WorldWideScience

Sample records for surface binding demonstrated

  1. Distribution of Glycan Motifs at the Surface of Midgut Cells in the Cotton Leafworm (Spodoptera littoralis Demonstrated by Lectin Binding

    Directory of Open Access Journals (Sweden)

    Tomasz Walski

    2017-12-01

    Full Text Available Glycans are involved in many biological phenomena, including signal transduction, cell adhesion, immune response or differentiation. Although a few papers have reported on the role of glycans in the development and proper functioning of the insect midgut, no data are available regarding the localization of the glycan structures on the surface of the cells in the gut of insects. In this paper, we analyzed the spatial distribution of glycans present on the surface of the midgut cells in larvae of the cotton leafworm Spodoptera littoralis, an important agricultural pest insect worldwide. For this purpose, we established primary midgut cell cultures, probed these individual cells that are freely suspended in liquid medium with a selection of seven fluorescently labeled lectins covering a range of different carbohydrate binding specificities [mannose oligomers (GNA and HHA, GalNAc/Gal (RSA and SSA, GlcNAc (WGA and Nictaba and Neu5Ac(α-2,6Gal/GalNAc (SNA-I], and visualized the interaction of these lectins with the different zones of the midgut cells using confocal microscopy. Our analysis focused on the typical differentiated columnar cells with a microvillar brush border at their apical side, which are dominantly present in the Lepidopteran midgut and function in food digestion and absorption, and as well as on the undifferentiated stem cells that are important for midgut development and repair. Confocal microscopy analyses showed that the GalNAc/Gal-binding lectins SSA and RSA and the terminal GlcNAc-recognizing WGA bound preferentially to the apical microvillar zone of the differentiated columnar cells as compared to the basolateral pole. The reverse result was observed for the mannose-binding lectins GNA and HHA, as well as Nictaba that binds preferentially to GlcNAc oligomers. Furthermore, differences in lectin binding to the basal and lateral zones of the cell membranes of the columnar cells were apparent. In the midgut stem cells, GNA and

  2. Relationships between cell surface insulin binding and endocytosis in adipocytes

    International Nuclear Information System (INIS)

    Jochen, A.L.

    1988-01-01

    Chymotrypsin substrate analogues, such as N-acetyl-Tyr ethyl ester, have recently been demonstrated to inhibit the endocytic uptake of insulin in isolated rat adipocytes. In this study, the effect of N-acetyl-Tyr ethyl ester on cell surface insulin binding and dissociation were examined. Surface-bound 125 I-insulin was distinguished from intracellular 125 I-insulin by the sensitivity of the former to rapid dissociation with an acidic buffer. Plateau levels of surface-bound insulin at 37 degree C were increased 70% by inhibiting the internalization pathway. This increase was temperature and insulin concentration dependent. Thus differences in surface binding were small at 12 degree C and also at high insulin concentrations. Inhibition of internalization with N-acetyl-Tyr ethyl ester markedly slowed the loss of surface-bound insulin observed during dissociation the loss of surface-bound insulin observed during dissociation studies. After 20-30 min of dissociation, the remaining levels of surface-bound insulin were three- to fourfold higher in treated adipocytes compared with control adipocytes. Added unlabeled insulin retained its ability to accelerate the dissociation of insulin in N-acetyl-Tyr ethyl ester-treated cells. These observations indicate that the internalization pathway is a quantitatively important factor in determining levels of surface binding at 37 degree C and in determining the rat of deactivation of insulin binding

  3. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    International Nuclear Information System (INIS)

    Serck-Hanssen, G.; Soevik, O.

    1987-01-01

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of 125 I-insulin was carried out at 15 0 C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table

  4. Demonstration of specific binding sites for /sup 3/H-RRR-alpha-tocopherol on human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for /sup 3/H-RRR-alpha-tocopherol (/sup 3/H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for /sup 3/H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for /sup 3/H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane.

  5. Demonstration of specific binding sites for 3H-RRR-alpha-tocopherol on human erythrocytes

    International Nuclear Information System (INIS)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for 3 H-RRR-alpha-tocopherol ( 3 H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for 3 H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for 3 H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane

  6. Full Length Amelogenin Binds to Cell Surface LAMP-1 on Tooth Root/Periodontium Associated Cells

    Science.gov (United States)

    Zhang, Hai; Tompkins, Kevin; Garrigues, Jacques; Snead, Malcolm L.; Gibson, Carolyn W.; Somerman, Martha J.

    2010-01-01

    Objectives Lysosome-associated membrane protein-1 (LAMP-1) has been suggested to be a cell surface receptor for a specific amelogenin isoform, leucine-rich amelogenin peptide or LRAP. However, it is unclear if LAMP-1 is an amelogenin receptor for dental mesenchymal cells. The goal of this study was to determine if LAMP-1 serves as a cell surface binding site for full length amelogenin on tooth root/periodontium associated mesenchymal cells. Design Murine dental follicle cells and cementoblasts (OCCM-30) were cultured for 2 days followed by addition of full length recombinant mouse amelogenin, rp(H)M180. Dose-response (0 to 100 μg/ml) and time course (0 to 120 minutes) assays were performed to determine the optimal conditions for live cell surface binding using immuno-fluorescent microscopy. A competitive binding assay was performed to determine binding specificity by adding Emdogain (1 mg/ml) to the media. An antibody against LAMP-1 was used to detect the location of LAMP-1 on the cell surface and the pattern was compared to cell surface bound amelogenin. Both amelogenin and cell surface LAMP-1 were immuno-co-localized to compare the amount and distribution pattern. Results Maximum surface binding was achieved with 50 μg/ml of rp(H)M180 for 120 minutes. This binding was specific as demonstrated by competitive inhibition (79% lower) with the addition of Emdogain. The binding pattern for rp(H)M180 was similar to the distribution of surface LAMP-1 on dental follicle cells and cementoblasts. The high co-localization coefficient (0.92) for rp(H)M180 and LAMP-1 supports rp(H)M180 binding to cell surface LAMP-1. Conclusions The data from this study suggest that LAMP-1 can serve as a cell surface binding site for amelogenin on dental follicle cells and cementoblasts. PMID:20382373

  7. Demonstration of binding components specific for 7,8-disubstituted guanine ribonucleosides in murine B lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M.G. (Research Institute of Scripps Clinic, La Jolla, CA (USA))

    1990-12-25

    7,8-Disubstituted guanine ribonucleosides are known to be potent intracellular modulators of immune responses. These compounds trigger and modulate a wide variety of lymphocyte responses including effects exerted directly on B cells. However, little is known about their mechanism of action. The current paper describes studies undertaken to evaluate whether binding components specific for these bioactive molecules exist in splenic B lymphocytes. After exposure of cells to labeled nucleoside, two different pools of nucleoside can be distinguished: a rapidly exchangeable nucleoside pool and a slowly exchangeable pool. The material in the latter pool consists of authentic unaltered nucleoside that is complexed to a relatively hydrophobic cellular component with an apparent Mr of 30,000-40,000; binding appears to interfere with free interaction of the nucleoside's cis hydroxyls with a boronate affinity resin. The slowly exchangeable nucleoside pool is seen to localize predominantly to the nucleus in electron microscopic autoradiographs. This pool is maximally bound by 30 min of incubation. Specific, saturable binding is demonstrable, with an apparent Kd of approximately 7 microM. This value correlates well with concentrations at which half-maximal biological activity occurs and suggests that the binding component likely mediates antigen-dependent immunomodulatory activity. Splenic B cells express approximately 2 x 10(4) binding sites/cell, whereas thymic lymphocytes, which do not respond functionally to nucleosides, do not display a measurable number of nucleoside binding sites. Ligand specificity of the binding interaction is confirmed by binding inhibition studies, in which binding inhibitory activity of unlabeled agonistic structural analogs recapitulate their degree of immunobiological activity.

  8. Accurate prediction of peptide binding sites on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Evangelia Petsalaki

    2009-03-01

    Full Text Available Many important protein-protein interactions are mediated by the binding of a short peptide stretch in one protein to a large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins for which a three-dimensional structure is available (either known experimentally or readily modeled but where no structure of the protein-peptide complex is known. To address this gap, we present an approach that can accurately predict peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a putative or predicted peptide partner will bind. We used known protein-peptide complexes to derive preferences, in the form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly discovered peptides mediating critical events in biology.

  9. Demonstration of beta1-adrenergic receptors in human placenta by (-)I125 Iodocyanopindolol binding

    International Nuclear Information System (INIS)

    Paci, A.; Cocci, F.; Niedermeyer, H.P.; Matteucci, E.; Vitali, C.; Ciarimboli, G.; Bombardieri, S.

    1989-01-01

    The highly specific β-adrenergic radioligand (-) 125 I Iodocyanopindolol (ICYP) was used to characterize the β-adrenergic receptor subtype present in human placenta. Binding of ICYP to membranes from human placenta was saturable with time and ligand concentration, of high affinity, and demonstrated appropriate stereoselectivity and agonist rank order of potency for binding to a β-adrenergic receptor. From saturation binding curves, the K D and B max values for ICYP binding were 233±51 pM and 690±139 fmol/mg of proteins, respectively.Analysis of inhibition of ICYP binding by β 1 - and β 2 -selective adrenergic antagonists via Hofstee analysis resulted in linear plots, indicating the existence of a homogeneous population of β-adrenergic receptors. From the resulting K I -values for the β 1 -selective drugs practolol (4.0±0.9 μM) and metoprolol (0.19±0.07 μM) and for the β 2 -selective drug ICI 118,551 (0.30)±0.06 μM) it is concluded that the β-adrenergic receptor in human placenta is of the β 1 -subtype. This is further supported by the fact that (-)-noradrenaline and (-)-adrenaline were equipotent in inhibiting ICYP binding

  10. Binding affinity of surface functionalized gold nanoparticles to hydroxyapatite.

    Science.gov (United States)

    Ross, Ryan D; Roeder, Ryan K

    2011-10-01

    Gold nanoparticles (Au NPs) have been investigated for a number of biomedical applications, including drug and gene delivery vehicles, thermal ablation therapy, diagnostic sensors, and imaging contrast agents. Surface functionalization with molecular groups exhibiting calcium affinity can enable targeted delivery of Au NPs to calcified tissue, including damaged bone tissue. Therefore, the objective of this study was to investigate the binding affinity of functionalized Au NPs for targeted delivery to bone mineral, using hydroxyapatite (HA) crystals as a synthetic analog in vitro. Au NPs were synthesized to a mean particle size of 10-15 nm and surface functionalized with either L-glutamic acid, 2-aminoethylphosphonic acid, or alendronate, which exhibit a primary amine for binding gold opposite carboxylate, phosphonate, or bisphosphonate groups, respectively, for targeting calcium. Bisphosphonate functionalized Au NPs exhibited the most rapid binding kinetics and greatest binding affinity to HA, followed by glutamic acid and phosphonic acid. All functional groups reached complete binding after 24 h. Equilibrium binding constants in de-ionized water, determined by nonlinear regression of Langmuir isotherms, were 3.40, 0.69, and 0.25 mg/L for bisphosphonate, carboxylate, and phosphonate functionalized Au NPs, respectively. Functionalized Au NPs exhibited lower overall binding in fetal bovine serum compared to de-ionized water, but relative differences between functional groups were similar. Copyright © 2011 Wiley Periodicals, Inc.

  11. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C. (Scripps); (UW)

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  12. Reversible and Irreversible Binding of Nanoparticles to Polymeric Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Binder

    2009-01-01

    Full Text Available Reversible and irreversible binding of CdSe-nanoparticles and nanorods to polymeric surfaces via a strong, multiple hydrogen bond (= Hamilton-receptor/barbituric acid is described. Based on ROMP-copolymers, the supramolecular interaction on a thin polymer film is controlled by living polymerization methods, attaching the Hamilton-receptor in various architectures, and concentrations. Strong binding is observed with CdSe-nanoparticles and CdSe-nanorods, whose surfaces are equipped with matching barbituric acid-moieties. Addition of polar solvents, able to break the hydrogen bonds leads to the detachment of the nanoparticles from the polymeric film. Irreversible binding is observed if an azide/alkine-“click”-reaction is conducted after supramolecular recognition of the nanoparticles on the polymeric surface. Thus reversible or irreversible attachment of the nanosized objects can be achieved.

  13. A demonstration of the antimicrobial effectiveness of various copper surfaces.

    Science.gov (United States)

    Champagne, Victor K; Helfritch, Dennis J

    2013-03-27

    Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared.The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity.

  14. Equilibrium binding studies of mono, di and triisocyanide ligands on Au powder surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ontko, Alyn [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    The author`s group has previously shown that isocyanides are readily adsorbed from solutions to Au powder and bind to the Au surface in an end-on fashion through the terminal carbon. Later work demonstrated that the equilibrium constants for the reversible adsorption of electronically inequivalent isocyanides could be obtained using the Langmuir isotherm technique. This dissertation describes two projects completed which complement the initial findings of this group. Initially, several alkylisocyanides were synthesized to examine the effect of tail length on Au powder adsorption. It was observed that the length of the alkyl chain affected not only the Au surface binding affinity, but also the rate of surface saturation and saturation coverage values. Direct competition studies were also studied using a 13C-labeled isocyanide. These studies demonstrated the stabilization afforded by substrate-substrate packing forces in SAM`s formed by the longer chain isocyanides. In a second study, di and triisocyanides were synthesized to determine the effect that the length of the connecting link and the number of isocyanide groups (as points of attachment) have on Au adsorption stability. The work in this area describes the binding modes, relative binding affinities and surface coverage values for a series of flexible alkyl and xylyldiisocyanides on Au powder surfaces. This report contains only the introductory material, and general summary. Two chapters have been processed separately. 56 refs.

  15. Porcine sperm surface beta1,4galactosyltransferase binds to the zona pellucida but is not necessary or sufficient to mediate sperm-zona pellucida binding.

    Science.gov (United States)

    Rebeiz, M; Miller, D J

    1999-12-01

    The binding of sperm to the zona pellucida is an integral part of the mammalian fertilization process, investigated most extensively in the mouse. Several sperm receptors for the murine zona pellucida have been studied (Snell WJ, White JM. 1996. Cell 85:629-637; Wassarman PM. 1999. Cell 96:175-183), but the most compelling evidence exists for beta-1,4-galactosyltransferase (GalTase). Considering that GalTase is present on the surface of porcine sperm (Larson JL, Miller DJ. 1997. Biol Reprod 57:442-453), we investigated the role of GalTase in porcine sperm-zona binding. Sperm surface GalTase catalyzed the addition of uridine diphosphate-[(3)H]galactose to the 55 kDa group of the porcine zona pellucida proteins implicated in sperm binding, demonstrating that GalTase binds the porcine zona. The functional importance of GalTase-zona pellucida binding was tested. Addition of uridine diphosphate galactose, a substrate that completes the GalTase enzymatic reaction and disrupts GalTase mediated adhesion, had no effect on binding of sperm to porcine oocytes. Furthermore, removal of the GalTase zona ligand by incubation of oocytes with N-acetylglucosaminidase had no effect on binding of sperm to oocytes. These results suggest that GalTase is not necessary for sperm to bind to the zona pellucida. Digestion of isolated porcine zona proteins with N-acetylglucosaminidase did not affect the biological activity of soluble porcine zona proteins in competitive sperm-zona binding assays, suggesting that GalTase alone is not sufficient to mediate sperm-zona attachment. From these results, it appears that, although GalTase is able to bind porcine zona proteins, its function in porcine sperm-zona binding is not necessary or sufficient for sperm-zona binding. This supports the contention that porcine sperm-zona binding requires redundant gamete receptors. Copyright 1999 Wiley-Liss, Inc.

  16. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  17. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a cat......Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  18. Low-cost rural surface alternatives : demonstration project.

    Science.gov (United States)

    2015-06-01

    The goals of this project were to implement several stabilization methods for preventing or mitigating freeze-thaw damage to : granular surfaced roads and identify the most effective and economical methods for the soil and climate conditions of Iowa....

  19. Impacts of Surface Site Coordination on Arsenate Adsorption: Macroscopic Uptake and Binding Mechanisms on Aluminum Hydroxide Surfaces.

    Science.gov (United States)

    Xu, Tingying; Catalano, Jeffrey G

    2016-12-13

    Aluminum hydroxides play important roles in regulating the fate and transport of contaminants and nutrients in soils and aquatic systems. Like many metal oxides, these minerals display surface functional groups in a series of coordination states, each of which may differ in its affinity for adsorbates. The distribution of functional group types varies among distinct surfaces of aluminum hydroxides, and we thus hypothesize that the adsorption behavior and mechanisms will show a dependence on particle morphology. To test this hypothesis, we investigate arsenate adsorption on two aluminum hydroxide polymorphs with distinct particle morphologies, gibbsite [γ-Al(OH) 3 ] and bayerite [α-Al(OH) 3 ], at pH 4 and 7. Synthetic gibbsite platelets expose large (001) basal surfaces predicted to be terminated by doubly coordinated functional groups (>Al 2 OH). In contrast, synthetic bayerite microrods display mainly edge surfaces (parallel to the c axis) containing abundant singly coordinated functional groups (>AlOH 2 ). Macroscopic adsorption studies show that gibbsite adsorbs less arsenate per unit surface area than bayerite at both pH values and suggest that two surface complexes form on each material. Similar electrokinetic behavior is displayed at the same relative coverages of arsenate, suggesting that similar reactive surface groups (>AlOH 2 ) control the surface charging on both particles. EXAFS spectroscopy shows that there is no variation in arsenate surface speciation on a given mineral with surface coverage or pH. Whereas bidentate binuclear inner-sphere species are the dominant complexes present, the EXAFS result suggest that outer-sphere species also occur on both minerals, with a greater abundance on gibbsite. This binding mode likely involves adsorption to >Al 2 OH sites, which have a slow ligand exchange rate that inhibits inner-sphere binding. These results demonstrate that adsorption mechanisms and capacity, even when normalized for specific surface area

  20. Detection of vitamin D binding protein on the surface of cytotrophoblasts isolated from human placentae

    International Nuclear Information System (INIS)

    Nestler, J.E.; McLeod, J.F.; Kowalski, M.A.; Strauss, J.F. III; Haddad, J.G. Jr.

    1987-01-01

    Vitamin D binding protein (DBP), a Mr 56,000-58,000 alpha 2-glycoprotein, is the major serum protein involved in the transport of vitamin D sterols. Recently it has been suggested that DBP may also be involved in immunoglobulin G binding to cells. Because the trophoblast is involved in the transport of molecules such as vitamin D and immunoglobulin G to the fetus, we asked whether DBP could be detected on the surface of human placental trophoblast cells. Cytotrophoblasts purified from human term placentae were fixed and made permeant with Triton X-100 and examined by indirect immunofluorescence after incubation with a monoclonal antibody to DBP. Greater than 90% of these cells stained positively, whereas no staining was observed with nonimmune antiserum. The presence of DBP on/in the surface of cytotrophoblasts could also be demonstrated by fluorescent cytometry. When cell surface-associated proteins of cytotrophoblasts were radioiodinated, a Mr 57,000 radiolabeled protein could be immunoisolated from the cell lysate with a purified monospecific polyclonal antibody to DBP. Immunoisolation of this radiolabeled protein was prevented by the addition of excess unlabeled human DBP to the cell lysate before incubation with antibody. This Mr 57,000 radiolabeled protein could also be isolated by affinity chromatography selecting for proteins that bind to globular actin. When cytotrophoblasts were incubated with [ 35 S]methionine for 3 or 18 h, active synthesis of DBP could not be demonstrated by immunoisolation techniques. These studies demonstrate the presence of DBP on the surface of well washed, human cytotrophoblasts. This DBP may be maternally derived, since active synthesis of DBP could not be demonstrated

  1. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    Science.gov (United States)

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  2. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    International Nuclear Information System (INIS)

    Stoeckel, M.E.; Freund-Mercier, M.J.

    1989-01-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective 125 I-labeled OT antagonist ( 125 I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of 125 I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that 125 I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration

  3. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckel, M.E.; Freund-Mercier, M.J. (Centre National de la Recherche Scientifique, Strasbourg (France))

    1989-08-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.

  4. Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography.

    Science.gov (United States)

    Müller, Egbert; Vajda, Judith

    2016-05-15

    Protein A chromatography is a well-established platform in downstream purification of monoclonal antibodies. Dynamic binding capacities are continuously increasing with almost every newly launched Protein A resin. Nevertheless, binding capacities of affinity chromatography resins cannot compete with binding capacities obtained with modern ion exchange media. Capacities of affinity resins are roughly 50% lower. High binding capacities of ion exchange media are supported by spacer technologies. In this article, we review existing spacer technologies of affinity chromatography resins. A yet known effective approach to increase the dynamic binding capacity of Protein A resins is oligomerization of the particular Protein A motifs. This resembles the tentacle technology used in ion exchange chromatography. Dynamic binding capacities of a hexameric ligand are roughly twice as high compared to capacities obtained with a tetrameric ligand. Further capacity increases up to 130mg/ml can be realized with the hexamer ligand, if the sodium phosphate buffer concentration is increased from 20 to 100mM. Equilibrium isotherms revealed a BET shape for the hexamer ligand at monoclonal antibody liquid phase concentrations higher than 9mg/ml. The apparent multilayer formation may be due to hydrophobic forces. Other quality attributes such as recovery, aggregate content, and overall purity of the captured monoclonal antibody are not affected. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Binding of oxygen on vacuum fractured pyrite surfaces: Reactivity of iron and sulfur surface sites

    Science.gov (United States)

    Berlich, A. G.; Nesbitt, H. W.; Bancroft, G. M.; Szargan, R.

    2013-05-01

    Synchrotron radiation excited photoelectron spectroscopy (SXPS) has been used to study the interaction of oxygen with vacuum fractured pyrite surfaces. Especially valence band spectra obtained with 30 eV photon energy were analyzed to provide a mechanism of the incipient steps of pyrite oxidation. These spectra are far more sensitive to the oxidation than sulfur or iron core level spectra. It is shown that oxygen is adsorbed on Fe(II) surface sites restoring the octahedral coordination of the Fe(II) sites. This process leads to the removal of two surface states in the valence band which are located at the low and high binding energy sides of the outer valence band, respectively. The existence of these surface states which have been proposed by calculations is experimentally proven. Furthermore, it is shown, that the sulfur sites are more reactive than expected. Sulfite like species are already formed after the lowest oxygen exposure of 10 L. This oxidation occurs at sulfur sites neighboring the Fe(II) surface sites. Oxidation of the S2 - surface sites which were considered as the most reactive species in former studies is second. No iron(III) oxides are formed during oxygen exposure, supporting the assumption that water plays an important role in the oxidation mechanism of pyrite surfaces.

  6. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    Science.gov (United States)

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  7. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-05-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this

  8. Detection of Biomolecular Binding Through Enhancement of Localized Surface Plasmon Resonance (LSPR by Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Min-Gon Kim

    2009-03-01

    Full Text Available To amplify the difference in localized surface plasmon resonance (LSPR spectra of gold nano-islands due to intermolecular binding events, gold nanoparticles were used. LSPR-based optical biosensors consisting of gold nano-islands were readily made on glass substrates using evaporation and heat treatment. Streptavidin (STA and biotinylated bovine serum albumin (Bio-BSA were chosen as the model receptor and the model analyte, respectively, to demonstrate the effectiveness of this detection method. Using this model system, we were able to enhance the sensitivity in monitoring the binding of Bio-BSA to gold nano-island surfaces functionalized with STA through the addition of gold nanoparticle-STA conjugates. In addition, SU-8 well chips with gold nano-island surfaces were fabricated through a conventional UV patterning method and were then utilized for image detection using the attenuated total reflection mode. These results suggest that the gold nano-island well chip may have the potential to be used for multiple and simultaneous detection of various bio-substances.

  9. Demonstration of epidermal growth factor binding sites in the adult rat pancreas by light microscopic autoradiography

    International Nuclear Information System (INIS)

    Chabot, J.G.; Walker, P.; Pelletier, G.

    1987-01-01

    The distribution of epidermal growth factor (EGF) receptors was studied in the pancreas using light microscopic autoradiography, which was performed at different time intervals (2-60 min) after injecting 125 I-labeled EGF intravenously into the adult rat. In the exocrine pancreas, a labeling was found to occur over the pyramidal cells of the acini and cells lining the intercalated ducts. Moreover, substantial binding of EGF to cells of the islets of Langerhans was also revealed. At the 2-min time interval, most silver grains were found at the periphery of the target cells. The localization, as well as the diminution of silver grains over the cytoplasm of these cells, between 7 and 60 min, suggested the internalization and degradation of 125 I-labeled EGF. Control experiments indicated that the autoradiography reaction was due to specific interaction of 125 I-labeled EGF with its receptor. These results clearly indicate that EGF receptors are present in the acinar cells and the cells of intercalated ducts of the exocrine pancreas, as well as the cells of the endocrine pancreas. Finding that there are EGF binding sites in pancreatic acinar cells supports the physiological role of EGF in the regulation of pancreatic exocrine function. The presence of EGF receptors in cells of the islets of Langerhans suggests that EGF may play a role in the regulation of the endocrine pancreas

  10. Selective Binding, Self-Assembly and Nanopatterning of the Creutz-Taube Ion on Surfaces

    Directory of Open Access Journals (Sweden)

    Qingling Hang

    2009-02-01

    Full Text Available The surface attachment properties of the Creutz-Taube ion, i.e., [(NH35Ru(pyrazineRu(NH35]5+, on both hydrophilic and hydrophobic types of surfaces were investigated using X-ray photoelectron spectroscopy (XPS. The results indicated that the Creutz-Taube ions only bound to hydrophilic surfaces, such as SiO2 and –OH terminated organic SAMs on gold substrates. No attachment of the ions on hydrophobic surfaces such as –CH3 terminated organic SAMs and poly(methylmethacrylate (PMMA thin films covered gold or SiO2 substrates was observed. Further ellipsometric, atomic force microscopy (AFM and time-dependent XPS studies suggested that the attached cations could form an inorganic analog of the self-assembled monolayer on SiO2 substrate with a “lying-down” orientation. The strong electrostatic interaction between the highly charged cations and the anionic SiO2 surface was believed to account for these observations. Based on its selective binding property, patterning of wide (~200 nm and narrow (~35 nm lines of the Creutz-Taube ions on SiO2 surface were demonstrated through PMMA electron resist masks written by electron beam lithography (EBL.

  11. Adherence of platelets to in situ albumin-binding surfaces under flow conditions: role of surface-adsorbed albumin

    International Nuclear Information System (INIS)

    Guha Thakurta, Sanjukta; Miller, Robert; Subramanian, Anuradha

    2012-01-01

    Surfaces that preferentially bind human serum albumin (HSA) were generated by grafting albumin-binding linear peptide (LP1) onto silicon surfaces. The research aim was to evaluate the adsorption pattern of proteins and the adhesion of platelets from platelet-poor plasma and platelet-rich plasma, respectively, by albumin-binding surfaces under physiological shear rate (96 and 319 s −1 ) conditions. Bound proteins were quantified using enzyme-linked immunosorbent assays (ELISAs) and two-dimensional gel electrophoresis. A ratio of ∼1000:100:1 of adsorbed HSA, human immunoglobulin (HIgG) and human fibrinogen (HFib) was noted, respectively, on LP1-functionalized surfaces, and a ratio of ∼5:2:1 of the same was noted on control surfaces, as confirmed by ELISAs. The surface-adsorbed von Willebrand factor was undetectable by sensitive ELISAs. The amount of adhered platelets correlated with the ratio of adsorbed HSA/HFib. Platelet morphology was more rounded on LP1-functionalized surfaces when compared to control surfaces. The platelet adhesion response on albumin-binding surfaces can be explained by the reduction in the co-adsorption of other plasma proteins in a surface environment where there is an excess of albumin molecules, coupled with restrictions in the conformational transitions of other surface-adsorbed proteins into hemostatically active forms. (paper)

  12. Adherence of platelets to in situ albumin-binding surfaces under flow conditions: role of surface-adsorbed albumin.

    Science.gov (United States)

    Guha Thakurta, Sanjukta; Miller, Robert; Subramanian, Anuradha

    2012-08-01

    Surfaces that preferentially bind human serum albumin (HSA) were generated by grafting albumin-binding linear peptide (LP1) onto silicon surfaces. The research aim was to evaluate the adsorption pattern of proteins and the adhesion of platelets from platelet-poor plasma and platelet-rich plasma, respectively, by albumin-binding surfaces under physiological shear rate (96 and 319 s(-1)) conditions. Bound proteins were quantified using enzyme-linked immunosorbent assays (ELISAs) and two-dimensional gel electrophoresis. A ratio of ∼1000:100:1 of adsorbed HSA, human immunoglobulin (HIgG) and human fibrinogen (HFib) was noted, respectively, on LP1-functionalized surfaces, and a ratio of ∼5:2:1 of the same was noted on control surfaces, as confirmed by ELISAs. The surface-adsorbed von Willebrand factor was undetectable by sensitive ELISAs. The amount of adhered platelets correlated with the ratio of adsorbed HSA/HFib. Platelet morphology was more rounded on LP1-functionalized surfaces when compared to control surfaces. The platelet adhesion response on albumin-binding surfaces can be explained by the reduction in the co-adsorption of other plasma proteins in a surface environment where there is an excess of albumin molecules, coupled with restrictions in the conformational transitions of other surface-adsorbed proteins into hemostatically active forms.

  13. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid

    Science.gov (United States)

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A.; Wepasnick, Kevin A.; McDonnell, Peter; Elisseeff, Jennifer H.

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  14. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid.

    Science.gov (United States)

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A; Wepasnick, Kevin A; McDonnell, Peter; Elisseeff, Jennifer H

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  15. Mapping Protein Binding Sites and Conformational Epitopes Using Cysteine Labeling and Yeast Surface Display.

    Science.gov (United States)

    Najar, Tariq Ahmad; Khare, Shruti; Pandey, Rajesh; Gupta, Satish K; Varadarajan, Raghavan

    2017-03-07

    We describe a facile method for mapping protein:ligand binding sites and conformational epitopes. The method uses a combination of Cys scanning mutagenesis, chemical labeling, and yeast surface display. While Ala scanning is widely used for similar purposes, often mutation to Ala (or other amino acids) has little effect on binding, except at hotspot residues. Many residues in physical contact with a binding partner are insensitive to substitution with Ala. In contrast, we show that labeling of Cys residues in a binding site consistently abrogates binding. We couple this methodology to yeast surface display and deep sequencing to map conformational epitopes targeted by both monoclonal antibodies and polyclonal sera as well as a protein:ligand binding site. The method does not require purified protein, can distinguish buried and exposed residues, and can be extended to other display formats, including mammalian cells and viruses, emphasizing its wide applicability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Surface selective binding of nanoclay particles to polyampholyte protein chains.

    Science.gov (United States)

    Pawar, Nisha; Bohidar, H B

    2009-07-28

    Binding of nanoclay (Laponite) to gelatin-A and gelatin-B (both polyampholytes) molecules was investigated at room temperature (25 degrees C) both experimentally and theoretically. The stoichiometric binding ratio between gelatin and Laponite was found to be strongly dependent on the solution ionic strength. Large soluble complexes were formed at higher ionic strengths of the solution, a result supported by data obtained from light scattering, viscosity, and zeta potential measurements. The binding problem was theoretically modeled by choosing a suitable two-body screened Coulomb potential, U(R(+)) = (q(-)/2epsilon)[(Q(-)/R(-))e(-kR(-))-(Q(+)/R(+))e(-kR(+))], where the protein dipole has charges Q(+) and Q(-) that are located at distances R(+) and R(-) from the point Laponite charge q(-) and the dispersion liquid has dielectric constant (epsilon). U(R(+)) accounted for electrostatic interactions between a dipole (protein molecule) and an effective charge (Laponite particle) located at an angular position theta. Gelatin-A and Laponite association was facilitated by a strong attractive interaction potential that led to preferential binding of the biopolymer chains to negatively charged face of Laponite particles. In the case of gelatin-B selective surf ace patch binding dominated the process where the positively charged rim and negatively charged face of the particles were selectively bound to the oppositely charged segments of the biopolymer. The equilibrium separation (R(e)) between the protein and nanoclay particle revealed monovalent salt concentration dependence given by R(e) approximately [NaCl](alpha) where alpha = 0.6+/-0.2 for gelatin-A and alpha = 0.4+/-0.2 for gelatin-B systems. The equilibrium separations were approximately 30% less compared to the gelatin-A system implying preferential short-range ordering of the gelatin-B-nanoclay pair in the solvent.

  17. Study of Binding between Protein A and Immunoglobulin G Using a Surface Tension Probe

    OpenAIRE

    Yang, L.; Biswas, M. E.; Chen, P.

    2003-01-01

    Molecular interactions and binding are one of the most important and fundamental properties in the study of biochemical and biomedical systems. The understanding of such interactions and binding among biomolecules forms the basis for the design and processing of many biotechnological applications, such as bioseparation and immunoadsorption. In this study, we present a novel method to probe molecular interactions and binding based on surface tension measurement. This method complements convent...

  18. Adsorption of DNA binding proteins to functionalized carbon nanotube surfaces with and without DNA wrapping.

    Science.gov (United States)

    Ishibashi, Yu; Oura, Shusuke; Umemura, Kazuo

    2017-09-01

    We examined the adsorption of DNA binding proteins on functionalized, single-walled carbon nanotubes (SWNTs). When SWNTs were functionalized with polyethylene glycol (PEG-SWNT), moderate adsorption of protein molecules was observed. In contrast, nanotubes functionalized with CONH 2 groups (CONH 2 -SWNT) exhibited very strong interactions between the CONH 2 -SWNT and DNA binding proteins. Instead, when these SWNT surfaces were wrapped with DNA molecules (thymine 30-mers), protein binding was a little decreased. Our results revealed that DNA wrapped PEG-SWNT was one of the most promising candidates to realize DNA nanodevices involving protein reactions on DNA-SWNT surfaces. In addition, the DNA binding protein RecA was more adhesive than single-stranded DNA binding proteins to the functionalized SWNT surfaces.

  19. Prediction of Carbohydrate Binding Sites on Protein Surfaces with 3-Dimensional Probability Density Distributions of Interacting Atoms

    Science.gov (United States)

    Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall

  20. Human IgG lacking effector functions demonstrate lower FcRn-binding and reduced transplacental transport.

    Science.gov (United States)

    Stapleton, Nigel M; Armstrong-Fisher, Sylvia S; Andersen, Jan Terje; van der Schoot, C Ellen; Porter, Charlene; Page, Kenneth R; Falconer, Donald; de Haas, Masja; Williamson, Lorna M; Clark, Michael R; Vidarsson, Gestur; Armour, Kathryn L

    2018-03-01

    We have previously generated human IgG1 antibodies that were engineered for reduced binding to the classical Fcγ receptors (FcγRI-III) and C1q, thereby eliminating their destructive effector functions (constant region G1Δnab). In their potential use as blocking agents, favorable binding to the neonatal Fc receptor (FcRn) is important to preserve the long half-life typical of IgG. An ability to cross the placenta, which is also mediated, at least in part, by FcRn is desirable in some indications, such as feto-maternal alloimmune disorders. Here, we show that G1Δnab mutants retain pH-dependent binding to human FcRn but that the amino acid alterations reduce the affinity of the IgG1:FcRn interaction by 2.0-fold and 1.6-fold for the two antibodies investigated. The transport of the modified G1Δnab mutants across monolayers of human cell lines expressing FcRn was approximately 75% of the wild-type, except that no difference was observed with human umbilical vein endothelial cells. G1Δnab mutation also reduced transport in an ex vivo placenta model. In conclusion, we demonstrate that, although the G1Δnab mutations are away from the FcRn-binding site, they have long-distance effects, modulating FcRn binding and transcellular transport. Our findings have implications for the design of therapeutic human IgG with tailored effector functions. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance are similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.

  2. Probing and mapping the binding sites on streptavidin imprinted polymer surface

    International Nuclear Information System (INIS)

    Duman, Memed

    2014-01-01

    Molecular imprinting is an effective technique for preparing recognition sites which act as synthetic receptors on polymeric surfaces. Herein, we synthesized MIP surfaces with specific binding sites for streptavidin and characterized them at nanoscale by using two different atomic force microscopy (AFM) techniques. While the single molecule force spectroscopy (SMFS) reveals the unbinding kinetics between streptavidin molecule and binding sites, simultaneous topography and recognition imaging (TREC) was employed, for the first time, to directly map the binding sites on streptavidin imprinted polymers. Streptavidin modified AFM cantilever showed specific unbinding events with an unbinding force around 300 pN and the binding probability was calculated as 35.2% at a given loading rate. In order to prove the specificity of the interaction, free streptavidin molecules were added to AFM liquid cell and the binding probability was significantly decreased to 7.6%. Moreover, the recognition maps show that the smallest recognition site with a diameter of around ∼ 21 nm which corresponds to a single streptavidin molecule binding site. We believe that the potential of combining SMFS and TREC opens new possibilities for the characterization of MIP surfaces with single molecule resolution under physiological conditions. - Graphical abstract: Simultaneous Topography and RECognition (TREC) imaging is a novel characterization technique to reveal binding sites on molecularly imprinted polymer surfaces with single molecule resolution under physiological conditions. - Highlights: • Highly specific streptavidin printed polymer surfaces were synthesized. • Unbinding kinetic rate of single streptavidin molecule was studied by SMFS. • The distribution of binding pockets was revealed for the first time by TREC imaging. • TREC showed that the binding pockets formed nano-domains on MIP surface. • SMFS and TREC are powerful AFM techniques for characterization of MIP surfaces

  3. Low-cost rural surface alternatives : demonstration project : [tech transfer summary].

    Science.gov (United States)

    2015-06-01

    Identify the most effective and economical methods for preventing or : mitigating freeze-thaw damage to granular surfaced roads in seasonally : cold regions : Construct demonstration test sections using several stabilization : methods recomme...

  4. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    Science.gov (United States)

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  5. The "Chocolate Experiment"--A Demonstration of Radiation Absorption by Different Colored Surfaces

    Science.gov (United States)

    Fung, Dennis

    2015-01-01

    In the typical "cookbook" experiment comparing the radiation absorption rates of different colored surfaces, students' hands are commonly used as a measurement instrument to demonstrate that dull black and silvery surfaces are good and poor absorbers of radiation, respectively. However, college students are often skeptical about using…

  6. VASP: a volumetric analysis of surface properties yields insights into protein-ligand binding specificity.

    Directory of Open Access Journals (Sweden)

    Brian Y Chen

    2010-08-01

    Full Text Available Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the Volumetric Analysis of Surface Properties (VASP, a novel volumetric analysis tool for the comparison of binding sites in aligned protein structures. VASP uses solid volumes to represent protein shape and the shape of surface cavities, clefts and tunnels that are defined with other methods. Our approach, inspired by techniques from constructive solid geometry, enables the isolation of volumetrically conserved and variable regions within three dimensionally superposed volumes. We applied VASP to compute a comparative volumetric analysis of the ligand binding sites formed by members of the steroidogenic acute regulatory protein (StAR-related lipid transfer (START domains and the serine proteases. Within both families, VASP isolated individual amino acids that create structural differences between ligand binding cavities that are known to influence differences in binding specificity. Also, VASP isolated cavity subregions that differ between ligand binding cavities which are essential for differences in binding specificity. As such, VASP should prove a valuable tool in the study of protein-ligand binding specificity.

  7. SIgA binding to mucosal surfaces is mediated by mucin-mucin interactions.

    Directory of Open Access Journals (Sweden)

    Hannah L Gibbins

    Full Text Available The oral mucosal pellicle is a layer of absorbed salivary proteins, including secretory IgA (SIgA, bound onto the surface of oral epithelial cells and is a useful model for all mucosal surfaces. The mechanism by which SIgA concentrates on mucosal surfaces is examined here using a tissue culture model with real saliva. Salivary mucins may initiate the formation of the mucosal pellicle through interactions with membrane-bound mucins on cells. Further protein interactions with mucins may then trigger binding of other pellicle proteins. HT29 colon cell lines, which when treated with methotrexate (HT29-MTX produce a gel-forming mucin, were used to determine the importance of these mucin-mucin interactions. Binding of SIgA to cells was then compared using whole mouth saliva, parotid (mucin-free saliva and a source of purified SIgA. Greatest SIgA binding occurred when WMS was incubated with HT29-MTX expressing mucus. Since salivary MUC5B was only able to bind to cells which produced mucus and purified SIgA showed little binding to the same cells we conclude that most SIgA binding to mucosal cells occurs because SIgA forms complexes with salivary mucins which then bind to cells expressing membrane-bound mucins. This work highlights the importance of mucin interactions in the development of the mucosal pellicle.

  8. Balance between hydration enthalpy and entropy is important for ice binding surfaces in Antifreeze Proteins.

    Science.gov (United States)

    Schauperl, Michael; Podewitz, Maren; Ortner, Teresa S; Waibl, Franz; Thoeny, Alexander; Loerting, Thomas; Liedl, Klaus R

    2017-09-19

    Antifreeze Proteins (AFPs) inhibit the growth of an ice crystal by binding to it. The detailed binding mechanism is, however, still not fully understood. We investigated three AFPs using Molecular Dynamics simulations in combination with Grid Inhomogeneous Solvation Theory, exploring their hydration thermodynamics. The observed enthalpic and entropic differences between the ice-binding sites and the inactive surface reveal key properties essential for proteins in order to bind ice: While entropic contributions are similar for all sites, the enthalpic gain for all ice-binding sites is lower than for the rest of the protein surface. In contrast to most of the recently published studies, our analyses show that enthalpic interactions are as important as an ice-like pre-ordering. Based on these observations, we propose a new, thermodynamically more refined mechanism of the ice recognition process showing that the appropriate balance between entropy and enthalpy facilitates ice-binding of proteins. Especially, high enthalpic interactions between the protein surface and water can hinder the ice-binding activity.

  9. The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70.

    Science.gov (United States)

    Fitter, Stephen; Gronthos, Stan; Ooi, Soo Siang; Zannettino, Andrew C W

    2017-04-01

    Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive. Using a combination of two-dimensional gel electrophoresis, coupled with Western blotting and Tandem mass spectroscopy, we have identified the STRO-1 antigen as heat shock cognate 70 (HSC70;HSPA8). STRO-1 binds to immune-precipitated HSC70 and siRNA-mediated knock down of HSPA8 reduced STRO-1 binding. STRO-1 surface binding does not correlate with HSC70 expression and sequestration of cholesterol reduces STRO-1 surface binding, suggesting that the plasma membrane lipid composition may be an important determinant in the presentation of HSC70 on the cell surface. HSC70 is present on the surface of STRO-1 + but not STRO-1 - cell lines as assessed by cell surface biotinylation and recombinant HSC70 blocks STRO-1 binding to the cell surface. The STRO-1 epitope on HSC70 was mapped to the ATPase domain using a series of deletion mutants in combination with peptide arrays. Deletion of the first four amino acids of the consensus epitope negated STRO-1 binding. Notably, in addition to HSC70, STRO-1 cross-reacts with heat shock protein 70 (HSP70), however all the clonogenic cell activity is restricted to the STRO-1 BRIGHT /HSP70 - fraction. These results provide important insight into the properties that define multipotent MPC and provide the impetus to explore the role of cell surface HSC70 in MPC biology. Stem Cells 2017;35:940-951. © 2016 AlphaMed Press.

  10. Investigating cyclic nucleotide and cyclic dinucleotide binding to HCN channels by surface plasmon resonance.

    Directory of Open Access Journals (Sweden)

    Sebastien Hayoz

    Full Text Available Hyperpolarization-activated cyclic nucleotide-modulated (HCN channels control cardiac and neuronal rhythmicity. HCN channels contain cyclic nucleotide-binding domain (CNBD in their C-terminal region linked to the pore-forming transmembrane segment with a C-linker. The C-linker couples the conformational changes caused by the direct binding of cyclic nucleotides to the HCN pore opening. Recently, cyclic dinucleotides were shown to antagonize the effect of cyclic nucleotides in HCN4 but not in HCN2 channels. Based on the structural analysis and mutational studies it has been proposed that cyclic dinucleotides affect HCN4 channels by binding to the C-linker pocket (CLP. Here, we first show that surface plasmon resonance (SPR can be used to accurately measure cyclic nucleotide binding affinity to the C-linker/CNBD of HCN2 and HCN4 channels. We then used SPR to investigate cyclic dinucleotide binding in HCN channels. To our surprise, we detected no binding of cyclic dinucleotides to the isolated monomeric C-linker/CNBDs of HCN4 channels with SPR. The binding of cyclic dinucleotides was further examined with isothermal calorimetry (ITC, which indicated no binding of cyclic dinucleotides to both monomeric and tetrameric C-linker/CNBDs of HCN4 channels. Taken together, our results suggest that interaction of the C-linker/CNBD with other parts of the channel is necessary for cyclic-dinucleotide binding in HCN4 channels.

  11. Beyond molecular recognition: using a repulsive field to tune interfacial valency and binding specificity between adhesive surfaces.

    Science.gov (United States)

    Santore, Maria M; Zhang, Jun; Srivastava, Sudhanshu; Rotello, Vincent M

    2009-01-06

    Surface-bound biomolecular fragments enable "smart" materials to recognize cells and other particles in applications ranging from tissue engineering and medical diagnostics to colloidal and nanoparticle assembly. Such smart surfaces are, however, limited in their design to biomolecular selectivity. This feature article demonstrates, using a completely nonbiological model system, how specificity can be achieved for particle (and cell) binding, employing surface designs where immobilized nanoscale adhesion elements are entirely nonselective. Fundamental principles are illustrated by a model experimental system where 11 nm cationic nanoparticles on a planar negative silica surface interact with flowing negative silica microspheres having 1.0 and 0.5 microm diameters. In these systems, the interfacial valency, defined as the number of cross-bonds needed to capture flowing particles, is tunable through ionic strength, which alters the range of the background repulsion and therefore the effective binding strength of the adhesive elements themselves. At high ionic strengths where long-range electrostatic repulsions are screened, single surface-bound nanoparticles capture microspheres, defining the univalent regime. At low ionic strengths, competing repulsions weaken the effective nanoparticle adhesion so that multiple nanoparticles are needed for microparticle capture. This article discusses important features of the univalent regime and then illustrates how multivalency produces interfacial-scale selectivity. The arguments are then generalized, providing a possible explanation for highly specific cell binding in nature, despite the degeneracy of adhesion molecules and cell types. The mechanism for the valency-related selectivity is further developed in the context of selective flocculation in the colloidal literature. Finally, results for multivalent binding are contrasted with the current thinking for interfacial design and the presentation of adhesion moieties on

  12. Development of a Surface Plasmon Resonance Assay for the Characterization of Small-Molecule Binding Kinetics and Mechanism of Binding to Kynurenine 3-Monooxygenase.

    Science.gov (United States)

    Poda, Suresh B; Kobayashi, Masakazu; Nachane, Ruta; Menon, Veena; Gandhi, Adarsh S; Budac, David P; Li, Guiying; Campbell, Brian M; Tagmose, Lena

    2015-10-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway, was identified as a potential therapeutic target for treating neurodegenerative and psychiatric disorders. In this article, we describe a surface plasmon resonance (SPR) assay that delivers both kinetics and the mechanism of binding (MoB) data, enabling a detailed characterization of KMO inhibitors for the enzyme in real time. SPR assay development included optimization of the protein construct and the buffer conditions. The stability and inhibitor binding activity of the immobilized KMO were significantly improved when the experiments were performed at 10°C using a buffer containing 0.05% n-dodecyl-β-d-maltoside (DDM) as the detergent. The KD values of the known KMO inhibitors (UPF648 and RO61-8048) from the SPR assay were in good accordance with the biochemical LC/MS/MS assay. Also, the SPR assay was able to differentiate the binding kinetics (k(a) and k(d)) of the selected unknown KMO inhibitors. For example, the inhibitors that showed comparable IC50 values in the LC/MS/MS assay displayed differences in their residence time (τ = 1/k(d)) in the SPR assay. To better define the MoB of the inhibitors to KMO, an SPR-based competition assay was developed, which demonstrated that both UPF648 and RO61-8048 bound to the substrate-binding site. These results demonstrate the potential of the SPR assay for characterizing the affinity, the kinetics, and the MoB profiles of the KMO inhibitors.

  13. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    A simple scheme for the estimation of oxygen binding energies on transition metal surface alloys is presented. It is shown that a d-band center model of the alloy surfaces is a convenient and appropriate basis for this scheme; variations in chemical composition, strain effects, and ligand effects...... are all incorporated into the binding energy analysis through this parameter. With few exceptions, the agreement of the results from the simple model with full DFT calculations on hundreds of binary surface alloys is remarkable. The scheme should therefore provide a fast and effective method...... for the estimation of oxygen binding energies on a wide variety of transition metal alloys. (c) 2005 Elsevier B.V. All rights reserved....

  14. Effects of Multiwalled Carbon Nanotube Surface Modification and Purification on Bovine Serum Albumin Binding and Biological Responses

    Directory of Open Access Journals (Sweden)

    Wei Bai

    2016-01-01

    Full Text Available Carboxylation of multiwalled carbon nanotubes (MWCNTs has been used to improve solubility in aqueous systems and for further functionalization with biologically active moieties for biomedical uses. An important consideration is that oxidation debris is generated during the process of carboxylation, which can be removed by base washing. We hypothesized that surface modification as well as purification by debris removal may alter physicochemical properties of MWCNTs and their ability to bind proteins. We utilized pristine MWCNT, carboxylated MWCNTs (F-MWCNTs, and base-washed carboxylated MWCNTs (BW-F-MWCNTs to examine formation of a bovine serum albumin (BSA protein corona and impact on biological responses. We found that carboxylation increased the capability of F-MWCNTs to bind BSA, and base washing further increased this binding. Functionalization increased cellular uptake by rat aortic endothelial cells (RAEC and mouse macrophages (RAW264.7, while base washing showed results similar to the functionalized analog. Interestingly, BSA binding downregulated mRNA levels of interleukin-6 (IL-6 and heme oxygenase 1 (Hmox1 in RAEC cells but upregulated the expression of IL-6 and Hmox1 in RAW264.7 cells. Overall, our study demonstrated that surface modification as well as further purification impacted the interaction of MWCNTs with proteins and subsequent cellular responses.

  15. Simulation and Theory of Antibody Binding to Crowded Antigen-Covered Surfaces.

    Directory of Open Access Journals (Sweden)

    Cristiano De Michele

    2016-03-01

    Full Text Available In this paper we introduce a fully flexible coarse-grained model of immunoglobulin G (IgG antibodies parametrized directly on cryo-EM data and simulate the binding dynamics of many IgGs to antigens adsorbed on a surface at increasing densities. Moreover, we work out a theoretical model that allows to explain all the features observed in the simulations. Our combined computational and theoretical framework is in excellent agreement with surface-plasmon resonance data and allows us to establish a number of important results. (i Internal flexibility is key to maximize bivalent binding, flexible IgGs being able to explore the surface with their second arm in search for an available hapten. This is made clear by the strongly reduced ability to bind with both arms displayed by artificial IgGs designed to rigidly keep a prescribed shape. (ii The large size of IgGs is instrumental to keep neighboring molecules at a certain distance (surface repulsion, which essentially makes antigens within reach of the second Fab always unoccupied on average. (iii One needs to account independently for the thermodynamic and geometric factors that regulate the binding equilibrium. The key geometrical parameters, besides excluded-volume repulsion, describe the screening of free haptens by neighboring bound antibodies. We prove that the thermodynamic parameters govern the low-antigen-concentration regime, while the surface screening and repulsion only affect the binding at high hapten densities. Importantly, we prove that screening effects are concealed in relative measures, such as the fraction of bivalently bound antibodies. Overall, our model provides a valuable, accurate theoretical paradigm beyond existing frameworks to interpret experimental profiles of antibodies binding to multi-valent surfaces of different sorts in many contexts.

  16. A leucine-rich repeat motif of Leishmania parasite surface antigen 2 binds to macrophages through the complement receptor 3.

    Science.gov (United States)

    Kedzierski, Lukasz; Montgomery, Jacqui; Bullen, Denise; Curtis, Joan; Gardiner, Elizabeth; Jimenez-Ruiz, Antonio; Handman, Emanuela

    2004-04-15

    Membrane glycoconjugates on the Leishmania parasites, notably leishmanolysin and lipophosphoglycan, have been implicated in attachment and invasion of host macrophages. However, the function of parasite surface Ag 2 (PSA-2) and membrane proteophosphoglycan (PPG) has not been elucidated. In this study we demonstrate that native and recombinant Leishmania infantum PSA-2, which consists predominantly of 15 leucine-rich repeats (LRR) and a recombinant LRR domain derived from L. major PPG, bind to macrophages. The interaction is restricted to macrophages and appears to be calcium independent. We have investigated the PSA-2-macrophage interaction to identify the host receptor involved in binding and we show that binding of PSA-2 to macrophages can be blocked by Abs to the complement receptor 3 (CR3, Mac-1). Data derived from mouse macrophage studies were further confirmed using cell lines expressing human CR3, and showed that PSA-2 also binds to the human receptor. This is the first demonstration of a functional role for PSA-2. Our data indicate that in addition to leishmanolysin and lipophosphoglycan, parasite attachment and invasion of macrophages involve a third ligand comprising the LRRs shared by PSA-2 and PPG and that these interactions occur via the CR3.

  17. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  18. Effects of sodium on cell surface and intracellular 3H-naloxone binding sites

    International Nuclear Information System (INIS)

    Pollack, A.E.; Wooten, G.F.

    1987-01-01

    The binding of the opiate antagonist 3 H-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, 3 H-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the sodium effect of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites. 17 references, 2 tables

  19. Low level chemiluminescence measurement of the binding of 8-methoxypsoralen to proteins and lymphocytic surfaces

    International Nuclear Information System (INIS)

    Lange, B.

    1980-01-01

    Photochemotherapy with 8-methoxypsoralen (8-MOP) and longwave ultraviolet light is beneficial in such different disorders like psoriasis, lichen planus, and mykosis fungoides. In contrast to a widely accepted hypothesis 8-MOP does not solely bind to nucleic acid, but also to certain proteins. The mechanism of this binding as well as the precise binding area are unknown. Therefore the UV-provoked reactions of 8-MOP with a lipid mixture, a glucosaminoglycan solution, a protein solution, and lymphocyte suspensions, respectively were investigated using low level chemiluminescence (LLCL). It was found an 8-MOP concentration-dependent decrease of LLCL intensity in the lymphocyte suspensions (10 3 to 10 4 cells/μl). This effect is result of the diminution of the photoactive 8-MOP content of the solution. 8-MOP binds quickly and in the course of a free radical reaction to lymphocytic surfaces and coincidentally loses its potency to start LLCL-detectable free radical chain responses. (author)

  20. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  1. Surface binding properties of aged and fresh (recently excreted) Toxoplasma gondii oocysts

    Science.gov (United States)

    The surface properties of aged (stored for 10 years) and fresh (recently excreted) oocysts of Toxoplasma gondii were investigated using monoclonal antibody (mAb) and lectin-binding assays. Fresh oocysts bound a wall-specific mAb labeled with fluorescein isothiocyanate while aged oocysts did not. In ...

  2. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    Science.gov (United States)

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  3. Spectroscopic study of binding of chlorogenic acid with the surface of ZnO nanoparticles

    Science.gov (United States)

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2017-09-01

    Understanding the interaction properties of biological materials with ZnO NPs is fundamental interest in the field of biotechnological applications as well as in the formation of optoelectronic devices. In this research, the binding of ZnO NPs and chlorogenic acid (CGA) were investigated using fluorescence quenching, UV-Vis absorption spectroscopy, Fourier transform infrared (FTIR), Raman spectroscopy, scanning electron microscopy (TEM), and dynamic light scattering (DLS) techniques. The study results indicated the fluorescence quenching between ZnO NPs and CGA rationalized in terms of static quenching mechanism or the formation of nonfluorescent CGA-ZnO. From fluorescence quenching spectral analysis the binding constant ( K a ), number of binding sites ( n), and thermodynamic properties, were determined. The quenching constants ( K sv) and binding constant ( K a ), decrease with increasing the temperature and their binding sites n are 2. The thermodynamic parameters determined using Van't Hoff equation indicated binding occurs spontaneously involving the hydrogen bond and van der Walls forces played the major role in the reaction of ZnO NPs with CGA. The Raman, SEM, DLS, and Zeta potential measurements were also indicated the differences in the structure, morphology and sizes of CGA, ZnO NPs, and their corresponding CGA-ZnO due to adsorption of CGA on the surface of ZnO NPs

  4. Sensitivity Analysis of Grain Surface Chemistry to Binding Energies of Ice Species

    Science.gov (United States)

    Penteado, E. M.; Walsh, C.; Cuppen, H. M.

