracted. The method further includes propagating a front outwardly from the seed point p and extracting a plurality of ridge curves based on the propagated front. A surface boundary is detected based on a comparison of distances between adjacent ridge curves and the desired surface is extracted based on the detected surface boundary.

  18. Expansion and Automation of the Energy Conserving Orientational Force for Calculation of Grain Boundary Mobility

    Science.gov (United States)

    2018-02-21

    ARL-TR-8302 ● FEB 2018 US Army Research Laboratory Expansion and Automation of the Energy Conserving Orientational Force for...US Army Research Laboratory Expansion and Automation of the Energy Conserving Orientational Force for Calculation of Grain Boundary...TITLE AND SUBTITLE Expansion and Automation of the Energy Conserving Orientational Force for Calculation of Grain Boundary Mobility 5a. CONTRACT

  19. Capacitance dilatometry in a surface force apparatus

    International Nuclear Information System (INIS)

    Stewart, A.M.

    2003-01-01

    Full text: A variant of the surface force apparatus has been developed which enables measurements of the forces between opaque surfaces to be obtained. A capacitance dilatometry attachment for the surface force apparatus has been constructed in which the surface that moves under the influence of the applied force is attached to one plate of a capacitor whose capacitance thereby changes. In order to detect movements of 0.1 nm of the plates of a capacitor with gap 0.1 mm the capacitance has to be measured to one part in one million, noting further that the measured capacitance is several hundred times smaller than the associated stray capacitances. This resolution is achieved by means of a transformer ratio bridge and, provided that adequate vibration isolation can be achieved, displacements of 0.1 nm can be resolved reliably. This is the case even with air between the surfaces, air giving much less vibrational damping than liquids. The method has been applied to measure the forces between mica in electrolyte and to measure dispersion forces of mica and silica in air. In the latter case the results are of unprecedented accuracy for this technique and show unambiguously that for surface separations greater than 10 nm the retarded form of the dispersion force fits the measurements much better than the non-retarded form

  20. Roughness in Surface Force Measurements: Extension of DLVO Theory To Describe the Forces between Hafnia Surfaces.

    Science.gov (United States)

    Eom, Namsoon; Parsons, Drew F; Craig, Vincent S J

    2017-07-06

    The interaction between colloidal particles is commonly viewed through the lens of DLVO theory, whereby the interaction is described as the sum of the electrostatic and dispersion forces. For similar materials acting across a medium at pH values remote from the isoelectric point the theory typically involves an electrostatic repulsion that is overcome by dispersion forces at very small separations. However, the dominance of the dispersion forces at short separations is generally not seen in force measurements, with the exception of the interaction between mica surfaces. The discrepancy for silica surfaces has been attributed to hydration forces, but this does not explain the situation for titania surfaces where the dispersion forces are very much larger. Here, the interaction forces between very smooth hafnia surfaces have been measured using the colloid probe technique and the forces evaluated within the DLVO framework, including both hydration forces and the influence of roughness. The measured forces across a wide range of pH at different salt concentrations are well described with a single parameter for the surface roughness. These findings show that even small degrees of surface roughness significantly alter the form of the interaction force and therefore indicate that surface roughness needs to be included in the evaluation of surface forces between all surfaces that are not ideally smooth.

  1. SurfCut: Free-Boundary Surface Extraction

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2016-09-15

    We present SurfCut, an algorithm for extracting a smooth simple surface with unknown boundary from a noisy 3D image and a seed point. In contrast to existing approaches that extract smooth simple surfaces with boundary, our method requires less user input, i.e., a seed point, rather than a 3D boundary curve. Our method is built on the novel observation that certain ridge curves of a front propagated using the Fast Marching algorithm are likely to lie on the surface. Using the framework of cubical complexes, we design a novel algorithm to robustly extract such ridge curves and form the surface of interest. Our algorithm automatically cuts these ridge curves to form the surface boundary, and then extracts the surface. Experiments show the robustness of our method to errors in the data, and that we achieve higher accuracy with lower computational cost than comparable methods. © Springer International Publishing AG 2016.

  2. Nonlinear interaction of the surface waves at a plasma boundary

    International Nuclear Information System (INIS)

    Dolgopolov, V.V.; El-Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1976-01-01

    Amplitudes of electromagnetic waves with combination frequencies, radiating from the plasma boundary due to nonlinear interaction of the surface waves, have been found. Previous papers on this subject did not take into account that the tangential components of the electric field of waves with combination frequencies were discontinuous at the plasma boundary. (Auth.)

  3. Boundary properties of solutions of equations of minimal surface kind

    Science.gov (United States)

    Miklyukov, V. M.

    2001-10-01

    Generalized solutions of equations of minimal-surface type are studied. It is shown that a solution makes at most countably many jumps at the boundary. In particular, a solution defined in the exterior of a disc extends by continuity to the boundary circle everywhere outside a countable point set. An estimate of the sum of certain non-local characteristics of the jumps of a solution at the boundary is presented. A result similar to Fatou's theorem on angular boundary values is proved.

  4. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent ...

  5. Numerical analysis of the immersed boundary method applied to the flow around a forced oscillating cylinder

    International Nuclear Information System (INIS)

    Pinto, L C; Silvestrini, J H; Schettini, E B C

    2011-01-01

    In present paper, Navier-Stokes and Continuity equations for incompressible flow around an oscillating cylinder were numerically solved. Sixth order compact difference schemes were used to solve the spatial derivatives, while the time advance was carried out through second order Adams Bashforth accurate scheme. In order to represent the obstacle in the flow, the Immersed Boundary Method was adopted. In this method a force term is added to the Navier-Stokes equations representing the body. The simulations present results regarding the hydrodynamic coefficients and vortex wakes in agreement to experimental and numerical previous works and the physical lock-in phenomenon was identified. Comparing different methods to impose the IBM, it can be concluded that no alterations regarding the vortex shedding mode were observed. The Immersed Boundary Method techniques used here can represent the surface of an oscillating cylinder in the flow.

  6. Discrete Lattice effect of various forcing methods of body force on immersed Boundary-Lattice Boltzmann method

    International Nuclear Information System (INIS)

    Son, Sung Wan; Ha, Man Yeong; Yoon, Hyun Sik; Jeong, Hae Kwon; Balachandar, S.

    2013-01-01

    We investigate the discrete lattice effect of various forcing methods in the lattice Boltzmann method (LBM) to include the body force obtained from the immersed boundary method (IBM). In the immersed boundary lattice Boltzmann method (IB-LBM), the LBM needs a forcing method to involve the body force on a forcing point near the immersed boundary that is calculated by IBM. The proper forcing method in LBM is derived to include the body force, which appears to resolve problems such as multiphase flow, non-ideal gas behavior, etc. Many researchers have adopted different forcing methods in LBM to involve the body force from IBM, even when they solved similar problems. However, it is necessary to evaluate the discrete lattice effect, which originates from different forcing methods in LBM, to include the effect of the body force from IBM on the results. Consequently, in this study, a rigorous analysis of the discrete lattice effect for different forcing methods in IB-LBM is performed by solving various problems.

  7. Forces due to surface water measured by force microscopy. Consequences for anchoring biological cells to surfaces

    International Nuclear Information System (INIS)

    Schilcher, K.

    1997-05-01

    Interaction forces in 'Scanning Force Microscopy' (SFM). Force curves revealed exponentially decaying, attractive forces between silicon tip and silicon sample in aqueous media. Replacing the silicon sample by a sheet of mica, the interaction forces had both, an attractive and a repulsive component. Addition of salts generally reduced the forces. At 500 mM salt concentration, the attractive force became quantized with a residual force value of 23 pN. The attractive force is attributed to the gain in energy of water molecules which are released from surface water into free water during tip-sample approach. This conclusion is supported by a statistical model. The repulsive force contribution in the case of mica, is caused by hydration forces due to the spatial organization of crystalline water on the mica surface. Anchoring of biological cells. Molecular resolution of cell surfaces by SFM requires cell anchoring without interference with cell physiology. For this a novel strategy, 'hydrophobic anchoring' was designed. It avoids strong attractive forces between cell and by using a flexible spacer molecule. It establishes anchoring by a lipid (bound to the spacer), which weakly interacts with the hydrophobic core of the cell membrane. The method was subjected to tests using RBL-2H3, CH0 αβ and HEK-293 cells. The strength of cell anchoring was assayed by shear forces. In all cases 'hydrophobic anchoring' via a spacer caused elective anchoring much beyond controls. Such cell anchoring was employed for the imaging of RBL-2H3 cells by SFM. Images showed considerable finer details than images of loosely adsorbed cells. With about 50 rim resolution, SFM succeeded in imaging microvilli, filopodia, single cytoskeletal fibers (microtubules, microfilaments) and vesicles. In addition, as a consequence of cell stimulation upon ionomycin treatment, lamellae formation and the appearance of secretory granules on top of them were observed which indicates the viability of anchored

  8. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  9. Probing Anisotropic Surface Properties and Surface Forces of Fluorite Crystals.

    Science.gov (United States)

    Gao, Zhiyong; Xie, Lei; Cui, Xin; Hu, Yuehua; Sun, Wei; Zeng, Hongbo

    2018-02-20

    Fluorite is the most important mineral source for producing fluorine-based chemicals and materials in a wide range of engineering and technological applications. In this work, atomic force microscopy was employed, for the first time, to probe the surface interactions and adhesion energy of model oleic acid (a commonly used surface modification organics for fluorite) molecules on fluorite surfaces with different orientations in both air and aqueous solutions at different pH conditions. Fitted with the Derjaguin-Landau-Verwey-Overbeek theory, the force results during surface approaching demonstrate the anisotropy in the surface charge of different orientations, with the {111} surface exhibiting a higher magnitude of surface charge, which could be attributed to the difference in the atomic composition. The adhesion measured during surface retraction shows that model oleic acid molecules have a stronger adhesion with the {100} surface than with the {111} surface in both air and aqueous solutions. The anisotropic adhesion energy was analyzed in relation to the surface atom (especially calcium) activity, which was supported by the surface free energy results calculated based on a three-probe-liquid method. Each calcium atom on the {100} surface with four dangling bonds is more active than the calcium atom on the {111} surface with only one dangling bond, supported by a larger value of the Lewis acid component for the {100} surface. The model oleic acid molecules present in the ionic form at pH 9 exhibit a higher adhesion energy with fluorite surfaces as compared to their molecular form at pH 6, which was related to the surface activity of different forms. The adhesion energy measured in solution is much lower than that in air, indicating that the solvent exerts an important influence on the interactions of organic molecules with mineral surfaces. The results provide useful information on the fundamental understanding of surface interactions and adhesion energy of organic

  10. An efficient implicit direct forcing immersed boundary method for incompressible flows

    International Nuclear Information System (INIS)

    Cai, S-G; Ouahsine, A; Smaoui, H; Favier, J; Hoarau, Y

    2015-01-01

    A novel efficient implicit direct forcing immersed boundary method for incompressible flows with complex boundaries is presented. In the previous work [1], the calculation is performed on the Cartesian grid regardless of the immersed object, with a fictitious force evaluated on the Lagrangian points to mimic the presence of the physical boundaries. However the explicit direct forcing method [1] fails to accurately impose the non-slip boundary condition on the immersed interface. In the present work, the calculation is based on the implicit treatment of the artificial force while in an effective way of system iteration. The accuracy is also improved by solving the Navier-Stokes equation with the rotational incremental pressure- correction projection method of Guermond and Shen [2]. Numerical simulations performed with the proposed method are in good agreement with those in the literature

  11. Boundary conditions for soft glassy flows: slippage and surface fluidization.

    Science.gov (United States)

    Mansard, Vincent; Bocquet, Lydéric; Colin, Annie

    2014-09-28

    We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.

  12. Boundary surface and microstructure analysis of ceramic materials

    International Nuclear Information System (INIS)

    Woltersdorf, J.; Pippel, E.

    1992-01-01

    The article introduces the many possibilities of high voltage (HVEM) and high resolution electron microscopy (HREM) for boundary surface and microstructure analysis of ceramic materials. The investigations are limited to ceramic long fibre composites and a ceramic fibre/glass matrix system. (DG) [de

  13. Influence of rigid boundary on the propagation of torsional surface ...

    Indian Academy of Sciences (India)

    Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer. Shishir Gupta. ∗. , Rehena Sultana and Santimoy Kundu. Department of Applied Mathematics, Indian School of Mines, Dhanbad 826 004, India. ∗. Corresponding author. e-mail: shishir ism@yahoo.com. The present work ...

  14. Body surface adaptations to boundary-layer dynamics

    NARCIS (Netherlands)

    Videler, J.J.

    1995-01-01

    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins,

  15. A simple and self-consistent geostrophic-force-balance model of the thermohaline circulation with boundary mixing

    Directory of Open Access Journals (Sweden)

    J. Callies

    2012-01-01

    Full Text Available A simple model of the thermohaline circulation (THC is formulated, with the objective to represent explicitly the geostrophic force balance of the basinwide THC. The model comprises advective-diffusive density balances in two meridional-vertical planes located at the eastern and the western walls of a hemispheric sector basin. Boundary mixing constrains vertical motion to lateral boundary layers along these walls. Interior, along-boundary, and zonally integrated meridional flows are in thermal-wind balance. Rossby waves and the absence of interior mixing render isopycnals zonally flat except near the western boundary, constraining meridional flow to the western boundary layer. The model is forced by a prescribed meridional surface density profile.

    This two-plane model reproduces both steady-state density and steady-state THC structures of a primitive-equation model. The solution shows narrow deep sinking at the eastern high latitudes, distributed upwelling at both boundaries, and a western boundary current with poleward surface and equatorward deep flow. The overturning strength has a 2/3-power-law dependence on vertical diffusivity and a 1/3-power-law dependence on the imposed meridional surface density difference. Convective mixing plays an essential role in the two-plane model, ensuring that deep sinking is located at high latitudes. This role of convective mixing is consistent with that in three-dimensional models and marks a sharp contrast with previous two-dimensional models.

    Overall, the two-plane model reproduces crucial features of the THC as simulated in simple-geometry three-dimensional models. At the same time, the model self-consistently makes quantitative a conceptual picture of the three-dimensional THC that hitherto has been expressed either purely qualitatively or not self-consistently.

  16. Viscous boundary lubrication of hydrophobic surfaces by mucin.

    Science.gov (United States)

    Yakubov, Gleb E; McColl, James; Bongaerts, Jeroen H H; Ramsden, Jeremy J

    2009-02-17

    The lubricating behavior of the weakly charged short-side-chain glycoprotein mucin "Orthana" (Mw=0.55 MDa) has been investigated between hydrophobic and hydrophilic PDMS substrates using soft-contact tribometry. It was found that mucin facilitates lubrication between hydrophobic PDMS surfaces, leading to a 10-fold reduction in boundary friction coefficient for rough surfaces. The presence of mucin also results in a shift of the mixed lubrication regime to lower entrainment speeds. The observed boundary lubrication behavior of mucin was found to depend on the bulk concentration, and we linked this to the structure and dynamics of the adsorbed mucin films, which are assessed using optical waveguide light spectroscopy. We observe a composite structure of the adsorbed mucin layer, with its internal structure governed by entanglement. The film thickness of this adsorbed layer increases with concentration, while the boundary friction coefficient for rough surfaces was found to be inversely proportional to the thickness of the adsorbed film. This link between lubrication and structure of the film is consistent with a viscous boundary lubrication mechanism, i.e., a thicker adsorbed film, at a given sliding speed, results in a lower local shear rate and, hence, in a lower local shear stress. The estimated local viscosities of the adsorbed layer, derived from the friction measurements and the polymer layer density, are in agreement with each other.

  17. Preparation of stable silica surfaces for surface forces measurement

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  18. Boundary layer for non-newtonian fluids on curved surfaces

    International Nuclear Information System (INIS)

    Stenger, N.

    1981-04-01

    By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author) [pt

  19. Surface roughness effects on the hypersonic turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, D.E.

    1977-09-01

    An experimental investigation of the response of a hypersonic turbulent boundary layer to a step change in surface roughness has been performed. The boundary layer on a flat nozzle wall of a Mach 6 wind tunnel was subjected to abrupt changes in surface roughness and its adjustment to the new surface conditions was examined. Both mean and fluctuating flow properties were acquired for smooth-to-rough and rough-to-smooth surface configurations. The boundary layer was found to respond gradually and to attain new equilibrium profiles, for both the mean and the fluctuating properties, some 10 to 25 delta downstream of the step change. Mean flow self-similarity was the first to establish itself, followed by the mass flux fluctuations, followed in turn by the total temperature fluctuations. Use of a modified Van Driest transformation resulted in good correlations of smooth and rough wall data in the form of the incompressible law of the wall. This is true even in the nonequilibrium vicinity of the step for small roughness heights. The present data are found to correlate well with previously published roughness effect data from low and high speed flows when the roughnesses are characterized by an equivalent sand grain roughness height.

  20. Forces that Drive Nanoscale Self-assembly on Solid Surfaces

    International Nuclear Information System (INIS)

    Suo, Z.; Lu, W.

    2000-01-01

    Experimental evidence has accumulated in the recent decade that nanoscale patterns can self-assemble on solid surfaces. A two-component monolayer grown on a solid surface may separate into distinct phases. Sometimes the phases select sizes about 10 nm, and order into an array of stripes or disks. This paper reviews a model that accounts for these behaviors. Attention is focused on thermodynamic forces that drive the self-assembly. A double-welled, composition-dependent free energy drives phase separation. The phase boundary energy drives phase coarsening. The concentration-dependent surface stress drives phase refining. It is the competition between the coarsening and the refining that leads to size selection and spatial ordering. These thermodynamic forces are embodied in a nonlinear diffusion equation. Numerical simulations reveal rich dynamics of the pattern formation process. It is relatively fast for the phases to separate and select a uniform size, but exceedingly slow to order over a long distance, unless the symmetry is suitably broken

  1. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows

    Science.gov (United States)

    Raayai-Ardakani, Shabnam; McKinley, Gareth H.

    2017-09-01

    Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.

  2. The boundaries of public action: arranged and forced marriages

    Directory of Open Access Journals (Sweden)

    Daniela Danna

    2013-07-01

    Full Text Available In this article I deal with the political and cultural dilemma of the distinction between arranged and forced or imposed marriages. After a review of the literature, interviews collected in 2009 in the Italian region of Emilia-Romagna are used to illustrate the views of the participants to the research. With the help of the theoretical tool of cultural materialism, I argue that the question can be approached from two different points of view: on the one hand, the distinction is clear as it is based on the recognition (even a late one of an imposition by physical or psychological violence on the part of the subject; on the other hand sociological analysis of the process of construction and of expression of consent reveals a vast gray area that is object of debate in the scientific literature as well as in everyday life. Only the first definition of forced marriage, the subjective one, can justify the start of a concrete intervention by the public authorities - but this cannot stop the debate on the actual value of the consent given in many cases of marriages.

  3. Identification of boundary heat flux on the continuous casting surface

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2008-12-01

    Full Text Available In the paper the numerical solution of the inverse problem consisting in the identification of the heat flux on the continuous casting surface is presented. The additional information results from the measured surface or interior temperature histories. In particular the sequential function specification method using future time steps is applied. On the stage of numerical computations the 1st scheme of the boundary element method for parabolic equations is used. Because the problem is strongly non-linear the additional procedure 'linearizing' the task discussed is introduced. This procedure is called the artificial heat source method. In the final part of the paper the examples of computations are shown.

  4. Subjective surfaces: a geometric model for boundary completion

    Energy Technology Data Exchange (ETDEWEB)

    Sarti, Alessandro; Malladi, Ravi; Sethian, J.A.

    2000-06-01

    We present a geometric model and a computational method for segmentation of images with missing boundaries. In many situations, the human visual system fills in missing gaps in edges and boundaries, building and completing information that is not present. Boundary completion presents a considerable challenge in computer vision, since most algorithms attempt to exploit existing data. A large body of work concerns completion models, which postulate how to construct missing data; these models are often trained and specific to particular images. In this paper, we take the following, alternative perspective: we consider a reference point within an image as given, and then develop an algorithm which tries to build missing information on the basis of the given point of view and the available information as boundary data to the algorithm. Starting from this point of view, a surface is constructed. It is then evolved with the mean curvature flow in the metric induced by the image until a piecewise constant solution is reached. We test the computational model on modal completion, amodal completion, texture, photo and medical images. We extend the geometric model and the algorithm to 3D in order to extract shapes from low signal/noise ratio medical volumes. Results in 3D echocardiography and 3D fetal echography are presented.

  5. Estimation of boundary heat flux using experimental temperature data in turbulent forced convection flow

    Science.gov (United States)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P. M. V.

    2015-03-01

    Heat flux at the boundary of a duct is estimated using the inverse technique based on conjugate gradient method (CGM) with an adjoint equation. A two-dimensional inverse forced convection hydrodynamically fully developed turbulent flow is considered. The simulations are performed with temperature data measured in the experimental test performed on a wind tunnel. The results show that the present numerical model with CGM is robust and accurate enough to estimate the strength and position of boundary heat flux.

  6. Natural convection - radiation interaction in boundary layer flow over horizontal surfaces

    International Nuclear Information System (INIS)

    Ali, M.M.; Chen, T.S.; Armaly, B.F.

    1982-01-01

    A numerical model is developed for natural convection-radiation interaction in the boundary layer over a semi-infinite horizontal flat plate with one hot and one cold surface. The fluid is assumed to be gray, to emit, absorb, be nonscattering, and constant with a density variation in the vertical direction, which induces a buoyancy force. Two-dimensional, boundary-layer equations are defined, and the radiative heat flux is simplified using a Rosseland approximation. Conservation equations are transformed into a system of nonlinear ordinary differential equations which can be solved simultaneously with a Runge-Kutta integration scheme, along with the Newton-Raphson shooting technique. The thermal radiation is found to enhance the wall shear stress and the surface heat transfer rate on both the hot and cold sides

  7. A radial distribution function-based open boundary force model for multi-centered molecules

    KAUST Repository

    Neumann, Philipp

    2014-06-01

    We derive an expression for radial distribution function (RDF)-based open boundary forcing for molecules with multiple interaction sites. Due to the high-dimensionality of the molecule configuration space and missing rotational invariance, a computationally cheap, 1D approximation of the arising integral expressions as in the single-centered case is not possible anymore. We propose a simple, yet accurate model invoking standard molecule- and site-based RDFs to approximate the respective integral equation. The new open boundary force model is validated for ethane in different scenarios and shows very good agreement with data from periodic simulations. © World Scientific Publishing Company.

  8. Enhancement of vortex induced forces and motion through surface roughness control

    Science.gov (United States)

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  9. Reduction of vortex induced forces and motion through surface roughness control

    Science.gov (United States)

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  10. Surfaces of Constant Mean Curvature in Euclidean 3-space Orthogonal to a Plane along its Boundary

    Directory of Open Access Journals (Sweden)

    HINOJOSA PEDRO A.

    2002-01-01

    Full Text Available We consider compact surfaces with constant nonzero mean curvature whose boundary is a convex planar Jordan curve. We prove that if such a surface is orthogonal to the plane of the boundary, then it is a hemisphere.

  11. Boundary layer flow of nanofluid over an exponentially stretching surface

    Science.gov (United States)

    Nadeem, Sohail; Lee, Changhoon

    2012-01-01

    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.

  12. Boundary layer flow of nanofluid over an exponentially stretching surface.

    Science.gov (United States)

    Nadeem, Sohail; Lee, Changhoon

    2012-01-30

    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.

  13. Long-lived force patterns and deformation waves at repulsive epithelial boundaries

    Science.gov (United States)

    Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier

    2017-10-01

    For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.

  14. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.

    2012-08-10

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.

  15. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  16. Open-ocean boundary conditions from interior data: Local and remote forcing of Massachusetts Bay

    Science.gov (United States)

    Bogden, P.S.; Malanotte-Rizzoli, P.; Signell, R.

    1996-01-01

    Massachusetts and Cape Cod Bays form a semienclosed coastal basin that opens onto the much larger Gulf of Maine. Subtidal circulation in the bay is driven by local winds and remotely driven flows from the gulf. The local-wind forced flow is estimated with a regional shallow water model driven by wind measurements. The model uses a gravity wave radiation condition along the open-ocean boundary. Results compare reasonably well with observed currents near the coast. In some offshore regions however, modeled flows are an order of magnitude less energetic than the data. Strong flows are observed even during periods of weak local wind forcing. Poor model-data comparisons are attributable, at least in part, to open-ocean boundary conditions that neglect the effects of remote forcing. Velocity measurements from within Massachusetts Bay are used to estimate the remotely forced component of the flow. The data are combined with shallow water dynamics in an inverse-model formulation that follows the theory of Bennett and McIntosh [1982], who considered tides. We extend their analysis to consider the subtidal response to transient forcing. The inverse model adjusts the a priori open-ocean boundary condition, thereby minimizing a combined measure of model-data misfit and boundary condition adjustment. A "consistency criterion" determines the optimal trade-off between the two. The criterion is based on a measure of plausibility for the inverse solution. The "consistent" inverse solution reproduces 56% of the average squared variation in the data. The local-wind-driven flow alone accounts for half of the model skill. The other half is attributable to remotely forced flows from the Gulf of Maine. The unexplained 44% comes from measurement errors and model errors that are not accounted for in the analysis. 

  17. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    Science.gov (United States)

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  18. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    Science.gov (United States)

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  19. See-saw motion of thermal boundary layer under vibrations: An implication of forced piston effect

    Science.gov (United States)

    Sharma, D.; Erriguible, A.; Amiroudine, S.

    2017-12-01

    The phenomenon of piston effect is well known in supercritical fluids wherein the thermal homogenization of the bulk occurs on a very short time scale due to pressure change caused by expansion or contraction of the fluid in the thermal boundary layer. In this article, we highlight an interesting phenomenon wherein by the application of external forces (vibration) normal to the temperature gradient, see-saw motion of the thermal boundary layer is observed in weightlessness conditions. This is attributed to the thermomechanical coupling caused by the temperature change due to external forces. We term this change in the temperature field due to external forces as forced piston effect (FPE). A detailed investigation of this intriguing behavior shows that the see-saw motion is attributed to the variation of the relative thickness of the thermal boundary layer, defined on the basis of relative local bulk temperature, along the direction of vibration. This change in the temperature field, which is observed to be caused by FPE in vibration, is shown to depend on the compressibility (and thus proximity to the critical point), the imposed acceleration and the cell size. It is also found that see-saw motion persists in the presence of gravity and thus is described ubiquitous in nature for all conditions. A plot illustrating the maximum change in the temperature as a function of these parameters is further proposed.

  20. Automated boundary interaction force control of micromanipulators with in situ applications to microsurgery

    International Nuclear Information System (INIS)

    Eslami, Sohrab; Jalili, Nader

    2012-01-01

    Most recent works on miniature tasks are concentrated on developing tools to take advantage of the visual servoing feedback to control the ultra-small interaction forces. This paper spans an extensive platform for automatic controlling of boundary interaction forces with high precision in the level of micro/nano-Newton with extensive micro/nanoengineering applications such as the microsurgery. To this end, a comprehensive piezoresistive microcantilever (PMC) model considering the shear deformation and rotary inertia effects treating as the distributed-parameters model along with the Hertzian contact force is presented. The purpose of considering the Hertzian contact force model is to investigate the dynamic response of the interaction force between the microcantilever's tip and the specimen. Afterward, a control platform is introduced to automatically manipulate the PMC to follow an ideal micro/nano-interaction force. By using the integrated PMC with the micromanipulator and a digital signal processor, an intuitive programming code is written to incorporate the micromanipulator and the controller in a real-time framework. To calibrate and verify the induced voltage in the PMC, a self-sensing experiment on the piezoelectric microcantilever is carried out to warrant the calibration procedure. Some experiments are established to affirm the validity of the proposed control for the autonomous real-time tasks on the boundary interaction force control. Unlike the conventional research studies, the measured force here contributes as the feedback source in contrast to the vision feedback while force sensors possess more precision, productivity and small size. This technique has several potential applications listed but not limited to the micro/nanomanipulation, developing artificial biological systems (e.g., fabricating hydrogel for the scaffold), and medicine such as microsurgery. As a result, using the proposed platform, we are able to manipulate and control the

  1. Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Hakeem, A.K., E-mail: abdulhakeem6@gmail.com [Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore 641 020 (India); Renuka, P. [Department of Mathematics, Erode Sengunthar Engineering college, Erode 638 057 (India); Vishnu Ganesh, N.; Kalaivanan, R. [Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore 641 020 (India); Ganga, B. [Department of Mathematics, Providence College for Women, Coonoor 643 104 (India)

    2016-03-01

    The inclined magnetic field effect on the boundary layer flow of a Casson model non-Newtonian fluid over a stretching sheet in the existence of thermal radiation and velocity slip boundary condition is investigated for both prescribed surface temperature and power law of surface heat flux cases. It is assumed that the magnetic field is applied with an aligned angle which varied from 0° to 90°. Both analytical and numerical solutions are obtained for the transformed non-dimensional ODE's using confluent hypergeometric function and fourth order Runge–Kutta method with shooting technique respectively. The combined effects of inclined magnetic field with other pertinent parameters such as Casson parameter, velocity slip parameter, radiation parameter and Prandtl number on velocity profile, temperature profile, local skin friction coefficient, local Nusselt number and non-dimensional wall temperature are discussed through graphs. It is found that the aligned angle plays a vital role in controlling the magnetic field strength on the Casson fluid flow region and the increasing values of aligned angle of the magnetic field lead to decrease the skin friction coefficient and the Nusselt number and increase the non-dimensional wall temperature. - Highlights: • Casson fluid flow in the presence of inclined magnetic field is investigated for the first time. • Aligned angle controls the magnetic field strength on the boundary layer flow region. • The direction of Lorentz force changes according to aligned angle. • An excellent agreement is observed between present analytical and numerical results.

  2. On symmetric equilibrium of an isothermal gas with a free boundary and a body force

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The equation of symmetric equilibrium of an isothermal gas with an unknown boundary in the field of a body force is considered. Conditions for solvability and insolvability of the problem as well as for uniqueness and nonuniqueness of solutions are presented. Examples of finite, countable, or continual sets of solutions are constructed including equipotential ones. Static stability of solutions is analyzed too.

  3. RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble large-scale forcings

    Science.gov (United States)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  4. Adhesion force between cyclopentane hydrate and mineral surfaces.

    Science.gov (United States)

    Aman, Zachary M; Leith, William J; Grasso, Giovanny A; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2013-12-17

    Clathrate hydrate adhesion forces play a critical role in describing aggregation and deposition behavior in conventional energy production and transportation. This manuscript uses a unique micromechanical force apparatus to measure the adhesion force between cyclopentane hydrate and heterogeneous quartz and calcite substrates. The latter substrates represent models for coproduced sand and scale often present during conventional energy production and transportation. Micromechanical adhesion force data indicate that clathrate hydrate adhesive forces are 5-10× larger for calcite and quartz minerals than stainless steel. Adhesive forces further increased by 3-15× when increasing surface contact time from 10 to 30 s. In some cases, liquid water from within the hydrate shell contacted the mineral surface and rapidly converted to clathrate hydrate. Further measurements on mineral surfaces with physical control of surface roughness showed a nonlinear dependence of water wetting angle on surface roughness. Existing adhesive force theory correctly predicted the dependence of clathrate hydrate adhesive force on calcite wettability, but did not accurately capture the dependence on quartz wettability. This comparison suggests that the substrate surface may not be inert, and may contribute positively to the strength of the capillary bridge formed between hydrate particles and solid surfaces.

  5. Distributed piezoelectric sensors for boundary force measurements in Euler–Bernoulli beams

    International Nuclear Information System (INIS)

    Chesne, S; Pezerat, C

    2011-01-01

    In many vibro-acoustic problems, in which structures are excited by their boundaries, the identification of boundary quantities such as bending moments and shear forces is not straightforward because these quantities are not readily accessible. Moreover, since they are proportional to the spatial derivatives of the structure's displacements, their quantification using methods based on post-processing remains very sensitive to uncertainties. In this paper, a new class of distributed piezoelectric sensors is proposed, using laminate theory and the weak forms of the equation of motion for a beam. Using this approach, it is shown that the bending moments or the shear forces can be determined at the boundaries, using spatial integrations generated by piezoelectric patches (or PVDF films) with specific shapes. Following a description of the general approach, this paper provides a description for the case of bending moment identification. In this example, the calculations used to determine the adequate shapes are presented. An analytical one-dimensional (1D) simulation, together with a numerical three-dimensional (3D) simulation, taking into account the influence of uncertainties, demonstrate the accuracy of the developed sensor. The same technique can be applied to shear force identification, as shown in the last section of this paper

  6. The extended surface forces apparatus. IV. Precision static pressure control

    OpenAIRE

    Schurtenberger E; Heuberger M

    2011-01-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under am...

  7. Surface Force Strategy: Return to Sea Control

    Science.gov (United States)

    2016-01-01

    the freedom of the seas provided by the U.S. Navy. Threats ranging from low-end piracy to well-armed non-state militant groups, to the navies of...improvements to mission planning software , battle management software for Warfare Commanders, and tools to manage unit and force level emissions. The

  8. Transcription, Translation, and Function of Lubricin, a Boundary Lubricant, at the Ocular Surface

    Science.gov (United States)

    Schmidt, Tannin A.; Sullivan, David A.; Knop, Erich; Richards, Stephen M.; Knop, Nadja; Liu, Shaohui; Sahin, Afsun; Darabad, Raheleh Rahimi; Morrison, Sheila; Kam, Wendy R.; Sullivan, Benjamin D.

    2013-01-01

    Importance Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear. Objective To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage. Design, Setting, and Participants Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage. Results Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions. Conclusions and Relevance Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage. PMID:23599181

  9. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne

    2013-01-01

    Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does...... not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured...... by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...

  10. Recent advances in the surface forces apparatus (SFA) technique

    Science.gov (United States)

    Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K.; Zeng, H.

    2010-03-01

    The surface forces apparatus (SFA) has been used for many years to measure the physical forces between surfaces, such as van der Waals (including Casimir) and electrostatic forces in vapors and liquids, adhesion and capillary forces, forces due to surface and liquid structure (e.g. solvation and hydration forces), polymer, steric and hydrophobic interactions, bio-specific interactions as well as friction and lubrication forces. Here we describe recent developments in the SFA technique, specifically the SFA 2000, its simplicity of operation and its extension into new areas of measurement of both static and dynamic forces as well as both normal and lateral (shear and friction) forces. The main reason for the greater simplicity of the SFA 2000 is that it operates on one central simple-cantilever spring to generate both coarse and fine motions over a total range of seven orders of magnitude (from millimeters to ångstroms). In addition, the SFA 2000 is more spacious and modulated so that new attachments and extra parts can easily be fitted for performing more extended types of experiments (e.g. extended strain friction experiments and higher rate dynamic experiments) as well as traditionally non-SFA type experiments (e.g. scanning probe microscopy and atomic force microscopy) and for studying different types of systems.

  11. Water Surface Ripples Generated by the Turbulent Boundary Layer of a Surface-Piercing Moving Wall

    Science.gov (United States)

    Washuta, N.; Masnadi, N.; Duncan, J. H.

    2014-11-01

    Free surface ripples created by subsurface turbulence along a surface-piercing moving wall are studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. One of the two 7.5-m-long belt sections between the rollers is in contact with the water in a large open-surface water tank and the water level is adjusted so that the top of the belt pierces the water free surface. The belt is launched from rest with a 3 g acceleration in order to quickly reach a steady state velocity. This belt motion creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along the side of a ship hull moving at the belt velocity, with a length equivalent to the length of belt that has passed the measurement region. The water surface ripples generated by the subsurface turbulence are measured in a plane normal to the belt using a cinematic LIF technique. It is found that the overall RMS surface fluctuations increase linearly with belt speed and that the spatial distributions of the fluctuations show a sharp increase near the wall. The support of the Office of Naval Research is gratefully acknowledged.

  12. Effective velocity boundary condition at a mixed slip surface

    NARCIS (Netherlands)

    Sbragaglia, M.; Prosperetti, Andrea

    2007-01-01

    This paper studies the nature of the effective velocity boundary condition for liquid flow over a plane boundary on which small free-slip islands are randomly distributed. It is found that an effective Navier partial-slip condition for the velocity emerges from a statistical analysis valid for

  13. Measurement of the impuslive force generated by colapsing bubble close to a solid boundary

    Directory of Open Access Journals (Sweden)

    Zima Patrik

    2012-04-01

    Full Text Available The article presents experimental results of the acoustical and optical study of cavitation bubble collapse close to a solid boundary in water. The bubble was generated by discharge of low-voltage capacitor into a couple of wires closing a simple circuit. Different distances from the solid wall and different maximum bubble radii were studied. The bubble radius was studied using time-resolved photography and by PVDF film sensor glued on the solid boundary. The illumination was provided by high-power led diode. Synchronization of the system was provided by pulse generator connected to an oscilloscope. The impact power of the bubble to the wall was estimated from the time-resolved photography of the bubble and from the PVDF film sensor signal. The PVDF film sensor calibration was performed by a pendulum test to estimate the impact force.

  14. Adhesion force of staphylococcus aureus on various biomaterial surfaces.

    Science.gov (United States)

    Alam, Fahad; Balani, Kantesh

    2017-01-01

    Staphylococcus comprises of more than half of all pathogens in orthopedic implant infections and they can cause major bone infection which can result in destruction of joint and bone. In the current study, adhesion force of bacteria on the surface of various biomaterial surfaces is measured using atomic force microscope (AFM). Staphylococcus aureus was immobilized on an AFM tipless cantilever as a force probe to measure the adhesion force between bacteria and biomaterials (viz. ultra-high molecular weight poly ethylene (UHMWPE), stainless steel (SS), Ti-6Al-4V alloy, hydroxyapatite (HA)). At the contact time of 10s, UHMWPE shows weak adhesion force (~4nN) whereas SS showed strong adhesion force (~15nN) due to their surface energy and surface roughness. Bacterial retention and viability experiment (3M™ petrifilm test, agar plate) dictates that hydroxyapatite shows the lowest vaibility of bacteria, whereas lowest bacterial retention is observed on UHMWPE surface. Similar results were obtained from live/dead staining test, where HA shows 65% viability, whereas on UHMWPE, SS and Ti-6Al-4V, the bacterial viability is 78%, 94% and 97%, respectively. Lower adhesion forces, constrained pull-off distance (of bacterial) and high antibacterial resistance of bioactive-HA makes it a potential biomaterial for bone-replacement arthroplasty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  16. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  17. Dual Solutions on Thermosolutal Marangoni Forced Convection Boundary Layer with Suction and Injection

    Directory of Open Access Journals (Sweden)

    R. A. Hamid

    2011-01-01

    Full Text Available This paper considers the extended problem of the thermosolutal Marangoni forced convection boundary layer by Pop et al. (2001 when the wall is permeable, namely, there is a suction or injection effect. The governing system of partial differential equations is transformed into a system of ordinary differential equations, and the transformed equations are solved numerically using the shooting method. The effects of suction or injection parameter f0 on the velocity, temperature, and concentration profiles are illustrated and presented in tables and figures. It is shown that dual solutions exist for the similarity parameter β less than 0.5.

  18. Surface forces between hydrophilic silica surfaces in a moisture-sensitive oleophilic diacrylate monomer liquid

    Science.gov (United States)

    Ito, Shunya; Kasuya, Motohiro; Kurihara, Kazue; Nakagawa, Masaru

    2018-02-01

    We measured the surface forces generated between fused silica surfaces in a low-viscosity oleophilic diacrylate monomer for reliably repeated ultraviolet (UV) nanoimprinting, and studied the influence of water in monomer liquids on the forces. Fused silica surfaces, with a static contact angle of 52.6 ± 1.7° for water, owing to the low degree of hydroxylation, hardly showed reproducible surface forces with repeated scan cycles, comprising approach and separation, even in an identical liquid monomer medium with both of low and high water content. The monomer liquid with a high water content of approximately 420 ppm showed a greater tendency to increase the surface forces at longer surface-surface distances compared with the monomer liquid with a low water content of approximately 60 ppm. On the other hand, silica surfaces with a water contact angle of < 5° after exposure to vacuum UV (VUV) light under a reduced air pressure showed reproducible profiles of surfaces forces using the monomer with a low water concentration of approximately 60 ppm for repeated surface forces scan cycles even in separately prepared silica surfaces, whilst they showed less reproducible profiles in the liquids with high water content of 430 ppm. These results suggested that water possibly adsorbed on the hydrophilic and hydrophobic silica surfaces in the monomer liquid of the high water concentration influenced the repeatability of the surface forces profiles.

  19. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  20. Force control is related to low-frequency oscillations in force and surface EMG.

    Directory of Open Access Journals (Sweden)

    Hwasil Moon

    Full Text Available Force variability during constant force tasks is directly related to oscillations below 0.5 Hz in force. However, it is unknown whether such oscillations exist in muscle activity. The purpose of this paper, therefore, was to determine whether oscillations below 0.5 Hz in force are evident in the activation of muscle. Fourteen young adults (21.07 ± 2.76 years, 7 women performed constant isometric force tasks at 5% and 30% MVC by abducting the left index finger. We recorded the force output from the index finger and surface EMG from the first dorsal interosseous (FDI muscle and quantified the following outcomes: 1 variability of force using the SD of force; 2 power spectrum of force below 2 Hz; 3 EMG bursts; 4 power spectrum of EMG bursts below 2 Hz; and 5 power spectrum of the interference EMG from 10-300 Hz. The SD of force increased significantly from 5 to 30% MVC and this increase was significantly related to the increase in force oscillations below 0.5 Hz (R(2 = 0.82. For both force levels, the power spectrum for force and EMG burst was similar and contained most of the power from 0-0.5 Hz. Force and EMG burst oscillations below 0.5 Hz were highly coherent (coherence = 0.68. The increase in force oscillations below 0.5 Hz from 5 to 30% MVC was related to an increase in EMG burst oscillations below 0.5 Hz (R(2 = 0.51. Finally, there was a strong association between the increase in EMG burst oscillations below 0.5 Hz and the interference EMG from 35-60 Hz (R(2 = 0.95. In conclusion, this finding demonstrates that bursting of the EMG signal contains low-frequency oscillations below 0.5 Hz, which are associated with oscillations in force below 0.5 Hz.

  1. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2012-01-01

    Highlights: ► Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. ► An efficient surface passivation can be obtained after thermal treatment of obtained films. ► Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 °C. Vanadium pentoxide (V 2 O 5 ) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 °C and 800 °C, under O 2 atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  2. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson

    2012-03-01

    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  3. Chevron defect at the intersection of grain boundaries with free surfaces in Au

    International Nuclear Information System (INIS)

    Radetic, T.; Lancon, F.; Dahmen, U.

    2002-01-01

    We have identified a new defect at the intersection between grain boundaries and surfaces in Au using atomic resolution transmission electron microscopy. At the junction line of 90 deg. tilt grain boundaries of (110)-(001) orientation with the free surface, a small segment of the grain boundary, about 1 nm in length, dissociates into a triangular region with a chevronlike stacking disorder and a distorted hcp structure. The structure and stability of these defects are confirmed by atomistic simulations, and we point out the relationship with the one-dimensional incommensurate structure of the grain boundary

  4. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    International Nuclear Information System (INIS)

    Steitz, Roland; Schemmel, Sebastian; Shi Hongwei; Findenegg, Gerhard H

    2005-01-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle θ w ∼ 90), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (θ w ∼ 63). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic C m E n surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO 2 /C 8 E 4 /D 2 O reveal that there is no preferred lateral organization of the C 8 E 4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without

  5. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation

    International Nuclear Information System (INIS)

    Yan-Yan, Chen; Hua-Bing, Li; Hou-Hui, Yi

    2008-01-01

    The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles. Other factors, such as fluid viscosity, bulk pressure may also change the slip length. We find that boundary slip only occurs under a certain density (bulk pressure). If the density is large enough, the slip length will tend to zero. In our simulations, a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is the low density layer that induces the boundary slip. The results may be helpful to understand recent experimental observations on the slippage of micro flows

  6. Coherent structures in stratocumulus topped boundary layer: sensitivity to surface fluxes, radiative cooling and vertical stability

    Science.gov (United States)

    Davini, Paolo; D'Andrea, Fabio; Park, Seung-bu; Gentine, Pierre

    2017-04-01

    The representation of stratocumulus clouds in global climate models is still a concern for the climate modelling community. This is due to the low efficacy of current parametrization to simulate the full set of phenomena that governs the stratocumulus topped boundary layer (STBL), but also by the inaccurate knowledge of the sensitivities of the STBL dynamics to external large scale forcing. Here we show that making of a series of high-resolution LES simulations, we are able to detect and track coherent structures such as updrafts, downdrafts and their returning shells (i.e. both ascending and subsiding), together with the entraining air from the inversion layer or the free troposphere in a non-precipitating marine nighttime STBL. This is done with a new classification method based on octant analysis - using vertical velocity and two passive scalars - which defines the structures also in cloud-free regions. We are thus able to quantify the geometrical and thermodynamic characteristics (e.g. areal fraction, temperature, liquid and total water mixing ratio, buoyancy, etc.) of those structures, highlighting the single contributions to the turbulent transport of mass, heat and moisture. It is thus possible to estimate the sensitivity of the turbulent fluxes to the intensity of the cloud-top radiative cooling, to the surface latent and sensible fluxes and to the strength of the vertical stability is explored. Indeed, this analysis lays the foundation for a new parametrization of stratocumulus-topped boundary layer for global climate models.