    2017-07-01

    Advanced telescopes, such as ALMA and the James Webb Space Telescope, are likely to show that the chemical universe may be even more complex than currently observed, requiring astrochemical modelers to improve their models to account for the impact of new data. However, essential input information for gas-grain models, such as binding energies of molecules to the surface, have been derived experimentally only for a handful of species, leaving hundreds of species with highly uncertain estimates. We present in this paper a systematic study of the effect of uncertainties in the binding energies on an astrochemical two-phase model of a dark molecular cloud, using the rate equations approach. A list of recommended binding energy values based on a literature search of published data is presented. Thousands of simulations of dark cloud models were run, and in each simulation a value for the binding energy of hundreds of species was randomly chosen from a normal distribution. Our results show that the binding energy of H2 is critical for the surface chemistry. For high binding energies, H2 freezes out on the grain forming an H2 ice. This is not physically realistic, and we suggest a change in the rate equations. The abundance ranges found are in reasonable agreement with astronomical ice observations. Pearson correlation coefficients revealed that the binding energy of HCO, HNO, CH2, and C correlate most strongly with the abundance of dominant ice species. Finally, the formation route of complex organic molecules was found to be sensitive to the branching ratios of H2CO hydrogenation.

  5. The effects of the surface-exposed residues on the binding and hydrolytic activities of Vibrio carchariae chitinase A

    Directory of Open Access Journals (Sweden)

    Suginta Wipa

    2008-01-01

    Full Text Available Abstract Background Vibrio carchariae chitinase A (EC3.2.1.14 is a family-18 glycosyl hydrolase and comprises three distinct structural domains: i the amino terminal chitin binding domain (ChBD; ii the (α/β8 TIM barrel catalytic domain (CatD; and iii the α + β insertion domain. The predicted tertiary structure of V. carchariae chitinase A has located the residues Ser33 & Trp70 at the end of ChBD and Trp231 & Tyr245 at the exterior of the catalytic cleft. These residues are surface-exposed and presumably play an important role in chitin hydrolysis. Results Point mutations of the target residues of V. carchariae chitinase A were generated by site-directed mutagenesis. With respect to their binding activity towards crystalline α-chitin and colloidal chitin, chitin binding assays demonstrated a considerable decrease for mutants W70A and Y245W, and a notable increase for S33W and W231A. When the specific hydrolyzing activity was determined, mutant W231A displayed reduced hydrolytic activity, whilst Y245W showed enhanced activity. This suggested that an alteration in the hydrolytic activity was not correlated with a change in the ability of the enzyme to bind to chitin polymer. A mutation of Trp70 to Ala caused the most severe loss in both the binding and hydrolytic activities, which suggested that it is essential for crystalline chitin binding and hydrolysis. Mutations varied neither the specific hydrolyzing activity against pNP-[GlcNAc]2, nor the catalytic efficiency against chitohexaose, implying that the mutated residues are not important in oligosaccharide hydrolysis. Conclusion Our data provide direct evidence that the binding as well as hydrolytic activities of V. carchariae chitinase A to insoluble chitin are greatly influenced by Trp70 and less influenced by Ser33. Though Trp231 and Tyr245 are involved in chitin hydrolysis, they do not play a major role in the binding process of crystalline chitin and the guidance of the chitin chain

  6. Inverse gas chromatography as a method for determination of surface properties of binding materials

    Science.gov (United States)

    Yu, Jihai; Lu, Xiaolei; Yang, Chunxia; Du, Baoli; Wang, Shuxian; Ye, Zhengmao

    2017-09-01

    Inverse gas chromatography (IGC) is a promising measurement technique for investigating the surface properties of binding materials, which are the major influence element for the adsorption performance of superplasticizer. In this work, using the IGC method, blast furnace slag (BFS), sulphoaluminate cement (SAC) and portland cement (P·O) are employed to systematically evaluate the corresponding dispersive component (γsd), specific surface free energy (γsab), and acid-base properties. The obtained results show that γsd contributes to a major section of the surface free energy in the three binding materials, suggesting they are of a relatively low polarity. Compared to the two kinds of cements, the BFS possesses the highest dispersive and specific surface free energies (the values are 45.01 mJ/m2 and 11.68 mJ/m2, respectively), and also exhibits a wider distribution range of γsd, indicating their surfaces are heterogeneous. For acid-base properties, the results indicate the surfaces of three samples are basic in nature. In addition, the adsorption investigation shows that per unit surface of BFS adsorbs the most superplasticizer molecules, which indicates the higher surface free energies is beneficial to the superplasticizer adsorption.

  7. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.

    Science.gov (United States)

    Midya, Uday Sankar; Bandyopadhyay, Sanjoy

    2014-05-08

    Molecular dynamics (MD) simulations have been carried out at two different temperatures (300 and 220 K) to study the conformational rigidity of the hyperactive Tenebrio molitor antifreeze protein (TmAFP) in aqueous medium and the structural arrangements of water molecules hydrating its surface. It is found that irrespective of the temperature the ice-binding surface (IBS) of the protein is relatively more rigid than its nonice-binding surface (NIBS). The presence of a set of regularly arranged internally bound water molecules is found to play an important role in maintaining the flat rigid nature of the IBS. Importantly, the calculations reveal that the strategically located hydroxyl oxygens of the threonine (Thr) residues in the IBS influence the arrangements of five sets of ordered waters around it on two parallel planes that closely resemble the basal plane of ice. As a result, these waters can register well with the ice basal plane, thereby allowing the IBS to preferentially bind at the ice interface and inhibit its growth. This provides a possible molecular reason behind the ice-binding activity of TmAFP at the basal plane of ice.

  8. Short term memory for single surface features and bindings in ageing: A replication study.

    Science.gov (United States)

    Isella, Valeria; Molteni, Federica; Mapelli, Cristina; Ferrarese, Carlo

    2015-06-01

    In the present study we replicated a previous experiment investigating visuo-spatial short term memory binding in young and older healthy individuals, in the attempt to verify the pattern of impairment that can be observed in normal elderly for short term memory for single items vs short term memory for bindings. Assessing a larger sample size (25 young and 25 older subjects), using a more appropriate measure of accuracy for a change detection task (A'), and adding the evaluation of speed of performance, we confirmed that old normals show a decline in short term memory for bindings of shape and colour that is of comparable extent, and not major, to the decline in memory for single shapes and single colours. The absence of a specific deficit of short term memory for conjunctions of surface features seems to distinguish cognitive ageing from Alzheimer's Disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cooperative Binding and Activation of Fibronectin by a Bacterial Surface Protein*

    Science.gov (United States)

    Marjenberg, Zoe R.; Ellis, Ian R.; Hagan, Robert M.; Prabhakaran, Sabitha; Höök, Magnus; Talay, Susanne R.; Potts, Jennifer R.; Staunton, David; Schwarz-Linek, Ulrich

    2011-01-01

    Integrin-dependent cell invasion of some pathogenic bacteria is mediated by surface proteins targeting the extracellular matrix protein fibronectin (FN). Although the structural basis for bacterial FN recognition is well understood, it has been unclear why proteins such as streptococcal SfbI contain several FN-binding sites. We used microcalorimetry to reveal cooperative binding of FN fragments to arrays of binding sites in SfbI. In combination with thermodynamic analyses, functional cell-based assays show that SfbI induces conformational changes in the N-terminal 100-kDa region of FN (FN100kDa), most likely by competition with intramolecular interactions defining an inactive state of FN100kDa. This study provides insights into how long range conformational changes resulting in FN activation may be triggered by bacterial pathogens. PMID:21059652

  10. Fermi Surface Manipulation by External Magnetic Field Demonstrated for a Prototypical Ferromagnet

    Directory of Open Access Journals (Sweden)

    E. Młyńczak

    2016-12-01

    Full Text Available We consider the details of the near-surface electronic band structure of a prototypical ferromagnet, Fe(001. Using high-resolution angle-resolved photoemission spectroscopy, we demonstrate openings of the spin-orbit-induced electronic band gaps near the Fermi level. The band gaps, and thus the Fermi surface, can be manipulated by changing the remanent magnetization direction. The effect is of the order of ΔE=100  meV and Δk=0.1  Å^{−1}. We show that the observed dispersions are dominated by the bulk band structure. First-principles calculations and one-step photoemission calculations suggest that the effect is related to changes in the electronic ground state and not caused by the photoemission process itself. The symmetry of the effect indicates that the observed electronic bulk states are influenced by the presence of the surface, which might be understood as related to a Rashba-type effect. By pinpointing the regions in the electronic band structure where the switchable band gaps occur, we demonstrate the significance of spin-orbit interaction even for elements as light as 3d ferromagnets. These results set a new paradigm for the investigations of spin-orbit effects in the spintronic materials. The same methodology could be used in the bottom-up design of the devices based on the switching of spin-orbit gaps such as electric-field control of magnetic anisotropy or tunneling anisotropic magnetoresistance.

  11. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Behrendt, N; Ploug, M; Patthy, L

    1991-01-01

    The purified urokinase plasminogen activator receptor (u-PAR) was cleaved into two fragments by mild chymotrypsin treatment. The smaller fragment (apparent Mr 16,000) possessed the ligand-binding capability, as shown by chemical cross-linking analysis. This fragment constituted the NH2-terminal...... part of the intact receptor, probably including the whole sequence 1-87, and contained N-linked carbohydrate. After detergent phase separation in the Triton X-114 system, the fragment was present in the water phase where its binding activity could be demonstrated in the absence of the rest...

  12. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Science.gov (United States)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  13. The `Chocolate Experiment' - A Demonstration of Radiation Absorption by Different Colored Surfaces

    Science.gov (United States)

    Fung, Dennis

    2015-12-01

    In the typical "cookbook" experiment comparing the radiation absorption rates of different colored surfaces, students' hands are commonly used as a measurement instrument to demonstrate that dull black and silvery surfaces are good and poor absorbers of radiation, respectively. However, college students are often skeptical about using their bare hands in this experiment because they learned in early science lessons that skin is not a reliable detector of heat transfer. Moreover, when the experiment is conducted in a school laboratory, it is often difficult for students to perceive the slight differences in heat transfer on the dull black and silvery aluminum leaves attached to their hands. Rather than replacing students' bare hands with such sophisticated apparatus as a data logger and temperature probe, I suggest using a simple (and delicious!) low-cost instrument, i.e., chocolate, which simply melts when it receives radiation.

  14. Delay/Disruption Tolerant Networks (DTN): Testing and Demonstration for Lunar Surface Applications

    Science.gov (United States)

    2009-01-01

    This slide presentation reviews the testing of the Delay/Disruption Tolerant Network (DTN) designed for use with Lunar Surface applications. This is being done through the DTN experimental Network (DEN), that permit access and testing by other NASA centers, DTN team members and protocol developers. The objective of this work is to demonstrate DTN for high return applications in lunar scenarios, provide DEN connectivity with analogs of Constellation elements, emulators, and other resources from DTN Team Members, serve as a wireless communications staging ground for remote analog excursions and enable testing of detailed communication scenarios and evaluation of network performance. Three scenarios for DTN on the Lunar surface are reviewed: Motion imagery, Voice and sensor telemetry, and Navigation telemetry.

  15. Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Picard, Martin

    2011-01-01

    For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand

  16. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents

    Directory of Open Access Journals (Sweden)

    Arghya Chakravorty

    2018-03-01

    Full Text Available Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant from the solvent phase (high dielectric constant. Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.

  17. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules

    International Nuclear Information System (INIS)

    Woof, J.M.; Burton, D.R.

    1988-01-01

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used

  18. Exhaustive comparison and classification of ligand-binding surfaces in proteins

    OpenAIRE

    Murakami, Yoichi; Kinoshita, Kengo; Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Many proteins function by interacting with other small molecules (ligands). Identification of ligand-binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To e...

  19. Surface enhanced Raman optical activity as an ultra sensitive tool for ligand binding analysis

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim

    2007-01-01

    The Surface Enhanced Resonance Raman Scattering (SERRS) and Surface Enhanced Resonance Raman Optical Activity (SERROA) spectra of myoglobin and the myoglobin-azide complex were measured on very dilute samples (100 nM protein) in order to analyze the sensitivity of SERROA spectroscopy when inducing...... upon azide complexation. Application of this method allows for rapid analysis of ligand binding in metalloproteins in dilute aqueous solution and could in the future, when combined with theoretical studies, increase the obtainable structural resolution of proteins beyond that of X-ray analysis....

  20. Uranium binding by biochar fibres derived from Luffa cylindrica after controlled surface oxidation

    International Nuclear Information System (INIS)

    Liatsou, Ioanna; Michail, Georgia; Demetriou, Marilena; Pashalidis, Ioannis

    2017-01-01

    Controlled surface modification of biochar fibres derived from Luffa cylindrica sponges has been carried out by nitric acid and the degree of oxidation could be controlled by changing the acid concentration or the reaction time. The extent of surface oxidation has been quantified by acid-base titration and FTIR-spectroscopy. Furthermore, uranium binding has been studied as a function of various parameters and the experimental results show that even under strong acidic conditions the relative sorption is above 80 % and the sorption capacity of the biochar fibres for U(VI) at pH 3 is q max = 92 g kg -1 . (author)

  1. Thorium binding by biochar fibres derived from Luffa Cylindrica after controlled surface oxidation

    Science.gov (United States)

    Liatsou, Ioanna; Christodoulou, Eleni; Paschalidis, Ioannis

    2017-04-01

    Controlled surface modification of biochar fibres derived from Luffa Cylindrica sponges has been carried out by nitric acid and the degree of oxidation could be controlled by changing the acid concentration or the reaction time. The extent of surface oxidation has been quantified by acid-base titration and FTIR-spectroscopy. Furthermore, thorium binding has been studied as a function of various parameters and the experimental results show that even under strong acidic conditions the relative sorption is above 70% and the sorption capacity of the biochar fibres for Th(IV) at pH 3 is qmax= 70 gṡkg-1.

  2. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation

    Directory of Open Access Journals (Sweden)

    Schroeder Michael

    2006-09-01

    Full Text Available Abstract Background Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. Results We present LIGSITEcsc, an extension and implementation of the LIGSITE algorithm. LIGSITEcsc is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITEcsc performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. Conclusion The use of the Connolly surface leads to slight improvements, the prediction re-ranking by conservation to significant improvements of the binding site predictions. A web server for LIGSITEcsc and its source code is available at scoppi.biotec.tu-dresden.de/pocket.

  3. NOx Binding and Dissociation: Enhanced Ferroelectric Surface Chemistry by Catalytic Monolayers

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2013-03-01

    NOx molecules are regulated air pollutants produced during automotive combustion. As part of an effort to design viable catalysts for NOx decomposition operating at higher temperatures that would allow for improved fuel efficiency, we examine NOx chemistry on ferroelectric perovskite surfaces. Changing the direction of ferroelectric polarization can modify surface electronic properties and may lead to switchable surface chemistry. Here, we describe our recent work on potentially enhanced surface chemistry using catalytic RuO2 monolayers on perovskite ferroelectric substrates. In addition to thermodynamic stabilization of the RuO2 layer, we present results on the polarization-dependent binding of NO, O2, N2, and atomic O and N. We present results showing that one key problem with current catalysts, involving the difficulty of releasing dissociation products (especially oxygen), can be ameliorated by this method. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  4. Woody vegetation and succession on the Fonde surface mine demonstration area, Bell County, Kentucky

    International Nuclear Information System (INIS)

    Wade, G.L.; Thompson, R.L.

    1999-01-01

    The long term impact of surface mining on vegetation and plant succession has always been of concern to environmentalists and residents of Appalachia. The Fonde Surface Mine Demonstration Area is a 7.3-ha, NE-NW-aspect contour coal mine at an elevation of 562 m. It was reclaimed in 1965 to show state-of-the-art surface mine reclamation techniques consistent with then-current law and regulations after coal mining in 1959 and 1963. The mine spoils were lightly graded to control erosion and crates a bench with water control and two sediment ponds. Soil pH ranged from 2.8 to 5.9. About 80 percent of the mine was planted with 18 tree and shrub species including plantations of mixed pine, mixed hardwoods, black locust, and shrubs for wildlife. In a complete floristic inventory conducted 25 years later, the authors found the woody flora consisted of 34 families, 53 genera, and 70 species including 7 exotics. This inventory of the Fonde mine shows that a diverse forest vegetation can be reestablished after extreme disturbances in Appalachia. Black locust, yellow poplar, and Virginia pine reproduction varied significantly among plantation types. Canopy tree species significantly affected ground layer cover, total species richness, number of tree seedling species, and total number of tree seedlings present. Mine soil type affected ground layer percent cover and total species richness. Pre-SMCRA (Surface Mining Control and Reclamation Act of 1977) reclaimed and inventoried mines can be used to evaluate biodiversity on post-SMCRA mines

  5. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Science.gov (United States)

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  6. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  7. Calcium and initial surface binding phase of pinocytosis in Amoeba proteus

    Energy Technology Data Exchange (ETDEWEB)

    Prusch, R.D.

    1986-08-01

    The uptake of membrane-bound solute and external medium by bulk-phase pinocytosis in Amoeba proteus is influenced by the level of Ca/sup 2 +/ in the external medium. Increasing external Ca/sup 2 +/ to approx.10/sup -4/ M increases pinocytotic intensity, while increases in Ca/sup 2 +/ above this level decrease the intensity of pinocytosis. The initial interaction of pinocytotic inducers and Ca/sup +2/ at the surface of A moeba proteus was therefore examined. Alcain blue and Na/sup +/, both inducers of pinocytosis, differ in the manner with which they associate with the amoeba surface, suggesting the possibility of different pinocytosis-inducing sites on the amoeba surface. Low levels of external Ca/sup 2 +/ in the range of 3 x 10/sup -5/ to 4.5 x 10/sup -4/ M increase the amount of cationic inducer associated with the cell surface while, at the same time, decreasing anion association with the cell surface. It is suggested that Ca/sup 2 +/ influences ion association with the cell surface by controlling the availability of negative surface sites, which in turn influences pinocytotic intensity. Surface binding of Na/sup +/, Ca/sup 2 +/ and Cl/sup -/ was determined by adding /sup 22/Na, /sup 45/Ca or /sup 36/Cl.

  8. Characterisation of peptide microarrays for studying antibody-antigen binding using surface plasmon resonance imagery.

    Directory of Open Access Journals (Sweden)

    Claude Nogues

    Full Text Available BACKGROUND: Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractory to analysis due to the prevalent high degree of non-specific binding. We describe how we use the dynamic process of the formation of self assembling monolayers and optimise physical and chemical properties thus reducing considerably non-specific binding and allowing analysis of specific binding of analytes to immobilized target molecules. METHODOLOGY/PRINCIPAL FINDINGS: We illustrate this approach by the production of specific protein arrays for the analysis of interactions between the 65kDa isoform of human glutamate decarboxylase (GAD65 and a human monoclonal antibody. Our data illustrate that we have effectively eliminated non-specific interactions with the surface containing the immobilised GAD65 molecules. The findings have several implications. First, this approach obviates the dubious process of background subtraction and gives access to more accurate kinetic and equilibrium values that are no longer contaminated by multiphase non-specific binding. Second, an enhanced signal to noise ratio increases not only the sensitivity but also confidence in the use of SPR to generate kinetic constants that may then be inserted into van't Hoff type analyses to provide comparative DeltaG, DeltaS and DeltaH values, making this an efficient, rapid and competitive alternative to ITC measurements used in drug and macromolecular-interaction mechanistic studies. Third, the accuracy of the measurements allows the application of more intricate interaction models than simple Langmuir monophasic binding. CONCLUSIONS: The detection and measurement of antibody binding by the type 1 diabetes autoantigen GAD65 represents an example of an antibody

  9. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    Science.gov (United States)

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  10. Defining the Ail Ligand-Binding Surface: Hydrophobic Residues in Two Extracellular Loops Mediate Cell and Extracellular Matrix Binding To Facilitate Yop Delivery.

    Science.gov (United States)

    Tsang, Tiffany M; Wiese, Jeffrey S; Alhabeil, Jamal A; Usselman, Lisa D; Thomson, Joshua J; Matti, Rafla; Kronshage, Malte; Maricic, Natalie; Williams, Shanedah; Sleiman, Naama H; Felek, Suleyman; Krukonis, Eric S

    2017-04-01

    Yersinia pestis , the causative agent of plague, binds host cells to deliver cytotoxic Yop proteins into the cytoplasm that prevent phagocytosis and generation of proinflammatory cytokines. Ail is an eight-stranded β-barrel outer membrane protein with four extracellular loops that mediates cell binding and resistance to human serum. Following the deletion of each of the four extracellular loops that potentially interact with host cells, the Ail-Δloop 2 and Ail-Δloop 3 mutant proteins had no cell-binding activity while Ail-Δloop 4 maintained cell binding (the Ail-Δloop 1 protein was unstable). Using the codon mutagenesis scheme SWIM (selection without isolation of mutants), we identified individual residues in loops 1, 2, and 3 that contribute to host cell binding. While several residues contributed to the binding of host cells and purified fibronectin and laminin, as well as Yop delivery, three mutations, F80A (loop 2), S128A (loop 3), and F130A (loop 3), produced particularly severe defects in cell binding. Combining these mutations led to an even greater reduction in cell binding and severely impaired Yop delivery with only a slight defect in serum resistance. These findings demonstrate that Y. pestis Ail uses multiple extracellular loops to interact with substrates important for adhesion via polyvalent hydrophobic interactions. Copyright © 2017 American Society for Microbiology.

  11. The Listeria monocytogenes LPXTG surface protein Lmo1413 is an invasin with capacity to bind mucin.

    Science.gov (United States)

    Mariscotti, Javier F; Quereda, Juan J; García-Del Portillo, Francisco; Pucciarelli, M Graciela

    2014-05-01

    Many Gram-positive bacterial pathogens use surface proteins covalently anchored to the peptidoglycan to cause disease. Bacteria of the genus Listeria have the largest number of surface proteins of this family. Every Listeria genome sequenced to date contains more than forty genes encoding surface proteins bearing anchoring-domains with an LPXTG motif that is recognized for covalent linkage to the peptidoglycan. About one-third of these proteins are present exclusively in pathogenic Listeria species, with some of them acting as adhesins or invasins that promote bacterial entry into eukaryotic cells. Here, we investigated two LPXTG surface proteins of the pathogen L. monocytogenes, Lmo1413 and Lmo2085, of unknown function and absent in non-pathogenic Listeria species. Lack of these two proteins does not affect bacterial adhesion or invasion of host cells using in vitro infection models. However, expression of Lmo1413 promotes entry of the non-invasive species L. innocua into non-phagocytic host cells, an effect not observed with Lmo2085. Moreover, overproduction of Lmo1413, but not Lmo2085, increases the invasion rate in non-phagocytic eukaryotic cells of an L. monocytogenes mutant deficient in the acting-binding protein ActA. Unexpectedly, production of full-length Lmo1413 and InlA exhibited opposite trends in a high percentage of L. monocytogenes isolates obtained from different sources. The idea of Lmo1413 playing a role as a new auxiliary invasin was also sustained by assays revealing that purified Lmo1413 binds to mucin via its MucBP domains. Taken together, these data indicate that Lmo1413, which we rename LmiA, for Listeria-mucin-binding invasin-A, may promote interaction of bacteria with adhesive host protective components and, in this manner, facilitate bacterial entry. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. A demonstration of adjoint methods for multi-dimensional remote sensing of the atmosphere and surface

    Science.gov (United States)

    Martin, William G. K.; Hasekamp, Otto P.

    2018-01-01

    In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals of clouds and aerosols. In this paper we will demonstrate the use of adjoint methods for retrieving two-dimensional (2D) fields of cloud extinction. The demonstration uses a new 2D radiative transfer solver (FSDOM). This radiation code was augmented with adjoint methods to allow efficient derivative calculations needed to retrieve cloud and surface properties from multi-angle reflectance measurements. The code was then used in three synthetic retrieval studies. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward radiative transfer equation to compute the residual misfit with measurements, and second we solve the adjoint radiative transfer equation to compute the gradient of the misfit function with respect to all unknowns. The synthetic retrieval studies verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. We can retrieve the vertically-integrated optical depth of moderately thick clouds as a function of the horizontal coordinate. It is also possible to retrieve the vertical profile of clouds that are separated by clear regions. The vertical profile retrievals improve for smaller cloud fractions. This leads to the conclusion that cloud edges actually increase the amount of information that is available for retrieving the vertical profile of clouds. However, to exploit this information one must retrieve the horizontally heterogeneous cloud properties with a 2D (or 3D) model. This prototype shows that adjoint methods can efficiently compute the gradient of the misfit function. This work paves the way for the application of similar methods to 3D remote

  13. T Tank Farm Interim Surface Barrier Demonstration -- Vadose Zone Monitoring FY07 Report

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Strickland, Christopher E.; Keller, Jason M.; Wittreich, Curtis D.; Sydnor, Harold A.

    2008-01-01

    CH2M HILL Hanford Group, Inc. is currently in the process of constructing a temporary surface barrier over a portion of the T Tank Farm as part of the T farm Interim Surface Barrier Demonstration Project. The surface barrier is designed to prevent the infiltration of precipitation into the contaminated soil zone created by the Tank T-106 leak and minimize movement of the contamination. As part of the demonstration effort, vadose zone moisture monitoring is being performed to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered and remotely-controlled system was installed to continuously monitor soil water conditions in four instrument nests (i.e., A, B, C, and D) and the site meteorological condition. Each instrument nest was composed of a capacitance probe with multiple sensors, multiple heat-dissipation units, a neutron probe access tube and a datalogger. Nests A and B also contained a drain gauge each. The principle variables monitored for this purpose are soil-water content, soil-water pressure, and soil-water flux. In addition to these, soil temperature, precipitation, and air temperature are measured. Data from each of the dataloggers were transmitted remotely to the receiving computer. The neutron probe access tube was used to perform quarterly manual measurements of soil-water content using a neutron probe. This monitoring system was used to assess the soil water conditions in the soil outside and within the footprint of the surface barrier to be emplaced in the Hanford T Tank Farm. Data to date is baseline under the condition without the interim surface barrier in place. All the instruments except the two drain gauges were functional in FY07. The capacitance-probe measurements showed that the soil-moisture content at relatively shallow depths (e.g., 0.6 and 0.9 m) was increasing since October 2006 and reached the highest in early January 2007 followed by a slight decrease. Soil-moisture contents at the depths of 1.3 m and

  14. Surface binding sites (SBSs), mechanism and regulation of enzymes degrading amylopectin and α-limit dextrins

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Cockburn, Darrell; Nielsen, Jonas W.

    2013-01-01

    Certain enzymes interact with polysaccharides at surface binding sites (SBSs) situated outside of their active sites. SBSs are not easily identified and their function has been discerned in relatively few cases. Starch degradation is a concerted action involving GH13 hydrolases. New insight...... into barley seed α-amylase 1 (AMY1) and limit dextrinase (LD) includes i. kinetics of bi-exponential amylopectin hydrolysis by AMY1, one reaction having low Km (8 μg/mL) and high kcat (57 s-1) and the other high Km (97 μg/mL) and low kcat (23 s-1). β-Cyclodextrin (β-CD) inhibits the first reaction by binding...

  15. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    Directory of Open Access Journals (Sweden)

    Ho Chit Siu

    2018-02-01

    Full Text Available Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG, but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.

  16. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    Science.gov (United States)

    Arenas, Ana M.; Sun, Tingxiao

    2018-01-01

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754

  17. A trained demonstrator has a calming effect on naïve horses when crossing a novel surface

    DEFF Research Database (Denmark)

    Rørvang, Maria Vilain; Ahrendt, Line Peerstrup; Christensen, Janne Winther

    2015-01-01

    horse being led five times across a novel surface. Immediately afterwards the observer horses were given the opportunity to cross the novel surface themselves to obtain food on the other side. Controls (n = 11) were allowed to observe the demonstrator eating on the opposite side of the novel surface...

  18. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding.

    Science.gov (United States)

    Rosenberg, Mark F; Kamis, Alhaji Bukar; Callaghan, Richard; Higgins, Christopher F; Ford, Robert C

    2003-03-07

    P-glycoprotein is an ATP-binding cassette transporter that is associated with multidrug resistance and the failure of chemotherapy in human patients. We have previously shown, based on two-dimensional projection maps, that P-glycoprotein undergoes conformational changes upon binding of nucleotide to the intracellular nucleotide binding domains. Here we present the three-dimensional structures of P-glycoprotein in the presence and absence of nucleotide, at a resolution limit of approximately 2 nm, determined by electron crystallography of negatively stained crystals. The data reveal a major reorganization of the transmembrane domains throughout the entire depth of the membrane upon binding of nucleotide. In the absence of nucleotide, the two transmembrane domains form a single barrel 5-6 nm in diameter and about 5 nm deep with a central pore that is open to the extracellular surface and spans much of the membrane depth. Upon binding nucleotide, the transmembrane domains reorganize into three compact domains that are each 2-3 nm in diameter and 5-6 nm deep. This reorganization opens the central pore along its length in a manner that could allow access of hydrophobic drugs (transport substrates) directly from the lipid bilayer to the central pore of the transporter.

  19. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Ruzanski, Christian

    2014-01-01

    Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half ...

  20. A simple, rapid and inexpensive technique to bind small peptides to polystyrene surfaces for immunoenzymatic assays.

    Science.gov (United States)

    Cuccuru, Maria Antonietta; Dessì, Daniele; Rappelli, Paola; Fiori, Pier Luigi

    2012-08-31

    Synthetic peptides are widely used in indirect ELISA to detect and characterize specific antibodies in biological samples. Small peptides are not efficiently immobilized on plastic surfaces by simple adsorption, and the conjugation to carrier proteins with different binding techniques is the method of choice. Common techniques to conjugate peptide antigens to carrier proteins and to subsequently purify such complexes are time consuming, expensive, and occasionally abrogate immunogenicity of peptides. In this report we describe a simple, fast and inexpensive alternative protocol to immobilize synthetic peptides to plastic surfaces for standard ELISA. The technique is based on use of maleimide-activated bovine serum albumin or keyhole limpet hemocyanin as a protein anchor adsorbed on the polystyrene surface of the microtiter plate. Following adsorption of the carrier protein, sulfhydryl-containing peptides are cross-linked with an in-well reaction, allowing their correct orientation and availability to antibody binding, avoiding the time consuming steps needed to purify the hapten-carrier complexes. The immunoreactivity of peptides was tested by using both monoclonal and polyclonal antibodies in standard ELISA assays, and compared with established coating methods. Copyright © 2012. Published by Elsevier B.V.

  1. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  2. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Science.gov (United States)

    Tarazanova, Mariya; Huppertz, Thom; Beerthuyzen, Marke; van Schalkwijk, Saskia; Janssen, Patrick; Wels, Michiel; Kok, Jan; Bachmann, Herwig

    2017-01-01

    Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities. PMID:28936202

  3. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Directory of Open Access Journals (Sweden)

    Mariya Tarazanova

    2017-09-01

    Full Text Available Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.

  4. Weakly Hydrated Surfaces and the Binding Interactions of Small Biological Solutes

    Energy Technology Data Exchange (ETDEWEB)

    Brady, J. W.; Tavagnacco, L.; Ehrlich, L.; Chen, M.; Schnupf, U.; Himmel, M. E.; Saboungi, M. L.; Cesaro, A.

    2012-04-01

    Extended planar hydrophobic surfaces, such as are found in the side chains of the amino acids histidine, phenylalanine, tyrosine, and tryptophan, exhibit an affinity for the weakly hydrated faces of glucopyranose. In addition, molecular species such as these, including indole, caffeine, and imidazole, exhibit a weak tendency to pair together by hydrophobic stacking in aqueous solution. These interactions can be partially understood in terms of recent models for the hydration of extended hydrophobic faces and should provide insight into the architecture of sugar-binding sites in proteins.

  5. In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces.

    Science.gov (United States)

    Wu, Zhonghua; Hu, Gang; Yang, Jianyi; Peng, Zhenling; Uversky, Vladimir N; Kurgan, Lukasz

    2015-09-14

    We provide first large scale analysis of the peculiarities of surface areas of 5658 dissimilar (below 50% sequence similarity) proteins with known 3D-structures that bind to proteins, DNA or RNAs. We show here that area of the protein surface is highly correlated with the protein length. The size of the interface surface is only modestly correlated with the protein size, except for RNA-binding proteins where larger proteins are characterized by larger interfaces. Disordered proteins with disordered interfaces are characterized by significantly larger per-residue areas of their surfaces and interfaces when compared to the structured proteins. These result are applicable for proteins involved in interaction with DNA, RNA, and proteins and suggest that disordered proteins and binding regions are less compact and more likely to assume extended shape. We demonstrate that disordered protein binding residues in the interfaces of disordered proteins drive the increase in the per residue area of these interfaces. Our results can be used to predict in silico whether a given protomer from the DNA, RNA or protein complex is likely to be disordered in its unbound form. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Quantitative analysis of rat Ig (sub)classes binding to cell surface antigens

    International Nuclear Information System (INIS)

    Nilsson, R.; Brodin, T.; Sjoegren, H.-O.

    1982-01-01

    An indirect 125 I-labeled protein A assay for detection of cell surface-bound rat immunoglobulins is presented. The assay is quantitative and rapid and detects as little as 1 ng of cell surface-bound Ig. It discriminates between antibodies belonging to different IgG subclasses, IgM and IgA. The authors describe the production and specificity control of the reagents used and show that the test can be used for quantitative analysis. A large number of sera from untreated rats are tested to evaluate the frequency of falsely positive responses and variation due to age, sex and strain of rat. With this test it is relatively easy to quantitate the binding of classes and subclasses of rat immunoglobulins in a small volume (6 μl) of untreated serum. (Auth.)

  7. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  8. Structural characterization of S100A15 reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding

    Directory of Open Access Journals (Sweden)

    Murray Jill I

    2012-07-01

    Full Text Available Abstract Background S100 proteins are a family of small, EF-hand containing calcium-binding signaling proteins that are implicated in many cancers. While the majority of human S100 proteins share 25-65% sequence similarity, S100A7 and its recently identified paralog, S100A15, display 93% sequence identity. Intriguingly, however, S100A7 and S100A15 serve distinct roles in inflammatory skin disease; S100A7 signals through the receptor for advanced glycation products (RAGE in a zinc-dependent manner, while S100A15 signals through a yet unidentified G-protein coupled receptor in a zinc-independent manner. Of the seven divergent residues that differentiate S100A7 and S100A15, four cluster in a zinc-binding region and the remaining three localize to a predicted receptor-binding surface. Results To investigate the structural and functional consequences of these divergent clusters, we report the X-ray crystal structures of S100A15 and S100A7D24G, a hybrid variant where the zinc ligand Asp24 of S100A7 has been substituted with the glycine of S100A15, to 1.7 Å and 1.6 Å resolution, respectively. Remarkably, despite replacement of the Asp ligand, zinc binding is retained at the S100A15 dimer interface with distorted tetrahedral geometry and a chloride ion serving as an exogenous fourth ligand. Zinc binding was confirmed using anomalous difference maps and solution binding studies that revealed similar affinities of zinc for S100A15 and S100A7. Additionally, the predicted receptor-binding surface on S100A7 is substantially more basic in S100A15 without incurring structural rearrangement. Conclusions Here we demonstrate that S100A15 retains the ability to coordinate zinc through incorporation of an exogenous ligand resulting in a unique zinc-binding site among S100 proteins. The altered surface chemistry between S100A7 and S100A15 that localizes to the predicted receptor binding site is likely responsible for the differential recognition of distinct

  9. Potential energy surface and binding energy in the presence of an external electric field: modulation of anion-π interactions for graphene-based receptors.

    Science.gov (United States)

    Foroutan-Nejad, Cina; Marek, Radek

    2014-02-14

    Measuring the binding energy or scanning the potential energy surface (PES) of the charged molecular systems in the presence of an external electric field (EEF) requires a careful evaluation of the origin-dependency of the energy of the system and references. Scanning the PES for charged or purely ionic systems for obtaining the intrinsic energy barriers needs careful analysis of the electric work applied on ions by the EEF. The binding energy in the presence of an EEF is different from that in the absence of an electric field as the binding energy is an anisotropic characteristic which depends on the orientation of molecules with respect to the EEF. In this contribution we discuss various aspects of the PES and the concept of binding energy in the presence of an EEF. In addition, we demonstrate that the anion-π bonding properties can be modulated by applying a uniform EEF, which has a more pronounced effect on the larger, more polarizable π-systems. An analogous behavior is presumed for cation-π systems. We predict that understanding the phenomenon introduced in the present account has enormous potential, for example, for separating charged species on the surface of polarizable two-dimensional materials such as graphene or the surface of carbon nanotubes, in desalination of water.

  10. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Science.gov (United States)

    2010-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or...

  11. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis.

    Science.gov (United States)

    Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok

    2013-11-01

    Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.

  12. Binding characteristics of thrombin-activatable fibrinolysis inhibitor to streptococcal surface collagen-like proteins A and B

    NARCIS (Netherlands)

    Seron, Mercedes Valls; Plug, Tom; Marquart, J. Arnoud; Marx, Pauline F.; Herwald, Heiko; de Groot, Philip G.; Meijers, Joost C. M.

    2011-01-01

    Streptococcus pyogenes is the causative agent in a wide range of diseases in humans. Thrombin-activatable fibrinolysis inhibitor (TAFI) binds to collagen-like proteins ScIA and ScIB at the surface of S. pyogenes. Activation of TAFI at this surface redirects inflammation from a transient to chronic

  13. Surface-associated plasminogen binding of Cryptococcus neoformans promotes extracellular matrix invasion.

    Directory of Open Access Journals (Sweden)

    Jamal Stie

    2009-06-01

    Full Text Available The fungal pathogen Cryptococcus neoformans is a leading cause of illness and death in persons with predisposing factors, including: malignancies, solid organ transplants, and corticosteroid use. C. neoformans is ubiquitous in the environment and enters into the lungs via inhalation, where it can disseminate through the bloodstream and penetrate the central nervous system (CNS, resulting in a difficult to treat and often-fatal infection of the brain, called meningoencephalitis. Plasminogen is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by cancer cells during metastasis and several pathogenic species of bacteria have been found to manipulate the host plasminogen system to facilitate invasion of tissues during infection by modifying the activation of this process through the binding of plasminogen at their surface.The invasion of the brain and the central nervous system by penetration of the protective blood-brain barrier is a prerequisite to the establishment of meningoencephalitis by the opportunistic fungal pathogen C. neoformans. In this study, we examined the ability of C. neoformans to subvert the host plasminogen system to facilitate tissue barrier invasion. Through a combination of biochemical, cell biology, and proteomic approaches, we have shown that C. neoformans utilizes the host plasminogen system to cross tissue barriers, providing support for the hypothesis that plasminogen-binding may contribute to the invasion of the blood-brain barrier by penetration of the brain endothelial cells and underlying matrix. In addition, we have identified the cell wall-associated proteins that serve as plasminogen receptors and characterized both the plasminogen-binding and plasmin-activation potential for this significant human pathogen.The results of this study provide evidence for the

  14. Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Ellsworth, William L.

    2015-01-01

    Sequestration of CO2 into subsurface reservoirs can play an important role in limiting future emission of CO2 into the atmosphere (e.g., Benson and Cole, 2008). For geologic sequestration to become a viable option to reduce greenhouse gas emissions, large-volume injection of supercritical CO2 into deep sedimentary formations is required. These formations offer large pore volumes and good pore connectivity and are abundant (Bachu, 2003; U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013). However, hazards associated with injection of CO2 into deep formations require evaluation before widespread sequestration can be adopted safely (Zoback and Gorelick, 2012). One of these hazards is the potential to induce seismicity on pre-existing faults or fractures. If these faults or fractures are large and critically stressed, seismic events can occur with magnitudes large enough to pose a hazard to surface installations and, possibly more critical, the seal integrity of the cap rock. The Decatur, Illinois, carbon capture and storage (CCS) demonstration site is the first, and to date, only CCS project in the United States that injects a large volume of supercritical CO2 into a regionally extensive, undisturbed saline formation. The first phase of the Decatur CCS project was completed in November 2014 after injecting a million metric tons of supercritical CO2 over three years. This phase was led by the Illinois State Geological Survey (ISGS) and included seismic monitoring using deep borehole sensors, with a few sensors installed within the injection horizon. Although the deep borehole network provides a more comprehensive seismic catalog than is presented in this paper, these deep data are not publically available. We contend that for monitoring induced microseismicity as a possible seismic hazard and to elucidate the general patterns of microseismicity, the U.S. Geological Survey (USGS) surface and shallow borehole network described below

  15. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs)

    DEFF Research Database (Denmark)

    Zektzer, Roy; Desiatov, Boris; Mazurski, Noa

    2015-01-01

    We demonstrate the design, fabrication and experimental characterization of long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) that are compatible with complementary metal-oxide semiconductor (CMOS) technology. The demonstrated waveguides feature good mode confinement...

  16. Surface-binding through polyfunction groups of Rhodamine B on composite surface and its high performance photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yiqun [College of Chemistry, Nanchang University, Nanchang 330031 (China); Center of Analysis and Testing, Nanchang University, Nanchang 330047 (China); Wang, Xiaofen [College of Chemistry, Nanchang University, Nanchang 330031 (China); Gu, Yun; Guo, Lan [College of Chemistry, Nanchang University, Nanchang 330031 (China); Center of Analysis and Testing, Nanchang University, Nanchang 330047 (China); Xu, Zhaodi, E-mail: xuzhaodi@ncu.edu.cn [Center of Analysis and Testing, Nanchang University, Nanchang 330047 (China)

    2016-03-15

    Graphical abstract: The proper adsorption sites of Rh B depending on the phases of composites significantly enhance photodegradation activity under visible light. - Highlights: • The composites ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} were hydrothermally prepared. • Rhodamine B dye was effectively degraded by the composite under the visible light irradiation. • The three function groups of Rhodamine B bind on the composites ZnS/In(OH){sub 3}/In{sub 2}S{sub 3}. • The proper adsorption mode and site of Rhodamine B effectively suppress the combination of carrier. • A new degradation path of Rhodamine B on ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} is found. - Abstract: A kind of novel composite ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} is synthesized using zinc oxide nanoplates as zinc raw material during hydrothermal process. Although the obtained samples are composited of ZnS and In(OH){sub 3} and In{sub 2}S{sub 3} phase, the samples possess different structure, morphology and optical absorption property depending on molar ratio of raw materials. Zeta potential analysis indicates different surface electrical property since various content and particle size of the phases. The equilibrium adsorption study confirms the composite ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} with surface negative charge is good adsorbent for Rhodamine B (Rh B) dye. In addition, the degradation of Rh B over the samples with surface negative charge under visible light (λ ≥ 420 nm) is more effective than the samples with surface positive charge. The samples before and after adsorbing Rh B molecule are examined by FTIR spectra and Zetasizer. It is found that the three function groups of Rh B molecule, especially carboxyl group anchors to surface of the sample through electrostatic adsorption, coordination and hydrogen-bond. It contributes to rapid transformation of photogenerated electron to conduction band of In(OH){sub 3} and suppresses the recombination of photogenerated carrier. The possible

  17. Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces.

    Science.gov (United States)

    Newton, Richard; Delguste, Martin; Koehler, Melanie; Dumitru, Andra C; Laskowski, Pawel R; Müller, Daniel J; Alsteens, David

    2017-11-01

    Over the past five years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool set capable of imaging the surfaces of biological samples ranging from single receptors to membranes and tissues. One of these approaches, force-distance curve-based AFM (FD-based AFM), uses a probing tip functionalized with a ligand to image living cells at high-resolution and simultaneously localize and characterize specific ligand-receptor binding events. Analyzing data from FD-based AFM experiments using appropriate probabilistic models allows quantification of the kinetic and thermodynamic parameters that describe the free-energy landscape of the ligand-receptor bond. We have recently developed an FD-based AFM approach to quantify the binding events of single enveloped viruses to surface receptors of living animal cells while simultaneously observing them by fluorescence microscopy. This approach has provided insights into the early stages of the interaction between a virus and a cell. Applied to a model virus, we probed the specific interaction with cells expressing viral cognate receptors and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthened the attachment of the virus to the cell. Here we describe detailed procedures for probing the specific interactions of viruses with living cells; these procedures cover tip preparation, cell sample preparation, step-by-step FD-based AFM imaging and data analysis. Experienced microscopists should be able to master the entire set of protocols in 1 month.

  18. Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end products.

    OpenAIRE

    Schmidt, A M; Yan, S D; Brett, J; Mora, R; Nowygrod, R; Stern, D

    1993-01-01

    Nonenzymatic glycation of proteins occurs at an accelerated rate in diabetes and can lead to the formation of advanced glycation end products of proteins (AGEs), which bind to mononuclear phagocytes (MPs) and induce chemotaxis. We have isolated two cell surface-associated binding proteins that mediate the interaction of AGEs with bovine endothelial cells. One of these proteins is a new member of the immunoglobulin superfamily of receptors (termed receptor for AGEs or RAGE); and the second is ...

  19. Handheld Chem/Biosensor Using Extreme Conformational Changes in Designed Binding Proteins to Enhance Surface Plasmon Resonance (SPR)

    Science.gov (United States)

    2016-04-01

    AFCEC-CX-TY-TR-2016-0007 HANDHELD CHEM/ BIOSENSOR USING EXTREME CONFORMATIONAL CHANGES IN DESIGNED BINDING PROTEINS TO ENHANCE SURFACE PLASMON...Include area code) 03/24/2016 Abstract 08/14/2015--03/31/2016 Handheld chem/ biosensor using extreme conformational changes in designed binding...Baltimore, Maryland on 17-21 April 2016. We propose the development of a highly sensitive handheld chem/ biosensor device using a novel class of engineered

  20. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    Science.gov (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  1. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, Marcela de, E-mail: marcelafarmausp77@gmail.com [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: mpemdel@fcfrp.usp.br [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: amandosi@ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others

    2014-03-15

    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  2. Fine definition of the CXCR4-binding region on the V3 loop of feline immunodeficiency virus surface glycoprotein.

    Directory of Open Access Journals (Sweden)

    Qiong-Ying Hu

    2010-05-01

    Full Text Available The chemokine receptor CXCR4 is shared by primary and laboratory-adapted strains of feline immunodeficiency virus (FIV for viral entry. Our previous studies implicated a contiguous nine-amino-acid region of the V3 loop of the FIV envelope surface as important in CXCR4 binding and virus entry. The binding is specific for CXCR4 since it can be inhibited by AMD3100, a selective CXCR4 inhibitor. Additional site-directed mutagenesis was used to further reveal the key residues. Binding studies indicated that basic residues R395, K397, R399 as well as N398 are critical for CXCR4 binding. The effect of other amino acid residues on receptor binding depends on the type of amino acid residue substituted. The binding study results were confirmed on human CXCR4-expressing SupT1 cells and correlated with entry efficiency using a virus entry assay. Amino acid residues critical for CXCR4 are not critical for interactions with the primary binding receptor CD134, which has an equivalent role as CD4 for HIV-1 binding. The ELISA results show that W394 and W400 are crucial for the recognition by neutralizing anti-V3 antibodies. Since certain strains of HIV-1 also use CXCR4 as the entry receptor, the findings make the feline model attractive for development of broad-based entry antagonists and for study of the molecular mechanism of receptor/virus interactions.

  3. Bee venom phospholipase A2 as a membrane-binding vector for cell surface display or internalization of soluble proteins.

    Science.gov (United States)

    Babon, Aurélie; Wurceldorf, Thibault; Almunia, Christine; Pichard, Sylvain; Chenal, Alexandre; Buhot, Cécile; Beaumelle, Bruno; Gillet, Daniel

    2016-06-15

    We showed that bee venom phospholipase A2 can be used as a membrane-binding vector to anchor to the surface of cells a soluble protein fused to its C-terminus. ZZ, a two-domain derivative of staphylococcal protein A capable of binding constant regions of antibodies was fused to the C-terminus of the phospholipase or to a mutant devoid of enzymatic activity. The fusion proteins bound to the surface of cells and could themselves bind IgGs. Their fate depended on the cell type to which they bound. On the A431 carcinoma cell line the proteins remained exposed on the cell surface. In contrast, on human dendritic cells the proteins were internalized into early endosomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. NASA Low Visibility Landing and Surface Operations (LVLASO) Atlanta Demonstration: Surveillance Systems Performance Analysis

    Science.gov (United States)

    Cassell, Rick; Evers, Carl; Hicok, Dan; Lee, Derrick

    1999-01-01

    NASA conducted a series of flight experiments at Hartsfield Atlanta International Airport as part of the Low Visibility Landing and Surface Operations (LVLASO) Program. LVLASO is one of the subelements of the NASA Terminal Area Productivity (TAP) Program, which is focused on providing technology and operating procedures for achieving clear-weather airport capacity in instrument-weather conditions, while also improving safety. LVLASO is investigating various technologies to be applied to airport surface operations, including advanced flight deck displays and surveillance systems. The purpose of this report is to document the performance of the surveillance systems tested as part of the LVLASO flight experiment. There were three surveillance sensors tested: primary radar using Airport Surface Detection Equipment (ASDE-3) and the Airport Movement Area Safety System (AMASS), Multilateration using the Airport Surface Target Identification System (ATIDS), and Automatic Dependent Surveillance - Broadcast (ADS-B) operating at 1090 MHz. The performance was compared to the draft requirements of the ICAO Advanced Surface Movement Guidance and Control System (A-SMGCS). Performance parameters evaluated included coverage, position accuracy, and update rate. Each of the sensors was evaluated as a stand alone surveillance system.

  5. Demonstration of pulmonary {beta}{sub 2}-adrenergic receptor binding in vivo with [{sup 18}F]fluoroethyl-fenoterol in a guinea pig model

    Energy Technology Data Exchange (ETDEWEB)

    Helisch, A.; Schirrmacher, E.; Schirrmacher, R.; Buchholz, H.G.; Bartenstein, P. [University Hospital, Department of Nuclear Medicine, Mainz (Germany); Thews, O.; Dillenburg, W.; Tillmanns, J. [University of Mainz, Institute of Physiology and Pathophysiology, Mainz (Germany); Hoehnemann, S.; Roesch, F. [University of Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Wessler, I. [University of Mainz, Institute of Pharmacology, Mainz (Germany); Buhl, R. [University Hospital, Pulmonary Division, Mainz (Germany)

    2005-11-01

    The new {beta}{sub 2} radioligand (R,R)(S,S) 5-(2-(2-[4-(2-[{sup 18}F]fluoroethoxy)phenyl]-1-methylethylamino)-1-hydroxyethyl)-benzene-1,3-diol ([{sup 18}F]FE-fenoterol; [{sup 18}F]FEFE), a fluoroethylated derivative of racemic fenoterol, was evaluated in vivo and ex vivo using a guinea pig model. Dynamic PET studies over 60 min with [{sup 18}F]FEFE were performed in nine Hartley guinea pigs in which a baseline (group 1, n=3), a predose (group 2, n=3; 2 mg/kg fenoterol 5 min prior to injection of [{sup 18}F]FEFE) or a displacement study (group 3, n=3; 2 mg/kg fenoterol 5 min post injection of [{sup 18}F]FEFE) was conducted. In all animal groups, the lungs could be visualised and semi-quantified separately by calculating uptake ratios to non-specific binding in the neck area. Premedication with non-radioactive fenoterol and displacement tests showed significant reduction of lung uptake, by 94% and 76%, respectively. These data demonstrate specific binding of the new radioligand to the pulmonary {beta}{sub 2}-receptors in accordance with ex vivo measurements. Therefore, [{sup 18}F]FEFE seems to be suitable for the in vivo visualisation and quantification of the pulmonary {beta}{sub 2}-receptor binding in this animal model. (orig.)

  6. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    International Nuclear Information System (INIS)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2011-01-01

    Research highlights: → Bacterial alginate-binding Algp7 is similar to component EfeO of Fe 2+ transporter. → We determined the crystal structure of Algp7 with a metal-binding motif. → Algp7 consists of two helical bundles formed through duplication of a single bundle. → A deep cleft involved in alginate binding locates around the metal-binding site. → Algp7 may function as a Fe 2+ -chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  7. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  8. Coating magnesium hydroxide on surface of carbon microspheres and interface binding with poly (ethylene terephthalate) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Baoxia [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Niu, Mei, E-mail: niumei@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Bai, Jie; Song, Yinghao; Peng, Yun [College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-08-01

    Highlights: • Magnesium hydroxide (MH) as a capsule wall was firstly coated on the surface of carbon microspheres (CMSs) to obtain MH@CMSs by liquid phase deposition method. • An organic layer of 3-Aminopropyltriethoxysilane (APTS) was then introduced on the surface of MH@CMSs. • The formed two layers provided the FMH@CMSs/PET with good mechanical and flame-retardant properties. - Abstract: In this account, magnesium hydroxide (MH) employed as a capsule wall was firstly coated on the surface of carbon microspheres (CMSs) to obtain MH@CMSs using liquid phase deposition, then was modified by 3-Aminopropyltriethoxysilane (APTS) to form FMH@CMSs. To investigate the interface binding forces, a series of PET composites was prepared by melt compounding with MH@CMSs or FMH@CMSs. Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier-transform Infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, chemical structure, and effect of functionalization of CMSs. The coating degree and thermal stability were investigated by thermogravimetry analysis. The results showed that CMSs were coated by an inorganic shell layer of MH as a capsule wall. On the other hand, MH@CMSs were coated with an organic layer of APTS. When compared to MH@CMSs, the interface binding forces between FMH@CMSs and PET matrix were significantly improved, and the tensile strength of FMH@CMSs/PET was higher than that of MH@CMSs/PET. At 1 wt% mass fraction of FMH@CMSs, the limiting oxygen index (LOI) value of PET composites increased from 21% to 27.6% following a V-0 rating. The tensile strength of FMH@CMSs/PET increased by 66.2% to reach 47.20 MPa, a value nearly similar to that of PET. Overall, the formed two layers provided the FMH@CMSs/PET with good mechanical and flame-retardant properties, which would broaden their scope of application.

  9. Simulation of Surface Erosion on a Logging Road in the Jackson Demonstration State Forest

    Science.gov (United States)

    Teresa Ish; David Tomberlin

    2007-01-01

    In constructing management models for the control of sediment delivery to streams, we have used a simulation model of road surface erosion known as the Watershed Erosion Prediction Project (WEPP) model, developed by the USDA Forest Service. This model predicts discharge, erosion, and sediment delivery at the road segment level, based on a stochastic climate simulator...

  10. Results from the search-lidar demonstrator project for detection of small Sea-Surface targets

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Putten, F.J.M. van; Cohen, L.H.; Kemp, R.A.W.; Franssen, G.C.

    2009-01-01

    Coastal surveillance and naval operations in the littoral both have to deal with the threat of small sea-surface targets. These targets have a low radar cross-section and a low velocity that makes them hard to detect by radar. Typical threats include jet skis, FIAC's, and speedboats. Previous lidar

  11. Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface.

    Science.gov (United States)

    Seymour, Lisa M; Jenkins, Cheryl; Deutscher, Ania T; Raymond, Benjamin B A; Padula, Matthew P; Tacchi, Jessica L; Bogema, Daniel R; Eamens, Graeme J; Woolley, Lauren K; Dixon, Nicholas E; Walker, Mark J; Djordjevic, Steven P

    2012-01-01

    Mycoplasma hyopneumoniae is a major, economically damaging respiratory pathogen. Although M. hyopneumoniae cells bind plasminogen, the identification of plasminogen-binding surface proteins and the biological ramifications of acquiring plasminogen requires further investigation. mhp182 encodes a highly expressed 102 kDa protein (P102) that undergoes proteolytic processing to generate surface-located N-terminal 60 kDa (P60) and C-terminal 42 kDa (P42) proteins of unknown function. We show that recombinant P102 (rP102) binds plasminogen at physiologically relevant concentrations (K(D) ~ 76 nM) increasing the susceptibility of plasmin(ogen) to activation by tissue-specific plasminogen activator (tPA). Recombinant proteins constructed to mimic P60 (rP60) and P42 (rP42) also bound plasminogen at physiologically significant levels. M. hyopneumoniae surface-bound plasminogen was activated by tPA and is able to degrade fibrinogen, demonstrating the biological functionality of M. hyopneumoniae-bound plasmin(ogen) upon activation. Plasmin(ogen) was readily detected in porcine ciliated airways and plasmin levels were consistently higher in bronchoalveolar lavage fluid from M. hyopneumoniae-infected animals. Additionally, rP102 and rP42 bind fibronectin with K(D) s of 26 and 33 nM respectively and recombinant P102 proteins promote adherence to porcine kidney epithelial-like cells. The multifunctional binding ability of P102 and activation of M. hyopneumoniae-sequestered plasmin(ogen) by an exogenous activator suggests P102 plays an important role in virulence. © 2011 Blackwell Publishing Ltd.

  12. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Directory of Open Access Journals (Sweden)

    Ting Lu

    Full Text Available MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs.Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye could firmly bind to the surface of adherent cells (Hela and suspended cells (K562 even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it.These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  13. Multiple epitope presentation and surface density control enabled by chemoselective immobilization lead to enhanced performance in IgE-binding fingerprinting on peptide microarrays.

    Science.gov (United States)

    Gori, Alessandro; Cretich, Marina; Vanna, Renzo; Sola, Laura; Gagni, Paola; Bruni, Giulia; Liprino, Marta; Gramatica, Furio; Burastero, Samuele; Chiari, Marcella

    2017-08-29

    Multiple ligand presentation is a powerful strategy to enhance the affinity of a probe for its corresponding target. A promising application of this concept lies in the analytical field, where surface immobilized probes interact with their corresponding targets in the context of complex biological samples. Here we investigate the effect of multiple epitope presentation (MEP) in the challenging context of IgE-detection in serum samples using peptide microarrays, and evaluate the influence of probes surface density on the assay results. Using the milk allergen alpha-lactalbumin as a model, we have synthesized three immunoreactive epitope sequences in a linear, branched and tandem form and exploited a chemoselective click strategy (CuAAC) for their immobilization on the surface of two biosensors, a microarray and an SPR chip both modified with the same clickable polymeric coating. We first demonstrated that a fine tuning of the surface peptide density plays a crucial role to fully exploit the potential of oriented and multiple peptide display. We then compared the three multiple epitope presentations in a microarray assay using sera samples from milk allergic patients, confirming that a multiple presentation, in particular that of the tandem construct, allows for a more efficient characterization of IgE-binding fingerprints at a statistically significant level. To gain insights on the binding parameters that characterize antibody/epitopes affinity, we selected the most reactive epitope of the series (LAC1) and performed a Surface Plasmon Resonance Imaging (SPRi) analysis comparing different epitope architectures (linear versus branched versus tandem). We demonstrated that the tandem peptide provides an approximately twofold increased binding capacity with respect to the linear and branched peptides, that could be attributed to a lower rate of dissociation (K d ). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coating magnesium hydroxide on surface of carbon microspheres and interface binding with poly (ethylene terephthalate) matrix

    Science.gov (United States)

    Xue, Baoxia; Niu, Mei; Yang, Yongzhen; Bai, Jie; Song, Yinghao; Peng, Yun; Liu, Xuguang

    2017-08-01

    In this account, magnesium hydroxide (MH) employed as a capsule wall was firstly coated on the surface of carbon microspheres (CMSs) to obtain MH@CMSs using liquid phase deposition, then was modified by 3-Aminopropyltriethoxysilane (APTS) to form FMH@CMSs. To investigate the interface binding forces, a series of PET composites was prepared by melt compounding with MH@CMSs or FMH@CMSs. Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier-transform Infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, chemical structure, and effect of functionalization of CMSs. The coating degree and thermal stability were investigated by thermogravimetry analysis. The results showed that CMSs were coated by an inorganic shell layer of MH as a capsule wall. On the other hand, MH@CMSs were coated with an organic layer of APTS. When compared to MH@CMSs, the interface binding forces between FMH@CMSs and PET matrix were significantly improved, and the tensile strength of FMH@CMSs/PET was higher than that of MH@CMSs/PET. At 1 wt% mass fraction of FMH@CMSs, the limiting oxygen index (LOI) value of PET composites increased from 21% to 27.6% following a V-0 rating. The tensile strength of FMH@CMSs/PET increased by 66.2% to reach 47.20 MPa, a value nearly similar to that of PET. Overall, the formed two layers provided the FMH@CMSs/PET with good mechanical and flame-retardant properties, which would broaden their scope of application.

  15. Demonstration of quadrature squeezed surface-plasmons in a gold waveguide

    DEFF Research Database (Denmark)

    Huck, Alexander; Smolka, Stephan; Krivitsky, Leonid

    2009-01-01

    In this contribution we present an experiment demonstrating the generation of non-classical SPPs by exciting them with a squeezed optical light field generated using a bow-tie shaped optical parametric oscillator operating below threshold. Free space optics and end-fire coupling are used for the ...... for the excitation of long-range SPPs (LR-SPPs) on gold stripes embedded in lossless transparent polymer BCB....

  16. T Tank Farm Interim Surface Barrier Demonstration--Vadose Zone Monitoring Plan

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Keller, Jason M.; Strickland, Christopher E.

    2007-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim barrier on the surface. Such a barrier is expected to prevent infiltrating water from reaching the plume and moving it further. A plan has been prepared to monitor and determine the effectiveness of the interim surface barrier. Soil water content and water pressure will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests were installed. Each instrument nest contains a neutron probe access tube, a capacitance probe, four heat-dissipation units, and a drain gauge to measure soil water flux. A meteorological station has been installed outside of the fence. In fiscal year 2007, two additional instrument nests are planned to be installed beneath the proposed barrier.

  17. T Tank Farm Interim Surface Barrier Demonstration--Vadose Zone Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Keller, Jason M.; Strickland, Christopher E.

    2007-04-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim barrier on the surface. Such a barrier is expected to prevent infiltrating water from reaching the plume and moving it further. A plan has been prepared to monitor and determine the effectiveness of the interim surface barrier. Soil water content and water pressure will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests were installed. Each instrument nest contains a neutron probe access tube, a capacitance probe, four heat-dissipation units, and a drain gauge to measure soil water flux. A meteorological station has been installed outside of the fence. In fiscal year 2007, two additional instrument nests are planned to be installed beneath the proposed barrier.

  18. Characterization of sperm surface protein patterns of ejaculated and capacitated boar sperm, with the detection of ZP binding candidates

    Czech Academy of Sciences Publication Activity Database

    Zigo, Michal; Jonáková, Věra; Šulc, Miroslav; Maňásková-Postlerová, Pavla

    2013-01-01

    Roč. 61, oct (2013), s. 322-328 ISSN 0141-8130 R&D Projects: GA ČR GAP503/12/1834 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:61388971 Keywords : Sperm surface protein * Zona pellucida-binding receptors * PKDREJ protein Subject RIV: CE - Biochemistry Impact factor: 3.096, year: 2013

  19. Analytical value of detecting an individual molecular binding event: The case of the surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Vrba, David; Homola, Jiří

    2012-01-01

    Roč. 84, č. 1 (2012), s. 30-33 ISSN 0003-2700 R&D Projects: GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : Binding events * Biosensing * Surface plasmon resonance biosensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.695, year: 2012

  20. Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration.

    Science.gov (United States)

    Song, Young Min; Park, Gyeong Cheol; Jang, Sung Jun; Ha, Jong Hoon; Yu, Jae Su; Lee, Yong Tak

    2011-03-14

    We present bioinspired artificial compound eye surface structures that consist of antireflective subwavelength structures (SWSs) on hexagonally patterned microstructures (MSs), for the purpose of efficient light escaping inside light-emitting materials/devices. Theoretical understanding and geometrical optimization of SWSs on MSs are described together with rigorous coupled-wave analysis. As a proof of this concept, AlGaInP red light-emitting diodes (LEDs) with SWS/MSs were fabricated, and a light output power enhancement of 72.47% was achieved as compared to that of conventional LEDs. The artificial compound eye structures are not limited to LEDs, and the fabrication process is compatible with most semiconductor device manufacturing processes; hence, this concept opens up new possibilities for improving the optical performance of various optoelectronic device applications.

  1. T-TY Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring Plan

    International Nuclear Information System (INIS)

    Zhang, Z.F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank of the 241-T Tank Farm in 1973. Five tanks are assumed to have leaked in the TY Farm. Many of the contaminants from those leaks still reside within the vadose zone within the T and TY Tank Farms. The Department of Energy's Office of River Protection seeks to minimize the movement of these contaminant plumes by placing interim barriers on the ground surface. Such barriers are expected to prevent infiltrating water from reaching the plumes and moving them further. The soil water regime is monitored to determine the effectiveness of the interim surface barriers. Soil-water content and water pressure are monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. Four instrument nests were installed in the T Farm in fiscal year (FY) 2006 and FY2007; two nests were installed in the TY Farm in FY2010. Each instrument nest contains a neutron probe access tube, a capacitance probe, and four heat-dissipation units. A meteorological station has been installed at the north side of the fence of the T Farm. This document summarizes the monitoring methods, the instrument calibration and installation, and the vadose zone monitoring plan for interim barriers in T farm and TY Farm.

  2. BB0347, from the lyme disease spirochete Borrelia burgdorferi, is surface exposed and interacts with the CS1 heparin-binding domain of human fibronectin.

    Directory of Open Access Journals (Sweden)

    Robert A Gaultney

    Full Text Available The causative agent of Lyme disease, Borrelia burgdorferi, codes for several known fibronectin-binding proteins. Fibronectin a common the target of diverse bacterial pathogens, and has been shown to be essential in allowing for the development of certain disease states. Another borrelial protein, BB0347, has sequence similarity with these other known fibronectin-binding proteins, and may be important in Lyme disease pathogenesis. Herein, we perform an initial characterization of BB0347 via the use of molecular and biochemical techniques. We found that BB0347 is expressed, produced, and presented on the outer surface of intact B. burgdorferi. We also demonstrate that BB0347 has the potential to be important in Lyme disease progression, and have begun to characterize the nature of the interaction between human fibronectin and this bacterial protein. Further work is needed to define the role of this protein in the borrelial infection process.

  3. A cell-surface superoxide dismutase is a binding protein for peroxinectin, a cell-adhesive peroxidase in crayfish.

    Science.gov (United States)

    Johansson, M W; Holmblad, T; Thörnqvist, P O; Cammarata, M; Parrinello, N; Söderhäll, K

    1999-03-01

    Peroxinectin, a cell-adhesive peroxidase (homologous to human myeloperoxidase), from the crayfish Pacifastacus leniusculus, was shown by immuno-fluorescence to bind to the surface of crayfish blood cells (haemocytes). In order to identify a cell surface receptor for peroxinectin, labelled peroxinectin was incubated with a blot of haemocyte membrane proteins. It was found to specifically bind two bands of 230 and 90 kDa; this binding was decreased in the presence of unlabelled peroxinectin. Purified 230/90 kDa complex also bound peroxinectin in the same assay. In addition, the 230 kDa band binds the crayfish beta-1,3-glucan-binding protein. The 230 kDa band could be reduced to 90 kDa, thus showing that the 230 kDa is a multimer of 90 kDa units. The peroxinectin-binding protein was cloned from a haemocyte cDNA library, using immuno-screening or polymerase chain reaction based on partial amino acid sequence of the purified protein. It has a signal sequence, a domain homologous to CuZn-containing superoxide dismutases, and a basic, proline-rich, C-terminal tail, but no membrane-spanning segment. In accordance, the 90 and 230 kDa bands had superoxide dismutase activity. Immuno-fluorescence of non-permeabilized haemocytes with affinity-purified antibodies confirmed that the crayfish CuZn-superoxide dismutase is localized at the cell surface; it could be released from the membrane with high salt. It was thus concluded that the peroxinectin-binding protein is an extracellular SOD (EC-SOD) and a peripheral membrane protein, presumably kept at the cell surface via ionic interaction with its C-terminal region. This interaction with a peroxidase seems to be a novel function for an SOD. The binding of the cell surface SOD to the cell-adhesive/opsonic peroxinectin may mediate, or regulate, cell adhesion and phagocytosis; it may also be important for efficient localized production of microbicidal substances.

  4. Equilibrium and kinetics of Sin Nombre hantavirus binding at DAF/CD55 functionalized bead surfaces.

    Science.gov (United States)

    Buranda, Tione; Swanson, Scarlett; Bondu, Virginie; Schaefer, Leah; Maclean, James; Mo, Zhenzhen; Wycoff, Keith; Belle, Archana; Hjelle, Brian

    2014-03-10

    Decay accelerating factor (DAF/CD55) is targeted by many pathogens for cell entry. It has been implicated as a co-receptor for hantaviruses. To examine the binding of hantaviruses to DAF, we describe the use of Protein G beads for binding human IgG Fc domain-functionalized DAF ((DAF)₂-Fc). When mixed with Protein G beads the resulting DAF beads can be used as a generalizable platform for measuring kinetic and equilibrium binding constants of DAF binding targets. The hantavirus interaction has high affinity (24-30 nM; k(on) ~ 10⁵ M⁻¹ s⁻¹, k(off) ~ 0.0045 s⁻¹). The bivalent (DAF)₂-Fc/SNV data agree with hantavirus binding to DAF expressed on Tanoue B cells (K(d) = 14.0 nM). Monovalent affinity interaction between SNV and recombinant DAF of 58.0 nM is determined from competition binding. This study serves a dual purpose of presenting a convenient and quantitative approach of measuring binding affinities between DAF and the many cognate viral and bacterial ligands and providing new data on the binding constant of DAF and Sin Nombre hantavirus. Knowledge of the equilibrium binding constant allows for the determination of the relative fractions of bound and free virus particles in cell entry assays. This is important for drug discovery assays for cell entry inhibitors.

  5. The Neck Region of the C-type Lectin DC-SIGN Regulates Its Surface Spatiotemporal Organization and Virus-binding Capacity on Antigen-presenting Cells*

    Science.gov (United States)

    Manzo, Carlo; Torreno-Pina, Juan A.; Joosten, Ben; Reinieren-Beeren, Inge; Gualda, Emilio J.; Loza-Alvarez, Pablo; Figdor, Carl G.; Garcia-Parajo, Maria F.; Cambi, Alessandra

    2012-01-01

    The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and role in viral binding remain enigmatic. By combining biochemical and advanced biophysical techniques, including optical superresolution and single particle tracking, we demonstrate that DC-SIGN intrinsic nanoclustering strictly depends on its molecular structure. DC-SIGN nanoclusters exhibited free, Brownian diffusion on the cell membrane. Truncation of the extracellular neck region, known to abrogate tetramerization, significantly reduced nanoclustering and concomitantly increased lateral diffusion. Importantly, DC-SIGN nanocluster dissolution exclusively compromised binding to nanoscale size pathogens. Monte Carlo simulations revealed that heterogeneity on nanocluster density and spatial distribution confers broader binding capabilities to DC-SIGN. As such, our results underscore a direct relationship between spatial nanopatterning, driven by intermolecular interactions between the neck regions, and receptor diffusion to provide DC-SIGN with the exquisite ability to dock pathogens at the virus length scale. Insight into how virus receptors are organized prior to virus binding and how they assemble into functional platforms for virus docking is helpful to develop novel strategies to prevent virus entry and infection. PMID:23019323

  6. Surface modification by cold-plasma technique for dental implants—Bio-functionalization with binding pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Masao Yoshinari

    2011-08-01

    At the bone tissue/implant interface, a thin calcium phosphate coating and rapid heating with infrared radiation were effective in controlling the dissolution without cracking the coating. These thin calcium phosphate coatings may directly promote osteogenisis, but also enable immobilization and subsequent drug delivery system (DDS of bisphosphonates. Simvastatin is also an effective candidate that is reported to increase the expression of BMP-2. The thin-film of hexamethyldisiloxane (HMDSO was plasma-polymerized onto titanium, and then HMDSO surface was activated by O2-plasma treatment. A quartz crystal microbalance (QCM-D technique demonstrated that simvastatin was immobilized on the plasma-treated surfaces due to introduction of O2-functional groups. At the soft tissue/implant interface, multi-grooved surface topographies and utilizing the adhesive proteins such as fibronectin or laminin-5 may help in providing a biological seal around the implant. At the oral fluid/implant interface, an alumina coating, F+-implantation and immobilization of anti-microbial peptides were responsible for inhibiting the biofilm accumulation.

  7. The salivary scavenger and agglutinin (SALSA binds MBL and regulates the lectin pathway of complement in solution and on surfaces

    Directory of Open Access Journals (Sweden)

    Martin eParnov Reichhardt

    2012-07-01

    Full Text Available The scavenger receptor cysteine-rich (SRCR protein SALSA, also known as gp340, salivary agglutinin (SAG and deleted in malignant brain tumor 1 (DMBT1, is a 340 kDa glycoprotein expressed on mucosal surfaces and secreted into several body fluids. SALSA binds to a broad variety of microbes and endogenous ligands, such as complement factor C1q, surfactant proteins D and A (SP-D and SP-A and IgA. Our search for novel ligands of SALSA by direct protein-interaction studies led to the identification of mannan binding lectin (MBL as a new binding partner. We observed that surface-associated SALSA activates complement via binding of MBL. On the other hand, soluble SALSA was found to inhibit C. albicans-induced complement activation. Thus, SALSA has a dual complement regulatory function. It activates the lectin pathway when bound to a surface and inhibits it when free in the fluid-phase. These activities are mediated via a direct interaction with MBL.

  8. High level theoretical study of binding and of the potential energy surface in benzene-hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Coletti, Cecilia, E-mail: ccoletti@unich.it [Dipartimento di Scienze del Farmaco, Universita ' G. d' Annunzio' Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (Italy); Re, Nazzareno [Dipartimento di Scienze del Farmaco, Universita ' G. d' Annunzio' Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (Italy)

    2012-04-04

    Graphical abstract: In-plane minimum geometries for benzene-H{sup -} non-covalent adducts: linear adduct (left) with the hydride ion hydrogen bonded to one aromatic hydrogen; bifurcated adduct (right), with the hydride ion hydrogen bonded to two adjacent aromatic hydrogens. Highlights: Black-Right-Pointing-Pointer Theoretical study on covalent and non-covalent binding in benzene-hydride. Black-Right-Pointing-Pointer Two non-covalent stable adducts were characterized in the in-plane geometry. Black-Right-Pointing-Pointer Significant sections of the potential energy surface were determined. Black-Right-Pointing-Pointer Formation of a very stable C{sub 6}H{sub 7}{sup -} anion upon covalent binding to carbon. - Abstract: High level ab initio calculations were performed on the interaction of the hydride anion with benzene, a system of potential interest for modelling the interactions occurring in hydrogen rich planetary atmospheres. We investigated both non-covalent and covalent binding, exploring the complete basis set limit using highly correlated MP2 and CCSD(T) levels of theory. Two non-covalent minima on the potential energy surface have been characterized, and found to correspond to moderately strong hydrogen bonding interactions. To gain further insight on the nature of binding, the total interaction energy was decomposed into its physically meaningful components and selected sections of the potential energy surface were calculated. Moreover, we found that H{sup -} can easily covalently bind to one of the carbon atoms of benzene to form a stable C{sub 6}H{sub 7}{sup -} anion, a global minimum on the potential energy surface, characterized by a puckered geometry, with a carbon atom bending out of the benzene plane. A slightly less stable planar C{sub 6}H{sub 7}{sup -} structure was also identified, corresponding to the transition state for the flipping motion of the puckered species.

  9. Binding of p-mercaptobenzoic acid and adenine to gold-coated electroless etched silicon nanowires studied by surface-enhanced Raman scattering.

    Science.gov (United States)

    Mohaček-Grošev, Vlasta; Gebavi, Hrvoje; Bonifacio, Alois; Sergo, Valter; Daković, Marko; Bajuk-Bogdanović, Danica

    2018-04-10

    Modern diagnostic tools ever aim to reduce the amount of analyte and the time needed for obtaining the result. Surface-enhanced Raman spectroscopy is a method that could satisfy both of these requirements, provided that for each analyte an adequate substrate is found. Here we demonstrate the ability of gold-sputtered silicon nanowires (SiNW) to bind p-mercaptobenzoic acid in 10 -3 , 10 -4 and 10 -5 M and adenine in 30 and 100μM concentrations. Based on the normal mode analysis, presented here for the first time, the binding of p-mercaptobenzoic acid is deduced. The intensity enhancement of the 1106cm -1 band is explained by involvement of the CS stretching deformation, and the appearance of the broad 300cm -1 band attributed to SAu stretching mode. Adenine SERS spectra demonstrate the existence of the 7H tautomer since the strongest band observed is at 736cm -1 . The adenine binding is likely to occur in several ways, because the number of observed bands in the 1200-1600cm -1 interval exceeds the number of observed bands in the normal Raman spectrum of the free molecule. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Rotavirus NSP4 is secreted from infected cells as an oligomeric lipoprotein and binds to glycosaminoglycans on the surface of non-infected cells

    Directory of Open Access Journals (Sweden)

    Didsbury Alicia

    2011-12-01

    Full Text Available Abstract Background Nonstructural glycoprotein 4 (NSP4 encoded by rotavirus is the only viral protein currently believed to function as an enterotoxin. NSP4 is synthesized as an intracellular transmembrane glycoprotein and as such is essential for virus assembly. Infection of polarized Caco-2 cells with rotavirus also results in the secretion of glycosylated NSP4 apparently in a soluble form despite retention of its transmembrane domain. We have examined the structure, solubility and cell-binding properties of this secreted form of NSP4 to further understand the biochemical basis for its enterotoxic function. We show here that NSP4 is secreted as discrete detergent-sensitive oligomers in a complex with phospholipids and demonstrate that this secreted form of NSP4 can bind to glycosaminoglycans present on the surface of a range of different cell types. Methods NSP4 was purified from the medium of infected cells after ultracentrifugation and ultrafiltration by successive lectin-affinity and ion exchange chromatography. Oligomerisation of NSP4 was examined by density gradient centrifugation and chemical crosslinking and the lipid content was assessed by analytical thin layer chromatography and flame ionization detection. Binding of NSP4 to various cell lines was measured using a flow cytometric-based assay. Results Secreted NSP4 formed oligomers that contained phospholipid but dissociated to a dimeric species in the presence of non-ionic detergent. The purified glycoprotein binds to the surface of various non-infected cells of distinct lineage. Binding of NSP4 to HT-29, a cell line of intestinal origin, is saturable and independent of divalent cations. Complementary biochemical approaches reveal that NSP4 binds to sulfated glycosaminoglycans on the plasma membrane. Conclusion Our study is the first to analyze an authentic (i.e. non-recombinant form of NSP4 that is secreted from virus-infected cells. Despite retention of the transmembrane domain

  11. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    Energy Technology Data Exchange (ETDEWEB)

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon (UC); (UIC)

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  12. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans.

    Science.gov (United States)

    Amand, Helene L; Rydberg, Hanna A; Fornander, Louise H; Lincoln, Per; Nordén, Bengt; Esbjörner, Elin K

    2012-11-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide's ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Åmand, Helene L.

    2012-11-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide\\'s ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell. © 2012 Elsevier B.V.

  14. Screening Mixtures of Small Molecules for Binding to Multiple Sites on the Surface Tetanus Toxin C Fragment by Bioaffinity NMR

    Energy Technology Data Exchange (ETDEWEB)

    Cosman, M; Zeller, L; Lightstone, F C; Krishnan, V V; Balhorn, R

    2002-01-01

    The clostridial neurotoxins include the closely related tetanus (TeNT) and botulinum (BoNT) toxins. Botulinum toxin is used to treat severe muscle disorders and as a cosmetic wrinkle reducer. Large quantities of botulinum toxin have also been produced by terrorists for use as a biological weapon. Because there are no known antidotes for these toxins, they thus pose a potential threat to human health whether by an accidental overdose or by a hostile deployment. Thus, the discovery of high specificity and affinity compounds that can inhibit their binding to neural cells can be used as antidotes or in the design of chemical detectors. Using the crystal structure of the C fragment of the tetanus toxin (TetC), which is the cell recognition and cell surface binding domain, and the computational program DOCK, sets of small molecules have been predicted to bind to two different sites located on the surface of this protein. While Site-1 is common to the TeNT and BoNTs, Site-2 is unique to TeNT. Pairs of these molecules from each site can then be linked together synthetically to thereby increase the specificity and affinity for this toxin. Electrospray ionization mass spectroscopy was used to experimentally screen each compound for binding. Mixtures containing binders were further screened for activity under biologically relevant conditions using nuclear magnetic resonance (NMR) methods. The screening of mixtures of compounds offers increased efficiency and throughput as compared to testing single compounds and can also evaluate how possible structural changes induced by the binding of one ligand can influence the binding of the second ligand. In addition, competitive binding experiments with mixtures containing ligands predicted to bind the same site could identify the best binder for that site. NMR transfer nuclear Overhauser effect (trNOE) confirm that TetC binds doxorubicin but that this molecule is displaced by N-acetylneuraminic acid (sialic acid) in a mixture that

  15. Screening Mixtures of Small Molecules for Binding to Multiple Sites on the Surface Tetanus Toxin C Fragment by Bioaffinity NMR

    International Nuclear Information System (INIS)

    Cosman, M; Zeller, L; Lightstone, F C; Krishnan, V V; Balhorn, R

    2002-01-01

    The clostridial neurotoxins include the closely related tetanus (TeNT) and botulinum (BoNT) toxins. Botulinum toxin is used to treat severe muscle disorders and as a cosmetic wrinkle reducer. Large quantities of botulinum toxin have also been produced by terrorists for use as a biological weapon. Because there are no known antidotes for these toxins, they thus pose a potential threat to human health whether by an accidental overdose or by a hostile deployment. Thus, the discovery of high specificity and affinity compounds that can inhibit their binding to neural cells can be used as antidotes or in the design of chemical detectors. Using the crystal structure of the C fragment of the tetanus toxin (TetC), which is the cell recognition and cell surface binding domain, and the computational program DOCK, sets of small molecules have been predicted to bind to two different sites located on the surface of this protein. While Site-1 is common to the TeNT and BoNTs, Site-2 is unique to TeNT. Pairs of these molecules from each site can then be linked together synthetically to thereby increase the specificity and affinity for this toxin. Electrospray ionization mass spectroscopy was used to experimentally screen each compound for binding. Mixtures containing binders were further screened for activity under biologically relevant conditions using nuclear magnetic resonance (NMR) methods. The screening of mixtures of compounds offers increased efficiency and throughput as compared to testing single compounds and can also evaluate how possible structural changes induced by the binding of one ligand can influence the binding of the second ligand. In addition, competitive binding experiments with mixtures containing ligands predicted to bind the same site could identify the best binder for that site. NMR transfer nuclear Overhauser effect (trNOE) confirm that TetC binds doxorubicin but that this molecule is displaced by N-acetylneuraminic acid (sialic acid) in a mixture that

  16. BL-7010 demonstrates specific binding to gliadin and reduces gluten-associated pathology in a chronic mouse model of gliadin sensitivity.

    Directory of Open Access Journals (Sweden)

    Justin L McCarville

    Full Text Available Celiac disease (CD is an autoimmune disorder in individuals that carry DQ2 or DQ8 MHC class II haplotypes, triggered by the ingestion of gluten. There is no current treatment other than a gluten-free diet (GFD. We have previously shown that the BL-7010 copolymer poly(hydroxyethyl methacrylate-co-styrene sulfonate (P(HEMA-co-SS binds with higher efficiency to gliadin than to other proteins present in the small intestine, ameliorating gliadin-induced pathology in the HLA-HCD4/DQ8 model of gluten sensitivity. The aim of this study was to investigate the efficiency of two batches of BL-7010 to interact with gliadin, essential vitamins and digestive enzymes not previously tested, and to assess the ability of the copolymer to reduce gluten-associated pathology using the NOD-DQ8 mouse model, which exhibits more significant small intestinal damage when challenged with gluten than HCD4/DQ8 mice. In addition, the safety and systemic exposure of BL-7010 was evaluated in vivo (in rats and in vitro (genetic toxicity studies. In vitro binding data showed that BL-7010 interacted with high affinity with gliadin and that BL-7010 had no interaction with the tested vitamins and digestive enzymes. BL-7010 was effective at preventing gluten-induced decreases in villus-to-crypt ratios, intraepithelial lymphocytosis and alterations in paracellular permeability and putative anion transporter-1 mRNA expression in the small intestine. In rats, BL-7010 was well-tolerated and safe following 14 days of daily repeated administration of 3000 mg/kg. BL-7010 did not exhibit any mutagenic effect in the genetic toxicity studies. Using complementary animal models and chronic gluten exposure the results demonstrate that administration of BL-7010 is effective and safe and that it is able to decrease pathology associated with gliadin sensitization warranting the progression to Phase I trials in humans.

  17. Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding.

    Science.gov (United States)

    Kubala, Martin; Grycova, Lenka; Lansky, Zdenek; Sklenovsky, Petr; Janovska, Marika; Otyepka, Michal; Teisinger, Jan

    2009-09-16

    A set of single-tryptophan mutants of the Na(+)/K(+)-ATPase isolated, large cytoplasmic loop connecting transmembrane helices M4 and M5 (C45) was prepared to monitor effects of the natural cytoplasmic ligands (i.e., Mg(2+) and/or ATP) binding. We introduced a novel method for the monitoring of the changes in the electrostatic surface potential (ESP) induced by ligand binding, using the quenching of the intrinsic tryptophan fluorescence by acrylamide or iodide. This approach opens a new way to understanding the interactions within the proteins. Our experiments revealed that the C45 conformation in the presence of the ATP (without magnesium) substantially differed from the conformation in the presence of Mg(2+) or MgATP or in the absence of any ligand not only in the sense of geometry but also in the sense of the ESP. Notably, the set of ESP-sensitive residues was different from the set of geometry-sensitive residues. Moreover, our data indicate that the effect of the ligand binding is not restricted only to the close environment of the binding site and that the information is in fact transmitted also to the distal parts of the molecule. This property could be important for the communication between the cytoplasmic headpiece and the cation binding sites located within the transmembrane domain.

  18. Crystal structure of the gamma-2 herpesvirus LANA DNA binding domain identifies charged surface residues which impact viral latency.

    Directory of Open Access Journals (Sweden)

    Bruno Correia

    Full Text Available Latency-associated nuclear antigen (LANA mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Å resolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s.

  19. Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription.

    Science.gov (United States)

    Kamenova, Ivanka; Warfield, Linda; Hahn, Steven

    2014-08-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Monolayer detection of ion binding at a crown ether-functionalised supramolecular surface via an integrated optical Bragg grating.

    Science.gov (United States)

    Parker, Richard M; Wales, Dominic J; Gates, James C; Frey, Jeremy G; Smith, Peter G R; Grossel, Martin C

    2014-06-07

    There have been significant recent developments in the field of integrated optical Bragg grating sensors for use in the biological domain, where changes in the thickness of a surface layer upon specific binding of biological targets allows quantitative detection. However in the chemical domain less work has been reported. We present here an integrated optical Bragg grating sensor, capable of evanescently detecting small changes in refractive index down to 10(-6) RIU at infrared wavelengths, within a microfluidic system. The high spectral fidelity of the Bragg gratings combined with precise thermal compensation enables direct monitoring of the surface throughout the experiment. This allows the sensor to probe surface changes in situ and in real-time, from preparation through to chemical modification of the surface, so that the progress of dynamic surface-localized interactions can be followed. Here we describe confirmatory studies to validate this approach, including a comparison with the modelled optical system, before assessing the ability to detect binding of Group I cations at a crown ether-functionalised supramolecular surface. Unlike larger biological entities, for these small chemical species, simple additive changes in film-thickness no longer prevail.

  1. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

    Science.gov (United States)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2011-02-18

    A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10Å resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Rational design of amyloid beta peptide-binding proteins: pseudo-Abeta beta-sheet surface presented in green fluorescent protein binds tightly and preferentially to structured Abeta.

    Science.gov (United States)

    Takahashi, Tsuyoshi; Ohta, Kenichi; Mihara, Hisakazu

    2010-02-01

    Some neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson disease are caused by protein misfolding. In AD, amyloid beta-peptide (Abeta) is thought to be a toxic agent by self-assembling into a variety of aggregates involving soluble oligomeric intermediates and amyloid fibrils. Here, we have designed several green fluorescent protein (GFP) variants that contain pseudo-Abeta beta-sheet surfaces and evaluated their abilities to bind to Abeta and inhibit Abeta oligomerization. Two GFP variants P13H and AP93Q bound tightly to Abeta, K(d) = 260 nM and K(d) = 420 nM, respectively. Moreover, P13H and AP93Q were capable of efficiently suppressing the generation of toxic Abeta oligomers as shown by a cell viability assay. By combining the P13H and AP93Q mutations, a super variant SFAB4 comprising four strands of Abeta-derived sequences was designed and bound more tightly to Abeta (K(d) = 100 nM) than those having only two pseudo-Abeta strands. The SFAB4 protein preferentially recognized the soluble oligomeric intermediates of Abeta more than both unstructured monomer and mature amyloid fibrils. Thus, the design strategy for embedding pseudo-Abeta beta-sheet structures onto a protein surface arranged in the beta-barrel structure is useful to construct molecules capable of binding tightly to Abeta and inhibiting its aggregation. This strategy may provide implication for the diagnostic and therapeutic development in the treatment of AD. (c) 2009 Wiley-Liss, Inc.

  3. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic.

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    Full Text Available Similar to other highly successful invasive bacterial pathogens, Staphylococcus aureus recruits the complement regulatory protein factor H (fH to its surface to inhibit the alternative pathway of complement. Here, we report the identification of the surface-associated protein SdrE as a fH-binding protein using purified fH overlay of S. aureus fractionated cell wall proteins and fH cross-linking to S. aureus followed by mass spectrometry. Studies using recombinant SdrE revealed that rSdrE bound significant fH whether from serum or as a purified form, in both a time- and dose-dependent manner. Furthermore, rSdrE-bound fH exhibited cofactor functionality for factor I (fI-mediated cleavage of C3b to iC3b which correlated positively with increasing amounts of fH. Expression of SdrE on the surface of the surrogate bacterium Lactococcus lactis enhanced recruitment of fH which resulted in increased iC3b generation. Moreover, surface expression of SdrE led to a reduction in C3-fragment deposition, less C5a generation, and reduced killing by polymorphonuclear cells. Thus, we report the first identification of a S. aureus protein associated with the staphylococcal surface that binds factor H as an immune evasion mechanism.

  4. Selective binding of oligonucleotide on TiO{sub 2} surfaces modified by swift heavy ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Vicente Pérez-Girón, J. [Nanoate, S.L. C/Poeta Rafael Morales 2, San Sebastian de los Reyes, 28702 Madrid (Spain); Emerging Viruses Department Heinrich Pette Institute, Hamburg 20251 (Germany); Hirtz, M. [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); McAtamney, C.; Bell, A.P. [Advanced Microscopy Laboratory, CRANN, Trinity College Dublin, Dublin 2 (Ireland); Antonio Mas, J. [Laboratorio de Genómica del Centro de Apoyo Tecnológico, Universidad Rey Juan Carlos, Campus de Alcorcón 28922, Madrid (Spain); Jaafar, M. [Nanoate, S.L. C/Poeta Rafael Morales 2, San Sebastian de los Reyes, 28702 Madrid (Spain); Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Luis, O. de [Nanoate, S.L. C/Poeta Rafael Morales 2, San Sebastian de los Reyes, 28702 Madrid (Spain); Departamento de Bioquímica, Fisiología y Genética Molecular, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Campus de Alcorcón, 28922 Madrid (Spain); Fuchs, H. [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Physical Institute and Center for Nanotechnology (CeNTech), Wilhelm-Klemm-Straße 10, University of Münster (Germany); and others

    2014-11-15

    We have used swift heavy-ion beam based lithography to create patterned bio-functional surfaces on rutile TiO{sub 2} single crystals. The applied lithography method generates a permanent and well defined periodic structure of micrometre sized square holes having nanostructured TiO{sub 2} surfaces, presenting different physical and chemical properties compared to the surrounding rutile single crystal surface. On the patterned substrates selective binding of oligonucleotides molecules is possible at the surfaces of the holes. This immobilisation process is only being controlled by UV light exposure. The patterned transparent substrates are compatible with fluorescence detection techniques, are mechanically robust, have a high tolerance to extreme chemical and temperature environments, and apparently do not degrade after ten cycles of use. These qualities make the patterned TiO{sub 2} substrates useful for potential biosensor applications.

  5. Non-ionic detergents facilitate non-specific binding of M13 bacteriophage to polystyrene surfaces.

    Science.gov (United States)

    Hakami, Abdulrahim R; Ball, Jonathan K; Tarr, Alexander W

    2015-09-01

    Phage-displayed random peptide libraries are widely used for identifying peptide interactions with proteins and other substrates. Selection of peptide ligands involves iterative rounds of affinity enrichment. The binding properties of the selected phage clones are routinely tested using immunoassay after propagation to high titre in a bacterial host and precipitation using polyethylene glycol (PEG) and high salt concentration. These immunoassays can suffer from low sensitivity and high background signals. Polysorbate 20 (Tween(®) 20) is a non-ionic detergent commonly used in immunoassay washing buffers to reduce non-specific binding, and is also used as a blocking reagent. We have observed that Tween 20 enhances non-specific M13 library phage binding in a peptide-independent manner. Other non-ionic detergents were also found to promote significant, dose-dependent non-specific phage binding in ELISA. This effect was not observed for assays using phage concentrated by ultracentrifugation, suggesting that interactions occur between detergents and the PEG-precipitated phage, irrespective of the displayed peptide motif. This artefact may impact on successful affinity selection of peptides from phage-display libraries. We propose alternative methods for screening phage libraries for identifying binding interactions with target ligands. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein.

    Science.gov (United States)

    Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A

    2017-04-01

    Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low

  7. Surface plasmon resonance and circular dichroism characterization of cucurbitacins binding to serum albumins for early pharmacokinetic profiling.

    Science.gov (United States)

    Fabini, Edoardo; Fiori, Giovana Maria Lanchoti; Tedesco, Daniele; Lopes, Norberto Peporine; Bertucci, Carlo

    2016-04-15

    Cucurbitacins are a group of tetracyclic triterpenoids, known for centuries for their anti-cancer and anti-inflammatory properties, which are being actively investigated over the past decades in order to elucidate their mechanism of action. In perspective of being used as therapeutic molecules, a pharmacokinetic characterization is crucial to assess the affinity toward blood carrier proteins and extrapolate distribution volumes. Usually, pharmacokinetic data are first collected on animal models and later translated to humans; therefore, an early characterization of the interaction with carrier proteins from different species is highly desirable. In the present study, the interactions of cucurbitacins E and I with human and rat serum albumins (HSA and RSA) were investigated by means of surface plasmon resonance (SPR)-based optical biosensing and circular dichroism (CD) spectroscopy. Active HSA and RSA sensor chip surfaces were prepared through an amine coupling reaction protocol, and the equilibrium dissociation constants (Kd) for the different cucurbitacins-serum albumins complexes were then determined by SPR analysis. Further information on the binding of cucurbitacins to serum albumins was obtained by CD competition experiments with biliverdin, a specific marker binding to subdomain IB of HSA. SPR data unveiled a previously unreported binding event between CucI and HSA; the determined binding affinities of both compounds were slightly higher for RSA with respect to HSA, even though all the compounds can be ranked as high-affinity binders for both carriers. CD analysis showed that the two cucurbitacins modify the binding of biliverdin to serum albumins through opposite allosteric modulation (positive for HSA, negative for RSA), confirming the need for caution in the translation of pharmacokinetic data across species. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Heterogeneity of a labeled tumor surface protein from a murine lung carcinoma demonstrated by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Eisinger, R.W. (Univ. of Tennessee, Oak Ridge); Kennel, S.J.

    1981-03-01

    Heterogeneity of a tumor surface protein (designated TSP-180) has been demonstrated by two-dimensional electrophoresis. Line 1 carcinoma cells derived from a spontaneous alveolar carcinoma of BALB/c mice were labeled externally with /sup 125/I by use of lactoperoxidase or metabolically with (/sup 3/H)-leucine before cell proteins were solubilized with Triton X-100 detergent. Immunoprecipitates prepared with heterologous antisera allowed comparison of two-dimensional patterns of line 1 surface proteins labeled with /sup 125/I or /sup 3/H. The isoelectric point of /sup 125/I-labeled TSP-180 was heterogeneous and varied between 6.1 and 6.3. Treatment with neuraminidase shifted the pI values to between 5.9 and 6.1 and reduced, but did not eliminate, the banding heterogeneity. These data show that charge heterogeneity due to sialization, as well as other factors, exists in TSP-180.

  9. Surface complement C3 fragments and cellular binding of microparticles in patients with SLE

    DEFF Research Database (Denmark)

    Winberg, Line Kjær; Nielsen, Claus Henrik; Jacobsen, Søren

    2017-01-01

    Objectives: To examine microparticles (MPs) from patients with SLE and healthy controls (HCs) by determining the cellular origin of the MPs, quantifying attached fragments of complement component 3 (C3) and assessing the ability of MPs to bind to circulating phagocytes and erythrocytes. These fea......Objectives: To examine microparticles (MPs) from patients with SLE and healthy controls (HCs) by determining the cellular origin of the MPs, quantifying attached fragments of complement component 3 (C3) and assessing the ability of MPs to bind to circulating phagocytes and erythrocytes...

  10. Binding of the urokinase-type plasminogen activator to its cell surface receptor is inhibited by low doses of suramin

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1993-01-01

    micrograms/ml when using U937 cells and a ligand concentration of 0.3 nM. This concentration of the drug is well below the serum levels found in suramin-treated patients. Inhibition of binding was also demonstrated at the molecular level, using chemical cross-linking or an enzyme-linked immunosorbent assay...... to the anti-invasive properties of suramin by destroying the cellular potential for localized plasminogen activation and proteolytic matrix degradation....

  11. Scavenger Receptor C-Type Lectin Binds to the Leukocyte Cell Surface Glycan Lewis By a Novel Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, H.; Taylor, M.E.; Weis, W.I.; /Stanford U., Med. School /Imperial Coll., London

    2007-07-10

    The scavenger receptor C-type lectin (SRCL) is unique in the family of class A scavenger receptors, because in addition to binding sites for oxidized lipoproteins it also contains a C-type carbohydrate-recognition domain (CRD) that interacts with specific glycans. Both human and mouse SRCL are highly specific for the Lewis(x) trisaccharide, which is commonly found on the surfaces of leukocytes and some tumor cells. Structural analysis of the CRD of mouse SRCL in complex with Lewis(x) and mutagenesis show the basis for this specificity. The interaction between mouse SRCL and Lewis(x) is analogous to the way that selectins and DC-SIGN bind to related fucosylated glycans, but the mechanism of the interaction is novel, because it is based on a primary galactose-binding site similar to the binding site in the asialoglycoprotein receptor. Crystals of the human receptor lacking bound calcium ions reveal an alternative conformation in which a glycan ligand would be released during receptor-mediated endocytosis.

  12. Degradation of the starch components amylopectin and amylose by barley α-amylase 1: Role of surface binding site 2

    DEFF Research Database (Denmark)

    Nielsen, Jonas Willum; Kramhøft, Birte; Bozonnet, Sophie

    2012-01-01

    Barley α-amylase isozyme 1 (AMY1, EC 3.2.1.1) contains two surface binding sites, SBS1 and SBS2, involved in the degradation of starch granules. The distinct role of SBS1 and SBS2 remains to be fully understood. Mutational analysis of Tyr-380 situated at SBS2 previously revealed that Tyr-380...... is required for binding of the amylose helix mimic, β-cyclodextrin. Also, mutant enzymes altered at position 380 displayed reduced binding to starch granules. Similarly, binding of wild type AMY1 to starch granules was suppressed in the presence of β-cyclodextrin. We investigated the role of SBS2 by comparing...... kinetic properties of the wild type AMY1 and the Y380A mutant enzyme in hydrolysis of amylopectin, amylose and β-limit dextrin, and the inhibition by β-cyclodextrin. Progress curves of the release of reducing ends revealed a bi-exponential hydrolysis of amylopectin and β-limit dextrin, whereas hydrolysis...

  13. Lectin interactions on surface-grafted glycostructures: influence of the spatial distribution of carbohydrates on the binding kinetics and rupture forces.

    Science.gov (United States)

    Yu, Kai; Creagh, A Louise; Haynes, Charles A; Kizhakkedathu, Jayachandran N

    2013-08-20

    We performed quantitative analysis of the binding kinetics and affinity of carbohydrate-lectin binding and correlated them directly with the molecular and structural features of ligands presented at the nanoscale within the glycocalyx mimicking layers on surfaces. The surface plasmon resonance analysis identified that the mode of binding changed from multivalent to monovalent, which resulted in a near 1000-fold change in the equilibrium association constant, by varying the spatial distribution of carbohydrate ligands within the surface-grafted polymer layer. We identified, for the first time, that the manner in which the ligands presented on the surface has great influence on the binding at the first stage of bivalent chelating, not on the binding at the second stage. The rupture forces measured by atomic force microscope force spectroscopy also indicated that the mode of binding between lectin and ligands changed from multiple to single with variation in the ligand presentation. The dependence of lectin binding on the glycopolymer composition and grafting density is directly correlated with the nanoscale presentation of ligands on a surface, which is a determining factor in controlling the clustering and statistical effects contributing to the enhanced binding.

  14. Physical adsorption vs. chemical binding of undecylenic acid on porous silicon surface: a comparative study of differently functionalized materials

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, J.; Lehto, V.P. [University of Turku (Finland). Department of Physics; Chirvony, V.; Matveeva, E. [Nanophotonics Technology Center, Technical University of Valencia (Spain); Pastor, E.

    2009-07-15

    To imply miscibility to porous silicon (PSi) used for biomedical purposes a number of functionalization methods are employed. In order to distinguish between a non-specific surfactant-like interaction (physical sorption) and chemical binding of unsaturated chemicals (undecylenic acid, UD) to H-terminated PSi surface we studied the two differently treated materials. Differential scanning calorimetry (DSC) and thermogravimetry (TGA), BET and FTIR measurements were performed with the PSi powder samples (n+ doped). Changes in surface area, weight loss, calorific effect and chemical composition that accompanied the thermal treatment have shown that the physisorbed UD molecules undergo a chemical process (binding) with the Si-H{sub x} surface groups at about 150 C in both, N{sub 2} inert atmosphere and in a synthetic air, oxidative atmosphere. Controlled conversion of physically sorbed molecules to the chemically attached ones is discussed with respect to methods of surface modification of PSi materials for increasing their biocompatibility. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Modifications of nano-titania surface for in vitro evaluations of hemolysis, cytotoxicity, and nonspecific protein binding

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Aparna, E-mail: adatta.research@gmail.com [Jadavpur University, School of Materials Science and Nanotechnology (India); Dasgupta, Sayantan [NRS Medical College and Hospital, Department of Biochemistry (India); Mukherjee, Siddhartha [Jadavpur University, Department of Metallurgical and Material Engineering (India)

    2017-04-15

    In the past decade, a variety of drug carriers based on mesoporous silica nanoparticles has been extensively reported. However, their biocompatibility still remains debatable, which motivated us to explore the porous nanostructures of other metal oxides, for example titanium dioxide (TiO{sub 2}), as potential drug delivery vehicles. Herein, we report the in vitro hemolysis, cytotoxicity, and protein binding of TiO{sub 2} nanoparticles, synthesized by a sol–gel method. The surface of the TiO{sub 2} nanoparticles was modified with hydroxyl, amine, or thiol containing moieties to examine the influence of surface functional groups on the toxicity and protein binding aspects of the nanoparticles. Our study revealed the superior hemocompatibility of pristine, as well as functionalized TiO{sub 2} nanoparticles, compared to that of mesoporous silica, the present gold standard. Among the functional groups studied, aminosilane moieties on the TiO{sub 2} surface substantially reduced the degree of hemolysis (down to 5%). Further, cytotoxicity studies by MTT assay suggested that surface functional moieties play a crucial role in determining the biocompatibility of the nanoparticles. The presence of NH{sub 2}– functional groups on the TiO{sub 2} nanoparticle surface enhanced the cell viability by almost 28% as compared to its native counterpart (at 100 μg/ml), which was in agreement with the hemolysis assay. Finally, nonspecific protein adsorption on functionalized TiO{sub 2} surfaces was examined using human serum albumin and it was found that negatively charged surface moieties, like –OH and –SH, could mitigate protein adsorption to a significant extent.

  16. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Nielsen, Morten M.; Christiansen, Camilla

    2015-01-01

    degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley alpha-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser...

  17. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Behrendt, N; Ploug, M; Patthy, L

    1991-01-01

    with the internal repeats of u-PAR constitute the extracellular part of Ly-6 antigens and of the squid glycoprotein Sgp-2. Like u-PAR, these proteins are attached to the membrane by a glycosyl-phosphatidylinositol anchor. The hydrophilic, ligand-binding u-PAR domain identified in the present study has potential...

  18. Membrane-Type 1 Matrix Metalloproteinase Downregulates Fibroblast Growth Factor-2 Binding to the Cell Surface and Intracellular Signaling.

    Science.gov (United States)

    Tassone, Evelyne; Valacca, Cristina; Mignatti, Paolo

    2015-02-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades extracellular matrix components and controls diverse cell functions through proteolytic and non-proteolytic interactions with extracellular, intracellular, and transmembrane proteins. Here we show that in tumor cells MT1-MMP downregulates fibroblast growth factor-2 (FGF-2) signaling by reducing the amount of FGF-2 bound to the cell surface with high and low affinity. FGF-2 induces weaker activation of ERK1/2 MAP kinase in MT1-MMP expressing cells than in cells devoid of MT1-MMP. This effect is abolished in cells that express proteolytically inactive MT1-MMP but persists in cells expressing MT1-MMP mutants devoid of hemopexin-like or cytoplasmic domain, showing that FGF-2 signaling is downregulated by MT1-MMP proteolytic activity. MT1-MMP expression results in downregulation of FGFR-1 and -4, and in decreased amount of cell surface-associated FGF-2. In addition, MT1-MMP strongly reduces the amount of FGF-2 bound to the cell surface with low affinity. Because FGF-2 association with low-affinity binding sites is a prerequisite for binding to its high-affinity receptors, downregulation of low-affinity binding to the cell surface results in decreased FGF-2 signaling. Consistent with this conclusion, FGF-2 induction of tumor cell migration and invasion in vitro is stronger in cells devoid of MT1- MMP than in MT1-MMP expressing cells. Thus, MT1-MMP controls FGF-2 signaling by a proteolytic mechanism that decreases the cell's biological response to FGF-2. © 2014 Wiley Periodicals, Inc.

  19. A Density Functional Tight Binding Study of Acetic Acid Adsorption on Crystalline and Amorphous Surfaces of Titania

    Directory of Open Access Journals (Sweden)

    Sergei Manzhos

    2015-02-01

    Full Text Available We present a comparative density functional tight binding study of an organic molecule attachment to TiO2 via a carboxylic group, with the example of acetic acid. For the first time, binding to low-energy surfaces of crystalline anatase (101, rutile (110 and (B-TiO2 (001, as well as to the surface of amorphous (a- TiO2 is compared with the same computational setup. On all surfaces, bidentate configurations are identified as providing the strongest adsorption energy, Eads = −1.93, −2.49 and −1.09 eV for anatase, rutile and (B-TiO2, respectively. For monodentate configurations, the strongest Eads = −1.06, −1.11 and −0.86 eV for anatase, rutile and (B-TiO2, respectively. Multiple monodentate and bidentate configurations are identified on a-TiO2 with a distribution of adsorption energies and with the lowest energy configuration having stronger bonding than that of the crystalline counterparts, with Eads up to −4.92 eV for bidentate and −1.83 eV for monodentate adsorption. Amorphous TiO2 can therefore be used to achieve strong anchoring of organic molecules, such as dyes, that bind via a -COOH group. While the presence of the surface leads to a contraction of the band gap vs. the bulk, molecular adsorption caused no appreciable effect on the band structure around the gap in any of the systems.

  20. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy.

    Science.gov (United States)

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N; Crowley, Paula J; Brady, L Jeannine; Long, Joanna R

    2016-02-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  1. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    International Nuclear Information System (INIS)

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N.; Crowley, Paula J.; Brady, L. Jeannine; Long, Joanna R.

    2016-01-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ∼57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin

  2. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B.

    Science.gov (United States)

    Gross, Catharina; Koelch, Walter; DeMaio, Antonio; Arispe, Nelson; Multhoff, Gabriele

    2003-10-17

    Cell surface-bound heat shock protein 70 (Hsp70) renders tumor cells more sensitive to the cytolytic attack mediated by natural killer (NK) cells. A 14-amino acid Hsp70 sequence, termed TKD (TKDNNLLGRFELSG, aa450-463) could be identified as the extracellular localized recognition site for NK cells. Here, we show by affinity chromatography that both, full-length Hsp70-protein and Hsp70-peptide TKD, specifically bind a 32-kDa protein derived from NK cell lysates. The serine protease granzyme B was uncovered as the 32-kDa Hsp70-interacting protein using matrix-assisted laser desorption ionization time-of-flight mass peptide fingerprinting. Incubation of tumor cells with increasing concentrations of perforin-free, isolated granzyme B shows specific binding and uptake in a dose-dependent manner and results in initiation of apoptosis selectively in tumor cells presenting Hsp70 on the cell surface. Remarkably, Hsp70 cation channel activity was also determined selectively in purified phospholipid membranes of Hsp70 membrane-positive but not in membrane-negative tumor cells. The physiological role of our findings was demonstrated in primary NK cells showing elevated cytoplasmic granzyme B levels following contact with TKD. Furthermore, an increased lytic activity of Hsp70 membrane-positive tumor cells could be associated with granzyme B release by NK cells. Taken together we propose a novel perforin-independent, granzyme B-mediated apoptosis pathway for Hsp70 membrane-positive tumor cells.

  3. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wenxing; Bhatt, Avni [University of Florida, Department of Biochemistry and Molecular Biology, College of Medicine (United States); Smith, Adam N. [University of Florida, Department of Chemistry, College of Liberal Arts and Sciences (United States); Crowley, Paula J.; Brady, L. Jeannine, E-mail: jbrady@dental.ufl.edu [University of Florida, Department of Oral Biology, College of Dentistry (United States); Long, Joanna R., E-mail: jrlong@ufl.edu [University of Florida, Department of Biochemistry and Molecular Biology, College of Medicine (United States)

    2016-02-15

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ∼57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  4. Direct demonstration of ATP-dependent release of SecA from a translocating preprotein by surface plasmon resonance

    NARCIS (Netherlands)

    de Keyzer, J; van der Does, C; Kloosterman, TG; Driessen, AJM

    2003-01-01

    Translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds with high affinity to the membrane-embedded protein-conducting SecYEG complex and serves as both a receptor for secretory proteins and as an ATP-driven molecular motor. Cycles of ATP binding

  5. Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands.