  7. Molecular Tension Probes for Imaging Forces at the Cell Surface.

    Science.gov (United States)

    Liu, Yang; Galior, Kornelia; Ma, Victor Pui-Yan; Salaita, Khalid

    2017-12-19

    Mechanical forces are essential for a variety of biological processes ranging from transcription and translation to cell adhesion, migration, and differentiation. Through the activation of mechanosensitive signaling pathways, cells sense and respond to physical stimuli from the surrounding environment, a process widely known as mechanotransduction. At the cell membrane, many signaling receptors, such as integrins, cadherins and T- or B-cell receptors, bind to their ligands on the surface of adjacent cells or the extracellular matrix (ECM) to mediate mechanotransduction. Upon ligation, these receptor-ligand bonds transmit piconewton (pN) mechanical forces that are generated, in part, by the cytoskeleton. Importantly, these forces expose cryptic sites within mechanosensitive proteins and modulate the binding kinetics (on/off rate) of receptor-ligand complexes to further fine-tune mechanotransduction and the corresponding cell behavior. Over the past three decades, two categories of methods have been developed to measure cell receptor forces. The first class is traction force microscopy (TFM) and micropost array detectors (mPADs). In these methods, cells are cultured on elastic polymers or microstructures that deform under mechanical forces. The second category of techniques is single molecule force spectroscopy (SMFS) including atomic force microscopy (AFM), optical or magnetic tweezers, and biomembrane force probe (BFP). In SMFS, the experimenter applies external forces to probe the mechanics of individual cells or single receptor-ligand complexes, serially, one bond at a time. Although these techniques are powerful, the limited throughput of SMFS and the nN force sensitivity of TFM have hindered further elucidation of the molecular mechanisms of mechanotransduction. In this Account, we introduce the recent advent of molecular tension fluorescence microscopy (MTFM) as an emerging tool for molecular imaging of receptor mechanics in living cells. MTFM probes are

  8. Surface description of QCD with fermionic quark boundaries

    International Nuclear Information System (INIS)

    Burden, C.J.

    1983-01-01

    The flux sheet description of pure gauge theories proposed by Bardakci and Greensite is extended to include fermionic quark fields defined on the sheet boundaries. The quark fields are sources and sinks of colour flux and the action remains gauge invariant. It is shown that the partition function contains colour singlet contributions with the quantum numbers of mesons, baryons and exotics. (author)

  9. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    OpenAIRE

    Yuanyuan Li; Wenke Lu; Changchun Zhu; Qinghong Liu; Haoxin Zhang; Chenchao Tang

    2014-01-01

    Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW) based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established ...

  10. Surface potential modeling and reconstruction in Kelvin probe force microscopy.

    Science.gov (United States)

    Xu, Jie; Wu, Yangqing; Li, Wei; Xu, Jun

    2017-09-08

    Kelvin probe force microscopy (KPFM) measurement has been extensively applied in metallic, semiconductor and organic electronic or photovoltaic devices, to characterize the local contact potential difference or surface potential of the samples at the nanoscale. Here, a comprehensive modeling of surface potential in KPFM is established, from the well-known single capacitance model to a precise electrodynamic model, considering the long range property of the electrostatic force in KPFM. The limitations and relations of different models are also discussed. Besides, the feedback condition of the KPFM system is reconsidered and modified, showing that the influence of the cantilever has been overestimated by about 20% in previous reports. Afterwards, the surface potential of charged Si-nanocrystals is reconstructed based on the electrodynamic model, and the calculated surface charge density is very consistent with the macroscopic capacitance-voltage (C-V) measurement. A deep understanding and correct reconstruction of surface potential is crucial to the quantitative analysis of KPFM results.

  11. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    International Nuclear Information System (INIS)

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-01-01

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350 °C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface

  12. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    Science.gov (United States)

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  13. Reynolds analogy for subcooled surface boiling under forced convection

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1982-01-01

    For the case of subcooled surface boiling under forced convection the analytic expression of analogy between the heat transfer and carry pulse (Reynolds analogy) is derived. It is concluded that the obtained dependence creates the basis for solution of a series of problems of surface boiling physics. On the basis of the performed analysis the method of coordinate calculation of the origin of intensive vapour generation is developed and the formula for calculation of the broken-off-bubble radius under forced convection is derived [ru

  14. Surface forces between rough and topographically structured interfaces

    DEFF Research Database (Denmark)

    Thormann, Esben

    2017-01-01

    and manufactured materials, which possess topographical variations. Further, with technological advances in nanotechnology, fabrication of nano- or micro-structured surfaces has become increasingly important for many applications, which calls for a better understanding of the effect of surface topography...... on the interaction between interfaces. This paper presents a review of the current state of understanding of the effect of surface roughness on DLVO forces, as well as on the interactions between topographically structured hydrophobic surfaces in water. While the first case is a natural choice because it represents...

  15. Dynamical structure of the turbulent boundary layer on rough surface

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav; Jonáš, Pavel; Hladík, Ondřej

    2011-01-01

    Roč. 11, č. 1 (2011), s. 603-604 ISSN 1617-7061 R&D Projects: GA ČR GA101/08/1112; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent boundary layer * rough wall * hairpin vortex Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201110291/abstract

  16. Forced convection boundary layer MHD flow of nanofluid over a permeable stretching plate with viscous dissipation

    Directory of Open Access Journals (Sweden)

    Habibi Matin Meisam

    2014-01-01

    Full Text Available Forced convection boundary layer magneto-hydrodynamic (MHD flow of a nanofluid over a permeable stretching plate is studied in this paper. The effects of suction-injection and viscous dissi1pation are taken into account. The nanofluid model includes Brownian motion and thermophoresis effects. The governing momentum, energy and nanofluid solid volume fraction equations are solved numerically using an implicit finite difference scheme known as Keller-box method and the results are compared with available numerical data. The results for the dimensionless velocity, dimensionless temperature, dimensionless nanofluid solid volume fraction, reduced Nusselt and reduced Sherwood numbers are presented illustrating the effects of magnetic parameter, suction-injection parameter, Brownian motion parameter, thermophoresis parameter, Prandtl number, Eckert number and Lewis number.

  17. Surface transition on ice induced by the formation of a grain boundary.

    Directory of Open Access Journals (Sweden)

    Christian Pedersen

    Full Text Available Interfaces between individual ice crystals, usually referred to as grain boundaries, play an important part in many processes in nature. Grain boundary properties are, for example, governing the sintering processes in snow and ice which transform a snowpack into a glacier. In the case of snow sintering, it has been assumed that there are no variations in surface roughness and surface melting, when considering the ice-air interface of an individual crystal. In contrast to that assumption, the present work suggests that there is an increased probability of molecular surface disorder in the vicinity of a grain boundary. The conclusion is based on the first detailed visualization of the formation of an ice grain boundary. The visualization is enabled by studying ice crystals growing into contact, at temperatures between -20°C and -15°C and pressures of 1-2 Torr, using Environmental Scanning Electron Microscopy. It is observed that the formation of a grain boundary induces a surface transition on the facets in contact. The transition does not propagate across facet edges. The surface transition is interpreted as the spreading of crystal dislocations away from the grain boundary. The observation constitutes a qualitatively new finding, and can potentially increase the understanding of specific processes in nature where ice grain boundaries are involved.

  18. Probing surfaces with single-polymer atomic force microscope experiments.

    Science.gov (United States)

    Friedsam, C; Gaub, H E; Netz, R R

    2006-03-01

    In the past 15 years atomic force microscope (AFM) based force spectroscopy has become a versatile tool to study inter- and intramolecular interactions of single polymer molecules. Irreversible coupling of polymer molecules between the tip of an AFM cantilever and the substrate allows one to study the stretching response up to the high force regime of several nN. For polymers that glide or slip laterally over the surface with negligible friction, on the other hand, the measured force profiles exhibit plateaus which allow one to extract the polymer adsorption energies. Long-term stable polymer coatings of the AFM tips allow for the possibility of repeating desorption experiments from solid supports with individual molecules many times, yielding good sampling statistics and thus reliable estimates for adsorption energies. In combination with recent advances in theoretical modeling, a detailed picture of the conformational statistics, backbone elasticity, and the adsorption characteristics of single polymer molecules is obtained.

  19. Influences of the boundary layer evolution on surface ozone ...

    Indian Academy of Sciences (India)

    (1998) showed that the change in tropical ozone is highly sensitive to climate forcing in the tropics. Considering the importance of tropical tropo- sphere, attempts have been made for the measure- ment of ozone and precursors along with meteoro- logical parameters over the Indian region in which the roles of chemistry and ...

  20. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice

    Science.gov (United States)

    Moore, Christopher W.; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M.; Douglas, Thomas A.; Richter, Andreas; Nghiem, Son V.

    2014-02-01

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  1. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    Science.gov (United States)

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-06

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  2. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  3. Surface energy budget responses to radiative forcing at Summit, Greenland

    Science.gov (United States)

    Miller, Nathaniel B.; Shupe, Matthew D.; Cox, Christopher J.; Noone, David; Persson, P. Ola G.; Steffen, Konrad

    2017-02-01

    Greenland Ice Sheet surface temperatures are controlled by an exchange of energy at the surface, which includes radiative, turbulent, and ground heat fluxes. Data collected by multiple projects are leveraged to calculate all surface energy budget (SEB) terms at Summit, Greenland, for the full annual cycle from July 2013 to June 2014 and extend to longer periods for the radiative and turbulent SEB terms. Radiative fluxes are measured directly by a suite of broadband radiometers. Turbulent sensible heat flux is estimated via the bulk aerodynamic and eddy correlation methods, and the turbulent latent heat flux is calculated via a two-level approach using measurements at 10 and 2 m. The subsurface heat flux is calculated using a string of thermistors buried in the snow pack. Extensive quality-control data processing produced a data set in which all terms of the SEB are present 75 % of the full annual cycle, despite the harsh conditions. By including a storage term for a near-surface layer, the SEB is balanced in this data set to within the aggregated uncertainties for the individual terms. November and August case studies illustrate that surface radiative forcing is driven by synoptically forced cloud characteristics, especially by low-level, liquid-bearing clouds. The annual cycle and seasonal diurnal cycles of all SEB components indicate that the non-radiative terms are anticorrelated to changes in the total radiative flux and are hence responding to cloud radiative forcing. Generally, the non-radiative SEB terms and the upwelling longwave radiation component compensate for changes in downwelling radiation, although exact partitioning of energy in the response terms varies with season and near-surface characteristics such as stability and moisture availability. Substantial surface warming from low-level clouds typically leads to a change from a very stable to a weakly stable near-surface regime with no solar radiation or from a weakly stable to neutral

  4. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  5. Space-like surfaces with free boundary in the Lorentz-Minkowski space

    International Nuclear Information System (INIS)

    López, R; Pyo, J

    2012-01-01

    We investigate a variational problem in the Lorentz-Minkowski space L 3 whose critical points are space-like surfaces with a constant mean curvature and making a constant contact angle with a given support surface along its common boundary. We show that if the support surface is a pseudosphere, then the surface is a planar disc or a hyperbolic cap. We also study the problem of space-like hypersurfaces with free boundary in the higher dimensional Lorentz-Minkowski space L n+1 . (paper)

  6. Understanding nanorheology and surface forces of confined thin films

    Science.gov (United States)

    Huang, Jun; Yan, Bin; Faghihnejad, Ali; Xu, Haolan; Zeng, Hongbo

    2014-02-01

    Understanding the nanorheology and associated intermolecular/surface forces of fluids in confined geometries or porous media is of both fundamental and practical importance, providing significant insights into various applications such as lubrication and micro/nanoelectromechanical systems. In this work, we briefly reviewed the fundamentals of nanoreheolgy, advances in experimental techniques and theoretical simulation methods, as well as important progress in the nanorheology of confined thin films. The advent of advanced experimental techniques such as surface forces apparatus (SFA), X-ray surface forces apparatus (XSFA) and atomic force microscope (AFM) and computational methods such as molecular dynamics simulations provides powerful tools to study a wide range of rheological phenomena at molecular level and nano scale. One of the most challenging issues unresolved is to elucidate the relationship between the rheological properties and structural evolution of the confined fluid films and particles suspensions. Some of the emerging research areas in the nanorheology field include, but are not limited to, the development of more advanced characterization techniques, design of multifunctional rheological fluids, bio-related nanorheology, and polymer brushes.

  7. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    Science.gov (United States)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud

  8. Constraining Aerosol Forcing from the Land Surface Temperature Record

    Science.gov (United States)

    Shen, Z.; Ming, Y.; Held, I.

    2017-12-01

    Understanding the anthropogenic influence on regional climate change is important for policy making and adaption planning. Atmosphere/land global climate models (AGCMs) with prescribed oceanic boundary conditions allow a decomposition of historical climate change into a fast component that occurs on an atmospheric adjustment time scale of a month or less, and a slow component due to the changing ocean and sea ice. These two components are simultaneously present in comprehensive coupled climate models. The slow component contains much of the uncertainty in climate sensitivity and is where the forced signals are mixed most strongly with natural variability. Here we use AGCMs to investigate the fast component of the anthropogenic influence on regional temperature change. Although this fast component of the anthropogenic warming is often thought of as small, we find that it is detectable in the observed warming of Northern Hemisphere land during the warm season in recent decades. We suggest that the fast response to aerosol forcing in isolation can be detected on subcontinental scales, and that AGCM simulations of the fast response are useful for empirically constraining aerosol forcing.

  9. Investigation of magnetorheological elastomer surface properties by atomic force microscopy

    International Nuclear Information System (INIS)

    Iacobescu, G.E.; Balasoiu, M.; Bica, I.

    2012-01-01

    Magnetorheological elastomers consist of a natural or synthetic rubber matrix interspersed with micron-sized ferromagnetic particles. The magnetoelastic properties of such a composite are not merely a sum of elasticity of the polymer and stiffness and magnetic properties of the filler, but also the result of a complex synergy of several effects, relevant at different length scales and detectable by different techniques. In the present work we investigate the microstructures, the surface magnetic properties and the elastic properties of new isotropic and anisotropic magnetorheological elastomer prepared using silicone rubber and soft magnetic carbonyl iron microspheres. The measurements were performed by atomic force microscopy in the following modes: standard imaging-non-contact atomic force microscopy, magnetic force microscopy and nanoindentation. A comparative study for the samples with different particle concentrations and strength of magnetic field applied during the polymerization process is developed

  10. Laminar boundary layer response to rotation of a finite diameter surface patch

    International Nuclear Information System (INIS)

    Klewicki, J.C.; Hill, R.B.

    2003-01-01

    The responses of the flat plate laminar boundary layer to perturbations generated by rotating a finite patch of the bounding surface are explored experimentally. The size of the surface patch was of the same order as the boundary layer thickness. The displacement thickness Reynolds number range of the boundary layers explored was 72-527. The rotation rates of the surface patch ranged from 2.14 to 62.8 s-1. Qualitative flow visualizations and quantitative molecular tagging velocimetry measurements revealed that rotation of a finite surface patch generates an asymmetric loop-like vortex. Significant features of this vortex include that, (i) the sign of the vorticity in the vortex head is opposite that of the boundary layer vorticity regardless of the sign of the input rotation, (ii) one leg of the vortex exhibits motion akin to solid body rotation while the other leg is best characterized as a spanwise shear layer, (iii) the vortex leg exhibiting near solid body rotation lifts more rapidly from the surface than the leg more like a shear layer, and (iv) the vortex leg exhibiting near solid body rotation always occurs on the side of the surface patch experiencing downstream motion. These asymmetries switch sides depending on the sign of the input rotation. The present results are interpreted and discussed relative to analytical solutions for infinite geometries. By way of analogy, plausible connections are drawn between the present results and the influences of wall normal vortices in turbulent boundary layer flows

  11. Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples

    Science.gov (United States)

    Kuester, Matthew

    2017-11-01

    Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.

  12. Surface structure investigations using noncontact atomic force microscopy

    International Nuclear Information System (INIS)

    Kolodziej, J.J.; Such, B.; Goryl, M.; Krok, F.; Piatkowski, P.; Szymonski, M.

    2006-01-01

    Surfaces of several A III B V compound semiconductors (InSb, GaAs, InP, InAs) of the (0 0 1) orientation have been studied with noncontact atomic force microscopy (NC-AFM). Obtained atomically resolved patterns have been compared with structural models available in the literature. It is shown that NC-AFM is an efficient tool for imaging complex surface structures in real space. It is also demonstrated that the recent structural models of III-V compound surfaces provide a sound base for interpretation of majority of features present in recorded patterns. However, there are also many new findings revealed by the NC-AFM method that is still new experimental technique in the context of surface structure determination

  13. Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers

    Science.gov (United States)

    2015-10-01

    ZT ). The initial acceleration of the rising buoyant air will be a = g∆T/TA. This is simply Archimedes ’ principle applied to the buoyant air. The... applications . 1 Various rules are employed to model C2n in the surface layer, but a key question is how to extend this estimation technique into the lower...in terms of wind turbulence the structure of the fluctuations produces a Reynolds stress tensor whose principle axes are not equal, meaning that at the

  14. The extended surface forces apparatus. IV. Precision static pressure control.

    Science.gov (United States)

    Schurtenberger, E; Heuberger, M

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ~3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions.

  15. The extended surface forces apparatus. IV. Precision static pressure control

    Science.gov (United States)

    Schurtenberger, E.; Heuberger, M.

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ˜3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions.

  16. Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface

    Science.gov (United States)

    Dettenrieder, Fabian; Bodony, Daniel

    2016-11-01

    Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.

  17. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  18. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    Directory of Open Access Journals (Sweden)

    Asif Munir

    Full Text Available The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i the sheet with variable temperature (PST case and (ii the sheet with variable heat flux (PHF case. The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  19. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    International Nuclear Information System (INIS)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R.

    2004-01-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle

  20. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R

    2004-06-30

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 {mu}m, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 {mu}m. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  1. Segregation of sp-impurities at grain boundaries and surfaces: comparison of fcc cobalt and nickel

    Czech Academy of Sciences Publication Activity Database

    Všianská, Monika; Vémolová, H.; Šob, Mojmír

    2017-01-01

    Roč. 25, č. 8 (2017), č. článku 085004. ISSN 0965-0393 R&D Projects: GA ČR(CZ) GA16-24711S Institutional support: RVO:68081723 Keywords : local magnetic-moments * total-energy calculations * augmented-wave method * solute segregation * tilt boundaries * embrittling potency * alloying elements * hcp metals * basis-set * 1st-principles * grain boundary segregation * strengthening/embrittling energy * grain boundary magnetism * ab initio calculations * surface segregation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.891, year: 2016

  2. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  3. Naval Reserve Force: Cost and Benefit Analysis of Reducing the Number of Naval Surface Reserve Force Operating Budget Holders

    National Research Council Canada - National Science Library

    Young, Eric

    1997-01-01

    .... This thesis examines one of Commander Naval Surface Reserve Force's initiatives for reducing the current number of Operating Budget holder's Comptroller Departments without sacrificing efficiency...

  4. Surface color from boundaries: a new 'watercolor' illusion.

    Science.gov (United States)

    Pinna, B; Brelstaff, G; Spillmann, L

    2001-09-01

    A colored line flanking a darker border will appear to assimilate its color onto the enclosed white area over distances of up to 45 deg (the Watercolor Effect). This coloration is uniform and complete within 100 ms. We found that thin (6 arcmin), winding inducing lines with different contrasts to the ground are generally more effective than thick, straight, and equiluminant lines. Blue and red lines induce the strongest effects, but watercolor spreading may also be seen with green and yellow. On a white background, color spreading is stronger than on chromatic, gray or black backgrounds. Little or no color is perceived when a narrow white zone (gap) is inserted in between the two inducing lines. However, chains of colored dots instead of continuous lines suffice to produce spreading. Edge-induced color is also observed when the two colored lines are presented dichoptically, suggesting a cortical origin. The Watercolor Effect described here may serve to enhance figure-ground segregation by imparting surface color onto the enclosed area, and to promote grouping between distant stimulus elements. As a grouping factor, watercolor coloration wins over proximity. Assimilative color spreading may arise in two steps: First, weakening of the contour by lateral inhibition between differentially activated edge cells (local diffusion); and second, unbarriered flow of color onto the enclosed area (global diffusion).

  5. Boundary layer stability on a yawed spinning body of revolution and its effect on the magnus force and moment

    Science.gov (United States)

    Jacobson, I. D.; Morton, J. B.

    1972-01-01

    The parameters are established which are important to the stability of a boundary layer flow over a yawed spinning cylinder in a uniform stream. It is shown that transition occurs asymmetrically in general and this asymmetry can be important for the prediction of aerodynamic forces and moments (e.g., the Magnus effect). Instability of the steady-state boundary layer flow is determined using small disturbance theory. Although the approach is strictly valid only for the calculation of the conditions for stability in the small, experimental data indicate that in many problems, it provides a good estimate for the transition to turbulence.

  6. Free surface simulation of a two-layer fluid by boundary element method

    Directory of Open Access Journals (Sweden)

    Weoncheol Koo

    2010-09-01

    Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.

  7. Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology.

    Science.gov (United States)

    Yang, Dingzheng; Xie, Lei; Bobicki, Erin; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2014-09-16

    Understanding the surface properties and interactions of nonspherical particles is of both fundamental and practical importance in the rheology of complex fluids in various engineering applications. In this work, natural chrysotile, a phyllosilicate composed of 1:1 stacked silica and brucite layers which coil into cylindrical structure, was chosen as a model rod-shaped particle. The interactions of chrysotile brucite-like basal or bilayered edge planes and a silicon nitride tip were measured using an atomic force microscope (AFM). The force-distance profiles were fitted using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which demonstrates anisotropic and pH-dependent surface charge properties of brucite-like basal plane and bilayered edge surface. The points of zero charge (PZC) of the basal and edge planes were estimated to be around pH 10-11 and 6-7, respectively. Rheology measurements of 7 vol % chrysotile (with an aspect ratio of 14.5) in 10 mM NaCl solution showed pH-dependent yield stress with a local maximum around pH 7-9, which falls between the two PZC values of the edge and basal planes of the rod particles. On the basis of the surface potentials of the edge and basal planes obtained from AFM measurements, theoretical analysis of the surface interactions of edge-edge, basal-edge, and basal-basal planes of the chrysotile rods suggests the yield stress maximum observed could be mainly attributed to the basal-edge attractions. Our results indicate that the anisotropic surface properties (e.g., charges) of chrysotile rods play an important role in the particle-particle interaction and rheological behavior, which also provides insight into the basic understanding of the colloidal interactions and rheology of nonspherical particles.

  8. Thermohaline forcing of eastern boundary currents: With application to the circulation off the west coast of Australia

    Digital Repository Service at National Institute of Oceanography (India)

    McCreary, J.P.; Shetye, S.R.; Kundu, P.K.

    . In particular, there is a surface coastal jet (the model Leeuwin Current) that flows against the wind. This successful comparison suggests that the mean circulation in the region is significantly forced by @ips@@, whereas the annual variability is strongly...

  9. Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer

    Science.gov (United States)

    Masnadi, Naeem; Erinin, Martin; Duncan, James H.

    2017-11-01

    The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.

  10. Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid

    Directory of Open Access Journals (Sweden)

    Ishak Anuar

    2011-01-01

    Full Text Available Abstract The problem of a steady boundary layer shear flow over a stretching/shrinking sheet in a nanofluid is studied numerically. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg method with shooting technique. Two types of nanofluids, namely, Cu-water and Ag-water are used. The effects of nanoparticle volume fraction, the type of nanoparticles, the convective parameter, and the thermal conductivity on the heat transfer characteristics are discussed. It is found that the heat transfer rate at the surface increases with increasing nanoparticle volume fraction while it decreases with the convective parameter. Moreover, the heat transfer rate at the surface of Cu-water nanofluid is higher than that at the surface of Ag-water nanofluid even though the thermal conductivity of Ag is higher than that of Cu.

  11. Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Opdahl, Aric; Koffas, Telly S; Amitay-Sadovsky, Ella; Kim, Joonyeong; Somorjai, Gabor A

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM) have been used to study polymer surface structure and surface mechanical behaviour, specifically to study the relationships between the surface properties of polymers and their bulk compositions and the environment to which the polymer is exposed. The combination of SFG surface vibrational spectroscopy and AFM has been used to study surface segregation behaviour of polyolefin blends at the polymer/air and polymer/solid interfaces. SFG surface vibrational spectroscopy and AFM experiments have also been performed to characterize the properties of polymer/liquid and polymer/polymer interfaces, focusing on hydrogel materials. A method was developed to study the surface properties of hydrogel contact lens materials at various hydration conditions. Finally, the effect of mechanical stretching on the surface composition and surface mechanical behaviour of phase-separated polyurethanes, used in biomedical implant devices, has been studied by both SFG surface vibrational spectroscopy and AFM. (topical review)

  12. Thermal desorption study of physical forces at the PTFE surface

    Science.gov (United States)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  13. Shear force microscopy using piezoresistive cantilevers in surface metrology

    Science.gov (United States)

    Gotszalk, Teodor; Kopiec, Daniel; Sierakowski, Andrzej; Janus, Paweł; Grabiec, Piotr; Rangelow, Ivo W.

    2014-09-01

    In this article we describe application of piezoresistive cantilevers in surface investigations carried out with the use of shear force microscopy (ShFM). The novel piezoresistive cantilevers integrate a Wheatstone piezoresistive bridge was used to detect the cantilever deflection, thermal deflection detector and planar tip protruding out of the spring beam. Because the planar tip deflection can be detected and controlled electronically the described technology is very flexible and can be applied in many surface investigations. In this article we will present operation theory of the described solution, experimental setup, methods for calibration of the tip deflection detection and actuation The analysis will be illustrated with example results of topography measurements performed using the described technology.

  14. Study of a prototypical convective boundary layer observed during BLLAST: contributions by large-scale forcings

    NARCIS (Netherlands)

    Pietersen, H.P.; Vilà-Guerau De Arellano, J.; Augustin, P.; Boer, van de A.; Coster, de O.; Delbarre, H.; Durand, P.; Fourmentin, M.; Gioli, B.; Hartogensis, O.K.; Lohou, F.; Lothon, M.; Ouwersloot, H.G.; Pino, D.; Reuder, J.

    2015-01-01

    We study the influence of the large-scale atmospheric contribution to the dynamics of the convective boundary layer (CBL) in a situation observed during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign. We employ two modeling approaches, the mixed-layer theory and

  15. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    Directory of Open Access Journals (Sweden)

    R. H. H. Janssen

    2012-08-01

    Full Text Available We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to satisfactorily reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA concentration. An examination of the budgets of organic aerosol and terpene concentrations show that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically investigate the role of the land surface, which governs both the surface energy balance partitioning and terpene emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore, it influences the relationship between organic aerosol and terpene concentrations. Our findings indicate that the diurnal evolution of secondary organic aerosols (SOA in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.

  16. Some Exact Solutions of Boundary Layer Flows along a Vertical Plate with Buoyancy Forces Combined with Lorentz Forces under Uniform Suction

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2008-01-01

    Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.

  17. Surface roughness and grain boundary scattering effects on the electrical conductivity of thin films

    NARCIS (Netherlands)

    Palasantzas, George

    1998-01-01

    In this work, we investigate surface/interface roughness and grain boundary scattering effects on the electrical conductivity of polycrystalline thin films in the Born approximation. We assume for simplicity a random Gaussian roughness convoluted with a domain size distribution ~e^-πr^2/ζ^2 to

  18. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  19. The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Chow, F K; Kollet, S J

    2007-02-02

    This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can represent spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-hour period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.

  20. Dynamic analysis of a hollow cylinder subject to a dual traveling force imposed on its inner surface

    Science.gov (United States)

    Lee, Sooyoung; Seok, Jongwon

    2015-03-01

    The dynamic behavior of a hollow cylinder under a dual traveling force applied to the inner surface is investigated in this study. The cylinder is constrained at both the top and bottom surfaces not to move in the length direction but free in other directions. And a dual force travels at a constant velocity along the length direction on the inner surface of the hollow cylinder. The resulting governing field equations and the associated boundary conditions are ruled by the general Hooke's law. Due to the nature of the field equations, proper adjoint system of equations and biorthogonality conditions were derived in a precise and detailed manner. To solve these field equations in this study, the method of separation of variable is used and the method of Fro¨benius is employed for the differential equations in the radial direction. Using the field equations, the eigenanalyses on both the original and its adjoint system were performed with great care, which results in the eigenfunction sets of both systems. The biorthogonality conditions were applied to the field equations to obtain the discretized equation for each mode. Using the solutions of the discretized equations that account for the boundary forcing terms, the critical speed for a dual traveling force for each mode could be computed.

  1. Numerical generation of boundary-fitted curvilinear coordinate systems for arbitrarily curved surfaces

    International Nuclear Information System (INIS)

    Takagi, T.; Miki, K.; Chen, B.C.J.; Sha, W.T.

    1985-01-01

    A new method is presented for numerically generating boundary-fitted coordinate systems for arbitrarily curved surfaces. The three-dimensional surface has been expressed by functions of two parameters using the geometrical modeling techniques in computer graphics. This leads to new quasi-one- and two-dimensional elliptic partial differential equations for coordinate transformation. Since the equations involve the derivatives of the surface expressions, the grids geneated by the equations distribute on the surface depending on its slope and curvature. A computer program GRID-CS based on the method was developed and applied to a surface of the second order, a torus and a surface of a primary containment vessel for a nuclear reactor. These applications confirm that GRID-CS is a convenient and efficient tool for grid generation on arbitrarily curved surfaces

  2. Dual reciprocity boundary element analysis for the laminar forced heat convection problem in concentric annulus

    International Nuclear Information System (INIS)

    Choi, Chang Yong

    1999-01-01

    This paper presents a study of the Dual Reciprocity Boundary Element Method (DRBEM) for the laminar heat convection problem in a concentric annulus with constant heat flux boundary condition. DRBEM is one of the most successful technique used to transform the domain integrals arising from the nonhomogeneous term of the poisson equation into equivalent boundary only integrals. This recently developed and highly efficient numerical method is tested for the solution accuracy of the fluid flow and heat transfer study in a concentric annulus. Since their exact solutions are available, DRBEM solutions are verified with different number of boundary element discretization and internal points. The results obtained in this study are discussed with the relative error percentage of velocity and temperature solutions, and potential applicability of the method for the more complicated heat convection problems with arbitrary duct geometries

  3. Tile Surface Thermocouple Measurement Challenges from the Orbiter Boundary Layer Transition Flight Experiment

    Science.gov (United States)

    Campbell, Charles H.; Berger, Karen; Anderson, Brian

    2012-01-01

    Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.

  4. Effect of reactor finiteness on the boundary condition at the surface of a booster section

    International Nuclear Information System (INIS)

    Wassef, W.A.

    1982-01-01

    Effect of reactor finiteness on the boundary condition at the surface of an absorbing booster embedded in the reactor core is studied and formulated. The model used in these calculations depends on the Pl-Transport coupling technique. This method takes into consideration the rigorous neutron transport behavior inside the booster medium, while the Pl-approximation in the bulk of the scattering medium surrounding the booster which can be considered infinite in most practical applications. The neutron flux gradient parallel to the surface of the booster is considered. The geometrical configuration of the reactor core cross section is circular or rectangular. Finiteness of the reactor is introduced in the general formulation through its dimensions or buckling. Extensive numerical results are given to demonstrate the dependence of the boundary condition at the surface of the booster section on the reactor finiteness and the different physical parameters

  5. MHD Natural Convection with Convective Surface Boundary Condition over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rashidi

    2014-01-01

    Full Text Available We apply the one parameter continuous group method to investigate similarity solutions of magnetohydrodynamic (MHD heat and mass transfer flow of a steady viscous incompressible fluid over a flat plate. By using the one parameter group method, similarity transformations and corresponding similarity representations are presented. A convective boundary condition is applied instead of the usual boundary conditions of constant surface temperature or constant heat flux. In addition it is assumed that viscosity, thermal conductivity, and concentration diffusivity vary linearly. Our study indicates that a similarity solution is possible if the convective heat transfer related to the hot fluid on the lower surface of the plate is directly proportional to (x--1/2 where x- is the distance from the leading edge of the solid surface. Numerical solutions of the ordinary differential equations are obtained by the Keller Box method for different values of the controlling parameters associated with the problem.

  6. Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts.

    Science.gov (United States)

    Savio, Daniele; Pastewka, Lars; Gumbsch, Peter

    2016-03-01

    Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions.

  7. A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface

    DEFF Research Database (Denmark)

    Svensson, Nina; Sahlée, Erik; Bergström, Hans

    2017-01-01

    originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30–80 km off the coast, in agreement...... with the streaks observed by the SAR images. During evening when the convective conditions over land diminish, the streaky structures over the sea are still seen in the horizontal wind field; however, the vertical component is close to zero. Thus advected feature from a land surface can affect the wind field...... considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered...

  8. Bubble size in surface boiling with forced convection

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1985-01-01

    Mechanisms of heat supply and removal were analyzed to obtain formula for calculating maximal bubble diameter for ''growth-condensation'' cycle in surface boiling with forced convection. Effect of some conditional parameters on the maximal bubble diameter was analyzed. Pressure (0.147-17.7 MPa), rate (0.2-9.15 m/s), subcooling (3-62 K), heat flux density (0.38-8.53 MW/m 2 ) configuration and geometrical sizes of the channel were considered. It was shown that change of heat flux density on channel wall affects slightly the diameter. Bubble size reduces at 0.1-2 MPa especially with pressure increase correlation of calculation results with experimental data shows a good agreement

  9. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  10. Effect of boundary heat flux on solidification in a forced liquid metal flow: a phase-field simulation

    Science.gov (United States)

    Du, Lifei; Zhang, Rong

    2014-12-01

    A phase-field model coupling with velocity field is employed to study the effect of boundary heat flux on the microstructure formation of a Ni-40.8%Cu alloy with liquid flow during the solidification, and an anti-trapping current is introduced to suppress the solute trapping due to the larger interface width used in simulations than a real solidifying material. The effect of the flow field coupling with boundary heat extractions on the microstructure formation as well as distributions of concentration and temperature fields are analyzed and discussed. The forced liquid flow can significantly affect the heat and solute diffusions, thus influencing morphology formation, concentration and temperature distributions during the solidification. The solute segregation and concentration diffusion are changed by boundary heat extractions, and the morphology, concentration and temperature distributions are significantly influenced by increasing the heat extraction, which relatively makes the effect of liquid flow constrained. By increasing the initial velocity of liquid flow, the lopsided rate of the primary dendrite arm is enlarged and the growth manner of dendrite arms gets changed, and the transition of the microstructure from dendrite to cellular moves to the large heat extraction direction. Therefore, there exists the competition between the heat flux, temperature gradient and forced liquid flow that finally determines the microstructure formation during directional solidification.

  11. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    Science.gov (United States)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  12. Evolution of the lower planetary boundary layer over strongly contrasting surfaces

    International Nuclear Information System (INIS)

    Coulter, R.L.; Gao, W.; Martin, T.J.; Shannon, J.D.; Doran, J.C.; Hubbe, J.M.; Shaw, W.M.

    1992-01-01

    In a multilaboratory field study held near Boardman in northeastern Oregon in June 1991, various properties of the surface and lower atmospheric boundary layer over heavily irrigated cropland and adjacent desert steppe were investigated in the initial campaign of the Atmospheric Radiation Measurement (ARM) program. The locale was selected because its disparate characteristics over various spatial scales stress the ability of general circulation models (GCMS) to describe lower boundary conditions, particularly across the discontinuity between desert (in which turbulent flux of heat must be primarily as sensible heat) and large irrigated tracts (in which turbulent flux of latent heat should be the larger term). This campaign of ARM seeks to increase knowledge in three critical areas: (1) determination of the relationships between surface heat fluxes measured over multiple scales and the controlling surface parameters within each scale, (2) integration of local and nearly local heat flux estimates to produce estimates appropriate for GCM grid cells of 100-200 km horizontal dimension, and (3) characterization of the growth and development of the atmospheric boundary layer near transitions between surfaces with strongly contrasting moisture availabilities

  13. Connecting meteorology to surface transport in aeolian landscapes: Peering into the boundary layer with Doppler lidar

    Science.gov (United States)

    Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.

    2017-12-01

    Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the

  14. Optimized Model Surfaces for Advanced Atomic Force Microscopy Studies of Surface Nanobubbles.

    Science.gov (United States)

    Song, Bo; Zhou, Yi; Schönherr, Holger

    2016-11-01

    The formation of self-assembled monolayers (SAMs) of binary mixtures of 16-mercaptohexadecanoic acid (MHDA) and 1-octadecanethiol (ODT) on ultraflat template-stripped gold (TSG) surfaces was systematically investigated to clarify the assembly behavior, composition, and degree of possible phase segregation in light of atomic force microscopy (AFM) studies of surface nanobubbles on these substrates. The data for SAMs on TSG were compared to those obtained by adsorption on rough evaporated gold, as reported in a previous study. Quartz crystal microbalance and surface plasmon resonance data acquired in situ on TSG indicate that similar to SAM formation on conventional evaporated gold substrates ODT and MHDA form monolayers and bilayers, respectively. The second layer on MHDA, whose formation is attributed to hydrogen bonding, can be easily removed by adequate rinsing with water. The favorable agreement of the grazing incidence reflection Fourier transform infrared (GIR FTIR) spectroscopy and contact angle data analyzed with the Israelachvili-Gee model suggests that the binary SAMs do not segregate laterally. This conclusion is fully validated by high-resolution friction force AFM observations down to a length scale of 8-10 nm, which is much smaller than the typical observed surface nanobubble radii. Finally, correspondingly functionalized TSG substrates are shown to be valuable supports for studying surface nanobubbles by AFM in water and for addressing the relation between surface functionality and nanobubble formation and properties.

  15. Airborne Measurement of Insolation Impact on the Atmospheric Surface Boundary Layer

    Science.gov (United States)

    Jacob, Jamey; Chilson, Phil; Houston, Adam; Detweiler, Carrick; Bailey, Sean; Cloud-Map Team

    2017-11-01

    Atmospheric surface boundary layer measurements of wind and thermodynamic parameters are conducted during variable insolation conditions, including the 2017 eclipse, using an unmanned aircraft system. It is well known that the air temperatures can drop significantly during a total solar eclipse as has been previously observed. In past eclipses, these observations have primarily been made on the ground. We present results from airborne measurements of the near surface boundary layer using a small unmanned aircraft with high temporal resolution wind and thermodynamic observations. Questions that motivate the study include: How does the temperature within the lower atmospheric boundary vary during an eclipse? What impact does the immediate removal of radiative heating on the ground have on the lower ABL? Do local wind patterns change during an eclipse event and if so why? Will there be a manifestation of the nocturnal boundary layer wind maximum? Comparisons are made with the DOE ARM SGP site that experiences a lower but still significant insolation. Supported by the National Science Foundation under Award Number 1539070.

  16. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  17. The Effects of Air-Borne Water Mist on a Forced Convection Boundary Layer Flame over a Non-Charring Solid

    National Research Council Canada - National Science Library

    Ndubizu, Chuka

    2003-01-01

    This report presents preliminary results of an experimental study of water mist suppression of forced flow boundary layer flames over a non-charring solid, where fine water mist was introduced with the incoming air...

  18. The Interaction of a Turbulent Ship-Hull Boundary Layer and a Free Surface

    Science.gov (United States)

    Masnadi, N.; Washuta, N.; Wang, A.; Duncan, J. H.

    2013-11-01

    The free-surface deformation pattern caused by subsurface turbulent velocity fluctuations in the boundary layer at the mid-length of a naval ship is studied with a novel laboratory scale experimental technique. In this technique, the boundary layer is created in a large tank (13.4 m long, 1.3 m tall, and 2.4 m wide) with a surface-piercing meter-wide stainless steel belt that travels in a horizontal loop around two vertically oriented rollers whose axes are separated by 7.5 m. The device is enclosed in a dry box except for one of the two lengths between the rollers where a straight 6-meter-long section is exposed to the water and represents one side of the ship hull. The belt operates at full-scale ship speeds (up to 15 m/s) in order to match the Reynolds, Froude, and Weber numbers to those of naval ships, thus faithfully modeling the interaction of the turbulence with the free surface at laboratory scale. The water surface profile history midway between the rollers is recorded cinematically in a vertical plane normal to the belt using a Laser Induced Fluorescence (LIF) technique. This surface profile data is used to study the near-wall and far-field frequency content and propagation behavior of the surface ripples. The support of the Office of Naval Research is gratefully acknowledged.

  19. The effect of unsteady and baroclinic forcing on predicted wind profiles in Large Eddy Simulations: Two case studies of the daytime atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik

    2013-01-01

    and in relevant atmospheric fields (e.g. temperature) that occur at larger scales must be imposed through boundary conditions or as external forcing. In this work we study the influence of such variations on the wind profile in Large Eddy Simulations of daytime atmospheric boundary layers, by comparing...

  20. A Numerical Study of 2-D Surface Roughness Effects on the Growth of Wave Modes in Hypersonic Boundary Layers

    Science.gov (United States)

    Fong, Kahei Danny

    The current understanding and research efforts on surface roughness effects in hypersonic boundary-layer flows focus, almost exclusively, on how roughness elements trip a hypersonic boundary layer to turbulence. However, there were a few reports in the literature suggesting that roughness elements in hypersonic boundary-layer flows could sometimes suppress the transition process and delay the formation of turbulent flow. These reports were not common and had not attracted much attention from the research community. Furthermore, the mechanisms of how the delay and stabilization happened were unknown. A recent study by Duan et al. showed that when 2-D roughness elements were placed downstream of the so-called synchronization point, the unstable second-mode wave in a hypersonic boundary layer was damped. Since the second-mode wave is typically the most dangerous and dominant unstable mode in a hypersonic boundary layer for sharp geometries at a zero angle of attack, this result has pointed to an explanation on how roughness elements delay transition in a hypersonic boundary layer. Such an understanding can potentially have significant practical applications for the development of passive flow control techniques to suppress hypersonic boundary-layer transition, for the purpose of aero-heating reduction. Nevertheless, the previous study was preliminary because only one particular flow condition with one fixed roughness parameter was considered. The study also lacked an examination on the mechanism of the damping effect of the second mode by roughness. Hence, the objective of the current research is to conduct an extensive investigation of the effects of 2-D roughness elements on the growth of instability waves in a hypersonic boundary layer. The goal is to provide a full physical picture of how and when 2-D roughness elements stabilize a hypersonic boundary layer. Rigorous parametric studies using numerical simulation, linear stability theory (LST), and parabolized

  1. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy

    Science.gov (United States)

    Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L.; Amano, Ken-Ichi; Fukuma, Takeshi

    2016-03-01

    Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent

  2. Coevolution of bed surface patchiness and channel morphology: 1. Mechanisms of forced patch formation

    Science.gov (United States)

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    Riverbeds frequently display a spatial structure where the sediment mixture composing the channel bed has been sorted into discrete patches of similar grain size. Even though patches are a fundamental feature in gravel bed rivers, we have little understanding of how patches form, evolve, and interact. Here we present a two-dimensional morphodynamic model that is used to examine in greater detail the mechanisms responsible for the development of forced bed surface patches and the coevolution of bed morphology and bed surface patchiness. The model computes the depth-averaged channel hydrodynamics, mixed-grain-size sediment transport, and bed evolution by coupling the river morphodynamic model Flow and Sediment Transport with Morphological Evolution of Channels (FaSTMECH) with a transport relation for gravel mixtures and the mixed-grain-size Exner equation using the active layer assumption. To test the model, we use it to simulate a flume experiment in which the bed developed a sequence of alternate bars and temporally and spatially persistent forced patches with a general pattern of coarse bar tops and fine pools. Cross-stream sediment flux causes sediment to be exported off of bars and imported into pools at a rate that balances downstream gradients in the streamwise sediment transport rate, allowing quasi-steady bar-pool topography to persist. The relative importance of lateral gravitational forces on the cross-stream component of sediment transport is a primary control on the amplitude of the bars. Because boundary shear stress declines as flow shoals over the bars, the lateral sediment transport is increasingly size selective and leads to the development of coarse bar tops and fine pools.