    Science.gov (United States)

    Krimmer, Stefan G; Cramer, Jonathan; Betz, Michael; Fridh, Veronica; Karlsson, Robert; Heine, Andreas; Klebe, Gerhard

    2016-12-08

    A previously studied congeneric series of thermolysin inhibitors addressing the solvent-accessible S 2 ' pocket with different hydrophobic substituents showed modulations of the surface water layers coating the protein-bound inhibitors. Increasing stabilization of water molecules resulted in an enthalpically more favorable binding signature, overall enhancing affinity. Based on this observation, we optimized the series by designing tailored P 2 ' substituents to improve and further stabilize the surface water network. MD simulations were applied to predict the putative water pattern around the bound ligands. Subsequently, the inhibitors were synthesized and characterized by high-resolution crystallography, microcalorimetry, and surface plasmon resonance. One of the designed inhibitors established the most pronounced water network of all inhibitors tested so far, composed of several fused water polygons, and showed 50-fold affinity enhancement with respect to the original methylated parent ligand. Notably, the inhibitor forming the most perfect water network also showed significantly prolonged residence time compared to the other tested inhibitors.

  6. European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters.

    Science.gov (United States)

    Tousova, Zuzana; Oswald, Peter; Slobodnik, Jaroslav; Blaha, Ludek; Muz, Melis; Hu, Meng; Brack, Werner; Krauss, Martin; Di Paolo, Carolina; Tarcai, Zsolt; Seiler, Thomas-Benjamin; Hollert, Henner; Koprivica, Sanja; Ahel, Marijan; Schollée, Jennifer E; Hollender, Juliane; Suter, Marc J-F; Hidasi, Anita O; Schirmer, Kristin; Sonavane, Manoj; Ait-Aissa, Selim; Creusot, Nicolas; Brion, Francois; Froment, Jean; Almeida, Ana Catarina; Thomas, Kevin; Tollefsen, Knut Erik; Tufi, Sara; Ouyang, Xiyu; Leonards, Pim; Lamoree, Marja; Torrens, Victoria Osorio; Kolkman, Annemieke; Schriks, Merijn; Spirhanzlova, Petra; Tindall, Andrew; Schulze, Tobias

    2017-12-01

    Growing concern about the adverse environmental and human health effects of a wide range of micropollutants requires the development of novel tools and approaches to enable holistic monitoring of their occurrence, fate and effects in the aquatic environment. A European-wide demonstration program (EDP) for effect-based monitoring of micropollutants in surface waters was carried out within the Marie Curie Initial Training Network EDA-EMERGE. The main objectives of the EDP were to apply a simplified protocol for effect-directed analysis, to link biological effects to target compounds and to estimate their risk to aquatic biota. Onsite large volume solid phase extraction of 50 L of surface water was performed at 18 sampling sites in four European river basins. Extracts were subjected to effect-based analysis (toxicity to algae, fish embryo toxicity, neurotoxicity, (anti-)estrogenicity, (anti-)androgenicity, glucocorticoid activity and thyroid activity), to target analysis (151 organic micropollutants) and to nontarget screening. The most pronounced effects were estrogenicity, toxicity to algae and fish embryo toxicity. In most bioassays, major portions of the observed effects could not be explained by target compounds, especially in case of androgenicity, glucocorticoid activity and fish embryo toxicity. Estrone and nonylphenoxyacetic acid were identified as the strongest contributors to estrogenicity, while herbicides, with a minor contribution from other micropollutants, were linked to the observed toxicity to algae. Fipronil and nonylphenol were partially responsible for the fish embryo toxicity. Within the EDP, 21 target compounds were prioritized on the basis of their frequency and extent of exceedance of predicted no effect concentrations. The EDP priority list included 6 compounds, which are already addressed by European legislation, and 15 micropollutants that may be important for future monitoring of surface waters. The study presents a novel simplified

  7. Catfish rhamnose-binding lectin induces G0/1 cell cycle arrest in Burkitt's lymphoma cells via membrane surface Gb3.

    Science.gov (United States)

    Sugawara, Shigeki; Im, Changhun; Kawano, Tasuku; Tatsuta, Takeo; Koide, Yasuhiro; Yamamoto, Daiki; Ozeki, Yasuhiro; Nitta, Kazuo; Hosono, Masahiro

    2017-02-01

    Silurus asotus egg lectin (SAL), an α-galactoside-binding protein isolated from the eggs of catfish, is a member of the rhamnose-binding lectin family that binds to Gb3 glycan (Galα1-4Galβ1-4Glc). We have previously demonstrated that SAL reduces the proliferation of Gb3-expressing Burkitt's lymphoma Raji cells and confirm here that it does not reduce their viability, indicating that unlike other lectins, it is not cytotoxic. The aim of this study was to determine the signal transduction mechanism(s) underlying this novel SAL/Gb3 binding-mediated effect profile. SAL/Gb3 interaction arrested the cell cycle through increasing the G 0/1 phase population of Raji cells. SAL suppressed the transcription of cell cycle-related factors such as c-MYC, cyclin D3, and cyclin-dependent protein kinase (CDK)-4. Conversely, the CDK inhibitors p21 and p27 were elevated by treatment with SAL. In particular, the production of p27 in response to SAL treatment increased steadily, whereas p21 production was maximal at 12 h and lower at 24 h. Activation of Ras-MEK-ERK pathway led to an increase in expression of p21. Notably, treatment of Raji cells with anti-Gb3 mAb alone did not produce the above effects. Taken together, our findings suggest that Gb3 on the Raji cell surface interacts with SAL to trigger sequential GDP-Ras phosphorylation, Ras-MEK-ERK pathway activation, p21 production, and cell cycle arrest at the G 0/1 phase.

  8. Surface-binding through polyfunction groups of Rhodamine B on composite surface and its high performance photodegradation

    Science.gov (United States)

    Wan, Yiqun; Wang, Xiaofen; Gu, Yun; Guo, Lan; Xu, Zhaodi

    2016-03-01

    A kind of novel composite ZnS/In(OH)3/In2S3 is synthesized using zinc oxide nanoplates as zinc raw material during hydrothermal process. Although the obtained samples are composited of ZnS and In(OH)3 and In2S3 phase, the samples possess different structure, morphology and optical absorption property depending on molar ratio of raw materials. Zeta potential analysis indicates different surface electrical property since various content and particle size of the phases. The equilibrium adsorption study confirms the composite ZnS/In(OH)3/In2S3 with surface negative charge is good adsorbent for Rhodamine B (Rh B) dye. In addition, the degradation of Rh B over the samples with surface negative charge under visible light (λ ≥ 420 nm) is more effective than the samples with surface positive charge. The samples before and after adsorbing Rh B molecule are examined by FTIR spectra and Zetasizer. It is found that the three function groups of Rh B molecule, especially carboxyl group anchors to surface of the sample through electrostatic adsorption, coordination and hydrogen-bond. It contributes to rapid transformation of photogenerated electron to conduction band of In(OH)3 and suppresses the recombination of photogenerated carrier. The possible adsorption modes of Rh B are discussed on the basis of the experiment results.

  9. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein

    Science.gov (United States)

    Miranda-Ozuna, Jesús F. T.; Hernández-García, Mar S.; Brieba, Luis G.; Benítez-Cardoza, Claudia G.; Ortega-López, Jaime; González-Robles, Arturo

    2016-01-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis. Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. PMID:27481251

  10. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein.

    Science.gov (United States)

    Miranda-Ozuna, Jesús F T; Hernández-García, Mar S; Brieba, Luis G; Benítez-Cardoza, Claudia G; Ortega-López, Jaime; González-Robles, Arturo; Arroyo, Rossana

    2016-10-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. The binding of cytochrome c to neuroglobin: A docking and surface plasmon resonance study

    DEFF Research Database (Denmark)

    Bønding, Signe Helbo; Henty, K.; Dingley, A.J.

    2008-01-01

    is associated with a small unfavourable enthalpy change (1.9 kcal mol-1) and a moderately large, favourable entropy change (14.8 cal mol-1 deg-1). The sensitivity of the binding constant to the presence of salt suggests that the complex formation involves electrostatic interactions.......It has recently been proposed that the role of neuroglobin in the protection of neurons from ischaemia induced cell death requires the formation of a transient complex with cytochrome c. No such complex has yet been isolated. Here, we present the results of soft docking calculations, which indicate...... one major binding site for cytochrome c to neuroglobin. The results yield a plausible structure for the most likely complex structure in which the hemes of each protein are in close contact. NMR analysis identifies the formation of a weak complex in which the heme group of cytochrome c is involved...

  12. Exposed and hidden lectin-binding epitopes at the surface of Borrelia burgdorferi

    Czech Academy of Sciences Publication Activity Database

    Stoitsova, S. R.; Grubhoffer, Libor; Nebesářová, Jana

    2003-01-01

    Roč. 48, č. 5 (2003), s. 654-658 ISSN 0015-5632 R&D Projects: GA AV ČR IAA6022001 Grant - others:National Research Council at the Ministry of Education and Science(BG) K-709/97 Institutional research plan: CEZ:AV0Z6022909 Keywords : Borrelia burgdorferi * lectin-binding epitopes Subject RIV: EE - Microbiology, Virology Impact factor: 0.857, year: 2003

  13. Characterization of a viral phosphoprotein binding site on the surface of the respiratory syncytial nucleoprotein.

    Science.gov (United States)

    Galloux, Marie; Tarus, Bogdan; Blazevic, Ilfad; Fix, Jenna; Duquerroy, Stéphane; Eléouët, Jean-François

    2012-08-01

    The human respiratory syncytial virus (HRSV) genome is composed of a negative-sense single-stranded RNA that is tightly associated with the nucleoprotein (N). This ribonucleoprotein (RNP) complex is the template for replication and transcription by the viral RNA-dependent RNA polymerase. RNP recognition by the viral polymerase involves a specific interaction between the C-terminal domain of the phosphoprotein (P) (P(CTD)) and N. However, the P binding region on N remains to be identified. In this study, glutathione S-transferase (GST) pulldown assays were used to identify the N-terminal core domain of HRSV N (N(NTD)) as a P binding domain. A biochemical characterization of the P(CTD) and molecular modeling of the N(NTD) allowed us to define four potential candidate pockets on N (pocket I [PI] to PIV) as hydrophobic sites surrounded by positively charged regions, which could constitute sites complementary to the P(CTD) interaction domain. The role of selected amino acids in the recognition of the N-RNA complex by P was first screened for by site-directed mutagenesis using a polymerase activity assay, based on an HRSV minigenome containing a luciferase reporter gene. When changed to Ala, most of the residues of PI were found to be critical for viral RNA synthesis, with the R132A mutant having the strongest effect. These mutations also reduced or abolished in vitro and in vivo P-N interactions, as determined by GST pulldown and immunoprecipitation experiments. The pocket formed by these residues is critical for P binding to the N-RNA complex, is specific for pneumovirus N proteins, and is clearly distinct from the P binding sites identified so far for other nonsegmented negative-strand viruses.

  14. The 1.7 Å X-ray crystal structure of the porcine factor VIII C2 domain and binding analysis to anti-human C2 domain antibodies and phospholipid surfaces.

    Directory of Open Access Journals (Sweden)

    Caileen M Brison

    Full Text Available The factor VIII C2 domain is essential for binding to activated platelet surfaces as well as the cofactor activity of factor VIII in blood coagulation. Inhibitory antibodies against the C2 domain commonly develop following factor VIII replacement therapy for hemophilia A patients, or they may spontaneously arise in cases of acquired hemophilia. Porcine factor VIII is an effective therapeutic for hemophilia patients with inhibitor due to its low cross-reactivity; however, the molecular basis for this behavior is poorly understood. In this study, the X-ray crystal structure of the porcine factor VIII C2 domain was determined, and superposition of the human and porcine C2 domains demonstrates that most surface-exposed differences cluster on the face harboring the "non-classical" antibody epitopes. Furthermore, antibody-binding results illustrate that the "classical" 3E6 antibody can bind both the human and porcine C2 domains, although the inhibitory titer to human factor VIII is 41 Bethesda Units (BU/mg IgG versus 0.8 BU/mg IgG to porcine factor VIII, while the non-classical G99 antibody does not bind to the porcine C2 domain nor inhibit porcine factor VIII activity. Further structural analysis of differences between the electrostatic surface potentials suggest that the C2 domain binds to the negatively charged phospholipid surfaces of activated platelets primarily through the 3E6 epitope region. In contrast, the G99 face, which contains residue 2227, should be distal to the membrane surface. Phospholipid binding assays indicate that both porcine and human factor VIII C2 domains bind with comparable affinities, and the human K2227A and K2227E mutants bind to phospholipid surfaces with similar affinities as well. Lastly, the G99 IgG bound to PS-immobilized factor VIII C2 domain with an apparent dissociation constant of 15.5 nM, whereas 3E6 antibody binding to PS-bound C2 domain was not observed.

  15. Silkworm Apolipophorin Protein Inhibits Hemolysin Gene Expression of Staphylococcus aureus via Binding to Cell Surface Lipoteichoic Acids*

    Science.gov (United States)

    Omae, Yosuke; Hanada, Yuichi; Sekimizu, Kazuhisa; Kaito, Chikara

    2013-01-01

    We previously reported that a silkworm hemolymph protein, apolipophorin (ApoLp), binds to the cell surface of Staphylococcus aureus and inhibits expression of the saePQRS operon encoding a two-component system, SaeRS, and hemolysin genes. In this study, we investigated the inhibitory mechanism of ApoLp on S. aureus hemolysin gene expression. ApoLp bound to lipoteichoic acids (LTA), an S. aureus cell surface component. The addition of purified LTA to liquid medium abolished the inhibitory effect of ApoLp against S. aureus hemolysin production. In an S. aureus knockdown mutant of ltaS encoding LTA synthetase, the inhibitory effects of ApoLp on saeQ expression and hemolysin production were attenuated. Furthermore, the addition of anti-LTA monoclonal antibody to liquid medium decreased the expression of S. aureus saeQ and hemolysin genes. In S. aureus strains expressing SaeS mutant proteins with a shortened extracellular domain, ApoLp did not decrease saeQ expression. These findings suggest that ApoLp binds to LTA on the S. aureus cell surface and inhibits S. aureus hemolysin gene expression via a two-component regulatory system, SaeRS. PMID:23873929

  16. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids.

    Science.gov (United States)

    Omae, Yosuke; Hanada, Yuichi; Sekimizu, Kazuhisa; Kaito, Chikara

    2013-08-30

    We previously reported that a silkworm hemolymph protein, apolipophorin (ApoLp), binds to the cell surface of Staphylococcus aureus and inhibits expression of the saePQRS operon encoding a two-component system, SaeRS, and hemolysin genes. In this study, we investigated the inhibitory mechanism of ApoLp on S. aureus hemolysin gene expression. ApoLp bound to lipoteichoic acids (LTA), an S. aureus cell surface component. The addition of purified LTA to liquid medium abolished the inhibitory effect of ApoLp against S. aureus hemolysin production. In an S. aureus knockdown mutant of ltaS encoding LTA synthetase, the inhibitory effects of ApoLp on saeQ expression and hemolysin production were attenuated. Furthermore, the addition of anti-LTA monoclonal antibody to liquid medium decreased the expression of S. aureus saeQ and hemolysin genes. In S. aureus strains expressing SaeS mutant proteins with a shortened extracellular domain, ApoLp did not decrease saeQ expression. These findings suggest that ApoLp binds to LTA on the S. aureus cell surface and inhibits S. aureus hemolysin gene expression via a two-component regulatory system, SaeRS.

  17. Demonstration of a reduction in muscarinic receptor binding in early Alzheimer's disease using iodine-123 dexetimide single-photon emission tomography

    International Nuclear Information System (INIS)

    Claus, J.J.; Dubois, E.A.; Booij, J.; Habraken, J.; Munck, J.C. van; Herk, M. van; Verbeeten, B. Jr.; Royen, E.A. van

    1997-01-01

    Decreased muscarinic receptor binding has been suggested in single-photon emission tomography (SPET) studies of Alzheimer's disease. However, it remains unclear whether these changes are present in mildly demented patients, and the role of cortical atrophy in receptor binding assessment has not been investigated. We studied muscarinic receptor binding normalized to neostriatum with SPET using [ 123 I[4-iododexetimide in five mildly affected patients with probable Alzheimer's disease and in five age-matched control subjects. Region of interest (ROI) analysis was performed in a consensus procedure blind to clinical diagnosis using matched magnetic resonance (MRI) images. Cortical atrophy was assessed by calculating percentages of cerebrospinal fluid in each ROI. An observer study with three observers was conducted to validate this method. Alzheimer patients showed statistically significantly less [ 123 I[4-iododexetimide binding in left temporal and right temporo-parietal cortex compared with controls, independent of age, sex and cortical atrophy. Mean intra-observer variability was 3.6% and inter-observer results showed consistent differences in [ 123 I[4-iododexetimide binding between observers. However, differences between patients and controls were comparable among observers and statistically significant in the same regions as in the consensus procedure. Using an MRI-SPET matching technique, we conclude that [ 123 I[4-iododexetimide binding is reduced in patients with mild probable Alzheimer's disease in areas of temporal and temporo-parietal cortex. (orig.). With 1 fig., 4 tabs

  18. Selective Binding, Self-Assembly and Nanopatterning of the Creutz-Taube Ion on Surfaces

    OpenAIRE

    Wang, Yuliang; Lieberman, Marya; Hang, Qingling; Bernstein, Gary

    2009-01-01

    The surface attachment properties of the Creutz-Taube ion, i.e., [(NH3)5Ru(pyrazine)Ru(NH3)5]5+, on both hydrophilic and hydrophobic types of surfaces were investigated using X-ray photoelectron spectroscopy (XPS). The results indicated that the Creutz-Taube ions only bound to hydrophilic surfaces, such as SiO2 and –OH terminated organic SAMs on gold substrates. No attachment of the ions on hydrophobic surfaces such as –CH3 terminated organic SAMs and poly(methylmethacrylate) (PMMA) thin film...

  19. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide

    DEFF Research Database (Denmark)

    Soh, N; Tokuda, T.; Watanabe, T.

    2003-01-01

    A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2...

  20. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    NARCIS (Netherlands)

    Tarazanova, Mariya; Huppertz, Thom; Beerthuyzen, Marke; van Schalkwijk, Saskia; Janssen, Patrick; Wels, Michiel; Kok, Jan; Bachmann, Herwig

    2017-01-01

    Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and

  1. Cell Surface Binding and Internalization of Aβ Modulated by Degree of Aggregation

    Directory of Open Access Journals (Sweden)

    David A. Bateman

    2011-01-01

    Full Text Available The amyloid peptides, Aβ40 and Aβ42, are generated through endoproteolytic cleavage of the amyloid precursor protein. Here we have developed a model to investigate the interaction of living cells with various forms of aggregated Aβ40/42. After incubation at endosomal pH 6, we observed a variety of Aβ conformations after 3 (Aβ3, 24 (Aβ24, and 90 hours (Aβ90. Both Aβ4224 and Aβ4024 were observed to rapidly bind and internalize into differentiated PC12 cells, leading to accumulation in the lysosome. In contrast, Aβ40/4290 were both found to only weakly associate with cells, but were observed as the most aggregated using dynamic light scattering and thioflavin-T. Internalization of Aβ40/4224 was inhibited with treatment of monodansylcadaverine, an endocytosis inhibitor. These studies indicate that the ability of Aβ40/42 to bind and internalize into living cells increases with degree of aggregation until it reaches a maximum beyond which its ability to interact with cells diminishes drastically.

  2. Discovery and characterization of surface binding sites in polysaccharide converting enzymes

    DEFF Research Database (Denmark)

    Wilkens, Casper

    a generalization and may mask the significance of these sites in catalysis. GH62 α-L-arabinofuranosidase from Aspergillus nidulans FGSC A4 (AnAbf62A-m2,3) does not contain a CBM, however, AnAbf62A-m2,3 interacts strongly with wheat arabinoxylan, birchwood xylan and oatspelt xylan in affinity gel electrophoresis...... no detectable affinity for maltotriose and -tetraose, but clearly binds maltopentaose, -hexaose, -heptaose (M7) and β-cyclodextrin (β-CD) albeit with a measurable KD for only β-CD (0.94 ± 0.07 mM) and M7 (1.99 ± 0.10 mM). The plant phosphoglucan phosphatases Starch Excess 4 (SEX4) and Like Sex Four 2 (LSF2......) have different affinity for amylopectin, KD being 0.030 ± 0.002 and 1.59 ± 0.08 mg ml-1, respectively. Although corresponding KD values for β-CD of 1.69 ± 0.17 and 0.72 ± 0.06 mM are similar, SEX4 and LSF2 are suggested to have different binding modes and roles in starch dephosphorylation. While SEX4...

  3. Study of lysozyme mobility and binding free energy during adsorption on a graphene surface

    International Nuclear Information System (INIS)

    Nakano, C. Masato; Ma, Heng; Wei, Tao

    2015-01-01

    Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the other hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption

  4. Study of lysozyme mobility and binding free energy during adsorption on a graphene surface

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, C. Masato [Flintridge Preparatory School, La Canada Flintridge, California 91011 (United States); Ma, Heng; Wei, Tao, E-mail: twei@lamar.edu [Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)

    2015-04-13

    Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the other hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.

  5. Screening Effect of PEG on Avidin Binding to Liposome Surface Receptors

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Mouritsen, Ole G.; Jørgensen, Kent

    2000-01-01

    This study investigates the screening effect of poly(ethylene glycol)-phospholipids (PE-PEG) on the interaction of avidin with PEGylated liposomes containing surface-bound biotin ligands. The influence of grafting density and lipopolymer chain length is examined. A simple fluorescence assay....... Furthermore. it is found that none of the lipopolymers completely prevents avidin from reaching the surface-bound biotin ligands....

  6. Five tumor necrosis factor-inducible cell adhesion mechanisms on the surface of mouse endothelioma cells mediate the binding of leukocytes.

    Science.gov (United States)

    Hahne, M; Jäger, U; Isenmann, S; Hallmann, R; Vestweber, D

    1993-05-01

    We have distinguished five TNF-alpha-inducible cell adhesion mechanisms on microvasculature-derived endothelioma cells of the mouse which mediate the binding of different types of leukocytes. Three of these mechanisms could be identified as the mouse homologs of ICAM-1, VCAM-1, and E-selectin, of which the latter was defined by the novel mAb 21KC10. The fourth TNF-alpha-inducible cell adhesion mechanism was blocked by antibodies specific for mouse P-selectin. We have recently shown that TNF-alpha stimulates the synthesis of P-selectin in mouse endothelioma cells (A. Weller, S. Isenmann, D. Vestweber. 1992. J. Biol. Chem. 267:15176-15183). Here we show that this stimulation leads to maximal cell surface expression levels within 4 h after stimulation while the same endothelioma cells are also able to upregulate P-selectin at the cell surface within minutes after stimulation with PMA. Both effects are additive. The fifth TNF-induced cell adhesion mechanism is defined by mediating the binding to the mouse monocyte/macrophage cell line J774. This adhesion mechanism is not inhibited by antibodies against any of the other four CAMs; it functions well at 7 degrees C (in contrast to ICAM-1 and VCAM-1) and it is as active after 16 h of TNF induction as after 4 h (in contrast to E- and P-selectin). Furthermore, this new adhesion mechanism only functions on two of three endothelioma cell lines and is undetectable on the third, although ICAM-1, VCAM-1, E-selectin, and P-selectin could be demonstrated to function well on this cell line. Thus, in addition to the three known TNF-inducible CAMs, ICAM-1, VCAM-1, and E-selectin, also P-selectin and a fifth, as yet molecularly undefined cell adhesion mechanism, are TNF inducible at the cell surface of mouse endothelioma cells.

  7. Looped host defense peptide CLP-19 binds to microtubules and inhibits surface expression of TLR4 on mouse macrophages.

    Science.gov (United States)

    Li, Di; Liu, Yao; Yang, Ya; Chen, Jian-hong; Yang, Jie; Zou, Lin-yun; Tian, Zhi-qiang; Lv, Jun; Xia, Pei-yuan

    2013-06-15

    The looped host defense peptide CLP-19 is derived from a highly functional core region of the Limulus anti-LPS factor and exerts robust anti-LPS activity by directly interacting with LPS in the extracellular space. We previously showed that prophylactic administration of CLP-19 even 20 h prior to LPS challenge might significantly increase the survival rate in a lethal endotoxin shock mouse model. Such an effect may be associated with immune regulation of CLP-19. To investigate the underlying mechanisms, peptide affinity chromatography, immunofluorescence, and Western blotting procedures were used to identify α- and β-tubulin as direct and specific binding partners of CLP-19 in the mouse macrophage cell line RAW 264.7. Bioinformatic analysis using the AutoDock Vina molecular docking and PyMOL molecular graphics system predicted that CLP-19 would bind to the functional residues of both α- and β-tubulin and would be located within the groove of microtubules. Tubulin polymerization assay revealed that CLP-19 might induce polymerization of microtubules and prevent depolymerization. The immunoregulatory effect of CLP-19 involving microtubules was investigated by flow cytometry, immunofluorescence, and Western blotting, which showed that CLP-19 prophylactic treatment of RAW 264.7 cells significantly inhibited LPS-induced surface expression of TLR4. Taken together, these results suggest that CLP-19 binding to microtubules disrupts the dynamic equilibrium of microtubules, reducing the efficacy of microtubule-dependent vesicular transport that would otherwise translocate TLR4 from the endoplasmic reticulum to the cell surface.

  8. Co-expression of TIMP-1 and its cell surface binding partner CD63 in glioblastomas

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Sørensen, Mia D.; Matos, Ana L.S.A.

    2018-01-01

    , Iba1 did not appear to impact the prognostic value of CD63. A significant correlation was found between TIMP-1 and CD63, and the TIMP-1 and CD63 proteins were co-expressed at the cellular level and located in close molecular proximity, suggesting that TIMP-1 and CD63 could be co-players...... of this study was to assess CD63 expression in astrocytomas focusing on the prognostic potential of CD63 alone and in combination with TIMP-1. Methods: CD63 expression was investigated immunohistochemically in a cohort of 111 astrocytomas and correlated to tumor grade and overall survival by semi-quantitative...... scoring. CD63 expression in tumor-associated microglia/macrophages was examined by double-immunofluorescence with ionized calcium-binding adapter molecule 1 (Iba1). The association between CD63 and TIMP-1 was investigated using previously obtained TIMP-1 data from our astrocytoma cohort. Cellular co-expression...

  9. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    The urokinase plasminogen activator receptor (uPAR) is a membrane protein comprised of three extracellular domains. In order to study the importance of this domain organization in the ligand-binding process of the receptor we subjected a recombinant, soluble uPAR (suPAR) to specific proteolytic...

  10. Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces.

    Science.gov (United States)

    Castelino, Kenneth; Kannan, Balaji; Majumdar, Arun

    2005-03-01

    The surface grafting density of biomolecules is an important factor for quantitative assays using a wide range of biological sensors. We use a fluorescent measurement technique to characterize the immobilization density of thiolated probe DNA on gold and hybridization efficiency of target DNA as a function of oligonucleotide length and salt concentration. The results indicate the dominance of osmotic and hydration forces in different regimes of salt concentration, which was used to validate previous simulations and to optimize the performance of surface-stress based microcantilever biosensors. The difference in hybridization density between complementary and mismatched target sequences was also measured to understand the response of these sensors in base-pair mismatch detection experiments. Finally, two different techniques for immobilizing proteins on gold were considered and the surface densities obtained in both cases were compared.

  11. Developing a Novel Hydrogen Sponge with Ideal Binding Energy and High Surface Area for Practical Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Chung, T. C. Mike

    2018-04-19

    This Phase I (5 quarters) research project was to examine the validity of a new class of boron-containing polymer (B-polymer) frameworks, serving as the adsorbents for the practical onboard H2 storage applications. Three B-polymer frameworks were synthesized and investigated, which include B-poly(butyenylstyrene) (B-PBS) framework (A), B-poly(phenyldiacetyene) (B-PPDA) framework (B), and B-poly(phenyltriacetylene) (B-PPTA) framework (C). They are 2-D polymer structures with the repeating cyclic units that spontaneously form open morphology and the B-doped (p-type) π-electrons delocalized surfaces. The ideal B-polymer framework shall exhibit open micropores (pore size in the range of 1-1.5nm) with high surface area (>3000 m2/g), and the B-dopants in the conjugated framework shall provide high surface energy for interacting with H2 molecules (an ideal H2 binding energy in the range of 15-25 kJ/mol). The pore size distribution and H2 binding energy were investigated at both Penn State and NREL laboratories. So far, the experimental results show the successful synthesis of B-polymer frameworks with the relatively well-defined planar (2-D) structures. The intrinsically formed porous morphology exhibits a broad pore size distribution (in the range of 0.5-10 nm) with specific surface area (~1000 m2/g). The miss-alignment between 2-D layers may block some micropore channels and limit gas diffusion throughout the entire matrix. In addition, the 2-D planar conjugated structure may also allow free π-electrons delocalization throughout the framework, which significantly reduces the acidity of B-moieties (electron-deficiency).The resulting 2-D B-polymer frameworks only exhibit a small increase of H2 binding energy in the range of 8-9 KJ/mole (quite constant over the whole sorption range).

  12. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  13. An Extended Surface Loop on Toxoplasma gondii Apical Membrane Antigen 1 (AMA1 Governs Ligand Binding Selectivity.

    Directory of Open Access Journals (Sweden)

    Michelle L Parker

    Full Text Available Apicomplexan parasites are the causative agents of globally prevalent diseases including malaria and toxoplasmosis. These obligate intracellular pathogens have evolved a sophisticated host cell invasion strategy that relies on a parasite-host cell junction anchored by interactions between apical membrane antigens (AMAs on the parasite surface and rhoptry neck 2 (RON2 proteins discharged from the parasite and embedded in the host cell membrane. Key to formation of the AMA1-RON2 complex is displacement of an extended surface loop on AMA1 called the DII loop. While conformational flexibility of the DII loop is required to expose the mature RON2 binding groove, a definitive role of this substructure has not been elucidated. To establish a role of the DII loop in Toxoplasma gondii AMA1, we engineered a form of the protein where the mobile portion of the loop was replaced with a short Gly-Ser linker (TgAMA1ΔDIIloop. Isothermal titration calorimetry measurements with a panel of RON2 peptides revealed an influential role for the DII loop in governing selectivity. Most notably, an Eimeria tenella RON2 (EtRON2 peptide that showed only weak binding to TgAMA1 bound with high affinity to TgAMA1ΔDIIloop. To define the molecular basis for the differential binding, we determined the crystal structure of TgAMA1ΔDIIloop in complex with the EtRON2 peptide. When analyzed in the context of existing AMA1-RON2 structures, spatially distinct anchor points in the AMA1 groove were identified that, when engaged, appear to provide the necessary traction to outcompete the DII loop. Collectively, these data support a model where the AMA1 DII loop serves as a structural gatekeeper to selectively filter out ligands otherwise capable of binding with high affinity in the AMA1 apical groove. These data also highlight the importance of considering the functional implications of the DII loop in the ongoing development of therapeutic intervention strategies targeting the AMA1-RON

  14. New strategy for enhancement of microbial viability in simulated gastric conditions based on display of starch-binding domain on cell surface.

    Science.gov (United States)

    Tarahomjoo, Shirin; Katakura, Yoshio; Shioya, Suteaki

    2008-05-01

    The C-terminal region of the peptidoglycan hydrolase (CPH) of Lactococcus lactis IL1403 fused to the linker region and the starch-binding domain (SBD) of the *-amylase of Streptococcus bovis 148 was produced intracellularly in Escherichia coli. The fusion protein (CPH-SBD) was able to bind to the cell surface of Lactobacillus casei NRRL B-441 and to corn starch. Therefore, adhesion of cells to corn starch was mediated by the fusion protein. At a cell density of 10(9) cfu/ml and a starch concentration of 5 mg/ml, CPH-SBD-displaying L. casei cells aggregated with corn starch, whereas the free cells of L. casei did not form any aggregates with corn starch. After incubation in simulated gastric juice (pH 3.0, 1 h), the survival percentages of free cells, amylose-coated free cells, and free cells mixed with corn starch were 0.074%, 7.2%, and 3.1% respectively. When CPH-SBD-displaying bacteria aggregated with corn starch, their survival percentage was 8% higher than that of free cells mixed with corn starch. The survival of the amylose-coated CPH-SBD-displaying L. casei cells was comparable to that of amylose-coated free cells, whereas the survival percentage of amylose-coated aggregates of CPH-SBD-displaying bacteria with corn starch was 28% higher than that of amylose-coated mixture of free cells with corn starch. These results demonstrate the potential usefulness of the cell-surface display technique for enhancement of the delivery of viable microorganisms to the intestinal tract.

  15. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J. [Colorado School of Mines, Golden, CO (United States); Berry, G.; Rockett, A. [Univ. of Illinois, Urbana-Champaign, IL (United States)] [and others

    1997-04-01

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe{sub 2}, one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies.

  16. Polymer binding to carbon nanotubes in aqueous dispersions: residence time on the nanotube surface as obtained by NMR diffusometry.

    Science.gov (United States)

    Frise, Anton E; Pagès, Guilhem; Shtein, Michael; Pri Bar, Ilan; Regev, Oren; Furó, István

    2012-03-08

    The binding of block copolymer Pluronic F-127 in aqueous dispersions of single- (SWCNT) and multiwalled (MWCNT) carbon nanotubes has been studied by pulsed-field-gradient (PFG) (1)H NMR spectroscopy. We show that a major fraction of polymers exist as a free species while a minor fraction is bound to the carbon nanotubes (CNT). The polymers exchange between these two states with residence times on the nanotube surface of 24 ± 5 ms for SWCNT and of 54 ± 11 ms for MWCNT. The CNT concentration in the solution was determined by improved thermal gravimetric analysis (TGA) indicating that the concentration of SWCNT dispersed by F-127 was significantly higher than that for MWCNT. For SWCNT, the area per adsorbed Pluronic F-127 molecule is estimated to be about 40 nm(2).

  17. Antibodies against amino acids 1-15 of tumor necrosis factor block its binding to cell-surface receptor.

    OpenAIRE

    Socher, S H; Riemen, M W; Martinez, D; Friedman, A; Tai, J; Quintero, J C; Garsky, V; Oliff, A

    1987-01-01

    Human tumor necrosis factor (hTNF) mediates a variety of biologic activities, which are dependent on the attachment of hTNF to cell-surface receptors. To identify regions of the hTNF protein involved in binding hTNF to its receptor, we prepared five synthetic peptides [hTNF-(1-15), hTNF-(1-31), hTNF-(65-79), hTNF-(98-111), and hTNF-(124-141)] and two hydroxylamine cleavage fragments [hTNF-(1-39) and hTNF-(40-157)] of hTNF. The hTNF-synthetic peptides and hTNF fragments were tested in hTNF rec...

  18. Micrometer-sized TPM emulsion droplets with surface-mobile binding groups

    Science.gov (United States)

    van der Wel, Casper; van de Stolpe, Guido L.; Verweij, Ruben W.; Kraft, Daniela J.

    2018-03-01

    Colloids coated with lipid membranes have been widely employed for fundamental studies of lipid membrane processes, biotechnological applications such as drug delivery and biosensing, and more recently, for self-assembly. The latter has been made possible by inserting DNA oligomers with covalently linked hydrophobic anchors into the membrane. The lateral mobility of the DNA linkers on micrometer-sized droplets and solid particles has opened the door to creating structures with unprecedented structural flexibility. Here, we investigate micro-emulsions of TPM (3-(trimethoxysilyl)propyl methacrylate) as a platform for lipid monolayers and further functionalization with proteins and DNA oligonucleotides. TPM droplets can be produced with a narrow size distribution and are polymerizable, thus providing supports for model lipid membranes with controlled size and curvature. With fluorescence recovery after photobleaching, we observed that droplet-attached lipids, NeutrAvidin proteins, as well as DNA oligonucleotides all show mobility on the surface. We explored the assembly of micron-sized particles on TPM-droplets by exploiting either avidin-biotin interactions or double-stranded DNA with complementary single-stranded end groups. While the single molecules are mobile, the particles that are attached to them are not. We propose that this is caused by the heterogeneous nature of emulsified TPM, which forms an oligomer network that limits the collective motion of linkers, but allows the surface mobility of individual molecules.

  19. A Whole-Cell Surface Plasmon Resonance Sensor Based on a Leucine Auxotroph of Escherichia coli Displaying a Gold-Binding Protein: Usefulness for Diagnosis of Maple Syrup Urine Disease.

    Science.gov (United States)

    Woo, Min-Ah; Park, Jung Hun; Cho, Daeyeon; Sim, Sang Jun; Kim, Moon Il; Park, Hyun Gyu

    2016-03-01

    We developed a whole-cell surface plasmon resonance (SPR) sensor based on a leucine auxotroph of Escherichia coli displaying a gold-binding protein (GBP) in response to cell growth and applied this sensor to the diagnosis of maple syrup urine disease, which is represented by the elevated leucine level in blood. The leucine auxotroph was genetically engineered to grow displaying GBP in a proportion to the concentration of target amino acid leucine. The GBP expressed on the surface of the auxotrophs directly bound to the golden surface of an SPR chip without the need for any additional treatment or reagents, which consequently produced SPR signals used to determine leucine levels in a test sample. Gold nanoparticles (GNPs) were further applied to the SPR system, which significantly enhanced the signal intensity up to 10-fold by specifically binding to GBP expressed on the cell surface. Finally, the diagnostic utility of our system was demonstrated by its employment in reliably determining different statuses of maple syrup urine disease based on a known cutoff level of leucine. This new approach based on an amino acid-auxotrophic E. coli strain expressing a GBP that binds to an SPR sensor holds great promise for detection of other metabolic diseases of newborn babies including homocystinuria and phenylketonuria, which are also associated with abnormal levels of amino acids.

  20. Protein-A-containing Staphylococcus aureus as an immunoglobulin-binding reagent in radioimmunoassay and in a non-radioactive surface immunoassay

    International Nuclear Information System (INIS)

    Jonsson, S.

    1978-01-01

    The paper summarizes recent developments in the use of protein-A-containing staphylococci as an immunoglobulin-binding reagent in various types of radioimmunoassay and some related areas, particularly the staphylococcal surface immunoassay. The paper also presents a new process for the large-scale production of a freeze-dried preparation of the immunoglobulin-binding, killed staphylococci which thereby gain a much improved suspension stability. (author)

  1. The Anti-sigma Factor RsiV Is a Bacterial Receptor for Lysozyme: Co-crystal Structure Determination and Demonstration That Binding of Lysozyme to RsiV Is Required for σV Activation.

    Directory of Open Access Journals (Sweden)

    Jessica L Hastie

    2016-09-01

    Full Text Available σ factors provide RNA polymerase with promoter specificity in bacteria. Some σ factors require activation in order to interact with RNA polymerase and transcribe target genes. The Extra-Cytoplasmic Function (ECF σ factor, σV, is encoded by several Gram-positive bacteria and is specifically activated by lysozyme. This activation requires the proteolytic destruction of the anti-σ factor RsiV via a process of regulated intramembrane proteolysis (RIP. In many cases proteases that cleave at site-1 are thought to directly sense a signal and initiate the RIP process. We previously suggested binding of lysozyme to RsiV initiated the proteolytic destruction of RsiV and activation of σV. Here we determined the X-ray crystal structure of the RsiV-lysozyme complex at 2.3 Å which revealed that RsiV and lysozyme make extensive contacts. We constructed RsiV mutants with altered abilities to bind lysozyme. We find that mutants that are unable to bind lysozyme block site-1 cleavage of RsiV and σV activation in response to lysozyme. Taken together these data demonstrate that RsiV is a receptor for lysozyme and binding of RsiV to lysozyme is required for σV activation. In addition, the co-structure revealed that RsiV binds to the lysozyme active site pocket. We provide evidence that in addition to acting as a sensor for the presence of lysozyme, RsiV also inhibits lysozyme activity. Thus we have demonstrated that RsiV is a protein with multiple functions. RsiV inhibits σV activity in the absence of lysozyme, RsiV binds lysozyme triggering σV activation and RsiV inhibits the enzymatic activity of lysozyme.

  2. The Anti-sigma Factor RsiV Is a Bacterial Receptor for Lysozyme: Co-crystal Structure Determination and Demonstration That Binding of Lysozyme to RsiV Is Required for σV Activation.

    Science.gov (United States)

    Hastie, Jessica L; Williams, Kyle B; Bohr, Lindsey L; Houtman, Jon C; Gakhar, Lokesh; Ellermeier, Craig D

    2016-09-01

    σ factors provide RNA polymerase with promoter specificity in bacteria. Some σ factors require activation in order to interact with RNA polymerase and transcribe target genes. The Extra-Cytoplasmic Function (ECF) σ factor, σV, is encoded by several Gram-positive bacteria and is specifically activated by lysozyme. This activation requires the proteolytic destruction of the anti-σ factor RsiV via a process of regulated intramembrane proteolysis (RIP). In many cases proteases that cleave at site-1 are thought to directly sense a signal and initiate the RIP process. We previously suggested binding of lysozyme to RsiV initiated the proteolytic destruction of RsiV and activation of σV. Here we determined the X-ray crystal structure of the RsiV-lysozyme complex at 2.3 Å which revealed that RsiV and lysozyme make extensive contacts. We constructed RsiV mutants with altered abilities to bind lysozyme. We find that mutants that are unable to bind lysozyme block site-1 cleavage of RsiV and σV activation in response to lysozyme. Taken together these data demonstrate that RsiV is a receptor for lysozyme and binding of RsiV to lysozyme is required for σV activation. In addition, the co-structure revealed that RsiV binds to the lysozyme active site pocket. We provide evidence that in addition to acting as a sensor for the presence of lysozyme, RsiV also inhibits lysozyme activity. Thus we have demonstrated that RsiV is a protein with multiple functions. RsiV inhibits σV activity in the absence of lysozyme, RsiV binds lysozyme triggering σV activation and RsiV inhibits the enzymatic activity of lysozyme.

  3. Reproducing kernel potential energy surfaces in biomolecular simulations: Nitric oxide binding to myoglobin

    International Nuclear Information System (INIS)

    Soloviov, Maksym; Meuwly, Markus

    2015-01-01

    Multidimensional potential energy surfaces based on reproducing kernel-interpolation are employed to explore the energetics and dynamics of free and bound nitric oxide in myoglobin (Mb). Combining a force field description for the majority of degrees of freedom and the higher-accuracy representation for the NO ligand and the Fe out-of-plane motion allows for a simulation approach akin to a mixed quantum mechanics/molecular mechanics treatment. However, the kernel-representation can be evaluated at conventional force-field speed. With the explicit inclusion of the Fe-out-of-plane (Fe-oop) coordinate, the dynamics and structural equilibrium after photodissociation of the ligand are correctly described compared to experiment. Experimentally, the Fe-oop coordinate plays an important role for the ligand dynamics. This is also found here where the isomerization dynamics between the Fe–ON and Fe–NO state is significantly affected whether or not this co-ordinate is explicitly included. Although the Fe–ON conformation is metastable when considering only the bound 2 A state, it may disappear once the 4 A state is included. This explains the absence of the Fe–ON state in previous experimental investigations of MbNO

  4. Covalent and Oriented Surface Immobilization of Antibody Using Photoactivatable Antibody Fc-Binding Protein Expressed in Escherichia coli.

    Science.gov (United States)

    Lee, Yeolin; Jeong, Jiyun; Lee, Gabi; Moon, Jeong Hee; Lee, Myung Kyu

    2016-10-04

    Fc-specific antibody binding proteins (FcBPs) with the minimal domain of protein G are widely used for immobilization of well-oriented antibodies onto solid surfaces, but the noncovalently bound antibodies to FcBPs are unstable in sera containing large amounts of antibodies. Here we report novel photoactivatable FcBPs with photomethionine (pMet) expressed in E. coli, which induce Fc-specific photo-cross-linking with antibodies upon UV irradiation. Unfortunately, pMet did not support protein expression in the native E. coli system, and therefore we also developed an engineered methionyl tRNA synthetase (MRS5m). Coexpression of MRS5m proteins successfully induced photoactivatable FcBP overexpression in methionine-auxotroph E. coli cells. The photoactivatable FcBPs could be easily immobilized on beads and slides via their N-terminal cysteine residues and 6xHis tag. The antibodies photo-cross-linked onto the photoactivatable FcBP-beads were resistant from serum-antibody mediated dissociation and efficiently captured antigens in human sera. Furthermore, photo-cross-linked antibody arrays prepared using this system allowed sensitive detection of antigens in human sera by sandwich immunoassay. The photoactivatable FcBPs will be widely applicable for well-oriented antibody immobilization on various surfaces of microfluidic chips, glass slides, and nanobeads, which are required for development of sensitive immunosensors.

  5. The meningococcal vaccine candidate neisserial surface protein A (NspA binds to factor H and enhances meningococcal resistance to complement.

    Directory of Open Access Journals (Sweden)

    Lisa A Lewis

    2010-07-01

    Full Text Available Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH to fH-binding protein (fHbp is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a approximately 17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA, a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep I chain of lipooligosaccharide (LOS, or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6-7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components.

  6. Binding and dissociation kinetics using fractals: an analysis of electrostatic effects and randomly coupled and oriented coupled receptors on biosensor surfaces.

    Science.gov (United States)

    Butala, Harshala D; Sadana, Ajit

    2004-03-15

    A fractal analysis is used to analyze the influence of: (a) electrostatic interactions on binding and dissociation rate coefficients for antibodies HH8, HH10, and HH26 in solution to hen egg-white lysozyme (HEL) immobilized on a sensor chip surface [Biophys. J. 83 (2002) 2946]; and (b) the binding and dissociation of recombinant Fab in solution to random NHS-coupled Cys-HEL and oriented thiol-coupled Cys-HEL immobilized on a sensor chip surface [Methods 20 (2000) 310]. Single- and dual-fractal models were employed to fit the data. Values of the binding and the dissociation rate coefficient(s) and the fractal dimensions were obtained from a regression analysis provided by Corel Quattro Pro 8.0 (Corel Corporation Limited, Ottawa, Canada. 1997). The binding rate coefficients are quite sensitive to the degree of heterogeneity on the sensor chip surface. It is of interest to compare the results obtained by the fractal analysis with that of the original analysis [Biophys. J. 83 (2002) 2946]. For example, as one goes from the binding of 21 nM HH10/HEL to the binding of 640 nM HH10/HEL(K97A), Sinha et al. [Biophys. J. 83 (2002) 29461 indicate that the enhancement of diffusional encounter rates may be due to 'electrostatic steering' (a long-range interaction). Our analysis indicates that there is an increase in the value of the fractal dimension, Df1 by a factor of 1.12 from a value of 2.133-2.385. This increase in the degree of heterogeneity on the surface leads to an increase in the binding rate coefficient, k1 by a factor of 1.59 from 12.92 to 20.57. The fractal analysis of binding and dissociation of recombinant Fab in solution to random NHS-coupled Cys-HEL and oriented thiol-coupled Cys-HEL immobilized on a sensor chip [Methods 20 (2000) 310] surface are consistent with the degree of heterogeneity present on the sensor chip surface for the random and the oriented case. As expected, the random case will exhibit a higher degree of heterogeneity than the oriented case

  7. Fluorescence Techniques for Measuring Kinetics of Specific Binding of Hormone to Cell Surface Receptors.

    Science.gov (United States)

    Hellen, Edward Herbert

    This thesis presents theoretical calculations and technical advances relevant to total internal reflection/ fluorescence photobleaching recovery (tir/fpr), and results from experiments using tir/fpr to measure the dissociation rate constant of epidermal growth factor (egf) hormone interacting with its receptor molecule on A431 cells. The classical electromagnetic calculations describe fluorescence emission from fluorophores near an interface (possibly metal coated). It is well known that an interface alters the emission properties of nearby fluorophores. Most previous classical calculations model the fluorophore as a fixed-amplitude dipole oscillator. However, for fluorophores under steady illumination, a fixed-power dipole is more appropriate. This modification corresponds to normalizing the fixed-amplitude dipole's intensity by its total dissipated power. The results for the fixed-power model differ nontrivially from the fixed-amplitude model. The observation-angle -dependent intensity as a function of the fluorophore's orientation and distance from the surface is calculated. General expressions are derived for the emission power as observed through a circular-aperture collection system located on either side of the interface. A system for maintaining long-term focus of samples under high-magnification quantitative observation in an epi-illumination optical microscope is described. Focus -dependent changes in the backreflection of an off-axis HeNe laser generate negative feedback signals which drive a dc motor coupled to the fine-focus knob of the microscope. This system has several advantages: (1) it is compatible and nonobstructive with concurrent data acqusition of sample intensities; (2) it requires no alteration of the sample, stage, or objective; (3) it monitors the position of sample areas very near to those under observation; (4) it is inexpensive. The system can hold a glass coverslip sample to within 0.5 μm of its preset focus position. Prismless tir

  8. Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Seo, E.S.; Dilokpimol, Adiphol

    2008-01-01

    Germinating barley seeds contain multiple forms of alpha-amylase, which are subject to both differential gene expression and differential degradation as part of the repertoire of starch-degrading enzymes. The alpha-amylases are endo-acting and possess a long substrate binding cleft with a charact...

  9. Chemical moieties and interactions involved in the binding of zearalenone to the surface of Lactobacillus rhamnosus strains GG.

    Science.gov (United States)

    El-Nezami, Hani; Polychronaki, Nektaria; Lee, Yuan Kun; Haskard, Carolyn; Juvonen, Risto; Salminen, Seppo; Mykkänen, Hannu

    2004-07-14

    Viable, heat-and acid-killed Lactobacillus rhamnosus strain GG (LGG) has shown high binding properties with zearalenone (ZEN). To identify the type of chemical moieties and interactions involved in binding with the ZEN, LGG was subjected to different chemical and enzymatical treatments, prior to the binding experiments. Pretreating the viable, heat- and acid-killed bacteria with m-periodate significantly decreased ZEN binding, suggesting that ZEN binds predominantly to carbohydrate components. Pretreatment with Pronase E had no effect on the ability of viable cells to bind ZEN, however, a reduction in the binding of ZEN by heat- and acid-killed cells, suggesting that the new binding sites exposed by heat or acid are proteins in nature. Pretreatment with urea also decreased binding, suggesting that hydrophobic interactions play a role in ZEN binding. The binding of ZEN in concentrations ranging from 0.79 to 62.82 microM and its subsequent dissociation by repetitive aqueous washes was also studied. The binding sites of the bacteria were not saturated by the maximum ZEN concentration studied.

  10. Vitamin A transport and the transmembrane pore in the cell-surface receptor for plasma retinol binding protein.

    Directory of Open Access Journals (Sweden)

    Ming Zhong

    Full Text Available Vitamin A and its derivatives (retinoids play diverse and crucial functions from embryogenesis to adulthood and are used as therapeutic agents in human medicine for eye and skin diseases, infections and cancer. Plasma retinol binding protein (RBP is the principal and specific vitamin A carrier in the blood and binds vitamin A at 1:1 ratio. STRA6 is the high-affinity membrane receptor for RBP and mediates cellular vitamin A uptake. STRA6 null mice have severely depleted vitamin A reserves for vision and consequently have vision loss, even under vitamin A sufficient conditions. STRA6 null humans have a wide range of severe pathological phenotypes in many organs including the eye, brain, heart and lung. Known membrane transport mechanisms involve transmembrane pores that regulate the transport of the substrate (e.g., the gating of ion channels. STRA6 represents a new type of membrane receptor. How this receptor interacts with its transport substrate vitamin A and the functions of its nine transmembrane domains are still completely unknown. These questions are critical to understanding the molecular basis of STRA6's activities and its regulation. We employ acute chemical modification to introduce chemical side chains to STRA6 in a site-specific manner. We found that modifications with specific chemicals at specific positions in or near the transmembrane domains of this receptor can almost completely suppress its vitamin A transport activity. These experiments provide the first evidence for the existence of a transmembrane pore, analogous to the pore of ion channels, for this new type of cell-surface receptor.

  11. An investigation of drug binding ability of a surface active ionic liquid: micellization, electrochemical, and spectroscopic studies.

    Science.gov (United States)

    Mahajan, Suruchi; Sharma, Rabia; Mahajan, Rakesh Kumar

    2012-12-18

    Keeping in view the use of surfactants in drug delivery, the interactions of surface active ionic liquids, such as 1-tetradecyl-3-methylimidazolium bromide (C(14)mimBr), with drugs, viz., dopamine hydrochloride (DH) and acetylcholine chloride (AC), have been studied, and the results are further compared with that of the structurally similar conventional cationic surfactant tetradecyltrimethylammonium bromide (TTAB). The micellization and interfacial behavior of C(14)mimBr and TTAB, in the presence of DH and AC, has been investigated from conductivity and surface tension measurements. Various micellar and adsorption characteristics for these drug-surfactant systems (DH/AC + C(14)mimBr/TTAB) have been investigated, indicating favorable interactions between them. The more detailed information regarding the nature of interactions between C(14)mimBr/TTAB and DH/AC is obtained from cyclic voltammetry (CV) and (1)H NMR measurements. CV measurements have been employed to evaluate the binding constant (K) and the Gibbs free energy change (ΔG) for these drug-surfactant complexes. These measurements indicate the existence of cation-π as well as π-π interactions between drugs and surfactants. A detailed analysis of chemical shifts of protons of drug molecules (DH and AC) in the presence of C(14)mimBr and TTAB has been done by (1)H NMR. The results obtained from (1)H NMR are in agreement with those of CV measurements. (1)H NMR studies along with the conductivity and surface tension measurements help in predicting the possible location of adsorption of these drug molecules in C(14)mimBr and TTAB micelles.

  12. ΔF508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter.

    Science.gov (United States)

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph-Anthony; Roldan, Ariel; Finkbeiner, Walter E; Haggie, Peter M; Lukacs, Gergely L; Verkman, Alan S

    2018-03-01

    The most common cystic fibrosis-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine at residue 508 (∆F508). The ∆F508 mutation impairs folding of nucleotide binding domain 1 (NBD1) and interfacial interactions of NBD1 and the membrane spanning domains. Here, we report a domain-targeted screen to identify ∆F508-CFTR modulators that act on NBD1. A biochemical screen for ΔF508-NBD1 cell surface expression was done in Madin-Darby canine kidney cells expressing a chimeric reporter consisting of ΔF508-NBD1, the CD4 transmembrane domain, and an extracellular horseradish peroxidase (HRP) reporter. Using a luminescence readout of HRP activity, the screen was robust with a Z' factor of 0.7. The screening of ~20,000 synthetic small molecules allowed the identification of compounds from four chemical classes that increased ∆F508-NBD1 cell surface expression by up to 4-fold; for comparison, a 12-fold increased cell surface expression was found for a wild-type NBD1 chimera. While the compounds were inactive as correctors of full-length ΔF508-CFTR, several carboxamide-benzothiophenes had potentiator activity with low micromolar EC 50 . Interestingly, the potentiators did not activate G551D or wild-type CFTR. Our results provide a proof of concept for a cell-based NBD1 domain screen to identify ∆F508-CFTR modulators that target the NBD1 domain.

  13. Positively-charged semi-tunnel is a structural and surface characteristic of polyphosphate-binding proteins: an in-silico study.

    Directory of Open Access Journals (Sweden)

    Zheng Zachory Wei

    Full Text Available Phosphate is essential for all major life processes, especially energy metabolism and signal transduction. A linear phosphate polymer, polyphosphate (polyP, linked by high-energy phosphoanhydride bonds, can interact with various proteins, playing important roles as an energy source and regulatory factor. However, polyP-binding structures are largely unknown. Here we proposed a putative polyP binding site, a positively-charged semi-tunnel (PCST, identified by surface electrostatics analyses in polyP kinases (PPKs and many other polyP-related proteins. We found that the PCSTs in varied proteins were folded in different secondary structure compositions. Molecular docking calculations revealed a significant value for binding affinity to polyP in PCST-containing proteins. Utilizing the PCST identified in the β subunit of PPK3, we predicted the potential polyP-binding domain of PPK3. The discovery of this feature facilitates future searches for polyP-binding proteins and discovery of the mechanisms for polyP-binding activities. This should greatly enhance the understanding of the many physiological functions of protein-bound polyP and the involvement of polyP and polyP-binding proteins in various human diseases.

  14. Free surfaces recast superconductivity in few-monolayer MgB2: Combined first-principles and ARPES demonstration.

    Science.gov (United States)

    Bekaert, J; Bignardi, L; Aperis, A; van Abswoude, P; Mattevi, C; Gorovikov, S; Petaccia, L; Goldoni, A; Partoens, B; Oppeneer, P M; Peeters, F M; Milošević, M V; Rudolf, P; Cepek, C

    2017-10-31

    Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB 2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like σ- and π-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as ~30 K for merely six monolayers thick MgB 2 . These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.

  15. A new generation of starch products as excipient in pharmaceutical tablets .1. Preparation and binding properties of high surface area potato starch products

    NARCIS (Netherlands)

    Wierik, GHPT; ArendsScholte, AW; Eissens, AC; Lerk, CF

    1996-01-01

    A new pharmaceutical excipient with a high binding capacity was prepared from potato starch by enzymatic degradation, followed by suitable dehydration of the precipitated and filtered retrograded starch to produce high specific surface area products. Thermal dehydration methods like drying at room

  16. Two Secondary Carbohydrate Binding Sites on the Surface of Barley alpha-Amylase 1 Have Distinct Functions and Display Synergy in Hydrolysis of Starch Granules

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Bozonnet, Sophie; Seo, Eun-Seong

    2009-01-01

    Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)8-barrel and the noncatalytic C-terminal domain, respective...

  17. Impact of Surface Water Layers on Protein--Ligand Binding: How Well Are Experimental Data Reproduced by Molecular Dynamics Simulations in a Thermolysin Test Case?

    Science.gov (United States)

    Betz, Michael; Wulsdorf, Tobias; Krimmer, Stefan G; Klebe, Gerhard

    2016-01-25

    Drug binding involves changes of the local water structure around proteins including water rearrangements across surface-solvation layers around protein and ligand portions exposed to the newly formed complex surface. For a series of thermolysin-binding phosphonamidates, we discovered that variations of the partly exposed P2'-substituents modulate binding affinity up to 10 kJ mol(-1) with even larger enthalpy/entropy partitioning of the binding signature. The observed profiles cannot be completely explained by desolvation effects. Instead, the quality and completeness of the surface water network wrapping around the formed complexes provide an explanation for the observed structure-activity relationship. We used molecular dynamics to compute surface water networks and predict solvation sites around the complexes. A fairly good correspondence with experimental difference electron densities in high-resolution crystal structures is achieved; in detail some problems with the potentials were discovered. Charge-assisted contacts to waters appeared as exaggerated by AMBER, and stabilizing contributions of water-to-methyl contacts were underestimated.

  18. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival.

    Science.gov (United States)

    Caine, Jennifer A; Lin, Yi-Pin; Kessler, Julie R; Sato, Hiromi; Leong, John M; Coburn, Jenifer

    2017-12-01

    Borrelia burgdorferi (Bb) is the causative agent of Lyme disease in the United States, a disease that can result in carditis, and chronic and debilitating arthritis and/or neurologic symptoms if left untreated. Bb survives in the midgut of the Ixodes scapularis tick, or within tissues of immunocompetent hosts. In the early stages of infection, the bacteria are present in the bloodstream where they must resist clearance by the innate immune system of the host. We have found a novel role for outer surface protein C (OspC) from B. burgdorferi and B. garinii in interactions with the complement component C4b and bloodstream survival in vivo. Our data show that OspC inhibits the classical and lectin complement pathways and competes with complement protein C2 for C4b binding. Resistance to complement is important for maintenance of the lifecycle of Bb, enabling survival of the pathogen within the host as well as in the midgut of a feeding tick when ospC expression is induced. © 2017 John Wiley & Sons Ltd.

  19. CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface.

    Science.gov (United States)

    Martínez-Muñoz, Laura; Barroso, Rubén; Dyrhaug, Sunniva Y; Navarro, Gemma; Lucas, Pilar; Soriano, Silvia F; Vega, Beatriz; Costas, Coloma; Muñoz-Fernández, M Ángeles; Santiago, César; Rodríguez Frade, José Miguel; Franco, Rafael; Mellado, Mario

    2014-05-13

    CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4(+) T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention.

  20. The roles of protein disulphide isomerase family A, member 3 (ERp57) and surface thiol/disulphide exchange in human spermatozoa-zona pellucida binding.

    Science.gov (United States)

    Wong, Chi-Wai; Lam, Kevin K W; Lee, Cheuk-Lun; Yeung, William S B; Zhao, Wei E; Ho, Pak-Chung; Ou, Jian-Ping; Chiu, Philip C N

    2017-04-01

    Are multimeric sperm plasma membrane protein complexes, ERp57 and sperm surface thiol content involved in human spermatozoa-zona pellucida (ZP) interaction? ERp57 is a component of a multimeric spermatozoa-ZP receptor complex involved in regulation of human spermatozoa-ZP binding via up-regulation of sperm surface thiol content. A spermatozoon acquires its fertilization capacity within the female reproductive tract by capacitation. Spermatozoa-ZP receptor is suggested to be a composite structure that is assembled into a functional complex during capacitation. Sperm surface thiol content is elevated during capacitation. ERp57 is a protein disulphide isomerase that modulates the thiol-disulphide status of proteins. The binding ability and components of protein complexes in extracted membrane protein fractions of spermatozoa were studied. The roles of capacitation, thiol-disulphide reagent treatments and ERp57 on sperm functions and sperm surface thiol content were assessed. Spermatozoa were obtained from semen samples from normozoospermic men. Human oocytes were obtained from an assisted reproduction programme. Blue native polyacrylamide gel electrophoresis, western ligand blotting and mass spectrometry were used to identify the components of solubilized ZP/ZP3-binding complexes. The localization and expression of sperm surface thiol and ERp57 were studied by immunostaining and sperm surface protein biotinylation followed by western blotting. Sperm functions were assessed by standard assays. Several ZP-binding complexes were isolated from the cell membrane of capacitated spermatozoa. ERp57 was a component of one of these complexes. Capacitation significantly increased the sperm surface thiol content, acrosomal thiol distribution and ERp57 expression on sperm surface. Sperm surface thiol and ERp57 immunoreactivity were localized to the acrosomal region of spermatozoa, a region responsible for ZP-binding. Up-regulation of the surface thiol content or ERp57 surface

  1. European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters

    NARCIS (Netherlands)

    Tousova, Zuzana; Oswald, Peter; Slobodnik, Jaroslav; Blaha, Ludek; Muz, Melis; Hu, Meng; Brack, Werner; Krauss, Martin; Di Paolo, Carolina; Tarcai, Zsolt; Seiler, Thomas Benjamin; Hollert, Henner; Koprivica, Sanja; Ahel, Marijan; Schollée, Jennifer E.; Hollender, Juliane; Suter, Marc J.F.; Hidasi, Anita O.; Schirmer, Kristin; Sonavane, Manoj; Ait-Aissa, Selim; Creusot, Nicolas; Brion, Francois; Froment, Jean; Almeida, Ana Catarina; Thomas, Kevin; Tollefsen, Knut Erik; Tufi, Sara; Ouyang, Xiyu; Leonards, Pim; Lamoree, Marja; Torrens, Victoria Osorio; Kolkman, Annemieke; Schriks, Merijn; Spirhanzlova, Petra; Tindall, Andrew; Schulze, Tobias

    2017-01-01

    Growing concern about the adverse environmental and human health effects of a wide range of micropollutants requires the development of novel tools and approaches to enable holistic monitoring of their occurrence, fate and effects in the aquatic environment. A European-wide demonstration program

  2. Further structural insights into the binding of complement factor H by complement regulator-acquiring surface protein 1 (CspA) of Borrelia burgdorferi

    International Nuclear Information System (INIS)

    Caesar, Joseph J. E.; Wallich, Reinhard; Kraiczy, Peter; Zipfel, Peter F.; Lea, Susan M.

    2013-01-01

    B. burgdorferi binds complement factor H using a dimeric surface protein, CspA (BbCRASP-1). Presented here is a new structure of CspA that suggests that there is a degree of flexibility between subunits which may have implications for complement regulator binding. Borrelia burgdorferi has evolved many mechanisms of evading the different immune systems across its range of reservoir hosts, including the capture and presentation of host complement regulators factor H and factor H-like protein-1 (FHL-1). Acquisition is mediated by a family of complement regulator-acquiring surface proteins (CRASPs), of which the atomic structure of CspA (BbCRASP-1) is known and shows the formation of a homodimeric species which is required for binding. Mutagenesis studies have mapped a putative factor H binding site to a cleft between the two subunits. Presented here is a new atomic structure of CspA which shows a degree of flexibility between the subunits which may be critical for factor H scavenging by increasing access to the binding interface and allows the possibility that the assembly can clamp around the bound complement regulators

  3. Residues essential for Panton-Valentine leukocidin S component binding to its cell receptor suggest both plasticity and adaptability in its interaction surface.

    Directory of Open Access Journals (Sweden)

    Benoit-Joseph Laventie

    Full Text Available Panton-Valentine leukocidin (PVL, a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kd∼10(-10 M compared to the class F component of PVL, LukF-PV (Kd∼10(-9 M. Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV.

  4. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait

    Science.gov (United States)

    Martini, Séverine; Haddock, Steven H. D.

    2017-04-01

    The capability of animals to emit light, called bioluminescence, is considered to be a major factor in ecological interactions. Because it occurs across diverse taxa, measurements of bioluminescence can be powerful to detect and quantify organisms in the ocean. In this study, 17 years of video observations were recorded by remotely operated vehicles during surveys off the California Coast, from the surface down to 3,900 m depth. More than 350,000 observations are classified for their bioluminescence capability based on literature descriptions. The organisms represented 553 phylogenetic concepts (species, genera or families, at the most precise taxonomic level defined from the images), distributed within 13 broader taxonomic categories. The importance of bioluminescent marine taxa is highlighted in the water column, as we showed that 76% of the observed individuals have bioluminescence capability. More than 97% of Cnidarians were bioluminescent, and 9 of the 13 taxonomic categories were found to be bioluminescent dominant. The percentage of bioluminescent animals is remarkably uniform over depth. Moreover, the proportion of bioluminescent and non-bioluminescent animals within taxonomic groups changes with depth for Ctenophora, Scyphozoa, Chaetognatha, and Crustacea. Given these results, bioluminescence has to be considered an important ecological trait from the surface to the deep-sea.

  5. NMR identification of the binding surfaces involved in the Salmonella and Shigella Type III secretion tip-translocon protein-protein interactions.

    Science.gov (United States)

    McShan, Andrew C; Kaur, Kawaljit; Chatterjee, Srirupa; Knight, Kevin M; De Guzman, Roberto N

    2016-08-01

    The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097-1107. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein NhbA, the α-peptide of IgA protease and the autotransporter protease NalP, in initiation of biofilm formation

    KAUST Repository

    Arenas, Jesús

    2012-12-04

    Neisseria meningitidis is a common and usually harmless inhabitant of the mucosa of the human nasopharynx, which, in rare cases, can cross the epithelial barrier and cause meningitis and sepsis. Biofilm formation favours the colonization of the host and the subsequent carrier state. Two different strategies of biofilm formation, either dependent or independent on extracellular DNA (eDNA), have been described for meningococcal strains. Here, we demonstrate that the autotransporter protease NalP, the expression of which is phase variable, affects eDNA-dependent biofilm formation in N.meningitidis. The effect of NalP was found in biofilm formation under static and flow conditions and was dependent on its protease activity. Cleavage of the heparin-binding antigen NhbA and the α-peptide of IgA protease, resulting in the release of positively charged polypeptides from the cell surface, was responsible for the reduction in biofilm formation when NalP is expressed. Both NhbA and the α-peptide of IgA protease were shown to bind DNA. We conclude that NhbA and the α-peptide of IgA protease are implicated in biofilm formation by binding eDNA and that NalP is an important regulator of this process through the proteolysis of these surface-exposed proteins. © 2012 Blackwell Publishing Ltd.

  7. Identification of an estrogen receptor α non covalent ubiquitin-binding surface: role in 17β-estradiol-induced transcriptional activity.

    Science.gov (United States)

    Pesiri, Valeria; La Rosa, Piergiorgio; Stano, Pasquale; Acconcia, Filippo

    2013-06-15

    Ubiquitin (Ub)-binding domains (UBDs) located in Ub receptors decode the ubiquitination signal by non-covalently engaging the Ub modification on their binding partners and transduce the Ub signalling through Ub-based molecular interactions. In this way, inducible protein ubiquitination regulates diverse biological processes. The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that mediates the pleiotropic effects of the sex hormone 17β-estradiol (E2). Fine regulation of E2 pleiotropic actions depends on E2-dependent ERα association with a plethora of binding partners and/or on the E2 modulation of receptor ubiquitination. Indeed, E2-induced ERα polyubiquitination triggers receptor degradation and transcriptional activity, and E2-dependent reduction in ERα monoubiquitination is crucial for E2 signalling. Monoubiquitinated proteins often contain UBDs, but whether non-covalent Ub-ERα binding could occur and play a role in E2-ERα signalling is unknown. Here, we report an Ub-binding surface within the ERα ligand binding domain that directs in vitro the receptor interaction with both ubiquitinated proteins and recombinant Ub chains. Mutational analysis reveals that ERα residues leucine 429 and alanine 430 are involved in Ub binding. Moreover, impairment of ERα association to ubiquitinated species strongly affects E2-induced ERα transcriptional activity. Considering the importance of UBDs in the Ub-based signalling network and the central role of different ERα binding partners in the modulation of E2-dependent effects, our discoveries provide novel insights into ERα activity that could also be relevant for ERα-dependent diseases.

  8. Surface-enhanced Raman Scattering Study of the Binding Modes of a Dibenzotetraaza[14]annulene Derivative with DNA/RNA Polynucleotides

    OpenAIRE

    Miljanić, Snežana; Dijanošić, Adriana; Kalac, Matea; Radić Stojković, Marijana; Piantanida, Ivo; Pawlica, Dariusz; Eilmes, Julita

    2012-01-01

    Binding modes of a dibenzotetraaza14annulene (DBTAA) derivative with synthetic nucleic acids were studied using surface-enhanced Raman spectroscopy (SERS). Changes in SERS intensity and appearance of new bands in spectra were attributed to different complexes formed between the DBTAA molecules and DNA/RNA polynucleotides. A decrease in intensity pointed to intercalation as the dominant binding mode of the annulene derivative with poly dGdC-poly dGdC and poly rA-poly rU, whereas new bands in...

  9. Real-time and label-free analysis of binding thermodynamics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a QCM biosensor

    Science.gov (United States)

    Li, Xueming; Song, Siyu; Shuai, Qi; Pei, Yihan; Aastrup, Teodor; Pei, Yuxin; Pei, Zhichao

    2015-01-01

    A novel approach to the study of binding thermodynamics and kinetics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a quartz crystal microbalance (QCM) biosensor was developed, in which binding events take place at the cell surface, more closely mimicking a biologically relevant environment. In this study, colon adenocarcinoma cells (KM-12) and ovary adenocarcinoma cells (SKOV-3) grew on the optimized polystyrene-coated biosensor chip without fixation. The association and dissociation between the cell surface carbohydrates and a range of lectins, including WGA, Con A, UEA-I, GS-II, PNA and SBA, were monitored in real time and without label for evaluation of cell surface glycosylation. Furthermore, the thermodynamic and kinetic parameters of the interaction between lectins and cell surface glycan were studied, providing detailed information about the interactions, such as the association rate constant, dissociation rate constant, affinity constant, as well as the changes of entropy, enthalpy and Gibbs free energy. This application provides an insight into the cell surface glycosylation and the complex molecular recognition on the intact cell surface, which may have impacts on disease diagnosis and drug discovery. PMID:26369583

  10. Binary and ternary binding affinities between exonuclease-deficient Klenow fragment (Kf-exo(-)) and various arylamine DNA lesions characterized by surface plasmon resonance.

    Science.gov (United States)

    Vaidyanathan, V G; Xu, Lifang; Cho, Bongsup P

    2012-08-20

    We used surface plasmon resonance (SPR) to characterize the binding interactions between the exonulease-free Klenow fragment (Kf-exo(-)) and unmodified and modified dG adducts derived from arylamine carcinogens: fluorinated 2-aminofluorene (FAF), 2-acetylaminofluorene (FAAF), and 4-aminobiphenyl (FABP). Tight polymerase binding was detected with unmodified dG and the correct dCTP. The discrimination of correct versus incorrect nucleotides was pronounced with K(D) values in the order of dCTP ≪ dTTP Kf-exo(-) binding tighter to the FAAF (k(off): 0.02 s(-1)) and FABP (k(off): 0.01 s(-1)) lesions than to FAF (k(off): 0.04 s(-1)).

  11. Identification and characterization of the factor H and FHL-1 binding complement regulator-acquiring surface protein 1 of the Lyme disease spirochete Borrelia spielmanii sp. nov.

    Science.gov (United States)

    Herzberger, Pia; Siegel, Corinna; Skerka, Christine; Fingerle, Volker; Schulte-Spechtel, Ulrike; Wilske, Bettina; Brade, Volker; Zipfel, Peter F; Wallich, Reinhard; Kraiczy, Peter

    2009-02-01

    Borrelia spielmanii, one of the etiological agents of Lyme disease found in Europe, evades host complement-mediated killing by recruitment of the immune regulators factor H and FHL-1 from human serum. Serum-resistant and intermediate serum-resistant isolates express up to 3 distinct complement regulator-acquiring surface proteins (CRASPs) that bind factor H and/or FHL-1. The present study describes identification and functional characterization of BsCRASP-1 as the dominant factor H and FHL-1 binding protein of B. spielmanii. BsCRASP-1 is a 27.7kDa outer surface lipoprotein, which after processing has a predicted mass of 24.9kDa. BsCRASP-1 is encoded by a single copy gene, cspA, that maps to a linear plasmid of approximately 55kb. Ligand affinity blot techniques revealed that both native and recombinant BsCRASP-1 from different isolates can strongly bind FHL-1, but only weakly factor H. Deletion mutants of recombinant BsCRASP-1 were generated and a high-affinity binding site for factor H and FHL-1 was mapped to its carboxy-terminal 10-amino-acid residue domain. Similarly, the dominant binding site of factor H and FHL-1 was localized to short consensus repeats (SCRs) 5-7. Factor H and FHL-1 maintained cofactor activity for factor I-mediated C3b inactivation when bound to full-length BsCRASP-1 but not to a deletion mutant lacking the carboxy-terminal 10-amino-acid residue domain. In conclusion, BsCRASP-1 binds the host immune regulators factor H and FHL-1, and is suggested to represent a key molecule of B. spielmanii for complement resistance. Thus, BsCRASP-1 most likely contributes to persistence of B. spielmanii and to pathogenesis of Lyme disease.

  12. Production of Fibronectin Binding Protein A at the surface of Lactococcus lactis increases plasmid transfer in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Daniela Pontes

    Full Text Available Lactococci are noninvasive lactic acid bacteria frequently used as protein delivery vectors and, more recently, as DNA delivery vehicles. We previously showed that Lactococcus lactis (LL expressing the Fibronectin-Binding Protein A of Staphylococcus aureus (LL-FnBPA+ showed higher internalization rates in vitro in Caco-2 cells than the native (wt lactococci and were able to deliver a eukaryotic Green Fluorescent Protein (GFP expression plasmid in 1% of human Caco-2 cells. Here, using the bovine beta-lactoglobulin (BLG, one of the major cow's milk allergen, and GFP we characterized the potential of LL-FnBPA+ as an in vivo DNA vaccine delivery vehicle. We first showed that the invasive strain LL-FnBPA+ carrying the plasmid pValac:BLG (LL-FnBPA+ BLG was more invasive than LL-BLG and showed the same invasivity as LL-FnBPA+. Then we demonstrated that the Caco-2 cells, co-incubated with LL-FnBPA+ BLG produced up to 30 times more BLG than the Caco-2 cells co-incubated with the non invasive LL-BLG. Using two different gene reporters, BLG and GFP, and two different methods of detection, EIA and fluorescence microscopy, we showed in vivo that: i in order to be effective, LL-FnBPA+ required a pre-coating with Fetal Calf Serum before oral administration; ii plasmid transfer occurred in enterocytes without regard to the strains used (invasive or not; iii the use of LL-FnBPA+ increased the number of mice producing BLG, but not the level of BLG produced. We thus confirmed the good potential of invasive recombinant lactic acid bacteria as DNA delivery vector in vivo.

  13. 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino) methyl)-4-chlorophenol; synthesis, characterization, crystal structure, Hirshfeld surface analysis and BSA binding studies

    Science.gov (United States)

    Kumar, Savithri; Basappa Chidananda, Vasantha Kumar; Hosakere Doddarevanna, Revanasiddappa; Hamse Kameshwar, Vivek; Kaur, Manpreet; Jasinski, Jerry P.

    2017-08-01

    A new imine-based molecule 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino) methyl)-4-chlorophenol (FBt) was synthesized by microwave and conventional method. It was structurally characterized by spectral techniques (NMR, FT-IR, LC-MS and electronic absorption), elemental analysis and single-crystal X-ray diffraction methods. Hirshfeld surface analysis was employed to ensure the existence of intermolecular interactions in FBt structure. A preliminary in vitro susceptibility test against two pathogenic fungi with respect to standard has shown that the ligand is proved to be a potent antifungal agent. Since the carrying of a drug by BSA may effect on its structure and action, the investigation on the interaction between model protein BSA and FBt was carried out by employing UV-Vis and fluorescence spectroscopy. The characteristics of the binding, i.e., binding constant, number of binding sites, and nature of binding were determined. Besides, the Förster's parameters associated with the binding process were calculated. Molecular docking was also carried on interaction study of the FBt with BSA.

  14. Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface

    Energy Technology Data Exchange (ETDEWEB)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A. (BWH); (LBNL); (SJCH); (DFCI)

    2012-11-01

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.

  15. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    Science.gov (United States)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  16. Surface IgM λ light chain is involved in the binding and infection of infectious bursal disease virus (IBDV) to DT40 cells.

    Science.gov (United States)

    Chi, Jiaqi; You, Leiming; Li, Peipei; Teng, Man; Zhang, Gaiping; Luo, Jun; Wang, Aiping

    2018-01-25

    Infectious bursal disease virus (IBDV) is an important immunosuppressive virus in chickens. Surface immunoglobulin M (sIgM)-bearing B lymphocytes act as the major targets of IBDV in the bursa of Fabricius, and sIgM may function as one of the membrane binding sites responsible for IBDV infection. Recently, using the virus overlay protein binding assay, the chicken λ light chain of sIgM was identified to specifically interact with IBDV in a virulence-independent manner in vitro. To further investigate sIgM λ light chain-mediated IBDV binding and infection in pre-B cells, the cell line DT40, which is susceptible to both pathogenic and attenuated IBDV, was used. Based on the RNA interference strategy, the DT40 cell line whose λ light chain of sIgM was stably knocked down, herein termed DT40LKD, was generated by the genomic integration of a specific small hairpin RNA and a green fluorescence protein co-expression construct. Flow cytometry analysis indicated that the binding of IBDV to DT40LKD cells was significantly reduced due to the loss of sIgM λ light chain. In particular, reduced viral replication was observed in IBDV-incubated DT40LKD cells, and no viral release into cell culture medium was detected by the IBDV rapid diagnostic strips. In addition, the rescue of sIgM λ light chain expression restored viral binding and replication in DT40LKD cells. These results show that sIgM λ light chain appears to be beneficial for IBDV attachment and infection, suggesting that sIgM acts as a binding site involved in IBDV infection.

  17. Structure and calcium binding activity of LipL32, the major surface antigen of pathogenic Leptospira sp

    International Nuclear Information System (INIS)

    Hauk, Pricila; Roman-Ramos, Henrique; Ho, Paulo Lee; Guzzo, Cristiane R.; Farah, Chuck S.

    2009-01-01

    Leptospirosis, caused by the spirochaete Leptospira is an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospira. It is highly immunogenic and has been shown to bind to host extracellular matrix components, including collagens, fibronectin and laminin. In this work we crystallized recombinant LipL32 protein and determined its structure to 2.25 A resolution. Initial phases were determined using the multi-wavelength anomalous dispersion technique with data collected from selenomethionine-containing crystals at the MX2 beamline at the LNLS. The LipL32 monomer is made of a jelly-roll fold core from which protrude several peripheral secondary structures. Some structural features suggested that LipL32 could bind Ca 2+ ions and indeed, spectroscopic data (circular (dichroism. intrinsic tryptophan fluorescence and extrinsic 1-amino-2-anaphthol-4-sulfonic acid fluorescence) confirmed the calcium binding properties of LipL32. (author)

  18. Comparison of gas-solid chromatography and MM2 force field molecular binding energies for greenhouse gases on a carbonaceous surface.

    Science.gov (United States)

    Rybolt, Thomas R; Bivona, Kevin T; Thomas, Howard E; O'Dell, Casey M

    2009-10-01

    Gas-solid chromatography was used to determine B(2s) (gas-solid virial coefficient) values for eight molecular adsorbates interacting with a carbon powder (Carbopack B, Supelco). B(2s) values were determined by multiple size variant injections within the temperature range of 313-553 K. The molecular adsorbates included: carbon dioxide (CO(2)); tetrafluoromethane (CF(4)); hexafluoroethane (C(2)F(6)); 1,1-difluoroethane (C(2)H(4)F(2)); 1-chloro-1,1-difluoroethane (C(2)H(3)ClF(2)); dichlorodifluoromethane (CCl(2)F(2)); trichlorofluoromethane (CCl(3)F); and 1,1,1-trichloroethane (C(2)H(3)Cl(3)). Two of these molecules are of special interest because they are "super greenhouse gases". The global warming potential, GWP, for CF(4) is 6500 and for C(2)F(6) is 9200 relative to the reference value of 1 for CO(2). The GWP index considers both radiative blocking and molecular lifetime. For these and other industrial greenhouse gases, adsorptive trapping on a carbonaceous solid, which depends on molecule-surface binding energy, could avoid atmospheric release. The temperature variations of the gas-solid virial coefficients in conjunction with van't Hoff plots were used to find the experimental adsorption energy or binding energy values (E(*)) for each adsorbate. A molecular mechanics based, rough-surface model was used to calculate the molecule-surface binding energy (Ecal(*)) using augmented MM2 parameters. The surface model consisted of parallel graphene layers with two separated nanostructures each containing 17 benzene rings arranged in linear strips. The separation of the parallel nanostructures had been optimized in a prior study to appropriately represent molecule-surface interactions for Carbopack B. Linear regressions of E(*) versus Ecal(*) for the current data set of eight molecules and the same surface model gave E(*)=0.926 Ecal(*) and r(2)=0.956. A combined set of the current and prior Carbopack B adsorbates studied (linear alkanes, branched alkanes, cyclic alkanes

  19. Reversible binding of the HPLC6 isoform of type I antifreeze proteins to ice surfaces and the antifreeze mechanism studied by multiple quantum filtering-spin exchange NMR experiment.

    Science.gov (United States)

    Ba, Yong; Wongskhaluang, Jeff; Li, Jiabo

    2003-01-15

    Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering-spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect.

  20. Disruption and formation of surface salt bridges are coupled to DNA binding by integration host factor: a computational analysis

    OpenAIRE

    Ma, L.; Sundlass, N. K.; Raines, R. T.; Cui, Q.

    2010-01-01

    Revealing the thermodynamic driving force of protein/DNA interactions is crucial to the understanding of factors that dictate the properties and function of protein-DNA complexes. For the binding of DNA to DNA-wrapping proteins, such as the integration host factor (IHF), Record and co-workers have proposed that the disruption of a large number of pre-existing salt-bridges is coupled with the binding process (J. Mol. Biol., 310, 2001, 379). To test this proposal, we have carried out explicit s...

  1. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules.

    Science.gov (United States)

    Nielsen, Morten M; Bozonnet, Sophie; Seo, Eun-Seong; Mótyán, János A; Andersen, Joakim M; Dilokpimol, Adiphol; Abou Hachem, Maher; Gyémánt, Gyöngyi; Naested, Henrik; Kandra, Lili; Sigurskjold, Bent W; Svensson, Birte

    2009-08-18

    Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)(8)-barrel and the noncatalytic C-terminal domain, respectively. Site-directed mutagenesis of Trp(278) and Trp(279), stacking onto adjacent ligand glucosyl residues at SBS1, and of Tyr(380) and His(395), making numerous ligand contacts at SBS2, suggested that SBS1 and SBS2 act synergistically in degradation of starch granules. While SBS1 makes the major contribution to binding and hydrolysis of starch granules, SBS2 exhibits a higher affinity for the starch mimic beta-cyclodextrin. Compared to that of wild-type AMY1, the K(d) of starch granule binding by the SBS1 W278A, W279A, and W278A/W279A mutants thus increased 15-35 times; furthermore, the k(cat)/K(m) of W278A/W279A was 2%, whereas both affinity and activity for Y380A at SBS2 were 10% of the wild-type values. Dual site double and triple SBS1/SBS2 substitutions eliminated binding to starch granules, and the k(cat)/K(m) of W278A/W279A/Y380A AMY1 was only 0.4% of the wild-type value. Surface plasmon resonance analysis of mutants showed that beta-cyclodextrin binds to SBS2 and SBS1 with K(d,1) and K(d,2) values of 0.07 and 1.40 mM, respectively. A model that accounts for the observed synergy in starch hydrolysis, where SBS1 and SBS2 bind ordered and free alpha-glucan chains, respectively, thus targeting the enzyme to single alpha-glucan chains accessible for hydrolysis, is proposed. SBS1 and SBS2 also influence the kinetics of hydrolysis for amylose and maltooligosaccharides, the degree of multiple attack on amylose, and subsite binding energies.

  2. Plasmid DNA binds to the core oligosaccharide domain of LPS molecules of E. coli cell surface in the CaCl2-mediated transformation process.

    Science.gov (United States)

    Panja, Subrata; Aich, Pulakesh; Jana, Bimal; Basu, Tarakdas

    2008-09-01

    In the standard procedure for artificial transformation of E. coli by plasmid DNA, cellular competence for DNA uptake is developed by suspending the cells in ice-cold CaCl2 (50-100 mM). It is believed that CaCl2 helps DNA adsorption to the lipopolysaccharide (LPS) molecules on E. coli cell surface; however, the binding mechanism is mostly obscure. In this report, we present our findings of an in-depth study on in vitro interaction between plasmid DNA and E. coli LPS, using different techniques like absorption and circular dichroism spectroscopy, isothermal titration calorimetry, electron and atomic force microscopy, and so on. The results suggest that the Ca(II) ions, forming coordination complexes with the phosphates of DNA and LPS, facilitate the binding between them. The binding interaction appears to be cooperative, reversible, exothermic, and enthalpy-driven in nature. Binding of LPS causes a partial transition of DNA from B- to A-form. Finer study with the hydrolyzed products of LPS shows that only the core oligosaccharide domain of LPS is responsible for the interaction with DNA. Moreover, the biological significance of this interaction becomes evident from the observation that E. coli cells, from which the LPS have been leached out considerably, show higher efficiency of transformation, when transformed with plasmid-LPS complex rather than plasmid DNA alone.

  3. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    Science.gov (United States)

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  4. Human small cell lung cancer NYH cells selected for resistance to the bisdioxopiperazine topoisomerase II catalytic inhibitor ICRF-187 demonstrate a functional R162Q mutation in the Walker A consensus ATP binding domain of the alpha isoform

    DEFF Research Database (Denmark)

    Wessel, I; Jensen, L H; Jensen, P B

    1999-01-01

    -AMSA), which act by stabilizing enzyme-DNA-drug complexes at a stage in which the DNA gate strand is cleaved and the protein is covalently attached to DNA. Human small cell lung cancer NYH cells selected for resistance to ICRF-187 (NYH/187) showed a 25% increase in topoisomerase IIalpha level and no change......-clamp state in the enzyme's catalytic cycle caused by a decreased ATP binding by the mutated enzyme that is responsible for bisdioxopiperazine resistance....... demonstrated that R162Q conferred resistance to the bisdioxopiperazines ICRF-187 and -193 but not to etoposide or m-AMSA. Both etoposide and m-AMSA induced more DNA cleavage with purified R162Q enzyme than with the wt. The R162Q enzyme has a 20-25% decreased catalytic capacity compared to the wt and was almost...

  5. Surface Proteome Analysis of a Natural Isolate of Lactococcus lactis Reveals the Presence of Pili Able to Bind Human Intestinal Epithelial Cells*

    Science.gov (United States)

    Meyrand, Mickael; Guillot, Alain; Goin, Mélodie; Furlan, Sylviane; Armalyte, Julija; Kulakauskas, Saulius; Cortes-Perez, Naima G.; Thomas, Ginette; Chat, Sophie; Péchoux, Christine; Dupres, Vincent; Hols, Pascal; Dufrêne, Yves F.; Trugnan, Germain; Chapot-Chartier, Marie-Pierre

    2013-01-01

    Surface proteins of Gram-positive bacteria play crucial roles in bacterial adhesion to host tissues. Regarding commensal or probiotic bacteria, adhesion to intestinal mucosa may promote their persistence in the gastro-intestinal tract and their beneficial effects to the host. In this study, seven Lactococcus lactis strains exhibiting variable surface physico-chemical properties were compared for their adhesion to Caco-2 intestinal epithelial cells. In this test, only one vegetal isolate TIL448 expressed a high-adhesion phenotype. A nonadhesive derivative was obtained by plasmid curing from TIL448, indicating that the adhesion determinants were plasmid-encoded. Surface-exposed proteins in TIL448 were analyzed by a proteomic approach consisting in shaving of the bacterial surface with trypsin and analysis of the released peptides by LC-MS/MS. As the TIL448 complete genome sequence was not available, the tryptic peptides were identified by a mass matching approach against a database including all Lactococcus protein sequences and the sequences deduced from partial DNA sequences of the TIL448 plasmids. Two surface proteins, encoded by plasmids in TIL448, were identified as candidate adhesins, the first one displaying pilin characteristics and the second one containing two mucus-binding domains. Inactivation of the pilin gene abolished adhesion to Caco-2 cells whereas inactivation of the mucus-binding protein gene had no effect on adhesion. The pilin gene is located inside a cluster of four genes encoding two other pilin-like proteins and one class-C sortase. Synthesis of pili was confirmed by immunoblotting detection of high molecular weight forms of pilins associated to the cell wall as well as by electron and atomic force microscopy observations. As a conclusion, surface proteome analysis allowed us to detect pilins at the surface of L. lactis TIL448. Moreover we showed that pili appendages are formed and involved in adhesion to Caco-2 intestinal epithelial cells

  6. Proton and aluminum binding properties of organic acids in surface waters of the northeastern U.S.

    Science.gov (United States)

    Fakhraei, Habibollah; Driscoll, Charles T

    2015-03-03

    A variety of mathematical estimators have been used to quantify the degree of protonation of naturally occurring organic acids. These estimators range from monoprotic, diprotic, and triprotic analog models to the discrete and continuous (Gaussian) distributions of a single proton binding-dissociation. Natural water samples from two long-term monitoring programs in the northeastern U.S. were used to quantify proton- and aluminum-binding properties of naturally occurring organic matter. Water chemistry observations were clustered into 0.05 pH intervals (over 3.75-7.35 pH range) and fit to a triprotic analog model. The model optimization indicates that about 5% of dissolved organic carbon participates in ion binding, and organic acids are composed of both strong and weak acids (i.e., pKa1 = 2.54, pKa2 = 6.19, and pKa3 = 7.52 for Adirondack samples). Binding between organic acids and aluminum can substantially influence the acid behavior of dissolved organic matter and the availability of the toxic form of aluminum (i.e., inorganic monomeric aluminum).

  7. Beyond Molecular Recognition : Using a Repulsive Field to Tune Interfacial Valency and Binding Specificity between Adhesive Surfaces

    NARCIS (Netherlands)

    Santore, Maria M.; Zhang, Jun; Srivastava, Sudhanshu; Rotello, Vincent M.

    2009-01-01

    Surface-bound biomolecular fragments enable "smart" materials to recognize cells and other particles in applications ranging from tissue engineering and medical diagnostics to colloidal and nanoparticle assembly. Such smart surfaces are, however, Limited in their design to biomolecular selectivity.

  8. Natural acquired inhibitory antibodies to Plasmodium vivax Duffy binding protein (PvDBP-II) equally block erythrocyte binding of homologous and heterologous expressed PvDBP-II on the surface of COS-7 cells.

    Science.gov (United States)

    Valizadeh, Vahideh; Zakeri, Sedigheh; Mehrizi, Akram A; Mirkazemi, Sedigheh; Djadid, Navid D

    2016-02-01

    The binding domain of Plasmodium vivax Duffy binding protein (PvDBP-II) is a promising blood-stage vaccine candidate for vivax malaria. For the development of a successful vivax malaria vaccine based on DBP-II, the antigenic diversity and also naturally occurring functional antibodies to different PvDBP-II variant types in the various populations must be determined. However, similar to other blood-stage antigens, allelic variation within the PvDBP-II is a fundamental challenge for the development of a broadly efficient vaccine. The present study was performed to define whether the polymorphisms in PvDBP-II influence the nature of functional inhibitory activity of naturally acquired or induced anti-DBP-II antibodies in mice. In this investigation, five genetically distinct variants of PvDBP-II were transiently expressed on the COS-7 cell surface. Erythrocyte-binding inhibition assay (EBIA) was performed using human sera infected with corresponding and non-corresponding P. vivax variants as well as by the use of mice sera immunized with different expressed recombinant PvDBP-IIs. EBIA results showed that the inhibitory percentage varied between 50 and 63 % by using sera from infected individuals, and in case of mouse antisera, inhibition was in the range of 76-86 %. Interestingly, no significant difference was detected in red blood cell binding inhibition when different PvDBP-II variants on the COS-7 cell surfaces were incubated with heterologous and homologous sera infected with PvDBP-II variants. This suggests that the detected polymorphisms in all five forms of PvDBP-II may not affect functional activity of anti-DBP-II antibodies. In conclusion, our results revealed that there are functional cross-reactive antibody responses to heterologous PvDBP-II variants that might provide a broader inhibitory response against all, or at least the majority of strains compared to single allele of this protein that should be considered in development of PvDBP-II-based vaccine.

  9. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies.

    Science.gov (United States)

    Signorelli, Sara; Santini, Simona; Yamada, Tohru; Bizzarri, Anna Rita; Beattie, Craig W; Cannistraro, Salvatore

    2017-04-01

    Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Structure and calcium binding activity of LipL32, the major surface antigen of pathogenic Leptospira sp

    Energy Technology Data Exchange (ETDEWEB)

    Hauk, Pricila; Roman-Ramos, Henrique; Ho, Paulo Lee [Instituto Butantan, Sao Paulo, SP (Brazil). Centro de Biotecnologia; Guzzo, Cristiane R.; Farah, Chuck S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica

    2009-07-01

    Leptospirosis, caused by the spirochaete Leptospira is an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospira. It is highly immunogenic and has been shown to bind to host extracellular matrix components, including collagens, fibronectin and laminin. In this work we crystallized recombinant LipL32 protein and determined its structure to 2.25 A resolution. Initial phases were determined using the multi-wavelength anomalous dispersion technique with data collected from selenomethionine-containing crystals at the MX2 beamline at the LNLS. The LipL32 monomer is made of a jelly-roll fold core from which protrude several peripheral secondary structures. Some structural features suggested that LipL32 could bind Ca{sup 2+} ions and indeed, spectroscopic data (circular (dichroism. intrinsic tryptophan fluorescence and extrinsic 1-amino-2-anaphthol-4-sulfonic acid fluorescence) confirmed the calcium binding properties of LipL32. (author)

  11. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Zhao-Dong Liu

    2017-08-01

    Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  12. Anti-citrullinated protein antibodies promote apoptosis of mature human Saos-2 osteoblasts via cell-surface binding to citrullinated heat shock protein 60.

    Science.gov (United States)

    Lu, Ming-Chi; Yu, Chia-Li; Yu, Hui-Chun; Huang, Hsien-Bin; Koo, Malcolm; Lai, Ning-Sheng

    2016-01-01

    We hypothesized that anti-citrullinated protein antibodies (ACPAs) react with osteoblast surface citrullinated proteins and affect cell function, leading to joint damage in patients with rheumatoid arthritis (RA). First, we purified ACPAs by cyclic citrullinated peptide (CCP)-conjugated affinity column chromatography. The cognate antigens of ACPAs on Saos-2 cells, a sarcoma osteogenic cell line generated from human osteoblasts, were probed by ACPAs, and the reactive bands were analyzed using proteomic analyses. We found that ACPAs bind to Saos-2 cell membrane, and several protein candidates, including HSP60, were identified. We then cloned and purified recombinant heat shock protein 60 (HSP60) and citrullinated HSP60 (citHSP60) and investigated the effect of ACPAs on Saos-2 cell. We confirmed that HSP60 obtained from Saos-2 cell membrane were citrullinated and reacted with ACPAs, which induces Saos-2 cells apoptosis via binding to surface-expressed citHSP60 through Toll-like receptor 4 signaling. ACPAs promoted interleukin (IL)-6 and IL-8 expression in Saos-2 cells. Finally, sera from patients with RA and healthy controls were examined for their titers of anti-HSP60 and anti-citHSP60 antibodies using an enzyme-linked immunosorbent assay. The radiographic change in patients with RA was evaluated using the Genant-modified Sharp scoring system. Patients with RA showed higher sera titers of anti-citHSP60, but not anti-HSP60, antibodies when compared with controls. In addition, the anti-citHSP60 level was positively associated with increased joint damage in patients with RA. In conclusion, Saos-2 cell apoptosis was mediated by ACPAs via binding to cell surface-expressed citHSP60 and the titer of anti-citHSP60 in patients with RA positively associated with joint damage. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display.

    Science.gov (United States)

    Keller, Thomas; Kalt, Romana; Raab, Ingrid; Schachner, Helga; Mayrhofer, Corina; Kerjaschki, Dontscho; Hantusch, Brigitte

    2015-01-01

    The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers.

  14. Antisense experiments demonstrate an exon 4 minus splice variant mRNA as the basis for expression of tNOX, a cancer-specific cell surface protein.

    Science.gov (United States)

    Tang, Xiaoyu; Morré, D James; Morré, Dorothy M

    2007-01-01

    A novel hydroquinone and NADH oxidase with protein disulfide-thiol interchange activity (designated ENOX2 or tNOX), associated exclusively with the outer leaflet of the plasma membrane at the surface of cancer cells and in sera of cancer patients, is absent from the surface of noncancer cells and from sera from healthy individuals. Transfection of HeLa (human cervical carcinoma) cells with antisense oligonucleotides and measurement of mRNA levels by real-time quantitative PCR and growth and drug response by in vitro cytotoxicity assays were combined to demonstrate encoding of a cancer-specific and growth-related cell surface protein, tNOX, via an exon 4 minus splice variant. tNOX mRNA levels of HeLa cells were determined following transfection with antisense relative to control cells transfected with Lipofectamine using the cycle threshold method normalized for GAPDH mRNA. Antisense to tNOX exon 4 mRNA blocked generation of full-length tNOX mRNA but not of exon 4 minus mRNA. Antisense to exon 5 mRNA inhibited the production of exon 4 minus mRNA and full-length tNOX mRNA. Scrambled antisense to exon 5 mRNA was without effect. Antisense to exon 5 mRNA decreased the amount of tNOX protein on the surface of cancer cells. As a control, antisense-mediated downregulation of exon 5 minus mRNA of tNOX also was demonstrated as detected using exon 4/exon 6 primers. Exon 5 antisense blocked the cell surface expression of tNOX whereas exon 4 antisense was without effect. In contrast to nontransfected HeLa cells, cells transfected with exon 5 antisense were not inhibited by the green tea catechin, (-)-epigallocatechin-3-gallate. A relationship of tNOX to unregulated growth of cancer cells was provided by data where growth of HeLa cells was inhibited by transfection with the exon 5 antisense oligonucleotides. Growth inhibition was followed by apoptosis in greater than 70% of the transfected cells.

  15. Mechanism of formation of humus coatings on mineral surfaces 1. Evidence for multidentate binding of organic acids from compost leachate on alumina

    Science.gov (United States)

    Wershaw, R. L.; Leenheer, J.A.; Sperline, R.P.; Song, Yuan; Noll, L.A.; Melvin, R.L.; Rigatti, G.P.

    1995-01-01

    Measurements of the infrared linear dichroism of carboxylate groups of organic acids from compost leachate adsorbed to an alumina surface and the enthalpy of adsorption of this reaction have been made. The linear dichroism measurements indicated that the carboxylate groups are not free to rotate. This limited rotation probably results from bidentate binding of the carboxylate groups. The molar enthalpy of adsorption of the acids is approximately −100 kJ mol−1. This high value for enthalpy of adsorption may best be explained by assuming that two or more carboxylate groups on a single dissolved organic carbon (DOC) molecule coordinate to the surficial aluminium ions.

  16. Determination of binding capacity and adsorption enthalpy between Human Glutamate Receptor (GluR1) peptide fragments and kynurenic acid by surface plasmon resonance experiments.

    Science.gov (United States)

    Csapó, E; Majláth, Z; Juhász, Á; Roósz, B; Hetényi, A; Tóth, G K; Tajti, J; Vécsei, L; Dékány, I

    2014-11-01

    The interaction between kynurenic acid (KYNA) and two peptide fragments (ca. 30 residues) of Human Glutamate Receptor 201-300 (GluR1) using surface plasmon resonance (SPR) spectroscopy was investigated. Because of the medical interest in the neuroscience, GluR1 is one of the important subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). AMPARs are ionotoropic glutamate receptors, which are mediating fast synaptic transmission and are crucial for plasticity in the brain. On the other hand, KYNA has been suggested to have neuroprotective activity and it has been considered for apply in therapy in certain neurobiological disorders. In this article the adsorption of the GluR1201-230 and GluR1231-259 peptides were studied on gold biosensor chip. The peptides were chemically bonded onto the gold surface via thiol group of L-cysteine resulted in the formation of peptide monolayer on the SPR chip surface. Because the GluR1231-259 peptide does not contain L-cysteine the Val256 was replaced by Cys256. The cross sectional area and the surface orientation of the studied peptides were determined by SPR and theoretical calculations (LOMETS) as well. The binding capability of KYNA on the peptide monolayer was studied in the concentration range of 0.1-5.0 mM using 150 mM NaCl ionic strength at pH 7.4 (±0.02) in phosphate buffer solutions. In order to determine the binding enthalpy the experiments were carried out between +10°C and +40°C. The heat of adsorption was calculated by using adsorption isotherms at different surface loading of KYNA on the SPR chip. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin.

    Directory of Open Access Journals (Sweden)

    Hirohito Abo

    Full Text Available We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA, revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG, heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units.

  18. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin.

    Science.gov (United States)

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units.

  19. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1990-01-01

    Presented are two demonstrations; "Heat of Solution and Colligative Properties: An Illustration of Enthalpy and Entropy," and "A Vapor Pressure Demonstration." Included are lists of materials and experimental procedures. Apparatus needed are illustrated. (CW)

  20. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1978-01-01

    Presents two demonstrations; one on Boyle's Law, to illustrate the gas law and serve as a challenging problem for the students; the other is a modified Color Blind Traffic Light demonstration in which the oscillating reactions were speeded up. (GA)

  1. Helper T cell epitope-mapping reveals MHC-peptide binding affinities that correlate with T helper cell responses to pneumococcal surface protein A.

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2010-02-01

    Full Text Available Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Several proteins and polysaccharide capsule have recently been implicated in the virulence of and protective immunity against Streptococcus pneumonia. Pneumococcal surface protein A (PspA is highly conserved among S. pneumonia strains, inhibits complement activation, binds lactoferrin, elicits protective systemic immunity against pneumococcal infection, and is necessary for full pneumococcal virulence. Identification of PspA peptides that optimally bind human leukocyte antigen (HLA would greatly contribute to global vaccine efforts, but this is hindered by the multitude of HLA polymorphisms. Here, we have used an experimental data set of 54 PspA peptides and in silico methods to predict peptide binding to HLA and murine major histocompatibility complex (MHC class II. We also characterized spleen- and cervical lymph node (CLN-derived helper T lymphocyte (HTL cytokine responses to these peptides after S. pneumonia strain EF3030-challenge in mice. Individual, yet overlapping peptides, 15 amino acids in length revealed residues 199 to 246 of PspA (PspA(199-246 consistently caused the greatest IFN-gamma, IL-2, IL-5 and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo stimulated splenic and CLN CD4(+ T cells isolated from S. pneumonia strain EF3030-challeged F(1 (B6xBALB/c mice. IEDB, RANKPEP, SVMHC, MHCPred, and SYFPEITHI in silico analysis tools revealed peptides in PspA(199-246 also interact with a broad range of HLA-DR, -DQ, and -DP allelles. These data suggest that predicted MHC class II-peptide binding affinities do not always correlate with T helper (Th cytokine or proliferative responses to PspA peptides, but when used together with in vivo validation can be a useful tool to choose candidate pneumococcal HTL epitopes.

  2. Surface-bound capsular polysaccharide of type Ia group B Streptococcus mediates C1 binding and activation of the classic complement pathway

    International Nuclear Information System (INIS)

    Levy, N.J.; Kasper, D.L.

    1986-01-01

    The role of surface-bound type Ia group B Streptococcus (GBS) capsular polysaccharide in anti-body-independent binding of C1 and activation of the classic component pathway was investigated. In a radiolabeled bacterial-polymorphonuclear leukocyte (PMN) association assay, a measure of bacterial opsonization, preincubation of 3 H-type Ia GBS with purified F(ab') 2 to the organism blocked the association of the bacteria with PMN', and the inhibitory effect was dose dependent. The specificity of F(ab') 2 blocking was shown after adsorption of F(ab') 2 with type Ia polysaccharide-sensitized erythrocytes. Polysaccharide-adsorbed F(ab') 2 had a 70% decrease in ability to block the association of bacteria with PMN. Neuraminidase digestion removed 80% of the terminal sialic acid residues from the native polysaccharide. These neuraminidase-digested organisms had a 72% decrease in binding and transfer of purified C1 compared with non-enzyme-treated organisms. Type Ia capsular polysaccharide bound to sheep erythrocytes promoted classic complement pathway-mediated hemolysis of the cells. The role of C1 inhibitor (INH) in modulation of C1 activation by the organisms was investigated. The possibility existed that the C1 INH could be bound by the bacteria, allowing C1 activation to occur in the fluid phase. The inhibitor was purified from human serum, and its activity was measured before and after incubation with type Ia GBS. The organisms had no effect on C1 INH activity. Thus surface-bound capsular polysacchardie of type Ia GBS mediates C1 binding and classic pathway activation, and this does not involve the C1 INH

  3. Quantum mechanics capacitance molecular mechanics modeling of core-electron binding energies of methanol and methyl nitrite on Ag(111) surface.

    Science.gov (United States)

    Löytynoja, T; Li, X; Jänkälä, K; Rinkevicius, Z; Ågren, H

    2016-07-14

    We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.

  4. A Longitudinal Hepatitis B Vaccine Cohort Demonstrates Long-lasting Hepatitis B Virus (HBV) Cellular Immunity Despite Loss of Antibody Against HBV Surface Antigen.

    Science.gov (United States)

    Simons, Brenna C; Spradling, Philip R; Bruden, Dana J T; Zanis, Carolyn; Case, Samantha; Choromanski, Tammy L; Apodaca, Minjun; Brogdon, Hazel D; Dwyer, Gaelen; Snowball, Mary; Negus, Susan; Bruce, Michael G; Morishima, Chihiro; Knall, Cindy; McMahon, Brian J

    2016-07-15

    Long-lasting protection resulting from hepatitis B vaccine, despite loss of antibody against hepatitis B virus (HBV) surface antigen (anti-HBs), is undetermined. We recruited persons from a cohort vaccinated with plasma-derived hepatitis B vaccine in 1981 who have been followed periodically since. We performed serological testing for anti-HBs and microRNA-155 and assessed HBV-specific T-cell responses by enzyme-linked immunospot and cytometric bead array. Study subgroups were defined 32 years after vaccination as having an anti-HBs level of either ≥10 mIU/mL (group 1; n = 13) or anti-HBs level, tested positive for tumor necrosis factor α, interleukin 10, or interleukin 6 production by HBV surface antigen-specific T cells. The frequency of natural killer T cells correlated with the level of anti-HBs (P = .008). The proportion of participants who demonstrated T-cell responses to HBV core antigen varied among the cytokines measured, suggesting some natural exposure to HBV in the study group. No participant had evidence of breakthrough HBV infection. Evidence of long-lasting cellular immunity, regardless of anti-HBs level, suggests that protection afforded by primary immunization with plasma-derived hepatitis B vaccine during childhood and adulthood lasts at least 32 years. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. HPLC analysis and cell surface receptor binding activities of the crude aqueous and methanolic extract of Sesamum indicum.

    Science.gov (United States)

    Saha, Repon Kumer; Dinar, Md Abu Monsur; Nabila, Kausain Akther; Roy, Priyanka

    2014-05-01

    To identify the possible functional molecules for therapeutic uses by screening the crude aqueous and methanolic extracts derived from sesame seeds (Sesamum indicum) in vitro. High performance liquid chromatography was used to scan the functional molecules present in the extracts. The crude aqueous extracts showed the possibilities to present caffeine and cetirizine or its derivatives like molecules. On the other hand, the crude methanolic extract may contain Loratadine or its derivatives like molecules. Both type of extracts showed hemagglutination inhibition activities in all types of human blood samples tested. However, they showed stronger binding with AB+ blood group than those of A+ and B+ blood. Sesame seeds may be considered as a functional food.

  6. Ail Protein Binds Ninth Type III Fibronectin Repeat (9FNIII) within Central 120-kDa Region of Fibronectin to Facilitate Cell Binding by Yersinia pestis*

    Science.gov (United States)

    Tsang, Tiffany M.; Annis, Douglas S.; Kronshage, Malte; Fenno, Jesse T.; Usselman, Lisa D.; Mosher, Deane F.; Krukonis, Eric S.

    2012-01-01

    The Yersinia pestis adhesin molecule Ail interacts with the extracellular matrix protein fibronectin (Fn) on host cells to facilitate efficient delivery of cytotoxic Yop proteins, a process essential for plague virulence. A number of bacterial pathogens are known to bind to the N-terminal region of Fn, comprising type I Fn (FNI) repeats. Using proteolytically generated Fn fragments and purified recombinant Fn fragments, we demonstrated that Ail binds the centrally located 120-kDa fragment containing type III Fn (FNIII) repeats. A panel of monoclonal antibodies (mAbs) that recognize specific epitopes within the 120-kDa fragment demonstrated that mAb binding to 9FNIII blocks Ail-mediated bacterial binding to Fn. Epitopes of three mAbs that blocked Ail binding to Fn were mapped to a similar face of 9FNIII. Antibodies directed against 9FNIII also inhibited Ail-dependent cell binding activity, thus demonstrating the biological relevance of this Ail binding region on Fn. Bacteria expressing Ail on their surface could also bind a minimal fragment of Fn containing repeats 9–10FNIII, and this binding was blocked by a mAb specific for 9FNIII. These data demonstrate that Ail binds to 9FNIII of Fn and presents Fn to host cells to facilitate cell binding and delivery of Yops (cytotoxins of Y. pestis), a novel interaction, distinct from other bacterial Fn-binding proteins. PMID:22447929

  7. Ail protein binds ninth type III fibronectin repeat (9FNIII) within central 120-kDa region of fibronectin to facilitate cell binding by Yersinia pestis.