  3. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  4. An experimental investigation of a compliant surface beneath a turbulent boundary layer

    Science.gov (United States)

    Hess, David Earl

    The interaction between a passive compliant surface and a turbulent boundary layer was studied using a 0.6 m diameter water tunnel. The key idea was the simultaneous determination of surface displacement and turbulence structure. A standard turbulent boundary layer over a flat plate was identified by measuring the first four moments of the streamwise velocity component. Then, two compliant surfaces, consisting of different mixtures of silicone elastomer and silicone oil, were studied by replacing a rigid insert in the flat plate. Varying the amount and viscosity of the oil in the mix allowed one to alter the response of the surface at a variety of Reynolds numbers of interest; in each case, a stable pattern of small amplitude displacements representing the footprints of individual flow structures was obtained. A localized averaging technique (VITA) was used to study any changes in the bursting process that might occur in the presence of a compliant surface. The results indicate that positive pressure pulses which are known to accompany bursting events in the buffer layer produced associated negative displacements in the compliant material beneath.

  5. Construction of force-free fields which have toroidal surfaces about a given surface

    International Nuclear Information System (INIS)

    Bouligand, G.

    1983-05-01

    A study of two-fields (B vector, rotB vector) of conservative flux which admits a family of toroidal surfaces of parameter phi on a domain limited by a given surface S, suggests their construction by a Cauchy-Arzela method of step by step. Taking into account the Newcomb condition this method is consistent with force-free magnetic fields and with helical equilibria with scalar pressure. The method supposes that B vector is of class C 1 . This construction makes use of the remarkable property of the field B vector to be the surface gradient of a generating multivalued function Q on a closed surface. Consequently, the initial surface will be given with its normal metric coefficient K; that is to say, B vector admits a family F of homotopic surfaces on a infinitesimal domain about S, an element of F. From this, the periodic part of Q is a solution of a Beltrami equation for the flux conservation of which numerical resolution is envisaged. The study of these fields is made in a biorthogonal system of coordinates. The coeffficients of the two fundamental metric forms of magnetic surfaces vary with phi and are interrelated by a sixth order differential system of equations which gives their variation [fr

  6. A theory for natural convection turbulent boundary layers next to heated vertical surfaces

    International Nuclear Information System (INIS)

    George, W.K. Jr.; Capp, S.P.

    1979-01-01

    The turbulent natural convection boundary layer next to a heated vertical surface is analyzed by classical scaling arguments. It is shown that the fully developed turbulent boundary layer must be treated in two parts: and outer region consisting of most of the boundary layer in which viscous and conduction terms are negligible and an inner region in which the mean convection terms are negligible. The inner layer is identified as a constant heat flux layer. A similarity analysis yields universal profiles for velocity and temperature in the outer and constant heat flux layers. An asymptotic matching of these profiles in an intermediate layer (the buoyant sublayer) yields analytical expressions for the buoyant sublayer profiles. Asymptotic heat transfer and friction laws are obtained for the fully developed boundary layers. Finally, conductive and thermo-viscous sublayers characterized by a linear variation of velocity and temperature are shown to exist at the wall. All predictions are seen to be in excellent agreement with the abundant experimental data. (author)

  7. Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area

    Directory of Open Access Journals (Sweden)

    Y.-H. Ryu

    2013-02-01

    Full Text Available Modified local meteorology owing to heterogeneities in the urban–rural surface can affect urban air quality. In this study, the impacts of urban land-surface forcing on ozone air quality during a high ozone (O3 episode in the Seoul metropolitan area, South Korea, are investigated using a high-resolution chemical transport model (CMAQ. Under fair weather conditions, the temperature excess (urban heat island significantly modifies boundary layer characteristics/structures and local circulations. The modified boundary layer and local circulations result in an increase in O3 levels in the urban area of 16 ppb in the nighttime and 13 ppb in the daytime. Enhanced turbulence in the deep urban boundary layer dilutes pollutants such as NOx, and this contributes to the elevated O3 levels through the reduced O3 destruction by NO in the NOx-rich environment. The advection of O3 precursors over the mountains near Seoul by the prevailing valley-breeze circulation in the mid- to late morning results in the build-up of O3 over the mountains in conjunction with biogenic volatile organic compound (BVOC emissions there. As the prevailing local circulation in the afternoon changes to urban-breeze circulation, the O3-rich air masses over the mountains are advected over the urban area. The urban-breeze circulation exerts significant influences on not only the advection of O3 but also the chemical production of O3 under the circumstances in which both anthropogenic and biogenic (natural emissions play important roles in O3 formation. As the air masses that are characterized by low NOx and high BVOC levels and long OH chain length are advected over the urban area from the surroundings, the ozone production efficiency increases in the urban area. The relatively strong vertical mixing in the urban boundary layer embedded in the

  8. ForceFit: a code to fit classical force fields to ab-initio potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Neil Jon [Los Alamos National Laboratory; Waldher, Benjamin [WSU; Kuta, Jadwiga [WSU; Clark, Aurora [WSU; Clark, Aurora E [NON LANL

    2009-01-01

    The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under Unix and is written in C++, is an easy to use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program.

  9. Experimental investigation of moving surfaces for boundary layer and circulation control of airfoils and wings

    Science.gov (United States)

    Vets, Robert

    An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. The defining non-dimensional parameter for the system is the ratio of the surface velocity to the free stream velocity, us/Uo. Results show a general increase in lift with increasing us/Uo. The endurance parameter served as an additional metric for the system's performance. Examining the results of the endurance parameter shows general increase in endurance and lift with the moving surface activated. Peak performance in terms of increased endurance along with increased lift occurs at or slightly above us/Uo = 1. Water tunnel visualization showed a marked difference in the downwash for velocity ratios greater than 1, supporting the measured data. Reynolds numbers for this investigation were 1.9E5 and 4.3E5, relevant

  10. On the mechanics of continua with boundary energies and growing surfaces

    Science.gov (United States)

    Papastavrou, Areti; Steinmann, Paul; Kuhl, Ellen

    2013-06-01

    Many biological systems are coated by thin films for protection, selective absorption, or transmembrane transport. A typical example is the mucous membrane covering the airways, the esophagus, and the intestine. Biological surfaces typically display a distinct mechanical behavior from the bulk; in particular, they may grow at different rates. Growth, morphological instabilities, and buckling of biological surfaces have been studied intensely by approximating the surface as a layer of finite thickness; however, growth has never been attributed to the surface itself. Here, we establish a theory of continua with boundary energies and growing surfaces of zero thickness in which the surface is equipped with its own potential energy and is allowed to grow independently of the bulk. In complete analogy to the kinematic equations, the balance equations, and the constitutive equations of a growing solid body, we derive the governing equations for a growing surface. We illustrate their spatial discretization using the finite element method, and discuss their consistent algorithmic linearization. To demonstrate the conceptual differences between volume and surface growth, we simulate the constrained growth of the inner layer of a cylindrical tube. Our novel approach toward continua with growing surfaces is capable of predicting extreme growth of the inner cylindrical surface, which more than doubles its initial area. The underlying algorithmic framework is robust and stable; it allows to predict morphological changes due to surface growth during the onset of buckling and beyond. The modeling of surface growth has immediate biomedical applications in the diagnosis and treatment of asthma, gastritis, obstructive sleep apnoea, and tumor invasion. Beyond biomedical applications, the scientific understanding of growth-induced morphological instabilities and surface wrinkling has important implications in material sciences, manufacturing, and microfabrication, with applications in

  11. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  12. Novel scheme for simulating the force-free equations: Boundary conditions and the evolution of solutions towards stationarity

    Science.gov (United States)

    Carrasco, F. L.; Reula, O. A.

    2017-09-01

    Force-free electrodynamics (FFE) describes a particular regime of magnetically dominated relativistic plasmas, which arises on several astrophysical scenarios of interest such as pulsars or active galactic nuclei. In this article, we present a full 3D numerical implementation of the FFE evolution around a Kerr black hole. The novelty of our approach is three-folded: (i) We use the "multiblock" technique [1 L. Lehner, O. Reula, and M.Tiglio, Multi-block simulations in general relativity: High-order discretizations, numerical stability and applications, Classical Quantum Gravity 22, 5283 (2005)., 10.1088/0264-9381/22/24/006] to represent a domain with S2×R+ topology within a stable finite-differences scheme. (ii) We employ as evolution equations those arising from a covariant hyperbolization of the FFE system [2 F. Carrasco and O. Reula, Covariant hyperbolization of force-free electrodynamics, Phys. Rev. D 93, 085013 (2016)., 10.1103/PhysRevD.93.085013]. (iii) We implement stable and constraint-preserving boundary conditions to represent an outer region given by a uniform magnetic field aligned or misaligned respect to the symmetry axis. The construction of appropriate and consistent boundary conditions, both preserving the constraints and physically immersing the system in a uniform magnetic field, has allowed us to obtain long-term stationary solutions representing jets of astrophysical relevance. These numerical solutions are shown to be consistent with previous studies.

  13. Taylor-Couette fluid flow with force oscillation in the inner-cylinder using the immersed boundary method

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Jonatas Emmanuel; Lourenco, Marcos Antonio de Souza; Padilla, Elie Luis Martinez; Silveira Neto, Aristeu da [Federal University of Uberlandia , MG (Brazil)], e-mails: lourenco@mecanica.ufu.br, epadilla@mecanica.ufu.br, aristeus@mecanica.ufu.br; Leibsohn, Andre Martins [CENPES/Petrobras, Rio de Janeiro, RJ (Brazil)], e-mail: aleibsohn@petrobras.com

    2010-07-01

    As new challenges arise in the exploration of deep and ultra-deep water oil fields by PETROBRAS more knowledge and research are needed, so that tools could be developed to assist in the critical operations and make things practicable. In the context of the drilling process, the complexity of the fluid flow inside the riser is associated with the nature of the non-Newtonian flow, immersed solid particles, variable eccentricity and the superimposed traveling azimuthal waves on the inflow and outflow boundaries of the Taylor vortices. This work presents the numerical three-dimensional results of the following simplified fluid flows: Taylor-Couette, Taylor-Couette with varying imposed eccentricity and Taylor-Couette with forced oscillation in the inner cylinder. Using the Navier-Stokes equations, a finite volume method discretization with second order accuracy in both time and space was utilized to simulate the Newtonian, single-phase incompressible fluid flow in the three cases. The circular walls of the inner and outer cylinders are represented by the immersed boundary method, with the direct multi-forcing model. The determined results allow to evidence the flow structures in the three cases in a very qualitative way, even so in the presence of the inner cylinder oscillation. (author)

  14. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man

    2012-02-22

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  15. Impact of GCM boundary forcing on regional climate modeling of West African summer monsoon precipitation and circulation features

    Science.gov (United States)

    Kebe, Ibourahima; Sylla, Mouhamadou Bamba; Omotosho, Jerome Adebayo; Nikiema, Pinghouinde Michel; Gibba, Peter; Giorgi, Filippo

    2017-03-01

    In this study, the latest version of the International Centre for Theoretical Physics Regional Climate Model (RegCM4) driven by three CMIP5 Global Climate Models (GCMs) is used at 25 km grid spacing over West Africa to investigate the impact of lateral boundary forcings on the simulation of monsoon precipitation and its relationship with regional circulation features. We find that the RegCM4 experiments along with their multimodel ensemble generally reproduce the location of the main precipitation characteristics over the region and improve upon the corresponding driving GCMs. However, the provision of different forcing boundary conditions leads to substantially different precipitation magnitudes and spatial patterns. For instance, while RegCM4 nested within GFDL-ESM-2M and HadGEM2-ES exhibits some underestimations of precipitation and an excessively narrow Intertropical Convergence Zone, the MPI-ESM-MR driven run produces precipitation spatial distribution and magnitudes more similar to observations. Such a superior performance originates from a much better simulation of the interactions between baroclinicity, temperature gradient and African Easterly Jet along with an improved connection between the Isentropic Potential Vorticity, its gradient and the African Easterly Waves dynamics. We conclude that a good performing GCM in terms of monsoon dynamical features (in this case MPI-ESM-MR) is needed to drive RCMs in order to achieve a better representation of the West Africa summer monsoon precipitation.

  16. Relation between the Atmospheric Boundary Layer and Impact Factors under Severe Surface Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Yinhuan Ao

    2017-01-01

    Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.

  17. A comparative analysis of strategic approaches for Information Technology (IT) for Commander Naval Surface Forces

    OpenAIRE

    Johnson, Devine R.

    2010-01-01

    Approved for public release; distribution is unlimited As the lead organization for all United States Naval Surface Forces, Commander Naval Surface Forces (CNSF) is committed to providing operational commanders with well-trained, highly effective, and technologically relevant surface forces. Aligning itself with the Department of the Navy's Information Management (IM) and Information Technology (IT) strategic mission objectives, CNSF is dedicated to delivering secure, interoperable, and in...

  18. Ground Radiometric Method as a Tool for Determining the Surface Boundary of a Buried Bauxitic Karst

    Directory of Open Access Journals (Sweden)

    Kamal Kareem Ali

    2011-12-01

    Full Text Available Forty two ground radiometric measurements along nine traverses within a rectangular network area were taken across a bauxitic karst within the Ubaid Formation (Lower Jurassic in the Western Desert of Iraq. A 4-Channel Gamma Ray Spectrometer (GAD-6 with sodium iodide NaI (Tl crystal (GSP-4S was used in the field to measure the total radioactivity of the surface soil. Soil samples collected from the surface at each measurement point and core samples collected from a test well penetrating the karst were analyzed by Gamma ray spectrometer. The main objective of this study was to detect the hidden bauxitic karst and determine its surface boundary. The radioactivity on the surface of the karst was ranging between 60 and 80 count per second (c/s, while the background radioactivity of the Ubaid Formation, which hosts the karst, was ranging between 100 and150 c/s. Chemical weathering, especially dissolution and leaching moved uranium (238U and thorium(232Th from the overburden downward. Accordingly, these elements have been adsorbed on the surface of clay minerals and bauxite buried at a depth of about 5m causing enrichment with radioactivity. The leached overburden lack radioelements, so its radioactivity was less than background radioactivity level. The gamma ray spectroanalysis showed that the radioactivity of 238U and 232Th in the overburden was 0.5 and 3 Bq/Kg, whereas, in the bauxite and flint clay bed, it was 240 and 160 Bq/Kg respectively. Based on the radioactivity anomaly contrast on the surface, an isorad map was plotted and the karst diameter which represents low anomaly was determined to be ranging from 150 to 200m. The current study demonstrates that the ground radiometric method is quite useful for detecting the bauxitic karst and inferring its surface boundaries.

  19. Analytical Solution of Forced-Convective Boundary-Layer Flow over a Flat Plate

    DEFF Research Database (Denmark)

    Mirgolbabaei, H.; Barari, Amin; Ibsen, Lars Bo

    2010-01-01

    In this letter, the problem of forced convection heat transfer over a horizontal flat plate is investigated by employing the Adomian Decomposition Method (ADM). The series solution of the nonlinear differential equations governing on the problem is developed. Comparison between results obtained...

  20. The OSMOSIS Model of the Wind-Driven Ocean Surface Boundary Layer.

    Science.gov (United States)

    Grant, A. L.; Belcher, S. E.; Pearson, B.; Polton, J.

    2016-02-01

    In the wind-driven ocean surface boundary layer (OSBL) the vertical velocity variance is observed to be larger than in shear driven turbulence. The observed variances are consistent with the results from large-eddy simulations (LES) which parametrize the interaction between the Stokes drift of the surface waves and vorticity. The resulting flow is known as Langmuir turbulence and the close connection between winds and waves suggests that Langmuir turbulence is common in the OSBL. This poster describes a model of the OSBL, developed as part of the OSMOSIS project, in which mixing is by Langmuir turbulence. The transports of momentum, heat and salinity are represented by a first-order closure scheme with flux-gradient relationships that include non-gradient contributions. In this the model is similar to the KPP scheme which uses flux-gradient relationships with non-gradient contributions to represent scalar transports. The flux-gradient relationships are derived from an analysis of the turbulent flux budgets of momentum and scalars (heat) obtained from LES. The non-gradient terms represent the contributions to the turbulent flux by the terms in the turbulent flux budget that represent the effects of the Stokes shear, buoyancy and turbulent transport. The eddy viscosity, diffusivities and non-gradient components are represented by similarity profiles. The depth of the boundary layer is determined by a prognostic equation, which represents the time variation of the boundary layer depth in both unstable and stable conditions. It is based on the equation for the depth integrated potential energy combined with a parametrization of the turbulent kinetic energy budget. The use of the prognostic equation allows the effects of Langmuir turbulence on boundary layer depth to be explicitly represented in the model. Comparison with the results from LES of the diurnal cycle of the OSBL are presented as a test for the model.

  1. Surface Force of Polystyrene Latex Particles in Aqueous Anionic Amphipathic Solutions

    Science.gov (United States)

    Fujii, Masatoshi; Hamochi, Nagisa; Kato, Tadashi

    2008-07-01

    The surface forces between a polystyrene particle (negatively charged surface) of latex and a flat silica plate for several concentrations of aqueous solution of anionic amphipathic molecules (sodium dodecylsulfonate) were investigated using an atomic force microscope (AFM) colloidal probe method. In the lower concentration region approximately 1-2 mM, the surface force showed general repulsive profiles according to normal Derjaguin-Landau-Verwey-Overbeek (DLVO) theory between the surfaces having the same sign of surface charge under an electrolyte aqueous solution. While in the higher concentration region at less than the critical micelle concentration (cmc), the surface force showed attractive profiles. Findings suggest that the anionic amphipathic molecules adsorbed to the polystyrene particle in the higher concentration region and induced changes in the surface morphology and properties of the surface region. The change in the surface morphology is believed to be one of the origins of the attractive interaction.

  2. Robust numerical methods for boundary-layer equations for a model problem of flow over a symmetric curved surface

    NARCIS (Netherlands)

    A.R. Ansari; B. Hossain; B. Koren (Barry); G.I. Shishkin (Gregori)

    2007-01-01

    textabstractWe investigate the model problem of flow of a viscous incompressible fluid past a symmetric curved surface when the flow is parallel to its axis. This problem is known to exhibit boundary layers. Also the problem does not have solutions in closed form, it is modelled by boundary-layer

  3. Modeling and experiments of the adhesion force distribution between particles and a surface.

    Science.gov (United States)

    You, Siming; Wan, Man Pun

    2014-06-17

    Due to the existence of surface roughness in real surfaces, the adhesion force between particles and the surface where the particles are deposited exhibits certain statistical distributions. Despite the importance of adhesion force distribution in a variety of applications, the current understanding of modeling adhesion force distribution is still limited. In this work, an adhesion force distribution model based on integrating the root-mean-square (RMS) roughness distribution (i.e., the variation of RMS roughness on the surface in terms of location) into recently proposed mean adhesion force models was proposed. The integration was accomplished by statistical analysis and Monte Carlo simulation. A series of centrifuge experiments were conducted to measure the adhesion force distributions between polystyrene particles (146.1 ± 1.99 μm) and various substrates (stainless steel, aluminum and plastic, respectively). The proposed model was validated against the measured adhesion force distributions from this work and another previous study. Based on the proposed model, the effect of RMS roughness distribution on the adhesion force distribution of particles on a rough surface was explored, showing that both the median and standard deviation of adhesion force distribution could be affected by the RMS roughness distribution. The proposed model could predict both van der Waals force and capillary force distributions and consider the multiscale roughness feature, greatly extending the current capability of adhesion force distribution prediction.

  4. Stick-slip control in nanoscale boundary lubrication by surface wettability.

    Science.gov (United States)

    Chen, Wei; Foster, Adam S; Alava, Mikko J; Laurson, Lasse

    2015-03-06

    We study the effect of atomic-scale surface-lubricant interactions on nanoscale boundary-lubricated friction by considering two example surfaces-hydrophilic mica and hydrophobic graphene-confining thin layers of water in molecular dynamics simulations. We observe stick-slip dynamics for thin water films confined by mica sheets, involving periodic breaking-reforming transitions of atomic-scale capillary water bridges formed around the potassium ions of mica. However, only smooth sliding without stick-slip events is observed for water confined by graphene, as well as for thicker water layers confined by mica. Thus, our results illustrate how atomic-scale details affect the wettability of the confining surfaces and consequently control the presence or absence of stick-slip dynamics in nanoscale friction.

  5. Sensitivity of Tropical-Cyclone Models to the Surface Drag Coefficient in Different Boundary-Layer Schemes

    Science.gov (United States)

    2014-04-01

    primarily latent heat) must feed back to affect the spatial distribution of diabatic heating and the aggregate effects of buoyancy associated with...as a result, the maximum tangential wind speed occurs within, but near the top of, the boundary layer. The diabatic heating rate associated with deep...this equation is primarily the radial gradient of diabatic heating. However, there is an additional forcing at the lower boundary (i.e. the top of the

  6. Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland

    Science.gov (United States)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1994-01-01

    Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat

  7. Boundary Lubrication of PEO-PPO-PEO Triblock Copolymer Physisorbed on Polypropylene, Polyethylene, and Cellulose Surfaces

    KAUST Repository

    Li, Yangyang

    2012-02-22

    In situ lateral force microscopy (LFM) and X-ray photoelectron spectroscopy (XPS) were used to probe the lubrication behavior of an aqueous solution of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) (PEO-PPO-PEO) symmetric triblock copolymer on thin films of polypropylene (PP), polyethylene (PE), and cellulose. LFM experiments were carried out while the substrates were immersed in water and in solutions of the copolymer. The friction coefficient on PP and PE was reduced after adsorption from the PEO-PPO-PEO aqueous solution while the opposite effect was observed for cellulose surfaces. A critical normal loading force, at which the friction coefficient of the lubricated and unlubricated surfaces is equal, was identified and related to the affinity of the polymer with the substrate. Further experiments were performed to mimic practical operations involving lubricant addition during manufacturing and postprocessing removal. XPS was used to verify the presence of the lubricant on the polymeric substrates and to evaluate its removal by water washing. The lubricant layer was easily removed by water from the PP and cellulose surfaces while a durable layer was found on PE. The XPS results were in agreement with the highest critical normal loading force measured for PE (52 nN for PE in contrast to a minimum of 10 nN for cellulose). While several reports exist on lubrication on hard surfaces, friction behavior on soft surfaces is still not well documented as the substrates usually deform under loading pressure. Therefore, we also propose a simple lubrication model for PP, PE, and cellulose and the use of critical normal loading force as a parameter to predict lubricity and durability of adsorbed nonionic block copolymers. © 2012 American Chemical Society.

  8. MHD forced and free convection boundary layer flow near the leading edge

    International Nuclear Information System (INIS)

    Hossain, M.A.; Ahmed, M.

    1988-07-01

    Magnetohydrodynamic forced and free convection flow of an electrically conducting viscous incompressible fluid past a vertical flat plate with uniform heat flux in the presence of a magnetic field acting normal to the plate that moves with the fluid has been studied near the leading edge of the plate. The coupled non-linear equations are solved by the method of superposition for the values of the Prandtl number ranges from 0.01 to 10.0. The velocity and the temperature profiles are presented graphically and the values of the wall shear-stress as well as the heat transfer rate are presented in tabular form showing the effect of the buoyancy force and the applied magnetic field. To show the accuracy of the present method some typical values are compared with the available one. (author). 17 refs, 3 figs, 2 tabs

  9. Role of different Skyrme forces and surface corrections in exotic ...

    Indian Academy of Sciences (India)

    Skyrme forces. Our study reveals that different Skyrme forces do not alter the transfer structure of fractional yields significantly. The cluster decay half-lives of different clusters lie within ±10% for preformed cluster models (PCM) and ±15% for unified fission models (UFM). Keywords. Heavy-ion reactions; cluster decay.

  10. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions

    Science.gov (United States)

    Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru

    2018-02-01

    A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.

  11. Experimental Investigation of Compliant Wall Surface Deformation in Turbulent Boundary Layer

    Science.gov (United States)

    Wang, Jin; Agarwal, Karuna; Katz, Joseph

    2017-11-01

    On-going research integrates Tomographic PIV (TPIV) with Mach-Zehnder Interferometry (MZI) to measure the correlations between deformation of a compliant wall and a turbulent channel flow or a boundary layer. Aiming to extend the scope to two-way coupling, in the present experiment the wall properties have been designed, based on a theoretical analysis, to increase the amplitude of deformation to several μm, achieving the same order of magnitude as the boundary layer wall unit (5-10 μm). It requires higher speeds and a softer surface that has a Young's modulus of 0.1MPa (vs. 1Mpa before), as well as proper thickness (5 mm) that maximize the wall response to excitation at scales that fall within the temporal and spatial resolution of the instruments. The experiments are performed in a water tunnel extension to the JHU refractive index matched facility. The transparent compliant surface is made of PDMS molded on the tunnel window, and measurements are performed at friction velocity Reynolds numbers in the 1000-7000 range. MZI measures the 2D surface deformation as several magnifications. The time-resolved 3D pressure distribution is determined by calculating to spatial distribution of material acceleration from the TPIV data and integrating it using a GPU-based, parallel-line, omni-directional integration method. ONR.

  12. Grain boundaries at the surface of consolidated MgO nanocrystals and acid-base functionality.

    Science.gov (United States)

    Vingurt, Dima; Fuks, David; Landau, Miron V; Vidruk, Roxana; Herskowitz, Moti

    2013-09-21

    The increase of the surface basicity-acidity of MgO material by factors of 1.8-3.0 due to consolidation of its nanocrystals was demonstrated by the indicator titration. It was shown that the parallel increase of surface acidity and basicity is attributed to the formation of grain boundaries (GB) after MgO aerogel densification. A simple model predicting the increase of surface acidity-basicity of MgO that correlates with the results of direct measurements was proposed. The model is based on the study of the fine atomic structure at GB surface areas in consolidated MgO nanocrystals in the framework of Density Functional Theory. It is found that the displacements of coordinatively unsaturated surface ions near the GB are significant at the distances ~3-4 atomic layers from the geometrical contact plane between nanocrystals. The detailed analysis of atomic positions inside GB demonstrated the coordination deficiency of surface atoms at the GB areas leading to the formation of stretched bonds and to creation of low coordinated surface ions due to splitting of coordination numbers of surface atoms belonging to GB areas. Density of states for electrons shows the existence of additional states in the band gap close to the bottom of the conduction band. The adsorption energy of CO2 molecules atop oxygen atoms exposed at surface GB areas is of the same order of magnitude as that reported for oxygen atoms at crystallographic edges and corners of MgO crystals. It provides additional options for bonding of molecules at the surface of nanocrystalline MgO increasing the adsorption capacity and catalytic activity.

  13. Characterization of the Surface Morphology of Bacillus Spores by Atomic Force Microscopy

    National Research Council Canada - National Science Library

    Zolock, Ruth

    2002-01-01

    The surface morphology of Bacillus spores was resolved by atomic force microscopy in order to determine if characteristic surface features could be used to distinguish between closely related species...

  14. Pyrolysis and Boundary Layer Combustion of a Non-Charring Solid Plate Under Forced Flow

    National Research Council Canada - National Science Library

    Ananth, Ramagopal

    2003-01-01

    Solutions of Navier-Stokes (NS) equations were obtained for burning rate Nu and temperature distributions for a flat PMMA plate using an iterative method to impose steady-state, pyrolysis kinetics at the surface...

  15. On the dynamics of ferroelastic domain boundaries under thermal and elastic forcing

    Science.gov (United States)

    Salje, E. K. H.

    2010-09-01

    Experimental observations and some theoretical models for the propagation of ferroelastic domain boundaries and phase fronts are reviewed. While the static configurations of domains and domain walls are reasonably well understood in ferroelastics (and specifically in shape memory alloys), one finds that the dynamic features have been less thoroughly investigated. In most cases, a smooth movement of domain walls in the ballistic limit is observed, accelerated propagation seems not to exist in the time and space limits of most experiments. Pattern formation occurs when the local order parameter is conserved over a length scale which is different from the ferroelastic correlation length. Currently, only few spiky elastic measurements and domain wall jamming in ferroelastics have been reported. Emphasis is given to disordered systems in which the occurrence of 'jerky elasticity' can be expected.

  16. Dependence of capillary forces on relative humidity and the surface properties of femtosecond laser micromachined titanium.

    Science.gov (United States)

    Lehr, Jorge; Kietzig, Anne-Marie

    2015-06-15

    Capillary forces were measured with colloidal atomic force microscopy at different levels of relative humidity on femtosecond laser micromachined titanium surfaces. After laser machining at different intensity levels, the titanium surfaces show a nanoscale ripple topology or microscopic bumpy structures. Different machining environments were chosen to influence the surface chemistry in addition to topology: while machining in pure oxygen and water resulted in surfaces consisting of TiO2, a composite surface of TiO2 and TiN was obtained after machining in pure nitrogen. All samples were subsequently exposed to pure oxygen, carbon dioxide or water, and showed different levels of wettability and capillary force. We have introduced the concept of humidity sensitivity as the relative increase of the capillary force with respect to the measured force at 0% humidity. We report that samples with a nanoscale ripple topology machined in pure oxygen exhibit the lowest level of capillary force and the lowest sensitivity towards humidity in the environment. Surfaces with low sensitivity towards changes of the relative humidity are good candidates for technical applications, where capillary forces have to be controlled. This study contributes to the development of such surfaces, to a better understanding of how capillary bridges are formed on rough surfaces and ultimately to the exploration of the relationship between surface wettability and capillary forces. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface

    Directory of Open Access Journals (Sweden)

    Nina Svensson

    2017-01-01

    Full Text Available Streaky structures of narrow (8-9 km high wind belts have been observed from SAR images above the Baltic Sea during stably stratified conditions with offshore winds from the southern parts of Sweden. Case studies using the WRF model and in situ aircraft observations indicate that the streaks originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30–80 km off the coast, in agreement with the streaks observed by the SAR images. During evening when the convective conditions over land diminish, the streaky structures over the sea are still seen in the horizontal wind field; however, the vertical component is close to zero. Thus advected feature from a land surface can affect the wind field considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered during spring in coastal regions at high latitudes.

  18. Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer

    Science.gov (United States)

    Gupta, Shishir; Sultana, Rehena; Kundu, Santimoy

    2015-02-01

    The present work illustrates a theoretical study on the effect of rigid boundary for the propagation of torsional surface wave in an inhomogeneous crustal layer over an inhomogeneous half space. It is believed that the inhomogeneity in the half space arises due to hyperbolic variation in shear modulus and density whereas the layer has linear variation in shear modulus and density. The dispersion equation has been obtained in a closed form by using Whittaker's function, which shows the variation of phase velocity with corresponding wave number. Numerical results show the dispersion equations, which are discussed and presented by means of graphs. Results in some special cases are also compared with existing solutions available from analytical methods, which show a close resemblance. It is also observed that, for a layer over a homogeneous half space, the velocity of torsional waves does not coincide with that of Love waves in the presence of the rigid boundary, whereas it does at the free boundary. Graphical user interface (GUI) software has been developed using MATLAB 7.5 to generalize the effect of various parameter discussed.

  19. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyojin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-11-07

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. In conclusion, the poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  20. Climate response to orbital forcing across the Oligocene-Miocene boundary.

    Science.gov (United States)

    Zachos, J C; Shackleton, N J; Revenaugh, J S; Pälike, H; Flower, B P

    2001-04-13

    Spectral analyses of an uninterrupted 5.5-million-year (My)-long chronology of late Oligocene-early Miocene climate and ocean carbon chemistry from two deep-sea cores recovered in the western equatorial Atlantic reveal variance concentrated at all Milankovitch frequencies. Exceptional spectral power in climate is recorded at the 406-thousand-year (ky) period eccentricity band over a 3.4-million-year period [20 to 23.4 My ago (Ma)] as well as in the 125- and 95-ky bands over a 1.3-million-year period (21.7 to 23.0 Ma) of suspected low greenhouse gas levels. Moreover, a major transient glaciation at the epoch boundary ( approximately 23 Ma), Mi-1, corresponds with a rare orbital congruence involving obliquity and eccentricity. The anomaly, which consists of low-amplitude variance in obliquity (a node) and a minimum in eccentricity, results in an extended period ( approximately 200 ky) of low seasonality orbits favorable to ice-sheet expansion on Antarctica.

  1. The impact of open boundary forcing on forecasting the East Australian Current using ensemble data assimilation

    Science.gov (United States)

    Sandery, Paul A.; Sakov, Pavel; Majewski, Leon

    2014-12-01

    We investigate the performance of an eddy resolving regional ocean forecasting system of the East Australian Current (EAC) for both ensemble optimal interpolation (EnOI) and ensemble Kalman filter (EnKF) with a focus on open boundary model nesting solutions. The performance of nesting into a global re-analysis; nesting into the system's own analysis; and nesting into a free model is quantified in terms of forecast innovation error. Nesting in the global reanalysis is found to yield the best results. This is closely followed by the system that nests inside its own analysis, which seems to represent a viable practical option in the absence of a suitable analysis to nest within. Nesting into a global reanalysis without data assimilation and nesting into an unconstrained model were both found to be unable to constrain the mesoscale circulation at all times. We also find that for a specific interior area of the domain where the EAC separation takes place, there is a mixture of results for all the systems investigated here and that, whilst the application of EnKF generates the best results overall, there are still times when not even this method is able to constrain the circulation in this region with the available observations.

  2. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  3. Spatial characteristics of secondary flow in a turbulent boundary layer over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulations of turbulent boundary layers (TBLs) over spanwise heterogeneous surface roughness are performed to investigate the characteristics of secondary flow. The longitudinal surface roughness, which features lateral change in bed elevation, is described by immersed boundary method. The Reynolds number based on the momentum thickness is varied in the range of Reθ = 300-900. As the TBLs over the roughness elements spatially develop in the streamwise direction, a secondary flow emerges in a form of counter-rotating vortex pair. As the spanwise spacing between the roughness elements and roughness width vary, it is shown that the size of the secondary flow is determined by the valley width between the roughness elements. In addition, the strength of the secondary flow is mostly affected by the spanwise distance between the cores of the secondary flow. Analysis of the Reynolds-averaged turbulent kinetic energy transport equation reveals that the energy redistribution terms in the TBLs over-the ridge type roughness play an important role to derive low-momentum pathways with upward motion over the roughness crest, contrary to the previous observation with the strip-type roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  4. The impact of the competitive adsorption of ions at surface sites on surface free energies and surface forces

    Science.gov (United States)

    Parsons, Drew F.; Salis, Andrea

    2015-04-01

    The relationship between surface charge and surface potential at the solid-liquid interface is often determined by a charge regulation process, the chemisorption of a potential determining ion such as H+. A subtle ion-specific effect can be observed when other ions compete with the primary potential determining ion to bind to a surface site. Site competition may involve alternative ions competing for a first binding site, e.g., metals ions competing with H+ to bind to a negatively charged oxide or carboxyl site. Second-binding sites with site competition may also be found, including amphoteric OH2+ sites, or anion binding to amine groups. In this work, a general theoretical model is developed to describe the competitive adsorption of ions at surface sites. Applied to the calculation of forces, the theory predicts a 20% increase in repulsion between titania surfaces in 1 mM NaCl, and a 25% reduction in repulsion between silica surfaces in 0.1M NaCl compared to calculations neglecting ion site competition.

  5. A methodology to determine boundary conditions from forced convection experiments using liquid crystal thermography

    Science.gov (United States)

    Jakkareddy, Pradeep S.; Balaji, C.

    2017-02-01

    This paper reports the results of an experimental study to estimate the heat flux and convective heat transfer coefficient using liquid crystal thermography and Bayesian inference in a heat generating sphere, enclosed in a cubical Teflon block. The geometry considered for the experiments comprises a heater inserted in a hollow hemispherical aluminium ball, resulting in a volumetric heat generation source that is placed at the center of the Teflon block. Calibrated thermochromic liquid crystal sheets are used to capture the temperature distribution at the front face of the Teflon block. The forward model is the three dimensional conduction equation which is solved within the Teflon block to obtain steady state temperatures, using COMSOL. Match up experiments are carried out for various velocities by minimizing the residual between TLC and simulated temperatures for every assumed loss coefficient, to obtain a correlation of average Nusselt number against Reynolds number. This is used for prescribing the boundary condition for the solution to the forward model. A surrogate model obtained by artificial neural network built upon the data from COMSOL simulations is used to drive a Markov Chain Monte Carlo based Metropolis Hastings algorithm to generate the samples. Bayesian inference is adopted to solve the inverse problem for determination of heat flux and heat transfer coefficient from the measured temperature field. Point estimates of the posterior like the mean, maximum a posteriori and standard deviation of the retrieved heat flux and convective heat transfer coefficient are reported. Additionally the effect of number of samples on the performance of the estimation process has been investigated.

  6. Boundary|Time|Surface: Art and Geology Meet in Gros Morne National Park, NL, Canada

    Science.gov (United States)

    Lancaster, Sydney; Waldron, John

    2015-04-01

    Environmental Art works range in scope from major permanent interventions in the landscape to less intrusive, more ephemeral site-specific installations constructed of materials from the local environment. Despite this range of intervention, however, these works all share in a tradition of art making that situates the artwork in direct response to the surrounding landscape. Andy Goldsworthy and Richard Long, for example, both favour methods that combine elements of both sculpture and performance in the creation of non-permanent interventions in the landscape, and both rely upon photographic, text-based, or video documentation as the only lasting indication of the works' existence. Similarly, Earth Scientists are responsible for interventions in the landscape, both physical and conceptual. For example, in Earth science, the periods of the geologic timescale - Cambrian, Ordovician, Silurian, etc. - were established by 19th century pioneers of geology at a time when they were believed to represent natural chapters in Earth history. Since the mid-20th century, stratigraphers have attempted to resolve ambiguities in the original definitions by defining stratotypes: sections of continuously deposited strata where a single horizon is chosen as a boundary. One such international stratotype, marking the Cambrian-Ordovician boundary, is defined at Green Point in Gros Morne National Park, Newfoundland. Boundary|Time|Surface was an ephemeral sculptural installation work constructed in June 2014. The main installation work was a fence of 52 vertical driftwood poles, 2-3 m tall, positioned precisely along the boundary stratotype horizon at Green Point in Newfoundland. The fence extended across a 150 m wave-cut platform from sea cliffs to the low-water mark, separating Ordovician from Cambrian strata. The installation was constructed by hand (with volunteer assistance) on June 22, as the wave-cut platform was exposed by the falling tide. During the remainder of the tidal cycle

  7. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  8. Time-resolved PIV of a turbulent boundary layer over a spanwise-oscillating surface

    Science.gov (United States)

    Gouder, Kevin; Morrison, Jonathan

    2012-11-01

    This work reports measurements of a turbulent boundary layer at Reθ ~ 2500, over a resonant spanwise-oscillating surface driven by a linear electromagnetic motor. Time-resolved PIV measurements of velocity are presented and supplemented by hot-wire measurements of velocity and direct drag measurements of friction drag using a drag balance. A maximum of 16% surface friction reduction, as calculated by the diminution of the wall-normal streamwise velocity gradient was obtained. The PIV laser beam was parallel to the plane of the oscillating surface at a height of y+ ~ 15, hence, top-down views of the near-wall turbulence activity and the effect of the surface oscillation on its evolution were obtained. It has been shown that the imposition of a spanwise Stokes-like layer at a non-dimensional period of T+ =Tuτ2 / ν ~ 100 at peak-peak oscillation amplitudes equal to or larger than the mean streak spacing enabled the direct manipulation of the quasi-streamwise near-wall structures and caused fundamental changes in their evolution leading to reductions, for example, in the near-wall values of the mean-square of the streamwise fluctuating velocity component. This work was supported by Qinetiq, Airbus and EPSRC.

  9. Forced heat loss from body surface reduces heat flow to body surface.

    Science.gov (United States)

    Berman, A

    2010-01-01

    Heat stress is commonly relieved by forced evaporation from body surfaces. The mode of heat stress relief by heat extraction from the periphery is not clear, although it reduces rectal temperature. Radiant surface temperature (Ts) of the right half of the body surface was examined by thermovision in 4 lactating Holstein cows (30 kg of milk/d) during 7 repeated cycles of forced evaporation created by 30s of wetting followed by 4.5 min of forced airflow. Wetting was performed by an array of sprinklers (0.76 m(3)/h), and forced airflow (>3m/s velocity) over the right side of the body surface was produced by fans mounted at a height of 3m above the ground. Sprinkling wetted the hind legs, rump, and chest, but not the lower abdomen side, front legs, or neck. The animals were maintained in shade at an air temperature of 28 degrees C and relative humidity of 47%. Coat thickness was 1 to 2mm, so Ts closely represented skin temperature. Mean Ts of 5 x 20cm areas on the upper and lower hind and front legs, rump, chest, abdomen side, and neck were obtained by converting to temperature their respective gray intensity in single frames obtained at 10-s intervals. Little change occurred in Ts during the first wetting (0.1+/-0.6 degrees C), but it decreased rapidly thereafter (1.6+/-0.6 degrees C in the fifth wetting). The Ts also decreased, to a smaller extent, in areas that remained dry (0.7+/-1.0 degrees C). In all body sites, a plateau in Ts was reached by 2 min after wetting. The difference between dry and wet areas in the first cooling cycle was approximately 1.2 degrees C. The Ts of different body areas decreased during consecutive cooling cycles and reached a plateau by 3 cooling cycles in dry sites (front leg, neck, abdomen side), by 5 cooling cycles in the hind leg, and 7 cooling cycles in the rump and chest. The reduction in mean Ts produced by 7 cycles was 4.0 to 6.0 degrees C in wetted areas and 1.6 to 3.7 degrees C in sites that were not wetted. Initial rectal

  10. Radiative forcing by changes in surface albedo caused by changes in vegetation

    OpenAIRE

    Kvalevåg, Maria Malene

    2005-01-01

    The human influence on vegetation causes changes in the surface reflective properties. By using MODIS land cover and MODIS surface albedo products, an estimation of radiative forcing due to surface albedo changes caused by vegetation changes is performed. A potential natural vegetation data set is used to compute radiative forcing estimates from pre agricultural times to present. A combination between MODIS blacksky and whitesky albedo and diffuse and direct radiation at gr...

  11. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, N.P.; Norde, W.; Meil, H.C.; Busscher, H.J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F-prev) and to detach adhering bacteria (F-det) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  12. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, Niels P.; Norde, Willem; van der Mei, Henny C.; Busscher, Henk J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F(prev)) and to detach adhering bacteria (F(det)) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  13. Forces and friction between hydrophilic and hydrophobic surfaces: influence of oleate species.

    Science.gov (United States)

    Theander, Katarina; Pugh, Robert J; Rutland, Mark W

    2007-09-15

    The atomic force microscope has been used to investigate normal surface forces and lateral friction forces at different concentrations of sodium oleate, a frequently used fatty acid in the deinking process. The measurements have been performed using the colloidal probe technique with bead materials consisting of cellulose and silica. Cellulose was used together with a printing ink alkyd resin and mica, whereas silica was used with a hydrophobized silica wafer. The cellulose-alkyd resin system showed stronger double layer repulsion and the friction was reduced with increasing surfactant concentration. The adhesive interaction disappeared immediately on addition of sodium oleate. The normal surface forces for cellulose-mica indicated no apparent adsorption of the sodium oleate however, the friction coefficient increased on addition of sodium oleate, which we ascribe to some limited adsorption increasing the effective surface roughness. The silica-hydrophobic silica system showed a completely different surface force behavior at the different concentrations. An attractive hydrophobic interaction was evident since the surfaces jumped into adhesive contact at a longer distance than the van der Waals forces would predict. The strong adhesion was reflected in the friction forces as a nonlinear relationship between load and friction and a large friction response at zero applied load. Indirect evidence of adsorption to the hydrophilic silica surface was also observed in this case, and QCM studies were performed to confirm the adsorption of material to both surfaces.

  14. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    Science.gov (United States)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  15. Linking Dynamics of the Near-surface Flow to Deeper Boundary Layer Forcing in the Nocturnal Boundary Layer

    Science.gov (United States)

    2012-06-01

    dimensional vortex but an overturning, ellipsoidal parcel of air). Turbulent eddies exist on numerous scales simultaneously. The concept of cascading ...Decomposition (MRD) technique. This method, based on the Haar transform, is naturally suited to turbulent flux observations (Howell and Mahrt, 1997, Katul...and Mahrt, 1997). 29 • The MRD technique uses an algorithm based on the Fast Haar Transform (FHT) which requires on the order of N arithmetic

  16. Friction and Wear Management Using Solvent Partitioning of Hydrophilic-Surface-Interactive Chemicals Contained in Boundary Layer-Targeted Emulsions

    Science.gov (United States)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)

    2015-01-01

    Lubrication additives of the current invention require formation of emulsions in base lubricants, created with an aqueous salt solution plus a single-phase compound such that partitioning within the resulting emulsion provides thermodynamically targeted compounds for boundary layer organization thus establishing anti-friction and/or anti-wear. The single-phase compound is termed "boundary layer organizer", abbreviated BLO. These emulsion-contained compounds energetically favor association with tribologic surfaces in accord with the Second Law of Thermodynamics, and will organize boundary layers on those surfaces in ways specific to the chemistry of the salt and BLO additives. In this way friction modifications may be provided by BLOs targeted to boundary layers via emulsions within lubricating fluids, wherein those lubricating fluids may be water-based or oil-based.