    Science.gov (United States)

    Tsang, Tiffany M; Annis, Douglas S; Kronshage, Malte; Fenno, Jesse T; Usselman, Lisa D; Mosher, Deane F; Krukonis, Eric S

    2012-05-11

    The Yersinia pestis adhesin molecule Ail interacts with the extracellular matrix protein fibronectin (Fn) on host cells to facilitate efficient delivery of cytotoxic Yop proteins, a process essential for plague virulence. A number of bacterial pathogens are known to bind to the N-terminal region of Fn, comprising type I Fn (FNI) repeats. Using proteolytically generated Fn fragments and purified recombinant Fn fragments, we demonstrated that Ail binds the centrally located 120-kDa fragment containing type III Fn (FNIII) repeats. A panel of monoclonal antibodies (mAbs) that recognize specific epitopes within the 120-kDa fragment demonstrated that mAb binding to (9)FNIII blocks Ail-mediated bacterial binding to Fn. Epitopes of three mAbs that blocked Ail binding to Fn were mapped to a similar face of (9)FNIII. Antibodies directed against (9)FNIII also inhibited Ail-dependent cell binding activity, thus demonstrating the biological relevance of this Ail binding region on Fn. Bacteria expressing Ail on their surface could also bind a minimal fragment of Fn containing repeats (9-10)FNIII, and this binding was blocked by a mAb specific for (9)FNIII. These data demonstrate that Ail binds to (9)FNIII of Fn and presents Fn to host cells to facilitate cell binding and delivery of Yops (cytotoxins of Y. pestis), a novel interaction, distinct from other bacterial Fn-binding proteins.

  8. Sarkosyl-Induced Helical Structure of an Antimicrobial Peptide GW-Q6 Plays an Essential Role in the Binding of Surface Receptor OprI in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Tien-Sheng Tseng

    Full Text Available The emergence of antibiotic-resistant microbial strains has become a public health issue and there is an urgent need to develop new anti-infective molecules. Although natural antimicrobial peptides (AMPs can exert bactericidal activities, they have not shown clinical efficacy. The limitations of native peptides may be overcome with rational design and synthesis. Here, we provide evidence that the bactericidal activity of a synthetic peptide, GW-Q6, against Pseudomonas aeruginosa is mediated through outer membrane protein OprI. Hyperpolarization/depolarization of membrane potential and increase of membrane permeability were observed after GW-Q6 treatment. Helical structure as well as hydrophobicity was induced by an amphipathic surfactant, sarkosyl, for binding to OprI and possible to membrane. NMR studies demonstrated GW-Q6 is an amphipathic α-helical structure in DPC micelles. The paramagnetic relaxation enhancement (PRE approach revealed that GW-Q6 orients its α-helix segment (K7-K17 into DPC micelles. Additionally, this α-helix segment is critical for membrane permeabilization and antimicrobial activity. Moreover, residues K3, K7, and K14 could be critical for helical formation and membrane binding while residues Y19 and W20 for directing the C-terminus of the peptide to the surface of micelle. Taken together, our study provides mechanistic insights into the mode of action of the GW-Q6 peptide and suggests its applicability in modifying and developing potent AMPs as therapeutic agents.

  9. Demonstration of spread-on peel-off consumer products for sampling surfaces contaminated with pesticides and chemical warfare agent signatures.

    Science.gov (United States)

    Behringer, Deborah L; Smith, Deborah L; Katona, Vanessa R; Lewis, Alan T; Hernon-Kenny, Laura A; Crenshaw, Michael D

    2014-08-01

    A terrorist attack using toxic chemicals is an international concern. The utility of rubber cement and latex body paint as spray-on/spread-on peel-off collection media for signatures attributable to pesticides and chemical warfare agents from interior building and public transportation surfaces two weeks post-deposition is demonstrated. The efficacy of these media to sample escalator handrail, stainless steel, vinyl upholstery fabric, and wood flooring is demonstrated for two pesticides and eight chemicals related to chemical warfare agents. The chemicals tested are nicotine, parathion, atropine, diisopropyl methylphosphonate, dimethyl methylphosphonate, dipinacolyl methylphosphonate, ethyl methylphosphonic acid, isopropyl methylphosphonic acid, methylphosphonic acid, and thiodiglycol. Amounts of each chemical found are generally greatest when latex body paint is used. Analytes with low volatility and containing an alkaline nitrogen or a sulfur atom (e.g., nicotine and parathion) usually are recovered to a greater extent than the neutral phosphonate diesters and acidic phosphonic acids (e.g., dimethyl methylphosphonate and ethyl methylphosphonic acid). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Demonstrating the effectiveness of body armour: a pilot prospective computerised surface wound mapping trial performed at the Role 3 hospital in Afghanistan.

    Science.gov (United States)

    Breeze, Johno; Allanson-Bailey, L S; Hepper, A E; Midwinter, M J

    2015-03-01

    Modern body armour clearly reduces injury incidence and severity, but evidence to actually objectively demonstrate this effect is scarce. Although the Joint Theatre Trauma Registry (JTTR) alone cannot relate injury pattern to body armour coverage, the addition of computerised Surface Wound Mapping (SWM) may enable this utility. Surface wound locations of all UK and NATO coalition soldiers, Afghan National Army and Police and local nationals injured by explosively propelled fragments and treated in the Role 3 UK-led Field Hospital in Camp Bastion, Afghanistan, between 8 July and 20 October 2012 were prospectively recorded. The Abbreviated Injury Scores (AIS) and relative risk of casualties sustaining injuries under a type of body armour were compared with those that did not wear that armour. Casualties wearing a combat helmet were 2.7 times less likely to sustain a fragmentation wound to the head than those that were unprotected (mean AIS of 2.9 compared with 4.1). Casualties wearing a body armour vest were 4.1 times less likely to sustain a fragmentation wound to the chest or abdomen than those that were unprotected (mean AIS of 2.9 compared with 3.9). Casualties wearing pelvic protection were 10 times less likely to sustain a fragmentation wound to the pelvis compared with those that were unprotected (mean AIS of 3.4 compared with 3.9). Computerised SWM has objectively demonstrated the ability of body armour worn on current operations in Afghanistan to reduce wound incidence and severity. We recognise this technique is limited in that it only records the surface wound location and may be specific to this conflict. However, gathering electronic SWM at the same time as recording injuries for the JTTR was simple, required little extra time and therefore we would recommend its collection during future conflicts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1986-01-01

    Provides three descriptions of demonstrations used in various chemistry courses. Includes the use of a simple demonstration model to illustrate principles of chromatography, techniques for using balloons to teach about the behavior of gases, and the use of small concentrations of synthetic polyelectrolytes to induce the flocculation hydrophobic…

  12. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    Science.gov (United States)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground

  13. Surface chemistry and acid-base activity of Shewanella putrefaciens: Cell wall charging and metal binding to bacterial cell walls

    NARCIS (Netherlands)

    Claessens, Jacqueline Wilhelmien

    2006-01-01

    To gain insight into the surface chemistry of live microorganisms, pH stat experiments are combined with analyses of the time-dependent changes in solution chemistry using suspensions of live cells of Shewanella putrefaciens. The results of this study illustrate the complex response of the live

  14. Surface chemistry and acid-base activity of Shewanella putrefaciens : Cell wall charging and metal binding to bacterial cell walls

    NARCIS (Netherlands)

    Claessens, J.W.

    2006-01-01

    To gain insight into the surface chemistry of live microorganisms, pH stat experiments are combined with analyses of the time-dependent changes in solution chemistry using suspensions of live cells of Shewanella putrefaciens. The results of this study illustrate the complex response of the live

  15. Binding Interactions Between alpha-glucans from Lactobacillus reuteri and Milk Proteins Characterised by Surface Plasmon Resonance

    NARCIS (Netherlands)

    Diemer, Silja K.; Svensson, Birte; Babol, Linnea N.; Cockburn, Darrell; Grijpstra, Pieter; Dijkhuizen, Lubbert; Folkenberg, Ditte M.; Garrigues, Christel; Ipsen, Richard H.

    Interactions between milk proteins and alpha-glucans at pH 4.0-5.5 were investigated by use of surface plasmon resonance. The alpha-glucans were synthesised with glucansucrase enzymes from Lactobacillus reuteri strains ATCC-55730, 180, ML1 and 121. Variations in the molecular characteristics of the

  16. Binding Interactions Between α-glucans from Lactobacillus reuteri and Milk Proteins Characterised by Surface Plasmon Resonance

    DEFF Research Database (Denmark)

    Diemer, Silja Kej; Svensson, Birte; Babol, Linnéa N.

    2012-01-01

    Interactions between milk proteins and α-glucans at pH 4.0–5.5 were investigated by use of surface plasmon resonance. The α-glucans were synthesised with glucansucrase enzymes from Lactobacillus reuteri strains ATCC-55730, 180, ML1 and 121. Variations in the molecular characteristics of the α...

  17. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1987-01-01

    Presents three demonstrations suitable for undergraduate chemistry classes. Focuses on experiments with calcium carbide, the induction by iron of the oxidation of iodide by dichromate, and the classical iodine clock reaction. (ML)

  18. Drug-lactose binding aspects in adhesive mixtures: controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces.

    Science.gov (United States)

    Zhou, Qi Tony; Morton, David A V

    2012-03-15

    For dry powder inhaler formulations, micronized drug powders are commonly mixed with coarse lactose carriers to facilitate powder handling during the manufacturing and powder aerosol delivery during patient use. The performance of such dry powder inhaler formulations strongly depends on the balance of cohesive and adhesive forces experienced by the drug particles under stresses induced in the flow environment during aerosolization. Surface modification with appropriate additives has been proposed as a practical and efficient way to alter the inter-particulate forces, thus potentially controlling the formulation performance, and this strategy has been employed in a number of different ways with varying degrees of success. This paper reviews the main strategies and methodologies published on surface coating of lactose carriers, and considers their effectiveness and impact on the performance of dry powder inhaler formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Characterization of SynCAM surface trafficking using a SynCAM derived ligand with high homophilic binding affinity

    International Nuclear Information System (INIS)

    Breillat, Christelle; Thoumine, Olivier; Choquet, Daniel

    2007-01-01

    In order to better probe SynCAM function in neurons, we produced a fusion protein between the extracellular domain of SynCAM1 and the constant fragment of human IgG (SynCAM-Fc). Whether in soluble form or immobilized on latex microspheres, the chimera bound specifically to the surface of hippocampal neurons and recruited endogenous SynCAM molecules. SynCAM-Fc was also used in combination with Quantum Dots to follow the mobility of transfected SynCAM receptors at the neuronal surface. Both immobile and highly mobile SynCAM were found. Thus, SynCAM-Fc behaves as a high affinity ligand that can be used to study the function of SynCAM at the neuronal membrane

  20. Analytical Value of Detecting an Individual Molecular Binding Event:The Case of the Surface Plasmon Resonance Biosensor

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Homola, Jiří

    2012-01-01

    Roč. 84, č. 1 (2012), s. 30-34 ISSN 0003-2700 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058; GA MŠk(CZ) LH11102 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * single-molecule detection * kinetics * microfluidics Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.695, year: 2012

  1. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability.

    Science.gov (United States)

    Du, Fei-Hu; Li, Bo; Fu, Wei; Xiong, Yi-Jun; Wang, Kai-Xue; Chen, Jie-Sheng

    2014-09-17

    Uniform porous silicon hollow nano-spheres are prepared without any sacrificial templates through a magnesio-thermic reduction of mesoporous silica hollow nanospheres and surface modified by the following in situ chemical polymerization of polypyrrole. The porous hollow structure and polypyrrole coating contribute significantly to the excellent structure stability and high electrochemical performance of the nanocomposite. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dynamic conduction and repolarisation changes in early arrhythmogenic right ventricular cardiomyopathy versus benign outflow tract ectopy demonstrated by high density mapping & paced surface ECG analysis.

    Science.gov (United States)

    Finlay, Malcolm C; Ahmed, Akbar K; Sugrue, Alan; Bhar-Amato, Justine; Quarta, Giovanni; Pantazis, Antonis; Ciaccio, Edward J; Syrris, Petros; Sen-Chowdhry, Srijita; Ben-Simon, Ron; Chow, Anthony W; Lowe, Martin D; Segal, Oliver R; McKenna, William J; Lambiase, Pier D

    2014-01-01

    The concealed phase of arrhythmogenic right ventricular cardiomyopathy (ARVC) may initially manifest electrophysiologically. No studies have examined dynamic conduction/repolarization kinetics to distinguish benign right ventricular outflow tract ectopy (RVOT ectopy) from ARVC's early phase. We investigated dynamic endocardial electrophysiological changes that differentiate early ARVC disease expression from RVOT ectopy. 22 ARVC (12 definite based upon family history and mutation carrier status, 10 probable) patients without right ventricular structural anomalies underwent high-density non-contact mapping of the right ventricle. These were compared to data from 14 RVOT ectopy and 12 patients with supraventricular tachycardias and normal hearts. Endocardial & surface ECG conduction and repolarization parameters were assessed during a standard S1-S2 restitution protocol. Definite ARVC without RV structural disease could not be clearly distinguished from RVOT ectopy during sinus rhythm or during steady state pacing. Delay in Activation Times at coupling intervals just above the ventricular effective refractory period (VERP) increased in definite ARVC (43 ± 20 ms) more than RVOT ectopy patients (36 ± 14 ms, p = 0.03) or Normals (25 ± 16 ms, p = 0.008) and a progressive separation of the repolarisation time curves between groups existed. Repolarization time increases in the RVOT were also greatest in ARVC (definite ARVC: 18 ± 20 ms; RVOT ectopy: 5 ± 14, Normal: 1 ± 18, pSurface ECG correlates of these intracardiac measurements demonstrated an increase of greater than 48 ms in stimulus to surface ECG J-point pre-ERP versus steady state, with an 88% specificity and 68% sensitivity in distinguishing definite ARVC from the other groups. This technique could not distinguish patients with genetic predisposition to ARVC only (probable ARVC) from controls. Significant changes in dynamic conduction and repolarization are apparent in early ARVC before detectable RV

  3. Feature Binding in Zebrafish

    Directory of Open Access Journals (Sweden)

    P Neri

    2012-07-01

    Full Text Available Binding operations are primarily ascribed to cortex or similarly complex avian structures. My experiments show that the zebrafish, a lower vertebrate lacking cortex, supports visual feature binding of form and motion for the purpose of social behavior. These results challenge the notion that feature binding may require highly evolved neural structures and demonstrate that the nervous system of lower vertebrates can afford unexpectedly complex computations.

  4. The neuronal Ca(2+) -binding protein 2 (NECAB2) interacts with the adenosine A(2A) receptor and modulates the cell surface expression and function of the receptor.

    Science.gov (United States)

    Canela, Laia; Luján, Rafael; Lluís, Carme; Burgueño, Javier; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Ciruela, Francisco

    2007-09-01

    Heptaspanning membrane also known as G protein-coupled receptors (GPCR) do interact with a variety of intracellular proteins whose function is regulate receptor traffic and/or signaling. Using a yeast two-hybrid screen, NECAB2, a neuronal calcium binding protein, was identified as a binding partner for the adenosine A(2A) receptor (A(2A)R) interacting with its C-terminal domain. Co-localization, co-immunoprecipitation and pull-down experiments showed a close and specific interaction between A(2A)R and NECAB2 in both transfected HEK-293 cells and also in rat striatum. Immunoelectron microscopy detection of NECAB2 and A(2A)R in the rat striatopallidal structures indicated that both proteins are co-distributed in the same glutamatergic nerve terminals. The interaction of NECAB2 with A(2A)R modulated the cell surface expression, the ligand-dependent internalization and the receptor-mediated activation of the MAPK pathway. Overall, these results show that A(2A)R interacts with NECAB2 in striatal neurones co-expressing the two proteins and that the interaction is relevant for A(2A)R function.

  5. Microfilament association of ASGP-2, the concanavalin A-binding glycoprotein of the cell-surface sialomucin complex of 13762 rat mammary ascites tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Vanderpuye, L.A.; Carraway, C.A.C.; Carraway, K.L. (Univ. of Miami School of Medicine, FL (USA))

    1988-10-01

    Microfilament-associated proteins and membrane-microfilament interactions are being investigated in microvilli isolated from 13762 rat mammary ascites tumor cells. Phalloidin shift analyses on velocity sedimentation gradients of Triton X-100 extracts of ({sup 3}H)-glucosamine-labeled microvilli identified a 120-kDa cell-surface glycoprotein associated with the microvillar microfilament core. The identification was verified by concanavalin A (Con A) blots of one- and two-dimensional (2D) electrophoresis gels of sedimented microfilament cores. By 2D-electrophoresis and lectin analyses the 120-kDa protein appeared to be a fraction of ASGP-2, the major Con A-binding glycoprotein of the sialomucin complex of the 13762 cells. This identity was confirmed by immunoblot analyses using immunoblot-purified anti-ASGP-2 from anti-membrane serum prepared against microvillar membranes. Proteolysis of the microvilli with subtilisin or trypsin resulted in an increase in the amount of ASGP-2 associated with the microfilament cores. Proteolysis of isolated microvillar membranes, which contain actin but not microfilaments, also increased the association of ASGP-2 with a Triton-insoluble, actin-containing membrane fraction. Since the Triton-insoluble membrane residue is enriched in actin-containing transmembrane complex, which contains a different glycoprotein, the authors suggest that the ASGP-2 is binding indirectly via this complex to the microfilament core in the intact microvilli.

  6. Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1

    DEFF Research Database (Denmark)

    Joergensen, Louise; Bengtsson, Dominique C; Bengtsson, Anja

    2010-01-01

    gene is expressed per cell at a time. We measured var mRNA transcript levels by real-time Q-PCR, analysed var gene transcripts by single-cell FISH and directly compared these with PfEMP1 antigen surface expression and cytoadhesion in three different antibody-selected P. falciparum 3D7 sub-lines using...... was found to bind both CD31/PECAM1 and CD54/ICAM1 and to adhere twice as efficiently to human endothelial cells, compared to infected cells having only one PfEMP1 variant on the surface. These new results on PfEMP1 antigen expression indicate that a re-evaluation of the molecular mechanisms involved in P...... live confocal microscopy, flow cytometry and in vitro adhesion assays. We found that one selected parasite sub-line simultaneously expressed two different var genes as surface antigens, on single IE. Importantly, and of physiological relevance to adhesion and malaria pathogenesis, this parasite sub-line...

  7. Surface Adsorption Energetics Studied with "Gold Standard" Wavefunction Based Ab Initio Methods: Small Molecule Binding to TiO2(110).

    Science.gov (United States)

    Kubas, Adam M; Berger, Daniel; Oberhofer, Harald; Maganas, Dimitrios; Reuter, Karsten; Neese, Frank

    2016-10-03

    Coupled cluster theory with single, double and perturbative triple excitations (CCSD(T)) is widely considered to be the 'gold standard' of ab initio quantum chemistry. Using the domain-based pair natural orbital local correlation concept (DLPNO-CCSD(T)), these calculations can be performed on systems with hundreds of atoms at an accuracy of about 99.9% of the canonical CCSD(T) method. This allows for ab initio calculations providing reference adsorption energetics at solid surfaces with an accuracy approaching 1 kcal/mol. This is an invaluable asset, not least for the assessment of density-functional theory (DFT) as the prevalent approach for large-scale production calculations in energy or catalysis applications. Here we use DLPNO-CCSD(T) with embedded cluster models to compute entire adsorbate potential energy surfaces for the binding of a set of prototypical closed-shell molecules (H2O, NH3, CH4, CH3OH, CO2) to the rutile TiO2(110) surface. The DLPNO-CCSD(T) calculations show excellent agreement with available experimental data, even for the 'infamous' challenge of correctly predicting the CO2 adsorption geometry. The numerical efficiency of the approach is within one order of magnitude of hybrid-level DFT calculations, hence blurring the borders between reference and production technique.

  8. Demonstration projects

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1976-01-01

    A discussion of some of the projects in Canada planned to demonstrate the technical and economic feasibility of processes using waste heat. Most of the studies are in the planning stage; few field demonstrations are yet in operation in any of the three arbitrary categories of waste heat - high-grade heat (100-200 deg C), medium-grade heat (30-100 deg C), and low-grade heat (below 30 deg C). The survey indicates that, while there is long-term potential in several of the approaches, the time has arrived to start finding some hard facts. (author)

  9. Electroactive chain-like compounds constructed from trimetallic clusters and 4,4'-bipyridine spacers: one-pot synthesis, characterization and surface binding.

    Science.gov (United States)

    Abe, Masaaki; Inatomi, Atsushi; Hisaeda, Yoshio

    2011-03-14

    This paper reports the synthesis and characterization of a novel series of chain-like compounds where oxo-centered triruthenium cluster moieties are bridged by 4,4'-bipyridine (4,4'-bpy) spacers. A reaction of solvent-coordinated triruthenium "monomer" precursor [Ru(3)O(CH(3)CO(2))(6)(CO)(CH(3)OH)(2)] with a 0.1 equimolar amount of 4,4'-bpy in CH(3)OH gave mixture of chain-like compounds containing "dimers" to "tetramers" which were cleanly separated by column chromatography and characterized by spectroscopic and electrochemical methods. Cyclic voltammetry revealed that all chain-like compounds exhibit reversible and stepwise redox processes in solution with very weak intramolecular coupling between the triruthenium components across the 4,4'-bpy bridge. Photo-induced dissociation of CO from the compounds and electrode surface binding were also investigated.

  10. Positive and negative affectivity, stress, and well-being in African-Americans: Initial demonstration of a polynomial regression and response surface methodology approach.

    Science.gov (United States)

    Pierce, Jennifer; Zhdanova, Ludmila; Lucas, Todd

    2017-09-05

    The extent to which positive (PA) and negative (NA) affect conjointly impact well-being is not yet well understood. Additionally, research investigating the role of affectivity in maintaining well-being among ethnic and racial minorities is scant. The current research demonstrates how polynomial regression and response surface methodology (PR and RSM) may be used to better understand how PA and NA jointly influence stress and well-being. In Study 1, 291 African-American undergraduates (M age  = 22.91, SD = 6.91; 67% female) completed measures of affectivity and psychological well-being. In Study 2, a community sample of 117 African-Americans (M age  = 31.87, SD = 13.83; 69% female) completed affectivity measures and a laboratory-based social stressor task to assess links between affectivity and salivary cortisol reactivity. Study 1 included life satisfaction, perceived stress and self-reported depressive symptoms. Study 2 included salivary cortisol reactivity. Across both studies, PA ascendency (i.e. high PA combined with low NA) was associated with better well-being, while NA ascendancy (i.e. high NA combined with low PA) was associated with poorer outcomes. PR and RSM may provide new insight into the conjoint influence of PA and NA on health and well-being. We discuss potential implications for affectivity research, including race-related explorations.

  11. Quantified Binding Scale of Competing Ligands at the Surface of Gold Nanoparticles: The Role of Entropy and Intermolecular Forces.

    Science.gov (United States)

    Goldmann, Claire; Ribot, François; Peiretti, Leonardo F; Quaino, Paola; Tielens, Frederik; Sanchez, Clément; Chanéac, Corinne; Portehault, David

    2017-05-01

    A basic understanding of the driving forces for the formation of multiligand coronas or self-assembled monolayers over metal nanoparticles is mandatory to control and predict the properties of ligand-protected nanoparticles. Herein, 1 H nuclear magnetic resonance experiments and advanced density functional theory (DFT) modeling are combined to highlight the key parameters defining the efficiency of ligand exchange on dispersed gold nanoparticles. The compositions of the surface and of the liquid reaction medium are quantitatively correlated for bifunctional gold nanoparticles protected by a range of competing thiols, including an alkylthiol, arylthiols of varying chain length, thiols functionalized by ethyleneglycol units, and amide groups. These partitions are used to build scales that quantify the ability of a ligand to exchange dodecanethiol. Such scales can be used to target a specific surface composition by choosing the right exchange conditions (ligand ratio, concentrations, and particle size). In the specific case of arylthiols, the exchange ability scale is exploited with the help of DFT modeling to unveil the roles of intermolecular forces and entropic effects in driving ligand exchange. It is finally suggested that similar considerations may apply to other ligands and to direct biligand synthesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.

    Science.gov (United States)

    Bohacek, R S; McMartin, C

    1992-05-15

    The accessible surface, described by Lee and Richards (the L&R surface: J. Mol. Biol. 1971, 55, 379), has remarkably useful properties for displaying ligand-protein interactions. The surface is placed one van der Waals radius plus one probe radius away from the protein atoms. The ligands are displayed in skeletal form. With a suitable probe radius, those parts of the ligand in good van der Waals contact with the protein binding site are found superimposed on the L&R surface. Display of the surface using parallel contours therefore provides a very powerful guide for interactive drug design because only ligand atoms lying on or close to the surface are in low-energy contact. The ability of the surface to accurately display steric complementarity between ligands and proteins was optimized using data from small molecule crystal structures. The possibility of displaying the chemical specificity of the binding site was also investigated. The surface can be colored to give precise information about chemical specificity. Electrostatic potential, electrostatic gradient, and distance to hydrogen-bonding groups were tested as methods of displaying chemical specificity. The ability of these methods to describe the complementarity actually observed in the interior of proteins was compared. High-resolution crystal data for ribonuclease and trypsin was used. The environment surrounding extended peptide chains in the protein was treated as a virtual binding site. The peptide chain served as a virtual ligand. This large sample of experimental data was used to measure the correlation between type of ligand atom and the calculated property of the nearest binding site surface. The best correlation was obtained using hydrogen-bonding properties of the binding site. Using this parameter the surface could be divided into three separate zones representing the hydrophobic, hydrogen-bond-acceptor, and hydrogen-bond-donor properties of the binding site. The percentage of hydrophobic ligand

  13. Comparison between the classical interaction energy and periodic Hartree-Fock binding energies for the interaction between molecules and surfaces

    International Nuclear Information System (INIS)

    Chacon-Taylor, M.R.; McCarthy, M.I.

    1995-01-01

    The energetics of the H 2 O/MgO(001), HCl/MgO(001), and NH 3 /MgO(001) interface were investigated using the ab initio periodic Hartree-Fock LCAO method and a classical interaction energy model. The QM calculations treated a system that was periodic in two dimensions with the adsorbate approaching a three-layer slab of MgO(001). The authors used an approximation to the classical interaction energy, where the surface is represented by its potential, electric field, and electric field derivatives at the positions of the molecule center of mass, and the molecule is described by its charge, electric dipole, electric quadrupole and polarizability. The potential, electric field and electric field gradient are obtained for the clean three-layer slab using the ab initio periodic Hartree-Fock LCAO method (CRYSTAL) and an optimized split valence basis 8-61G on Mg and 8-51G on O. The charge, electric dipole, and electric quadrupole are calculated using ab initio Hartree-Fock theory (GAUSSIAN-92) with a 6-31G* basis set while the SCF polarizability is determined analytically using the same basis set

  14. Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen.

    Science.gov (United States)

    Yadav, Ashok Kumar; Tyagi, Ashish; Kaushik, Jai Kumar; Saklani, Asha Chandola; Grover, Sunita; Batish, Virender Kumar

    2013-12-14

    Human feacal isolates were ascertain as genus Lactobacillus using specific primer LbLMA1/R16-1 and further identified as Lactobacillus plantarum with species specific primers Lpl-3/Lpl-2. 25 L. plantarum strains were further assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to immobilized human collagen type-1. Surface proteins were isolated from selected L. plantarum 91(Lp91) strain. The purified collagen binding protein (Cbp) protein was assessed for its anti-adhesion activity against enteric Escherichia coli 0157:H7 pathogen on immobilized collagen. Four L. plantarum strains displayed high degree of hydrophobicity and significant adhesion to collagen. A 72 kDa protein was purified which reduced 59.71% adhesion of E. coli 0157:H7 on immobilized collagen as compared to control well during adhesion assay. Cbp protein is the major influencing factor in inhibition of E. coli 0157:H7 adhesion with extracellular matrix (ECM) components. Hydrophobicity and adhesion potential are closely linked attributes precipitating in better colonization potential of the lactobacillus strains. Cbp is substantiated as a crucial surface protein contributing in adhesion of lactobacillus strains. The study can very well be the platform for commercialization of indigenous probiotic strain once their functional attributes are clinically explored. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. ICT Demonstration

    DEFF Research Database (Denmark)

    Jensen, Tine Wirenfeldt; Bay, Gina

    , formulating a research problem as well as writing techniques as deeply integrated elements of the academic work process. The importance of creating an engaging and supportive learning environment: When teaching subjects such as plagiarism and study skills, the student can easily be constructed as a cheater...... and a poor student by discourse that emphasizes rule-breaking or which highlights poor study skills rather than focusing on knowledge building. This view of the student as “untrustworthy” (McGregor, 1960) can be communicated not only through explicit discourse; it can be implicit in the design of learning......In this demonstration we present and discuss two interrelated on-line learning resources aimed at supporting international students at Danish universities in building study skills (the Study Metro) and avoiding plagiarism (Stopplagiarism). We emphasize the necessity of designing online learning...

  16. Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements.

    Science.gov (United States)

    Shie, Ming-You; Ding, Shinn-Jyh

    2013-09-01

    Cell attachment, proliferation and differentiation on different materials depend largely on the surface properties of the materials. This study sheds light on the mechanism by which the modulation of the chemical composition of calcium silicate cements with different Si/Ca molar ratios could produce different cell responses. Two primary cell types (human mesenchymal stem cells (hMSCs) and human dental pulp cells (hDPCs)) were used to elicit the changes in total DNA content, integrin subunit levels, phosphor-focal adhesion kinase (pFAK) levels, and mitogen-activated protein kinase (MAPK) signaling pathway activity at the cell attachment stage. The effect of small interfering RNA (siRNA) transfection targeting collagen type I (COL I) and fibronectin (FN) was also evaluated. The results indicated that increased total DNA content, pFAK and total integrin levels were observed upon an increase in cement Si content. Cements with different Si/Ca ratios did not cause the variations of interleukin 1β (IL-1β), epidermal growth factor (EGF) and tumor necrosis factor-α (TNF-α) ligands. The Si-rich cement facilitated COL I and α2β1 subintegrin expression, while Ca-rich cement promoted FN and αvβ3 subintegrin expression. Si component of the calcium silicates stimulated cell adhesion via activation of MAPK/extracellular signal-regulated kinase (ERK) and p38 signaling pathways more effectively than did by Ca component, but it did not affect c-Jun NH2-terminal kinase (JNK) activity. Inhibition of MAPK/ERK and MAPK/p38 signaling pathways in hMSCs and hDPCs significantly attenuated adhesion, proliferation and differentiation as assessed according to total DNA content and alkaline phosphatase activity. hMSCs and hDPCs from the three different donors exhibited a similar preference for cell behaviors. The results of the current study suggest that calcium silicate cements with a higher Si content have the potential to serve as excellent supports for primary cells. Unraveling the

  17. The binding parameters of radiolabelled monoclonal F (ab')2 and Fab' fragments relative to immunoglobulin G in reactions with surface-bound antigens

    International Nuclear Information System (INIS)

    Fjeld, J.G.; Nustad, K.; Michaelsen, T.E.

    1992-01-01

    The binding parameters of iodine-125-labelled intact monoclonal immunoglobulin G (IgG), F(ab') 2 and Fab' fragments were compared. The study was carried out with the two monoclonal antibodies (MoAbs) K13 and K16 specific for human Ig light chains κ and λ, respectively. When testing the 125 I-MoAbs against monodisperse polymer particles coated with the specific antigens, the K a for the F(ab') 2 fragments were similar to that for IgG, while the K a for the Fab' fragments were reduced to 10%-20% of that for IgG. The number N of effective target sites revealed with Fab' was higher than with F(ab') and IgG, presumably because less surface area is occupied by the small Fab' molecules. The immunoreactive fraction F ranged according to IgG>F(ab') 2 >Fab'. The explanation of the moderate difference between the K a of the monoclonal Fab' and the divalent IgG and F(ab') 2 was that the divalent molecules were not divalently attached to the particles. When testing the same antibody preparations against humanlymphoma cells producing Ig with light chains κ or λ, the binding results were less reliable than when particles were utilised, presumably due to antigen shedding. Different MoAbs vary in their loss of immunoreactivity due to enzymatic degradation and the radiolabelling procedure. The preparation of the radiolabelled fragments should therefore be optimized for each MoAb, and evaluation is necessary before injection. Artificial targets with a low leakage of antigen, like the monodisperse polymer particles here applied, are recommended for the in vitro evaluation of the immunoreactivity of labelled MoAb preparations. (orig.)

  18. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets.

    Science.gov (United States)

    Guzmán Prieto, Ana M; Urbanus, Rolf T; Zhang, Xinglin; Bierschenk, Damien; Koekman, C Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P; Pape, Marieke; Paganelli, Fernanda L; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P A; Bonten, Marc J M; Willems, Rob J L; van Schaik, Willem

    2015-12-17

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.

  19. Activated α2-macroglobulin binding to cell surface GRP78 induces T-loop phosphorylation of Akt1 by PDK1 in association with Raptor.

    Directory of Open Access Journals (Sweden)

    Uma Kant Misra

    Full Text Available PDK1 phosphorylates multiple substrates including Akt by PIP3-dependent mechanisms. In this report we provide evidence that in prostate cancer cells stimulated with activated α2-macroglobulin (α2M* PDK1 phosphorylates Akt in the T-loop at Thr(308 by using Raptor in the mTORC1 complex as a scaffold protein. First we demonstrate that PDK1, Raptor, and mTOR co-immunoprecipitate. Silencing the expression, not only of PDK1, but also Raptor by RNAi nearly abolished Akt phosphorylation at Akt(Thr308 in Raptor-immunoprecipitates of α2M*-stimulated prostate cancer cells. Immunodepleting Raptor or PDK from cell lysates of cells treated with α2M* drastically reduced Akt phosphorylation at Thr(308, which was recovered by adding the supernatant of Raptor- or PDK1-depleted cell lysates, respectively. Studies of insulin binding to its receptor on prostate cancer cells yielded similar results. We thus demonstrate that phosphorylating the T-loop Akt residue Thr(308 by PDK1 requires Raptor of the mTORC1 complex as a platform or scaffold protein.

  20. Surface Ozone Measured at GLOBE Schools in the Czech Republic: A Demonstration of the Importance of Student Contribution to the Larger Science Picture

    Science.gov (United States)

    Pippin, Margaret R.; Creilson, John K.; Henderson, Bryana L.; Ladd, Irene H.; Fishman, Jack; Votapkova, Dana; Krpcova, Ilona

    2008-01-01

    GLOBE (Global Learning and Observations to Benefit the Environment) is a worldwide hands-on, primary and secondary school-based education and science program, developed to give students a chance to perform real science by making measurements, analyzing data, and participating in research in collaboration with scientists. As part of the GLOBE Surface Ozone Protocol and with the assistance of the TEREZA Association in the Czech Republic, schools in the Czech Republic have been making and reporting daily measurements of surface ozone and surface meteorological data since 2001. Using a hand-held ozone monitor developed for GLOBE, students at several Czech schools have generated multiyear data records of surface ozone from 2001 to 2005. Analysis of the data shows surface ozone levels were anomalously high during the summer of 2003 relative to other summers. These findings are consistent with measurements by the European Environment Agency that highlights the summer of 2003 as having exceptionally long-lasting and spatially extensive episodes of high surface ozone, especially during the first half of August. Further analysis of the summer s prevailing meteorology shows not only that it was one of the hottest on record, a finding also seen in the student data, but the conditions for production of ozone were ideal. Findings such as these increase student, teacher, and scientist confidence in the utility of the GLOBE data for engaging budding scientists in the collection, analysis, and eventual interpretation of the data for inquiry-based education.

  1. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Gourlay Keith

    2012-07-01

    Full Text Available Abstract Background Cellulose amorphogenesis, described as the non-hydrolytic “opening up” or disruption of a cellulosic substrate, is becoming increasingly recognized as one of the key steps in the enzymatic deconstruction of cellulosic biomass when used as a feedstock for fuels and chemicals production. Although this process is thought to play a major role in facilitating hydrolysis, the lack of quantitative techniques capable of accurately describing the molecular-level changes occurring in the substrate during amorphogenesis has hindered our understanding of this process. Results In this work, techniques for measuring changes in cellulose accessibility are reviewed and a new quantitative assay method is described. Carbohydrate binding modules (CBMs with specific affinities for crystalline (CBM2a or amorphous (CBM44 cellulose were used to track specific changes in the surface morphology of cotton fibres during amorphogenesis. The extents of phosphoric acid-induced and Swollenin-induced changes to cellulose accessibility were successfully quantified using this technique. Conclusions The adsorption of substructure-specific CBMs can be used to accurately quantify the extent of changes to cellulose accessibility induced by non-hydrolytic disruptive proteins. The technique provided a quick, accurate and quantitative measure of the accessibility of cellulosic substrates. Expanding the range of CBMs used for adsorption studies to include those specific for such compounds as xylan or mannan should also allow for the accurate quantitative tracking of the accessibility of these and other polymers within the lignocellulosic biomass matrix.

  2. Response surface modeling to predict fluid loss from beef strip loins and steaks injected with salt and phosphate with or without a dehydrated beef protein water binding adjunct.

    Science.gov (United States)

    Lowder, Austin C; Goad, Carla L; Lou, Xingqiu; Morgan, J Brad; Koh, Chern Lin; Deakins, Alisha Parsons; Mireles DeWitt, Christina A

    2013-05-01

    This study was conducted using response surface methodology to predict fluid loss from injected beef strip steaks as influenced by levels of salt and sodium phosphates (SP) in the injection brine. Also, a beef-based dehydrated beef protein (DBP) water binding ingredient was evaluated. Paired U.S. select beef strip loins were quartered before being injected with 110% of initial weight with brines containing various concentrations of salt and SP (CON) or salt, SP and 5% DBP. Steaks were sliced, overwrapped and stored in the dark for 4d. Purge values ranged from 0.6% to 4.6% for CON and 0.3% to 2.1% for DBP. Fluid losses when accounting for the fluid lost from injection to slicing were as high as 6.8% for CON brines, but only 2.8% for DBP brines. The equations generated here and the DBP product could help producers achieve acceptable purge while reducing sodium use. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Localization of gonadotropin binding sites in human ovarian neoplasms

    International Nuclear Information System (INIS)

    Nakano, R.; Kitayama, S.; Yamoto, M.; Shima, K.; Ooshima, A.

    1989-01-01

    The binding of human luteinizing hormone and human follicle-stimulating hormone to ovarian tumor biopsy specimens from 29 patients was analyzed. The binding sites for human luteinizing hormone were demonstrated in one tumor of epithelial origin (mucinous cystadenoma) and in one of sex cord-stromal origin (theca cell tumor). The binding sites for human follicle-stimulating hormone were found in three tumors of epithelial origin (serous cystadenoma and mucinous cystadenoma) and in two of sex cord-stromal origin (theca cell tumor and theca-granulosa cell tumor). The surface-binding autoradiographic study revealed that the binding sites for gonadotropins were localized in the stromal tissue. The results suggest that gonadotropic hormones may play a role in the growth and differentiation of a certain type of human ovarian neoplasms

  4. Receptor-recognized α₂-macroglobulin binds to cell surface-associated GRP78 and activates mTORC1 and mTORC2 signaling in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Uma K Misra

    Full Text Available OBJECTIVE: Tetrameric α(2-macroglobulin (α(2M, a plasma panproteinase inhibitor, is activated upon interaction with a proteinase, and undergoes a major conformational change exposing a receptor recognition site in each of its subunits. Activated α(2M (α(2M* binds to cancer cell surface GRP78 and triggers proliferative and antiapoptotic signaling. We have studied the role of α(2M* in the regulation of mTORC1 and TORC2 signaling in the growth of human prostate cancer cells. METHODS: Employing immunoprecipitation techniques and Western blotting as well as kinase assays, activation of the mTORC1 and mTORC2 complexes, as well as down stream targets were studied. RNAi was also employed to silence expression of Raptor, Rictor, or GRP78 in parallel studies. RESULTS: Stimulation of cells with α(2M* promotes phosphorylation of mTOR, TSC2, S6-Kinase, 4EBP, Akt(T308, and Akt(S473 in a concentration and time-dependent manner. Rheb, Raptor, and Rictor also increased. α(2M* treatment of cells elevated mTORC1 kinase activity as determined by kinase assays of mTOR or Raptor immunoprecipitates. mTORC1 activity was sensitive to LY294002 and rapamycin or transfection of cells with GRP78 dsRNA. Down regulation of Raptor expression by RNAi significantly reduced α(2M*-induced S6-Kinase phosphorylation at T389 and kinase activity in Raptor immunoprecipitates. α(2M*-treated cells demonstrate about a twofold increase in mTORC2 kinase activity as determined by kinase assay of Akt(S473 phosphorylation and levels of p-Akt(S473 in mTOR and Rictor immunoprecipitates. mTORC2 activity was sensitive to LY294002 and transfection of cells with GRP78 dsRNA, but insensitive to rapamycin. Down regulation of Rictor expression by RNAi significantly reduces α(2M*-induced phosphorylation of Akt(S473 phosphorylation in Rictor immunoprecipitates. CONCLUSION: Binding of α(2M* to prostate cancer cell surface GRP78 upregulates mTORC1 and mTORC2 activation and promotes protein

  5. Demonstration of characteristic skin surface contours of extramammary Paget's disease and parapsoriasis en plaque by image analysis of negative impression replicas.

    Science.gov (United States)

    Kikuchi, Katsuko; Aiba, Setsuya; O'Goshi, Ken-ichiro; Yanai, Motohiro; Takahashi, Motoji; Kasai, Hidefumi; Tagami, Hachiro

    2002-10-01

    The surface contours of lesional skin of certain skin diseases, such as parapsoriasis en plaque (PEP) and extramammary Paget's disease (EMPD), in which there is a massive infiltration by non-epidermal cells, looks somewhat different from that of the adjacent normal skin, needless to state that they are apparently different from that of ordinary chronic inflammatory dermatoses where we found acanthotic epidermis accompanied by hyperkeratosis. We attempted to objectively characterize these unique skin surface changes qualitatively and quantitatively using non-invasive methods. Negative impression replicas were taken from the lesional skin of patients with EMPD or PEP as well as from the adjacent uninvolved skin. The findings were confirmed histologically. The replicas were examined by using computerized image analysis. Several parameters were analyzed that correlate with the changes in the anisotropy of the skin furrows (VC1), average skin roughness (KSD), average length of skin furrows (LEN), and number of skin furrows (NUM). There were significant decreases in KSD and NUM in EMPD, indicating a smoother skin surface in the lesional skin than in the adjacent normal skin. In contrast, the PEP lesion had an increase in VC1 and LEN and a decrease in NUM, which suggests larger skin ridges in the lesional skin than in the uninvolved skin. Thus the unique skin surface of the cutaneous disorders accompanied by epidermal invasion by non-epidermal cells, such as EMPD and PEP, was characterized both qualitatively and quantitatively using computerized image analysis of negative impression replicas.

  6. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan

    2005-01-01

    to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...

  7. Protein A-containing staphylococcus aureus as an immunoglobulin-binding reagent: 1) in radioimmunoassays - 'staf-RIA' - recently also for antibiotics and microbial antigens/antibodies, and 2) in a non-radioactive surface immunoassay - 'Staph-ace ay' read by the naked eye - primarily for antibodies to antigens adsorbed to transparent surfaces

    International Nuclear Information System (INIS)

    Jonsson, S.

    1977-01-01

    This paper is intended to summarize recent developments for the use of protein A-containing staphylococci as an immunoglobulin-binding reagent in various types of radioimmunoassay and some related areas, particularly the staphylococcal surface immunoassay. The paper also presents a new process for the large scale preparation of a freeze-dried preparation of the immunoglobulin-binding, killed staphylococci, which thereby gain a much improved suspension stability. (orig.) [de

  8. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  9. Effect of surface strain on oxygen adsorption on Zr (0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xing [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Engineering Physics; Khafizov, Marat [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Szlufarska, Izabela [Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Engineering Physics; Univ. of Wisconsin-Madison, Madison, WI (United States). Dept. of Materials Science and Engineering

    2014-02-01

    The effect of surface strain on oxygen adsorption on Zr (0 0 0 1) surface is investigated by density functional theory (DFT) calculations. It is demonstrated that both surface strain and interactions between oxygen adsorbates influence the adsorption process. Oxygen binding to zirconium becomes stronger as the strain changes from compressive to tensile. When oxygen coverage is low and the oxygen interactions are negligible, surface face-centered cubic sites are the most stable for O binding. At high coverage and under compression, octahedral sites between second and third Zr layers become most favorable because the interactions between adsorbates are weakened by positive charge screening. Calculations with both single-layer adsorption model and multiple-layer adsorption model demonstrate that compressive strain at the Zr/oxide interface will provide a thermodynamic driving force for oxygen to incorporate from the surface into the bulk of Zr, while binding oxygen to the Zr surface will be easier when tensile strain is applied.

  10. Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering.

    Science.gov (United States)

    Nakanishi, Akihito; Bae, Jungu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2012-10-23

    To permit direct cellulose degradation and ethanol fermentation, Saccharomyces cerevisiae BY4741 (Δsed1) codisplaying 3 cellulases (Trichoderma reesei endoglucanase II [EG], T. reesei cellobiohydrolase II [CBH], and Aspergillus aculeatus β-glucosidase I [BG]) was constructed by yeast cell-surface engineering. The EG used in this study consists of a family 1 carbohydrate-binding module (CBM) and a catalytic module. A comparison with family 1 CBMs revealed conserved amino acid residues and flexible amino acid residues. The flexible amino acid residues were at positions 18, 23, 26, and 27, through which the degrading activity for various cellulose structures in each biomass may have been optimized. To select the optimal combination of CBMs of EGs, a yeast mixture with comprehensively mutated CBM was constructed. The mixture consisted of yeasts codisplaying EG with mutated CBMs, in which 4 flexible residues were comprehensively mutated, CBH, and BG. The yeast mixture was inoculated in selection medium with newspaper as the sole carbon source. The surviving yeast consisted of RTSH yeast (the mutant sequence of CBM: N18R, S23T, S26S, and T27H) and wild-type yeast (CBM was the original) in a ratio of 1:46. The mixture (1 RTSH yeast and 46 wild-type yeasts) had a fermentation activity that was 1.5-fold higher than that of wild-type yeast alone in the early phase of saccharification and fermentation, which indicates that the yeast mixture with comprehensively mutated CBM could be used to select the optimal combination of CBMs suitable for the cellulose of each biomass.

  11. Focal cortical hypoperfusion in corticobasal degeneration demonstrated by three-dimensional surface display with {sup 123}I-IMP: a possible cause of apraxia

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, B. [5. Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya (Japan); Tachibana, H. [5. Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya (Japan); Takeda, M. [5. Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya (Japan); Kawabata, K. [5. Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya (Japan); Sugita, M. [5. Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya (Japan); Fukuchi, M. [Department of Nuclear Medicine, Hyogo College of Medicine, Nishinomiya (Japan)

    1995-11-01

    To clarify cortical lesions responsible for apraxia in corticobasal degeneration (CBD), we reconstructed three-dimensional surface images from single-photon emission computed tomography (SPECT) data with N-isopropyl-p[I-123]-iodoamphetamine in two patients with CBD. Both had limb-kinetic apraxia (LKA) and one also had constructional apraxia (CA). Both showed asymmetrical cortical hypoperfusion in the perirolandic area. The patient with CA had unilateral hypoperfusion in the posterior parietal area. Thus, cortical hypoperfusion in the perirolandic area corresponded to LKA, and that in the posterior parietal area to CA. (orig.). With 4 figs.

  12. Focal cortical hypoperfusion in corticobasal degeneration demonstrated by three-dimensional surface display with 123I-IMP: a possible cause of apraxia

    International Nuclear Information System (INIS)

    Okuda, B.; Tachibana, H.; Takeda, M.; Kawabata, K.; Sugita, M.; Fukuchi, M.

    1995-01-01

    To clarify cortical lesions responsible for apraxia in corticobasal degeneration (CBD), we reconstructed three-dimensional surface images from single-photon emission computed tomography (SPECT) data with N-isopropyl-p[I-123]-iodoamphetamine in two patients with CBD. Both had limb-kinetic apraxia (LKA) and one also had constructional apraxia (CA). Both showed asymmetrical cortical hypoperfusion in the perirolandic area. The patient with CA had unilateral hypoperfusion in the posterior parietal area. Thus, cortical hypoperfusion in the perirolandic area corresponded to LKA, and that in the posterior parietal area to CA. (orig.). With 4 figs

  13. Anti-CD8 antibodies can inhibit or enhance peptide-MHC class I (pMHCI) multimer binding: this is paralleled by their effects on CTL activation and occurs in the absence of an interaction between pMHCI and CD8 on the cell surface.

    Science.gov (United States)

    Wooldridge, Linda; Hutchinson, Sarah L; Choi, Ed M; Lissina, Anna; Jones, Emma; Mirza, Fareed; Dunbar, P Rod; Price, David A; Cerundolo, Vincenzo; Sewell, Andy K

    2003-12-15

    Cytotoxic T lymphocytes recognize short peptides presented in association with MHC class I (MHCI) molecules on the surface of target cells. The Ag specificity of T lymphocytes is conferred by the TCR, but invariable regions of the peptide-MHCI (pMHCI) molecule also interact with the cell surface glycoprotein CD8. The distinct binding sites for CD8 and the TCR allow pMHCI to be bound simultaneously by both molecules. Even before it was established that the TCR recognized pMHCI, it was shown that CTL exhibit clonal heterogeneity in their ability to activate in the presence of anti-CD8 Abs. These Ab-based studies have since been interpreted in the context of the interaction between pMHCI and CD8 and have recently been extended to show that anti-CD8 Ab can affect the cell surface binding of multimerized pMHCI Ags. In this study, we examine the role of CD8 further using point-mutated pMHCI Ag and show that anti-CD8 Abs can either enhance or inhibit the activation of CTL and the stable cell surface binding of multimerized pMHCI, regardless of whether there is a pMHCI/CD8 interaction. We further demonstrate that multimerized pMHCI Ag can recruit CD8 in the absence of a pMHCI/CD8 interaction and that anti-CD8 Abs can generate an intracellular activation signal resulting in CTL effector function. These results question many previous assumptions as to how anti-CD8 Abs must function and indicate that CD8 has multiple roles in CTL activation that are not necessarily dependent on an interaction with pMHCI.

  14. Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1

    Science.gov (United States)

    Knoepfler, Paul S.; Calvo, Katherine R.; Chen, Haiming; Antonarakis, Stylianos E.; Kamps, Mark P.

    1997-01-01

    E2a-Pbx1 is a chimeric transcription factor oncoprotein produced by the t(1;19) translocation in human pre-B cell leukemia. Class I Hox proteins bind DNA cooperatively with both Pbx proteins and oncoprotein E2a-Pbx1, suggesting that leukemogenesis by E2a-Pbx1 and Hox proteins may alter transcription of cellular genes regulated by Pbx–Hox motifs. Likewise, in murine myeloid leukemia, transcriptional coactivation of Meis1 with HoxA7/A9 suggests that Meis1–HoxA7/9 heterodimers may evoke aberrant gene transcription. Here, we demonstrate that both Meis1 and its relative, pKnox1, dimerize with Pbx1 on the same TGATTGAC motif selected by dimers of Pbx proteins and unidentified partner(s) in nuclear extracts, including those from t(1;19) pre-B cells. Outside their homeodomains, Meis1 and pKnox1 were highly conserved only in two motifs required for cooperativity with Pbx1. Like the unidentified endogenous partner(s), both Meis1 and pKnox1 failed to dimerize significantly with E2a-Pbx1. The Meis1/pKnox1-interaction domain in Pbx1 resided predominantly in a conserved N-terminal Pbx domain deleted in E2a-Pbx1. Thus, the leukemic potential of E2a-Pbx1 may require abrogation of its interaction with members of the Meis and pKnox families of transcription factors, permitting selective targeting of genes regulated by Pbx–Hox complexes. In addition, because most motifs bound by Pbx–Meis1/pKnox1 were not bound by Pbx1–Hox complexes, the leukemic potential of Meis1 in myeloid leukemias may involve shifting Pbx proteins from promoters containing Pbx–Hox motifs to those containing Pbx–Meis motifs. PMID:9405651

  15. Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1.

    Science.gov (United States)

    Knoepfler, P S; Calvo, K R; Chen, H; Antonarakis, S E; Kamps, M P

    1997-12-23

    E2a-Pbx1 is a chimeric transcription factor oncoprotein produced by the t(1;19) translocation in human pre-B cell leukemia. Class I Hox proteins bind DNA cooperatively with both Pbx proteins and oncoprotein E2a-Pbx1, suggesting that leukemogenesis by E2a-Pbx1 and Hox proteins may alter transcription of cellular genes regulated by Pbx-Hox motifs. Likewise, in murine myeloid leukemia, transcriptional coactivation of Meis1 with HoxA7/A9 suggests that Meis1-HoxA7/9 heterodimers may evoke aberrant gene transcription. Here, we demonstrate that both Meis1 and its relative, pKnox1, dimerize with Pbx1 on the same TGATTGAC motif selected by dimers of Pbx proteins and unidentified partner(s) in nuclear extracts, including those from t(1;19) pre-B cells. Outside their homeodomains, Meis1 and pKnox1 were highly conserved only in two motifs required for cooperativity with Pbx1. Like the unidentified endogenous partner(s), both Meis1 and pKnox1 failed to dimerize significantly with E2a-Pbx1. The Meis1/pKnox1-interaction domain in Pbx1 resided predominantly in a conserved N-terminal Pbx domain deleted in E2a-Pbx1. Thus, the leukemic potential of E2a-Pbx1 may require abrogation of its interaction with members of the Meis and pKnox families of transcription factors, permitting selective targeting of genes regulated by Pbx-Hox complexes. In addition, because most motifs bound by Pbx-Meis1/pKnox1 were not bound by Pbx1-Hox complexes, the leukemic potential of Meis1 in myeloid leukemias may involve shifting Pbx proteins from promoters containing Pbx-Hox motifs to those containing Pbx-Meis motifs.

  16. SU-E-T-96: Demonstration of a Consistent Method for Correcting Surface Dose Measurements Using Both Solid State and Ionization Chamber Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T; Gerbi, B; Higgins, P [UniversityMinnesota, Minneapolis, MN (United States)

    2014-06-01

    Purpose: To compare the surface dose (SD) measured using a PTW 30-360 extrapolation chamber with different commonly used dosimeters (Ds): parallel plate ion chambers (ICs): RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial; TLD chips (cTLD), TLD powder (pTLD), optically stimulated (OSLs), radiochromic (EXR2) and radiographic (EDR2) films, and to provide an intercomparison correction to Ds for each of them. Methods: Investigations were performed for a 6 MV x-ray beam (Varian Clinac 2300, 10x10 cm{sup 2} open field, SSD = 100 cm). The Ds were placed at the surface of the solid water phantom and at the reference depth dref=1.7cm. The measurements for cTLD, OSLs, EDR2 and EXR2 were corrected to SD using an extrapolation method (EM) indexed to the baseline PTW 30-360 measurements. A consistent use of the EM involved: 1) irradiation of three Ds stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. An additional measurement was performed with externally exposed OSLs (eOSLs), that were rotated out of their protective housing. Results: All single Ds measurements overestimated the SD compared with the extrapolation chamber, except for Attix IC. The closest match to the true SD was measured with the Attix IC (− 0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EXR2 (14%), EDR2 (14.8%) and OSL (26%). The EM method of correction for SD worked well for all Ds, except the unexposed OSLs. Conclusion: This EM cross calibration of solid state detectors with an extrapolation or Attix chamber can provide thickness corrections for cTLD, eOSLs, EXR2, and EDR2. Standard packaged OSLs were not found to be simply corrected.

  17. Binding of peanut lectin to germinal-centre cells: a marker for B-cell subsets of follicular lymphoma?

    OpenAIRE

    Rose, M. L.; Habeshaw, J. A.; Kennedy, R.; Sloane, J.; Wiltshaw, E.; Davies, A. J.

    1981-01-01

    The binding of horseradish-peroxidase-labelled peanut lectin (HRP-PNL) to cryostat sections of tonsil, lymphoma lymph nodes, reactive lymph nodes and miscellaneous tumours demonstrated that PNL binds selectively to lymphocytes in germinal centres. Lymph nodes from 21 patients with non-Hodgkin's lymphomas were phenotyped as cell suspensions for PNL binding, and the following surface markers: E rosetting, C3d, SIg, OK markers of T-cell subsets, Ig heavy-chain and light-chain classes. There was ...

  18. Nonspecific immunoglobulin M binding and chondroitin sulfate A binding are linked phenotypes of Plasmodium falciparum isolates implicated in malaria during pregnancy

    DEFF Research Database (Denmark)

    Creasey, Alison M; Staalsoe, Trine; Raza, Ahmed

    2003-01-01

    Binding of immunoglobulin M (IgM) antibodies from normal human serum to the surface of Plasmodium falciparum-infected red blood cells (iRBC) has previously been demonstrated only in parasites that form rosettes with uninfected red cells. We show that natural, nonspecific IgM but not IgG, IgA, Ig......D, or IgE also binds to the surface of iRBC selected for adhesion to chondroitin sulfate A (CSA), a placental receptor for parasites associated with malaria in pregnancy. The protease sensitivity of IgM-binding appears to match that of CSA binding, suggesting that the two phenotypes may be mediated...... by the same parasite molecule. We also show that a wide range of mouse monoclonal antibodies of the IgM class bind nonspecifically to CSA-selected iRBC, an important consideration in the interpretation of immunological assays performed on these parasite lines....

  19. Palpability Support Demonstrated

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk; Grönvall, Erik; Fors, David

    2007-01-01

    In ubiquitous computing, as more and more devices are embedded into the environment, there is a risk that the user loses the understanding of the system. In normal use this is not always a problem, but when breakdowns occur it is crucial that the user understands the system to be able to handle...... is based on the Active Surfaces concept in which therapists rehabilitate physically and mentally impaired children by means of an activity that stimulates the children both physically and cognitively. In this paper we demonstrate how palpability can be supported in a prototype of the Active Surfaces...

  20. Palpability Support Demonstrated

    DEFF Research Database (Denmark)

    Brønsted, Jeppe; Grönvall, Erik; Fors, David

    2007-01-01

    the situation. The concept of palpable computing, introduced by the PalCom project, denotes systems which support such understandability. In PalCom, a set of prototype scenarios provide input for an open software architecture and a conceptual framework for palpable computing. One of these prototype scenarios...... is based on the Active Surfaces concept in which therapists rehabilitate physically and mentally impaired children by means of an activity that stimulates the children both physically and cognitively. In this paper we demonstrate how palpability can be supported in a prototype of the Active Surfaces...

  1. Characterization of soluble fibronectin binding to Bacille Calmette-Guérin.

    Science.gov (United States)

    Aslanzadeh, J; Brown, E J; Quillin, S P; Ritchey, J K; Ratliff, T L

    1989-10-01

    Fibronectin (FN), a 420 kDa glycoprotein, consists of two similar subunits linked by a disulphide bond near the C-terminal end. FN is present in soluble and matrix forms in various body fluids and tissues and has been shown to bind to variety of organisms. We characterized the conditions required for 125I-FN binding to Bacille Calmette-Guérin (BCG). The binding was dose-dependent, reached saturation within 3 min, and was essentially irreversible for at least 24 h under optimal binding conditions at pH 6.0. In contrast, the binding was reversible (greater than 90% in 24 h) when the pH was increased to 10.0. Scatchard analysis of the dose-response experiments produced a straight line, suggesting the presence of a single class of FN receptor on BCG. 125I-FN binding was trypsin-sensitive, suggesting that the BCG-binding molecule is a protein. The number of FN receptors was determined to be 8000-15,000 per bacterium. 125I-FN binding was pH dependent, with maximal binding at acidic pH. 125I-FN binding was sensitive to the presence of NaCl, with 0.08 M-NaCl inhibiting binding by 85%. These data demonstrate that soluble FN binds to a trypsin-sensitive cell-surface component of BCG in an essentially irreversible manner.

  2. Human recombinant antibodies against Plasmodium falciparum merozoite surface protein 3 cloned from peripheral blood leukocytes of individuals with immunity to malaria demonstrate antiparasitic properties

    DEFF Research Database (Denmark)

    Lundquist, Rasmus; Nielsen, Leif Kofoed; Jafarshad, Ali

    2006-01-01

    against MSP-3 residues 194 to 257 (MSP-3(194-257)) on the molecular level. mRNA from peripheral blood leukocytes from clinically immune individuals was used as a source of Fab (fragment antibody) genes. A Fab-phage display library was made, and three distinct antibodies designated RAM1, RAM2, and RAM3...... were isolated by panning. Immunoglobulin G1 (IgG1) and IgG3 full-length antibodies have been produced in CHO cells. Reactivity with the native parasite protein was demonstrated by immunofluorescence microscopy, flow cytometry, and immunoblotting. Furthermore, the antiparasitic effect of RAM1 has been...... tested in vitro in an antibody-dependent cellular inhibition (ADCI) assay. Both the IgG1 and the IgG3 versions of the antibody show an inhibitory effect on parasite growth....

  3. Modeling Shear Induced Von Willebrand Factor Binding to Collagen

    Science.gov (United States)

    Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong

    2017-11-01

    Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).

  4. Demonstration of a landscape-scale approach for predicting acute copper toxicity to larval fathead minnows (Pimephales promelas) in surface waters.

    Science.gov (United States)

    Van Genderen, Eric J; Klaine, Stephen J

    2008-04-01

    Watersheds have historically been used as the appropriate spatial classification unit for managing water resources. However, geology, soil type, predominant vegetation, and climate have obvious influences on water quality and are not constrained by watercourses or political boundaries. This concept has evolved for several decades and developed the concept of ecoregions and other spatial schemes. While this approach to water resource management has considered the interaction between water quality and biological integrity (aquatic community structure and assemblage), it has not been applied in the context of predicting aquatic toxicity. As such, a previously published study providing a chemical and toxicological data set consisting of 24 sampling sites in South Carolina, USA, and was used to develop empirical models for predicting acute copper (Cu) toxicity to larval fathead minnows (Pimephales promelas). Moreover, numerous spatial classifications (hydrologic units, ecoregions, stream order, adjacent land use, and proximity to certain land uses) and seasonality were used to delineate sites and develop empirical models based on these different classifications. An independent sampling and testing regime was implemented to determine the performance of the empirical models and whether certain classifications could be used to extrapolate toxicity data across spatial landscapes. Additionally, a computational model (biotic ligand model [BLM]) for deriving site-specific water quality criteria for Cu also was used as a reference for current regulatory application. Empirical models based on delineations of stream order, hydrologic unit, and downstream distance to urbanization accurately predicted at least 60% of the observed Cu toxicity values within the supplemental data set. Delineations based on adjacent land use, ecoregions, and seasons were not as useful for predicting acute Cu toxicity but demonstrated better performance than the BLM.

  5. Binding sites for gonadotropins in human postmenopausal ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, R.; Shima, K.; Yamoto, M.; Kobayashi, M.; Nishimori, K.; Hiraoka, J.

    1989-02-01

    The binding of human LH and human FSH to postmenopausal ovarian tissue from 21 patients with cervical carcinoma was analyzed. The binding sites for FSH and LH were demonstrated in postmenopausal ovarian tissue. The surface-binding sites for gonadotropins were localized in the cells of cortical stroma of the postmenopausal ovary. In addition, diffuse cytoplasmic staining of endogenous estrogen and 3 beta-hydroxysteroid dehydrogenase activity were detected immunohistochemically and histochemically in the cells of the cortical stroma. Electron microscopic study also suggested steroidogenic function in the cells of the cortical stroma. The results of the present study suggest that postmenopausal ovaries contain specific binding sites for pituitary gonadotropins and play a role in ovarian steroidogenesis.

  6. Binding matrix: a novel approach for binding site recognition.

    Science.gov (United States)

    Kim, Jan T; Gewehr, Jan E; Martinetz, Thomas

    2004-06-01

    Recognition of protein-DNA binding sites in genomic sequences is a crucial step for discovering biological functions of genomic sequences. Explosive growth in availability of sequence information has resulted in a demand for binding site detection methods with high specificity. The motivation of the work presented here is to address this demand by a systematic approach based on Maximum Likelihood Estimation. A general framework is developed in which a large class of binding site detection methods can be described in a uniform and consistent way. Protein-DNA binding is determined by binding energy, which is an approximately linear function within the space of sequence words. All matrix based binding word detectors can be regarded as different linear classifiers which attempt to estimate the linear separation implied by the binding energy function. The standard approaches of consensus sequences and profile matrices are described using this framework. A maximum likelihood approach for determining this linear separation leads to a novel matrix type, called the binding matrix. The binding matrix is the most specific matrix based classifier which is consistent with the input set of known binding words. It achieves significant improvements in specificity compared to other matrices. This is demonstrated using 95 sets of experimentally determined binding words provided by the TRANSFAC database.

  7. Comparison of the binding properties of the mushroom Marasmius oreades lectin and Griffonia simplicifolia I-B isolectin to alphagalactosyl carbohydrate antigens in the surface phase

    DEFF Research Database (Denmark)

    Kirkeby, Svend; Winter, Harry C; Goldstein, Irwin J

    2004-01-01

    and laminin from basement membrane of mouse sarcoma that contains the xenogenic Galalpha1-3Gal1-4GlcNAc epitope were immobilized in microtiter plate wells and lectin binding determined with an enzyme-linked assay. After 24 h of incubation, MOA had higher affinity for the xenogenic pentasaccharide (Galalpha1....... The results indicate that the Marasmius oreades lectin has nearly the same affinities as does GS I-B(4) for the simple xenogenic carbohydrate antigens, but MOA has greater affinity for the pentasaccharide and is far more specific in its binding preferences than the Griffonia lectin....

  8. C-terminal domain on the outer surface of the Macrobrachium rosenbergii nodavirus capsid is required for Sf9 cell binding and internalization.

    Science.gov (United States)

    Somrit, Monsicha; Watthammawut, Atthaboon; Chotwiwatthanakun, Charoonroj; Ounjai, Puey; Suntimanawong, Wanida; Weerachatyanukul, Wattana

    2017-01-02

    We have shown that Macrobrachium rosenbergii nodavirus (MrNV) was able to infect Sf9 cells and that MrNV virus-like particles (MrNV-VLPs) were capable nanocontainers for delivering nucleic acid-based materials. Here, we demonstrated that chymotryptic removal of a C-terminal peptide and its truncated variant (F344-MrNV-VLPs) exhibited a drastically reduced ability to interact and internalize into Sf9 cells. Electron microscopic observations revealed that the loss of C-terminal domain either from enzyme hydrolysis or genetic truncation did not affect the generated MrNV-VLPs' icosahedral conformation, but did drastically affect the VLPs' internalization ability into Sf9 cells. Homology-based modelling of the MrNV capsid with other icosahedral capsid models revealed that this chymotrypsin-sensitive C-terminal domain was not only exposed on the capsid surface, but also constituted the core of the viral capsid protrusion. These results therefore suggest the importance of the C-terminal domain as a structure for targeted cell interaction which is presumably localized at the protruding domain. This work thus provided the functional insights into the role of the MrNV C-terminal domain in viral entry into Sf9 cells and lead to the development of strategies in combatting MrNV infection in susceptible cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; He, Maofang; Wang, Chaozhan; Wei, Yinmao, E-mail: ymwei@nwu.edu.cn

    2015-07-30

    Boronate affinity materials have been widely used for specific separation and preconcentration of cis-diol molecules, but most do not have sufficient capacity due to limited binding sites on the material surface. In this work, we prepared a phenylboronic acid-functionalized adsorbent with a high binding capacity via the combination of surface-initiated atom transfer radical polymerization (SI-ATRP) and chain-end functionalization. With this method, the terminal chlorides of the polymer chains were used fully, and the proposed adsorbent contains dense boronic acid polymers chain with boronic acid on the chain end. Consequently, the proposed adsorbent possesses excellent selectivity and a high binding capacity of 513.6 μmol g{sup −1} for catechol and 736.8 μmol g{sup −1} for fructose, which are much higher than those of other reported adsorbents. The dispersed solid-phase extraction (dSPE) based on the prepared adsorbent was used for extraction of three cis-diol drugs (i.e., epinephrine, isoprenaline and caffeic acid isopropyl ester) from plasma; the eluates were analyzed by HPLC-UV. The reduced amount of adsorbent (i.e., 2.0 mg) could still eliminate interferences efficiently and yielded a recovery range of 85.6–101.1% with relative standard deviations ranging from 2.5 to 9.7% (n = 5). The results indicated that the proposed strategy could serve as a promising alternative to increase the density of surface functional groups on the adsorbent; thus, the prepared adsorbent has the potential to effectively enrich cis-diol substances in real samples. - Highlights: • Boronate adsorbent is prepared via ATRP and chain-end functionalization. • The adsorbent has quite high binding capacity for cis-diols. • Binding capacity is easily manipulated by ATRP condition. • Chain-end functionalization can improve binding capacity significantly. • Reduced adsorbent is consumed in dispersed solid-phase extraction of cis-diols.

  10. Heterodimerization of Hox proteins with Pbx1 and oncoprotein E2a-Pbx1 generates unique DNA-binding specifities at nucleotides predicted to contact the N-terminal arm of the Hox homeodomain--demonstration of Hox-dependent targeting of E2a-Pbx1 in vivo.

    Science.gov (United States)

    Lu, Q; Kamps, M P

    1997-01-09

    Hox proteins control genetic programs that orchestrate development, and a large subset of Hox proteins can bind DNA elements as heterodimers with the Pbx family of homeodomain proteins. A transcriptionally activated version of Pbx1, E2a-Pbx1, is an oncoprotein in human pre-B cell leukemia that strongly suppresses differentiation and retains its ability to heterodimerize with Hox proteins. Because monomeric Hox proteins bind very similar DNA motifs, it is unclear how they activate diverse developmental programs. Here we demonstrate that heterodimers containing different Hox proteins and a common Pbx1 or E2a-Pbx1 partner bind different DNA motifs. Structural models suggest that the specificity of the Hox protein is altered by a conformation change involving residues in the N-terminal arm of the Hox homeodomain. Mutational analysis also supported the hypothesis that unique sequences in the N-terminal arm of the Hox homeodomain are at least partially responsible for mediating this specificity. In vivo, Hox proteins directed E2a-Pbx1-mediated transactivation with moderate specificity to cognate Hox-Pbx motifs. Thus, the development specificity of individual Hox proteins may be mediated, in part, by differential targeting of cellular genes by Pbx1-Hox complexes. Likewise, through its function as a common heterodimer partner, oncoprotein E2a-Pbx1 may be able to interfere with multiple programs of development that are induced by the sequential or simultaneous expression of Hox proteins during hematopoiesis.

  11. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate...... defence against HIV. A chimeric protein containing the N-terminal and collagen domains of SP-D linked to the neck and carbohydrate-recognition domains of MBL (called SP-D/MBL(neck+CRD)) had greater ability to bind to gp120 and inhibit virus replication than either SP-D or MBL. The enhanced binding of SP...

  12. Hetero-multivalent binding of cholera toxin subunit B with glycolipid mixtures.

    Science.gov (United States)

    Krishnan, Pratik; Singla, Akshi; Lee, Chin-An; Weatherston, Joshua D; Worstell, Nolan C; Wu, Hung-Jen

    2017-12-01

    GM 1 has generally been considered as the major receptor that binds to cholera toxin subunit B (CTB) due to its low dissociation constant. However, using a unique nanocube sensor technology, we have shown that CTB can also bind to other glycolipid receptors, fucosyl-GM 1 and GD 1 b. Additionally, we have demonstrated that GM 2 can contribute to CTB binding if present in a glycolipid mixture with a strongly binding receptor (GM 1 /fucosyl-GM 1 /GD 1 b). This hetero-multivalent binding result was unintuitive because the interaction between CTB and pure GM 2 is negligible. We hypothesized that the reduced dimensionality of CTB-GM 2 binding events is a major cause of the observed CTB binding enhancement. Once CTB has attached to a strong receptor, subsequent binding events are confined to a 2D membrane surface. Therefore, even a weak GM 2 receptor could now participate in second or higher binding events because its surface reaction rate can be up to 10 4 times higher than the bulk reaction rate. To test this hypothesis, we altered the surface reaction rate by modulating the fluidity and heterogeneity of the model membrane. Decreasing membrane fluidity reduced the binding cooperativity between GM 2 and a strong receptor. Our findings indicated a new protein-receptor binding assay, that can mimic complex cell membrane environment more accurately, is required to explore the inherent hetero-multivalency of the cell membrane. We have thus developed a new membrane perturbation protocol to efficiently screen receptor candidates involved in hetero-multivalent protein binding. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  14. Phe783, Thr797, and Asp804 in transmembrane hairpin M5-M6 of Na+,K+-ATPase play a key role in ouabain binding.

    NARCIS (Netherlands)

    Qiu, L.Y.; Koenderink, J.B.; Swarts, H.G.P.; Willems, P.H.G.M.; Pont, J.J.H.H.M. de

    2003-01-01

    Ouabain is a glycoside that binds to and inhibits the action of Na+,K+-ATPase. Little is known, however, about the specific requirements of the protein surface for glycoside binding. Using chimeras of gastric H+,K+-ATPase and Na+,K+-ATPase, we demonstrated previously that the combined presence of

  15. Demonstration of HITEX

    International Nuclear Information System (INIS)

    Morrison, H.D.; Woodall, K.B.

    1993-01-01

    A model reactor for HITEX successfully demonstrated the concept of high-temperature isotopic exchange in a closed loop simulating the conditions for fusion fuel cleanup. The catalyst of platinum on alumina pellets provided a surface area large enough to operate the reactor at 400 degrees celsius with flow rates up to 2 L/min. A 15-L tank containing a mixture of 4% CD 4 in H 2 was depleted in deuterium within 75 minutes down to 100 ppm HD above the natural concentration of HD in the make-up hydrogen stream. The application to tritium removal from tritiated impurities in a hydrogen stream will work as well or better

  16. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A.

    Science.gov (United States)

    Canela, Núria; Orzáez, Mar; Fucho, Raquel; Mateo, Francesca; Gutierrez, Ricardo; Pineda-Lucena, Antonio; Bachs, Oriol; Pérez-Payá, Enrique

    2006-11-24

    The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.

  17. Drosophila melanogaster mini spindles TOG3 utilizes unique structural elements to promote domain stability and maintain a TOG1- and TOG2-like tubulin-binding surface.

    Science.gov (United States)

    Howard, Amy E; Fox, Jaime C; Slep, Kevin C

    2015-04-17

    Microtubule-associated proteins regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family is comprised of conserved microtubule-associated proteins that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A-F) Huntingtin, elongation factor 3, protein phosphatase 2A, target of rapamycin (HEAT) repeats, to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differentially conserved architectures across the array, with implications for position-dependent TOG domain tubulin binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here, we present the structure and characterization of Drosophila melanogaster Mini spindles (Msps) TOG3. Msps TOG3 has two unique features as follows: the first is a C-terminal tail that stabilizes the ultimate four HEAT repeats (HRs), and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2 and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1· and TOG2·tubulin complex structures suggests that TOG3 uses similarly conserved tubulin-binding intra-HEAT loop residues to engage α- and β-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1-3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. First-Principle Framework for Total Charging Energies in Electrocatalytic Materials and Charge-Responsive Molecular Binding at Gas-Surface Interfaces.

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A; Seal, Prasenjit; Smith, Sean C

    2016-05-04

    Heterogeneous charge-responsive molecular binding to electrocatalytic materials has been predicted in several recent works. This phenomenon offers the possibility of using voltage to manipulate the strength of the binding interaction with the target gas molecule and thereby circumvent thermochemistry constraints, which inhibit achieving both efficient binding and facile release of important targets such as CO2 and H2. Stability analysis of such charge-induced molecular adsorption has been beyond the reach of existing first-principle approaches. Here, we draw on concepts from semiconductor physics and density functional theory to develop a first principle theoretical approach that allows calculation of the change in total energy of the supercell due to charging. Coupled with the calculated adsorption energy of gas molecules at any given charge, this allows a complete description of the energetics of the charge-induced molecular adsorption process. Using CO2 molecular adsorption onto negatively charged h-BN (wide-gap semiconductor) and g-C4N3 (half metal) as example cases, our analysis reveals that - while adsorption is exothermic after charge is introduced - the overall adsorption processes are not intrinsically spontaneous due to the energetic cost of charging the materials. The energies needed to overcome the barriers of these processes are 2.10 and 0.43 eV for h-BN and g-C4N3, respectively. This first principle approach opens up new pathways for a more complete description of charge-induced and electrocatalytic processes.

  19. Crystal Structures and Binding Dynamics of Odorant-Binding Protein 3 from two aphid species Megoura viciae and Nasonovia ribisnigri.

    Science.gov (United States)

    Northey, Tom; Venthur, Herbert; De Biasio, Filomena; Chauviac, Francois-Xavier; Cole, Ambrose; Ribeiro, Karlos Antonio Lisboa; Grossi, Gerarda; Falabella, Patrizia; Field, Linda M; Keep, Nicholas H; Zhou, Jing-Jiang

    2016-04-22

    Aphids use chemical cues to locate hosts and find mates. The vetch aphid Megoura viciae feeds exclusively on the Fabaceae, whereas the currant-lettuce aphid Nasonovia ribisnigri alternates hosts between the Grossulariaceae and Asteraceae. Both species use alarm pheromones to warn of dangers. For N. ribisnigri this pheromone is a single component (E)-β-farnesene but M. viciae uses a mixture of (E)-β-farnesene, (-)-α-pinene, β-pinene, and limonene. Odorant-binding proteins (OBP) are believed to capture and transport such semiochemicals to their receptors. Here, we report the first aphid OBP crystal structures and examine their molecular interactions with the alarm pheromone components. Our study reveals some unique structural features: 1) the lack of an internal ligand binding site; 2) a striking groove in the surface of the proteins as a putative binding site; 3) the N-terminus rather than the C-terminus occupies the site closing off the conventional OBP pocket. The results from fluorescent binding assays, molecular docking and dynamics demonstrate that OBP3 from M. viciae can bind to all four alarm pheromone components and the differential ligand binding between these very similar OBP3s from the two aphid species is determined mainly by the direct π-π interactions between ligands and the aromatic residues of OBP3s in the binding pocket.

  20. Adsorption of 2 Chloroethyl Ethyl Sulfide on Silica: Binding Mechanism and Energy of a Bifunctional Hydrogen-Bond Acceptor at the Gas Surface Interface

    Science.gov (United States)

    2014-11-19

    hydroxylated silica to help construct an understanding of how sulfur mustard gas adheres to hydroxyl-containing surfaces. In this study, infrared spectroscopy...SECURITY CLASSIFICATION OF: This work investigates the fundamental nature of sulfur mustard surface adsorption by characterizing interfacial hydrogen...Hydrogen-Bond Acceptor at the Gas –Surface Interface The views, opinions and/or findings contained in this report are those of the author(s) and

  1. Nonspecific immunoglobulin M binding and chondroitin sulfate A binding are linked phenotypes of Plasmodium falciparum isolates implicated in malaria during pregnancy

    DEFF Research Database (Denmark)

    Creasey, Alison M; Staalsoe, Trine; Raza, Ahmed

    2003-01-01

    Binding of immunoglobulin M (IgM) antibodies from normal human serum to the surface of Plasmodium falciparum-infected red blood cells (iRBC) has previously been demonstrated only in parasites that form rosettes with uninfected red cells. We show that natural, nonspecific IgM but not IgG, IgA, IgD...

  2. Binding and Utilization of Human Transferrin by Prevotella nigrescens

    Science.gov (United States)

    Duchesne, Pascale; Grenier, Daniel; Mayrand, Denis

    1999-01-01

    To survive and multiply within their hosts, pathogens must possess efficient iron-scavenging mechanisms. In the present study, we investigate the capacity of Prevotella nigrescens and Prevotella intermedia to use various sources of iron for growth and characterize the transferrin-binding activity of P. nigrescens. Iron-saturated human transferrin and lactoferrin, but not ferric chloride and the iron-free form of transferrin, could be used as sources of iron by P. nigrescens and P. intermedia. Neither siderophore activity nor ferric reductase activity could be detected in P. nigrescens and P. intermedia. However, both species showed transferrin-binding activity as well as the capacity to proteolytically cleave transferrin. To various extents, all strains of P. nigrescens and P. intermedia tested demonstrated transferrin-binding activity. The activity was heat and protease sensitive. The capacity of P. nigrescens to bind transferrin was decreased when cells were grown in the presence of hemin. Preincubation of bacterial cells with hemin, hemoglobin, lactoferrin, fibrinogen, immunoglobulin G, or laminin did not affect transferrin-binding activity. The transferrin-binding protein could be extracted from the cell surface of P. nigrescens by treatment with a zwitterionic detergent. Subjecting the cell surface extract to affinity chromatography on an agarose-transferrin column revealed that it contained a protein having an estimated molecular mass of 37 kDa and possessing transferrin-binding activity. The transferrin-binding activity of P. nigrescens and P. intermedia may permit the bacteria to obtain iron for survival and growth in periodontal pockets. PMID:9916061

  3. Five tumor necrosis factor-inducible cell adhesion mechanisms on the surface of mouse endothelioma cells mediate the binding of leukocytes

    OpenAIRE

    1993-01-01

    We have distinguished five TNF-alpha-inducible cell adhesion mechanisms on microvasculature-derived endothelioma cells of the mouse which mediate the binding of different types of leukocytes. Three of these mechanisms could be identified as the mouse homologs of ICAM-1, VCAM-1, and E-selectin, of which the latter was defined by the novel mAb 21KC10. The fourth TNF-alpha-inducible cell adhesion mechanism was blocked by antibodies specific for mouse P-selectin. We have recently shown that TNF-a...

  4. Waste and Disposal: Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2002-01-01

    Within the Belgian R and D programme on geological disposal, demonstration experiments have become increasingly important. In this contribution to the scientific report 2001, an overview is given of SCK-CEN's activities and achievements in the field of large-scale demonstration experiments. In 2001, main emphasis was on the PRACLAY project, which is a large-scale experiment to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In the context of PRACLAY, a surface experiment (OPHELIE) has been developed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory. In 2001, efforts were focussed on the operation of the OPHELIE mock-up. SCK-CEN also contributed to the SELFRAC roject which studies the self-healing of fractures in a clay formation

  5. Binding of alphaherpesvirus glycoprotein H to surface α4β1-integrins activates calcium-signaling pathways and induces phosphatidylserine exposure on the plasma membrane.

    Science.gov (United States)

    Azab, Walid; Gramatica, Andrea; Herrmann, Andreas; Osterrieder, Nikolaus

    2015-10-20

    Intracellular signaling connected to integrin activation is known to induce cytoplasmic Ca(2+) release, which in turn mediates a number of downstream signals. The cellular entry pathways of two closely related alphaherpesviruses, equine herpesviruses 1 and 4 (EHV-1 and EHV-4), are differentially regulated with respect to the requirement of interaction of glycoprotein H (gH) with α4β1-integrins. We show here that binding of EHV-1, but not EHV-4, to target cells resulted in a rapid and significant increase in cytosolic Ca(2+) levels. EHV-1 expressing EHV-4 gH (gH4) in lieu of authentic gH1 failed to induce Ca(2+) release, while EHV-4 with gH1 triggered significant Ca(2+) release. Blocking the interaction between gH1 and α4β1-integrins, inhibiting phospholipase C (PLC) activation, or blocking binding of inositol 1,4,5-triphosphate (IP3) to its receptor on the endoplasmic reticulum (ER) abrogated Ca(2+) release. Interestingly, phosphatidylserine (PS) was exposed on the plasma membrane in response to cytosolic calcium increase after EHV-1 binding through a scramblase-dependent mechanism. Inhibition of both Ca(2+) release from the ER and scramblase activation blocked PS scrambling and redirected virus entry to the endocytic pathway, indicating that PS may play a role in facilitating virus entry directly at the plasma membrane. Herpesviruses are a large family of enveloped viruses that infect a wide range of hosts, causing a variety of diseases. These viruses have developed a number of strategies for successful entry into different cell types. We and others have shown that alphaherpesviruses, including EHV-1 and herpes simplex virus 1 (HSV-1), can route their entry pathway and do so by manipulation of cell signaling cascades to ensure viral genome delivery to nuclei. We show here that the interaction between EHV-1 gH and cellular α4β1-integrins is necessary to induce emptying of ER calcium stores, which induces phosphatidylserine exposure on the plasma membrane

  6. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  7. Mapping the heparin-binding site of the osteoinductive protein NELL1 by site-directed mutagenesis.

    Science.gov (United States)

    Takahashi, Kaneyoshi; Imai, Arisa; Iijima, Masumi; Yoshimoto, Nobuo; Maturana, Andrés D; Kuroda, Shun'ichi; Niimi, Tomoaki

    2015-12-21

    Neural epidermal growth factor-like (NEL)-like 1 (NELL1) is a secretory osteogenic protein comprising an N-terminal thrombospondin-1-like (TSPN) domain, four von Willebrand factor type C domains, and six epidermal growth factor-like repeats. NELL1 shows heparin-binding activity; however, the biological significance remains to be explored. In this report, we demonstrate that NELL1 binds to cell surface proteoglycans through its TSPN domain. Major heparin-binding sites were identified on the three-dimensional structural model of the TSPN domain of NELL1. Mutant analysis of the heparin-binding sites indicated that the heparin-binding activity of the TSPN domain is involved in interaction of NELL1 with cell surface proteoglycans. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Spatial charge configuration regulates nanoparticle transport and binding behavior in vivo

    Science.gov (United States)

    Han, Hee-Sun; Martin, John D.; Lee, Jungmin; Harris, Daniel K.; Fukumura, Dai; Jain, Rakesh K.; Bawendi, Moungi

    2013-01-01

    Detailed Charge arrangements: A new set of zwitterionic quantum dots were synthesized and used to study the influence of microscopic charge arrangements on the in vivo behavior of nanoparticles. Experiments using cultured cells and live mice demonstrate that the microscopic arrangement of surface charges strongly influence nonspecific binding, clearance behavior, and in vivo transport of nanoparticles. PMID:23255143

  9. Treponema pallidum receptor binding proteins interact with fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Baseman, J.B.; Alderete, J.F.

    1983-06-01

    Analysis of plasma proteins avidly bound to T. pallidum surfaces revealed the ability of T. pallidum to acquire numerous host macromolecules. No acquisition was evident by the avirulent spirochete, T. phagedenis biotype Reiter. Western blotting technology using hyperimmune antifibronectin serum as a probe revealed the ability of virulent treponemes to avidly bind fibronectin from a complex medium such as plasma. The specificity of the tiplike adherence of motile T. pallidum to fibronectin-coated glass surfaces and to fibronectin on HEp-2 cells was reinforced by the observation that pretreatment of coverslips or cell monolayers with monospecific antiserum against fibronectin substantially reduced T. pallidum attachment. The stoichiometric binding of T. pallidum to fibronectin-coated coverslips and the inability of unlabeled or /sup 35/S-radiolabeled treponemes to interact with glass surfaces treated with other plasma proteins further established the specific nature of the interaction between virulent T. pallidum and fibronectin. The avid association between three outer envelope proteins of T. pallidum and fibronectin was also demonstrated. These treponemal surface proteins have been previously identified as putative receptor-binding proteins responsible for T. pallidum parasitism of host cells. The data suggest that surface fibronectin mediates tip-oriented attachment of T. pallidum to host cells via a receptor-ligand mechanism of recognition.

  10. Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes.

    Science.gov (United States)

    Ravi, Vikash Kumar; Santra, Pralay K; Joshi, Niharika; Chugh, Jeetender; Singh, Sachin Kumar; Rensmo, Håkan; Ghosh, Prasenjit; Nag, Angshuman

    2017-10-19

    Optoelectronic properties of CsPbBr 3 perovskite nanocubes (NCs) depend strongly on the interaction of the organic passivating molecules with the inorganic crystal. To understand this interaction, we employed a combination of synchrotron-based X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR) spectroscopy, and first-principles density functional theory (DFT)-based calculations. Variable energy XPS elucidated the internal structure of the inorganic part in a layer-by-layer fashion, whereas NMR characterized the organic ligands. Our experimental results confirm that oleylammonium ions act as capping ligands by substituting Cs + ions from the surface of CsPbBr 3 NCs. DFT calculations shows that the substitution mechanism does not require much energy for surface reconstruction and, in contrast, stabilizes the nanocrystal by the formation of three hydrogen bonds between the -NH 3 + moiety of oleylammonium and surrounding Br - on the surface of NCs. This substitution mechanism and its origin are in stark contrast to the usual adsorption of organic ligands on the surface of typical NCs.

  11. Dual function of novel pollen coat (surface proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND: The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., "de-fatted", and, as a result, their involvement in allergy has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass pollen (BGP by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP and endoxylanase (EXY. The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. CONCLUSIONS/SIGNIFICANCE: Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic

  12. Selection and Characterization of Single-Stranded DNA Aptamers Binding Human B-Cell Surface Protein CD20 by Cell-SELEX

    Directory of Open Access Journals (Sweden)

    Mansoureh Haghighi

    2018-03-01

    Full Text Available The B-lymphocyte antigen (CD20 is a suitable target for single-stranded (ss nucleic acid oligomer (aptamers. The aim of study was selection and characterization of a ssDNA aptamer against CD20 using Cell-Systematic Evolution of Ligands by Exponential Enrichment (Cell-SELEX. The cDNA clone of CD20 (pcDNA-CD20 was transfected to human embryonic kidney (HEK293T cells. Ten rounds of Cell-SELEX was performed on recombinant HEK-CD20 cells. The final eluted ssDNA pool was amplified and ligated in T/A vector for cloning. The plasmids of positive clones were extracted, sequenced and the secondary structures of the aptamers predicted using DNAMAN® software. The sequencing results revealed 10 different types; three of them had the highest thermodynamic stability, named AP-1, AP-2 and AP-3. The AP-1 aptamer was the most thermodynamically stable one (ΔGAP-1 = −10.87 kcal/mol with the highest binding affinity to CD20 (96.91 ± 4.5 nM. Since, the CD20 is a suitable target for recognition of B-Cell. The selected aptamers could be comparable to antibodies with many advantages. The AP-1, AP-2 and AP-3 could be candidate instead of antibodies for diagnostic and therapeutic applications in immune deficiency, autoimmune diseases, leukemia and lymphoma.

  13. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  14. Structural Analysis of a Complex between Small Ubiquitin-like Modifier 1 (SUMO1) and the ZZ Domain of CREB-binding Protein (CBP/p300) Reveals a New Interaction Surface on SUMO

    DEFF Research Database (Denmark)

    Diehl, Carl; Akke, Mikael; Bekker-Jensen, Simon

    2016-01-01

    We have recently discovered that the ZZ zinc finger domain represents a novel small ubiquitin-like modifier (SUMO) binding motif. In this study we identify the binding epitopes in the ZZ domain of CBP (CREB-binding protein) and SUMO1 using NMR spectroscopy. The binding site on SUMO1 represents a ...

  15. Steric and allosteric factors prevent simultaneous binding of transferrin-binding proteins A and B to transferrin.

    Science.gov (United States)

    Silva, Leslie P; Yu, Rong-hua; Calmettes, Charles; Yang, Xue; Moraes, Trevor F; Schriemer, David C; Schryvers, Anthony B

    2012-06-01

    The ability to acquire iron directly from host Tf (transferrin) is an adaptation common to important bacterial pathogens belonging to the Pasteurellaceae, Moraxellaceae and Neisseriaceae families. A surface receptor comprising an integral outer membrane protein, TbpA (Tf-binding protein A), and a surface-exposed lipoprotein, TbpB (Tf-binding protein B), mediates the iron acquisition process. TbpB is thought to extend from the cell surface for capture of Tf to initiate the process and deliver Tf to TbpA. TbpA functions as a gated channel for the passage of iron into the periplasm. In the present study we have mapped the effect of TbpA from Actinobacillus pleuropneumoniae on pTf (porcine Tf) using H/DX-MS (hydrogen/deuterium exchange coupled to MS) and compare it with a previously determined binding site for TbpB. The proposed TbpA footprint is adjacent to and potentially overlapping the TbpB-binding site, and induces a structural instability in the TbpB site. This suggests that simultaneous binding to pTf by both receptors would be hindered. We demonstrate that a recombinant TbpB lacking a portion of its anchor peptide is unable to form a stable ternary TbpA-pTf-TbpB complex. This truncated TbpB does not bind to a preformed Tf-TbpA complex, and TbpA removes pTf from a preformed Tf-TbpB complex. Thus the results of the present study support a model whereby TbpB 'hands-off' pTf to TbpA, which completes the iron removal and transport process.

  16. Regular square planer bis-(4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione)/copper(II) complex: Trans/cis-DFT isomerization, crystal structure, thermal, solvatochromism, hirshfeld surface and DNA-binding analysis

    Science.gov (United States)

    Hema, M. K.; Karthik, C. S.; Warad, Ismail; Lokanath, N. K.; Zarrouk, Abdelkader; Kumara, Karthik; Pampa, K. J.; Mallu, P.

    2018-04-01

    Trans-[Cu(O∩O)2] complex, O∩O = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione was reported with high potential toward CT-DNA binder. The solved XRD-structure of complex indicated a perfect regular square-planer geometry around the Cu(II) center. The trans/cis-DFT-isomerization calculation supported the XRD seen in reflecting the trans-isomer as the kinetic-favor isomer. The desired complex structure was also characterized by conductivity measurement, CHN-elemental analyses, MS, EDX, SEM, UV-Vis., FT-IR, HAS and TG/DTG. The Solvatochromism behavior of the complex was evaluated using four different polar solvents. MPE and Hirshfeld surface analysis (HSA) come to an agreement that fluoride and thiophene protons atoms are with suitable electro-potential environment to form non-classical H-bonds of type CThsbnd H⋯F. The DNA-binding properties were investigated by viscosity tests and spectrometric titrations, the results revealed the complex as strong calf-thymus DNA binder. High intrinsic-binding constants value ∼1.8 × 105 was collected.

  17. Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells.

    OpenAIRE

    Matthew, E; Laskin, J D; Zimmerman, E A; Weinstein, I B; Hsu, K C; Engelhardt, D L

    1981-01-01

    We found that two markers of differentiation, tyrosinase (monophenol, dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) activity and melanin synthesis, are induced by diazepam in B16/C3 mouse melanoma cells. We also demonstrated high-affinity binding sites for [3H]diazepam in these cells by radioreceptor assay, and we visualized binding to the cell surface by fluorescence microscopy with a benzodiazepine analog conjugated to a fluorescein-labeled protein. Our studies also showed tha...

  18. Phage display derived human monoclonal antibodies isolated by binding to the surface of live primary breast cancer cells recognize GRP78

    DEFF Research Database (Denmark)

    Jakobsen, Charlotte G; Rasmussen, Nicolaj; Laenkholm, Anne-Vibeke

    2007-01-01

    Clinical trials using monoclonal antibodies (mAb) against cell-surface markers have yielded encouraging therapeutic results in several cancer types. Generally, however, anticancer antibodies are only efficient against a subpopulation of cancers, and there is a strong need for identification of no...... therapies including mAb-based immunotherapy. Our results suggest that the human antibody Ab39 may be a useful starting point for further genetic optimization that could render it a useful diagnostic and therapeutic reagent for a variety of cancers...

  19. A dipeptide with enhanced anion binding affinity enables cell uptake and protein delivery.

    Science.gov (United States)

    Li, Mao; Mosel, Stefanie; Knauer, Shirley K; Schmuck, Carsten

    2018-03-14

    Herein, we report a rather simple strategy to enhance the anion binding ability of a dipeptide to achieve cell uptake and also protein delivery. Peptide 1, composed of only two synthetic amino acids with an artificial anion binding site in the side chains, has an overall molecular weight of only 630 Da and demonstrated strong binding affinity (10 7 M -1 ) and clustering ability with heparin as a model for cell surface sugars. Furthermore, peptide 1 is also efficiently taken up by cells most likely via endocytosis. The uptake efficiency is dependent on the amount of glycosaminoglycans on the cell surface. Cells with reduced amounts of surface bound glycosaminoglycans show significantly less uptake of peptide 1. Moreover, 1 induced the uptake of a model protein (avidin, around 67 kDa) into cells, which makes 1 a highly attractive candidate for drug and protein delivery, especially as 1 has negligible cytotoxicity.

  20. Synthesis and crystal structure of copper (II) uracil ternary polymeric complex with 1,10-phenanthroline along with the Hirshfeld surface analysis of the metal binding sites for the uracil ligand

    Science.gov (United States)

    Patil, Yogesh Prakash; Nethaji, Munirathinam

    2015-02-01

    The study of models for "metal-enzyme-substrate" interaction has been a proactive area of research owing to its biological and pharmacological importance. In this regard the ternary copper uracil complex with 1,10-phenanthroline represents metal-enzyme-substrate system for DNA binding enzymes. The synthesis of the complex, followed by slow evaporation of the reaction mixture forms two concomitant solvatomorph crystals viz., {[Cu(phen)(μ-ura)(H2O)]n·H2O (1a)} and {[Cu(phen)(μ-ura)(H2O)]n·CH3OH (1b)}. Both complexes are structurally characterized, while elemental analysis, IR and EPR spectra were recorded for 1b (major product). In both complexes, uracil coordinates uniquely via N1 and N3 nitrogen atom acting as a bidentate bridging ligand forming a 1-D polymer. The two solvatomorphs were quantitatively analyzed for the differences with the aid of Hirshfeld surface analysis.

  1. Surface-Layer (S-Layer) Proteins Sap and EA1 Govern the Binding of the S-Layer-Associated Protein BslO at the Cell Septa of Bacillus anthracis

    Science.gov (United States)

    Kern, Valerie J.; Kern, Justin W.; Theriot, Julie A.; Schneewind, Olaf

    2012-01-01

    The Gram-positive pathogen Bacillus anthracis contains 24 genes whose products harbor the structurally conserved surface-layer (S-layer) homology (SLH) domain. Proteins endowed with the SLH domain associate with the secondary cell wall polysaccharide (SCWP) following secretion. Two such proteins, Sap and EA1, have the unique ability to self-assemble into a paracrystalline layer on the surface of bacilli and form S layers. Other SLH domain proteins can also be found within the S layer and have been designated Bacillus S-layer-associated protein (BSLs). While both S-layer proteins and BSLs bind the same SCWP, their deposition on the cell surface is not random. For example, BslO is targeted to septal peptidoglycan zones, where it catalyzes the separation of daughter cells. Here we show that an insertional lesion in the sap structural gene results in elongated chains of bacilli, as observed with a bslO mutant. The chain length of the sap mutant can be reduced by the addition of purified BslO in the culture medium. This complementation in trans can be explained by an increased deposition of BslO onto the surface of sap mutant bacilli that extends beyond chain septa. Using fluorescence microscopy, we observed that the Sap S layer does not overlap the EA1 S layer and slowly yields to the EA1 S layer in a growth-phase-dependent manner. Although present all over bacilli, Sap S-layer patches are not observed at septa. Thus, we propose that the dynamic Sap/EA1 S-layer coverage of the envelope restricts the deposition of BslO to the SCWP at septal rings. PMID:22609927

  2. Characterization of salivary alpha-amylase binding to Streptococcus sanguis

    Energy Technology Data Exchange (ETDEWEB)

    Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.; Levine, M.J. (State Univ. of New York, Buffalo (USA))

    1989-09-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with {sup 125}I-labeled HSMSL or {sup 125}I-labeled HPS also demonstrated a component with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of ({sup 125}I)alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch.

  3. Decorin binds myostatin and modulates its activity to muscle cells

    International Nuclear Information System (INIS)

    Miura, Takayuki; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito; Hennebry, Alex; Berry, Carole J.; Sharma, Mridula; Kambadur, Ravi; Nishimura, Takanori

    2006-01-01

    Myostatin, a member of TGF-β superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-β and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn 2+ greater than 10 μM, but not in the absence of Zn 2+ . Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K D ) of 2.02 x 10 -8 M and 9.36 x 10 -9 M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM

  4. Characterization of salivary alpha-amylase binding to Streptococcus sanguis

    International Nuclear Information System (INIS)

    Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.; Levine, M.J.

    1989-01-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with 125 I-labeled HSMSL or 125 I-labeled HPS also demonstrated a component with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of [ 125 I]alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch

  5. LIMB Demonstration Project Extension and Coolside Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  6. The binding of monoclonal antibodies to cell surface molecules. Quantitative analysis of the reactions and cross-reactions of an antibody (MB40.3) with four HLA-B molecules.

    Science.gov (United States)

    Parham, P

    1984-11-10

    The MB40.3 monoclonal antibody binds to four distinct HLA-B molecules; B7, B40, B40*, and B27. With Fab' fragments only the interaction with B7 and B40 was detected and the affinity for both was the same (1-2 X 10(8) M-1) suggesting the epitope is shared by the two molecules. Unlike many antibodies for which low affinity is due to a high-dissociation constant, that of MB40.3 results from a very low-association rate constant, coupled with a low-dissociation constant. In consequence, the affinity and avidity of Fab', F(ab')2, and IgG for B7 and B40 were found to be of a similar magnitude, soluble B7 was a more efficient competitor for antibody than cell surface B7 and in practice antibody bivalency was of little importance. The forward rate constant could be increased by removing Fc from the antibody or by removing sialic acid from the cells by treatment with neuraminidase. The neuraminidase treatment also produced an increase in the number of detectable cell surface HLA-A,B molecules. The affinity of MB40.3 for B40* and B27 was estimated to be less than 4 X 10(6) as no binding with Fab' was detected due to a high-dissociation rate. For these two HLA-B molecules bivalent attachment was critical, and it increased the strength of interaction with cell surface B40* and B27 to a point where the avidities were comparable to those obtained with B7 and B40, with B40* interacting more strongly than B27. The epitopes recognized by MB40.3 on B40* and B27 were thus shown to be structurally different from each other and from those on B7 and B40. The properties of this antibody contrast with those of other anti-HLA-A,B we have studied (Ways, J.P., and Parham, P. (1983) Biochem. J. 216, 423-432).

  7. Biodiesel Mass Transit Demonstration

    Science.gov (United States)

    2010-04-01

    The Biodiesel Mass Transit Demonstration report is intended for mass transit decision makers and fleet managers considering biodiesel use. This is the final report for the demonstration project implemented by the National Biodiesel Board under a gran...

  8. Authoring Effective Demonstrations

    National Research Council Canada - National Science Library

    Fu, Dan; Jensen, Randy; Salas, Eduardo; Rosen, Michael A; Ramachandran, Sowmya; Upshaw, Christin L; Hinkelman, Elizabeth; Lampton, Don

    2007-01-01

    ... or human role-players for each training event. We report our ongoing efforts to (1) research the nature and purpose of demonstration, articulating guidelines for effective demonstration within a training context, and (2...

  9. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  10. CXCL4 is a novel nickel-binding protein and augments nickel allergy.

    Science.gov (United States)

    Kuroishi, T; Bando, K; Tanaka, Y; Shishido, K; Kinbara, M; Ogawa, T; Muramoto, K; Endo, Y; Sugawara, S

    2017-08-01

    Nickel (Ni) is the most frequent metal allergen and induces a TH 1 -dependent type-IV allergy. Although Ni 2+ is considered to bind to endogenous proteins, it currently remains unclear whether these Ni-binding proteins are involved in Ni allergy in vivo. We previously reported the adjuvant effects of lipopolysaccharide (LPS) in a Ni allergy mouse model. As LPS induces a number of inflammatory mediators, we hypothesized that Ni-binding protein(s) are also induced by LPS. The objective of this study was to purify and identify Ni-binding protein(s) from serum taken from LPS-injected mice (referred as LPS serum) and examined the augmenting effects of these Ni-binding protein(s) on Ni allergy in an in vivo model. BALB/cA mice were sensitized with an i.p. injection of NiCl 2 and LPS. Ten days after sensitization, mice were challenged with NiCl 2 by an i.d. injection into ear pinnae. Ni-binding protein(s) were purified by Ni-affinity column chromatography and gel filtration. Lipopolysaccharide serum, but not serum taken from saline-injected mice, augmented ear swelling induced by Ni-allergic inflammation. Ni-binding, but not non-binding fraction, purified from LPS serum augmented Ni-allergic inflammation. Mass spectrometry and Western blotting detected CXCL4 in the active fraction. A batch analysis with Ni-sepharose and a surface plasmon resonance analysis revealed direct binding between CXCL4 and Ni 2+ . Recombinant CXCL4 augmented Ni-allergic inflammation and exerted adjuvant effects at the sensitization phase. These results indicate that CXCL4 is a novel Ni-binding protein that augments Ni allergy at the elicitation and sensitization phases. This is the first study to demonstrate that the Ni-binding protein augments Ni allergy in vivo. © 2017 John Wiley & Sons Ltd.

  11. Strategy Guideline. Demonstration Home

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  12. Strategy Guideline: Demonstration Home

    Energy Technology Data Exchange (ETDEWEB)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  13. PKCa and PKCd regulate ADAM17-mediated ectodomain shedding of heparin binding-EGF through separate pathways

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Instrell, Rachael; Rowlands, Christina

    2011-01-01

    a cell-based system of PMA-induced PKC activation coupled with shedding of heparin binding (HB)-EGF. In agreement with previous studies, we demonstrated that PMA triggers a rapid ADAM17-mediated release of HB-EGF. However, PMA-treatment also results in a protease-independent loss of cell surface HB...

  14. IGF binding proteins.

    Science.gov (United States)

    Bach, Leon A

    2017-12-18

    Insulin-like growth factor binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellularly; (ii) interaction with and modulation of other growth factor pathways including EGF, TGF- and VEGF; and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.

  15. Studying protein binding to conjugated gold nanospheres; application of Mie light scattering to reaction kinetics.

    Science.gov (United States)

    Lunt, E A M; Pitter, M C; Somekh, M G; O'Shea, P

    2008-09-01

    The study of protein interactions is an area of much interest, particularly towards obtaining more detailed information about biological processes. Current methods involve the use of complicated, specialised techniques which are beyond the scope of most laboratories. Here, we show how information about the binding of proteins to conjugated gold nanospheres can be obtained using straightforward experimental techniques. A Perkin Elmer LS 55 luminescence spectrometer was used to observe the changes in light scattering caused by the binding of complementary proteins to conjugated nanoparticles, measured by the intensity change over time. Mie theory simulations have been used to predict the expected observations and to quantify the changes in intensity as a function of surface coverage. Further kinetic studies have been carried out at 530 nm to obtain more detailed information about the processes involved in the binding reaction. Thus, we have demonstrated that the interaction of proteins can be studied using a straightforward method which provides information about surface coverage and reaction kinetics.

  16. Surface plasmon resonance imaging based multiplex biosensor: Integration of biomolecular screening, detection and kinetics estimation.

    NARCIS (Netherlands)

    Krishnamoorthy, G.; Carlen, Edwin; van den Berg, Albert; Schasfoort, Richardus B.M.

    2010-01-01

    We present a multiplex biosensing method to simultaneously screen targets of interest in a multiple target analyte sample and to extract the binding affinities of all interactant pairs from a single sensor surface using a commercial surface plasmon resonance imaging system. For demonstration, we

  17. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    Science.gov (United States)

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Creating cellular patterns using genetically engineered, gold- and cell-binding polypeptides.

    Science.gov (United States)

    Li, Linying; Mo, Chia-Kuei; Chilkoti, Ashutosh; Lopez, Gabriel P; Carroll, Nick J

    2016-06-27

    Patterning cells on material surfaces is an important tool for the study of fundamental cell biology, tissue engineering, and cell-based bioassays. Here, the authors report a simple approach to pattern cells on gold patterned silicon substrates with high precision, fidelity, and stability. Cell patterning is achieved by exploiting adsorbed biopolymer orientation to either enhance (gold regions) or impede (silicon oxide regions) cell adhesion at particular locations on the patterned surface. Genetic incorporation of gold binding domains enables C-terminal chemisorption of polypeptides onto gold regions with enhanced accessibility of N-terminal cell binding domains. In contrast, the orientation of polypeptides adsorbed on the silicon oxide regions limit the accessibility of the cell binding domains. The dissimilar accessibility of cell binding domains on the gold and silicon oxide regions directs the cell adhesion in a spatially controlled manner in serum-free medium, leading to the formation of well-defined cellular patterns. The cells are confined within the polypeptide-modified gold regions and are viable for eight weeks, suggesting that bioactive polypeptide modified surfaces are suitable for long-term maintenance of patterned cells. This study demonstrates an innovative surface-engineering approach for cell patterning by exploiting distinct ligand accessibility on heterogeneous surfaces.

  19. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  20. My Most Annoying Demonstration

    Science.gov (United States)

    Mosca, Joseph M.

    2006-12-01

    After demonstrating various wave phenemona of pulses and continuous wavetrains in elastic media (slinky, springs, tuning forks etc.) students are still struggling with the concepts of standing waves, reflection and transmission at free and fixed boundaries, interference at nodes and antinodes, and the difference between transverse and longitudinal waves. In this simple demonstration we will overcome any misconceptions concerning these topics.

  1. Kinetics and Catalysis Demonstrations.

    Science.gov (United States)

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  2. Parathyroid hormone binding to cultured avian osteoclasts

    Energy Technology Data Exchange (ETDEWEB)

    Teti, A.; Rizzoli, R.; Zambonin Zallone, A. (Univ. of Bari (Italy))

    1991-02-14

    Parathyroid hormone (PTH) increases serum calcium concentration via a controversial cellular mechanism. We investigated whether PTH binds avian osteoclasts. Isolated hypocalcaemic hen osteoclasts were incubated with ({sup 125}I)--bovine PTH (1-84). Specific binding of the hormone to the cells, which reached the equilibrium within 60 min, was observed. Half maximal binding was reached by 10 min. Binding was competitively inhibited by increasing doses of unlabeled PTH, and was about 55% displaced by adding, at the equilibrium, 10(-6) M unlabeled PTH. Autoradiography demonstrated specific label on the osteoclast. The cellular mechanism activated by the hormone remains to be elucidated.

  3. Lactobacillus rhamnosus GG SpaC pilin subunit binds to the carbohydrate moieties of intestinal glycoconjugates.

    Science.gov (United States)

    Nishiyama, Keita; Ueno, Shintaro; Sugiyama, Makoto; Yamamoto, Yuji; Mukai, Takao

    2016-06-01

    Lactobacillus rhamnosus GG (LGG) is a well-established probiotic strain. The beneficial properties of this strain are partially dependent on its prolonged residence in the gastrointestinal tract, and are likely influenced by its adhesion to the intestinal mucosa. The pilin SpaC subunit, located within the Spa pili structure, is the most well studied LGG adhesion factor. However, the binding epitopes of SpaC remain largely unknown. The aim of this study was to evaluate the binding properties of SpaC to the carbohydrate moieties of intestinal glycoconjugates using a recombinant SpaC protein. In a competitive enzyme-linked immunosorbent assay, SpaC binding was markedly reduced by addition of purified mucin and the mucin oligosaccharide fraction. Histochemical staining revealed that the binding of SpaC was drastically reduced by periodic acid treatment. Moreover, in the surface plasmon resonance-based Biacore assay, SpaC bound strongly to the carbohydrate moieties containing β-galactoside at the non-reducing terminus of glycolipids. We here provide the first demonstration that SpaC binds to the oligosaccharide chains of mucins, and that the carbohydrate moieties containing β-galactoside at the non-reducing termini of glycoconjugates play a crucial role in this binding. Our results demonstrate the importance of carbohydrates of SpaC for mucus interactions. © 2015 Japanese Society of Animal Science.

  4. The Tomato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor I-2 Couples DNA-Binding to Nucleotide-Binding Domain Nucleotide Exchange

    NARCIS (Netherlands)

    Fenyk, S.; Dixon, C.H.; Gittens, W.H.; Townsend, P.D.; Sharples, G.J.; Pålsson, L.O.; Takken, F.L.W.; Cann, M.J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognise and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception.