  17. Atomic force microscopy characterization of the surface wettability of natural fibres

    International Nuclear Information System (INIS)

    Pietak, Alexis; Korte, Sandra; Tan, Emelyn; Downard, Alison; Staiger, Mark P.

    2007-01-01

    Natural fibres represent a readily available source of ecologically friendly and inexpensive reinforcement in composites with degradable thermoplastics, however chemical treatments of fibres are required to prepare feasible composites. It is desirable to characterize the surface wettability of fibres after chemical treatment as the polarity of cellulose-based fibres influences compatibility with a polymer matrix. Assessment of the surface wettability of natural fibres using conventional methods presents a challenge as the surfaces are morphologically and chemically heterogeneous, rough, and can be strongly wicking. In this work it is shown that under atmospheric conditions the adhesion force between an atomic force microscopy (AFM) tip and the fibre surface can estimate the water contact angle and surface wettability of the fibre. AFM adhesion force measurements are suitable for the more difficult surfaces of natural fibres and in addition allow for correlations between microstructural features and surface wettability characteristics

  18. Investigation of graphite composite anodes surfaces by atomic force microscopy and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hirasawa, Karen Akemi; Nishioka, Keiko; Sato, Tomohiro; Yamaguchi, Shoji; Mori, Shoichiro [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan)

    1997-11-01

    The surface of a synthetic graphite (KS-44) and polyvinylidene difluoride binder (PVDF) anode for lithium-ion secondary batteries is imaged using atomic force microscopy (AFM) and several related scanning probe microscope (SPM) instruments including: dynamic force microscopy (DFM), friction force microscopy (FFM), laterally-modulated friction force microscopy (LM-FFM), visco-elasticity atomic force microscopy (VE-AFM), and AFM/simultaneous current measurement mode (SCM). DFM is found to be an exceptional mode for topographic imaging while FFM results in the clearest contrast distinction between PVDF binder and KS-44 graphite regions. (orig.)

  19. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.

  20. On the effectiveness of surface assimilation in probabilistic nowcasts of planetary boundary layer profiles

    Science.gov (United States)

    Rostkier-Edelstein, Dorita; Hacker, Joshua

    2013-04-01

    Surface observations comprise a wide, non-expensive and reliable source of information about the state of the near-surface planetary boundary layer (PBL). Operational data assimilation systems have encountered several difficulties in effectively assimilating them, among others due to their local-scale representativeness, the transient coupling between the surface and the atmosphere aloft and the balance constraints usually used. A long-term goal of this work is to find an efficient system for probabilistic PBL nowcasting that can be employed wherever surface observations are present. Earlier work showed that surface observations can be an important source of information with a single column model (SCM) and an ensemble filter (EF). Here we extend that work to quantify the probabilistic skill of ensemble SCM predictions with a model including added complexity. We adopt a factor separation analysis to quantify the contribution of surface assimilation relative to that of selected model components (parameterized radiation and externally imposed horizontal advection) to the probabilistic skill of the system, and of any beneficial or detrimental interactions between them. To assess the real utility of the flow-dependent covariances estimated with the EF and of the SCM of the PBL we compare the skill of the SCM/EF system to that of a reference one based on climatological covariances and a 30-min persistence model. It consists of a dressing technique, whereby a deterministic 3D mesoscale forecast (e.g. from WRF model) is adjusted and dressed with uncertainty using a seasonal sample of mesoscale forecasts and surface forecast errors. Results show that assimilation of surface observations can improve deterministic and probabilistic profile predictions more significantly than major model improvements. Flow-dependent covariances estimated with the SCM/EF show clear advantage over the use of climatological covariances when the flow is characterized by wide variability, when

  1. Surface alteration and physical properties of glass from the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Barkatt, A.; Sang, J.C.; Thorpe, A.N.; Senftle, F.E.; Talmy, I.G.; Norr, M.K.; Mazer, J.J.; Izett, G.; Sigurdsson, Haraldur

    1994-01-01

    The scalloped surface feature on Cretaceous-Tertiary boundary glass is often explained as being due to terrestrial aqueous leaching. Leaching of man-made glass results in a reduction in density of the glass. Also, Fe, because of its relative insolubility, is concentrated by the leaching process. Thus, the Haitian glass specimens which have been heavily altered should have a thin rim of less dense glass in which the Fe is concentrated compared to the core glass. The higher Fe concentration in the rim glass should cause it to have an enhanced Curie constant and a lower density compared to the unaltered glass. The magnetic Curie constant, density, and scanning electron microscopic studies were made on altered specimens of Haitian glass and also on specimens showing a minimum of alteration. The results show that the less altered samples have the highest density and the lowest Curie constant. The data substantiate the terrestrial hypothesis. ?? 1994.

  2. Conduction-radiation effects on periodic magnetohydrodynamic natural convection boundary layer flow along a vertical surface

    International Nuclear Information System (INIS)

    Siddiqa, Sadia; Hossain, M.A.; Gorla, Rama Subba Reddy

    2012-01-01

    The problem of magnetohydrodynamic natural convection periodic boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed. Here, magnetic field is considered in the transverse direction and taken as a sinusoidal function of x-bar. In the analysis radiative heat flux is examined by assuming optically thick radiation limit. Attempt is being made to obtain the solutions valid for liquid metals by taking Pr d and the surface temperature parameter, θw, on the numerical values thus obtained for local skin friction coefficient and local Nusselt number coefficient as well as on the streamlines and isotherm lines are shown graphically for large values of X. (authors)

  3. Localized electronic states at grain boundaries on the surface of graphene and graphite

    DEFF Research Database (Denmark)

    Luican-Mayer, Adina; Barrios-Vargas, Jose E.; Falkenberg, Jesper Toft

    2016-01-01

    morphology affects the electronic properties is crucial for the development of applications such as flexible electronics, energy harvesting devices or sensors. We here report on atomic scale characterization of several GBs and on the structural-dependence of the localized electronic states in their vicinity....... Using low temperature scanning tunneling microscopy and spectroscopy, together with tight binding and ab initio numerical simulations we explore GBs on the surface of graphite and elucidate the interconnection between the local density of states and their atomic structure. We show that the electronic......ecent advances in large-scale synthesis of graphene and other 2D materials have underscored the importance of local defects such as dislocations and grain boundaries (GBs), and especially their tendency to alter the electronic properties of the material. Understanding how the polycrystalline...

  4. Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method

    International Nuclear Information System (INIS)

    Zhan, Shuyue; Wang, Xiaoping; Liu, Yuling

    2011-01-01

    To simplify the algorithm for determining the surface plasmon resonance (SPR) angle for special applications and development trends, a fast method for determining an SPR angle, called the fixed-boundary centroid algorithm, has been proposed. Two experiments were conducted to compare three centroid algorithms from the aspects of the operation time, sensitivity to shot noise, signal-to-noise ratio (SNR), resolution, and measurement range. Although the measurement range of this method was narrower, the other performance indices were all better than the other two centroid methods. This method has outstanding performance, high speed, good conformity, low error and a high SNR and resolution. It thus has the potential to be widely adopted

  5. Heat transfer in a couple stress fluid over a continuous moving surface with internal hat generation and convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics; Iqbal, Zahid [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Qasim, Muhammad [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan). Dept. of Mathematics; Aldossary, Omar M. [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics

    2012-05-15

    This investigation reports the boundary layer flow and heat transfer characteristics in a couple stress fluid flow over a continuos moving surface with a parallel free stream. The effects of heat generation in the presence of convective boundary conditions are also investigated. Series solutions for the velocity and temperature distributions are obtained by the homotopy analysis method (HAM). Convergence of obtained series solutions are analyzed. The results are obtained and discussed through graphs for physical parameters of interest. (orig.)

  6. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho

    2014-12-04

    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  7. Numerical study of magnetohydrodynamics (MHD boundary layer slip flow of a Maxwell nanofluid over an exponentially stretching surface with convective boundary condition

    Directory of Open Access Journals (Sweden)

    P.BalaAnki Reddy

    2017-12-01

    Full Text Available This paper focuses on a theoretical analysis of a steady two-dimensional magnetohydrodynamic boundary layer flow of a Maxwell fluid over an exponentially stretching surface in the presence of velocity slip and convective boundary condition. This model is used for a nanofluid, which incorporates the effects of Brownian motion and thermophoresis. The resulting non-linear partial differential equations of the governing flow field are converted into a system of coupled non-linear ordinary differential equations by using suitable similarity transformations, and the resultant equations are then solved numerically by using Runge-Kutta fourth order method along with shooting technique. A parametric study is conducted to illustrate the behavior of the velocity, temperature and concentration. The influence of significant parameters on velocity, temperature, concentration, skin friction coefficient and Nusselt number has been studied and numerical results are presented graphically and in tabular form. The reported numerical results are compared with previously published works on various special cases and are found to be an in excellent agreement. It is found that momentum boundary layer thickness decreases with the increase of magnetic parameter. It can also be found that the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters.

  8. Spin-split Surface States and Superconductivity at Twin Boundaries of Non-centrosymmetric BiPd

    Science.gov (United States)

    Yim, Chi Ming; Trainer, Christopher; Maldonado, Ana; Peets, Darren C.; Wahl, Peter

    In non-magnetic bulk materials lacking a center of inversion symmetry, spin-orbit interactions can lift the spin degeneracy, resulting in Rashba metals whose Fermi surfaces exhibit an intricate spin texture. Combined with superconductivity, this can lead to an admixture of both singlet and triplet components of the superconducting pairing. Using scanning tunneling spectroscopy we study the surface electronic structure in the superconducting state of BiPd, which has previously been reported to exhibit a Dirac-like surface state with a non-trivial spin texture. Topographic images reveal domains of [0 1 0] and [010] terminations corresponding to opposing faces of the crystal structure, separated by twin boundaries. From differential conductance spectra obtained on the two terminations we can characterize the surface electronic structure of the two non-equivalent surfaces. The signature of the surface state within domains of the two terminations are located at 0.4 eV above the Fermi level with only small differences. Intriguingly, we find an additional bound state localized at the twin boundary, the precise energy of which depends on the orientation of the twin boundary. Superconductivity between the two surface terminations and at the twin boundaries is discussed.

  9. Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force

    International Nuclear Information System (INIS)

    Zlotnik, A A; Ducomet, B

    2005-01-01

    We consider symmetric flows of a viscous compressible barotropic fluid with free boundary driven by a general mass force f S (depending on both the Eulerian and the Lagrangian coordinates) and an outer pressure p Γ,S , for a general monotone state function p. The case of self-gravitation arising in astrophysics is covered. Studied first are the existence, the uniqueness, and the static stability of positive stationary solutions; a variational study of these solutions and their static stability in terms of potential energy is presented. In the astrophysical context it is proved that the stationary solution is unique and statically stable, provided that the first adiabatic exponent is at least 4/3. Next, in the case when the ω-limit set for the non-stationary density and free boundary contains a statically stable positive stationary solution a uniform stabilization to this solution is deduced and, as the main result, stabilization-rate bounds of exponential type as t→∞ in L 2 and H 1 for the density and the velocity are established by constructing new non-trivial Lyapunov functionals for the problem. Moreover, it is proved that statically stable stationary solutions are exponentially asymptotically stable, and this non-linear dynamic stability is in addition stable with respect to small non-stationary perturbations of f S and p Γ,S . A variational condition for the stationary solution is also introduced, which ensures global (with respect to the data) dynamic stability. The study is accomplished in the Eulerian coordinates and in the Lagrangian mass coordinates alike.

  10. Electron scattering at surfaces and grain boundaries in Cu thin films and wires

    Science.gov (United States)

    Chawla, J. S.; Gstrein, F.; O'Brien, K. P.; Clarke, J. S.; Gall, D.

    2011-12-01

    The electron scattering at surfaces, interfaces, and grain boundaries is investigated using polycrystalline and single-crystal Cu thin films and nanowires. The experimental data is described by a Fuchs-Sondheimer (FS) and Mayadas-Shatzkes (MS) model that is extended to account for the large variation in the specific resistivity of different grain boundaries as well as distinct top and bottom surfaces with different scattering specularity p. Textured polycrystalline Cu(111) thin films with thickness d = 25-50 nm are deposited on a stack of 7.5-nm Ta on SiO2/Si(001). Subsequent annealing results in small-grain (SG) thin films with an average grain size D¯ that increases from 90 to 120 nm with increasing d. Corresponding large-grain (LG) thin films with D¯ = 160-220 nm are obtained by depositing 100-200-nm-thick films, followed by an in-situ anneal and a subsequent etch to match the thickness of the SG samples. Nanowires are fabricated from the SG and LG thin films using a subtractive patterning process, yielding wire widths of 75-350 nm. Single-crystal and LG layers exhibit a 18-22% and 10-15% lower resistivity than SG layers, respectively. The resistivity decrease from SG to LG Cu nanowires is 7-9%. The thickness and grain size dependence of the resistivity of polycrystalline and single-crystal Cu layers is well described by an exact version of the existing FS + MS model but is distinct from the commonly used approximation, which introduces an error that increases with decreasing layer thickness from 6.5% for d = 50 nm to 17% for d = 20 nm. The case of nanowires requires the FS + MS model to be extended to account for variation in the grain boundary reflection coefficient R, which effectively increases the overall resistivity by, for example, 16% for 50 × 45 nm2 wires. The overall data from single and polycrystalline Cu layers and wires yields R = 0.25 ± 0.05, and p = 0 at Cu-air and Cu-Ta interfaces.

  11. The influence of surface roughness on supersonic high Reynolds number turbulent boundary layer flow

    Science.gov (United States)

    Latin, Robert Michael

    A comprehensive study of rough-wall high-speed (M = 2.9) high Reynolds number (Re/m = 1.9e7) turbulent boundary layer flow was performed consisting of experimental, analytical, and numerical methods. Six wall topologies consisting of a smooth and five rough surfaces (two- and three-dimensional machined roughness plates; and 80, 36. and 20 grit sand-grain roughened plates) were studied. A confocal laser scan microscope was used to measure the topography of the sand-grain roughnesses. The experimental measurement techniques included a convention Pitot pressure probe, laser Doppler velocimetry, hot-wire anemometry, color schlieren and laser sheet Mie scattering images. Mean measurements included velocity, Mach number, density, and mass flux. Turbulent measurements included velocity and mass flux turbulence intensities, kinematic Reynolds shear stress, compressible Reynolds shear stress in two planes, and the traverse apparent mass flux. Kinematic turbulent flow statistical properties were found to scale by local mean quantities and displayed a weak dependence on surface roughness. Turbulent flow statistical properties with the explicit appearance of density did not scale by local mean quantities, and had a strong linear dependence on roughness. Surface roughness also had a significant effect on the flow structure size, angles, and energy spectra. A theoretical analysis was performed and a new integral method for the estimation of skin friction was developed. The skin friction estimates were within 4% of compressible semi-empirical relations. A numerical study was performed which used a parabolized Navier-Stokes solver with two algebraic turbulence models and the Rotta model for surface roughness. A new method for the estimation of momentum loss improved the numerical flow predictability. The algebraic turbulence models predicted qualitatively correct profile shapes and accurately predicted the kinematic and compressible Reynolds shear stress levels for all but the

  12. Low-frequency variability of Western Boundary Currents in the turbulent ocean: intrinsic modes and atmospheric forcing

    Science.gov (United States)

    Sérazin, Guillaume; Penduff, Thierry; Terray, Laurent; Grégorio, Sandy; Barnier, Bernard; Molines, Jean-Marc

    2015-04-01

    Ocean-atmosphere heat fluxes are particularly strong in Western Boundary Current (WBC) regions where SST front variations influence basin-scale climate variability. Observed low-frequency fluctuations in latitude and strength of these oceanic jets are classically thought to be essentially atmospherically-driven by wind stress curl variability via the oceanic Rossby wave adjustment. Yet academic eddy-resolving process-oriented models with double-gyre configurations have revealed that an idealized WBC may exhibit low-frequency intrinsic fluctuations without low-frequency external forcing (e.g. Berloff et al., 2007, Dijkstra and Ghil, 2005, etc). Experiments with eddying Ocean General Circulation Models (OGCMs) have also shown that the amount of low-frequency Sea Level Anomaly (SLA) variability is largely intrinsic in WBCs (Penduff et al. 2011; Sérazin et al 2014) and that the frontal-scale (performed on zonally-averaged SLA fields of four main WBCs (e.g. Gulf Stream, Kuroshio Extension, Agulhas Current and East Australian Current). The first two modes of the KE and GS exhibit a similar spatial structure that is shaped by oceanic intrinsic processes. The frequency content is however different between the intrinsic and total Principal Components, the former containing a wide range of timescales similar to a red noise and the latter being more autocorrelated at interannual-to-decadal timescales. These modes are compared with those obtained from the 20 years of altimetry observation and relationships with low-frequency westward propagative features in the respective oceanic basin are investigated. We argue that OGCM studies of intrinsic dynamic of WBCs are key to interpreting their observed total variability, which might result from a subtle mixing between a non-linear small-scale response of intrinsic modes to the atmospheric forcing and a direct basin-scale linear response to the atmosphere.

  13. Surface roughness and cutting force estimation in the CNC turning using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2015-04-01

    Full Text Available Surface roughness and cutting forces are considered as important factors to determine machinability rate and the quality of product. A number of factors like cutting speed, feed rate, depth of cutting and tool noise radius influence the surface roughness and cutting forces in turning process. In this paper, an Artificial Neural Network (ANN model was used to forecast surface roughness and cutting forces with related inputs, including cutting speed, feed rate, depth of cut and tool noise radius. The machined surface roughness and cutting force parameters related to input parameters are the outputs of the ANN model. In this work, 24 samples of experimental data were used to train the network. Moreover, eight other experimental tests were implemented to test the network. The study concludes that ANN was a reliable and accurate method for predicting machining parameters in CNC turning operation.

  14. Observations and simulations of microplastic marine debris in the ocean surface boundary layer

    Science.gov (United States)

    Kukulka, T.; Brunner, K.; Proskurowski, G. K.; Lavender Law, K. L.

    2016-02-01

    Motivated by observations of buoyant microplastic marine debris (MPMD) in the ocean surface boundary layer (OSBL), this study applies a large eddy simulation model and a parametric one-dimensional column model to examine vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture wind-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BW). Model results are only consistent with MPMD observations if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to eleven years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of three to thirteen.

  15. Surface polarity of beta-HMX crystal and the related adhesive forces with Estane binder.

    Science.gov (United States)

    Yang, Lu

    2008-12-02

    Here I present the results on the study of surface properties of beta-HMX crystal utilizing molecular dynamics simulations. The surface polarity of three principal crystal surfaces, (011), (010), and (110), is investigated by measuring the water contact angles. The calculated contact angles are in excellent agreement with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain (with and without surrounding nitroplasticizer molecules) from the three principal crystal surfaces are also calculated using the umbrella sampling method. I find that the force for Estane detachment increases with the increasing HMX surface polarity. In addition, my results show that the nitroplasticizer also plays an important role in the adhesion between Estane and HMX surfaces.

  16. Force

    CERN Document Server

    Graybill, George

    2007-01-01

    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  17. The Role of Coriolis Forces and Ekman Boundary Layers in Controlling Sediment Transport in Large Submarine Channel-Levee Systems: Experiments and Theory.

    Science.gov (United States)

    Wells, M. G.

    2016-12-01

    Large-scale oceanic flows such as contourite currents and turbidity currents can be strongly influenced by Coriolis forces. One well known consequence of Coriolis forces is the presence of Ekman boundary layers, which result in transverse secondary flows of as much as 10% of the primary flow. For flows in sinuous channels these Ekman boundary layers can either act with, or against, the secondary flows driven by centrifugal forces. These secondary flows driven by Ekman boundary layers are likely responsible for many of the details of sediment erosion and deposition in contourites, as well as in the larger channels formed by turbidity currents. The magnitude and direction of flows in the Ekman boundary layers can be defined by two Rossby numbers, RoW =U/Wf and RoR =U/Rf, where U is the mean downstream velocity, W is the width of the channel, R is the radius of curvature and f is the Coriolis parameter. Flows with Rossby numbers less than 1 are dominated by Coriolis forces and have strong Ekman boundary layers dominating secondary circulation. A new finding is that even when the Rossby number is of order 10 there is an appreciable influence of Coriolis forces. In this presentation we will present results of changes in velocity structure as a function of Rossby number from a series of analog laboratory experiments from a 1 m (Toronto) and 15 m (Grenoble) wide rotating Coriolis platform. Changes in flow structures will be related to experimental observations of changes in erosion and deposition of a mobile bed form. We will discuss the implications of these laboratory experiments for interpretation of large-scale contourite and turbidite deposits.

  18. Adhesive Force of a Spider Mite, Tetranychus urticae, to a Flat Smooth Surface

    Science.gov (United States)

    Mizutani, Katsumi; Egashira, Kai; Toukai, Tadashi; Ogushi, Jun

    The adhesion of a spider mite to a surface of a flat smooth plate is investigated as a model for micromachine parts to adhere to and move on such surfaces. The measurement of adhesive force is carried out under various conditions in which plate material, surface roughness of a plate and environmental humidity are differed. The adhesion mechanism is also discussed. Of the forces acting between a spider mite and a surface, one from dispersion interaction is the most dominant because (1) there is a high correlation between the adhesive force and the dispersion force component of surface energy with adhesive forces of 8.2µN for glass, 9.7µN for mica, 9.9µN for silicon and 12.1µN for gold, and because (2) high humidity and high surface roughness reduce the adhesive force. For strong adhesion based on work of adhesion, spider mites have tenent hairs with a bell-shaped end.

  19. Electronegativity determination of individual surface atoms by atomic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Onoda, J.; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Y.

    2017-01-01

    Roč. 8, Apr (2017), 1-6, č. článku 15155. ISSN 2041-1723 R&D Projects: GA ČR(CZ) GC14-16963J Institutional support: RVO:68378271 Keywords : AFM * DFT * electronegativity * surface science Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 12.124, year: 2016

  20. Investigations of surface-tension effects due to small-scale complex boundaries

    Science.gov (United States)

    Feng, Jiansheng

    In this Ph.D. dissertation, we have investigated some important surface-tension phenomena including capillarity, wetting, and wicking. We mainly focus on the geometric aspects of these problems, and to learn about how structures affect properties. . In the first project (Chapter 2), we used numerical simulations and experiments to study the meniscus of a fluid confined in capillaries with complicated cross-sectional geometries. In the simulations, we computed the three-dimensional shapes of the menisci formed in polygonal and star-shaped capillaries with sharp or rounded corners. Height variations across the menisci were used to quantify the effect of surface tension. Analytical solutions were derived for all the cases where the cross-sectional geometry was a regular polygon or a regular star-shape. Power indices that characterize the effects of corner rounding were extracted from simulation results. These findings can serve as guide for fabrications of unconventional three-dimensional structures in Capillary Force Lithography experiments. Experimental demonstrations of the working principle was also performed. Although quantitative matching between simulation and experimental results was not achieved due to the limitation of material properties, clear qualitative trends were observed and interesting three-dimensional nano-structures were produced. A second project (Chapter 3) focused on developing techniques to produce three-dimensional hierarchically structured superhydrophobic surfaces with high aspect ratios. We experimented with two different high-throughput electron-beam-lithography processes featuring single and dual electron-beam exposures. After a surface modification procedure with a hydrophobic silane, the structured surfaces exhibited two distinct superhydrophobic behaviors---high and low adhesion. While both types of superhydrophobic surfaces exhibited very high (approximately 160° water advancing contact angles, the water receding contact angles on

  1. ENSO surface longwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2007-01-01

    Full Text Available We have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net over a 21-year period in the tropical and subtropical Pacific Ocean (40 S–40 N, 90 E–75 W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text, for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15–0 S, 105–130 E. There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3–4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm−2 during El Niño episodes to −20 Wm−2 during La Niña events, while over the western Pacific (15–0 S, 105–130 E these values range from −15 Wm−2 to +10 Wm−2, respectively. The long- term average (1984–2004 distribution of the net downwelling longwave radiation at the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm−2 south of the equator in the central Pacific (7–0 S, 160–120 W for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast, the

  2. Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems

    Directory of Open Access Journals (Sweden)

    V. Rossi

    2009-08-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. Since they are populated by several physical oceanic structures such as filaments and eddies, which interact with the biological processes, it is a major challenge to study this sub- and mesoscale activity in connection with the chlorophyll distribution. The aim of this work is to make a comparative study of these four upwelling systems focussing on their surface stirring, using the Finite Size Lyapunov Exponents (FSLEs, and their biological activity, based on satellite data. First, the spatial distribution of horizontal mixing is analysed from time averages and from probability density functions of FSLEs, which allow us to divide each areas in two different subsystems. Then we studied the temporal variability of surface stirring focussing on the annual and seasonal cycle. We also proposed a ranking of the four EBUS based on the averaged mixing intensity. When investigating the links with chlorophyll concentration, the previous subsystems reveal distinct biological signatures. There is a global negative correlation between surface horizontal mixing and chlorophyll standing stocks over the four areas. To try to better understand this inverse relationship, we consider the vertical dimension by looking at the Ekman-transport and vertical velocities. We suggest the possibility of a changing response of the phytoplankton to sub/mesoscale turbulence, from a negative effect in the very productive coastal areas to a positive one in the open ocean. This study provides new insights for the understanding of the variable biological productivity in the ocean, which results from both dynamics of the marine ecosystem and of the 3-D turbulent medium.

  3. Long-term climate change: the evolution of shield surface boundary conditions

    International Nuclear Information System (INIS)

    Peltier, W.R.

    2007-01-01

    The Earths surface during the Pleistocene epoch has been repeatedly subjected to glacial cycles that have markedly influenced both the landscape and surface boundary conditions that, in part, governed past evolution of deep-seated Shield groundwater flow domains. As part of the Deep Geologic Repository Technology Programme simulations of the last Laurentide glacial episode have been undertaken with the University of Toronto Glacial System Model (GSM). The purpose of these simulations is to yield constrained predictions of the magnitude and time rate of change of peri-glacial, glacial and boreal regimes that have perturbed Shield flow domains in the geologic past. A detailed model of long timescale climate change has been developed, which is able to make useful predictions of the process of continental glaciation and deglaciation that has occurred in the past due to the small changes in the effective intensity of the Sun at the location of the Earth caused by gravitational many body effects in Solar System evolution. Based upon the success of this model we are able to assert that we have demonstrated a basic understanding of why this process has continually recurred in the past on a timescale of approximately 100 000 years. Continuing work with the Glacial Systems Model and efforts to provide explicit linkage to numerical analyses of sub-surface hydrology are beginning to yield a new understanding of groundwater flow system evolution and response to glacial perturbations. In so doing this understanding is not only providing a reasoned basis on which to examine issues of geosphere stability as relevant to the safety of a hypothetical repository for used nuclear fuel in Shield terrain, but is also offering an improved basis for the integrated interpretation of multi-disciplinary geo-scientific data necessary for development of a descriptive geosphere model that is seen as fundamental to the repository Safety Case. (author)

  4. Tip-force induced surface deformation in the layered commensurate tellurides NbA xTe 2 (A = Si, Ge) during atomic force microscopy measurements

    Science.gov (United States)

    Bengel, H.; Cantow, H.-J.; Magonov, S. N.; Monconduit, L.; Evain, M.; Whangbo, M.-H.

    1994-12-01

    The Te-atom surfaces of commensurate layered tellurides NbA xTe 2 ( A = Si, x = {1}/{2}; A = Ge, x = {1}/{3}, {2}/{5}, {3}/{7}) were examined by atomic force microscopy (AFM) at different applied forces. Although the bulk crystal structures show a negligible height corrugation in the surface Te-atom sheets, the AFM images exhibit dark linear patterns that become strongly pronounced at high applied forces (several hundreds nN). This feature comes about because the tip-sample force interactions induce a surface corrugation according to the local hardness variation of the surface.

  5. Tracking Traction Force Changes of Single Cells on the Liquid Crystal Surface

    Directory of Open Access Journals (Sweden)

    Chin Fhong Soon

    2015-01-01

    Full Text Available Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT system can be used in conjunction with a bespoke cell traction force mapping (CTFM software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.

  6. Momentum and heat transfer of an upper-convected Maxwell fluid over a moving surface with convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Iqbal, Z., E-mail: zahidiqbal_qau@yahoo.com [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Mustafa, M. [Research Centre for Modeling and Simulation, National University of Sciences and Technology, Sector H-12, Islamabad 44000 (Pakistan); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Boundary layer flow of an upper-convected Maxwell (UCM) fluid over a moving surface. Black-Right-Pointing-Pointer Convective boundary conditions have been used. Black-Right-Pointing-Pointer Series solutions are obtained by homotopy analysis method (HAM). Black-Right-Pointing-Pointer Graphical results for various interesting parametric values. - Abstract: This study discusses the flow and heat transfer in an upper-convected Maxwell (UCM) fluid over a moving surface in the presence of a free stream velocity. The convective boundary conditions have been handled. Similarly transformations are invoked to convert the partial differential equations governing the steady flow of a Maxwell fluid into an ordinary differential system. This system is solved by a homotopic approach. The effects of influential parameters such as Deborah number ({beta}), Prandtl number (Pr), Eckert number (Ec), suction parameter (S) and ratio ({lambda}) have been thoroughly examined.

  7. Guest editor - Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    the equatorial Indian Ocean. I thank all the authors for contributing to Ses- sion OA-18 of the AOGS 2005 meeting and to this Special section. I am grateful to the review- ers (Drs. Hermann W Bange of Forschungs- bereich Marine Biogeochemie, Kiel, Germany...

  8. Influence of surface roughness on streptococcal adhesion forces to composite resins

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Ren, Yijin

    OBJECTIVE: To determine streptococcal adhesion forces with composite resins with different surface roughness. METHODS: Polishing and grinding were applied to obtain smooth (roughness 20 nm), moderately rough (150 nm) and rough (350 nm) surfaces of two orthodontic, light-cured composites. Adhesion

  9. Surface thermodynamics and adhesion forces governing bacterial transmission in contact lens related microbial keratitis

    NARCIS (Netherlands)

    Qu, Wenwen; Busscher, Henk J.; Hooymans, Johanna M. M.; van der Mei, Henny C.

    2011-01-01

    Contact lens induced microbial keratitis results from bacterial transmission from one surface to another. We investigated the adhesion forces of Pseudomonas aeruginosa, Staphylococci and Serratia to different contact lenses, lens cases and corneal surfaces using AFM, and applied a Weibull analysis

  10. Resistive-force theory for mesh-like superhydrophobic surfaces

    Science.gov (United States)

    Schnitzer, Ory; Yariv, Ehud

    2018-03-01

    A common realization of superhydrophobic surfaces makes use of a mesh-like geometry, where pockets of air are trapped in a periodic array of holes in a no-slip solid substrate. We consider the small-solid-fraction limit where the ribs of the mesh are narrow. In this limit, we obtain a simple leading-order approximation for the slip-length tensor of an arbitrary mesh geometry. This approximation scales as the solid-fraction logarithm, as anticipated by Ybert et al. [Phys. Fluids 19, 123601 (2007), 10.1063/1.2815730]; in the special case of a square mesh it agrees with the analytical results obtained by Davis and Lauga [Phys. Fluids 21, 113101 (2009), 10.1063/1.3250947].

  11. Direct Measurements of Surface Energy, Elastic Modulus and Interparticle Forces of Titan Aerosol Analog (`Tholin') Using Atomic Force Microscopy

    Science.gov (United States)

    Yu, X.; Horst, S. M.; He, C.; McGuiggan, P.; Bridges, N. T.

    2017-12-01

    To understand the origin of the dunes on Titan, it is important to investigate the material properties of the sand particles on Titan, which are mainly made of organics deposited from the atmosphere [1]. The organic sand may behave differently compared to the quartz/basaltic sand on terrestrial planets (Earth, Venus, Mars) in terms of interparticle forces. We measured the surface energy (through contact angle measurements) and elastic modulus (through Atomic Force Microscopy, AFM) of Titan aerosol analog (tholins) produced in our lab. Tholins may be compositionally similar to sand on Titan. We directly measured the interparticle forces between a tholin particle adhered to an AFM cantilver and tholin particles on a substrate. We also measured the properties of walnut shells, a typical material used in the Titan Wind Tunnel (TWT, [2, 3]). We find the surface energy of a tholin thin film is about 70.9 mN/m and its elastic modulus is about 3.5 GPa (similar to hard polymers like PMMA and polystyrene). We used the two measured material properties of tholin to calculate its interparticle cohesion assuming simple sphere-sphere geometry [4]. For two 20 µm particles, the theoretical cohesion force is about 6682 nN. Under dry nitrogen (RHmeasured interparticle forces using AFM was approximately 4000 nN, which is smaller than theoretical predictions but still relatively strong under dry conditions. The interparticle cohesion between walnut shell particles is only 200 nN, which is much lower than between tholin particles. The key finding of this study is that the interparticle cohesion forces are much larger for tholins and presumably Titan sand particles than for terrestrial sand and materials used in the wind tunnel. This suggests we should increase the interparticle force in both analog experiments (TWT) and threshold models (e.g. [5]) to correctly translate the results to real Titan conditions. The strong cohesion of tholins may also inform us how the small aerosol

  12. Superhydrophobic Zr-based metallic glass surface with high adhesive force

    Science.gov (United States)

    Li, Ning; Xia, Ting; Heng, Liping; Liu, Lin

    2013-06-01

    Micro/nano hierarchical structures were constructed on Zr35Ti30Be26.75Cu8.25 metallic glass surface by silicon moulding and subsequently chemical etching. The as-formed surface exhibited both superhydrophobicity and high adhesive force towards water. The superhydrophobicity is rationalized based on the modified Cassie-Baxter model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)]. The origin of the robust adhesion is described in terms of intermolecular capillary forces. The present results not only provide a method to fabricate superhydrophobic metallic glasses surface but also explore an important industrial application as dry adhesives and transport of liquid microdroplets.

  13. Continuous versus Arrested Spreading of Biofilms at Solid-Gas Interfaces: The Role of Surface Forces

    Science.gov (United States)

    Trinschek, Sarah; John, Karin; Lecuyer, Sigolène; Thiele, Uwe

    2017-08-01

    We introduce and analyze a model for osmotically spreading bacterial colonies at solid-air interfaces that includes wetting phenomena, i.e., surface forces. The model is based on a hydrodynamic description for liquid suspensions which is supplemented by bioactive processes. We show that surface forces determine whether a biofilm can expand laterally over a substrate and provide experimental evidence for the existence of a transition between continuous and arrested spreading for Bacillus subtilis biofilms. In the case of arrested spreading, the lateral expansion of the biofilm is confined, albeit the colony is biologically active. However, a small reduction in the surface tension of the biofilm is sufficient to induce spreading. The incorporation of surface forces into our hydrodynamic model allows us to capture this transition in biofilm spreading behavior.

  14. Investigating the adsorption of the gemini surfactant "12-2-12" onto mica using atomic force microscopy and surface force apparatus measurements

    NARCIS (Netherlands)

    Fielden, ML; Claesson, PM; Verrall, RE

    1999-01-01

    The adsorption of the cationic gemini surfactant 1,2-bis(n-dodecyldimethylammonium)ethane dibromide on mica was followed by measuring forces between mica surfaces and by atomic force microscopy (AFM) imaging. The surface charge was found to be neutralized at total surfactant concentrations between 8

  15. An analytical model for force prediction in ball nose micro milling of inclined surfaces

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2010-01-01

    Ball nose micro milling is a key process for the generation of free form surfaces and inclined surfaces often present in mould inserts for micro replication. This paper presents a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge rad...... radius and the effect of the surface topography due to the previous milling passes. The model is completely analytical can be applied to ball end micro milling of slanted surfaces for any value of the surface inclination angle relative to the tool axis....

  16. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  17. Direct numerical simulation of the transition to turbulence in a supersonic boundary layer on smooth and rough surfaces

    Science.gov (United States)

    Khotyanovsky, D. V.; Kudryavtsev, A. N.

    2017-09-01

    Direct numerical simulations of instability development and transition to turbulence in a supersonic boundary layer on a flat plate are performed. The computations are carried out for moderate supersonic (free-stream Mach number M = 2) and hypersonic (M = 6) velocities. The boundary layer development is simulated, which includes the stages of linear growth of disturbances, their nonlinear interaction, stochastization, and turbulent flow formation. A laminar-turbulent transition initiated by distributed roughness of the plate surface at the Mach number M = 2 is also considered.

  18. A new boundary scheme for simulation of gas flow in kerogen pores with considering surface diffusion effect

    Science.gov (United States)

    Wang, Lingquan; Zeng, Zhong; Zhang, Liangqi; Qiao, Long; Zhang, Yi; Lu, Yiyu

    2018-04-01

    Navier-Stokes (NS) equations with no-slip boundary conditions fail to realistically describe micro-flows with considering nanoscale phenomena. Particularly, in kerogen pores, slip-flow and surface diffusion are important. In this study, we propose a new slip boundary scheme for the lattice Boltzmann (LB) method through the non-equilibrium extrapolation scheme to simulate the slip-flow considering surface diffusion effect. Meanwhile, the second-order slip velocity can be taken into account. The predicted characteristics in a two-dimensional micro-flow, including slip-velocity, velocity distribution along the flow direction with/without surface diffusion are present. The results in this study are compared with available analytical and reference results, and good agreements are achieved.

  19. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2008-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to multi-pass welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  20. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution

    OpenAIRE

    Emami, FS; Puddu, V; Berry, RJ; Varshney, V; Patwardhan, SV; Perry, CC; Heinz, H

    2014-01-01

    Silica nanostructures find applications in drug delivery, catalysis, and composites, however, understanding of the surface chemistry, aqueous interfaces, and biomolecule recognition remain difficult using current imaging techniques and spectroscopy. A silica force field is introduced that resolves numerous shortcomings of prior silica force fields over the last thirty years and reduces uncertainties in computed interfacial properties relative to experiment from several 100% to less than 5%. I...

  1. Effects of surface design on aerodynamic forces of iced bridge cables

    DEFF Research Database (Denmark)

    Koss, Holger

    2014-01-01

    . The determination of these force coefficients require a proper simulation of the ice layer occurring under the specific climatic conditions, favouring real ice accretion over simplified artificial reproduction. The work presented in this paper was performed to study whether the design of bridge cable surface...... influences the accretion of ice to an extent that the aerodynamic forces differ significantly amongst the designs. The experiments were conducted in a wind tunnel facility capable amongst others to simulate in-cloud icing conditions....

  2. Grain boundary melting in ice

    Science.gov (United States)

    Thomson, E. S.; Hansen-Goos, Hendrik; Wettlaufer, J. S.; Wilen, L. A.

    2013-03-01

    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentration. Although we understand that the interfacial surface charge densities qs and solute concentrations can potentially dominate the film thickness, we cannot directly measure them within a given grain boundary. Therefore, as a framework for interpreting the data we consider two appropriate qs dependent limits; one is dominated by the colligative effect and other is dominated by electrostatic interactions.

  3. Influence of Surface Properties on Adhesion Forces and Attachment of Streptococcus mutans to Zirconia In Vitro

    Science.gov (United States)

    Yu, Pei; Wang, Chuanyong; Zhou, Jinglin; Jiang, Li

    2016-01-01

    Zirconia is becoming a prevalent material in dentistry. However, any foreign bodies inserted may provide new niches for the bacteria in oral cavity. The object of this study was to explore the effect of surface properties including surface roughness and hydrophobicity on the adhesion and biofilm formation of Streptococcus mutans (S. mutans) to zirconia. Atomic force microscopy was employed to determine the zirconia surface morphology and the adhesion forces between the S. mutans and zirconia. The results showed that the surface roughness was nanoscale and significantly different among tested groups (P Medium (17.00 ± 3.81 nm) > Fine (11.89 ± 1.68 nm). The contact angles of the Coarse group were the highest, followed by the Medium and the Fine groups. Increasing the surface roughness and hydrophobicity resulted in an increase of adhesion forces and early attachment (2 h and 4 h) of S. mutans on the zirconia but no influence on the further development of biofilm (6 h~24 h). Our findings suggest that the surface roughness in nanoscale and hydrophobicity of zirconia had influence on the S. mutans initial adhesion force and early attachment instead of whole stages of biofilm formation. PMID:27975061

  4. Density-functional calculation of van der Waals forces for free-electron-like surfaces

    DEFF Research Database (Denmark)

    Hult, E.; Hyldgaard, P.; Rossmeisl, Jan

    2001-01-01

    A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well as for the in......A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well...... as for the interaction between the surfaces themselves. The densities and static image-plane positions that are needed as input in the van der Waals functional are calculated self-consistently within density-functional theory using the generalized-gradient approximation, pseudopotentials, and plane waves. This study...

  5. Adhesion forces in liquid media: effect of surface topography and wettability.

    Science.gov (United States)

    Serro, A P; Colaço, R; Saramago, B

    2008-09-15

    This work was motivated by the unexpected values of adhesion forces measured between an atomic force microscopy tip and the hydrophobic surface of ultra-high-molecular-weight polyethylene. Two types of samples with different roughness but similar wettability were tested. Adhesion forces of similar magnitude were obtained in air and in polar liquids (water and Hank's Balanced Salt Solution, a saline solution) with the rougher sample. In contrast, the adhesion forces measured on the smoother sample in air were much higher than those measured in water or in the aqueous solution. Those experimental results suggested the presence of nanobubbles at the interface between the rough sample and the polar liquids. The existence of the nanobubbles was further confirmed by the images of the interface obtained in noncontact tapping mode. The adhesion forces measured in a nonpolar liquid (hexadecane) were small and of the same order of magnitude for both samples and their values were in good agreement with the predictions of the London-Hamaker approach for the van der Waals interactions. Finally, we correlate the appearance of nanobubbles with surface topography. The conclusion of this work is that adhesion forces measured in aqueous media may be strongly affected by the presence of nanobubbles if the surface presents topographical accidents.

  6. A Cassie-Like Law Using Triple Phase Boundary Line Fractions for Faceted Droplets on Chemically Heterogeneous Surfaces

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Taboryski, Rafael Jozef

    2009-01-01

    We present experimental contact angle data for surfaces, which were surface-engineered with a hydrophobic micropattern of hexagonal geometry. The chemically heterogeneous surface of the same hexagonal pattern of defects resulted in faceted droplets of hexagonal shape. When measuring the advancing...... contact angles with a viewing position aligned parallel to rows of defects, we found that an area averaged Cassie-law failed in describing the data. By replacing the area fractions by line fractions of the triple phase boundary Line segments in the Cassie equation, we found excellent agreement with data....

  7. Modulation of the Casimir force by laser pulses: Influence of oxide films on the silicon surface

    Science.gov (United States)

    Klimchitskaya, G. L.; Bukina, M. N.; Churkin, Yu. V.; Yurova, V. A.

    2010-10-01

    The possibility of modulating the Casimir force that acts in an air medium between a gold sphere and a silicon plate irradiated by laser pulses has been studied. It has been demonstrated that the oxide film that is formed on the silicon surface in air hardly affects the possibility of modulating the Casimir force when the distances between interacting bodies are of the order of 100 nm. With an increase in the distance, the modulation depth decreases; however, this region is of less practical interest, because the Casimir forces become too weak.

  8. Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces

    International Nuclear Information System (INIS)

    Wagner, Ryan; Raman, Arvind; Proksch, Roger

    2013-01-01

    Many advanced dynamic Atomic Force Microscopy (AFM) techniques such as contact resonance, force modulation, piezoresponse force microscopy, electrochemical strain microscopy, and AFM infrared spectroscopy exploit the dynamic response of a cantilever in contact with a sample to extract local material properties. Achieving quantitative results in these techniques usually requires the assumption of a certain shape of cantilever vibration. We present a technique that allows in-situ measurements of the vibrational shape of AFM cantilevers coupled to surfaces. This technique opens up unique approaches to nanoscale material property mapping, which are not possible with single point measurements alone

  9. Segregation of sp-impurities at grain boundaries and surfaces: comparison of fcc cobalt and nickel

    Science.gov (United States)

    Všianská, M.; Vémolová, H.; Šob, M.

    2017-12-01

    We perform systematic ab initio investigations of the segregation of 12 non-magnetic sp-impurities (Al, Si, P, S, Ga, Ge, As, Se, In, Sn, Sb and Te) at the Σ5(210) grain boundary (GB) and (210) free surface (FS) in fcc ferromagnetic cobalt and analyse their effect on structural, magnetic and mechanical properties; the results are compared with those obtained previously for nickel. It turns out that there is a slight enhancement of magnetization at the clean GB and FS with respect to bulk cobalt (4.7% and 17%, respectively). However, segregated sp-impurities sharply reduce this magnetization. As shown previously, in nickel most of the above impurities nearly destroy or substantially reduce the magnetic moments at the FS and, when segregated interstitially (i.e. Si, P, S, Ge, As, and Se), also at the GB, so that they provide atomically thin, magnetically dead layers, which may be very desirable in spintronics. The reduction of magnetic moments at the Σ5(210) GB in fcc ferromagnetic cobalt is, in absolute values, very similar to that in nickel. However, as the magnetic moment in bulk cobalt is higher, we do not observe magnetically dead layers here. Further, we find the preferred segregation sites at the Σ5(210) GB for the sp-impurities studied, and their segregation enthalpies and strengthening/embrittling energies with their decomposition into their chemical and mechanical components. It turns out that interstitially segregated Si is a GB cohesion enhancer, and interstitially segregated P, S, Ge, As, and Se and substitutionally segregated Al, Ga, In, Sn, Sb and Te are GB embrittlers in fcc cobalt. As there is essentially no experimental information on GB segregation in cobalt, most of the present results are theoretical predictions which may motivate future experimental work.

  10. The effect of surface contact conditions on grain boundary interdiffusion in a semi-infinite bicrystal

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Klinger, L.; Rabkin, E.

    2014-01-01

    Roč. 94, č. 30 (2014), s. 3398-3412 ISSN 1478-6435 Institutional support: RVO:68081723 Keywords : grain boundary diffusion * liquid metals * stress analysis * interfacial thermodynamics Subject RIV: BJ - Thermodynamics Impact factor: 1.825, year: 2014

  11. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    Science.gov (United States)

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Science.gov (United States)

    Schumann, Ulrich; Mayer, Bernhard

    2017-11-01

    Earth's surface temperature sensitivity to radiative forcing (RF) by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW) and longwave (LW) radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks). Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing) and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA) and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  13. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  14. Track sensitivity and the surface roughness measurements of CR-39 with atomic force microscope

    CERN Document Server

    Yasuda, N; Amemiya, K; Takahashi, H; Kyan, A; Ogura, K

    1999-01-01

    Atomic Force Microscope (AFM) has been applied to evaluate the surface roughness and the track sensitivity of CR-39 track detector. We experimentally confirmed the inverse correlation between the track sensitivity and the roughness of the detector surface after etching. The surface of CR-39 (CR-39 doped with antioxidant (HARZLAS (TD-1)) and copolymer of CR-39/NIPAAm (TNF-1)) with high sensitivity becomes rough by the etching, while the pure CR-39 (BARYOTRAK) with low sensitivity keeps its original surface clarity even for the long etching.

  15. Evaluation of the roughness of the surface of porcelain systems with the atomic force microscope

    International Nuclear Information System (INIS)

    Chavarria Rodriguez, Bernal

    2013-01-01

    The surface of a dental ceramic was evaluated and compared with an atomic force microscope after being treated with different systems of polishing. 14 identical ceramic Lava® Zirconia discs were used to test the different polishing systems. 3 polishing systems from different matrix houses were used to polish dental porcelain. The samples were evaluated quantitatively with an atomic force microscope in order to study the real effectiveness of each system, on the roughness average (Ra) and the maximum peak to valley roughness (Ry) of the ceramic surfaces. A considerable reduction of the surface roughness was obtained by applying different polishing systems on the surface of dental ceramics. Very reliable values of Ra and Ry were obtained by making measurements on the structure reproduced by the atomic force microscope. The advanced ceramics of zirconium oxide presented the best physical characteristics and low levels of surface roughness. A smoother surface was achieved with the application of polishing systems, thus demonstrating the reduction of the surface roughness of a dental ceramic [es

  16. The shear-force/ultrasonic near-field microscope: a nanometrology tool for surface science and technology

    Science.gov (United States)

    La Rosa, A.; Li, N.; Asante, K.

    2005-11-01

    This paper describes recent results obtained with the Ultrasonic/Shear-Force Microscope (SUNM), an analytical tool suitable for investigating the quite different dynamic displayed by fluid-like films when subjected to mesoscopic confinement and while in intimate contact with two sliding solid boundaries. The SUNM uses two sensory modules to concurrently but independently monitor the effects that fluid-mediated interactions exert on two sliding bodies: the microscope's sharp probe (attached to a piezoelectric sensor) and the analyzed sample (attached to an ultrasonic transducer). This dual capability allows correlating the fluid-like film's viscoelastic properties with changes in the probe's resonance frequency and the generation of sound. A detailed monitoring of sliding friction by ultrasonic means and with nanometer resolution is unprecedented, which opens potential uses of the versatile microscope as a surface and subsurface material characterization tool. As a surface metrology tool, the SUNM presents a potential impact in diverse areas ranging from fundamental studies of nanotribology, confinement-driven solid to liquid phase transformation of polymer films, characterization of industrial lubricants, and the study of elastic properties of bio-membranes. As a sub-surface metrology tool, the SUNM can be used in the investigation of the elastic properties of low- and high-k dielectric materials, piezoelectric and ferroelectric films, as well as quality control in the construction of micro- and nano-fluidics devices.

  17. Effects of Polishing Bur Application Force and Reuse on Sintered Zirconia Surface Topography.

    Science.gov (United States)

    Fischer, N G; Tsujimoto, A; Baruth, A G

    2018-03-16

    Limited information is available on how to polish and finish zirconia surfaces following computer-aided design/computer-aided manufacturing (CAD/CAM), specifically, how differing application forces and reuse of zirconia polishing systems affect zirconia topography. To determine the effect of differing, clinically relevant, polishing application forces and multiple usages of polishing burs on the surface topography of CAD/CAM zirconia. One hundred twenty 220-grit carbide finished zirconia disks were sintered according to manufacturer's directions and divided into two groups for the study of two coarse polishing bur types. Each group was divided into subgroups for polishing (15,000 rpm) at 15 seconds for 1.0 N, 4.5 N, or 11 N of force using a purpose-built fixture. Subgroups were further divided to study the effects of polishing for the first, fifth, 15th, and 30th bur use, simulating clinical procedures. Unpolished surfaces served as a control group. Surfaces were imaged with noncontact optical profilometry (OP) and atomic force microscopy (AFM) to measure average roughness values (Ra). Polishing burs were optically examined for wear. Scanning electron microscopy (SEM) was performed on burs and zirconia surfaces. One-way ANOVA with post hoc Tukey HSD (honest significant difference) tests (α=0.05) were used for statistical analyses. AFM and OP Ra values of all polished surfaces were significantly lower than those of the unpolished control. Different polishing forces and bur reuse showed no significant differences in AFM Ra. However, significant differences in OP Ra were found due to differing application forces and bur reuse between the first and subsequent uses. SEM and optical micrographs revealed notable bur wear, increasing with increasing reuse. SEM and AFM micrographs clearly showed polished, periodic zirconia surfaces. Nanoscale topography, as analyzed with kurtosis and average groove depth, was found dependent on the specific polishing bur type. These in

  18. Viscoelastic crack propagation and closing with Lennard-Jones surface forces

    International Nuclear Information System (INIS)

    Greenwood, J A

    2007-01-01

    An analysis of the opening and closing of a crack in a viscoelastic solid has been made assuming a Lennard-Jones law of force acting between the crack faces. The results are compared with those of an earlier analysis in which a simple Dugdale model of the surface forces was assumed. The approximate 'reciprocal rule' between the apparent surface energies for opening and closing cracks is confirmed. At low speeds a linear relation between the apparent surface energy and the crack speed is found. The lengths of the process zone for opening and closing cracks are found to be very similar and so presumably are not responsible for the very different values of the apparent surface energy

  19. Viscoelastic crack propagation and closing with Lennard-Jones surface forces

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, J A [Department of Engineering, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)

    2007-03-21

    An analysis of the opening and closing of a crack in a viscoelastic solid has been made assuming a Lennard-Jones law of force acting between the crack faces. The results are compared with those of an earlier analysis in which a simple Dugdale model of the surface forces was assumed. The approximate 'reciprocal rule' between the apparent surface energies for opening and closing cracks is confirmed. At low speeds a linear relation between the apparent surface energy and the crack speed is found. The lengths of the process zone for opening and closing cracks are found to be very similar and so presumably are not responsible for the very different values of the apparent surface energy.

  20. Surface Tension of Organic Liquids Using the OPLS/AA Force Field.

    Science.gov (United States)

    Zubillaga, Rafael A; Labastida, Ariana; Cruz, Bibiana; Martínez, Juan Carlos; Sánchez, Enrique; Alejandre, José

    2013-03-12

    Molecular dynamics simulations are performed to obtain the surface tension of 61 organic liquids using the OPLS/AA (all-atom optimized potential for liquid simulations). The force field parameters are the same as those recently used (Caleman et al. J. Chem. Theory Comput.2012, 8, 61) to determine several thermodynamic properties of 146 organic liquids. The correct evaluation of surface tension using slab simulations of liquids requires one to properly take into account the long-range interactions (Trukhymchuk and Alejandre J. Chem. Phys.1999, 111, 8510). In addition, the liquid density from slab simulations has to be the same as that obtained in liquid simulations at constant temperature and pressure. The new results of surface tensions from this work improve those reported by Caleman et al. The OPLS/AA force field gives good surface tensions compared with experimental data for most of the systems studied in this work, although it was developed to simulate liquids.

  1. Cutting force analysis as a tool for evaluating the surface quality of machined parts

    International Nuclear Information System (INIS)

    Sanchez-Carrilero, M.; Marcos, M.; Alvarez-Alcon, M.; Sanchez-Corbacho, V.M.

    1998-01-01

    Surface quality is one of the most important criteria for establishing the optimum cutting parameters needed to perform a machining process. Usually, the evaluation of the degree of the surface finishing requires to apply metrological techniques which involve times out in the production. As a consequence of this, a loss in both the economy of the process and the fiability of the tests reproducibility can be produced. In this work a relation between cutting force and surface roughness has been studied for the turning process of an Al-Cu alloy. From this relation, the surface quality of the machined samples can be evaluated by using the cutting forces values acquired during the cutting process. (Author) 8 refs

  2. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  3. Derivative matrices of a skew ray for spherical boundary surfaces and their applications in system analysis and design.

    Science.gov (United States)

    Lin, Psang Dain

    2014-05-10

    In a previous paper [Appl. Opt.52, 4151 (2013)], we presented the first- and second-order derivatives of a ray for a flat boundary surface to design prisms. In this paper, that scheme is extended to determine the Jacobian and Hessian matrices of a skew ray as it is reflected/refracted at a spherical boundary surface. The validity of the proposed approach as an analysis and design tool is demonstrated using an axis-symmetrical system for illustration purpose. It is found that these two matrices can provide the search direction used by existing gradient-based schemes to minimize the merit function during the optimization stage of the optical system design process. It is also possible to make the optical system designs more automatic, if the image defects can be extracted from the Jacobian and Hessian matrices of a skew ray.

  4. Characterizing the surface charge of clay minerals with Atomic Force Microscope (AFM

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2017-05-01

    Full Text Available The engineering properties of clayey soils, including fluid permeability, erosion resistance and cohesive strength, are quite different from those of non-cohesive soils. This is mainly due to their small platy particle shape and the surrounding diffuse double layer structure. By using the Atomic Force Microscopy (AFM, the surface topography and the interaction force between the silicon dioxide tip and the kaolinite/montmorillonite clay minerals have been measured in the 1.0 mM NaCl solution at neutral pH. From this, the surface potential of the clay minerals is determined by mathematical regression analyses using the DLVO model. The length/thickness ratio of kaolinite and montmorillonite particles measured ranges from 8.0 to 15.0. The surface potential and surface charge density vary with particles. The average surface potential of montmorillonite is −62.8 ± 10.6 mV, and the average surface potential of kaolinite is −40.9 ± 15.5 mV. The measured results help to understand the clay sediment interaction, and will be used to develop interparticle force model to simulate sediment transport during erosion process.

  5. An investigation of force, surface roughness and chip in surface grinding of SKD 11 tool steel using minimum quantity lubrication-MQL technique

    Science.gov (United States)

    Soepangkat, Bobby O. P.; Agustin, H. C. Kis; Subiyanto, H.

    2017-06-01

    This research aimed to analyze the viability of the minimum quantity of lubricant (MQL) technique towards normal force, tangential force, surface roughness and chip formation in surface grinding of SKD 11 tool steel. The three surface grinding parameters were varied including the type of cooling method (MQL and dry), table speed, and depth of cut. Based on statistical analysis, depth of cut is the most influential factor which affects the four responses in both dry and MQL grinding. MQL could reduce normal force and tangential force considerably, but produce higher surface roughness. In MQL grinding, the chips removal took place mostly by shearing and fracturing.

  6. Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

    Science.gov (United States)

    Lu, Jiahui; Wang, Guanghui

    2016-11-01

    We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell’s equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators. Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

  7. Surface structure of polymers and their model compounds observed by atomic force microscopy

    NARCIS (Netherlands)

    Stocker, W.; Bickmann, B.; Magonov, S.N.; Cantow, H.J.; Lotz, B.; Wittmann, J.C.; Moller, M.; Möller, M.

    1992-01-01

    Results of atomic force microscopy (AFM) of normal alkanes, polyethylene, isotactic polypropylene and of a diblock copolymer are presented. Various types of surfaces - naturally and epitaxially grown on different substrates - have been examined from hundreds of nanometers down to the atomic scale.

  8. Theoretical investigation of van der Waals forces between solid surfaces at nanoscales

    NARCIS (Netherlands)

    Kudryavtsev, Y.V.; Gelinck, E.R.M.; Fischer, H.R.

    2009-01-01

    A theoretical investigation of van der Waals forces acting between two solid silicon surfaces at separations from zero to approximately 20 nm is presented. We focused our efforts on the analysis of different factors that can cause deviations from the classical pressure-distance dependence p ∼ 1/D3.

  9. Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow

    DEFF Research Database (Denmark)

    Kristensen, M F; Zeng, G; Neu, T R

    2017-01-01

    The bovine milk protein osteopontin (OPN) may be an efficient means to prevent bacterial adhesion to dental tissues and control biofilm formation. This study sought to determine to what extent OPN impacts adhesion forces and surface attachment of different bacterial strains involved in dental...

  10. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  11. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction...

  12. Heat transfer tests under forced convection conditions with high wettable heater surface

    Energy Technology Data Exchange (ETDEWEB)

    Mitsutake, Toru; Morooka, Shin-ichi; Miura, Shigeru; Akiba, Miyuki; Sato, Hisaki; Shirakawa, Ken-etsu; Oosato, Tetsuo; Yamamoto, Seiji [Toshiba Co., Kanagawa (Japan)

    2002-07-01

    Under forced convection and atmospheric pressure conditions, heat transfer tests were performed using the annulus channel of a heater rod with highly wettable surface. Improvement of boiling heat transfer requires that the cooling liquid can contact the heating surface, or a high-wettability heating surface, even if a vapor bubble layer is generated on the surface. >From this point of view, high-wettable heating surface was studied. As oxide semiconductor-coated materials are highly-wettable, we made a TiO{sub 2} coated heater rod. TiO{sub 2} coated surface has a high-wettability, in terms of contact angle and Leidenfrost temperature. The boiling curve was measured with and without TiO coated surface. The results showed difference between with and without TiO{sub 2} coating. TiO{sub 2} coating rod showed lower boiling onset heat flux, wider nucleate boiling region and higher critical heat flux than without coating. In summary, high wettablity heater surface produced higher boiling heat transfer characteristics under forced convection conditions. (author)

  13. Application of the extended boundary condition method to Monte Carlo simulations of scattering of waves by two-dimensional random rough surfaces

    Science.gov (United States)

    Tsang, L.; Lou, S. H.; Chan, C. H.

    1991-01-01

    The extended boundary condition method is applied to Monte Carlo simulations of two-dimensional random rough surface scattering. The numerical results are compared with one-dimensional random rough surfaces obtained from the finite-element method. It is found that the mean scattered intensity from two-dimensional rough surfaces differs from that of one dimension for rough surfaces with large slopes.

  14. Why must a solar forcing be larger than a CO2 forcing to cause the same global mean surface temperature change?

    International Nuclear Information System (INIS)

    Modak, Angshuman; Bala, Govindasamy; Cao, Long; Caldeira, Ken

    2016-01-01

    Many previous studies have shown that a solar forcing must be greater than a CO 2 forcing to cause the same global mean surface temperature change but a process-based mechanistic explanation is lacking in the literature. In this study, we investigate the physical mechanisms responsible for the lower efficacy of solar forcing compared to an equivalent CO 2 forcing. Radiative forcing is estimated using the Gregory method that regresses top-of-atmosphere (TOA) radiative flux against the change in global mean surface temperature. For a 2.25% increase in solar irradiance that produces the same long term global mean warming as a doubling of CO 2 concentration, we estimate that the efficacy of solar forcing is ∼80% relative to CO 2 forcing in the NCAR CAM5 climate model. We find that the fast tropospheric cloud adjustments especially over land and stratospheric warming in the first four months cause the slope of the regression between the TOA net radiative fluxes and surface temperature to be steeper in the solar forcing case. This steeper slope indicates a stronger net negative feedback and hence correspondingly a larger solar forcing than CO 2 forcing for the same equilibrium surface warming. Evidence is provided that rapid land surface warming in the first four months sets up a land-sea contrast that markedly affects radiative forcing and the climate feedback parameter over this period. We also confirm the robustness of our results using simulations from the Hadley Centre climate model. Our study has important implications for estimating the magnitude of climate change caused by volcanic eruptions, solar geoengineering and past climate changes caused by change in solar irradiance such as Maunder minimum. (letter)

  15. Irrigation Induced Surface Cooling in the Context of Modern and Increased Greenhouse Gas Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Puma, Michael J.; Krakauer, Nir Y.

    2010-01-01

    There is evidence that expected warming trends from increased greenhouse gas (GHG) forcing have been locally masked by irrigation induced cooling, and it is uncertain how the magnitude of this irrigation masking effect will change in the future. Using an irrigation dataset integrated into a global general circulation model, we investigate the equilibrium magnitude of irrigation induced cooling under modern (Year 2000) and increased (A1B Scenario, Year 2050) GHG forcing, using modern irrigation rates in both scenarios. For the modern scenario, the cooling is largest over North America, India, the Middle East, and East Asia. Under increased GHG forcing, this cooling effect largely disappears over North America, remains relatively unchanged over India, and intensifies over parts of China and the Middle East. For North America, irrigation significantly increases precipitation under modern GHG forcing; this precipitation enhancement largely disappears under A1B forcing, reducing total latent heat fluxes and the overall irrigation cooling effect. Over India, irrigation rates are high enough to keep pace with increased evaporative demand from the increased GHG forcing and the magnitude of the cooling is maintained. Over China, GHG forcing reduces precipitation and shifts the region to a drier evaporative regime, leading to a relatively increased impact of additional water from irrigation on the surface energy balance. Irrigation enhances precipitation in the Middle East under increased GHG forcing, increasing total latent heat fluxes and enhancing the irrigation cooling effect. Ultimately, the extent to which irrigation will continue to compensate for the warming from increased GHG forcing will primarily depend on changes in the background evaporative regime, secondary irrigation effects (e.g. clouds, precipitation), and the ability of societies to maintain (or increase) current irrigation rates.

  16. Study of Near-Surface Models in Large-Eddy Simulations of a Neutrally Stratified Atmospheric Boundary Layer

    Science.gov (United States)

    Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.

    2004-01-01

    Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.

  17. Modeling of Hydrophobic Surfaces by the Stokes Problem With the Stick–Slip Boundary Conditions

    Czech Academy of Sciences Publication Activity Database

    Kučera, R.; Šátek, V.; Haslinger, Jaroslav; Fialová, S.; Pochylý, F.

    2017-01-01

    Roč. 139, č. 1 (2017), č. článku 011202. ISSN 0098-2202 Institutional support: RVO:68145535 Keywords : algebra * boundary conditions * hydrophobicity * Lagrange multipliers * Navier Stokes equations Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.437, year: 2016 http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=2536532

  18. The Exponential Map of the Group of Area-Preserving Diffeomorphisms of a Surface with Boundary

    Science.gov (United States)

    Benn, James; Misiołek, Gerard; Preston, Stephen C.

    2018-03-01

    We prove that the Riemannian exponential map of the right-invariant L 2 metric on the group of volume-preserving diffeomorphisms of a two-dimensional manifold with a nonempty boundary is a nonlinear Fredholm map of index zero.

  19. Unsteady boundary layer flow of Carreau fluid over a permeable stretching surface

    Directory of Open Access Journals (Sweden)

    Masood Khan

    Full Text Available The main objective of the present work is to present numerical solutions of the unsteady two-dimensional boundary layer flow and heat transfer of an incompressible Carreau fluid over a permeable time dependent stretching sheet. Using suitable transformations, the time dependent partial differential equations are converted to non-linear ordinary differential equations. The numerical results of these non-linear ordinary differential equations with associated boundary conditions are determined by using the bvp4c function in MATLAB. The numerical results are investigated for the emerging parameters namely, the unsteadiness parameter A, mass transfer parameter S, Prandtl number Pr, power law index n and Weissenberg number We. It is important to state that both the momentum and thermal boundary layer thicknesses diminish with increasing values of the unsteadiness and mass transfer parameters. A comparison with the available literature in limiting cases is performed and found to be in good agreement. Keywords: Unsteady boundary layer flow, Carreau fluid, Heat transfer, Numerical solutions

  20. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  1. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Sun Lanlan; Zhao Dongxu; Zhang Yue; Xu Fugang; Li Zhuang

    2011-01-01

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/μL. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  2. Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

    Science.gov (United States)

    Mesa, Fredy; Chamorro, William; Vallejo, William; Baier, Robert; Dittrich, Thomas; Grimm, Alexander; Lux-Steiner, Martha C

    2012-01-01

    Summary Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased. PMID:22497001

  3. Surface force measurements at the basal planes of ordered kaolinite particles.

    Science.gov (United States)

    Gupta, Vishal; Miller, Jan D

    2010-04-15

    An experimental procedure is presented to order kaolinite particles on substrates for interrogation of the two basal plane surfaces by atomic force microscopy. Surface force measurements were performed between a silicon nitride tip and each of the two faces (silica tetrahedral face and alumina octahedral face) of kaolinite in 1 mM KCl solution at pH 4, 5, 6, 8 and 10, using atomic force microscopy. The colloidal force measurements reveal that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH8. Such measurements have not been reported previously and the results suggest that the iso-electric point of the silica tetrahedral face is at pHkaolinite carry a permanent negative charge due to minor substitution of Al(3+) for Si(4+) in the silica tetrahedral layer, and suggest some surface charge dependency of the two faces with respect to solution pH. With this new information it may be possible to further explain the electrokinetic behavior of kaolinite particles, and their interactions in aqueous suspensions. 2010 Elsevier Inc. All rights reserved.

  4. Measuring the force of single protein molecule detachment from surfaces with AFM.

    Science.gov (United States)

    Tsapikouni, Theodora S; Missirlis, Yannis F

    2010-01-01

    Atomic force microscopy (AFM) was used to measure the non-specific detachment force of single fibrinogen molecules from glass surfaces. The identification of single unbinding events was based on the characteristics of the parabolic curves, recorded during the stretching of protein molecules. Fibrinogen molecules were covalently bound to Si(3)N(4) AFM tips, previously modified with 3-aminopropyl-dimethyl-ethoxysilane, through a homobifunctional poly(ethylene glycol) linker bearing two hydroxysulfosuccinimide esters. The most probable detachment force was found to be 210 pN, when the tip was retracting with a velocity of 1400 nm/s, while the distribution of the detachment distances indicated that the fibrinogen chain can be elongated beyond the length of the physical conformation before detachment. The dependence of the most probable detachment force on the loading rate was examined and the dynamics of fibrinogen binding to the surface were found amenable to the simple expression of the Bell-Evans theory. The theory's expansion, however, by incorporating the concept of the rupture of parallel residue-surface bonds could only describe the detachment of fibrinogen for a small number of such bonds. Finally, the mathematical expression of the Worm-Like Chain model was used to fit the stretching curves before rupture and two interpretations are suggested for the description of the AFM curves with multiple detachment events.

  5. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    Science.gov (United States)

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  6. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R., E-mail: pbandaru@ucsd.edu [Department of Mechanical Engineering, University of California, San Diego, La Jolla, CA (United States)

    2016-08-15

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  7. Relation between attractive force and keeper surface characteristics of iron-neodymium-boron magnetic attachment systems.

    Science.gov (United States)

    Ohashi, Norihisa; Koizumi, Hiroyasu; Ishikawa, Yumi; Furuchi, Mika; Matsumura, Hideo; Tanoue, Naomi

    2007-05-01

    The purpose of this study was to evaluate the influence of heating, cast bonding, and subsequent polishing procedures on attractive force of magnetic attachments. Two magnetic attachment systems with keepers of different chemical compositions (Hicorexslim 3013, 447J1; Magfit EX400, AUM20) were employed. Keepers examined were: (1) untreated; (2) heated; (3) cast-bonded with Ag-Pd alloy; (4) cast-bonded with Ag-Pd alloy and polished; (5) cast-bonded with gold alloy; and (6) cast-bonded with gold alloy and polished. Attractive force was determined with a force gauge, and surface structure was evaluated with scanning laser and electron microscopes. Attractive force of the Hicorex system was reduced by cast bonding, whereas that of the Magfit system was reduced by both heating and cast bonding. However, attractive force of both systems was somewhat recovered through the polishing process. Based on the findings of this study, it was suggested that careful polishing after cast bonding was indispensable to the recovery of attractive force for both attachment systems.

  8. Microscopic calculation of the sticking force for nanodrops on an inclined surface

    Science.gov (United States)

    Berim, Gersh O.; Ruckenstein, Eli

    2008-09-01

    A two-dimensional nanodrop on a vertical rough solid surface is examined using a nonlocal density functional theory in the presence of gravity. The roughness is modeled either as a chemical inhomogeneity of the solid or as a result of the decoration with pillars of a smooth homogeneous surface. From the obtained fluid density distribution, the sticking force, which opposes the drop motion along an inclined surface, and the contact angles on the lower and upper leading edges of the drop are calculated. On the basis of these results, it is shown that the macroscopically derived equation for a drop in equilibrium on an inclined surface is also applicable to nanodrops. The liquid-vapor surface tension involved in this equation was calculated for various specific cases, and the values obtained are of the same order of magnitude as those obtained in macroscopic experiments.

  9. Mesoscopic nonequilibrium thermodynamics of solid surfaces and interfaces with triple junction singularities under the capillary and electromigration forces in anisotropic three-dimensional space.

    Science.gov (United States)

    Ogurtani, Tarik Omer

    2006-04-14

    A theory of irreversible thermodynamics of curved surfaces and interfaces with triple junction singularities is elaborated to give a full consideration of the effects of the specific surface Gibbs free energy anisotropy in addition to the diffusional anisotropy, on the morphological evolution of surfaces and interfaces in crystalline solids. To entangle this intricate problem, the internal entropy production associated with arbitrary virtual displacements of triple junction and ordinary points on the interfacial layers, embedded in a multicomponent, multiphase, anisotropic composite continuum system, is formulated by adapting a mesoscopic description of the orientation dependence of the chemical potentials in terms of the rotational degree of freedom of individual microelements. The rate of local internal entropy production resulted generalized forces and conjugated fluxes not only for the grain boundary triple junction transversal and longitudinal movements, but also for the ordinary points. The natural combination of the mesoscopic approach coupled with the rigorous theory of irreversible thermodynamics developed previously by the global entropy production hypothesis yields a well-posed, nonlinear, moving free-boundary value problem in two-dimensional (2D) space, as a unified theory. The results obtained for 2D space are generalized into the three-dimensional continuum by utilizing the invariant properties of the vector operators in connection with the descriptions of curved surfaces in differential geometry. This mathematical model after normalization and scaling procedures may be easily adapted for computer simulation studies without introducing any additional phenomenological system parameters (the generalized mobilities), other than the enlarged concept of the surface stiffness.

  10. Measurements on hydrophobic and hydrophilic surfaces using a porous gamma alumina nanoparticle aggregate mounted on Atomic Force Microscopy cantilevers

    NARCIS (Netherlands)

    Das, Theerthankar; Becker, Thomas; Nair, Balagopal N.

    2010-01-01

    Atomic Force Microscopy (AFM) measurements are extensively used for a detailed understanding of molecular and surface forces. In this study, we present a technique for measuring such forces, using an AFM cantilever attached with a porous gamma alumina nanoparticle aggregate. The modified cantilever

  11. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    Science.gov (United States)

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.

  12. Implementation and Testing of Advanced Surface Boundary Conditions Over Complex Terrain in A Semi-idealized Model

    Science.gov (United States)

    Li, Y.; Epifanio, C.

    2017-12-01

    In numerical prediction models, the interaction between the Earth's surface and the atmosphere is typically accounted for in terms of surface layer parameterizations, whose main job is to specify turbulent fluxes of heat, moisture and momentum across the lower boundary of the model domain. In the case of a domain with complex geometry, implementing the flux conditions (particularly the tensor stress condition) at the boundary can be somewhat subtle, and there has been a notable history of confusion in the CFD community over how to formulate and impose such conditions generally. In the atmospheric case, modelers have largely been able to avoid these complications, at least until recently, by assuming that the terrain resolved at typical model resolutions is fairly gentle, in the sense of having relatively shallow slopes. This in turn allows the flux conditions to be imposed as if the lower boundary were essentially flat. Unfortunately, while this flat-boundary assumption is acceptable for coarse resolutions, as grids become more refined and the geometry of the resolved terrain becomes more complex, the appproach is less justified. With this in mind, the goal of our present study is to explore the implementation and usage of the full, unapproximated version of the turbulent flux/stress conditions in atmospheric models, thus taking full account of the complex geometry of the resolved terrain. We propose to implement the conditions using a semi-idealized model developed by Epifanio (2007), in which the discretized boundary conditions are reduced to a large, sparse-matrix problem. The emphasis will be on fluxes of momentum, as the tensor nature of this flux makes the associated stress condition more difficult to impose, although the flux conditions for heat and moisture will be considered as well. With the resulotion of 90 meters, some of the results show that the typical differences between flat-boundary cases and full/stress cases are on the order of 10%, with extreme

  13. Surface studies of iridium-alloy grain boundaries associated with weld cracking

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1982-01-01

    Plutonium-238 oxide fuel pellets for the General Purpose Heat Source (GPHS) Radioisotopic Thermoelectric Generators to be used on the NASA Galileo Mission to Jupiter and the International Solar Polar Mission are produced and encapsulated in iridium alloy at the Savannah River Plant (SRP). Underbead cracks occasionally occur in the girth weld on the iridium-alloy-clad vent sets in the region where the gas tungsten arc is quenched. Grain-boundary structures and compositions were characterized by scanning electron microscopy/x-ray energy spectroscopy, electron microprobe analysis and scanning Auger microprobe analysis to determine the cause of weld quench area cracking. Results suggest that weld quench area cracking may be caused by gas porosity or liquation in the grain boundaries

  14. The Kelvin-Helmholtz instability at the magnetopause and inner boundary layer surface

    Science.gov (United States)

    Ogilvie, Keith W.; Fitzenreiter, Richard J.

    1989-01-01

    Observations by the vector electron spectrometer on the ISEE 1 spacecraft are used to directly check the incompressible hydromagnetic stability condition given by Hasegawa (1975), which indicates how stability is influenced by the velocity shear, density ratio, magnetic field, and the direction of the wave vector of the unstable wave mode. The magnetopause is generally found to be stable, by a large margin. In contrast, many cases of marginal stability or instability are found across density transitions in, and at the inner edge of, the boundary layer for wave vectors in plausible directions. It thus appears that the Kelvin-Helmholtz instability is of importance at the inner edge of the magnetospheric boundary layer, as predicted by MHP theory.

  15. Numerical simulations of conjugate convection combined with surface thermal radiation using an Immersed-Boundary Method

    International Nuclear Information System (INIS)

    Favre, F.; Colomer, G.; Lehmkuhl, O.; Oliva, A.

    2016-01-01

    Dynamic and thermal interaction problems involving fluids and solids were studied through a finite volume-based Navier-Stokes solver, combined with immersed-boundary techniques and the net radiation method. Source terms were included in the momentum and energy equations to enforce the non-slip condition and the conjugate boundary condition including the radiative heat exchange. Code validation was performed through the simulation of two cases from the literature: conjugate natural convection in a square cavity with a conducting side wall; and a cubical cavity with conducting walls and a heat source. The accuracy of the methodology and the validation of the inclusion of moving bodies into the simulation was performed via a theoretical case (paper)

  16. Multigrid methods for flow transition in three-dimensional boundary layers with surface roughness

    Science.gov (United States)

    Liu, Chaoqun; Liu, Zhining; Mccormick, Steve

    1993-01-01

    The efficient multilevel adaptive method has been successfully applied to perform direct numerical simulations (DNS) of flow transition in 3-D channels and 3-D boundary layers with 2-D and 3-D isolated and distributed roughness in a curvilinear coordinate system. A fourth-order finite difference technique on stretched and staggered grids, a fully-implicit time marching scheme, a semi-coarsening multigrid method associated with line distributive relaxation scheme, and an improved outflow boundary-condition treatment, which needs only a very short buffer domain to damp all order-one wave reflections, are developed. These approaches make the multigrid DNS code very accurate and efficient. This allows us not only to be able to do spatial DNS for the 3-D channel and flat plate at low computational costs, but also to do spatial DNS for transition in the 3-D boundary layer with 3-D single and multiple roughness elements, which would have extremely high computational costs with conventional methods. Numerical results show good agreement with the linear stability theory, the secondary instability theory, and a number of laboratory experiments. The contribution of isolated and distributed roughness to transition is analyzed.

  17. The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice

    NARCIS (Netherlands)

    Sterk, H.A.M.; Steeneveld, G.J.; Holtslag, A.A.M.

    2013-01-01

    To enhance the understanding of the impact of small-scale processes in the polar climate, this study focuses on the relative role of snow-surface coupling, radiation and turbulent mixing in an Arctic stable boundary layer. We extend the GABLS1 (GEWEX Atmospheric Boundary-Layer Study 1) model

  18. INVESTIGATION OF POLYMER SURFACES USING SCANNING FORCE MICROSCOPY (SFM) - A NEW DIRECT LOOK ON OLD POLYMER PROBLEMS

    NARCIS (Netherlands)

    GRIM, PCM; BROUWER, HJ; SEYGER, RM; OOSTERGETEL, GT; BERGSMASCHUTTER, WG; ARNBERG, AC; GUTHNER, P; DRANSFELD, K; HADZIIOANNOU, G

    In this contribution, the general concepts of force microscopy will be presented together with its application to polymer surfaces (Ref.1). Several examples will be presented to illustrate that force microscopy is a powerful and promising tool for investigation of (polymer) surfaces, such as the

  19. Near field evidence of backward surface plasmon polaritons on negative index material boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Grunhut, Vivian [Facultad de Ingeniería, Universidad Austral (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)

    2016-12-09

    Highlights: • Electromagnetic scattering from a localized defect on a NIM surface is presented. • The electromagnetic response strongly depends on the SPPs excited. • Near field distribution reveals the forward or backward character of SPPs excited. - Abstract: We present a detailed analysis about the electromagnetic response of a metamaterial surface with a localized defect. The excitation of electromagnetic surface waves leads to a near-field distribution showing a periodic dependence along the metamaterial surface. We find that this periodic pattern provides a direct demonstration of the forward or backward surface wave propagation.

  20. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Caneva Soumetz, Federico [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Saenz, Jose F. [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy); Pastorino, Laura; Ruggiero, Carmelina [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Nosi, Daniele [Department of Anatomy, Histology and Forensic Medicine, Bio-photonic Laboratory, University of Florence, viale Morgagni, 85 Firenze, CAP 50134 Florence (Italy); Raiteri, Roberto, E-mail: rr@unige.it [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy)

    2010-03-15

    The transforming growth factor {beta}1 (TGF-{beta}1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-{beta}1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the {beta}1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-{beta}1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the {beta}1 integrin subunit was enhanced by TGF-{beta}1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-{beta}1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.

  1. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy

    International Nuclear Information System (INIS)

    Caneva Soumetz, Federico; Saenz, Jose F.; Pastorino, Laura; Ruggiero, Carmelina; Nosi, Daniele; Raiteri, Roberto

    2010-01-01

    The transforming growth factor β1 (TGF-β1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-β1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the β1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-β1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the β1 integrin subunit was enhanced by TGF-β1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-β1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.

  2. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M [ORNL

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  3. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  4. Dynamical image potential and induced forces for charged particles moving parallel to a solid surface

    International Nuclear Information System (INIS)

    Arista, N.R.

    1994-01-01

    The dynamical image potential and ensuing forces induced by a charged particle moving parallel to a solid surface are investigated by using a dielectric formulation for semi-infinite dispersive media. The adiabatic behavior of the field in the asymptotic range is discussed in a general way using a multipole expansion. Several calculations illustrate the behavior of the field using both a simple model, where the surface response is approximated by a single plasma resonance, and a more realistic representation of the medium based upon the empirical information on the optical constants for various solids (Al, Cu, Ag, and Au). The model parameters may be adjusted to provide very good agreement with the optical-data integrations of the stopping and lateral forces on the moving charge. On the other hand, important differences in the description of the wake potential using either the simple plasma resonance model, or the optical-data representation, are obtained for Cu, Ag, and Au

  5. Non-additivity of molecule-surface van der Waals potentials from force measurements

    Science.gov (United States)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-11-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  6. Non-additivity of molecule-surface van der Waals potentials from force measurements.

    Science.gov (United States)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F Stefan

    2014-11-26

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  7. On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    International Nuclear Information System (INIS)

    Kim, W J; Brown-Hayes, M; Brownell, J H; Dalvit, D A R; Onofrio, R

    2009-01-01

    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 μm separation range. The measurements are obtained by performing electrostatic calibrations followed by a residuals analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrization-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.

  8. Evolution of a Western Arctic Ice Ocean Boundary Layer and Mixed Layer Across a Developing Thermodynamically Forced Marginal Ice Zone

    Science.gov (United States)

    2016-09-01

    on measurements made by the turbulence package on AOFB 33. For shortwave radiative input (QH), we set the fractional solar radiation terms in Eqn...2.6. Air-Ocean Shortwave Radiation Overview at MIZ C2 .............................77 Figure 2.7. Ice-Ocean Boundary Layer Processes Overview at MIZ C2...2005 (Perovich et al. 2007a). Identifying the processes that drive SIZ expansion requires an understanding of how this incoming solar radiation is

  9. Atomic force microscopy of surface topography of nitrogen plasma treated steel

    CERN Document Server

    Mahboubi, F

    2002-01-01

    Nitriding of steels, using plasma environments has been practiced for many years. A lot of efforts have been put on developing new methods, such as plasma immersion ion implantation (Pl sup 3) and radio frequency (RF) plasma nitriding, for mass transfer of nitrogen into the surface of the work piece. This article presents the results obtained from an in depth investigation of the surface morphology of the treated samples, carried out using an atomic force microscope. Samples from a microalloyed steel, were treated by both methods for 5 hours at different temperatures ranging from 350 to 550 sup d eg sup C in 75% N sub 2 -25% H sub 2 atmosphere. It has been found that the surface of the samples treated by PI sup 3 technique, although having more favorable properties, were rougher than the surfaces treated by RF plasma nitriding.

  10. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy

    Science.gov (United States)

    Cuenot, Stéphane; Frétigny, Christian; Demoustier-Champagne, Sophie; Nysten, Bernard

    2004-04-01

    The effect of reduced size on the elastic properties measured on silver and lead nanowires and on polypyrrole nanotubes with an outer diameter ranging between 30 and 250 nm is presented and discussed. Resonant-contact atomic force microscopy (AFM) is used to measure their apparent elastic modulus. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The latter is comparable to the macroscopic modulus of the materials. The increase of the apparent elastic modulus for the smaller diameters is attributed to surface tension effects. The surface tension of the probed material may be experimentally determined from these AFM measurements.

  11. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    P. Josse

    1999-04-01

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  12. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  13. Surface radiation budget and cloud radiative forcing from pan-Arctic Baseline Surface Radiation Network (BSRN) stations

    Science.gov (United States)

    Cox, C. J.; Long, C. N.; Crepinsek, S.; Maturilli, M.; McComiskey, A. C.; Miller, N.; Konopleva-Akish, E.; Kustov, V. Y.; Shupe, M.; Steffen, K.; Stanitski, D.; Starkweather, S.; Stone, R. S.; Uttal, T.; Walden, V. P.

    2015-12-01

    Monitoring and forecasting of the seasonal melt of snow and ice in the Arctic is a priority need as Arctic climate changes and the number of stakeholders increases. Seasonal snow and ice melt represent the largest annual perturbation to the surface net radiation budget. Radiative interactions between clouds, the surface and the atmosphere play an important role on scales of minutes to decades, but models insufficiently represent cloud properties. Furthermore, the surface radiation budget is not directly observed from satellite platforms. Direct observations from the surface must therefore be used to document the physical and correlative relationships between variables, and to provide a baseline target for data sets with more comprehensive spatial representation. High-quality, continuous, long-term observations of radiative fluxes are collected from land stations surrounding the Arctic Basin as part of the Baseline Surface Radiation Network (BSRN). The International Arctic Systems for Observing the Atmosphere (IASOA) facilitates international collaboration amongst station scientists and other topic experts for the purposes of streamlining pan-Arctic synthesis studies. The IASOA Radiation Working Group is currently analyzing the data acquired from Barrow, Alaska (1993-2015), Alert, Canada (2004-2014), Ny-Ålesund, Svalbard (1993-2015), Eureka, Canada (2007-2015), and Tiksi, Russia (2011-2015). The measurements include upwelling and downwelling longwave and shortwave fluxes, as well as direct and diffuse shortwave flux components, and surface meteorology. The observations are post-processed using the Radiative Flux Analysis (RFA) method, which, in addition to basic quality control, provides value-added metrics such as cloud radiative forcing (CRF), optical depth, and fractional sky cover. Here, we present a spatial and temporal analysis of the surface radiation budget and calculated variables from the pan-Arctic BSRN stations. Particular attention is given to inter

  14. Nonlinear effects of anthropogenic aerosol and urban land surface forcing on spring climate in eastern China

    Science.gov (United States)

    Deng, Jiechun; Xu, Haiming; Zhang, Leying

    2016-05-01

    Anthropogenic aerosols and urban land cover change induce opposite thermal effects on the atmosphere near surface as well as in the troposphere. One can think of these anthropogenic effects as composed of two parts: the individual effect due to an individual anthropogenic forcing and the nonlinear effects resulting from the coexistence of two forcing factors. In this study, we explored the role of such nonlinear effects in affecting East Asian climate, as well as individual forcing effects, using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Atmospheric responses were simulated by including anthropogenic aerosol emission only, urban cover only, or the combination of the two, over eastern China. Results showed that nonlinear responses were different from any effects by an individual forcing or the linear combination of individual responses. The nonlinear interaction could generate cold horizontal temperature advection to cool the troposphere, which induced anomalous subsidence along the Yangtze River Valley (YRV). This anomalous vertical motion, together with a weakened low-level southwesterly, favored below-normal (above-normal) rainfall over the YRV (southern China), shifting the spring rain belt southward. The resultant diabatic cooling, in turn, amplified the anomalous descent and further decreased tropospheric temperature over the YRV, forming a positive feedback loop to maintain the nonlinear effects. Consequently, the nonlinear effects acted to reduce the climate anomalies from a simple linear combination of two individual effects and played an important role in regional responses to one anthropogenic forcing when the other is prescribed.

  15. Spot Surface Labeling of Magnetic Microbeads and Application in Biological Force Measurements

    Science.gov (United States)

    Estes, Ashley; O'Brien, E. Tim; Hill, David; Superfine, Richard

    2006-11-01

    Biological force measurements on single molecules and macromolecular structures often use microbeads for the application of force. These techniques are often complicated by multiple attachments and nonspecific binding. In one set of experiments, we are applying a magnetic force microscope that allows us to pull on magnetic beads attached to ciliated human bronchial epithelial cells. These experiments provide a means to measure the stall force of cilia and understand how cilia propel fluids. However, because we are using beads with diameters of one and 2.8 microns, and the diameter of human airway cilia is approximately 200 nm, we cannot be assured that the bead is bound to a single cilium. To address this, we have developed a sputter coating technique to block the biotin binding capability of the streptavidin labeled bead over its entire surface except for a small spot. These beads may also have applications in other biological experiments such as DNA force experiments in which binding of a single target to an individual bead is critical.

  16. Contact-free calibration of an asymmetric multi-layer interferometer for the surface force balance

    Science.gov (United States)

    Balabajew, Marco; van Engers, Christian D.; Perkin, Susan

    2017-12-01

    The Surface Force Balance (SFB, also known as Surface Force Apparatus, SFA) has provided important insights into many phenomena within the field of colloid and interface science. The technique relies on using white light interferometry to measure the distance between surfaces with sub-nanometer resolution. Up until now, the determination of the distance between the surfaces required a so-called "contact calibration," an invasive procedure during which the surfaces are brought into mechanical contact. This requirement for a contact calibration limits the range of experimental systems that can be investigated with SFB, for example, it precludes experiments with substrates that would be irreversibly modified or damaged by mechanical contact. Here we present a non-invasive method to measure absolute distances without performing a contact calibration. The method can be used for both "symmetric" and "asymmetric" systems. We foresee many applications for this general approach including, most immediately, experiments using single layer graphene electrodes in the SFB which may be damaged when brought into mechanical contact.

  17. Regional climate model assessment of the urban land-surface forcing over central Europe

    Directory of Open Access Journals (Sweden)

    P. Huszar

    2014-11-01

    Full Text Available For the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single-layer Urban Canopy Model (SLUCM. A set of experiments was performed over the period of 2005–2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer as well as on the boundary layer height (increases up to 50 m. Urbanization further influences surface wind with a winter decrease up to −0.6 m s−1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s−1. Urban surfaces significantly reduce the humidity over the surface. This impacts the simulated summer precipitation rate, showing a decrease over cities of up to −2 mm day−1. Significant temperature increases are simulated over higher altitudes as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment, such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity. Statistically significant impacts are modelled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant

  18. The study of dynamic force acted on water strider leg departing from water surface

    Directory of Open Access Journals (Sweden)

    Peiyuan Sun

    2018-01-01

    Full Text Available Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  19. The study of dynamic force acted on water strider leg departing from water surface

    Science.gov (United States)

    Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong

    2018-01-01

    Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  20. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    Science.gov (United States)

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-03-22

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  1. Quantification of the lift height for magnetic force microscopy using 3D surface parameters

    International Nuclear Information System (INIS)

    Nenadovic, M.; Strbac, S.; Rakocevic, Z.

    2010-01-01

    In this work, the quantitative conditions for the lift height for imaging of the magnetic field using magnetic force microscopy (MFM) were optimized. A thin cobalt film deposited on a monocrystalline silicon (1 0 0) substrate with a thickness of 55 nm and a thin nickel film deposited on a glass with a thickness of 600 nm were used as samples. The topography of the surface was acquired by tapping mode atomic force microscopy (AFM), while MFM imaging was performed in the lift mode for various lift heights. It was determined that the sensitivity of the measurements was about 10% higher for images obtained at a scan angle of 90 o compared to a scan angle of 0 deg. Therefore, the three-dimensional surface texture parameters, i.e., average roughness, skewness, kurtosis and the bearing ratio, were determined in dependence on the lift height for a scan angle of 90 deg. The results of the analyses of the surface parameters showed that the influence of the substrate and its texture on the magnetic force image could be neglected for lift heights above 40 nm and that the upper lift height limit is 100 nm. It was determined that the optimal values of the lift heights were in the range from 60 to 80 nm, depending on the nature of the sample and on the type of the tip used.

  2. The Effects of Land Surface Heating And Roughness Elements on the Structure and Scaling Laws of Atmospheric Boundary Layer Turbulence

    Science.gov (United States)

    Ghannam, Khaled

    The atmospheric boundary-layer is the lowest 500-2000 m of the Earth's atmosphere where much of human life and ecosystem services reside. This layer responds to land surface (e.g. buoyancy and roughness elements) and slowly evolving free tropospheric (e.g. temperature and humidity lapse rates) conditions that arguably mediate and modulate biosphere-atmosphere interactions. Such response often results in spatially- and temporally-rich turbulence scales that continue to be the subject of inquiry given their significance to a plethora of applications in environmental sciences and engineering. The work here addresses key aspects of boundary layer turbulence with a focus on the role of roughness elements (vegetation canopies) and buoyancy (surface heating) in modifying the well-studied picture of shear-dominated wall-bounded turbulence. A combination of laboratory channel experiments, field experiments, and numerical simulations are used to explore three distinct aspects of boundary layer turbulence. These are: • The concept of ergodicity in turbulence statistics within canopies: It has been long-recognized that homogeneous and stationary turbulence is ergodic, but less is known about the effects of inhomogeneity introduced by the presence of canopies on the turbulence statistics. A high resolution (temporal and spatial) flume experiment is used here to test the convergence of the time statistics of turbulent scalar concentrations to their ensemble (spatio-temporal) counterpart. The findings indicate that within-canopy scalar statistics have a tendency to be ergodic, mostly in shallow layers (close to canopy top) where the sweeping flow events appear to randomize the statistics. Deeper layers within the canopy are dominated by low-dimensional (quasi-deterministic) von Karman vortices that tend to break ergodicity. • Scaling laws of turbulent velocity spectra and structure functions in near-surface atmospheric turbulence: the existence of a logarithmic scaling in the

  3. Frequency response of rectangular plates with free-edge openings and carlings subjected to point excitation force and enforced displacement at boundaries

    Directory of Open Access Journals (Sweden)

    Dae Seung Cho

    2016-03-01

    Full Text Available In this paper, a numerical procedure for the natural vibration analysis of plates with openings and carlings based on the assumed mode method is extended to assess their forced response. Firstly, natural response of plates with openings and carlings is calculated from the eigenvalue equation derived by using Lagrange's equation of motion. Secondly, the mode superposition method is applied to determine frequency response. Mindlin theory is adopted for plate modelling and the effect of openings is taken into account by subtracting their potential and kinetic energies from the corresponding plate energies. Natural and frequency response of plates with openings and carlings subjected to point excitation force and enforced acceleration at boundaries, respectively, is analysed by using developed in-house code. For the validation of the developed method and the code, extensive numerical results, related to plates with different opening shape, carlings and boundary conditions, are compared with numerical data from the relevant literature and with finite element solutions obtained by general finite element tool.

  4. The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range

    Science.gov (United States)

    Kaser, L.; Patton, E. G.; Pfister, G. G.; Weinheimer, A. J.; Montzka, D. D.; Flocke, F.; Thompson, A. M.; Stauffer, R. M.; Halliday, H. S.

    2017-06-01

    Ozone concentrations at the Earth's surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPÉ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of 5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of -1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10-15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6-0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.

  5. Detecting kinematic boundary surfaces in phase space and particle mass measurements in SUSY-like events

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-19

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...

  6. Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2017-06-19

    We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is t...

  7. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities.

    Science.gov (United States)

    Bright, Ryan M; Zhao, Kaiguang; Jackson, Robert B; Cherubini, Francesco

    2015-09-01

    By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region. © 2015 John Wiley & Sons Ltd.

  8. Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Markus Moosmann

    2017-08-01

    Full Text Available Underwater air retention of superhydrophobic hierarchically structured surfaces is of increasing interest for technical applications. Persistent air layers (the Salvinia effect are known from biological species, for example, the floating fern Salvinia or the backswimmer Notonecta. The use of this concept opens up new possibilities for biomimetic technical applications in the fields of drag reduction, antifouling, anticorrosion and under water sensing. Current knowledge regarding the shape of the air–water interface is insufficient, although it plays a crucial role with regards to stability in terms of diffusion and dynamic conditions. Optical methods for imaging the interface have been limited to the micrometer regime. In this work, we utilized a nondynamic and nondestructive atomic force microscopy (AFM method to image the interface of submerged superhydrophobic structures with nanometer resolution. Up to now, only the interfaces of nanobubbles (acting almost like solids have been characterized by AFM at these dimensions. In this study, we show for the first time that it is possible to image the air–water interface of submerged hierarchically structured (micro-pillars surfaces by AFM in contact mode. By scanning with zero resulting force applied, we were able to determine the shape of the interface and thereby the depth of the water penetrating into the underlying structures. This approach is complemented by a second method: the interface was scanned with different applied force loads and the height for zero force was determined by linear regression. These methods open new possibilities for the investigation of air-retaining surfaces, specifically in terms of measuring contact area and in comparing different coatings, and thus will lead to the development of new applications.

  9. The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification

    OpenAIRE

    Sun, S; Eisenman, I; Stewart, AL

    2016-01-01

    ©2016. American Geophysical Union. All Rights Reserved. Previous studies have suggested that the global ocean density stratification below ∼3000 m is approximately set by its direct connection to the Southern Ocean surface density, which in turn is constrained by the atmosphere. Here the role of Southern Ocean surface forcing in glacial-interglacial stratification changes is investigated using a comprehensive climate model and an idealized conceptual model. Southern Ocean surface forcing is f...

  10. Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces.

    Science.gov (United States)

    Endlein, Thomas; Ji, Aihong; Samuel, Diana; Yao, Ning; Wang, Zhongyuan; Barnes, W Jon P; Federle, Walter; Kappl, Michael; Dai, Zhendong

    2013-03-06

    To live and clamber about in an arboreal habitat, tree frogs have evolved adhesive pads on their toes. In addition, they often have long and slender legs to facilitate not only long jumps, but also to bridge gaps between leaves when climbing. Both adhesive pads and long limbs are used in conjunction, as we will show in this study. Previous research has shown that tree frogs change from a crouched posture (where the limbs are close to the body) to a sprawled posture with extended limbs when clinging on to steeper inclines such as vertical or overhanging slopes. We investigated this change in posture in White's tree frogs (Litoria caerulea) by challenging the frogs to cling onto a tiltable platform. The platform consisted of an array of 24 three-dimensional force transducers, which allowed us to measure the ground reaction forces of the frogs during a tilt. Starting from a crouched resting position, the normal forces on the forelimbs changed sign and became increasingly negative with increasing slope angle of the platform. At about 106° ± 12°, tilt of the platform the frogs reacted by extending one or two of their limbs outwards. At a steeper angle (131° ± 11°), the frogs spread out all their limbs sideways, with the hindlimbs stretched out to their maximum reach. Although the extension was strongest in the lateral direction, limbs were significantly extended in the fore-aft direction as well. With the extension of the limbs, the lateral forces increased relative to the normal forces. The large contribution of the in-plane forces helped to keep the angle between the force vector and the platform small. The Kendall theory for the peeling of adhesive tape predicts that smaller peel angles lead to higher attachment forces. We compare our data with the predictions of the Kendall model and discuss possible implications of the sliding of the pads on the surface. The forces were indeed much larger for smaller angles and thus can be explained by peeling theory.

  11. Investigation of pumping mechanism for non-Newtonian blood flow with AC electrothermal forces in a microchannel by hybrid boundary element method and immersed boundary-lattice Boltzmann method.

    Science.gov (United States)

    Ren, Qinlong

    2018-02-10

    Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electro-osmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non-Newtonian blood flow using ACET forces is investigated in detail by modeling its multi-physics process with hybrid boundary element method (BEM) and immersed boundary-lattice Boltzmann method (IB-LBM). The Carreau-Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency-dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy

    KAUST Repository

    Shearer, Melinda J.

    2018-02-01

    Nanomaterials are interesting for a variety of applications, such as optoelectronics and photovoltaics. However, they often have spatial heterogeneity, i.e. composition change or physical change in the topography or structure, which can lead to varying properties that would influence their applications. New techniques must be developed to understand and correlate spatial heterogeneity with changes in electronic properties. Here we highlight the technique of surface photovoltage-Kelvin probe force microscopy (SPV-KFM), which is a modified version of non-contact atomic force microscopy capable of imaging not only the topography and surface potential, but also the surface photovoltage on the nanoscale. We demonstrate its utility in probing monolayer WSe2-MoS2 lateral heterostructures, which form an ultrathin p-n junction promising for photovoltaic and optoelectronic applications. We show surface photovoltage maps highlighting the different photoresponse of the two material regions as a result of the effective charge separation across this junction. Additionally, we study the variations between different heterostructure flakes and emphasize the importance of controlling the synthesis and transfer of these materials to obtain consistent properties and measurements.

  13. Coastal Boundary Layer Characteristics of Wind, Turbulence, and Surface Roughness Parameter over the Thumba Equatorial Rocket Launching Station, India

    Directory of Open Access Journals (Sweden)

    K. V. S. Namboodiri

    2014-01-01

    Full Text Available The study discusses the features of wind, turbulence, and surface roughness parameter over the coastal boundary layer of the Peninsular Indian Station, Thumba Equatorial Rocket Launching Station (TERLS. Every 5 min measurements from an ultrasonic anemometer at 3.3 m agl from May 2007 to December 2012 are used for this work. Symmetries in mesoscale turbulence, stress off-wind angle computations, structure of scalar wind, resultant wind direction, momentum flux (M, Obukhov length (L, frictional velocity (u*, w-component, turbulent heat flux (H, drag coefficient (CD, turbulent intensities, standard deviation of wind directions (σθ, wind steadiness factor-σθ relationship, bivariate normal distribution (BND wind model, surface roughness parameter (z0, z0 and wind direction (θ relationship, and variation of z0 with the Indian South West monsoon activity are discussed.

  14. The role of atmospheric boundary layer-surface interactions on the development of coastal fronts

    Directory of Open Access Journals (Sweden)

    D. Malda

    2007-03-01

    Full Text Available Frictional convergence and thermal difference between land and sea surface are the two surface conditions that govern the intensity and evolution of a coastal front. By means of the mesoscale model MM5, we investigate the influence of these two processes on wind patterns, temperature and precipitation amounts, associated with a coastal front, observed on the west coast of The Netherlands in the night between 12 and 13 August 2004. The mesoscale model MM5 is further compared with available observations and the results of two operational models (ECMWF and HIRLAM. HIRLAM is not capable to reproduce the coastal front, whereas ECMWF and MM5 both calculate precipitation for the coastal region. The precipitation pattern, calculated by MM5, agrees satisfactorily with the accumulated radar image. The failure of HIRLAM is mainly due to a different stream pattern at the surface and consequently, a different behaviour of the frictional convergence at the coastline.

    The sensitivity analysis of frictional convergence is carried out with the MM5 model, by varying land surface roughness length (z0. For the sensitivity analysis of thermal difference between sea and land surface, we changed the sea surface temperature (SST. Increasing surface roughness implies stronger convergence near the surface and consequently stronger upward motions and intensification of the development of the coastal front. Setting land surface roughness equal to the sea surface roughness means an elimination of frictional convergence and results in a diminishing coastal front structure of the precipitation pattern. The simulation with a high SST produces much precipitation above the sea, but less precipitation in the coastal area above land. A small increment of the SST results in larger precipitation amounts above the sea; above land increments are calculated for areas near the coast. A decrease of the SST shifts the precipitation maxima inland, although the

  15. The role of atmospheric boundary layer-surface interactions on the development of coastal fronts

    Directory of Open Access Journals (Sweden)

    D. Malda

    2007-03-01

    Full Text Available Frictional convergence and thermal difference between land and sea surface are the two surface conditions that govern the intensity and evolution of a coastal front. By means of the mesoscale model MM5, we investigate the influence of these two processes on wind patterns, temperature and precipitation amounts, associated with a coastal front, observed on the west coast of The Netherlands in the night between 12 and 13 August 2004. The mesoscale model MM5 is further compared with available observations and the results of two operational models (ECMWF and HIRLAM. HIRLAM is not capable to reproduce the coastal front, whereas ECMWF and MM5 both calculate precipitation for the coastal region. The precipitation pattern, calculated by MM5, agrees satisfactorily with the accumulated radar image. The failure of HIRLAM is mainly due to a different stream pattern at the surface and consequently, a different behaviour of the frictional convergence at the coastline. The sensitivity analysis of frictional convergence is carried out with the MM5 model, by varying land surface roughness length (z0. For the sensitivity analysis of thermal difference between sea and land surface, we changed the sea surface temperature (SST. Increasing surface roughness implies stronger convergence near the surface and consequently stronger upward motions and intensification of the development of the coastal front. Setting land surface roughness equal to the sea surface roughness means an elimination of frictional convergence and results in a diminishing coastal front structure of the precipitation pattern. The simulation with a high SST produces much precipitation above the sea, but less precipitation in the coastal area above land. A small increment of the SST results in larger precipitation amounts above the sea; above land increments are calculated for areas near the coast. A decrease of the SST shifts the precipitation maxima inland, although the precipitation amounts

  16. Cyclic Symmetry Finite Element Forced Response Analysis of a Distortion-Tolerant Fan with Boundary Layer Ingestion

    Science.gov (United States)

    Min, J. B.; Reddy, T. S. R.; Bakhle, M. A.; Coroneos, R. M.; Stefko, G. L.; Provenza, A. J.; Duffy, K. P.

    2018-01-01

    Accurate prediction of the blade vibration stress is required to determine overall durability of fan blade design under Boundary Layer Ingestion (BLI) distorted flow environments. Traditional single blade modeling technique is incapable of representing accurate modeling for the entire rotor blade system subject to complex dynamic loading behaviors and vibrations in distorted flow conditions. A particular objective of our work was to develop a high-fidelity full-rotor aeromechanics analysis capability for a system subjected to a distorted inlet flow by applying cyclic symmetry finite element modeling methodology. This reduction modeling method allows computationally very efficient analysis using a small periodic section of the full rotor blade system. Experimental testing by the use of the 8-foot by 6-foot Supersonic Wind Tunnel Test facility at NASA Glenn Research Center was also carried out for the system designated as the Boundary Layer Ingesting Inlet/Distortion-Tolerant Fan (BLI2DTF) technology development. The results obtained from the present numerical modeling technique were evaluated with those of the wind tunnel experimental test, toward establishing a computationally efficient aeromechanics analysis modeling tool facilitating for analyses of the full rotor blade systems subjected to a distorted inlet flow conditions. Fairly good correlations were achieved hence our computational modeling techniques were fully demonstrated. The analysis result showed that the safety margin requirement set in the BLI2DTF fan blade design provided a sufficient margin with respect to the operating speed range.

  17. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  18. Atomic force microscopy studies of bioprocess engineering surfaces - imaging, interactions and mechanical properties mediating bacterial adhesion.

    Science.gov (United States)

    James, Sean A; Hilal, Nidal; Wright, Chris J

    2017-07-01

    The detrimental effect of bacterial biofilms on process engineering surfaces is well documented. Thus, interest in the early stages of bacterial biofilm formation; in particular bacterial adhesion and the production of anti-fouling coatings has grown exponentially as a field. During this time, Atomic force microscopy (AFM) has emerged as a critical tool for the evaluation of bacterial adhesion. Due to its versatility AFM offers not only insight into the topographical landscape and mechanical properties of the engineering surfaces, but elucidates, through direct quantification the topographical and biomechnical properties of the foulants The aim of this review is to collate the current research on bacterial adhesion, both theoretical and practical, and outline how AFM as a technique is uniquely equipped to provide further insight into the nanoscale world at the bioprocess engineering surface. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Helicity injection with moving vacuum--plasma boundary with arbitrary flux surfaces

    International Nuclear Information System (INIS)

    Bellan, P.M.

    1988-01-01

    If a toroidal plasma has arbitrary nested magnetic flux surfaces and a moving plasma--vacuum interface, then any helicity injected by modulating the magnetic fields is simply consumed by an increase in helicity dissipation due to the modulated fields

  20. The Influence of Long-Range Surface Forces on the Contact Angle of Nanometric Droplets and Bubbles.

    Science.gov (United States)

    Stocco, Antonio; Möhwald, Helmuth

    2015-11-03

    For a droplet or a bubble of dimensions below 100 nm, long-range surface forces such as long-range van der Waals forces can compete with capillarity, which leads to a size dependence of the contact angle. This is discussed in this work, where we also show that the effect cannot simply be described by a normalized line tension. We calculate interfacial profiles for typical values of van der Waals forces and discuss the role of long-range surface forces on the contact angle of nanobubbles and nanodrops.

  1. Grain boundary defects initiation at the outer surface of dissimilar welds: corrosion mechanism studies

    International Nuclear Information System (INIS)

    De Bouvier, O.; Yrieix, B.

    1995-11-01

    Dissimilar welds located on the primary coolant system of the French PWR I plants exhibit grain boundary defects in the true austenitic zones of the first buttering layer. If grain boundaries reach the interface, they can extend to the martensitic band. Those defects are filled with compact oxides. In addition, the ferritic base metal presents some pits along the interface. Nowadays, three mechanisms are proposed to explain the initiation of those defects: stress corrosion cracking, intergranular corrosion and high temperature intergranular oxidation. This paper is dealing with the study of the mechanisms involved in the corrosion phenomenon. Intergranular corrosion tests performed on different materials show that only the first buttering layer, even with some δ ferrite, is sensitized. The results of stress corrosion cracking tests in water solutions show that intergranular cracking is possible on a bulk material representative of the first buttering layer. It is unlikely on actual dissimilar welds where the ferritic base metal protects the first austenitic layer by galvanic coupling. Therefore, the stress corrosion cracking assumption cannot explain the initiation of the defects in aqueous environment. The results of the investigations and of the corrosion studies led to the conclusion that the atmosphere could be the only possible aggressive environment. This conclusion is based on natural atmospheric exposure and accelerated corrosion tests carried out with SO 2 additions in controlled atmosphere. They both induce a severe intergranular corrosion on true sensitized austenitic materials. This corrosion studies cannot conclude definitively on the causes of the defect initiation on field, but they show that the atmospheric corrosion could produce intergranular attacks in the pure austenitic zones of the first buttering layer of the dissimilar welds and that this corrosion is stress assisted. (author). 1 ref., 6 figs., 4 tabs

  2. Multiparametric Kelvin Probe Force Microscopy for the Simultaneous Mapping of Surface Potential and Nanomechanical Properties.

    Science.gov (United States)

    Xie, Hui; Zhang, Hao; Hussain, Danish; Meng, Xianghe; Song, Jianmin; Sun, Lining

    2017-03-21

    We report high-resolution multiparametric kelvin probe force microscopy (MP-KPFM) measurements for the simultaneous quantitative mapping of the contact potential difference (CPD) and nanomechanical properties of the sample in single-pass mode. This method combines functionalities of the force-distance-based atomic force microscopy and amplitude-modulation (AM) KPFM to perform measurements in single-pass mode. During the tip-sample approach-and-retract cycle, nanomechanical measurements are performed for the retract part of nanoindentation, and the CPD is measured by the lifted probe with a constant tip-sample distance. We compare the performance of the proposed method with the conventional KPFMs by mapping the CPD of multilayer graphene deposited on n-doped silicon, and the results demonstrate that MP-KPFM has comparable performance to AM-KPFM. In addition, the experimental results of a custom-fabricated polymer grating with heterogeneous surfaces validate the multiparametric imaging capability of the MP-KPFM. This method can have potential applications in finding the inherent link between nanomechanical properties and the surface potential of the materials, such as the quantification of the electromechanical response of the deformed piezoelectric materials.

  3. Sensitivity of Horn of Africa Rainfall to Regional Sea Surface Temperature Forcing

    Directory of Open Access Journals (Sweden)

    Zewdu T. Segele

    2015-05-01

    Full Text Available The Abdus Salam International Center for Theoretical Physics (ICTP version 4.4 Regional Climate Model (RegCM4 is used to investigate the rainfall response to cooler/warmer sea surface temperature anomaly (SSTA forcing in the Indian and Atlantic Oceans. The effect of SSTA forcing in a specific ocean basin is identified by ensemble, averaging 10 individual simulations in which a constant or linearly zonally varying SSTA is prescribed in individual basins while specifying the 1971–2000 monthly varying climatological sea surface temperature (SST across the remaining model domain. The nonlinear rainfall response to SSTA amplitude also is investigated by separately specifying +1K, +2K, and +4K SSTA forcing in the Atlantic and Indian Oceans. The simulation results show that warm SSTs over the entire Indian Ocean produce drier conditions across the larger Blue Nile catchment, whereas warming ≥ +2K generates large positive rainfall anomalies exceeding 10 mm·day−1 over drought prone regions of Northeastern Ethiopia. However, the June–September rainy season tends to be wetter (drier when the SST warming (cooling is limited to either the Northern or Southern Indian Ocean. Wet rainy seasons generally are characterized by deepening of the monsoon trough, east of 40°E, intensification of the Mascarene high, strengthening of the Somali low level jet and the tropical easterly jet, enhanced zonal and meridional vertically integrated moisture fluxes, and steeply vertically decreasing moist static energy. The opposite conditions hold for dry monsoon seasons.

  4. Do climate simulations from models forced by averaged sea surface temperatures represent actual dynamics?

    Directory of Open Access Journals (Sweden)

    P. J. Roebber

    1997-01-01

    Full Text Available Recently atmospheric general circulation models (AGCMs forced by observed sea surface temperatures (SSTs have offered the possibility of studying climate variability over periods ranging from years to decades. Such models represent and alternative to fully coupled asynchronous atmosphere ocean models whose long term integration remains problematic. Here, the degree of the approximation represented by this approach is investigated from a conceptual point of view by comparing the dynamical properties of a low order coupled atmosphere-ocean model to those of the atmospheric component of the same model when forced with monthly values of SST derived from the fully coupled simulation. The low order modelling approach is undertaken with the expectation that it may reveal general principles concerning the dynamical behaviour of the forced versus coupled systems; it is not expected that such an approach will determine the details of these differences, for which higher order modelling studies will be required. We discover that even though attractor (global averages may be similar, local dynamics and the resultant variability and predictability characteristics differ substantially. These results suggest that conclusions concerning regional climatic variability (in time as well as space drawn from forced modelling approaches may be contaminated by an inherently unquantifiable error. It is therefore recommended that this possibility be carefully investigated using state-of-the-art coupled AGCMs.

  5. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    Science.gov (United States)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  6. Synthesis of ZnS nanoparticles on a solid surface: Atomic force microscopy study

    International Nuclear Information System (INIS)

    Yuan Huizhen; Lian Wenping; Song Yonghai; Chen Shouhui; Chen Lili; Wang Li

    2010-01-01

    In this work, zinc sulfide (ZnS) nanoparticles had been synthesized on DNA network/mica and mica surface, respectively. The synthesis was carried out by first dropping a mixture of zinc acetate and DNA on a mica surface for the formation of the DNA networks or zinc acetate solution on a mica surface, and subsequently transferring the sample into a heated thiourea solution. The Zn 2+ adsorbed on DNA network/mica or mica surface would react with S 2- produced from thiourea and form ZnS nanoparticles on these surfaces. X-ray diffraction and atomic force microscopy (AFM) were used to characterize the ZnS nanoparticles in detail. AFM results showed that ZnS nanoparticles distributed uniformly on the mica surface and deposited preferentially on DNA networks. It was also found that the size and density of ZnS nanoparticles could be effectively controlled by adjusting reaction temperature and the concentration of Zn 2+ or DNA. The possible growth mechanisms have been discussed in detail.

  7. Roll Damping Derivatives from Generalized Lifting-Surface Theory and Wind Tunnel Forced-Oscillation Tests

    Science.gov (United States)

    Pototzky, Anthony S; Murphy, Patrick C.

    2014-01-01

    Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.

  8. Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing

    Science.gov (United States)

    Emanuel, Kerry; Sobel, Adam

    2013-06-01

    A single-column model is used to estimate the equilibrium response of sea surface temperature (SST), precipitation, and several variables related to tropical cyclone (TC) activity to changes in both local and global forcing. Response to local forcing is estimated using the weak temperature gradient (WTG) approximation. The surface temperature is calculated using a thin slab ocean so as to maintain surface energy balance. Forcing is varied by changing the solar constant, atmospheric CO2 concentration, surface wind speed, and the convergence of upper ocean heat flux. These experiments show that precipitation and variables related to TC activity are not unique functions of SST on time scales long enough for surface energy balance to be maintained. Precipitation varies inversely with SST in experiments in which the surface wind speed is varied. At low wind speed, the WTG experiments reveal a regime of high relative SST and low precipitation, which is maintained by increased transmission of longwave radiation from the surface directly to space through a dry troposphere. In general, TC potential intensity and genesis potential vary much more rapidly with SST in response to varying surface wind speed than in response to other forcings. Local changes in TC potential intensity are highly correlated with local changes in SST, showing that relative SST is a good proxy for potential intensity when forcing is strictly local, but it cannot capture potentially important changes in potential intensity that arise from global-scale changes in forcing.

  9. Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.

    Science.gov (United States)

    Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina

    2014-04-22

    In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.

  10. The influence of tool path strategies on cutting force and surface texture during ball end milling of low curvature convex surfaces.

    Science.gov (United States)

    Shajari, Shaghayegh; Sadeghi, Mohammad Hossein; Hassanpour, Hamed

    2014-01-01

    Advancement in machining technology of curved surfaces for various engineering applications is increasing. Various methodologies and computer tools have been developed by the manufacturers to improve efficiency of freeform surface machining. Selection of the right sets of cutter path strategies and appropriate cutting conditions is extremely important in ensuring high productivity rate, meeting the better quality level, and lower cutting forces. In this paper, cutting force as a new decision criterion for the best selection of tool paths on convex surfaces is presented. Therefore, this work aims at studying and analyzing different finishing strategies to assess their influence on surface texture, cutting forces, and machining time. Design and analysis of experiments are performed by means of Taguchi technique and analysis of variance. In addition, the significant parameters affecting the cutting force in each strategy are introduced. Machining strategies employed include raster, 3D-offset, radial, and spiral. The cutting parameters were feed rate, cutting speed, and step over. The experiments were carried out on low curvature convex surfaces of stainless steel 1.4903. The conclusion is that radial strategy provokes the best surface texture and the lowest cutting forces and spiral strategy signifies the worst surface texture and the highest cutting forces.

  11. Effect of roughness lengths on surface energy and the planetary boundary layer height over high-altitude Ngoring Lake

    Science.gov (United States)

    Li, Zhaoguo; Lyu, Shihua; Wen, Lijuan; Zhao, Lin; Meng, Xianhong; Ao, Yinhuan

    2017-08-01

    The special climate environment creates a distinctive air-lake interaction characteristic in the Tibetan Plateau (TP) lakes, where the variations of surface roughness lengths also differ somewhat from those of other regions. However, how different categories of roughness lengths affect the lake surface energy exchange and the planetary boundary layer height (PBLH) remains unclear in the TP lakes. In this study, we used a tuned Weather Research and Forecasting (WRF) model version 3.6.1 to investigate the responses of the freeze-up date, turbulent fluxes, meteorological variables, and PBLH to surface roughness length variations in Ngoring Lake. Of all meteorological variables, the lake surface temperature responded to roughness length variations most sensitively; increasing roughness lengths can put the lake freeze-up date forward. The effect of momentum roughness length on wind speed was significantly affected by the fetch length. The increase in the roughness length for heat can induce the increment of the nightly PBLH in most months, especially for the central lake area in autumn. The primary factors that contribute to sensible heat flux (H) and latent heat flux (LE) were the roughness lengths for heat and momentum during the ice-free period, respectively. Increasing roughness length for heat can increase the nightly PBLH, and decreasing roughness length for moisture can also promote growth of the PBLH, but there was no obvious correlation between the momentum roughness length and the PBLH.

  12. Impact of groundwater capillary rises as lower boundary conditions for soil moisture in a land surface model

    Science.gov (United States)

    Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence

    2014-05-01

    Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.

  13. Covalent and density-controlled surface immobilization of E-cadherin for adhesion force spectroscopy.

    Directory of Open Access Journals (Sweden)

    Dagmar Fichtner

    Full Text Available E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique. Extracellular (EC fragments of E-cadherin fused to the SNAP-tag were covalently bound to self-assembled monolayers (SAM of thiols carrying benzylguanine (BG head groups. The adhesive functionality of the different E-cadherin surfaces was then assessed using cell spreading assays and single-cell (SCSF and single-molecule (SMSF force spectroscopy. We demonstrate that an E-cadherin construct containing only the first and second outmost EC domain (E1-2 is not sufficient for mediating cell adhesion and yields only low single cadherin-cadherin adhesion forces. In contrast, a construct containing all five EC domains (E1-5 efficiently promotes cell spreading and generates strong single cadherin and cell adhesion forces. By varying the concentration of BG head groups within the SAM we determined a lateral distance of 5-11 nm for optimal E-cadherin functionality. Integrating the results from SCMS and SMSF experiments furthermore demonstrated that the dissolution of E-cadherin adhesion contacts involves a sequential unbinding of individual cadherin receptors rather than the sudden rupture of larger cadherin receptor clusters. Our method of covalent, oriented and density-controlled E-cadherin immobilization thus provides a novel and versatile platform to study molecular mechanisms underlying cadherin-mediated cell adhesion under defined experimental conditions.

  14. Nanoscale fabrication and characterization of chemically modified silicon surfaces using conductive atomic force microscopy in liquids

    Science.gov (United States)

    Kinser, Christopher Reagan

    This dissertation examines the modification and characterization of hydrogen-terminated silicon surfaces in organic liquids. Conductive atomic force microscope (cAFM) lithography is used to fabricate structures with sub-100 nm line width on H:Si(111) in n-alkanes, 1-alkenes, and 1-alkanes. Nanopatterning is accomplished by applying a positive (n-alkanes and 1-alkenes) or a negative (1-alkanes) voltage pulse to the silicon substrate with the cAFM tip connected to ground. The chemical and kinetic behavior of the patterned features is characterized using AFM, lateral force microscopy, time-of-flight secondary ion mass spectroscopy (TOF SIMS), and chemical etching. Features patterned in hexadecane, 1-octadecene, and undecylenic acid methyl ester exhibited chemical and kinetic behavior consistent with AFM field induced oxidation. The oxide features are formed due to capillary condensation of a water meniscus at the AFM tip-sample junction. A space-charge limited growth model is proposed to explain the observed growth kinetics. Surface modifications produced in the presence of neat 1-dodecyne and 1-octadecyne exhibited a reduced lateral force compared to the background H:Si(111) substrate and were resistant to a hydrofluoric acid etch, characteristics which indicate that the patterned features are not due to field induced oxidation and which are consistent with the presence of the methyl-terminated 1-alkyne bound directly to the silicon surface through silicon-carbon bonds. In addition to the cAFM patterned surfaces, full monolayers of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromoethyl ester (SAM-2) were grown on H:Si(111) substrates using ultraviolet light. The structure and chemistry of the monolayers were characterized using AFM, TOF SIMS, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity (XRR), X-ray standing waves (XSW), and X-ray fluorescence (XRF). These combined analyses provide evidence that SAM-1 and SAM-2 form dense monolayers

  15. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Brümmer, B.

    2007-01-01

    Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at H phi vs phi re (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to ...

  16. Quantification of mineral behavior in four dimensions: Grain boundary and substructure dynamics in salt

    DEFF Research Database (Denmark)

    Borthwick, V. E.; Schmidt, Søren; Piazolo, S.

    2012-01-01

    been questioned. Our study shows that, although the nature of recovery processes are the same, the area swept by subgrain boundaries is up to 5 times larger in the volume than observed on the surface. We suggest this discrepancy is due to enhanced drag force on subgrain boundaries by thermal surface...

  17. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning...... of the AFM probe in space. This means that the limited measuring range of the AFM (40 mu m x 40 mu m x 2.7 um) can be extended by positioning the AFM probe using the movements of the CMM axes (400 mm x 100 mm x 75 mm). Evaluation of the background noise by determining the Sa value of an optical fiat gave...

  18. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio, E-mail: ogino-toshio-rx@ynu.ac.jp

    2017-02-28

    Highlights: • Local hydrophobicity of phase-separated sapphire (0001) surfaces was investigated. • These surfaces are featured by coexistence of hydrophilic and hydrophobic domains. • Each domain was characterized by colloidal probe atomic force microscopy in water. • Both domains can be distinguished by adhesive forces of the probe to the surfaces. • Characterization in aqueous environment is important in bio-applications of sapphire. - Abstract: Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO{sub 2} probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  19. Surface field of forces and protein adsorption behavior of poly(hydroxyethylmethacrylate) films deposited from plasma.

    Science.gov (United States)

    Morra, M; Cassinelli, C

    1995-01-01

    Polymeric films were deposited from hydroxyethylmethacrylate (HEMA) plasma on non-woven poly(butyleneterephtalate) (PBT) filter materials. To test the effect of deposition conditions on surface properties, film were deposited using a constant monomer flow rate and a discharge power ranging from 40-100 W. Surface composition and surface energetics were evaluated by Electron Spectroscopy for Chemical Analysis (ESCA) and contact angle measurement, respectively. Albumin (Alb) and fibrinogen (Fg) adsorption from single protein solutions to the plasma-coated filters was measured. Results illustrate the marked effects of the deposition condition on the surface composition, the surface field of forces, and the protein adsorption behavior. The latter is modeled by the application of the Good-van Oss-Chaudhury theory of Lewis acid-base contribution to interfacial energetics. Materials endowed with widely different properties are obtained from the same monomer and different deposition conditions, a result that must be taken into account both in the production step, to assure constant quality, and in the development of specifically tailored materials.

  20. On Possible Similarity Solutions for Three-Dimensional Incompressible Laminar Boundary-Layer Flows Over Developable Surfaces and with Proportional Mainstream Velocity Components

    Science.gov (United States)

    Hansen, Arthur G.

    1958-01-01

    Analysis is presented on the possible similarity solutions of the three-dimensional, laminar, incompressible, boundary-layer equations referred to orthogonal, curvilinear coordinate systems. Requirements of the existence of similarity solutions are obtained for the following: flow over developable surface and flow over non-developable surfaces with proportional mainstream velocity components.

  1. Impact of surface texture on natural convection boundary layer of nanofluid

    Directory of Open Access Journals (Sweden)

    Mehmood Ahmer

    2018-01-01

    Full Text Available Heat transfer characteristics are investigated in natural convection flow of water-based nanofluid near a vertical rough wall. The analysis considers five different nanoparticles: silver, copper, alumina, magnetite, and silica. The concentration has been limited between 0-20% for all types of nanoparticle. The governing equations are modeled using the Boussinesq approximation and Tiwari and Das models are utilized to represent the nanofluid. The analysis examines the effects of nanoparticle volume fraction, type of nanofluid, and the wavy surface geometry parameter on the skin friction and Nusselt number. It is observed that for a given nanofluid the skin friction and Nusselt number can be maximized via an appropriate tuning of the wavy surface geometry parameter along with the selection of suitable nanoparticle. Particular to this study cooper is observed to be more productive towards the flow and heat transfer enhancement. In total the metallic oxides are found to be less beneficial as compared to the pure metals.

  2. Possible role of electric forces in bromine activation during polar boundary layer ozone depletion and aerosol formation events

    Science.gov (United States)

    Tkachenko, Ekaterina

    2017-11-01

    This work presents a hypothesis about the mechanism of bromine activation during polar boundary layer ozone depletion events (ODEs) as well as the mechanism of aerosol formation from the frost flowers. The author suggests that ODEs may be initiated by the electric-field gradients created at the sharp tips of ice formations as a result of the combined effect of various environmental conditions. According to the author's estimates, these electric-field gradients may be sufficient for the onset of point or corona discharges followed by generation of high local concentrations of the reactive oxygen species and initiation of free-radical and redox reactions. This process may be responsible for the formation of seed bromine which then undergoes further amplification by HOBr-driven bromine explosion. The proposed hypothesis may explain a variety of environmental conditions and substrates as well as poor reproducibility of ODE initiation observed by researchers in the field. According to the author's estimates, high wind can generate sufficient conditions for overcoming the Rayleigh limit and thus can initiate ;spraying; of charged aerosol nanoparticles. These charged aerosol nanoparticles can provoke formation of free radicals, turning the ODE on. One can also envision a possible emission of halogen ion as a result of the ;electrospray; process analogous to that of electrospray ionization mass-spectrometry.

  3. Turbulent Flow and Large Surface Wave Events in the Marine Boundary Layers

    Science.gov (United States)

    2013-08-22

    AIAA, 2011 • Gulf of Mexico Oil Spill and Ecosystem Conference, 2013 150 s time averaged streamlines (U,W) Vectors and Pressure over Incipient...observations78 of the sea surface from field campaigns ( Romero and Melville 2010). Although our main79 computational target is building a turbulence resolving...the LES; this observational data is generally unknown. In the absence of a full description228 of the wavefield kinematics and dynamics (e.g., Romero

  4. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  5. Experimental Research and Mathematical Modeling of Parameters Effecting on Cutting Force and SurfaceRoughness in CNC Turning Process

    Science.gov (United States)

    Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.

    2018-01-01

    In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.

  6. Application of Displacement Height and Surface Roughness Length to Determination Boundary Layer Development Length over Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Xiangju Cheng

    2014-12-01

    Full Text Available One of the most uncertain parameters in stepped spillway design is the length (from the crest of boundary layer development. The normal velocity profiles responding to the steps as bed roughness are investigated in the developing non-aerated flow region. A detailed analysis of the logarithmic vertical velocity profiles on stepped spillways is conducted through experimental data to verify the computational code and numerical experiments to expand the data available. To determine development length, the hydraulic roughness and displacement thickness, along with the shear velocity, are needed. This includes determining displacement height d and surface roughness length z0 and the relationship of d and z0 to the step geometry. The results show that the hydraulic roughness height ks is the primary factor on which d and z0 depend. In different step height, step width, discharge and intake Froude number, the relations d/ks = 0.22–0.27, z0/ks = 0.06–0.1 and d/z0 = 2.2–4 result in a good estimate. Using the computational code and numerical experiments, air inception will occur over stepped spillway flow as long as the Bauer-defined boundary layer thickness is between 0.72 and 0.79.

  7. Acid-base properties and the chemical imaging of surface-bound functional groups studied with scanning force microscopy

    NARCIS (Netherlands)

    van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this paper we present a scanning force microscopy (SFM) study on electrostatic and hydrogen-bonding interactions between chemically modified SFM probes and surface functional groups. pH-dependent adhesion force measurements in aqueous media between various ionizable functional groups showed a

  8. Micro and nanostructural characterization of surfaces and interfaces of Portland cement mortars using atomic force microscopy

    International Nuclear Information System (INIS)

    Barreto, M.F.O.; Brandao, P.R.G.

    2014-01-01

    The characterization of Portland cement mortars is very important in the study the interfaces and surfaces that make up the system grout/ceramic block. In this sense, scanning electron microscopy and energy-dispersive (X-ray) spectrometer are important tools in investigating the morphology and chemical aspects. However, more detailed topographic information can be necessary in the characterization process. In this work, the aim was to characterize topographically surfaces and interfaces of mortars applied onto ceramic blocks. This has been accomplished by using the atomic force microscope (AFM) - MFP-3D-SA Asylum Research. To date, the results obtained from this research show that the characterization of cementitious materials with the help of AFM has an important contribution in the investigation and differentiation of hydrated calcium silicates (CSH), calcium hydroxide (Ca(OH)2, ettringite and calcium carbonate by providing morphological and micro topographical data, which are extremely important and reliable for the understanding of cementitious materials. (author)

  9. Surface morphology study on CdZnTe crystals by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, M.; George, M.A.; Burger, A.; Collins, W.E.; Silberman, E. [Fisk Univ., Nashville, TN (United States)

    1993-03-01

    The study of the crystal surface morphology of CdZnTe is important for the understanding of the fundamentals of crystal growth in order to improve the crystal quality which is essential in applications such as substrates for epitaxy or performance of devices, i.e., room temperature nuclear spectrometers. We present a first atomic force microscopy study on CdZnTe. Cleaved (110) surfaces were imaged in the ambient and an atomic layer step structure was revealed. The effects of thermal annealing on the atomic steps together with Te precipitation along these steps are discussed in terms of deformation due to stress relief and the diffusion of tellurium precipitates. 12 refs., 3 figs.

  10. Variations of Cloud and Radiative Properties of Boundary-layer and Deep Convective Systems with Sea Surface Temperature Anomalies

    Science.gov (United States)

    Xu, Kuan-Man

    2010-01-01

    Gridded monthly-mean satellite data contain compositing information from different cloud system types and clear-sky environments. To isolate the variations of cloud physical properties of an individual cloud system type with its environment, orbital data are needed. In this study, we will analyze the variations of cloud and radiative properties of boundary-layer clouds and deep convective cloud systems with sea surface temperature (SST) anomalies. We use Terra-CERES (Clouds and the Earth s Radiant Energy System) Level 2 data to classify distinct cloud objects defined by cloud-system types (deep convection, boundary-layer cumulus, stratocumulus and overcast clouds), sizes, geographic locations, and matched large-scale environments. This analysis method identifies a cloud object as a contiguous region of the Earth with a single dominant cloud-system type. It determines the shape and size of the cloud object from the satellite data and the cloud-system selection criteria. The statistical properties of the identified cloud objects are analyzed in terms of probability density functions (PDFs) of a single property or joint PDFs between two properties. The SST anomalies are defined as the differences from five-year annual-cycle means. Individual cloud objects are sorted into one of five equal size subsets, with the matched SST anomalies ranging from the most negative to the most positive values, for a given size category of deep convective cloud objects, boundary-layer cumulus, stratocumulus and overcast cloud objects. The PDFs of cloud and radiative properties for deep convective cloud objects (between 30 S and 30 N) are found to largely similar among the five SST anomaly subsets except for the lowest SST anomaly subset. The different characteristics from this SST anomaly subset may be related to some cloud objects resulting from equatorward movement of extratropical cloud systems. This result holds true for all three different size categories (measured by equivalent

  11. The Impact of Wind Speed Changes on the Surface Stress in the Weak-wind Stable Boundary Layer

    Science.gov (United States)

    Thomas, C. K.

    2015-12-01

    The behaviour of turbulent transport in the weak-wind stably stratified boundary layer is examined in terms of the non-stationarity of the wind field based upon field observations. Extensive sonic anemometer measurements from horizontal networks and vertical towers ranging from 12 to 20 m height were collected from three field programs in moderately sloped terrain with a varying degree of surface heterogeneity, namely the Shallow Cold Pool (SCP) and the Flow Over Snow Surfaces (FLOSS) II experiments in Colorado (USA), and the Advanced Canopy Resolution Experiment (ARCFLO) in Oregon (USA). The relationship of the friction velocity to the stratification and small non-stationary submeso motions is studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso-scale motions. Consequently, the roles of the wind speed and stratification are not adequately accommodated by a single non-dimensional combination, such as the bulk Richardson number. Howver, cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The latter may be significant in explaining the small-scale weak turbulence during stable stratification and deviations from conventional flux-profile relationships.

  12. Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris

    Science.gov (United States)

    Brunner, K.; Kukulka, T.; Proskurowski, G.; Law, K. L.

    2015-11-01

    This paper is the second of a two-part series that investigates passive buoyant tracers in the ocean surface boundary layer (OSBL). The first part examines the influence of equilibrium wind-waves on vertical tracer distributions, based on large eddy simulations (LESs) of the wave-averaged Navier-Stokes equation. Motivated by observations of buoyant microplastic marine debris (MPMD), this study applies the LES model and the parametric one-dimensional column model from part one to examine the vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture shear-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BWs). Model results are only consistent with observations of MPMD profiles and the relationship between surface concentrations and wind speed if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to 11 years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of 3-13.

  13. West-WRF Sensitivity to Sea Surface Temperature Boundary Condition in California Precipitation Forecasts of AR Related Events

    Science.gov (United States)

    Zhang, X.; Cornuelle, B. D.; Martin, A.; Weihs, R. R.; Ralph, M.

    2017-12-01

    We evaluated the merit in coastal precipitation forecasts by inclusion of high resolution sea surface temperature (SST) from blended satellite and in situ observations as a boundary condition (BC) to the Weather Research and Forecast (WRF) mesoscale model through simple perturbation tests. Our sensitivity analyses shows that the limited improvement of watershed scale precipitation forecast is credible. When only SST BC is changed, there is an uncertainty introduced because of artificial model state equilibrium and the nonlinear nature of the WRF model system. With the change of SST on the order of a fraction of a degree centigrade, we found that the part of random perturbation forecast response is saturated after 48 hours when it reaches to the order magnitude of the linear response. It is important to update the SST at a shorter time period, so that the independent excited nonlinear modes can cancel each other. The uncertainty in our SST configuration is quantitatively equivalent to adding to a spatially uncorrelated Guasian noise of zero mean and 0.05 degree of standard deviation to the SST. At this random noise perturbation magnitude, the ensemble average behaves well within a convergent range. It is also found that the sensitivity of forecast changes in response to SST changes. This is measured by the ratio of the spatial variability of mean of the ensemble perturbations over the spatial variability of the corresponding forecast. The ratio is about 10% for surface latent heat flux, 5 % for IWV, and less than 1% for surface pressure.

  14. Black carbon aerosols over the Himalayas: direct and surface albedo forcing

    Directory of Open Access Journals (Sweden)

    Vijayakumar S. Nair

    2013-09-01

    Full Text Available Absorbing aerosols such as black carbon (BC or dust over high-altitude Himalayan regions have potential implications on the regional climate and hydrological cycle over South Asia. Making use of extensive measurements of atmospheric BC from several Himalayan stations, an assessment of radiative forcing due to direct and snow-albedo darkening is examined. Generally, BC concentration in the atmosphere peaks during pre-monsoon season over the Himalayas and the climatological mean of atmospheric BC over Hanle (western Himalayas, 4.5 km msl and Nepal Climate Observatory-Pyramid (central Himalayas, 5 km msl are 106±27 ng m−3 and 190±95 ng m−3, respectively. Based on the optical and physical properties of composite aerosols measured at Hanle, clear sky direct radiative forcing (DRF at the top of the atmosphere is estimated as 1.69 W m−2 over snow surface and −1.54 W m−2 over sandy surface during pre-monsoon season. The estimated amount of BC in the snow varied from 117 to 1.7 µg kg−1 for wide range of dry deposition velocities (0.01–0.054 cm s−1 of BC, snow depth (2–10 cm and snow densities (195–512 kg m−3. Using a size-resolved wet scavenging parametrisation, the amount of BC on snow due to wet scavenging is estimated as 29 µg kg−1 for an accumulated snow depth of 27 cm. For the range of 10–200 µg kg−1 of BC in snow, the diurnally averaged forcing due to snow darkening has been found to vary from 0.87 to 10.2 W m−2 for fresh snow and from 2.6 to 28.1 W m−2 for the aged snow, which is significantly higher than the DRF. The direct and surface albedo radiative forcing could lead to significant warming over the Himalayas during pre-monsoon.

  15. Analysis of surface roughness and cutting force during turning of Ti6Al4V ELI in dry environment

    Directory of Open Access Journals (Sweden)

    V. G. Sargade

    2016-04-01

    Full Text Available This paper investigates the effect of cutting parameters on the surface roughness and cutting force of titanium alloy Ti-6Al-4V ELI when turning using PVD TiAlN coated tool in dry environment. Taguchi L9 orthogonal array design of experiment was used for the turning experiment 2 factors and 3 levels. Turning parameters studied were cutting speed (50, 65, 80 m/min, feed rate (0.08, 0.15, 0.2 mm/rev and depth of cut 0.5 mm constant. Linear and second order model of the surface roughness and cutting force has been developed in terms of cutting speed and feed. The results show that the feed rate was the most impact factor controlling the cutting force and surface roughness produced. MINITAB 17software was used to develop a linear and second order model of surface roughness and cutting force. Optimum condition was at 66.97 m/min of cutting speed, 0.08 mm/rev of feed rate. Surface roughness 0.57μm and cutting force 54.02 N were obtained at the optimum condition. A good agreement between the experimental and predicted surface roughness and cutting force were observed.

  16. Laboratory investigations of the heat and momentum transfer in the stably stratified air turbulent boundary layer above the wavy surface

    Science.gov (United States)

    Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim

    2015-04-01

    Investigation of small scale transfer processes between the ocean and atmosphere in the boundary and its parameterization on the meteorological conditions (wind and surface waves parameters) is very important for weather forecasts modeling [1]. The accuracy of the predictions taking in to account the so named bulk-formulas strongly depends on the quality empirical data. That is why the laboratory modeling sometimes is preferable (see [2]) then in situ measurements for obtaining enough ensembles of the data with a good accuracy in control conditions, first of all in a case of severe conditions (strong winds with intensive wave breaking and sprays generation). In this investigation laboratory modeling was performed on the Thermostratified Wind-Wave Channel of the IAP RAS (see. [3]). Experiments were carried out for the wind speeds up to 18.5 m/s (corresponding the equivalent 10-m wind speed 30 m/s). For the possibility of varying parameters of surface roughness independently on the wind flow a special system basing on the submerged mosquito mesh (cell of 2*2 mm) was used (see [4]). The roughness was controlled by the depth of the mesh installation under the free surface (no waves when the mesh was on the surface and maximum wave amplitude for the maximum depth). So, for each wind speed several cases of the waves parameters were investigated. During experiments a stable stratification of the boundary layer of air flow was obtained. Temperature of the heating air was 33-37 degrees (depending on the reference wind speed), and the water temperature was 14-16 degrees. The Pitote gauge and hotwire were used together for measuring velocity and temperature profiles. Also indirect estimations of the total volume of the phase of sprays were obtained by analyzing hotwire signals errors during droplets hits. Then aerodynamic drag CD and heat transfer Ch coefficients were obtained by profiling method. It was shown that that these parameters are very sensitive to the intensity of

  17. Room temperature surface piezoelectricity in SrTiO.sub.3./sub. ceramics via piezoresponse force microscopy

    Czech Academy of Sciences Publication Activity Database

    Kholkin, A.; Bdikin, I.; Ostapchuk, Tetyana; Petzelt, Jan

    2008-01-01

    Roč. 93, č. 22 (2008), 222905/1-222905/3 ISSN 0003-6951 R&D Projects: GA ČR GP202/06/P219 Institutional research plan: CEZ:AV0Z10100520 Keywords : strontium titanate ceramics * piezoresponse force microscopy * flexoelectric effect * polar grain boundaries Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.726, year: 2008

  18. Topographical characterization of Ar-bombarded Si(1 1 1) surfaces by atomic force microscopy

    CERN Document Server

    Niebieskikwiat, D G; Pregliasco, G R; Gayone, J E; Grizzi, O; Sanchez, E A

    2002-01-01

    We used atomic force microscopy to study the topographical changes induced on Si(1 1 1) surfaces by 10-22 keV Ar sup + bombardment. The irradiation was carried on normal to the surface with doses in the 1-60x10 sup 1 sup 6 ions/cm sup 2 range. We observed a first generation of blisters at a critical dose around 3x10 sup 1 sup 6 ions/cm sup 2 , which flakes off at 19x10 sup 1 sup 6 ions/cm sup 2 , and a second generation of smaller blisters between 35 and 45x10 sup 1 sup 6 ions/cm sup 2. Measurements of the mean surface height show that at low irradiation doses the surface inflates because of voids produced by Ar sup + implantation. For doses greater than 20x10 sup 1 sup 6 Ar sup + /cm sup 2 the height decreases linearly because of sputtering, with a slope corresponding to a sputtering yield of 1.4. Finally, we present electron spectra produced during grazing proton bombardment of samples whose topography has been modified by Ar irradiation.

  19. Effect of energy source, salt concentration and loading force on colloidal interactions between Acidithiobacillus ferrooxidans cells and mineral surfaces.

    Science.gov (United States)

    Diao, Mengxue; Nguyen, Tuan A H; Taran, Elena; Mahler, Stephen M; Nguyen, Anh V

    2015-08-01

    The surface appendages and extracellular polymeric substances of cells play an important role in the bacterial adhesion process. In this work, colloidal forces and nanomechanical properties of Acidithiobacillus ferrooxidans (A. f) interacted with silicon wafer and pyrite (FeS2) surfaces in solutions of varying salt concentrations were quantitatively examined using the bacterial probe technique with atomic force microscopy. A. f cells were cultured with either ferrous sulfate or elemental sulfur as key energy sources. Our results show that A. f cells grown with ferrous ion and elemental sulfur exhibit distinctive retraction force vs separation distance curves with stair-step and saw tooth shapes, respectively. During the approach of bacterial probes to the substrate surfaces, surface appendages and biopolymers of cells are sequentially compressed. The conformations of surface appendages and biopolymers are significantly influenced by the salt concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Method And Apparatus For Two Dimensional Surface Property Analysis Based On Boundary Measurement

    Science.gov (United States)

    Richardson, John G.

    2005-11-15

    An apparatus and method for determining properties of a conductive film is disclosed. A plurality of probe locations selected around a periphery of the conductive film define a plurality of measurement lines between each probe location and all other probe locations. Electrical resistance may be measured along each of the measurement lines. A lumped parameter model may be developed based on the measured values of electrical resistance. The lumped parameter model may be used to estimate resistivity at one or more selected locations encompassed by the plurality of probe locations. The resistivity may be extrapolated to other physical properties if the conductive film includes a correlation between resistivity and the other physical properties. A profile of the conductive film may be developed by determining resistivity at a plurality of locations. The conductive film may be applied to a structure such that resistivity may be estimated and profiled for the structure's surface.

  1. Synoptic and mesoscale climate forcing on Antarctic ice shelf surface melt dynamics

    Science.gov (United States)

    Karmosky, Christopher

    Given that the polar regions, especially the Antarctic Peninsula, have experienced one of the largest temperature increases on Earth over the last few decades, an understanding of Antarctic climate has become more urgent. Ice shelves themselves are located at the intersection of the atmosphere, hydrosphere and the cryosphere---the air-ice-ocean boundary, and are sensitive to changes in any of these media. In addition to being particularly sensitive to changes in climate, ice shelves play an important role in controlling the flow of glaciers into the ocean, which has important implications for sea level changes. In a warming world, an increased understanding of how climate change is affecting Antarctic ice shelves is valuable for assessing vulnerable regions of the Antarctic that may be prone to further instability. This work focuses on determining the underlying climatic processes controlling energy and mass balance responsible for driving melting over ice shelves. A novel melt-magnitude retrieval method is presented that uses Moderate Resolution Imaging Spectroradiometer (MODIS)-derived near-IR reflectance coupled with ice surface temperature as a proxy for surface melt magnitude. This method has a higher spatial resolution than passive microwave melt detection, has the added benefit of retrieving melt magnitude rather than a binary melt occurrence or non-occurrence, but has a lower temporal resolution than either passive-microwave or microwave-scatterometry melt detection. This limitation is a result of the opacity of cloud cover to both visible and IR radiation, requiring more satellite overpasses to obtain spatially contiguous imagery. This work also examines several weather variables associated with a large-extent, long-duration surface melt event on the Ross Ice Shelf. It is shown that cloudy conditions coupled with increased sensible and latent heat flux to the surface were present during the event, and these conditions are consistent with those that induce

  2. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    Science.gov (United States)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  3. Universal phase and force diagrams for a microbubble or pendant drop in static fluid on a surface

    Science.gov (United States)

    Wei, P. S.; Hsiao, C. C.; Chen, K. Y.

    2008-01-01

    Dimensionless three-dimensional universal phase and lift force diagrams of a microbubble (or pendant drop) in static liquid on a solid surface (or orifice) are presented in this work. Microbubble dynamics has been found to play a vital role in mass, momentum, energy, and concentration transfer rates in contemporary micro- and nanosciences and technologies. In this study, dimensionless phase and force diagrams are introduced by utilizing the analytical solutions of the microbubble shape reported in the literature. It shows that phase and force diagrams can be universally specified by two dimensionless independent parameters, Bond number, and contact angle (or base radius). Based on the presence of an inflection point or neck on the microbubble surface, each diagram exhibits three regions. Growth, detachment, and entrapment of a microbubble can be described by path lines in three regions. The corresponding universal total lift forces include hydrostatic buoyancy, difference in gas, and hydrostatic pressures at the base, capillary pressure, as well as surface tension induced by the variation of circumference, which has not been treated in the literature so far. In the absence of viscous stress and Marangoni force, the total lift force equals surface tension induced by the variation of circumference. The latter can be an attaching or lifting force, depending on whether the state in the distinct regions and contact angle is less than or greater than a critical angle. The critical angle, which is slightly less than the inclination angle at the inflection point, is decreased with increasing Bond number.

  4. Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation

    Directory of Open Access Journals (Sweden)

    G. H. Gudmundsson

    2008-07-01

    Full Text Available New analytical solutions describing the effects of small-amplitude perturbations in boundary data on flow in the shallow-ice-stream approximation are presented. These solutions are valid for a non-linear Weertman-type sliding law and for Newtonian ice rheology. Comparison is made with corresponding solutions of the shallow-ice-sheet approximation, and with solutions of the full Stokes equations. The shallow-ice-stream approximation is commonly used to describe large-scale ice stream flow over a weak bed, while the shallow-ice-sheet approximation forms the basis of most current large-scale ice sheet models. It is found that the shallow-ice-stream approximation overestimates the effects of bed topography perturbations on surface profile for wavelengths less than about 5 to 10 ice thicknesses, the exact number depending on values of surface slope and slip ratio. For high slip ratios, the shallow-ice-stream approximation gives a very simple description of the relationship between bed and surface topography, with the corresponding transfer amplitudes being close to unity for any given wavelength. The shallow-ice-stream estimates for the timescales that govern the transient response of ice streams to external perturbations are considerably more accurate than those based on the shallow-ice-sheet approximation. In particular, in contrast to the shallow-ice-sheet approximation, the shallow-ice-stream approximation correctly reproduces the short-wavelength limit of the kinematic phase speed given by solving a linearised version of the full Stokes system. In accordance with the full Stokes solutions, the shallow-ice-sheet approximation predicts surface fields to react weakly to spatial variations in basal slipperiness with wavelengths less than about 10 to 20 ice thicknesses.

  5. VIS and NIR land surface albedo sensitivity of the Ent Terrestrial Biosphere Model to forcing leaf area index

    Science.gov (United States)

    Montes, C.; Kiang, N. Y.; Ni-Meister, W.; Yang, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.; Carrer, D.

    2016-12-01

    Land surface albedo is a major controlling factor in vegetation-atmosphere transfers, modifying the components of the energy budget, the ecosystem productivity and patterns of regional and global climate. General Circulation Models (GCMs) are coupled to Dynamic Global Vegetation Models (DGVMs) to solve vegetation albedo by using simple schemes prescribing albedo based on vegetation classification, and approximations of canopy radiation transport for multiple plant functional types (PFTs). In this work, we aim at evaluating the sensitivity of the NASA Ent Terrestrial Biosphere Model (TBM), a demographic DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM, in estimating VIS and NIR surface albedo by using variable forcing leaf area index (LAI). The Ent TBM utilizes a new Global Vegetation Structure Dataset (GVSD) to account for geographically varying vegetation tree heights and densities, as boundary conditions to the gap-probability based Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010). Land surface and vegetation characteristics for the Ent GVSD are obtained from a number of earth observation platforms and algorithms, including the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), and vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three LAI products are used as input to ACTS/Ent TBM: MODIS MOD15A2H product (Yang et al., 2006), Beijing Normal University LAI (Yuan et al., 2011), and Global Data Sets of Vegetation (LAI3g) (Zhu et al. 2013). The sensitivity of the Ent TBM VIS and NIR albedo to the three LAI products is assessed, compared against the previous GISS GCM vegetation classification and prescribed Lambertian albedoes (Matthews, 1984), and against

  6. Control of fingertip forces in young and older adults pressing against fixed low- and high-friction surfaces.

    Directory of Open Access Journals (Sweden)

    Kevin G Keenan

    Full Text Available Mobile computing devices (e.g., smartphones and tablets that have low-friction surfaces require well-directed fingertip forces of sufficient and precise magnitudes for proper use. Although general impairments in manual dexterity are well-documented in older adults, it is unclear how these sensorimotor impairments influence the ability of older adults to dexterously manipulate fixed, low-friction surfaces in particular. 21 young and 18 older (65+ yrs adults produced maximal voluntary contractions (MVCs and steady submaximal forces (2.5 and 10% MVC with the fingertip of the index finger. A Teflon covered custom-molded splint was placed on the fingertip. A three-axis force sensor was covered with either Teflon or sandpaper to create low- and high-friction surfaces, respectively. Maximal downward forces (F(z were similar (p = .135 for young and older adults, and decreased by 15% (p<.001 while pressing on Teflon compared to sandpaper. Fluctuations in F(z during the submaximal force-matching tasks were 2.45× greater (p<.001 for older adults than in young adults, and reached a maximum when older adults pressed against the Teflon surface while receiving visual feedback. These age-associated changes in motor performance are explained, in part, by altered muscle activity from three hand muscles and out-of-plane forces. Quantifying the ability to produce steady fingertip forces against low-friction surfaces may be a better indicator of impairment and disability than the current practice of evaluating maximal forces with pinch meters. These age-associated impairments in dexterity while interacting with low-friction surfaces may limit the use of the current generation of computing interfaces by older adults.

  7. Shielded resistive electromagnets of arbitrary surface geometry using the boundary element method and a minimum energy constraint.

    Science.gov (United States)

    Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A

    2013-09-01

    Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Measurement of Surface Damage through Boundary Detection: An Approach to Assess Durability of Cementitious Composites under Tannery Wastewater

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2016-01-01

    Full Text Available Concrete structures are often subjected to aggressive aqueous environments which consist of several chemical agents that can react with concrete to produce adverse effects. A Central Effluent Treatment Plant consisting of reinforced concrete structures which is being constructed at Savar, Bangladesh, is an example of such a case. The purpose of this treatment facility is to reduce the environmental pollution created by tannery wastewater. However, tannery wastewater consists of several chemicals such as sulfates, chlorides, and ammonium, which, from the literature, are known to generate detrimental effects on concrete. Evaluation of durability of concrete structures in such environments is therefore imperative. This paper highlights a technique of boundary detection developed through image processing performed using MATLAB. Cement mortar cubes were submerged in simulated tannery wastewater and the images of the surface of cubes were taken at several time intervals. In addition, readings for compressive strength and weight were also taken on the same days. In this paper, an attempt is made to correlate the results from image processing with that of strength and weight loss. It was found, within the scope of this study, that the specimens which suffered greater strength and weight loss also underwent greater loss of surface area.

  9. Measurements of surface shear stresses under a three-dimensional turbulent boundary layer using oil-film laser interferometry

    Science.gov (United States)

    Ailinger, K. G.; Simpson, R. L.

    1990-04-01

    Measurements of surface shear stress magnitude and direction are reported for a three-dimensional, pressure driven, turbulent boundary layer around a wing body junction. Measurements were made using a dual-beam oil film laser interferometer at 56 locations. An iterative procedure was developed which increased the precision of the data extracted from the data records. Skin friction directions computed using a least square error fit were compared to angles obtained from surface oil flows, hot wire anemometry, and LDV measurements. Also, the magnitude of the skin friction coefficients were compared to independently obtained skin friction coefficients. The data agreed to within experimental error outside the effects from the vortex legs present along the side of the wing-body. No accurate data was available for quantitative comparison under the effects of the vortex, but the magnitudes followed the qualitative trends expected. This method failed badly in the region of large three-dimensional effects and requires further study in this area of application.

  10. Surface mediated cooperative interactions of drugs enhance mechanical forces for antibiotic action

    Science.gov (United States)

    Ndieyira, Joseph W.; Bailey, Joe; Patil, Samadhan B.; Vögtli, Manuel; Cooper, Matthew A.; Abell, Chris; McKendry, Rachel A.; Aeppli, Gabriel

    2017-02-01

    The alarming increase of pathogenic bacteria that are resistant to multiple antibiotics is now recognized as a major health issue fuelling demand for new drugs. Bacterial resistance is often caused by molecular changes at the bacterial surface, which alter the nature of specific drug-target interactions. Here, we identify a novel mechanism by which drug-target interactions in resistant bacteria can be enhanced. We examined the surface forces generated by four antibiotics; vancomycin, ristomycin, chloroeremomycin and oritavancin against drug-susceptible and drug-resistant targets on a cantilever and demonstrated significant differences in mechanical response when drug-resistant targets are challenged with different antibiotics although no significant differences were observed when using susceptible targets. Remarkably, the binding affinity for oritavancin against drug-resistant targets (70 nM) was found to be 11,000 times stronger than for vancomycin (800 μM), a powerful antibiotic used as the last resort treatment for streptococcal and staphylococcal bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Using an exactly solvable model, which takes into account the solvent and membrane effects, we demonstrate that drug-target interactions are strengthened by pronounced polyvalent interactions catalyzed by the surface itself. These findings further enhance our understanding of antibiotic mode of action and will enable development of more effective therapies.

  11. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications.

    Science.gov (United States)

    Han, Kook In; Kim, Seungdu; Lee, In Gyu; Kim, Jong Pil; Kim, Jung-Ha; Hong, Suck Won; Cho, Byung Jin; Hwang, Wan Sik

    2017-02-19

    Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF's positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH) and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO's excellent sensing properties and SF's flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  12. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kook In Han

    2017-02-01

    Full Text Available Cylindrical silk fiber (SF was coated with Graphene oxide (GO for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF’s positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS, Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO’s excellent sensing properties and SF’s flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  13. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration

    International Nuclear Information System (INIS)

    Andersson, Martin; Madgavkar, Ashwin; Stjerndahl, Maria; Wu, Yanrong; Tan, Weihong; Duran, Randy; Niehren, Stefan; Mustafa, Kamal; Arvidson, Kristina; Wennerberg, Ann

    2007-01-01

    Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process. Results from such studies would help foresee the clinical outcome of integrating medical implants. The interactions between two primary cell culture models, human gingival fibroblasts and bone forming human osteoblast cells, and three different implant materials, glass, titanium, and hydroxyapatite, were studied. A novel type of optical tweezers, which has a newly designed quadrant detector and a powerful 3 W laser was constructed and force calibrated using two different methods: one method in which the stiffness of the optical trap was obtained by monitoring the phase lag between the trap and the moved object when imposing a forced oscillation on the trapped object and another method in which the maximum trapping force was derived from the critical velocity at which the object escapes the trap. Polystyrene beads as well as cells were utilized for the calibrations. This is the first time that cells have been used directly for these types of force calibrations and, hence, direct measurements of forces exerted on cells can be performed, thus avoiding the difficulties often encountered when translating the results obtained from cell measurements to the calibrations obtained with reference materials. This more straightforward approach represents an advantage in comparison to established methods

  14. Probing the surface charge on the basal planes of Kaolinite particles with high resolution Atomic Force Microscopy

    NARCIS (Netherlands)

    Kumar, Naveen; Andersson, M.P.; van den Ende, Henricus T.M.; Mugele, Friedrich Gunther; Sîretanu, Igor

    2017-01-01

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl2 concentration. Using DLVO theory with charge regulation, we determine from the measured force–distance curves the surface

  15. Determination of electrostatic potential distribution by atomic force microscopy (AFM) on model silica and alumina surfaces in aqueous electrolyte solutions

    International Nuclear Information System (INIS)

    Yelken, Gulnihal Ozek; Polat, Mehmet

    2014-01-01

    Graphical abstract: - Highlights: • Atomic force microscopy was employed to quantitatively determine the surface potential on silica and alumina surfaces immersed in aqueous electrolyte solutions at various pH values using the DLVO theory. • Potential distributions could be presented in the form of a potential map by repeating the procedure on multiple locations on these surfaces. • The average potential of the distributions agreed very well with the surface potentials measured by electrophoretic techniques. • Several experimental procedures required to achieve the very sensitive force measurements were outlined and demonstrated. - Abstract: AFM was employed as a physicochemical probe to determine the electrostatic potential distribution quantitatively on selected ideal oxide surfaces (quartz 0 0 0 1 and sapphire 0 0 0 1) in aqueous media. The force of interaction between a silicon nitride tip and the oxide surface was measured at a given point under well-defined solution conditions. Relevant theories were used to isolate the electrostatic component from the total force of interaction which was then employed to estimate the surface potential at that point. Repeating the procedure on selected locations generated a potential map of the surface. Comparison of these potentials with those obtained from independent electrokinetic measurements confirmed the validity of the approach

  16. Ocean Acidification in the Surface Waters of the Pacific-Arctic Boundary Regions

    Science.gov (United States)

    Mathis, J. T.; Cross, J. N.; Evans, W.; Doney, S. C.

    2016-02-01

    The continental shelves of the Pacific-Arctic Region (PAR) are especially vulnerable to the effects of ocean acidification (OA) because the intrusion of anthropogenic CO2 is not the only process that can reduce pH and carbonate mineral saturation states for aragonite (ΩArag). Enhanced sea-ice melt, respiration of organic matter, upwelling and riverine inputs have been shown to exacerbate CO2-driven ocean acidification in high-latitude regions. Additionally, the indirect effect of changing sea-ice coverage is providing a positive feedback to OA as more open water will allow for greater uptake of atmospheric CO2. Here, we compare model-based outputs from the Community Earth System Model with a subset of recent ship-based observations, and take an initial look at future model projections of surface water ΩArag in the Bering, Chukchi and Beaufort Seas. We then use the model outputs to define benchmark years when biological impacts are likely to result from reduced ΩArag. Each of the three continental shelf seas in the PAR will become undersaturated with respect to aragonite at approximately 30-year intervals, indicating that aragonite undersaturations gradually progress upstream along the flow path of the waters as they move north from the Pacific Ocean. However, naturally high variability in ΩArag may indicate higher resilience of the Bering Sea ecosystem to these low-ΩArag conditions than the Chukchi and the Beaufort Seas. Based on our initial results, we have determined that the annual mean for ΩArag will pass below the current range of natural variability in 2025 for the Beaufort Sea and 2027 for the Chukchi Sea. Because of the higher range of natural variability, the annual mean for ΩArag for the Bering Sea does not pass out of the natural variability range until 2044. As ΩArag in these shelf seas slips below the present-day range of large seasonal variability by midcentury, it could put tremendous pressure on the diverse ecosystems that support some of

  17. The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime

    Science.gov (United States)

    Liu, Ruiting; Han, Zhiwei; Wu, Jian; Hu, Yonghong; Li, Jiawei

    2017-11-01

    In this study, some key geometric and thermal parameters derived from recent field and satellite observations in Beijing were collected and incorporated into WRF-UCM (Weather Research and Forecasting) model instead of previous default ones. A series of sensitivity model simulations were conducted to investigate the influences of these parameters on radiation balance, meteorological variables, turbulence kinetic energy (TKE), as well as planetary boundary layer height (PBLH) in regions around Beijing in summer 2014. Model validation demonstrated that the updated parameters represented urban surface characteristics more realistically and the simulations of meteorological variables were evidently improved to be closer to observations than the default parameters. The increase in building height tended to increase and slightly decrease surface air temperature at 2 m (T2) at night and around noon, respectively, and to reduce wind speed at 10 m (WS10) through a day. The increase in road width led to significant decreases in T2 and WS10 through the whole day, with the maximum changes in early morning and in evening, respectively. Both lower surface albedo and inclusion of anthropogenic heat (AH) resulted in increases in T2 and WS10 over the day, with stronger influence from AH. The vertical extension of the impact of urban surface parameters was mainly confined within 300 m at night and reached as high as 1600 m during daytime. The increase in building height tended to increase TKE and PBLH and the TKE increase was larger at night than during daytime due to enhancements of both mechanical and buoyant productions. The increase in road width generally reduced TKE and PBLH except for a few hours in the afternoon. The lower surface albedo and the presence of AH consistently resulted in increases of TKE and PBLH through both day and night. The increase in building height induced a slight divergence by day and a notable convergence at night, whereas the increase in road width

  18. Tribological properties investigation of the thermoplastic elastomers surface with the AFM lateral forces mode

    Science.gov (United States)

    Kuznetsova, T. A.; Zubar, T. I.; Lapitskaya, V. A.; Sudzilouskaya, K. A.; Chizhik, S. A.; Didenko, A. L.; Svetlichnyi, V. M.; Vylegzhanina, M. E.; Kudryavtsev, V. V.; Sukhanova, T. E.

    2017-10-01

    The series of new thermoplastic elastomer films based on copoly(urethane-imide)s (coPUI)s and nanocomposites containing from 1 to 10 wt. % carbon nanofillers of different morphology (single-walled carbon nanotubes, carbon nanofibers, and graphene) as well as WS2 and WSe2 nanoparticles, were prepared and investigated by atomic force microscopy in contact mode. The friction coefficient (Cfr) on the films surfaces under conditions of true slip was determined both in one scan field and with multiple scans (200-400) in one place. The measurements were carried out at room temperature and at a heating up to 120°C. It is shown that at heating up to 75-85°C, the friction coefficient of some coPUI decreases significantly. The same effect can be achieved also after 100 scans during multi-scan testing at 20°C.

  19. Static and kinetic friction force and surface roughness of different archwire-bracket sliding contacts.

    Science.gov (United States)

    Carrion-Vilches, Francisco J; Bermudez, María-Dolores; Fructuoso, Paula

    2015-01-01

    The aim of this study was to determine the static and kinetic friction forces of the contact bracket-archwire with different dental material compositions in order to select those materials with lower resistance to sliding. We carried out sliding friction tests by means of a universal testing machine following an experimental procedure as described in ASTM D1894 standard. We determined the static and kinetic friction forces under dry and lubricating conditions using an artificial saliva solution at 36.5ºC. The bracket-archwire pairs studied were: stainless steel-stainless steel; stainless steel-glass fiber composite; stainless steel-Nitinol 60; sapphire-stainless steel; sapphire-glass fiber composite; and sapphire-Nitinol 60. The best performance is obtained for Nitinol 60 archwire sliding against a stainless steel bracket, both under dry and lubricated conditions. These results are in agreement with the low surface roughness of Nitinol 60 with respect to the glass fiber composite archwire. The results described here contribute to establishing selection criteria for materials for dental archwire-brackets.

  20. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  1. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  2. Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study

    International Nuclear Information System (INIS)

    Hane, Francis; Moores, Brad; Amrein, Matthias; Leonenko, Zoya

    2009-01-01

    The air-lung interface is covered by a molecular film of pulmonary surfactant (PS). The major function of the film is to reduce the surface tension of the lung's air-liquid interface, providing stability to the alveolar structure and reducing the work of breathing. Earlier we have shown that function of bovine lipid extract surfactant (BLES) is related to the specific molecular architecture of surfactant films. Defined molecular arrangement of the lipids and proteins of the surfactant film also give rise to a local highly variable electrical surface potential of the interface. In this work we investigated a simple model of artificial lung surfactant consisting of DPPC, eggPG, and surfactant protein C (SP-C). Effects of surface compression and the presence of SP-C on the monolayer structure and surface potential distribution were investigated using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We show that topography and locally variable surface potential of DPPC-eggPG lipid mixture are similar to those of pulmonary surfactant BLES in the presence of SP-C and differ in surface potential when SP-C is absent.

  3. Surface EMG and intra-socket force measurement to control a prosthetic device

    Science.gov (United States)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  4. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  5. Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces.

    Science.gov (United States)

    Newton, Richard; Delguste, Martin; Koehler, Melanie; Dumitru, Andra C; Laskowski, Pawel R; Müller, Daniel J; Alsteens, David

    2017-11-01

    Over the past five years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool set capable of imaging the surfaces of biological samples ranging from single receptors to membranes and tissues. One of these approaches, force-distance curve-based AFM (FD-based AFM), uses a probing tip functionalized with a ligand to image living cells at high-resolution and simultaneously localize and characterize specific ligand-receptor binding events. Analyzing data from FD-based AFM experiments using appropriate probabilistic models allows quantification of the kinetic and thermodynamic parameters that describe the free-energy landscape of the ligand-receptor bond. We have recently developed an FD-based AFM approach to quantify the binding events of single enveloped viruses to surface receptors of living animal cells while simultaneously observing them by fluorescence microscopy. This approach has provided insights into the early stages of the interaction between a virus and a cell. Applied to a model virus, we probed the specific interaction with cells expressing viral cognate receptors and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthened the attachment of the virus to the cell. Here we describe detailed procedures for probing the specific interactions of viruses with living cells; these procedures cover tip preparation, cell sample preparation, step-by-step FD-based AFM imaging and data analysis. Experienced microscopists should be able to master the entire set of protocols in 1 month.

  6. Modeling South America regional smoke plume: aerosol optical depth variability and shortwave surface forcing

    Science.gov (United States)

    Rosário, N. E.; Longo, K. M.; Freitas, S. R.; Yamasoe, M. A.; Fonseca, R. M.

    2012-07-01

    Amazon Basin produced a radiative forcing efficiency (RFE) of -158 W m-2/AOD550 nm at noon. This value is in between -154 W m-2/AOD550 nm and -187 W m-2/AOD550 nm, the range obtained when spatial varying optical models were considered. The average 24 h surface forcing over the biomass burning season varied from -55 W m-2 close to smoke sources in the southern part of the Amazon Basin and cerrado to -10 W m-2 in remote regions of the Southeast Brazilian coast.

  7. The impact of non-stationary flows on the surface stress in the weak-wind stable boundary layer

    Science.gov (United States)

    Thomas, Christoph; Mahrt, Larry

    2016-04-01

    The behaviour of turbulent transport in the weak-wind stably stratified boundary layer is examined in terms of the non-stationarity of the wind field based upon field observations. Extensive sonic anemometer measurements from horizontal networks and vertical towers ranging from 12 to 20 m height and innovative fiber-optic distributed temperature sensing observations were collected from three field programs in moderately sloped terrain with a varying degree of surface heterogeneity, namely the Shallow Cold Pool (SCP) and the Flow Over Snow Surfaces (FLOSS) II experiments in Colorado (USA), and the Advanced Canopy Resolution Experiment (ARCFLO) in Oregon (USA). The relationship of the friction velocity to the stratification and small non-stationary submeso motions is studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso-scale motions. Consequently, the roles of the wind speed and stratification are not adequately accommodated by a single non-dimensional combination, such as the bulk Richardson number. However, cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The latter may be significant in explaining the small-scale weak turbulence during stable stratification and deviations from conventional flux-profile relationships. Contrary to expectations, the vertical coherence was strongest for weakest winds and declined fast with increasing velocities, which suggests that submeso-scale motions are much deeper than previously thought.

  8. Forcing Mechanisms for the Variations of Near-surface Temperature Lapse Rates along the Himalayas, Tibetan Plateau (HTP) and Their Surroundings

    Science.gov (United States)

    Kattel, D. B.; Yao, T.; Ullah, K.; Islam, G. M. T.

    2016-12-01

    This study investigates the monthly characteristics of near-surface temperature lapse rates (TLRs) (i.e., governed by surface energy balance) based on the 176 stations 30-year (1980 to 2010) dataset covering a wide range of topography, climatic regime and relief (4801 m) in the HTP and its surroundings. Empirical analysis based on techniques in thermodynamics and hydrostatic system were used to obtain the results. Steepest TLRs in summer is due to strong dry convection and shallowest in winter is due to inversion effect is the general pattern of TLR that reported in previous studies in other mountainous region. Result of this study reports a contrast variation of TLRs from general patterns, and suggest distinct forcing mechanisms in an annual cycle. Shallower lapse rate occurs in summer throughout the regions is due to strong heat exchange process within the boundary layer, corresponding to the warm and moist atmospheric conditions. There is a systematic differences of TLRs in winter between the northern and southern slopes the Himalayas. Steeper TLRs in winter on the northern slopes is due to intense cooling at higher elevations, corresponding to the continental dry and cold air surges, and considerable snow-temperature feedback. The differences in elevation and topography, as well as the distinct variation of turbulent heating and cooling, explain the contrast TLRs (shallower) values in winter on the southern slopes. Distinct diurnal variations of TLRs and its magnitudes between alpine, dry, humid and coastal regions is due to the variations of adiabatic mixing during the daytime in the boundary layer i.e., associated with the variations in net radiations, elevation, surface roughness and sea surface temperature. The findings of this study is useful to determine the temperature range for accurately modelling in various field such as hydrology, glaciology, ecology, forestry, agriculture, as well as inevitable for climate downscaling in complex mountainous terrain.

  9. Multi-dimensional modelling of electrostatic force distance curve over dielectric surface: Influence of tip geometry and correlation with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boularas, A., E-mail: boularas@laplace.univ-tlse.fr; Baudoin, F.; Villeneuve-Faure, C. [LAPLACE (Laboratoire Plasma et Conversion d' Energie), Université de Toulouse, UPS, INPT, 118 route de Narbonne, 31062 Toulouse cedex 9 (France); Clain, S. [Universidade do Minho, Centro de Matemática, Campus de Gualtar, 4710 - 057 Braga (Portugal); Université Paul Sabatier, Institut de Mathématiques de Toulouse, 31062 Toulouse (France); Teyssedre, G. [LAPLACE (Laboratoire Plasma et Conversion d' Energie), Université de Toulouse, UPS, INPT, 118 route de Narbonne, 31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31071 Toulouse (France)

    2014-08-28

    Electric Force-Distance Curves (EFDC) is one of the ways whereby electrical charges trapped at the surface of dielectric materials can be probed. To reach a quantitative analysis of stored charge quantities, measurements using an Atomic Force Microscope (AFM) must go with an appropriate simulation of electrostatic forces at play in the method. This is the objective of this work, where simulation results for the electrostatic force between an AFM sensor and the dielectric surface are presented for different bias voltages on the tip. The aim is to analyse force-distance curves modification induced by electrostatic charges. The sensor is composed by a cantilever supporting a pyramidal tip terminated by a spherical apex. The contribution to force from cantilever is neglected here. A model of force curve has been developed using the Finite Volume Method. The scheme is based on the Polynomial Reconstruction Operator—PRO-scheme. First results of the computation of electrostatic force for different tip–sample distances (from 0 to 600 nm) and for different DC voltages applied to the tip (6 to 20 V) are shown and compared with experimental data in order to validate our approach.

  10. Analytic Approximate Solutions for MHD Boundary-Layer Viscoelastic Fluid Flow over Continuously Moving Stretching Surface by Homotopy Analysis Method with Two Auxiliary Parameters

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2012-01-01

    Full Text Available In this study, a steady, incompressible, and laminar-free convective flow of a two-dimensional electrically conducting viscoelastic fluid over a moving stretching surface through a porous medium is considered. The boundary-layer equations are derived by considering Boussinesq and boundary-layer approximations. The nonlinear ordinary differential equations for the momentum and energy equations are obtained and solved analytically by using homotopy analysis method (HAM with two auxiliary parameters for two classes of visco-elastic fluid (Walters’ liquid B and second-grade fluid. It is clear that by the use of second auxiliary parameter, the straight line region in ℏ-curve increases and the convergence accelerates. This research is performed by considering two different boundary conditions: (a prescribed surface temperature (PST and (b prescribed heat flux (PHF. The effect of involved parameters on velocity and temperature is investigated.

  11. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

    Directory of Open Access Journals (Sweden)

    Azlan Suhaimi Mohd

    2017-01-01

    Full Text Available Compacted Graphite Iron, (CGI is known to have outstanding mechanical strength and weight-to-strength ratio as compared to conventional grey cast iron, (CI. The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL during high-speed milling of CGI (grade 450. Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during high-speed milling of CGI.

  12. Modification of a force plate system for equine gait analysis on hard road surfaces: a technical note.

    Science.gov (United States)

    Wilson, A M; Pardoe, C H

    2001-04-01

    Studies on horseshoe materials have been limited to the analysis of kinematic data to determine slip times and distances, since equine force plate analysis is traditionally undertaken on a rubber-surfaced force plate. The purpose of this study was to modify a force plate for measuring ground reaction forces on a road surface and report preliminary data from the system. A steel-reinforced concrete top plate of 18 mm thickness and mass 23 kg, and a 12 mm thick top plate of 6 mm bituminous macadam wear coat (road surface) contained in a tray constructed of 2 mm thick steel, mass 21 kg, were constructed. The top plates were bolted to a forceplate and resonance frequency of the force plate top plate combinations were 278 Hz (concrete) and 218 Hz (roadway), respectively. Simultaneous kinetic and kinematic data were collected while a horse, shod in steel horseshoes, was trotted over the concrete-topped force plate until 8 foot placements were recorded. The foot slipped for mean +/- s.d. 35 +/- 7 mm in 29 +/- 8 ms after impact and both Fy and Fz increased during foot slip. The ratio of Fy/Fz during slip was relatively constant at 0.56 +/- 0.05. The top plates have proved resilient in use and have withstood a variety of horseshoe designs and tungsten-capped stud nails with minimal damage. They enable measurement of ground reaction forces on hard surfaces and the calculation of the energy dissipated via foot slippage by integration of the craniocaudal force-foot position data after impact.

  13. Investigation of the boundary layer during the transition from volume to surface dominated H⁻ production at the BATMAN test facility.

    Science.gov (United States)

    Wimmer, C; Schiesko, L; Fantz, U

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 18 scale H(-) source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H(-) production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H(-) density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H(-) density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (j(H(-)), j(e)) exists with the Cs emission.

  14. Investigation of the boundary layer during the transition from volume to surface dominated H- production at the BATMAN test facility

    Science.gov (United States)

    Wimmer, C.; Schiesko, L.; Fantz, U.

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 1/8 scale H- source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H- production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H- density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H- density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (jH-, je) exists with the Cs emission.

  15. Film Thickness Formation in Nanoscale due to Effects of Elastohydrodynamic, Electrostatic and Surface force of Solvation and Van der Waals

    Directory of Open Access Journals (Sweden)

    M.F. Abd Al-Samieh

    2017-03-01

    Full Text Available The mechanism of oil film with a thickness in the nanoscale is discussed in this paper. A polar lubricant of propylene carbonate is used as the intervening liquid between contiguous bodies in concentrated contacts. A pressure caused by the hydrodynamic viscous action in addition to double layer electrostatic force, Van der Waals inter-molecular forces, and solvation pressure due to inter-surface forces is considered in calculating the ultrathin lubricating films. The numerical solution has been carried out, using the Newton-Raphson iteration technique, applied for the convergence of the hydrodynamic pressure. The results show that, at separations beyond about five molecular diameters of the intervening liquid, the formation of a lubricant film thickness is governed by combined effects of viscous action and surface force of an attractive Van der Waals force and a repulsive double layer force. At smaller separations below about five molecular diameters of the intervening liquid, the effect of solvation force is dominant in determining the oil film thickness

  16. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    continuous tide on the coastal side. The integrated surface water-groundwater numerical model IRENE (Spanoudaki et al., 2009, Spanoudaki, 2010) was also used in the study, with the numerical model predictions being compared with experimental results, which provide a valuable database for model calibration and validation. IRENE couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. The model uses the finite volume method with a cell-centered structured grid providing thus flexibility and accuracy in simulating irregular boundary geometries. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. References Ebrahimi, K., Falconer, R.A. and Lin B. (2007). Flow and solute fluxes in integrated wetland and coastal systems. Environmental Modelling and Software, 22 (9), 1337-1348. Hughes, S.A. (1995). Physical Modelling and Laboratory Techniques in Coastal Engineering. World Scientific Publishing Co. Pte. Ltd., Singapore. Kuan, W.K., Jin, G., Xin, P., Robinson, C. Gibbes, B. and Li. L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48 (2), doi:10.1029/2011WR010678. Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek

  17. The Ingenious Mr Hughes: Combining Forced, Fat, and Reverse Perspective All in One Art Piece to Pit Objects against Surfaces

    Directory of Open Access Journals (Sweden)

    Thomas V Papathomas

    2012-04-01

    Full Text Available The artist Patrick Hughes has ingeniously painted rows of stacked Brillo boxes in Forced into Reverse Perspective. The geometry is in reverse perspective, predicting only one type of illusory motion for each planar surface for moving viewers. He “broke” these surfaces into objects by painting the boxes in three types of perspective (planar, forced, and reverse. Our experiments confirmed that he succeeded in eliciting different types of illusory motion, including “differential motion” between boxes for most viewers. In some sense, this illustrates the superiority of secondary (painted over primary (physical cues.

  18. Modelling and experimental verification of tip-induced polarization in Kelvin probe force microscopy measurements on dielectric surfaces

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    Kelvin probe force microscopy is a widely used technique for measuring surface potential distributions on the micro- and nanometer scale. The data are, however, often analyzed qualitatively, especially for dielectrics. In many cases, the phenomenon of polarization and its influence on the measured...... signals is disregarded leading to misinterpretation of the results. In this work, we present a model that allows prediction of the surface potential on a metal/polymer heterostructure as measured by Kelvin probe force microscopy by including the tip-induced polarization of the dielectric that arises...

  19. Evaluation of the Cutting Force Components and the Surface Roughness in the Milling Process of Micro- and Nanocrystalline Titanium

    Directory of Open Access Journals (Sweden)

    Habrat W.

    2016-09-01

    Full Text Available Nanocristalline pure titanium in comparison to microcrystalline titanium is characterized by better mechanical properties which influence its wider usability. The aim of the research was to evaluate whether the grain size of pure titanium (micro- and nanocrystalline has influence on the cutting force components and the surface roughness in the milling process. Models of cutting force components for both materials were prepared and differences between the results were examined. The feed rate effect on selected parameters of surface roughness after milling of micro- and nanocrystalline pure titanium was determined.

  20. Electrostatic potential of mean force between two curved surfaces in the presence of counterion connectivity

    Science.gov (United States)

    Zhou, Shiqi

    2015-11-01

    In this paper, we investigate effects of counterion connectivity (i.e., association of the counterions into a chain molecule) on the electrostatic potential of mean force (EPMF) between two similarly charged cylinder rods in a primitive model electrolyte solution by solving a classical density functional theory. The main findings include the following: (i) The counterion connectivity helps in inducing a like-charge-attractionlike (LCA-like) phenomenology even in a monovalent counterion solution wherein the LCA-like observation generally does not occur without the counterion connectivity. (ii) For divalent counterion solutions, the counterion connectivity can reinforce or weaken the LCA-like observation depending on the chain length N , and simply increases the equilibrium nearest surface separation of the rods corresponding to the minimum EPMF to nearly three times the counterion site diameter, whether N is large or small. (iii) If N is large enough, the LCA-like strength tends to be negatively correlated with the electrolyte concentration c over the entire range of the rod surface charge magnitude | σ*| considered; whereas if N drops, the correlation tends to become positive with decrease of the | σ*| value, and particularly for modest | σ*| values, the correlation relationship exhibits an extreme value phenomenon. (iv) In the case of a 1:1 electrolyte, the EPMF effects of the diameters of counterion and coion sites are similar in both situations with and without the counterion connectivity. All of these findings can be explained self-consistently by a recently proposed hydrogen-bonding style mechanism reinforced by one additional concept: flexibility of the counterion chain and the factors affecting it, like N and counterion site valence.

  1. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  2. Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber

    NARCIS (Netherlands)

    Wit, PJ; vanderMei, HC; Busscher, HJ

    1997-01-01

    By allowing an air-bubble to pass through a parallel plate flow chamber with negatively charged, colloidal polystyrene particles adhering to the bottom collector plate of the chamber, the detachment of adhering particles stimulated by surface tension forces induced by the passage of a liquid-air

  3. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance.

    Science.gov (United States)

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation.

  4. A Force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution

    OpenAIRE

    Mishra, Ratan K.; Fernández Carrasco, Lucía; Flatt, Robert J.; Heinz, Hendrik

    2014-01-01

    Tricalcium aluminate (C3A) is a major phase of Portland cement clinker and some dental root filling cements. An accurate all-atom force field is introduced to examine structural, surface, and hydration properties as well as organic interfaces to overcome challenges using current laboratory instrumentation. Molecular dynamics simulation demonstrates excellent agreement of computed structural, thermal, mechanical, and surface properties with available experimental data. The parameters are integ...

  5. Retention Forces between Titanium and Zirconia Components of Two-Part Implant Abutments with Different Techniques of Surface Modification.

    Science.gov (United States)

    von Maltzahn, Nadine Freifrau; Holstermann, Jan; Kohorst, Philipp

    2016-08-01

    The adhesive connection between titanium base and zirconia coping of two-part abutments may be responsible for the failure rate. A high mechanical stability between both components is essential for the long-term success. The aim of the present in-vitro study was to evaluate the influence of different surface modification techniques and resin-based luting agents on the retention forces between titanium and zirconia components in two-part implant abutments. A total of 120 abutments with a titanium base bonded to a zirconia coping were investigated. Two different resin-based luting agents (Panavia F 2.0 and RelyX Unicem) and six different surface modifications were used to fix these components, resulting in 12 test groups (n = 10). The surface of the test specimens was mechanically pretreated with aluminium oxide blasting in combination with application of two surface activating primers (Alloy Primer, Clearfil Ceramic Primer) or a tribological conditioning (Rocatec), respectively. All specimens underwent 10,000 thermal cycles between 5°C and 55°C in a moist environment. A pull-off test was then conducted to determine retention forces between the titanium and zirconia components, and statistical analysis was performed (two-way anova). Finally, fracture surfaces were analyzed by light and scanning electron microscopy. No significant differences were found between Panavia F 2.0 and RelyX Unicem. However, the retention forces were significantly influenced by the surface modification technique used (p zirconia copings were pretreated with aluminium oxide blasting, and with the application of Clearfil Ceramic Primer. Surface modification techniques crucially influence the retention forces between titanium and zirconia components in two-part implant abutments. All adhesion surfaces should be pretreated by sandblasting. Moreover, a phosphate-based primer serves to enhance long-term retention of the components. © 2015 Wiley Periodicals, Inc.

  6. Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718

    Directory of Open Access Journals (Sweden)

    Hamid Tebassi

    2016-01-01

    Full Text Available Nickel based super alloys are excellent for several applications and mainly in structural components submitted to high temperatures owing to their high strength to weight ratio, good corrosion resistance and metallurgical stability such as in cases of jet engine and gas turbine components. The current work presents the experimental investigations of the cutting parameters effects (cutting speed, depth of cut and feed rate on the surface roughness, cutting force components, productivity and power consumption during dry conditions in straight turning using coated carbide tool. The mathematical models for output parameters have been developed using Box-Behnken design with 15 runs and Box-Cox transformation was used for improving normality. The results of the analysis have shown that the surface finish was statistically sensitive to the feed rate and cutting speed with the contribution of 43.58% and 23.85% respectively, while depth of cut had the greatest effect on the evolution of cutting force components with the contribution of 79.87% for feed force, 66.92% for radial force and 66.26% for tangential force. Multi-objective optimization procedure allowed minimizing roughness Ra, cutting forces and power consumption and maximizing material removal rate using desirability approach.

  7. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  8. Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC-coated Si probe

    Directory of Open Access Journals (Sweden)

    Zhou Jingfang

    2011-01-01

    Full Text Available Abstract Atomic force microscope (AFM equipped with diamond-like carbon (DLC-coated Si probe has been used for scratch nanolithography on Si surfaces. The effect of scratch direction, applied tip force, scratch speed, and number of scratches on the size of the scratched geometry has been investigated. The size of the groove differs with scratch direction, which increases with the applied tip force and number of scratches but decreases slightly with scratch speed. Complex nanostructures of arrays of parallel lines and square arrays are further fabricated uniformly and precisely on Si substrates at relatively high scratch speed. DLC-coated Si probe has the potential to be an alternative in AFM-based scratch nanofabrication on hard surfaces.

  9. An atomic force microscopy study on the transition from mushrooms to octopus surface ''micelles'' by changing the solvent quality

    NARCIS (Netherlands)

    Stamouli, A.; Pelletier, E.; Koutsos, V; van der Vegte, E.W.; Hadziioannou, G

    1996-01-01

    Atomic force microscopy (AFM) is used to study the behavior of a diblock copolymer onto a solid surface while the solvent quality is changed. In a first step, the copolymer poly(2-vinylpyridine)/polystyrene (P2VP/PS) is adsorbed onto mica from a selective solvent (the PS block is well solvated and

  10. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning...

  11. Precessional forcing of lacustrine sedimentation in the late Cenozoic Chemeron Basin, Central Kenya Rift, and calibration of the Gauss/Matuyama boundary

    Science.gov (United States)

    Deino, A.L.; Kingston, J.D.; Glen, J.M.; Edgar, R.K.; Hill, A.

    2006-01-01

    The fluviolacustrine sedimentary sequence of the Chemeron Formation exposed in the Barsemoi River drainage, Tugen Hills, Kenya, contains a package of five successive diatomite/fluvial cycles that record the periodic development of freshwater lakes within the axial portion of the Central Kenya Rift. The overwhelming abundance in the diatomite of planktonic species of the genera Aulacoseira and Stephanodiscus, and the virtual absence of benthic littoral diatoms and detrital material indicate areally extensive, deep lake systems. A paleomagnetic reversal stratigraphy has been determined and chronostratigraphic tie points established by 40Ar/39Ar dating of intercalated tuffs. The sequence spans the interval 3.1-2.35??Ma and bears a detailed record of the Gauss/Matuyama paleomagnetic transition. The 40Ar/39Ar age for this boundary of 2.589 ?? 0.003??Ma can be adjusted to concordance with the Astronomical Polarity Time Scale (APTS) on the basis of an independent calibration to 2.610??Ma, 29??kyr older than the previous APTS age. The diatomites recur at an orbital precessional interval of 23??kyr and are centered on a 400-kyr eccentricity maximum. It is concluded that these diatomite/fluvial cycles reflect a narrow interval of orbitally forced wet/dry climatic conditions that may be expressed regionally across East Africa. The timing of the lacustrine pulses relative to predicted insolation models favors origination of moisture from the northern Africa monsoon, rather than local circulation driven by direct equatorial insolation. This moisture event at 2.7-2.55??Ma, and later East African episodes at 1.9-1.7 and 1.1-0.9??Ma, are approximately coincident with major global climatic and oceanographic events. ?? 2006 Elsevier B.V. All rights reserved.

  12. Wettability of natural root mucilage studied by atomic force microscopy and contact angle: Links between nanoscale and macroscale surface properties

    Science.gov (United States)

    Kaltenbach, Robin; Diehl, Dörte; Schaumann, Gabriele E.

    2017-04-01

    Organic coatings are considered as main cause of soil water repellency (SWR). This phenomenon plays a crucial role in the rhizosphere, at the interface of plant water uptake and soil hydraulics. Still, there is little knowledge about the nanoscale properties of natural soil compounds such as root-mucilage and its mechanistic effect on wettability. In this study, dried films of natural root-mucilage from Sorghum (Sorghum sp., MOENCH) on glass substrates were studied in order to explore experimental and evaluation methods that allow to link between macroscopic wettability and nano-/microscopic surface properties in this model soil system. SWR was assessed by optical contact angle (CA) measurements. The nanostructure of topography and adhesion forces of the mucilage surfaces was revealed by atomic force microscopy (AFM) measurements in ambient air, using PeakForce Quantitative Nanomechanical Mapping (PFQNM). Undiluted mucilage formed hydrophobic films on the substrate with CA > 90° and rather homogeneous nanostructure. Contact angles showed reduced water repellency of surfaces, when concentration of mucilage was decreased by dilution. AFM height and adhesion images displayed incomplete mucilage surface coverage for diluted samples. Hole-like structures in the film frequently exhibited increased adhesion forces. Spatial analysis of the AFM data via variograms enabled a numerical description of such 'adhesion holes'. The use of geostatistical approaches in AFM studies of the complex surface structure of soil compounds was considered meaningful in view of the need of comprehensive analysis of large AFM image data sets that exceed the capability of comparative visual inspection. Furthermore, force curves measured with the AFM showed increased break-free distances and pull-off forces inside the observed 'adhesion holes', indicating enhanced capillary forces due to adsorbed water films at hydrophilic domains for ambient RH (40 ± 2 %). This offers the possibility of

  13. Mathematical Modelling and Optimization of Cutting Force, Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S

    Directory of Open Access Journals (Sweden)

    Erol Kilickap

    2017-10-01

    Full Text Available In this paper, an experimental study was conducted to determine the effect of different cutting parameters such as cutting speed, feed rate, and depth of cut on cutting force, surface roughness, and tool wear in the milling of Ti-6242S alloy using the cemented carbide (WC end mills with a 10 mm diameter. Data obtained from experiments were defined both Artificial Neural Network (ANN and Response Surface Methodology (RSM. ANN trained network using Levenberg-Marquardt (LM and weights were trained. On the other hand, the mathematical models in RSM were created applying Box Behnken design. Values obtained from the ANN and the RSM was found to be very close to the data obtained from experimental studies. The lowest cutting force and surface roughness were obtained at high cutting speeds and low feed rate and depth of cut. The minimum tool wear was obtained at low cutting speed, feed rate, and depth of cut.

  14. Gas flow in the near-surface porous boundary layer of the 67P/Churyumov-Gerasimenko using micro-CT images

    Science.gov (United States)

    Christou, Chariton; Kokou Dadzie, S.; Thomas, Nicolas; Hartogh, Paul; Jorda, Laurent; Kührt, Ekkehard; Whitby, James; Wright, Ian; Zarnecki, John

    2017-04-01

    While ESA's Rosetta mission has formally been completed, the data analysis and interpretation continues. Here, we address the physics of the gas flow at the surface of the comet. Understanding the sublimation of ice at the surface of the nucleus provides the initial boundary condition for studying the inner coma. The gas flow at the surface of the comet 67P/Churyumov-Gerasimenko can be in the rarefaction regime and a non-Maxwellian velocity distribution may be present. In these cases, continuum methods like Navier-Stokes-Fourier (NSF) set of equations are rarely applicable. Discrete particle methods such as Direct Simulation Monte Carlo (DSMC) method are usually adopted. DSMC is currently the dominant numerical method to study rarefied gas flows. It has been widely used to study cometary outflow over past years .1,2. In the present study, we investigate numerically, gas transport near the surface of the nucleus using DSMC. We focus on the outgassing from the near surface boundary layer into the vacuum (˜20 cm above the nucleus surface). Simulations are performed using the open source code dsmcFoam on an unstructured grid. Until now, artificially generated random porous media formed by packed spheres have been used to represent the comet surface boundary layer structure .3. In the present work, we used instead Micro-computerized-tomography (micro-CT) scanned images to provide geologically realistic 3D representations of the boundary layer porous structure. The images are from earth basins. The resolution is relatively high - in the range of some μm. Simulations from different rock samples with high porosity (and comparable to those expected at 67P) are compared. Gas properties near the surface boundary layer are presented and characterized. We have identified effects of the various porous structure properties on the gas flow fields. Temperature, density and velocity profiles have also been analyzed. .1. J.-F. Crifo, G. Loukianov, A. Rodionov and V. Zakharov

  15. Investigating the Impact of Surface Heterogeneity on the Convective Boundary Layer Over Urban Areas Through Coupled Large-Eddy Simulation and Remote Sensing

    Science.gov (United States)

    Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.

    2011-01-01

    Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.

  16. Hydrological assessment of atmospheric forcing uncertainty in the Euro-Mediterranean area using a land surface model

    Science.gov (United States)

    Gelati, Emiliano; Decharme, Bertrand; Calvet, Jean-Christophe; Minvielle, Marie; Polcher, Jan; Fairbairn, David; Weedon, Graham P.

    2018-04-01

    Physically consistent descriptions of land surface hydrology are crucial for planning human activities that involve freshwater resources, especially in light of the expected climate change scenarios. We assess how atmospheric forcing data uncertainties affect land surface model (LSM) simulations by means of an extensive evaluation exercise using a number of state-of-the-art remote sensing and station-based datasets. For this purpose, we use the CO2-responsive ISBA-A-gs LSM coupled with the CNRM version of the Total Runoff Integrated Pathways (CTRIP) river routing model. We perform multi-forcing simulations over the Euro-Mediterranean area (25-75.5° N, 11.5° W-62.5° E, at 0.5° resolution) from 1979 to 2012. The model is forced using four atmospheric datasets. Three of them are based on the ERA-Interim reanalysis (ERA-I). The fourth dataset is independent from ERA-Interim: PGF, developed at Princeton University. The hydrological impacts of atmospheric forcing uncertainties are assessed by comparing simulated surface soil moisture (SSM), leaf area index (LAI) and river discharge against observation-based datasets: SSM from the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative projects (ESA-CCI), LAI of the Global Inventory Modeling and Mapping Studies (GIMMS), and Global Runoff Data Centre (GRDC) river discharge. The atmospheric forcing data are also compared to reference datasets. Precipitation is the most uncertain forcing variable across datasets, while the most consistent are air temperature and SW and LW radiation. At the monthly timescale, SSM and LAI simulations are relatively insensitive to forcing uncertainties. Some discrepancies with ESA-CCI appear to be forcing-independent and may be due to different assumptions underlying the LSM and the remote sensing retrieval algorithm. All simulations overestimate average summer and early-autumn LAI. Forcing uncertainty impacts on simulated river discharge are

  17. Local triboelectrification of an n-GaAs surface using the tip of an atomic-force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Brunkov, P. N., E-mail: brunkov@mail.ioffe.ru; Goncharov, V. V.; Rudinsky, M. E.; Gutkin, A. A.; Gordeev, N. Yu.; Lantratov, V. M.; Kalyuzhnyy, N. A.; Mintairov, S. A.; Sokolov, R. V.; Konnikov, S. G. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-09-15

    The method of scanning Kelvin-probe microscopy is used to show that the effect of triboelectrification is observed when the tip of an atomic-force microscope interacts with the surface of n-GaAs epitaxial layers. The sign of the change in the potential indicates that the sample surface after triboelectrification becomes more negative. The observed specific features of the phenomena can be attributed to the thermally activated generation of point defects in the vicinity of the sample surface due to deformation caused by the tip.

  18. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  19. An Experimental Study On Drill Vibration Thrust Force And Surface Roughness In Drilling Of SCFCarbon Fibre Composite

    Directory of Open Access Journals (Sweden)

    B. Amar Babu

    2017-07-01

    Full Text Available In the present work SCFcarbon composite was prepared with a commercially available vinylester methyl ethyl ketone peroxide catalyst and cobalt napthenate accelerator. The prepared composite is aimed to use in aircraft application. The composite is treated to improve the characteristics of SCFCarbon. Drilling characteristics were studied for both treated and untreated composites. As per Taguchi orthogonal array of L8 eight experiments were conducted on the composites and machining characteristics like thrust force surface roughness and amplitude of drill vibration were measured. Interaction effect of parameter on the machine characteristics was studied using response surface methodology. Analysis of variance was also used to identify significant parameters for the three machining characteristics. A multi response optimization technique was used to optimise parameters for minimization of thrust force surface roughness and amplitude of drill vibration.

  20. Revisiting the physical processes of vapodeposited thin gold films on chemically modified glass by atomic force and surface plasmon microscopies

    Science.gov (United States)

    Roland, Thibault; Khalil, André; Tanenbaum, Aaron; Berguiga, Lotfi; Delichère, Pierre; Bonneviot, Laurent; Elezgaray, Juan; Arneodo, Alain; Argoul, Françoise

    2009-11-01

    The preparation of very thin (at the scale of a few tens of nanometers) gold films by thermal evaporation and deposition on a solid substrate (glass) remains a key step for the elaboration of transparent and sensitive optical biosensors. We study the influence of the glass surface treatment and its thermal conductivity on the structure and composition of evaporated gold films. Using a combination of atomic force microscopy (AFM), high resolution surface plasmon resonance (SPR) imaging, and X-ray photoelectron spectroscopy (XPS), we demonstrate that the grafting of a layer of long chain mercaptant, using 11-mercaptoundecyltrimethoxysilane (SξSi), prior to gold deposition produces a drastic modification of gold inner and surface textures. A thorough investigation of AFM image topography by 2D wavelet-based segmentation method reveals the flat conical shape of the gold surface grains and their shape invariance with the glass surface chemical treatment. However, this treatment leads to a drastic decrease of the mean size and polydispersity of these grains by a factor of 2, thereby lowering the gold surface roughness. The rationale is that the combination of surface forces and thermal transfer drives the formation of homogeneous and flatter gold films.

  1. Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

    Science.gov (United States)

    Gnaneswara Reddy, Machireddy

    2017-12-01

    The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

  2. Influence of 21st century atmospheric and sea surface temperature forcing on West African climate

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Chris B [Stanford University; Ashfaq, Moetasim [ORNL; Diffenbaugh, Noah [Stanford University

    2011-01-01

    he persistence of extended drought events throughout West Africa during the 20th century has motivated a substantial effort to understand the mechanisms driving African climate variability, as well as the possible response to elevated greenhouse gas (GHG) forcing. We use an ensemble of global climate model experiments to examine the relative roles of future direct atmospheric radiative forcing and SST forcing in shaping potential future changes in boreal summer precipitation over West Africa. We find that projected increases in precipitation throughout the Western Sahel result primarily from direct atmospheric radiative forcing. The changes in atmospheric forcing generate a slight northward displacement and weakening of the African easterly jet (AEJ), a strengthening of westward monsoon flow onto West Africa and an intensification of the tropical easterly jet (TEJ). Alternatively, we find that the projected decreases in precipitation over much of the Guinea Coast region are caused by SST changes that are induced by the atmospheric radiative forcing. The changes in SSTs generate a weakening of the monsoon westerlies and the TEJ, as well as a decrease in low-level convergence and resultant rising air throughout the mid levels of the troposphere. Our experiments suggest a potential shift in the regional moisture balance of West Africa should global radiative forcing continue to increase, highlighting the importance of climate system feedbacks in shaping the response of regional-scale climate to global-scale changes in radiative forcing.

  3. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Moreno, C.; Stetsovych, Oleksandr; Shimizu, T.K.; Custance, O.

    2015-01-01

    Roč. 15, č. 4 (2015), s. 2257-2262 ISSN 1530-6984 Institutional support: RVO:68378271 Keywords : noncontact atomic force microscopy (NC- AFM ) * submolecular resolution * three-dimensional dynamic force spectroscopy * high-resolution imaging Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.779, year: 2015

  4. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces.

    Science.gov (United States)

    Wang, Jianlong; Nguyen, Anh V

    2017-12-01

    Van der Waals forces are one of the important components of intermolecular, colloidal and surface forces governing many phenomena and processes. The latest examples include the colloidal interactions between hydrophobic colloids and interfaces in ambient (non-degassed) water in which dissolved gases and nanobubbles are shown to affect the van der Waals attractions significantly. The advanced computation of van der Waals forces in aqueous systems by the Lifshitz theory requires reliable data for water dielectric spectra. In this paper we review the available predictions of water dielectric spectra for calculating colloidal and surface van der Waals forces. Specifically, the available experimental data for the real and imaginary parts of the complex dielectric function of liquid water in the microwave, IR and UV regions and various corresponding predictions of the water spectra are critically reviewed. The data in the UV region are critical, but the available predictions are still based on the outdated data obtained in 1974 (for frequency only up to 25.5eV). We also reviewed and analysed the experimental data obtained for the UV region in 2000 (for frequency up to 50eV) and 2015 (for frequency up to 100eV). The 1974 and 2000 data require extrapolations to higher frequencies needed for calculating the van der Waals forces but remain inaccurate. Our analysis shows that the latest data of 2015 do not require the extrapolation and can be used to reliably calculate van der Waals forces. The most recent water dielectric spectra gives the (non-retarded) Hamaker constant, A=5.20×10 -20 J, for foam films of liquid water. This review provides the most updated and reliable water dielectric spectra to compute van der Waals forces in aqueous systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Surface Plasmon-Polaritons and Transverse Spin Angular Momentum at the Boundary of Hyperbolic Metamaterial with Arbitrary Orientation of the Optical Axis

    Directory of Open Access Journals (Sweden)

    V. Belyi

    2017-10-01

    Full Text Available The possibility is established and the conditions are found for localization of plasmon-polaritons (PPs near the boundaries of hyperbolic metamaterials (HMs of both I and II types with arbitrary orientation of the optical axis. It is grounded that such surface PP has the transverse spin momentum which depends on the wavelength of the exciting wave, the orientation of the optical axis of the hyperbolic metamaterial, and dielectric properties of bordered media.

  6. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    Science.gov (United States)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  7. Evidence for solar forcing of sea-surface temperature on the North Icelandic shelf during the late Holocene

    DEFF Research Database (Denmark)

    Jiang, Hui; Eiríksson, Jón; Schultz, Michael

    2005-01-01

    Diatom proxies from the modern position of the oceanographic Polar Front north of Iceland record variability in sea-surface temperatures during the past two millennia. The sedimentary record is dated with tephrochronology, alleviating marine 14C reservoir age uncertainties. Comparison of changes...... would seem to imply a common forcing factor. A positive and significant correlation between our SST record from the North Icelandic Shelf and reconstructed solar irradiance, together with modeling results, supports the hypothesis that solar forcing is an important constituent of natural climate...... variability in the northern North Atlantic region....

  8. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  9. Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies.

    Science.gov (United States)

    Mollick, Safiul Alam; Kumar, Mohit; Singh, Ranveer; Satpati, Biswarup; Ghose, Debabrata; Som, Tapobrata

    2016-10-28

    Nanoarchitecture by atomic manipulation is considered to be one of the emerging trends in advanced functional materials. It has a gamut of applications to offer in nanoelectronics, chemical sensing, and nanobiological science. In particular, highly ordered one-dimensional semiconductor nanostructures fabricated by self-organization methods are in high demand for their high aspect ratios and large number of applications. An efficient way of fabricating semiconductor nanostructures is by molecular beam epitaxy, where atoms are added to a crystalline surface at an elevated temperature during growth, yielding the desired structures in a self-assembled manner. In this article, we offer a room temperature process, in which atoms are sputtered away by ion impacts. Using gold ion implantation, the present study reports on the formation of highly ordered self-organized long grating-like nanostructures, with grooves between them, on a germanium surface. The ridges of the patterns are shown to have flower-like protruding nanostructures, which are mostly decorated by gold atoms. By employing local probe microscopic techniques like Kelvin probe force microscopy and conductive atomic force microscopy, we observe a spatial variation in the work function and different nanoscale electrical conductivity on the ridges of the patterns and the grooves between them, which can be attributed to gold atom decorated ridges. Thus, the architecture  presented offers the advantage of using the patterned germanium substrates as periodic arrays of conducting ridges and poorly conducting grooves between them.

  10. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  11. EFFECT OF VARIABLE VISCOSITY AND SUCTION/INJECTION ON THERMAL BOUNDARY LAYER OF A NON-NEWTONIAN POWER-LAW FLUIDS PAST A POWER-LAW STRETCHED SURFACE

    Directory of Open Access Journals (Sweden)

    Rania Fathy

    2010-01-01

    Full Text Available The analysis of laminar boundary layer flow and heat transfer of non-Newtonian fluids over a continuous stretched surface with suction or injection has been presented.The velocity and temperature of the sheet were assumed to vary in a power-law form, that is u = U0xm, and Tw(x = T+ Cxb. The viscosity of the fluid is assumed to be inverse linear function of temperature. The resulting governing boundary-layer equations are highly non-linear and coupled form of partial differential equations and they have been solved numerically by using the Runge-Kutta method and Shooting technique. Velocity and temperature distributions as well as the Nusselt number where studied for two thermal boundary conditions: uniform surface temperature (b = 0 and cooled surface temperature (b = -1, for different parameters: variable viscosity parameter qr, temperature exponent b, blowing parameter d and Prandtl number. The obtained results show that the flow and heat transfer characteristics are significantly influenced by these parameters.

  12. Kinetic modeling for thermal dehydration of ferrous oxalate dihydrate polymorphs: a combined model for induction period-surface reaction-phase boundary reaction.

    Science.gov (United States)

    Ogasawara, Haruka; Koga, Nobuyoshi

    2014-04-03

    In this study, ferrous oxalate dihydrate polymorph particles, α- and β-phases, with square bipyramidal and quadratic prismatic shapes, respectively, were synthesized. Thermal dehydration of the samples was subjected to kinetic study as a typical reaction that indicates a significant induction period and a sigmoidal mass-loss behavior. On the basis of the formal kinetic analysis of the mass-loss traces recorded under isothermal, nonisothermal, and constant transformation rate conditions and the morphological observations of the surface textures of the partially reacted sample particles, a combined kinetic model for the induction period-surface reaction-phase boundary reaction was developed. The sigmoidal mass-loss behavior after the significant induction period under isothermal conditions was satisfactorily simulated by the combined kinetic model. The kinetic parameters for the component processes of induction period, surface reaction, and phase boundary reaction were separately determined from the kinetic simulation. The differences in the kinetic behaviors of the induction period and the phase boundary reaction between α- and β-phase samples were well described by the kinetic parameters. The applicability of the combined kinetic model to practical systems was demonstrated through characterizing the physicogeometrical kinetics of the thermal dehydration of ferrous oxalate dihydrate polymorphs.

  13. Mixed convection boundary-layer flow from a horizontal circular cylinder with a constant surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Nazar, R.; Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2004-02-01

    The laminar mixed convection boundary-layer flow of a viscous and incompressible fluid past a horizontal circular cylinder, which is maintained at a constant heat flux and is placed in a stream flowing vertically upward has been theoretically studied in this paper. The solutions for the flow and heat transfer characteristics are evaluated numerically for different values of the mixed convection parameter {lambda} with the Prandtl number Pr = 1 and 7, respectively. It is found, as for the case of a heated or cooled cylinder, considered by Merkin [5], that assisting flow delays separation of the boundary-layer and can, if the assisting flow is strong enough, suppress it completely. The opposing flow, on the other side, brings the separation point nearer to the lower stagnation point and for sufficiently strong opposing flows there will not be a boundary-layer on the cylinder. (orig.)

  14. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  15. Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado

    Directory of Open Access Journals (Sweden)

    D. Noone

    2013-02-01

    Full Text Available The D/H isotope ratio is used to attribute boundary layer humidity changes to the set of contributing fluxes for a case following a snowstorm in which a snow pack of about 10 cm vanished. Profiles of H2O and CO2 mixing ratio, D/H isotope ratio, and several thermodynamic properties were measured from the surface to 300 m every 15 min during four winter days near Boulder, Colorado. Coeval analysis of the D/H ratios and CO2 concentrations find these two variables to be complementary with the former being sensitive to daytime surface fluxes and the latter particularly indicative of nocturnal surface sources. Together they capture evidence for strong vertical mixing during the day, weaker mixing by turbulent bursts and low level jets within the nocturnal stable boundary layer during the night, and frost formation in the morning. The profiles are generally not well described with a gradient mixing line analysis because D/H ratios of the end members (i.e., surface fluxes and the free troposphere evolve throughout the day which leads to large uncertainties in the estimate of the D/H ratio of surface water flux. A mass balance model is constructed for the snow pack, and constrained with observations to provide an optimal estimate of the partitioning of the surface water flux into contributions from sublimation, evaporation of melt water in the snow and evaporation from ponds. Results show that while vapor measurements are important in constraining surface fluxes, measurements of the source reservoirs (soil water, snow pack and standing liquid offer stronger constraint on the surface water balance. Measurements of surface water are therefore essential in developing observational programs that seek to use isotopic data for flux attribution.

  16. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  17. Modelling of deformation process for the layer of elastoviscoplastic media under surface action of periodic force of arbitrary type

    Science.gov (United States)

    Mikheyev, V. V.; Saveliev, S. V.

    2018-01-01

    Description of deflected mode for different types of materials under action of external force plays special role for wide variety of applications - from construction mechanics to circuits engineering. This article con-siders the problem of plastic deformation of the layer of elastoviscolastic soil under surface periodic force. The problem was solved with use of the modified lumped parameters approach which takes into account close to real distribution of normal stress in the depth of the layer along with changes in local mechanical properties of the material taking place during plastic deformation. Special numeric algorithm was worked out for computer modeling of the process. As an example of application suggested algorithm was realized for the deformation of the layer of elasoviscoplastic material by the source of external lateral force with the parameters of real technological process of soil compaction.

  18. Grain boundary melting in ice

    OpenAIRE

    Thomson, E. S.; Hansen-Goos, Hendrik; Wilen, L. A.; Wettlaufer, J. S.

    2012-01-01

    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentr...

  19. In processing of a spheroidized medium carbon steel, modelling with regression analysis of cutting forces and surface roughness affected by cutting parameters

    Directory of Open Access Journals (Sweden)

    Hüdayim Başak

    2016-08-01

    Full Text Available In this study, different spheronization heat treatment applied on a mild carbon steel during the machining was created main cutting forces and surface roughness value, were modeled by using multiple linear regression analysis. Main cutting force and surface roughness value which are dependent variable are described respectively rate of 94.6% and 94.2% by independent variables. The ANOVA significance test were used to determine dependent and independent variables correlations. Also, processing parameters variations such as effects on the feed rate, depth of cut and cutting force changes effect on surface roughness and main cutting force general effects were plotted to discuss.

  20. Force mapping on a partially H-covered Si(111)-(7x7) surface: Influence of tip and surface reactivity

    Czech Academy of Sciences Publication Activity Database

    Yurtsever, A.; Sugimoto, Y.; Tanaka, H.; Abe, M.; Morita, S.; Ondráček, Martin; Pou, P.; Pérez, R.; Jelínek, Pavel

    2013-01-01

    Roč. 87, č. 15 (2013), "155403-1"-"155403-10" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GPP204/11/P578; GA ČR GAP204/10/0952; GA AV ČR IAA100100905 Grant - others:GA AV ČR(CZ) M100101207 Institutional support: RVO:68378271 Keywords : atomic force microscopy * DFT simulations * silicon surface * surface passivation * electrostatic interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013 http://link. aps .org/doi/10.1103/PhysRevB.87.155403

  1. Investigation of the surface potential of TiO2 (110) by frequency-modulation Kelvin probe force microscopy.

    Science.gov (United States)

    Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro

    2016-12-16

    We investigate the surface potential distribution on a TiO 2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO 2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO 2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO 2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.

  2. Entropic solvation force between surfaces modified by grafted chains: a density functional approach

    Directory of Open Access Journals (Sweden)

    O. Pizio

    2010-01-01

    Full Text Available The behavior of a hard sphere fluid in slit-like pores with walls modified by grafted chain molecules composed of hard sphere segments is studied using density functional theory. The chains are grafted to opposite walls via terminating segments forming pillars. The effects of confinement and of "chemical" modification of pore walls on the entropic solvation force are investigated in detail. We observe that in the absence of adsorbed fluid the solvation force is strongly repulsive for narrow pores and attractive for wide pores. In the presence of adsorbed fluid both parts of the curve of the solvation force may develop oscillatory behavior dependent on the density of pillars, the number of segments and adsorption conditions. Also, the size ratio between adsorbed fluid species and chain segments is of importance for the development of oscillations. The choice of these parameters is crucial for efficient manipulation of the solvation force as desired for pores of different width.

  3. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results

    Science.gov (United States)

    Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro

    2014-05-01

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on \\text{I}{{\\text{n}}_{0.48}}\\text{G}{{\\text{a}}_{0.52}}\\text{P} buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, \\vec{k}\\;\\cdot \\;\\vec{p} bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband \\vec{k}\\;\\cdot \\;\\vec{p} approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further

  4. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results.

    Science.gov (United States)

    Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro

    2014-05-16

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In₀.₄₈Ga₀.₅₂ buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, [Formula: see text] bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband [Formula: see text] approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental

  5. Excitation of a surface wave by an s-polarized electromagnetic wave incident upon a boundary of a dense magnetoactive plasma

    International Nuclear Information System (INIS)

    Dragila, R.; Vukovic, S.

    1988-01-01

    The properties of surfave waves that are associated with a boundary between a rare plasma and a dense magnetoactive plasma and that propagate along a dc magnetic field are investigated. It is shown that the presence of the magnetic field introduces symmetry in terms of the polarization of the incident electromagnetic wave that excites the surface waves. A surface wave excited by an incident p-polarized (s-polarized) electromagnetic wave leaks in the form of an s-polarized (p-polarized) electromagnetic wave. The rate of rotation of polarization is independent of the polarization of the incident wave. Because a surface wave can leak in the form of an s-polarized electromagnetic wave, it can also be pumped by such a wave, and conditions were found for excitation of a surface wave by an s-polarized incident electromagnetic wave

  6. The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter

    Science.gov (United States)

    Hoell, Andrew; Funk, Christopher C.; Mathew Barlow,

    2015-01-01

    Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.

  7. Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL campaign

    NARCIS (Netherlands)

    Ganzeveld, L.; Eerdekens, G.; Feig, G.; Fischer, H.; Harder, H.; Konigstedt, R.; Kubistin, D.; Martinez, M.; Meixner, F. X.; Scheeren, H. A.; Sinha, V.; Taraborrelli, D.; Williams, J.; de Arellano, J. Vila-Guerau; Lelieveld, J.

    2008-01-01

    We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model

  8. The influence of cooling techniques on cutting forces and surface roughness during cryogenic machining of titanium alloys

    Directory of Open Access Journals (Sweden)

    Wstawska Iwona

    2016-12-01

    Full Text Available Titanium alloys are one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance. On the other hand, they also present problems wherein titanium alloys are extremely difficult materials to machine. In addition, the cost associated with titanium machining is also high due to lower cutting velocities and shorter tool life. The main objective of this work is a comparison of different cooling techniques during cryogenic machining of titanium alloys. The analysis revealed that applied cooling technique has a significant influence on cutting force and surface roughness (Ra parameter values. Furthermore, in all cases observed a positive influence of cryogenic machining on selected aspects after turning and milling of titanium alloys. This work can be also the starting point to the further research, related to the analysis of cutting forces and surface roughness during cryogenic machining of titanium alloys.

  9. Systematic study of the dolomite (104) surface by bimodal dynamic force microscopy in ultra-high vacuum.

    Science.gov (United States)

    Kawai, Shigeki; Pina, Carlos M; Bubendorf, Alexander; Fessler, Gregor; Glatzel, Thilo; Gnecco, Enrico; Meyer, Ernst

    2013-02-08

    We have investigated the morphology and structure of dolomite MgCa(CO(3))(2)(104) surfaces by bimodal dynamic force microscopy with flexural and torsional resonance modes in ultra-high vacuum at room temperature. We found that the surface slowly decomposes by degassing CO(2) in a vacuum and becomes covered by amorphous clusters, presumably MgO and CaO. By choosing an optimal sample preparation procedure (i.e. cleaving in a vacuum and mild annealing for stabilizing clusters for a short time), atomically clean surfaces were obtained. The complex tip-sample interaction, arising from carbonate groups and Mg and Ca atoms of the surface, induces a large variety of atomic-scale imaging features.

  10. Vibrational Analysis of Brucite Surfaces and the Development of an Improved Force Field for Molecular Simulation of Interfaces.

    Science.gov (United States)

    Zeitler, Todd R; Greathouse, Jeffery A; Gale, Julian D; Cygan, Randall T

    2014-04-17

    We introduce a nonbonded three-body harmonic potential energy term for Mg-O-H interactions for improved edge surface stability in molecular simulations. The new potential term is compatible with the Clayff force field and is applied here to brucite, a layered magnesium hydroxide mineral. Comparisons of normal mode frequencies from classical and density functional theory calculations are used to verify a suitable spring constant ( k parameter) for the Mg-O-H bending motion. Vibrational analysis of hydroxyl librations at two brucite surfaces indicates that surface Mg-O-H modes are shifted to frequencies lower than the corresponding bulk modes. A comparison of DFT and classical normal modes validates this new potential term. The methodology for parameter development can be applied to other clay mineral components (e.g., Al, Si) to improve the modeling of edge surface stability, resulting in expanded applicability to clay mineral applications.

  11. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ...) and surface air temperature (SAT) data during 1982-1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982-1989 to investigate the Japan Sea SST temporal and spatial variabilities...

  12. Absence of grain boundary melting in solid helium

    Energy Technology Data Exchange (ETDEWEB)

    Caupin, Frederic; Sasaki, Satoshi; Balibar, Sebastien [Laboratoire de Physique Statistique de l' Ecole Normale Superieure, associe au CNRS et aux Universites Paris 6 et 7, 24 rue Lhomond, 75005 Paris (France)], E-mail: caupin@lps.ens.fr

    2008-12-10

    Crystals are often expected to start melting at their free surface or at the interface between grains. Grain boundary melting corresponds to the situation where the interface between grains is invaded by a thick liquid film at the bulk melting temperature T{sub m}. In some cases, premelting is predicted, with liquid-like layers appearing between grains at temperatures below T{sub m}. We review this topic, and describe our experiments on solid helium 4. We find that grain boundaries are not wetted by the liquid at T{sub m}: they emerge at the liquid-solid interface with a non-zero contact angle. This is consistent with a general argument which predicts that, although systems with short-range forces might show grain boundary melting and premelting, in systems with long-range forces (like helium), grain boundaries can only be wetted incompletely by the liquid at T{sub m}.

  13. The role of external forcing and internal variability in regulating global mean surface temperatures on decadal timescales

    Science.gov (United States)

    Dong, Lu; McPhaden, Michael J.

    2017-03-01

    Global mean surface temperature (GMST) shows considerable decadal variations superimposed on a pronounced warming trend, with rapid warming during 1920-1945 and 1977-2000 and warming hiatuses during 1946-1976 and 2001-2013. The prevailing view is that internally generated variations associated with the Interdecadal Pacific Oscillation (IPO) dominate decadal variations in GMST, while external forcing from greenhouse gases and anthropogenic aerosols dominate the long-term trend in GMST over the last hundred years. Here we show evidence from observations and climate models that external forcing largely governs decadal GMST variations in the historical record with internally generated variations playing a secondary role, except during those periods of IPO extremes. In particular, the warming hiatus during 1946-1976 started from a negative IPO but was later dominated by the eruption of Mount Agung in 1963, while the subsequent accelerated warming during 1977-2000 was due primarily to increased greenhouse gas forcing. The most recent warming hiatus apparent in observations occurred largely through cooling from a negative IPO extreme that overwhelmed the warming from external forcing. An important implication of this work is that when the phase of the IPO turns positive, as it did in 2014, the combination of external forcing and internal variability should lead to accelerated global warming. This accelerated warming appears to be underway, with record high GMST in 2014, 2015, and 2016.

  14. Influence of ion pairing in ionic liquids on electrical double layer structures and surface force using classical density functional approach.

    Science.gov (United States)

    Ma, Ke; Forsman, Jan; Woodward, Clifford E

    2015-05-07

    We explore the influence of ion pairing in room temperature ionic liquids confined by planar electrode surfaces. Using a coarse-grained model for the aromatic ionic liquid [C4MIM(+)][BF4 (-)], we account for an ion pairing component as an equilibrium associating species within a classical density functional theory. We investigated the resulting structure of the electrical double layer as well as the ensuing surface forces and differential capacitance, as a function of the degree of ion association. We found that the short-range structure adjacent to surfaces was remarkably unaffected by the degree of ion pairing, up to several molecular diameters. This was even the case for 100% of ions being paired. The physical implications of ion pairing only become apparent in equilibrium properties that depend upon the long-range screening of charges, such as the asymptotic behaviour of surface forces and the differential capacitance, especially at low surface potential. The effect of ion pairing on capacitance is consistent with their invocation as a source of the an