  5. Comparing Demonstratives in Kwa

    African Journals Online (AJOL)

    nt'. The following sub-sections discuss the categories of demonstratives in the various languages in more detail. 3.1. Akan ...... languages: a classification and description of Africa s largest family,. 216-245. Lanham: University Press of America.

  6. Laser Communications Relay Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — LCRD is a minimum two year flight demonstration in geosynchronous Earth orbit to advance optical communications technology toward infusion into Deep Space and Near...

  7. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  8. Innovative technology demonstration

    International Nuclear Information System (INIS)

    Anderson, D.B.; Luttrell, S.P.; Hartley, J.N.; Hinchee, R.

    1992-04-01

    The Innovative Technology Demonstration (ITD) program at Tinker Air Force Base (TAFB), Oklahoma City, Oklahoma, will demonstrate the overall utility and effectiveness of innovative technologies for site characterization, monitoring, and remediation of selected contaminated test sites. The current demonstration test sites include a CERCLA site on the NPL list, located under a building (Building 3001) that houses a large active industrial complex used for rebuilding military aircraft, and a site beneath and surrounding an abandoned underground tank vault used for storage of jet fuels and solvents. The site under Building 3001 (the NW Test Site) is contaminated with TCE and Cr +6 ; the site with the fuel storage vault (the SW Tanks Site) is contaminated with fuels, BTEX and TCE. These sites and others have been identified for cleanup under the Air Force's Installation Restoration Program (IRP). This document describes the demonstrations that have been conducted or are planned for the TAFB

  9. Education Payload Operation - Demonstrations

    Science.gov (United States)

    Keil, Matthew

    2009-01-01

    Education Payload Operation - Demonstrations (EPO-Demos) are recorded video education demonstrations performed on the International Space Station (ISS) by crewmembers using hardware already onboard the ISS. EPO-Demos are videotaped, edited, and used to enhance existing NASA education resources and programs for educators and students in grades K-12. EPO-Demos are designed to support the NASA mission to inspire the next generation of explorers.

  10. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania

    2016-11-10

    Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow\\'s drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.

  11. Edible Astronomy Demonstrations

    Science.gov (United States)

    Lubowich, Donald A.

    2007-12-01

    Astronomy demonstrations with edible ingredients are an effective way to increase student interest and knowledge of astronomical concepts. This approach has been successful with all age groups from elementary school through college students - and the students remember these demonstrations after they are presented. In this poster I describe edible demonstrations I have created to simulate the expansion of the universe (using big-bang chocolate chip cookies); differentiation during the formation of the Earth and planets (using chocolate or chocolate milk with marshmallows, cereal, candy pieces or nuts); and radioactivity/radioactive dating (using popcorn). Other possible demonstrations include: plate tectonics (crackers with peanut butter and jelly); convection (miso soup or hot chocolate); mud flows on Mars (melted chocolate poured over angel food cake); formation of the Galactic disk (pizza); formation of spiral arms (coffee with cream); the curvature of Space (Pringles); constellations patterns with chocolate chips and chocolate chip cookies; planet shaped cookies; star shaped cookies with different colored frostings; coffee or chocolate milk measurement of solar radiation; Oreo cookie lunar phases. Sometimes the students eat the results of the astronomical demonstrations. These demonstrations are an effective teaching tool and can be adapted for cultural, culinary, and ethnic differences among the students.

  12. Buried Waste Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities

  13. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Fang Linchuan [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Zhou Chen; Cai Peng [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen Wenli [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Rong Xingmin; Dai Ke; Liang Wei [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Gu Jidong [Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong); Huang Qiaoyun, E-mail: qyhuang@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2011-06-15

    Highlights: {yields} The carboxyl groups play a vital role in the binding of Cu(II) and Cd(II) to S. platensis cells. {yields} Ion exchange and complexation are the dominating mechanism for Cu(II) and Cd(II) adsorption. {yields} XAFS analysis provided evidence for the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface. - Abstract: Cyanobacteria are promising biosorbent for heavy metals in bioremediation. Although sequestration of metals by cyanobacteria is known, the actual mechanisms and ligands involved are not very well understood. The binding characteristics of Cu(II) and Cd(II) by the cyanobacterium Spirulina platensis were investigated using a combination of chemical modifications, batch adsorption experiments, Fourier transform infrared (FTIR) spectroscopy and X-ray absorption fine structure (XAFS) spectroscopy. A significant increase in Cu(II) and Cd(II) binding was observed in the range of pH 3.5-5.0. Dramatical decrease in adsorption of Cu(II) and Cd(II) was observed after methanol esterification of the nonliving cells demonstrating that carboxyl functional groups play an important role in the binding of metals by S. platensis. The desorption rate of Cu(II) and Cd(II) from S. platensis surface was 72.7-80.7% and 53.7-58.0% by EDTA and NH{sub 4}NO{sub 3}, respectively, indicating that ion exchange and complexation are the dominating mechanisms for Cu(II) and Cd(II) adsorption. XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface.

  14. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  15. Human β-defensin HBD3 binds to immobilized Bla g2 from the German cockroach (Blattella germanica).

    Science.gov (United States)

    Dietrich, Deborah E; Martin, Aaron D; Brogden, Kim A

    2014-03-01

    Human β-defensin 3 (HBD3) is a small, well-characterized peptide in mucosal secretions with broad antimicrobial activities and diverse innate immune functions. Among these functions is the ability of HBD3 to bind to antigens. In this study, we hypothesize that HBD3 binds to the allergen Bla g2 from the German cockroach (Blattella germanica). The ability of HBD1 (used as a control β-defensin) and HBD3 to bind to Bla g2 and human serum albumin (HSA, used as a control ligand) was assessed using the SensíQ Pioneer surface plasmon resonance (SPR) spectroscopy biosensor system. HBD1 was observed to bind weakly to Bla g2, while HBD3 demonstrated a stronger affinity for the allergen. HBD3 was assessed under two buffer conditions using 0.15 M and 0.3 M NaCl to control the electrostatic attraction of the peptide to the chip surface. The apparent K(D) of HBD3 binding Bla g2 was 5.9±2.1 μM and for binding HSA was 4.2±0.7 μM, respectively. Thus, HBD3, found in mucosal secretions has the ability to bind to allergens like Bla g2 possibly by electrostatic interaction, and may alter the ability of Bla g2 to induce localized allergic and/or inflammatory mucosal responses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Adsorption of T4 bacteriophages on planar indium tin oxide surface via controlled surface tailoring.

    Science.gov (United States)

    Liana, Ayu Ekajayanthi; Chia, Ed Win; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2016-04-15

    The work investigates the influence of surface physicochemical properties of planar indium tin oxide (ITO) as a model substrate on T4 bacteriophage adsorption. A comparative T4 bacteriophage adsorption study shows a significant difference in bacteriophage adsorption observed on chemically modified planar ITO when compared to similarly modified particulate ITO, which infers that trends observed in virus-particle interaction studies are not necessarily transferrable to predict virus-planar surface adsorption behaviour. We also found that ITO surfaces modified with methyl groups, (resulting in increased surface roughness and hydrophobicity) remained capable of adsorbing T4 bacteriophage. The adsorption of T4 onto bare, amine and carboxylic functionalised planar ITO suggests the presence of a unique binding behaviour involving specific functional groups on planar ITO surface beyond the non-specific electrostatic interactions that dominate phage to particle interactions. The paper demonstrates the significance of physicochemical properties of surfaces on bacteriophage-surface interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Solar renovation demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Joergensen, O. [ed.

    1998-10-01

    In the framework of the IEA SHC Programme, a Task on building renovation was initiated, `Task 20, Solar Energy in Building Renovation`. In a part of the task, Subtask C `Design of Solar Renovation Projects`, different solar renovation demonstration projects were developed. The objective of Subtask C was to demonstrate the application of advanced solar renovation concepts on real buildings. This report documents 16 different solar renovation demonstration projects including the design processes of the projects. The projects include the renovation of houses, schools, laboratories, and factories. Several solar techniques were used: building integrated solar collectors, glazed balconies, ventilated solar walls, transparent insulation, second skin facades, daylight elements and photovoltaic systems. These techniques are used in several simple as well as more complex system designs. (au)

  18. TRUEX hot demonstration

    International Nuclear Information System (INIS)

    Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

    1990-04-01

    In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility

  19. Inspection quality demonstrations

    International Nuclear Information System (INIS)

    Dau, G.J.

    1985-01-01

    This paper discusses an inspection demonstration process that was initiated in late 1982 and is still functioning. In 1982, the Nine Mile Point-1 boiling water reactor completed the required inspection governed by rules established by the American Society of Mechanical Engineers Boiler and Pressure Vessel Code and the U.S. Nuclear Regulatory Commission. The inspection results indicated there were no cracks when the results were evaluated against the established criteria. Later, while performing the system hydro-test prior to returning to power, one of the joints leaked, indicating a through-wall crack. The demonstration process, including a training program recognized by the NRC, are described in the paper. The final answer on how good the demonstration and field inspection are can only be determined by comparison of the inspection results with direct observation of the flaws. This is currently in progress

  20. Innovative technology demonstrations

    International Nuclear Information System (INIS)

    Anderson, D.B.; Luttrell, S.P.; Hartley, J.N.

    1992-08-01

    Environmental Management Operations (EMO) is conducting an Innovative Technology Demonstration Program for Tinker Air Force Base (TAFB). Several innovative technologies are being demonstrated to address specific problems associated with remediating two contaminated test sites at the base. Cone penetrometer testing (CPT) is a form of testing that can rapidly characterize a site. This technology was selected to evaluate its applicability in the tight clay soils and consolidated sandstone sediments found at TAFB. Directionally drilled horizontal wells was selected as a method that may be effective in accessing contamination beneath Building 3001 without disrupting the mission of the building, and in enhancing the extraction of contamination both in ground water and in soil. A soil gas extraction (SGE) demonstration, also known as soil vapor extraction, will evaluate the effectiveness of SGE in remediating fuels and TCE contamination contained in the tight clay soil formations surrounding the abandoned underground fuel storage vault located at the SW Tanks Site. In situ sensors have recently received much acclaim as a technology that can be effective in remediating hazardous waste sites. Sensors can be useful for determining real-time, in situ contaminant concentrations during the remediation process for performance monitoring and in providing feedback for controlling the remediation process. Following the SGE demonstration, the SGE system and SW Tanks test site will be modified to demonstrate bioremediation as an effective means of degrading the remaining contaminants in situ. The bioremediation demonstration will evaluate a bioventing process in which the naturally occurring consortium of soil bacteria will be stimulated to aerobically degrade soil contaminants, including fuel and TCE, in situ

  1. Innovative technology demonstrations

    International Nuclear Information System (INIS)

    Anderson, D.B.; Hartley, J.N.; Luttrell, S.P.

    1992-04-01

    Currently, several innovative technologies are being demonstrated at Tinker Air Force Base (TAFB) to address specific problems associated with remediating two contaminated test sites at the base. Cone penetrometer testing (CPT) is a form of testing that can rapidly characterize a site. This technology was selected to evaluate its applicability in the tight clay soils and consolidated sandstone sediments found at TAFB. Directionally drilled horizontal wells have been successfully installed at the US Department of Energy's (DOE) Savannah River Site to test new methods of in situ remediation of soils and ground water. This emerging technology was selected as a method that may be effective in accessing contamination beneath Building 3001 without disrupting the mission of the building, and in enhancing the extraction of contamination both in ground water and in soil. A soil gas extraction (SGE) demonstration, also known as soil vapor extraction, will evaluate the effectiveness of SGE in remediating fuels and TCE contamination contained in the tight clay soil formations surrounding the abandoned underground fuel storage vault located at the SW Tanks Site. In situ sensors have recently received much acclaim as a technology that can be effective in remediating hazardous waste sites. Sensors can be useful for determining real-time, in situ contaminant concentrations during the remediation process for performance monitoring and in providing feedback for controlling the remediation process. A demonstration of two in situ sensor systems capable of providing real-time data on contamination levels will be conducted and evaluated concurrently with the SGE demonstration activities. Following the SGE demonstration, the SGE system and SW Tanks test site will be modified to demonstrate bioremediation as an effective means of degrading the remaining contaminants in situ

  2. Gigashot Optical Laser Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  3. Demonstrating marketing accountability.

    Science.gov (United States)

    Gombeski, William R; Britt, Jason; Taylor, Jan; Riggs, Karen; Wray, Tanya; Adkins, Wanda; Springate, Suzanne

    2008-01-01

    Pressure on health care marketers to demonstrate effectiveness of their strategies and show their contribution to organizational goals is growing. A seven-tiered model based on the concepts of structure (having the right people, systems), process (doing the right things in the right way), and outcomes (results) is discussed. Examples of measures for each tier are provided and the benefits of using the model as a tool for measuring, organizing, tracking, and communicating appropriate information are provided. The model also provides a framework for helping management understand marketing's value and can serve as a vehicle for demonstrating marketing accountability.

  4. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  5. Minor Coat and Heat Shock Proteins Are Involved in the Binding of Citrus Tristeza Virus to the Foregut of Its Aphid Vector, Toxoptera citricida.

    Science.gov (United States)

    Killiny, N; Harper, S J; Alfaress, S; El Mohtar, C; Dawson, W O

    2016-11-01

    Vector transmission is a critical stage in the viral life cycle, yet for most plant viruses how they interact with their vector is unknown or is explained by analogy with previously described relatives. Here we examined the mechanism underlying the transmission of citrus tristeza virus (CTV) by its aphid vector, Toxoptera citricida, with the objective of identifying what virus-encoded proteins it uses to interact with the vector. Using fluorescently labeled virions, we demonstrated that CTV binds specifically to the lining of the cibarium of the aphid. Through in vitro competitive binding assays between fluorescent virions and free viral proteins, we determined that the minor coat protein is involved in vector interaction. We also found that the presence of two heat shock-like proteins, p61 and p65, reduces virion binding in vitro Additionally, treating the dissected mouthparts with proteases did not affect the binding of CTV virions. In contrast, chitinase treatment reduced CTV binding to the foregut. Finally, competition with glucose, N-acetyl-β-d-glucosamine, chitobiose, and chitotriose reduced the binding. These findings together suggest that CTV binds to the sugar moieties of the cuticular surface of the aphid cibarium, and the binding involves the concerted activity of three virus-encoded proteins. Limited information is known about the specific interactions between citrus tristeza virus and its aphid vectors. These interactions are important for the process of successful transmission. In this study, we localized the CTV retention site as the cibarium of the aphid foregut. Moreover, we demonstrated that the nature of these interactions is protein-carbohydrate binding. The viral proteins, including the minor coat protein and two heat shock proteins, bind to sugar moieties on the surface of the foregut. These findings will help in understanding the transmission mechanism of CTV by the aphid vector and may help in developing control strategies which interfere

  6. Organic Lecture Demonstrations.

    Science.gov (United States)

    Silversmith, Ernest F.

    1988-01-01

    Provides a listing of 35 demonstrations designed to generate interest in organic chemistry and help put points across. Topics include opening lecture; molecular structure and properties; halogenation; nucleophilic substitution, alkenes and dienes, stereochemistry, spectroscopy, alcohols and phenols, aldehydes and ketones; carboxylic acids, amines,…

  7. Participatory Lecture Demonstrations.

    Science.gov (United States)

    Battino, Rubin

    1979-01-01

    The use of participatory lecture demonstrations in the classroom is described. Examples are given for the following topics: chromatography, chemical kinetics, balancing equations, the gas laws, kinetic molecular theory, Henry's law of gas solubility, electronic energy levels in atoms, and translational, vibrational, and rotational energies of…

  8. Demonstrating the Gas Laws.

    Science.gov (United States)

    Holko, David A.

    1982-01-01

    Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…

  9. Monty Roberts’ public demonstrations

    NARCIS (Netherlands)

    Loftus, Loni; Marks, Kelly; Jones-McVey, Rosie; Gonzales, Jose L.; Fowler, Veronica L.

    2016-01-01

    Effective training of horses relies on the trainer’s awareness of learning theory and equine ethology, and should be undertaken with skill and time. Some trainers, such as Monty Roberts, share their methods through the medium of public demonstrations. This paper describes the opportunistic

  10. A Magnetic Circuit Demonstration.

    Science.gov (United States)

    Vanderkooy, John; Lowe, June

    1995-01-01

    Presents a demonstration designed to illustrate Faraday's, Ampere's, and Lenz's laws and to reinforce the concepts through the analysis of a two-loop magnetic circuit. Can be made dramatic and challenging for sophisticated students but is suitable for an introductory course in electricity and magnetism. (JRH)

  11. Binding of Intrinsic and Extrinsic Features in Working Memory

    Science.gov (United States)

    Ecker, Ullrich K. H.; Maybery, Murray; Zimmer, Hubert D.

    2013-01-01

    There is ongoing debate concerning the mechanisms of feature binding in working memory. In particular, there is controversy regarding the extent to which these binding processes are automatic. The present article demonstrates that binding mechanisms differ depending on whether the to-be-integrated features are perceived as forming a coherent…

  12. Is there a link between selectivity and binding thermodynamics profiles?

    Science.gov (United States)

    Tarcsay, Ákos; Keserű, György M

    2015-01-01

    Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the binding event. The impact of these binding free energy components, however, is not limited to the primary target only. Here, we investigate the relationship between binding thermodynamics and selectivity profiles by combining publicly available data from broad off-target assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more off-targets compared with those ligands that demonstrated enthalpy-driven binding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. AVNG system demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Thron, Jonathan Louis [Los Alamos National Laboratory; Mac Arthur, Duncan W [Los Alamos National Laboratory; Kondratov, Sergey [VNIIEF; Livke, Alexander [VNIIEF; Razinkov, Sergey [VNIIEF

    2010-01-01

    An attribute measurement system (AMS) measures a number of unclassified attributes of potentially classified material. By only displaying these unclassified results as red or green lights, the AMS protects potentially classified information while still generating confidence in the measurement result. The AVNG implementation that we describe is an AMS built by RFNC - VNIIEF in Sarov, Russia. To provide additional confidence, the AVNG was designed with two modes of operation. In the secure mode, potentially classified measurements can be made with only the simple red light/green light display. In the open mode, known unclassified material can be measured with complete display of the information collected from the radiation detectors. The AVNG demonstration, which occurred in Sarov, Russia in June 2009 for a joint US/Russian audience, included exercising both modes of AVNG operation using a number of multi-kg plutonium sources. In addition to describing the demonstration, we will show photographs and/or video taken of AVNG operation.

  14. Remote monitoring demonstration

    International Nuclear Information System (INIS)

    Caskey, Susan; Olsen, John

    2006-01-01

    The recently upgraded remote monitoring system at the Joyo Experimental Reactor uses a DCM-14 camera module and GEMINI software. The final data is compatible both with the IAEA-approved GARS review software and the ALIS software that was used for this demonstration. Features of the remote monitoring upgrade emphasized compatibility with IAEA practice. This presentation gives particular attention to the selection process for meeting network security considerations at the O'arai site. The Joyo system is different from the NNCA's ACPF system, in that it emphasizes use of IAEA standard camera technology and data acquisition and transmission software. In the demonstration itself, a temporary virtual private network (VPN) between the meeting room and the server at Sandia in Albuquerque allowed attendees to observe data stored from routine transmissions from the Joyo Fresh Fuel Storage to Sandia. Image files from a fuel movement earlier in the month showed Joyo workers and IAEA inspectors carrying out a transfer. (author)

  15. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.

    1981-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Substantially increasing shipping and disposal charges have sparked renewed industry interest in incineration and other advanced volume reduction techniques as potential cost-saving measures. Repeated inquiries from industry sources regarding LLW applicability of the Los Alamos controlled-air incineration (CAI) design led DOE to initiate this commercial demonstration program in FY-1980. The selected program approach to achieving CAI demonstration at a utility site is a DOE sponsored joint effort involving Los Alamos, a nuclear utility, and a liaison subcontractor. Required development tasks and responsibilities of the particpants are described. Target date for project completion is the end of FY-1985

  16. Automatic lighting controls demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, F.; Verderber, R.

    1990-03-01

    The purpose of this work was to demonstrate, in a real building situation, the energy and peak demand reduction capabilities of an electronically ballasted lighting control system that can utilize all types of control strategies to efficiently manage lighting. The project has demonstrated that a state-of-the-art electronically ballasted dimmable lighting system can reduce energy and lighting demand by as least 50% using various combinations of control strategies. By reducing light levels over circulation areas (tuning) and reducing after hours light levels to accommodate the less stringent lighting demands of the cleaning crew (scheduling), lighting energy consumption on weekdays was reduced an average of 54% relative to the initial condition. 10 refs., 14 figs., 3 tabs.

  17. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression.

    Science.gov (United States)

    Felsenstein, Kenneth M; Saunders, Lindsey B; Simmons, John K; Leon, Elena; Calabrese, David R; Zhang, Shuling; Michalowski, Aleksandra; Gareiss, Peter; Mock, Beverly A; Schneekloth, John S

    2016-01-15

    The transcription factor MYC plays a pivotal role in cancer initiation, progression, and maintenance. However, it has proven difficult to develop small molecule inhibitors of MYC. One attractive route to pharmacological inhibition of MYC has been the prevention of its expression through small molecule-mediated stabilization of the G-quadruplex (G4) present in its promoter. Although molecules that bind globally to quadruplex DNA and influence gene expression are well-known, the identification of new chemical scaffolds that selectively modulate G4-driven genes remains a challenge. Here, we report an approach for the identification of G4-binding small molecules using small molecule microarrays (SMMs). We use the SMM screening platform to identify a novel G4-binding small molecule that inhibits MYC expression in cell models, with minimal impact on the expression of other G4-associated genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated that this molecule binds reversibly to the MYC G4 with single digit micromolar affinity, and with weaker or no measurable binding to other G4s. Biochemical and cell-based assays demonstrated that the compound effectively silenced MYC transcription and translation via a G4-dependent mechanism of action. The compound induced G1 arrest and was selectively toxic to MYC-driven cancer cell lines containing the G4 in the promoter but had minimal effects in peripheral blood mononucleocytes or a cell line lacking the G4 in its MYC promoter. As a measure of selectivity, gene expression analysis and qPCR experiments demonstrated that MYC and several MYC target genes were downregulated upon treatment with this compound, while the expression of several other G4-driven genes was not affected. In addition to providing a novel chemical scaffold that modulates MYC expression through G4 binding, this work suggests that the SMM screening approach may be broadly useful as an approach for the identification of new G4-binding small

  18. IGCC technology and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J. [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R.G. [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K. [Sydkraft AB, Malmoe (Sweden)

    1996-12-31

    Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)

  19. The Majorana Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, Estanislao; Fast, James E.; Hoppe, Eric W.; Keillor, Martin E.; Kephart, Jeremy D.; Kouzes, Richard T.; LaFerriere, Brian D.; Merriman, Jason H.; Orrell, John L.; Overman, Nicole R.; Avignone, Frank T.; Back, Henning O.; Combs, Dustin C.; Leviner, L.; Young, A.; Barabash, Alexander S.; Konovalov, S.; Vanyushin, I.; Yumatov, Vladimir; Bergevin, M.; Chan, Yuen-Dat; Detwiler, Jason A.; Loach, J. C.; Martin, R. D.; Poon, Alan; Prior, Gersende; Vetter, Kai; Bertrand, F.; Cooper, R. J.; Radford, D. C.; Varner, R. L.; Yu, Chang-Hong; Boswell, M.; Elliott, S.; Gehman, Victor M.; Hime, Andrew; Kidd, M. F.; LaRoque, B. H.; Rielage, Keith; Ronquest, M. C.; Steele, David; Brudanin, V.; Egorov, Viatcheslav; Gusey, K.; Kochetov, Oleg; Shirchenko, M.; Timkin, V.; Yakushev, E.; Busch, Matthew; Esterline, James H.; Tornow, Werner; Christofferson, Cabot-Ann; Horton, Mark; Howard, S.; Sobolev, V.; Collar, J. I.; Fields, N.; Creswick, R.; Doe, Peter J.; Johnson, R. A.; Knecht, A.; Leon, Jonathan D.; Marino, Michael G.; Miller, M. L.; Robertson, R. G. H.; Schubert, Alexis G.; Wolfe, B. A.; Efremenko, Yuri; Ejiri, H.; Hazama, R.; Nomachi, Masaharu; Shima, T.; Finnerty, P.; Fraenkle, Florian; Giovanetti, G. K.; Green, M.; Henning, Reyco; Howe, M. A.; MacMullin, S.; Phillips, D.; Snavely, Kyle J.; Strain, J.; Vorren, Kris R.; Guiseppe, Vincente; Keller, C.; Mei, Dong-Ming; Perumpilly, Gopakumar; Thomas, K.; Zhang, C.; Hallin, A. L.; Keeter, K.; Mizouni, Leila; Wilkerson, J. F.

    2011-09-03

    A brief review of the history and neutrino physics of double beta decay is given. A description of the MAJORANA DEMONSTRATOR research and development program, including background reduction techniques, is presented in some detail. The application of point contact (PC) detectors to the experiment is discussed, including the effectiveness of pulse shape analysis. The predicted sensitivity of a PC detector array enriched to 86% to 76Ge is given.

  20. SAMSON Technology Demonstrator

    Science.gov (United States)

    2014-06-01

    escrow service in the operational environment. For the SAMSON TD, two key escrow systems were demonstrated: StrongAuth SKLES; a 3rd party key... escrow appliance; and A custom database-based key escrow system created for the SAMSON TD. The external label that is placed on file objects that...the key that was used to protect the file. When a SAMSON component presents a token to the KMS, the associated key is retrieved from the escrow and

  1. Learning From Demonstration?

    DEFF Research Database (Denmark)

    Koch, Christian; Bertelsen, Niels Haldor

    2014-01-01

    Demonstration projects are often used in the building sector to provide a basis for using new processes and/or products. The climate change agenda implies that construction is not only required to deliver value for the customer, cost reductions and efficiency but also sustainable buildings. This ...... prevailed over realizing a good indoor climate, which included sufficient heating. Project management must be able to handle quantitative complexity where simple issues add up to major challenges.......Demonstration projects are often used in the building sector to provide a basis for using new processes and/or products. The climate change agenda implies that construction is not only required to deliver value for the customer, cost reductions and efficiency but also sustainable buildings....... This paper reports on an early demonstration project, the Building of a passive house dormitory in the Central Region of Denmark in 2006-2009. The project was supposed to deliver value, lean design, prefabrication, quality in sustainability, certification according to German standards for passive houses...

  2. Attachment of mycobacteria to fibronectin-coated surfaces.

    Science.gov (United States)

    Ratliff, T L; McGarr, J A; Abou-Zeid, C; Rook, G A; Stanford, J L; Aslanzadeh, J; Brown, E J

    1988-05-01

    This report investigates the extent of the expression of fibronectin (FN) binding properties among the mycobacteria and provides preliminary characteristics of the bacterial molecule(s) mediating attachment. Eight BCG substrains, three Mycobacterium tuberculosis strains and four other mycobacterial species all expressed FN-binding capacity. Treatment of organisms with detergent prior to the binding assay destroyed the FN-binding capacity of BCG but not that of Staphylococcus aureus. Trypsin pretreatment eliminated the FN-binding capacity of both BCG and S. aureus. [35S]Methionine-labelled material in supernatants from BCG and M. tuberculosis cultures attached to FN-coated surfaces. These culture supernatants inhibited the attachment of BCG but not S. aureus to FN-coated surfaces. This inhibitory activity of the supernatants was removed by affinity chromatography on FN-Sepharose but was not affected by similar passage over a control column (human serum albumin attached to Sepharose). These results demonstrate that the ability to bind FN is present in all mycobacterial species tested and suggest that attachment is mediated by trypsin-sensitive cell-surface component(s).

  3. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Ewan [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); Andronikou, Savvas [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); University of Bristol, CRICBristol, Bristol (United Kingdom); Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade [University of Bristol, CRICBristol, Bristol (United Kingdom)

    2016-09-15

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties. (orig.)

  4. Binding of 3H-iloprost to rat gastric mucosa: a pitfall in performing radioligand binding assays

    International Nuclear Information System (INIS)

    Beinborn, M.; Kromer, W.; Staar, U.; Sewing, K.F.

    1985-01-01

    Binding of 3 H-iloprost was studied in a 20,000 x g sediment of the rat gastric mucosa. When pH in both test tubes for total and non-specific binding was kept identical, no displaceable binding of iloprost could be detected. When no care was taken to keep the pH identical in corresponding test tubes of the binding assay, changes in pH simulated specific and displaceable binding of iloprost. Therefore it is concluded that - in contrast to earlier reports - it is not possible to demonstrate specific iloprost binding using the given method

  5. Shared peptide binding of HLA Class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles

    DEFF Research Database (Denmark)

    Pavlos, Rebecca; McKinnon, Elizabeth J.; Ostrov, David A.

    2017-01-01

    specificities and binding pocket structure. We demonstrate that primary predisposition to cutaneous NVP HSR, seen across ancestral groups, can be attributed to a cluster of HLA-C alleles sharing a common binding groove F pocket with HLA-C*04:01. An independent association with a group of class II alleles which......Genes of the human leukocyte antigen (HLA) system encode cell-surface proteins involved in regulation of immune responses, and the way drugs interact with the HLA peptide binding groove is important in the immunopathogenesis of T-cell mediated drug hypersensitivity syndromes. Nevirapine (NVP......), is an HIV-1 antiretroviral with treatment-limiting hypersensitivity reactions (HSRs) associated with multiple class I and II HLA alleles. Here we utilize a novel analytical approach to explore these multi-allelic associations by systematically examining HLA molecules for similarities in peptide binding...

  6. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  7. Exploration Medical System Demonstration

    Science.gov (United States)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  8. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.

    1982-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Increasing transportation and disposal costs have caused industry to consider incineration as a cost-effective means of volume reduction of combustible LLW. Repeated inquiries from the nuclear industry regarding the applicability of the Los Alamos controlled air incineration (CAI) design led the DOE to initiate a commercial demonstration program in FY-1980. Development studies and results in support of this program involving ion exchange resin incineration and fission/activation product distributions within the Los Alamos CAI are described

  9. Demonstration tokamak power plant

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System.

  10. Visual Electricity Demonstrator

    Science.gov (United States)

    Lincoln, James

    2017-09-01

    The Visual Electricity Demonstrator (VED) is a linear diode array that serves as a dynamic alternative to an ammeter. A string of 48 red light-emitting diodes (LEDs) blink one after another to create the illusion of a moving current. Having the current represented visually builds an intuitive and qualitative understanding about what is happening in a circuit. In this article, I describe several activities for this device and explain how using this technology in the classroom can enhance the understanding and appreciation of physics.

  11. Final Demonstrator Status

    DEFF Research Database (Denmark)

    Workspace

    2003-01-01

    understanding the spatial relations that obtain between the landscape architects and their materials, their work settings and their work sites.  This report should be read as an introduction and orientation to the various project  prototypes and demonstrators – it will make only limited sense taken in isolation.  ......The WorkSPACE project aims to create an integrated environment for collaborative  work activities that can be distributed over a variety of spaces and that mixes digital  and physical materials. We have termed this ‘spatial computing’ because much of the  functionality is provided through...

  12. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence

    DEFF Research Database (Denmark)

    Gustafsson, Caj Ulrik Mattias; Lannergård, Jonas; Nilsson, Olof Rickard

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against...... complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive...... to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed...

  13. Novel heparan sulfate-binding peptides for blocking herpesvirus entry.

    Directory of Open Access Journals (Sweden)

    Pranay Dogra

    Full Text Available Human cytomegalovirus (HCMV infection can lead to congenital hearing loss and mental retardation. Upon immune suppression, reactivation of latent HCMV or primary infection increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treatments include nucleoside analogues, which have significant toxicities limiting their usefulness. In this study we screened a panel of synthetic heparin-binding peptides for their ability to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in murine CMV (MCMV infection. Because negatively charged, cell-surface heparan sulfate proteoglycans (HSPGs, serve as the attachment receptor during the adsorption phase of the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorption to the cell surface resulting in the reduction in infection. Positively charged Lys residues were required for peptide binding to cell-surface HSPGs and reducing viral infection. We show that this inhibition was not due to a direct neutralizing effect on the virus itself and that the peptide blocked adsorption of the virus. The peptide also inhibited infection of other herpesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treatment of herpes viral infections and other viruses that use HSPGs for entry.

  14. Vortex Apparatus and Demonstrations

    Science.gov (United States)

    Shakerin, Said

    2010-05-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies.2-5 In this paper, we focus on a particular vortex known as bathtub vortex (BTV). It occurs when water is drained from a hole at the bottom of a container such as a bathtub or a sink under the action of gravity. The vortex has a funnel shape with a central air core, resembling a tornado. We have designed a portable apparatus to demonstrate bathtub vortex on a continual basis. The apparatus consists of a clear cylinder supported by a frame over a water reservoir and a submersible pump. Young and old have been equally amazed by watching the demonstrations at various public presentations held at the University of the Pacific recently. With material cost of less than 100, the apparatus can be easily fabricated and used at other universities. With a short set-up time, it is an ideal device for promoting science to the general public, and it can be used to enhance lectures in physics courses as well.

  15. Inseparable phone books demonstration

    Science.gov (United States)

    Balta, Nuri; Çetin, Ali

    2017-05-01

    This study is aimed at first introducing a well-known discrepant event; inseparable phone books and second, turning it into an experiment for high school or middle school students. This discrepant event could be used especially to indicate how friction force can be effective in producing an unexpected result. Demonstration, discussion, explanation and experiment steps are presented on how to turn a simple discrepant event into an instructional activity. Results showed the relationships between number of pages and force, as well as between amounts of interleave and force. In addition to these, the mathematical equation for the total force between all interleaved pages is derived. As a conclusion, this study demonstrated that not only can phone books be used, but also ordinary books, to investigate this discrepant event. This experiment can be conducted as an example to show the agreement between theoretical and experimental results along with the confounding variables. This discrepant event can be used to create a cognitive conflict in students’ minds about the concepts of ‘force and motion’ and ‘friction force’.

  16. The IBL BOC Demonstrator

    CERN Document Server

    Ancu, J; The ATLAS collaboration; Falchieri, D; Flick, T; Gabrielli, A; Grosse-Knetter, J; Heim, T; Joseph, J; Krieger, N; Kugel, A; Morettini, P; Neumann, M; Polini, A; Schneider, B; Schroer, N

    2011-01-01

    The IBL is a new pixel detector layer to be installed at the ATLAS experiment at the LHC, CERN in 2013. It will be integrated into the general pixel readout and software framework, hence the off-detector readout electronics has to support the new front-end electronics whilst maintaining a high degree of interoperability to the components of the existing system. The off-detector readout is realised using a number of VME card pairs – ROD and BOC – plus a VME crate controller and a custom timing distribution system. The main elements of the new BOC design comprise optical interfaces towards the detector, signal conditioning and data recovery logic. We present the demonstrator used to verify the design approach. The demonstrator is based on a XILINX SP605 FPGA evaluation board and uses a Microblaze processor inside the FPGA to provide easy and flexible access to all essential BOC functions and the corresponding emulator modules, which enable full test of the entire BOC functionality even without any external ...

  17. Smart Grid Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Craig [National Rural Electric Cooperative Association, Arlington, VA (United States); Carroll, Paul [National Rural Electric Cooperative Association, Arlington, VA (United States); Bell, Abigail [National Rural Electric Cooperative Association, Arlington, VA (United States)

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  18. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  19. Detection of Mycobacterium tuberculosis based on H37Rv binding peptides using surface functionalized magnetic microspheres coupled with quantum dots – a nano detection method for Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Yang H

    2014-12-01

    Full Text Available Hua Yang,1 Lianhua Qin,1 Yilong Wang,2 Bingbo Zhang,2 Zhonghua Liu,1 Hui Ma,1 Junmei Lu,1 Xiaochen Huang,1 Donglu Shi,2,3 Zhongyi Hu1 1Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China; 2Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, People’s Republic of China; 3The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA Abstract: Despite suffering from the major disadvantage of low sensitivity, microscopy of direct smear with the Ziehl–Neelsen stain is still broadly used for detection of acid-fast bacilli and diagnosis of tuberculosis. Here, we present a unique detection method of Mycobacterium tuberculosis (MTB using surface functionalized magnetic microspheres (MMSs coupled with quantum dots (QDs, conjugated with various antibodies and phage display-derived peptides. The principle is based upon the conformation of the sandwich complex composed of bacterial cells, MMSs, and QDs. The complex system is tagged with QDs for providing the fluorescent signal as part of the detection while magnetic separation is achieved by MMSs. The peptide ligand H8 derived from the phage display library Ph.D.-7 is developed for MTB cells. Using the combinations of MMS-polyclonal antibody+QD-H8 and MMS-H8+QD-H8, a strong signal of 103 colony forming units (CFU/mL H37Rv was obtained with improved specificity. MS-H8+QD-H8 combination was further optimized by adjusting the concentrations of MMSs, QDs, and incubation time for the maximum detection signal. The limit of detection for MTB was found to reach 103 CFU/mL even for the sputum matrices. Positive sputum samples could be distinguished from control. Thus, this novel method is shown to improve the detection limit and specificity of MTB from the sputum

  20. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability.

    Science.gov (United States)

    Stassi, Stefano; Chiadò, Alessandro; Cauda, Valentina; Palmara, Gianluca; Canavese, Giancarlo; Laurenti, Marco; Ricciardi, Carlo

    2017-04-01

    An efficient way to increase the binding capability of microcantilever biosensors is here demonstrated by growing zinc oxide nanowires (ZnO NWs) on their active surface. A comprehensive evaluation of the chemical compatibility of ZnO NWs brought to the definition of an innovative functionalization method able to guarantee the proper immobilization of biomolecules on the nanostructured surface. A noteworthy higher amount of grafted molecules was evidenced with colorimetric assays on ZnO NWs-coated devices, in comparison with functionalized and activated silicon flat samples. ZnO NWs grown on silicon microcantilever arrays and activated with the proposed immobilization strategy enhanced the sensor binding capability (and thus the dynamic range) of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices. Graphical Abstract An efficient way to increase the binding capability of microcantilever biosensors is represented by growing zinc oxide nanowires (ZnO NWs) on their active surface. ZnO NWs grown on silicon microcantilever arrays and activated with an innovative immobilization strategy enhanced the sensor binding capability of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices.

  1. Fusion Power Demonstration III

    International Nuclear Information System (INIS)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report

  2. Jennings Demonstration PLant

    Energy Technology Data Exchange (ETDEWEB)

    Russ Heissner

    2010-08-31

    Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

  3. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  4. Fusion Power Demonstration III

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D. (ed.)

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  5. DNS & Bind Cookbook

    CERN Document Server

    Liu, Cricket

    2011-01-01

    The DNS & BIND Cookbook presents solutions to the many problems faced by network administrators responsible for a name server. Following O'Reilly's popular problem-and-solution cookbook format, this title is an indispensable companion to DNS & BIND, 4th Edition, the definitive guide to the critical task of name server administration. The cookbook contains dozens of code recipes showing solutions to everyday problems, ranging from simple questions, like, "How do I get BIND?" to more advanced topics like providing name service for IPv6 addresses. It's full of BIND configuration files that yo

  6. Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry

    International Nuclear Information System (INIS)

    Song, Wenfei; Wang, Ying; Wang, Nianshuang; Wang, Dongli; Guo, Jianying; Fu, Lili; Shi, Xuanling

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infects host cells through binding the receptor binding domain (RBD) on its spike glycoprotein to human receptor dipeptidyl peptidase 4 (hDPP4). Here, we report identification of critical residues on hDPP4 for RBD binding and virus entry through analysis of a panel of hDPP4 mutants. Based on the RBD–hDPP4 crystal structure we reported, the mutated residues were located at the interface between RBD and hDPP4, which potentially changed the polarity, hydrophobic or hydrophilic properties of hDPP4, thereby interfering or disrupting their interaction with RBD. Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues in hDPP4–RBD binding interface were important on hDPP4–RBD binding and viral entry. These results provide atomic insights into the features of interactions between hDPP4 and MERS-CoV RBD, and also provide potential explanation for cellular and species tropism of MERS-CoV infection. - Highlights: • It has been demonstrated that MERS-CoV infects host cells through binding its envelope spike (S) glycoprotein to the host cellular receptor dipeptidyl peptidase 4 (DPP4). • To identify the critical residues on hDPP4 for RBD binding and virus entry, we constructed a panel of hDPP4 mutants based on structure-guided mutagenesis. • Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues on hDPP4 had significant impacts on virus/receptor interactions and viral entry. • Our study has provided new insights into the features of interactions between hDPP4 and MERS-CoV RBD, and provides potential explanation for cellular and species tropism of MERS-CoV infection

  7. Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenfei [Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Wang, Ying [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Nianshuang; Wang, Dongli [Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Guo, Jianying; Fu, Lili [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China); Shi, Xuanling, E-mail: shixuanlingsk@tsinghua.edu.cn [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2014-12-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infects host cells through binding the receptor binding domain (RBD) on its spike glycoprotein to human receptor dipeptidyl peptidase 4 (hDPP4). Here, we report identification of critical residues on hDPP4 for RBD binding and virus entry through analysis of a panel of hDPP4 mutants. Based on the RBD–hDPP4 crystal structure we reported, the mutated residues were located at the interface between RBD and hDPP4, which potentially changed the polarity, hydrophobic or hydrophilic properties of hDPP4, thereby interfering or disrupting their interaction with RBD. Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues in hDPP4–RBD binding interface were important on hDPP4–RBD binding and viral entry. These results provide atomic insights into the features of interactions between hDPP4 and MERS-CoV RBD, and also provide potential explanation for cellular and species tropism of MERS-CoV infection. - Highlights: • It has been demonstrated that MERS-CoV infects host cells through binding its envelope spike (S) glycoprotein to the host cellular receptor dipeptidyl peptidase 4 (DPP4). • To identify the critical residues on hDPP4 for RBD binding and virus entry, we constructed a panel of hDPP4 mutants based on structure-guided mutagenesis. • Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues on hDPP4 had significant impacts on virus/receptor interactions and viral entry. • Our study has provided new insights into the features of interactions between hDPP4 and MERS-CoV RBD, and provides potential explanation for cellular and species tropism of MERS-CoV infection.

  8. Binding of CFA/I Pili of Enterotoxigenic Escherichia coli to Asialo-GM1 Is Mediated by the Minor Pilin CfaE.

    Science.gov (United States)

    Madhavan, T P Vipin; Riches, James D; Scanlon, Martin J; Ulett, Glen C; Sakellaris, Harry

    2016-05-01

    CFA/I pili are representatives of a large family of related pili that mediate the adherence of enterotoxigenic Escherichia coli to intestinal epithelial cells. They are assembled via the alternate chaperone-usher pathway and consist of two subunits, CfaB, which makes up the pilus shaft and a single pilus tip-associated subunit, CfaE. The current model of pilus-mediated adherence proposes that CFA/I has two distinct binding activities; the CfaE subunit is responsible for binding to receptors of unknown structure on erythrocyte and intestinal epithelial cell surfaces, while CfaB binds to various glycosphingolipids, including asialo-GM1. In this report, we present two independent lines of evidence that, contrary to the existing model, CfaB does not bind to asialo-GM1 independently of CfaE. Neither purified CfaB subunits nor CfaB assembled into pili bind to asialo-GM1. Instead, we demonstrate that binding activity toward asialo-GM1 resides in CfaE and this is essential for pilus binding to Caco-2 intestinal epithelial cells. We conclude that the binding activities of CFA/I pili for asialo-GM1, erythrocytes, and intestinal cells are inseparable, require the same amino acid residues in CfaE, and therefore depend on the same or very similar binding mechanisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Antimicrobial activities of heparin-binding peptides.

    OpenAIRE

    Andersson, Emma; Rydengård, Victoria; Sonesson, Andreas; Mörgelin, Matthias; Björck, Lars; Schmidtchen, Artur

    2004-01-01

    Antimicrobial peptides are effector molecules of the innate immune system. We recently showed that the human antimicrobial peptides alpha-defensin and LL-37 bind to glycosaminoglycans (heparin and dermatan sulphate). Here we demonstrate the obverse, i.e. structural motifs associated with heparin affinity (cationicity, amphipaticity, and consensus regions) may confer antimicrobial properties to a given peptide. Thus, heparin-binding peptides derived from laminin isoforms, von Willebrand factor...

  10. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    Science.gov (United States)

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Dual chain synthetic heparin-binding growth factor analogs

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  12. Demonstration exercise 'Cavtat 09'

    International Nuclear Information System (INIS)

    Trut, D.

    2009-01-01

    The demonstration exercise is to show a terrorist attack in urban area resulting in a certain number of injured people. On 7th April 2009 a terrorist group HAL 9000 is in Cavtat and set up an explosive devices with chemical reagents in several spots with intention to activate them and cause great number of victims. On the same day, in area of the Cavtat Croatia Hotel, which is hosting the world CBMTS Congress, Cavtat Police Station notice several masked persons, in escapement. Hotel personnel alerted the County 112 Center about noticed devices placed by chlorine dioxide tanks, for water conditioning. Intervention police came to block entrance to this area and evacuate hotel's guests and congress members. An explosion and fire occurs from where the position of water-conditioning plant and chlorine dioxide tank. The 112 Center alarms fire-fighters for fight fire and decontamination action and HAZMAT Civil Support Team from Georgia (participated the congress). In the meantime, guests have been instructed not to leave their rooms and to hermetically close doors and windows with available material to keep away potential toxic fume. Decision makers form the County Protection and Rescue Headquarters monitors the situation till the end of alert for the population in the area of Cavtat.(author)

  13. A Demonstration of Lusail

    KAUST Repository

    Mansour, Essam

    2017-05-10

    There has been a proliferation of datasets available as interlinked RDF data accessible through SPARQL endpoints. This has led to the emergence of various applications in life science, distributed social networks, and Internet of Things that need to integrate data from multiple endpoints. We will demonstrate Lusail; a system that supports the need of emerging applications to access tens to hundreds of geo-distributed datasets. Lusail is a geo-distributed graph engine for querying linked RDF data. Lusail delivers outstanding performance using (i) a novel locality-aware query decomposition technique that minimizes the intermediate data to be accessed by the subqueries, and (ii) selectivityawareness and parallel query execution to reduce network latency and to increase parallelism. During the demo, the audience will be able to query actually deployed RDF endpoints as well as large synthetic and real benchmarks that we have deployed in the public cloud. The demo will also show that Lusail outperforms state-of-the-art systems by orders of magnitude in terms of scalability and response time.

  14. DNS BIND Server Configuration

    Directory of Open Access Journals (Sweden)

    Radu MARSANU

    2011-01-01

    Full Text Available After a brief presentation of the DNS and BIND standard for Unix platforms, the paper presents an application which has a principal objective, the configuring of the DNS BIND 9 server. The general objectives of the application are presented, follow by the description of the details of designing the program.

  15. DNS BIND Server Configuratio

    OpenAIRE

    Radu MARSANU

    2011-01-01

    After a brief presentation of the DNS and BIND standard for Unix platforms, the paper presents an application which has a principal objective, the configuring of the DNS BIND 9 server. The general objectives of the application are presented, follow by the description of the details of designing the program.

  16. DNS BIND Server Configuration

    OpenAIRE

    Radu MARSANU

    2011-01-01

    After a brief presentation of the DNS and BIND standard for Unix platforms, the paper presents an application which has a principal objective, the configuring of the DNS BIND 9 server. The general objectives of the application are presented, follow by the description of the details of designing the program.

  17. Melanin-binding radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  18. Melanin-binding radiopharmaceuticals

    International Nuclear Information System (INIS)

    Packer, S.; Fairchild, R.G.; Watts, K.P.; Greenberg, D.; Hannon, S.J.

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed

  19. Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes.

    Science.gov (United States)

    Hanski, E; Caparon, M

    1992-07-01

    Binding to fibronectin has been suggested to play an important role in adherence of the group A streptococcus Streptococcus pyrogenes to host epithelial cells; however, the identity of the streptococcal fibronectin receptor has been elusive. Here we demonstrate that the fibronectin-binding property of S. pyogenes is mediated by protein F, a bacterial surface protein that binds fibronectin at high affinity. The gene encoding protein F (prtF) produced a functional fibronectin-binding protein in Escherichia coli. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of fibronectin-binding activity. When this mutation was introduced into the S. pyrogenes chromosome by homologous recombination with the wild-type allele, the resulting strains no longer produced protein F and lost their ability to bind fibronectin. The mutation could be complemented by prtF introduced on a plasmid. Mutants lacking protein F had a much lower capacity to adhere to respiratory epithelial cells. These results demonstrate that protein F is an important adhesin of S. pyogenes.

  20. Inorganic binding peptides designed by phage display techniques for biotechnology applications

    Science.gov (United States)

    Liao, Chih-Wei

    Biomacromolecules play an important role in the control of hard tissue structure and function via specific molecular recognition interactions between proteins of the matrix and inorganic species of the biomineral phase. During the construction of the tissue, biomacromolecules are usually folded into a certain comformation, analogous to a "lock" for fitting with other proteins or smaller molecules as a "key". Currently, the rational design of molecular recognition in biomacro-molecules is still hard to accomplish because the protein conformation is too complex to precisely predict based on the existing conformational information of proteins found in biological systems. In the past two decades, the combinatorial approach (e.g. phage display techniques) has been used to select short binding peptides with molecular recognition to an inorganic target material without a prior knowledge of the amino acid sequence required for the specific binding. The technique has been referred to as "biopanning" because bacteriophages are used to "screen" for peptides that exhibit strong binding to a target material of interest. In this study, two diverse applications were chosen to demonstrate the utility of the biopanning approach. In one project, phage display techniques were used to pan for Indium Zinc Oxide (InZnO) binding peptides to serve as linkers between transducer devices and biosensing elements for demonstration of the feasibility of reversibly electro-activated biosensors. The amorphous InZnO, with its homogeneous surface, led to three consensus peptide sequences, AGFPNSTHSSNL, SHAPDSTWFALF, and TNSSSQFVVAIP. In addition, it was demonstrated that some selected phage clones of the InZnO binding peptides were able to be released from the InZnO surface after applying a voltage of 1400 mV on an electro-activated releasing device. In the second project, phage display techniques were used to select phage clones that bind specifically to francolite mineral in order to achieve

  1. Blood coagulation factor XIa binds specifically to a site on activated human platelets distinct from that for factor XI

    International Nuclear Information System (INIS)

    Sinha, D.; Seaman, F.S.; Koshy, A.; Knight, L.C.; Walsh, P.N.

    1984-01-01

    Binding of 125 I-Factor XIa to platelets required the presence of high molecular weight kininogen, was enhanced when platelets were stimulated with thrombin, and reached a plateau after 4-6 min of incubation at 37 degrees C. Factor XIa binding was specific: 50- to 100-fold molar excesses of unlabeled Factor XIa prevented binding, whereas Factor XI, prekallikrein, Factor XIIa, and prothrombin did not. When washed erythrocytes, added at concentrations calculated to provide an equivalent surface area to platelets, were incubated with Factor XIa, only a low level of nonspecific, nonsaturable binding was detected. Factor XIa binding to platelets was partially reversible and was saturable at concentrations of added Factor XIa of 0.2-0.4 microgram/ml (1.25-2.5 microM). The number of Factor XIa binding sites on activated platelets was estimated to be 225 per platelet (range, 110-450). We conclude that specific, high affinity, saturable binding sites for Factor XIa are present on activated platelets, are distinct from those previously demonstrated for Factor XI, and require the presence of high molecular weight kininogen

  2. Discovery of a polystyrene binding peptide isolated from phage display library and its application in peptide immobilization.

    Science.gov (United States)

    Qiang, Xu; Sun, Keyong; Xing, Lijun; Xu, Yifeng; Wang, Hong; Zhou, Zhengpin; Zhang, Juan; Zhang, Fang; Caliskan, Bilgen; Wang, Min; Qiu, Zheng

    2017-06-01

    Phage peptide display is a powerful technique for discovery of various target-specific ligands. However, target-unrelated peptides can often be obtained and cause ambiguous results. Peptide PB-TUP has been isolated repeatedly in our laboratory on different targets and we conducted a research on PB-TUP phage to investigate their binding properties and rate of propagation. ELISA and phage recovery assay demonstrated that PB-TUP phage had a significant superior affinity to polystyrene solid surface compared with control phage clones. In this study, some incidental bindings are excluded like blocking agents and non-specific binding of secondary antibodies. Propagation rate assays of the selected phage clones showed that the growth rate of PB-TUP phage was not superior to the control phages. Furthermore, the binding of PB-TUB to polystyrene was concentration dependent and varied with solution pH. Molecular modeling revealed that stable structures of α-helix and β-turn may contribute to the binding of PB-TUP to polystyrene plate. The PB-TUP sequence was fused to the N-terminus of peptide P2 and the fusion peptide significantly increased the binding affinity to polystyrene. The fusion peptide also enhanced the cell adhesion ability of peptide P2 with human umbilical vein endothelial cell (HUVEC). The addition of the polystyrene binding peptide provided a convenient method for peptide immobilization.

  3. Three complement-like repeats compose the complete alpha2-macroglobulin binding site in the second ligand binding cluster of the low density lipoprotein receptor-related protein.

    Science.gov (United States)

    Dolmer, Klavs; Gettins, Peter G W

    2006-11-10

    Given the importance of the low density lipoprotein receptor-related protein (LRP) as an essential endocytosis and signaling receptor for many protein ligands, and of alpha2-macroglobulin (alpha2M)-proteinase complexes as one such set of ligands, an understanding of the specificity of their interaction with LRP is an important goal. A starting point is the known role of the 138-residue receptor binding domain (RBD) in binding to LRP. Previous studies have localized high affinity alpha2M binding to the eight complement repeat (CR)-containing cluster 2 of LRP. In the present study we have identified the minimum CR domains that constitute the full binding site for RBD and, hence, for alpha2M on LRP. We report on the ability of the triple construct of CR3-4-5 to bind RBD with an affinity (Kd = 130 nM) the same as for isolated RBD to intact LRP. This Kd is 30-fold smaller than for RBD to CR5-6-7, demonstrating the specificity of the interaction with CR3-4-5. Binding requires previously identified critical lysine residues but is almost pH-independent within the range of pH values encountered between extracellular and internal compartments, consistent with an earlier proposed model of intracellular ligand displacement by intramolecular YWTD domains. The present findings suggest a model to explain the ability of LRP to bind a wide range of structurally unrelated ligands in which a nonspecific ligand interaction with the acidic region present in most CR domains is augmented by interactions with other CR surface residues that are unique to a particular CR cluster.

  4. Adsorption orientation effects of porphyrin dyes on the performance of DSSC: Comparison of benzoic acid and tropolone anchoring groups binding onto the TiO2 anatase (101) surface

    Science.gov (United States)

    Zhu, Han-Cheng; Zhang, Ji; Wang, Ying-Lin

    2018-03-01

    A new porphyrin dye with tropolone anchoring group showing superior stability but lower efficiency versus the promising dye YD2-o-C8 with benzoic acid anchoring group was theoretically investigated for the first time. A series of important parameters related to the efficiency of DSSC were calculated to explore the nature of the experimentally observed lower efficiency and superior stability of tropolone-based solar cells. We found these two dyes with different anchoring groups show comparable electron injection and dye regeneration process. Interestingly, the red-shifted absorption spectrum, relatively weaker ability of releasing protons, and the larger conduction band energy shift of tropolone-based dyes all demonstrated it should show better performance than the benzoic acid dyes, which contradicts with the experimental results. However, through investigating the interaction between the porphyrin dye and the semiconductor by analyzing the electron localization function of the porphyrin dye and preforming energy decomposition analysis, we found that the direction of lone-pair electrons of carbonyl oxygen in the tropolone-based dye makes the dye prefer to adsorb on the surface in an inclined way, in contrary to the benzoic acid-based dye that favored a vertical adsorption. The inclined adsorption could significantly accelerate the charge recombination process between the injected electrons and the oxidized dye, leading to a decreased efficiency of DSSC.

  5. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly