WorldWideScience

Sample records for surface based measurements

  1. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  2. Simulated BRDF based on measured surface topography of metal

    Science.gov (United States)

    Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.

  3. Surface characterization of hemodialysis membranes based on streaming potential measurements.

    Science.gov (United States)

    Werner, C; Jacobasch, H J; Reichelt, G

    1995-01-01

    Hemodialysis membranes made from cellulose (CUPROPHAN, HEMOPHAN) and sulfonated polyethersulfone (SPES) were characterized using the streaming potential technique to determine the zeta potential at their interfaces against well-defined aqueous solutions of varied pH and potassium chloride concentrations. Streaming potential measurements enable distinction between different membrane materials. In addition to parameters of the electrochemical double layer at membrane interfaces, thermodynamic characteristics of adsorption of different solved species were evaluated. For that aim a description of double layer formation as suggested by Börner and Jacobasch (in: Electrokinetic Phenomena, p. 231. Institut für Technologie der Polymere, Dresden (1989)) was applied which is based on the generally accepted model of the electrochemical double layer according to Stern (Z. Elektrochemie 30, 508 (1924)) and Grahame (Chem. Rev. 41, 441 (1947)). The membranes investigated show different surface acidic/basic and polar/nonpolar behavior. Furthermore, alterations of membrane interfaces through adsorption processes of components of biologically relevant solutions were shown to be detectable by streaming potential measurements.

  4. UAV BASED BRDF-MEASUREMENTS OF AGRICULTURAL SURFACES WITH PFIFFIKUS

    Directory of Open Access Journals (Sweden)

    G. J. Grenzdörffer

    2012-09-01

    Full Text Available BRDF is a common problem in remote sensing and also in oblique photogrammetry. Common approaches of BRDF-measurement with a field goniometer are costly and rather cumbersome. UAVs may offer an interesting alternative by using a special flight pattern of oblique and converging images. The main part of this paper is the description of a photogrammetric workflow in order to determine the anisotropic reflection properties of a given surface. Due to the relatively low flying heights standard procedures from close range photogrammetry were adopted for outdoor usage. The photogrammetric processing delivered automatic and highly accurate orientation information with the aid of coded targets. The interior orientation of the consumer grade camera is more or less stable. The radiometrically corrected oblique images are converted into ortho photos. The azimuth and elevation angle of every point may then be computed. The calculated anisotropy of a winter wheat plot is shown. A system four diagonally-looking cameras (Four Vision and an additional nadir looking camera is under development. The multi camera system especially designed for a Micro- UAV with a payload of min 1 kg. The system is composed of five industrial digital frame cameras (1.3 Mpix CCD-chips, 15 fp/s with fixed lenses. Also special problems with the construction of a light weight housing of the multi camera solution are covered in the paper.

  5. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.

    Science.gov (United States)

    Ku, Bon Ki; Kulkarni, Pramod

    2012-05-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.

  6. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    International Nuclear Information System (INIS)

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-01-01

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release

  7. Digital Moiré based transient interferometry and its application in optical surface measurement

    Science.gov (United States)

    Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao

    2017-10-01

    Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.

  8. Adaptive Sampling based 3D Profile Measuring Method for Free-Form Surface

    Science.gov (United States)

    Duan, Xianyin; Zou, Yu; Gao, Qiang; Peng, Fangyu; Zhou, Min; Jiang, Guozhang

    2018-03-01

    In order to solve the problem of adaptability and scanning efficiency of the current surface profile detection device, a high precision and high efficiency detection approach is proposed for surface contour of free-form surface parts based on self- adaptability. The contact mechanical probe and the non-contact laser probe are synthetically integrated according to the sampling approach of adaptive front-end path detection. First, the front-end path is measured by the non-contact laser probe, and the detection path is planned by the internal algorithm of the measuring instrument. Then a reasonable measurement sampling is completed according to the planned path by the contact mechanical probe. The detection approach can effectively improve the measurement efficiency of the free-form surface contours and can simultaneously detect the surface contours of unknown free-form surfaces with different curvatures and even different rate of curvature. The detection approach proposed in this paper also has important reference value for free-form surface contour detection.

  9. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    Science.gov (United States)

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  10. Atmospheric effect on the ground-based measurements of broadband surface albedo

    Directory of Open Access Journals (Sweden)

    T. Manninen

    2012-11-01

    Full Text Available Ground-based pyranometer measurements of the (clear-sky broadband surface albedo are affected by the atmospheric conditions (mainly by aerosol particles, water vapour and ozone. A new semi-empirical method for estimating the magnitude of the effect of atmospheric conditions on surface albedo measurements in clear-sky conditions is presented. Global and reflected radiation and/or aerosol optical depth (AOD at two wavelengths are needed to apply the method. Depending on the aerosol optical depth and the solar zenith angle values, the effect can be as large as 20%. For the cases we tested using data from the Cabauw atmospheric test site in the Netherlands, the atmosphere caused typically up to 5% overestimation of surface albedo with respect to corresponding black-sky surface albedo values.

  11. Gaussian process based intelligent sampling for measuring nano-structure surfaces

    Science.gov (United States)

    Sun, L. J.; Ren, M. J.; Yin, Y. H.

    2016-09-01

    Nanotechnology is the science and engineering that manipulate matters at nano scale, which can be used to create many new materials and devices with a vast range of applications. As the nanotech product increasingly enters the commercial marketplace, nanometrology becomes a stringent and enabling technology for the manipulation and the quality control of the nanotechnology. However, many measuring instruments, for instance scanning probe microscopy, are limited to relatively small area of hundreds of micrometers with very low efficiency. Therefore some intelligent sampling strategies should be required to improve the scanning efficiency for measuring large area. This paper presents a Gaussian process based intelligent sampling method to address this problem. The method makes use of Gaussian process based Bayesian regression as a mathematical foundation to represent the surface geometry, and the posterior estimation of Gaussian process is computed by combining the prior probability distribution with the maximum likelihood function. Then each sampling point is adaptively selected by determining the position which is the most likely outside of the required tolerance zone among the candidates and then inserted to update the model iteratively. Both simulationson the nominal surface and manufactured surface have been conducted on nano-structure surfaces to verify the validity of the proposed method. The results imply that the proposed method significantly improves the measurement efficiency in measuring large area structured surfaces.

  12. Quality assurance of in-situ measurements of land surface albedo: A model-based approach

    Science.gov (United States)

    Adams, Jennifer; Gobron, Nadine; Widlowski, Jean-Luc; Mio, Corrado

    2016-04-01

    This paper presents the development of a model-based framework for assessing the quality of in-situ measurements of albedo used to validate land surface albedo products. Using a 3D Monte Carlo Ray Tracing (MCRT) radiative transfer model, a quality assurance framework is built based on simulated field measurements of albedo within complex 3D canopies and under various illumination scenarios. This method provides an unbiased approach in assessing the quality of field measurements, and is also able to trace the contributions of two main sources of uncertainty in field-measurements of albedo; those resulting from 1) the field measurement protocol, such as height or placement of field measurement within the canopy, and 2) intrinsic factors of the 3D canopy under specific illumination characteristics considered, such as the canopy structure and landscape heterogeneity, tree heights, ecosystem type and season.

  13. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices.

    Science.gov (United States)

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-12-23

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given.

  14. Mapping reservoir volume changes during cyclic steam stimulation using tiltmeter-based surface deformation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Du, J.; Davis, E.J.; Roadarmel, W.H.; Wolhart, S.L.; Marsic, S.; Gusek, R.; Wright, C.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Pinnacle Technologies Inc., Houston, TX (United States); Brissenden, S.J.; McGillivray, P. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre; Bourne, S.; Hofstra, P. [Shell International E and P, Calgary, AB (Canada)

    2005-11-01

    Surface deformation measurements have been effectively used to monitor production, waterflooding, waste injection and steam flooding in oil fields, and in cyclic steam stimulation (CSS) applications. It was shown that further information can be obtained from this technique by inverting the surface deformation for the volumetric deformation at the reservoir level, so that the aerial distribution of volumetric distribution can be identified. A poroelastic model calculated deformation resulting from volumetric changes in the reservoir. A linear geophysical model was then formulated to invert the reservoir volumetric deformation from the measured surface deformation. Constraints were applied to resolve the inversion problem. Theoretical surface deformation was calculated after each inversion from the inverted volumetric deformation distribution which best fit the measured information data, or tilt, at the surface. The technique was then applied to real data from a CSS injection project at Shell Canada's Peace River development in northern Alberta, where several pads of horizontal wells have been developed. A total of 50 tiltmeters were used to monitor half of Pad A and 70 tiltmeters were used to monitor Pad B. Monitoring was used to identify and characterize any hydraulic fracturing that was contributing to injection mechanisms in the reservoir. It was noted that inverting the measured surface tilt for the volumetric change at reservoir levels improved the ability to interpret reservoir processes. It was observed that volumetric changes can be non-uniform with some pad areas deforming more than others. It was concluded that deformation-based, reservoir-level monitoring has proven helpful in ongoing efforts to optimize such variables as the length of well laterals, injection rates, lateral spacing and cycle times. 10 refs., 32 figs.

  15. Method And Apparatus For Two Dimensional Surface Property Analysis Based On Boundary Measurement

    Science.gov (United States)

    Richardson, John G.

    2005-11-15

    An apparatus and method for determining properties of a conductive film is disclosed. A plurality of probe locations selected around a periphery of the conductive film define a plurality of measurement lines between each probe location and all other probe locations. Electrical resistance may be measured along each of the measurement lines. A lumped parameter model may be developed based on the measured values of electrical resistance. The lumped parameter model may be used to estimate resistivity at one or more selected locations encompassed by the plurality of probe locations. The resistivity may be extrapolated to other physical properties if the conductive film includes a correlation between resistivity and the other physical properties. A profile of the conductive film may be developed by determining resistivity at a plurality of locations. The conductive film may be applied to a structure such that resistivity may be estimated and profiled for the structure's surface.

  16. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  17. Ag coated microneedle based surface enhanced Raman scattering probe for intradermal measurements

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2013-06-01

    We propose a silver coated microneedle to detect test molecules, including R6G and glucose, positioned at a depth of more than 700 μm below a skin phantom surface for mimicking intradermal surface-enhanced Raman scattering measurements.

  18. Validating Remotely Sensed Land Surface Evapotranspiration Based on Multi-scale Field Measurements

    Science.gov (United States)

    Jia, Z.; Liu, S.; Ziwei, X.; Liang, S.

    2012-12-01

    The land surface evapotranspiration plays an important role in the surface energy balance and the water cycle. There have been significant technical and theoretical advances in our knowledge of evapotranspiration over the past two decades. Acquisition of the temporally and spatially continuous distribution of evapotranspiration using remote sensing technology has attracted the widespread attention of researchers and managers. However, remote sensing technology still has many uncertainties coming from model mechanism, model inputs, parameterization schemes, and scaling issue in the regional estimation. Achieving remotely sensed evapotranspiration (RS_ET) with confident certainty is required but difficult. As a result, it is indispensable to develop the validation methods to quantitatively assess the accuracy and error sources of the regional RS_ET estimations. This study proposes an innovative validation method based on multi-scale evapotranspiration acquired from field measurements, with the validation results including the accuracy assessment, error source analysis, and uncertainty analysis of the validation process. It is a potentially useful approach to evaluate the accuracy and analyze the spatio-temporal properties of RS_ET at both the basin and local scales, and is appropriate to validate RS_ET in diverse resolutions at different time-scales. An independent RS_ET validation using this method was presented over the Hai River Basin, China in 2002-2009 as a case study. Validation at the basin scale showed good agreements between the 1 km annual RS_ET and the validation data such as the water balanced evapotranspiration, MODIS evapotranspiration products, precipitation, and landuse types. Validation at the local scale also had good results for monthly, daily RS_ET at 30 m and 1 km resolutions, comparing to the multi-scale evapotranspiration measurements from the EC and LAS, respectively, with the footprint model over three typical landscapes. Although some

  19. Digital photography and transparency-based methods for measuring wound surface area.

    Science.gov (United States)

    Bhedi, Amul; Saxena, Atul K; Gadani, Ravi; Patel, Ritesh

    2013-04-01

    To compare and determine a credible method of measurement of wound surface area by linear, transparency, and photographic methods for monitoring progress of wound healing accurately and ascertaining whether these methods are significantly different. From April 2005 to December 2006, 40 patients (30 men, 5 women, 5 children) admitted to the surgical ward of Shree Sayaji General Hospital, Baroda, had clean as well as infected wound following trauma, debridement, pressure sore, venous ulcer, and incision and drainage. Wound surface areas were measured by these three methods (linear, transparency, and photographic methods) simultaneously on alternate days. The linear method is statistically and significantly different from transparency and photographic methods (P value transparency and photographic methods (P value >0.05). Photographic and transparency methods provided measurements of wound surface area with equivalent result and there was no statistically significant difference between these two methods.

  20. Evaluation of surface contamination based on certifiably traceable, internationally accreditable measurements

    International Nuclear Information System (INIS)

    Whitlock, G.D.

    1992-01-01

    National Accreditation and Measurement Service (NAMAS) adopted by the EUROMET agreement requires that the calibration of monitoring instruments be traceable internationally with the objective that radiation hazard assessment be improved. This objective is achieved for Tritium surface contamination by employing calibration sources and evaluation methods which comply with ISO standards including the measurement of activity removable by Volatilization as well as dust. Consideration should be given to organic binding of tritium in the skin with its implications in the event of litigation. (author)

  1. A smart car for the surface shape measurement of large antenna based on laser tracker

    Science.gov (United States)

    Gu, Yonggang; Hu, Jing; Jin, Yi; Zhai, Chao

    2012-09-01

    The geometric accuracy of the surface shape of large antenna is an important indicator of antenna’s quality. Currently, high-precision measurement of large antenna surface shape can be performed in two ways: photogrammetry and laser tracker. Photogrammetry is a rapid method, but its accuracy is not enough good. Laser tracker can achieve high precision, but it is very inconvenient to move the reflector (target mirror) on the surface of the antenna by hand during the measurement. So, a smart car is designed to carry the reflector in this paper. The car, controlled by wireless, has a small weight and a strong ability for climbing, and there is a holding bracket gripping the reflector and controlling reflector rise up and drop down on the car. During the measurement of laser tracker, the laser beam between laser tracker and the reflector must not be interrupted, so two high-precision three-dimensional miniature electronic compasses, which can real-time monitor the relative angle between the holding bracket and the laser tracker’s head, are both equipped on the car and the head of laser tracker to achieve automatic alignment between reflector and laser beam. With the aid of the smart car, the measurement of laser tracker has the advantages of high precision and rapidity.

  2. Laser-based surface preparation of composite laminates leads to improved electrodes for electrical measurements

    KAUST Repository

    Almuhammadi, Khaled; Selvakumaran, Lakshmi; Alfano, Marco; Yang, Yang; Bera, Tushar Kanti; Lubineau, Gilles

    2015-01-01

    Electrical impedance tomography (EIT) is a low-cost, fast and effective structural health monitoring technique that can be used on carbon fiber reinforced polymers (CFRP). Electrodes are a key component of any EIT system and as such they should feature low resistivity as well as high robustness and reproducibility. Surface preparation is required prior to bonding of electrodes. Currently this task is mostly carried out by traditional sanding. However this is a time consuming procedure which can also induce damage to surface fibers and lead to spurious electrode properties. Here we propose an alternative processing technique based on the use of pulsed laser irradiation. The processing parameters that result in selective removal of the electrically insulating resin with minimum surface fiber damage are identified. A quantitative analysis of the electrical contact resistance is presented and the results are compared with those obtained using sanding.

  3. Laser-based surface preparation of composite laminates leads to improved electrodes for electrical measurements

    KAUST Repository

    Almuhammadi, Khaled

    2015-10-19

    Electrical impedance tomography (EIT) is a low-cost, fast and effective structural health monitoring technique that can be used on carbon fiber reinforced polymers (CFRP). Electrodes are a key component of any EIT system and as such they should feature low resistivity as well as high robustness and reproducibility. Surface preparation is required prior to bonding of electrodes. Currently this task is mostly carried out by traditional sanding. However this is a time consuming procedure which can also induce damage to surface fibers and lead to spurious electrode properties. Here we propose an alternative processing technique based on the use of pulsed laser irradiation. The processing parameters that result in selective removal of the electrically insulating resin with minimum surface fiber damage are identified. A quantitative analysis of the electrical contact resistance is presented and the results are compared with those obtained using sanding.

  4. Measurement of complex surfaces

    International Nuclear Information System (INIS)

    Brown, G.M.

    1993-05-01

    Several of the components used in coil fabrication involve complex surfaces and dimensions that are not well suited to measurements using conventional dimensional measuring equipment. Some relatively simple techniques that are in use in the SSCL Magnet Systems Division (MSD) for incoming inspection will be described, with discussion of their suitability for specific applications. Components that are submitted for MSD Quality Assurance (QA) dimensional inspection may be divided into two distinct categories; the first category involves components for which there is an approved drawing and for which all nominal dimensions are known; the second category involves parts for which 'reverse engineering' is required, the part is available but there are no available drawings or dimensions. This second category typically occurs during development of coil end parts and coil turn filler parts where it is necessary to manually shape the part and then measure it to develop the information required to prepare a drawing for the part

  5. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements.

    Science.gov (United States)

    Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M

    2014-08-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼10 4  m 2 to ∼10 7  m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼10 2  m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I  = 452 J m -2  K -1  s -1/2 (SI units used throughout this article) is found at YKB followed by PL with I  = 306 and RCK with I  = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.

  6. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  7. A Test for the Effectiveness of Splenectomy in Werlhof's Disease Based on Body-Surface Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Fontein, D. L.; Beekhuis, H.; Woldring, M. G.; Zanten, A.K. van; Nieweg, H. O. [University of Groningen, Groningen (Netherlands)

    1971-02-15

    Body-surface measurements were performed during {sup 51}Cr-platelet survival studies in patients with a normal or a reduced platelet life-span. As quantification of organ activity from surface recordings is hardly feasible, we tried to reach conclusions from the course of surface activity during platelet destruction. Continuous recording was applied during 30 or 50 min after platelet infusion, in order to avoid the problems raised by variations in counter positioning in spaced recordings. Surface activity was recorded over liver and spleen and/or heart independently by collimated Nal(Tl) crystals, and registered either by a rate-meter and recorder or by a 400-channel analyser. The exponential survival curve and reduced 2-h platelet recovery in patients with reduced platelet life-span suggest that in most cases a substantial destruction occurs in these first 50 min. Detection of platelet destruction in the spleen in this period is obscured, however, by the normal pooling of platelets in the spleen. Over the liver it is more easy to recognize platelet destruction because the rising course of activity differs distinctly from the normal , course. In all five patients with reduced platelet survival after splenectomy, hepatic platelet destruction was demonstrated. In 22 patients with reduced platelet survival and an intact spleen, hepatic platelet destruction was demonstrated in six. Hepatic platelet destruction was observed not only in patients with an extremely short platelet life-span, but also in patients with only moderately impaired platelet survival. The hypothesis that a failure from splenectomy can be predicted from a rising course of activity over the liver was tested in 11 patients. One of these had a failure from splenectomy in spite of a normal preoperative liver curve. Evidence is presented that in this case corticosteroid therapy had obscured hepatic platelet destruction. The results of operation in the other 10 patients (nine remissions and one failure

  8. USB environment measurements based on full-scale static engine ground tests. [Upper Surface Blowing for YC-14

    Science.gov (United States)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive-lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data and to establish a basis for future flight test comparisons.

  9. Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data

    Science.gov (United States)

    Chen, Yu-Cheng; Chen, Chih-Yu; Matzarakis, Andreas; Liu, Jin-King; Lin, Tzu-Ping

    2016-06-01

    Assessment of outdoor thermal comfort is becoming increasingly important due to the urban heat island effect, which strongly affects the urban thermal environment. The mean radiant temperature (Tmrt) quantifies the effect of the radiation environment on humans, but it can only be estimated based on influencing parameters and factors. Knowledge of Tmrt is important for quantifying the heat load on human beings, especially during heat waves. This study estimates Tmrt using several methods, which are based on climatic data from a traditional weather station, microscale ground surface measurements, land surface temperature (LST) and light detection and ranging (LIDAR) data measured using airborne devices. Analytical results reveal that the best means of estimating Tmrt combines information about LST and surface elevation information with meteorological data from the closest weather station. The application in this method can eliminate the inconvenience of executing a wide range ground surface measurement, the insufficient resolution of satellite data and the incomplete data of current urban built environments. This method can be used to map a whole city to identify hot spots, and can be contributed to understanding human biometeorological conditions quickly and accurately.

  10. Possibilities of new materials surface sensibility express determination based on ZnSe-CdS system by pH isoelectric state measurements of the surface state

    Science.gov (United States)

    Kirovskaya, I. A.; Mironova, E. V.; Ushakov, O. V.; Nor, P. E.; Yureva, A. V.; Matyash, Yu I.

    2018-01-01

    A method for determining the hydrogen index of the surfaces isoelectric state (pHiso) at various gases pressures -possible components of the surrounding and technological media has been developed. With its use, changes in pH of binary and more complex semiconductors-components of the new system-ZnSe-CdS under the influence of nitrogen dioxide-have been found. The limiting sensitivity of surfaces - minimum PNO2, causing a change in pH has been estimated. The most active components of ZnSe-CdS system, recommended as materials for measuring cells of NO2, have been revealed. The relationship between the changing patterns with the composition of surface (acid-base) and bulk (in particular, theoretical calculated crystal density) properties has been established, allowing to find the most effective materials for sensor technology and for semiconductor analysis.

  11. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    Science.gov (United States)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  12. A strategy for accommodating residual stresses in the assessment of repair weldments based upon measurement of near surface stresses

    International Nuclear Information System (INIS)

    Mcdonald, E.J.; Hallam, K.R.; Flewitt, P.E.J.

    2005-01-01

    On many occasions repairs are undertaken to ferritic steel weldments on plant either during construction or to remove service induced defects. These repaired weldments are subsequently put into service with or without a post-weld heat treatment. In either case, but particularly for the latter, there is a need to accommodate the associated residual stresses in structural integrity assessments such as those based upon the R6 failure avoidance procedure. Although in some circumstances the residual macro-stresses developed within weldments of components and structures can be calculated this is not so readily achieved in the case of residual stresses introduced by repair welds. There is a range of physical and mechanical techniques available to undertake the measurement of macro-residual stresses. Of these X-ray diffraction has the advantage that it is essentially non-destructive and offers the potential for evaluating stresses, which exist in the near surface layer. Although for many structural integrity assessments both the magnitude and distribution of residual stresses have to be accommodated it is not practical to make destructive measurements on weld repaired components and structures to establish the through section distribution of stresses. An approach is to derive a description of the appropriate macro-stresses by a combination of measurement and calculation on trial ferritic steel repair weldments. Surface measurements on the plant can then be made to establish the relationship between the repaired component or structure and the trial weld and thereby improve confidence in predicted stresses and their distribution from the near-surface measured values. Hence X-ray diffraction measurements at the near-surface of the plant weldment can be used to underwrite the quality of the repair by confirming the magnitude and distribution of residual stresses used for the integrity assessment to demonstrate continued safe operation

  13. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    Science.gov (United States)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  14. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    Science.gov (United States)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  15. Measurement of surface roughness

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with two 3 hours laboratory exercises that are part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The laboratories include a demonstration of the function of roughness measuring instruments plus a series of exercises illustrating roughness measurement...

  16. Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire

    Science.gov (United States)

    Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI

    2018-05-01

    The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.

  17. Investigation of Pre- and Post-Flight Radiometric Calibration Uncertainties from Surface Based Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heath, D.F.; Wei, Z.Y.; Ahman, Z.

    1997-06-01

    A new technique has been developed for inferring column ozone amounts and aerosol optical depths from zenith sky observations. A new radiometric calibration technique for large aperture remote sensing instruments observing the earth through space has been validated which subsequently increased the accuracy of remote sensing measurements of ozone and vertical profiles using measurements of back-scattered ultraviolet solar radiation.

  18. Measuring Surface Deformation in Glacier Retreated Areas Based on Ps-Insar - Geladandong Glacier as a Case Study

    Science.gov (United States)

    Mohamadi, B.; Balz, T.

    2018-04-01

    Glaciers are retreating in many parts of the world as a result of global warming. Many researchers consider Qinghai-Tibetan Plateau as a reference for climate change by measuring glaciers retreat on the plateau. This retreat resulted in some topographic changes in retreated areas, and in some cases can lead to geohazards as landslides, and rock avalanches, which is known in glacier retreated areas as paraglacial slope failure (PSF). In this study, Geladandong biggest and main glacier mass was selected to estimate surface deformation on its glacier retreated areas and define potential future PSF based on PS-InSAR technique. 56 ascending and 49 descending images were used to fulfill this aim. Geladandong glacier retreated areas were defined based on the maximum extent of the glacier in the little ice age. Results revealed a general uplift in the glacier retreated areas with velocity less than 5mm/year. Obvious surface motion was revealed in seven parts surround glacier retreated areas with high relative velocity reached ±60mm/year in some parts. Four parts were considered as PSF potential motion, and two of them showed potential damage for the main road in the study area in case of rock avalanche into recent glacier lakes that could result in glacier lake outburst flooding heading directly to the road. Finally, further analysis and field investigations are needed to define the main reasons for different types of deformation and estimate future risks of these types of surface motion in the Qinghai-Tibetan Plateau.

  19. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Raptis, Panagiotis I.; Keramitsoglou, Iphigenia; Kiranoudis, Chris; Bais, Alkiviadis F.

    2018-02-01

    This study focuses on the assessment of surface solar radiation (SSR) based on operational neural network (NN) and multi-regression function (MRF) modelling techniques that produce instantaneous (in less than 1 min) outputs. Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service (CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05°, 15 min) that can be used for spectrally integrated irradiance maps, databases and various applications related to energy exploitation. The real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a temporal range varying from 15 min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range -15 to 15 % for the NN that produces spectral irradiances (NNS), 5-6 % underestimation for the integrated NN and close to zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges from -100 to 40 and -20 to 20 W m-2, for the 15 min and monthly mean global horizontal irradiance (GHI) averages, respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), and their impact on GHI, was of the order of 10 % as compared to the ground-based measurements. The proposed system aims to be utilized through studies and real-time applications which are related to solar energy production planning and use.

  20. Armor Plate Surface Roughness Measurements

    National Research Council Canada - National Science Library

    Stanton, Brian; Coburn, William; Pizzillo, Thomas J

    2005-01-01

    ...., surface texture and coatings) that could become important at high frequency. We measure waviness and roughness of various plates to know the parameter range for smooth aluminum and rolled homogenous armor (RHA...

  1. MEASURING SURFACE DEFORMATION IN GLACIER RETREATED AREAS BASED ON PS-INSAR – GELADANDONG GLACIER AS A CASE STUDY

    Directory of Open Access Journals (Sweden)

    B. Mohamadi

    2018-04-01

    Full Text Available Glaciers are retreating in many parts of the world as a result of global warming. Many researchers consider Qinghai-Tibetan Plateau as a reference for climate change by measuring glaciers retreat on the plateau. This retreat resulted in some topographic changes in retreated areas, and in some cases can lead to geohazards as landslides, and rock avalanches, which is known in glacier retreated areas as paraglacial slope failure (PSF. In this study, Geladandong biggest and main glacier mass was selected to estimate surface deformation on its glacier retreated areas and define potential future PSF based on PS-InSAR technique. 56 ascending and 49 descending images were used to fulfill this aim. Geladandong glacier retreated areas were defined based on the maximum extent of the glacier in the little ice age. Results revealed a general uplift in the glacier retreated areas with velocity less than 5mm/year. Obvious surface motion was revealed in seven parts surround glacier retreated areas with high relative velocity reached ±60mm/year in some parts. Four parts were considered as PSF potential motion, and two of them showed potential damage for the main road in the study area in case of rock avalanche into recent glacier lakes that could result in glacier lake outburst flooding heading directly to the road. Finally, further analysis and field investigations are needed to define the main reasons for different types of deformation and estimate future risks of these types of surface motion in the Qinghai-Tibetan Plateau.

  2. Artefacts for optical surface measurement

    Science.gov (United States)

    Robson, Stuart; Beraldin, J.-Angelo; Brownhill, Andrew; MacDonald, Lindsay

    2011-07-01

    Flexible manufacturing technologies are supporting the routine production of components with freeform surfaces in a wide variety of materials and surface finishes. Such surfaces may be exploited for both aesthetic and performance criteria for a wide range of industries, for example automotive, aircraft, small consumer goods and medial components. In order to ensure conformance between manufactured part and digital design it is necessary to understand, validate and promote best practice of the available measurement technologies. Similar, but currently less quantifiable, measurement requirements also exist in heritage, museum and fine art recording where objects can be individually hand crafted to extremely fine levels of detail. Optical 3D measurement systems designed for close range applications are typified by one or more illumination sources projecting a spot, line or structured light pattern onto a surface or surfaces of interest. Reflections from the projected light are detected in one or more imaging devices and measurements made concerning the location, intensity and optionally colour of the image. Coordinates of locations on the surface may be computed either directly from an understanding of the illumination and imaging geometry or indirectly through analysis of the spatial frequencies of the projected pattern. Regardless of sensing configuration some independent means is necessary to ensure that measurement capability will meet the requirements of a given level of object recording and is consistent for variations in surface properties and structure. As technologies mature, guidelines for best practice are emerging, most prominent at the current time being the German VDI/VDE 2634 and ISO/DIS 10360-8 guidelines. This considers state of the art capabilities for independent validation of optical non-contact measurement systems suited to the close range measurement of table top sized manufactured or crafted objects.

  3. Measurement and study of density, surface tension, and viscosity of quaternary ammonium-based ionic liquids ([N222(n)]Tf2N)

    International Nuclear Information System (INIS)

    Ghatee, Mohammad Hadi; Bahrami, Maryam; Khanjari, Neda

    2013-01-01

    Highlights: • Characterization of high purity synthesized alkyl quaternary ammonium ionic liquids. • Measurement of temperature dependent surface tension, density, viscosity and critical point. • Systematic increase of surface energy and surface entropy having plateau at high chain length. • Accurate application of VFT and fluidity equations to temperature dependent viscosities. • Particular variation of fluidity exponent with a plateau at high alkyl chain length. -- Abstract: In this work five quaternary ammonium-based ionic liquids with bis(trifluoromethylsulfonyl)imide anion were synthesized and their density, viscosity and surface tensions were measured in the temperature range (298 to 373) K. Surface tensions were measured by capillary rise method using a homemade capillary apparatus, in which the liquid/vapor can be brought into equilibrium practically. Measurements of viscosities and surface tensions were performed under water–vapor free atmosphere. The surface tension of quaternary ammonium-based ILs decreases as the alkyl chain length increases. Also surface energy and surface entropy are found as increasing functions of alkyl chain length with a plateau at high lengths in the surface. The viscosities measured by capillary viscometer fit in VFT equation, indication of non-Arrhenius ionic liquids. Viscosities are also fitted quite accurately in the relation we have developed recently as the fluidity equation with the characteristics exponent ϕ. Values of ϕ for ionic liquids are close to one another and tend to the limiting value, almost 0.328, asymptotically as the alkyl chain length increases. The critical temperatures predicted via the temperature dependent surface tensions decrease with increasing alkyl chain length of the cation. The trend of predicted critical temperature of these ionic liquids conforms to those of imidazolium-based ILs

  4. Net Surface Shortwave Radiation from GOES Imagery—Product Evaluation Using Ground-Based Measurements from SURFRAD

    Directory of Open Access Journals (Sweden)

    Anand K. Inamdar

    2015-08-01

    Full Text Available The Earth’s surface net radiation controls the energy and water exchanges between the Earth’s surface and the atmosphere, and can be derived from satellite observations. The ability to monitor the net surface radiation over large areas at high spatial and temporal resolution is essential for many applications, such as weather forecasting, short-term climate prediction or water resources management. The objective of this paper is to derive the net surface radiation in the shortwave domain at high temporal (half-hourly and spatial resolution (~1 km using visible imagery from Geostationary Operational Environmental Satellite (GOES. The retrieval algorithm represents an adaptation to GOES data of a standard algorithm initially developed for the NASA-operated Clouds and Earth’s Radiant Energy System (CERES scanner. The methodology relies on: (1 the estimation of top of atmosphere shortwave radiation from GOES spectral measurements; and (2 the calculation of net surface shortwave (SW radiation accounting for atmospheric effects. Comparison of GOES-retrieved net surface shortwave radiation with ground-measurements at the National Oceanic and Atmospheric Administration’s (NOAA Surface Radiation (SURFRAD stations yields very good agreement with average bias lower than 5 W·m−2 and root mean square difference around 70 W·m−2. The algorithm performance is usually higher over areas characterized by low spatial variability in term of land cover type and surface biophysical properties. The technique does not involve retrieval and assessment of cloud properties and can be easily adapted to other meteorological satellites around the globe.

  5. The measurement of surface gravity.

    Science.gov (United States)

    Crossley, David; Hinderer, Jacques; Riccardi, Umberto

    2013-04-01

    This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10(-8) m s(-2)), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1-5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post

  6. An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition

    Directory of Open Access Journals (Sweden)

    Naima L. Hall

    2017-02-01

    Full Text Available This paper describes the development of a new artificial turf surrogate surface (ATSS sampler for use in the measurement of mercury (Hg dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film. The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks, and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng, high extraction efficiency (97%–103%, and a quantitative matrix spike recovery (100%.

  7. Surface flow measurements from drones

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  8. Method of measuring surface density

    International Nuclear Information System (INIS)

    Gregor, J.

    1982-01-01

    A method is described of measuring surface density or thickness, preferably of coating layers, using radiation emitted by a suitable radionuclide, e.g., 241 Am. The radiation impinges on the measured material, e.g., a copper foil and in dependence on its surface density or thickness part of the flux of impinging radiation is reflected and part penetrates through the material. The radiation which has penetrated through the material excites in a replaceable adjustable backing characteristic radiation of an energy close to that of the impinging radiation (within +-30 keV). Part of the flux of the characteristic radiation spreads back to the detector, penetrates through the material in which in dependence on surface density or thickness of the coating layer it is partly absorbed. The flux of the penetrated characteristic radiation impinging on the face of the detector is a function of surface density or thickness. Only that part of the energy is evaluated of the energy spectrum which corresponds to the energy of characteristic radiation. (B.S.)

  9. Optical measurements on contaminated surfaces

    Science.gov (United States)

    Bonham, T. E.; Schmitt, R. J.; Linford, R. M. F.

    1975-01-01

    A bidirectional reflectometer system was developed for in situ measurements of the changes in spectral reflectance of surfaces contaminated with films of organic materials. The system permits experiments with films of controlled thickness in an environment that simulates the thermal, radiation, and vacuum conditions of space. The mechanical and optical construction of the reflectometer are discussed in detail, and actual data curves are used to illustrate its operation and performance.

  10. Surface stress-based biosensors.

    Science.gov (United States)

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. An inline surface measurement method for membrane mirror fabrication using two-stage trained Zernike polynomials and elitist teaching–learning-based optimization

    International Nuclear Information System (INIS)

    Liu, Yang; Chen, Zhenyu; Yang, Zhile; Li, Kang; Tan, Jiubin

    2016-01-01

    The accuracy of surface measurement determines the manufacturing quality of membrane mirrors. Thus, an efficient and accurate measuring method is critical in membrane mirror fabrication. This paper formulates this measurement issue as a surface reconstruction problem and employs two-stage trained Zernike polynomials as an inline measuring tool to solve the optical surface measurement problem in the membrane mirror manufacturing process. First, all terms of the Zernike polynomial are generated and projected to a non-circular region as the candidate model pool. The training data are calculated according to the measured values of distance sensors and the geometrical relationship between the ideal surface and the installed sensors. Then the terms are selected by minimizing the cost function each time successively. To avoid the problem of ill-conditioned matrix inversion by the least squares method, the coefficient of each model term is achieved by modified elitist teaching–learning-based optimization. Subsequently, the measurement precision is further improved by a second stage of model refinement. Finally, every point on the membrane surface can be measured according to this model, providing more the subtle feedback information needed for the precise control of membrane mirror fabrication. Experimental results confirm that the proposed method is effective in a membrane mirror manufacturing system driven by negative pressure, and the measurement accuracy can achieve 15 µ m. (paper)

  12. A study on the theoretical and practical accuracy of conoscopic holography-based surface measurements: toward image registration in minimally invasive surgery.

    Science.gov (United States)

    Burgner, J; Simpson, A L; Fitzpatrick, J M; Lathrop, R A; Herrell, S D; Miga, M I; Webster, R J

    2013-06-01

    Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. Experiments agree with model predictions, producing point RMS errors consistently Tracked conoscopic holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery. Copyright © 2012 John Wiley & Sons, Ltd.

  13. A study on the theoretical and practical accuracy of conoscopic holography-based surface measurements: toward image registration in minimally invasive surgery†

    Science.gov (United States)

    Burgner, J.; Simpson, A. L.; Fitzpatrick, J. M.; Lathrop, R. A.; Herrell, S. D.; Miga, M. I.; Webster, R. J.

    2013-01-01

    Background Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. Methods We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. Results Experiments agree with model predictions, producing point RMS errors consistently holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery. PMID:22761086

  14. Optical measurement of surface roughness in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Brodmann, R.

    1984-11-01

    The measuring system described here is based on the light-scattering method, and was developed by Optische Werke G. Rodenstock, Munich. It is especially useful for rapid non-contact monitoring of surface roughness in production-related areas. This paper outlines the differences between this system and the common stylus instrument, including descriptions of some applications in industry.

  15. Surface Conductance of Five Different Crops Based on 10 Years of Eddy-Covariance Measurements

    Directory of Open Access Journals (Sweden)

    Uwe Spank

    2016-06-01

    Full Text Available The Penman-Monteith (PM equation is a state-of-the-art modelling approach to simulate evapotranspiration (ET at site and local scale. However, its practical application is often restricted by the availability and quality of required parameters. One of these parameters is the canopy conductance. Long term measurements of evapotranspiration by the eddy-covariance method provide an improved data basis to determine this parameter by inverse modelling. Because this approach may also include evaporation from the soil, not only the ‘actual’ canopy conductance but the whole surface conductance (gc$g_{c}$ is addressed. Two full cycles of crop rotation with five different crop types (winter barley, winter rape seed, winter wheat, silage maize, and spring barley have been continuously monitored for 10 years. These data form the basis for this study. As estimates of gc$g_{c}$ are obtained on basis of measurements, we investigated the impact of measurements uncertainties on obtained values of gc$g_{c }$. Here, two different foci were inspected more in detail. Firstly, the effect of the energy balance closure gap (EBCG on obtained values of gc$g_{c}$ was analysed. Secondly, the common hydrological practice to use vegetation height (hc$h_{c}$ to determine the period of highest plant activity (i.e., times with maximum gc$g_{c}$ concerning CO2-exchange and transpiration was critically reviewed. The results showed that hc$h_{c}$ and gc$g_{c}$ do only agree at the beginning of the growing season but increasingly differ during the rest of the growing season. Thus, the utilisation of hc$h_{c}$ as a proxy to assess maximum gc$g_{c}$ (gc,max$g_{c,\\text{max}}$ can lead to inaccurate estimates of gc,max$g_{c,\\text{max}}$ which in turn can cause serious shortcomings in simulated ET. The light use efficiency (LUE is superior to hc$h_{c}$ as a proxy to determine periods with maximum gc$g_{c}$. Based on this proxy, crop specific estimates of gc

  16. Sound field separation with cross measurement surfaces.

    Directory of Open Access Journals (Sweden)

    Jin Mao

    Full Text Available With conventional near-field acoustical holography, it is impossible to identify sound pressure when the coherent sound sources are located on the same side of the array. This paper proposes a solution, using cross measurement surfaces to separate the sources based on the equivalent source method. Each equivalent source surface is built in the center of the corresponding original source with a spherical surface. According to the different transfer matrices between equivalent sources and points on holographic surfaces, the weighting of each equivalent source from coherent sources can be obtained. Numerical and experimental studies have been performed to test the method. For the sound pressure including noise after separation in the experiment, the calculation accuracy can be improved by reconstructing the pressure with Tikhonov regularization and the L-curve method. On the whole, a single source can be effectively separated from coherent sources using cross measurement.

  17. Ground-based FTIR measurements of CO from the Jungfraujoch: characterisation and comparison with in situ surface and MOPITT data

    Directory of Open Access Journals (Sweden)

    B. Barret

    2003-01-01

    Full Text Available CO vertical profiles have been retrieved from solar absorption FTIR spectra recorded at the NDSC station of the Jungfraujoch (46.5º N, 8º E and 3580 m a.s.l. for the period from January 1997 to May 2001. The characterisation of these profiles has been established by an information content analysis and an estimation of the error budgets. A partial validation of the profiles has been performed through comparisons with correlative measurements. The average volume mixing ratios (vmr in the 3 km layer above the station have been compared with coincident surface measurements. The agreement between monthly means from both measurement techniques is very good, with a correlation coefficient of 0.87, and no significant bias observed. The FTIR total columns have also been compared to CO partial columns above 3580 m a.s.l. derived from the MOPITT (Measurement Of Pollution In The Troposphere instrument for the period March 2000 to May 2001. Relative to the FTIR columns, the MOPITT partial columns exhibit a positive bias of 8±8% for daytime and of 4±7% for nighttime measurements.

  18. A new approach to the form and position error measurement of the auto frame surface based on laser

    Science.gov (United States)

    Wang, Hua; Li, Wei

    2013-03-01

    Auto frame is a very large workpiece, with length up to 12 meters and width up to 2 meters, and it's very easy to know that it's inconvenient and not automatic to measure such a large workpiece by independent manual operation. In this paper we propose a new approach to reconstruct the 3D model of the large workpiece, especially the auto truck frame, based on multiple pulsed lasers, for the purpose of measuring the form and position errors. In a concerned area, it just needs one high-speed camera and two lasers. It is a fast, high-precision and economical approach.

  19. Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, D.; Burke, W.; Kuang, A. Q.; LaBombard, B.; Lipschultz, B.; Wolfe, S.

    2016-02-01

    Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

  20. Determining roof surfaces suitable for the installation of PV (photovoltaic) systems, based on LiDAR (Light Detection And Ranging) data, pyranometer measurements, and distribution network configuration

    International Nuclear Information System (INIS)

    Srećković, Nevena; Lukač, Niko; Žalik, Borut; Štumberger, Gorazd

    2016-01-01

    Proliferation of distributed generation units, integrated within the distribution network requires increased attention to their proper placements. In urban areas, buildings' rooftops are expected to have greater involvement in the deployment of PV (photovoltaic) systems. This paper proposes a novel procedure for determining roof surfaces suitable for their installation. The PV potential of roof surfaces is assessed based on Light Detection And Ranging (LiDAR) data and pyranometer measurements. Then, the time-dependent PV generation profiles, electricity distribution network configuration, and time-dependent loading profiles are used together over time-steps for selecting those roof surfaces with the highest PV potential, which would lead to the highest reduction of network losses per year. The presented procedure was implemented within a real urban area distribution network. The results obtained confirmed that PV potential assessment could be an insufficient criterion when selecting those roof surfaces suitable for the installation of PV systems. In order to obtain relevant results, network configuration and time-dependent loading and generation profiles must be considered as well. - Highlights: • Roof surfaces, suitable for installation of PV systems are evaluated and ranked. • Improved PV potential based procedure is proposed for their selection in urban areas. • Time-dependent network loading and PV generation profiles are considered. • Losses in a real electricity network are minimized in the optimization procedure. • Final selection of ranked roof surfaces is based on results of optimization.

  1. Determination of transient temperature and heat flux on the surface of a reactor control rod based on temperature measurements at the interior points

    International Nuclear Information System (INIS)

    Cebula, Artur; Taler, Jan

    2014-01-01

    The paper presents heat transfer calculation results concerning a control rod of nuclear power plant. Apart from numerical calculation results, experimental heat transfer measurements of the control rod model are also presented. The control rod that is the object of interest is surrounded by a mixing region of hot and cold streams and, as a consequence, is subjected to thermal fluctuations. The paper describes a method based on the solution of the inverse heat conduction problem (IHCP) for determining heat flux on the outer surface of the rod. Numerical tests were conducted to validate the method by comparison of the results with the time changes of surface temperature and heat flux which were obtained from the computational fluid dynamics (CFD) simulation of the mixing process. A measuring instrument was designed to measure the heat flux at the outer surface of the control rod model. In addition, the principle of operation and construction of heat flux meter is presented in detail. -- Highlights: • Temperature and heat flux estimation during cooling of control rod are presented. • The inverse technique is based on the space marching method. • The instrument for surface heat flux measurement was manufactured and tested. • CFD simulations were used to validate the developed inverse technique. • Actual data were used to demonstrate practical applicability of the method

  2. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  3. Quantifying the Uncertainty in High Spatial and Temporal Resolution Synthetic Land Surface Reflectance at Pixel Level Using Ground-Based Measurements

    Science.gov (United States)

    Kong, J.; Ryu, Y.

    2017-12-01

    Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.

  4. Refractive index based measurements

    DEFF Research Database (Denmark)

    2014-01-01

    A refractive index based measurement of a property of a fluid is measured in an apparatus comprising a variable wavelength coherent light source (16), a sample chamber (12), a wavelength controller (24), a light sensor (20), a data recorder (26) and a computation apparatus (28), by - directing...... coherent light having a wavelength along an input light path, - producing scattering of said light from each of a plurality of interfaces within said apparatus including interfaces between said fluid and a surface bounding said fluid, said scattering producing an interference pattern formed by said...... scattered light, - cyclically varying the wavelength of said light in said input light path over a 1 nm to 20nm wide range of wavelengths a rate of from 10Hz to 50 KHz, - recording variation of intensity of the interfering light with change in wavelength of the light at an angle of observation...

  5. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. G. Kosmopoulos

    2017-07-01

    Full Text Available This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO observations, in conjunction with radiative transfer model (RTM and chemical transport model (CTM simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS. The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI attenuation by as much as 40–50 % and a much stronger Direct Normal Irradiance (DNI decrease (80–90 %, while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS. Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m−2 in southern Greece, and a mean increase of 20 W m−2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are

  6. Study of sea-surface slope distribution and its effect on radar backscatter based on Global Precipitation Measurement Ku-band precipitation radar measurements

    Science.gov (United States)

    Yan, Qiushuang; Zhang, Jie; Fan, Chenqing; Wang, Jing; Meng, Junmin

    2018-01-01

    The collocated normalized radar backscattering cross-section measurements from the Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) and the winds from the moored buoys are used to study the effect of different sea-surface slope probability density functions (PDFs), including the Gaussian PDF, the Gram-Charlier PDF, and the Liu PDF, on the geometrical optics (GO) model predictions of the radar backscatter at low incidence angles (0 deg to 18 deg) at different sea states. First, the peakedness coefficient in the Liu distribution is determined using the collocations at the normal incidence angle, and the results indicate that the peakedness coefficient is a nonlinear function of the wind speed. Then, the performance of the modified Liu distribution, i.e., Liu distribution using the obtained peakedness coefficient estimate; the Gaussian distribution; and the Gram-Charlier distribution is analyzed. The results show that the GO model predictions with the modified Liu distribution agree best with the KuPR measurements, followed by the predictions with the Gaussian distribution, while the predictions with the Gram-Charlier distribution have larger differences as the total or the slick filtered, not the radar filtered, probability density is included in the distribution. The best-performing distribution changes with incidence angle and changes with wind speed.

  7. Calibration of areal surface topography measuring instruments

    Science.gov (United States)

    Seewig, J.; Eifler, M.

    2017-06-01

    The ISO standards which are related to the calibration of areal surface topography measuring instruments are the ISO 25178-6xx series which defines the relevant metrological characteristics for the calibration of different measuring principles and the ISO 25178-7xx series which defines the actual calibration procedures. As the field of areal measurement is however not yet fully standardized, there are still open questions to be addressed which are subject to current research. Based on this, selected research results of the authors in this area are presented. This includes the design and fabrication of areal material measures. For this topic, two examples are presented with the direct laser writing of a stepless material measure for the calibration of the height axis which is based on the Abbott- Curve and the manufacturing of a Siemens star for the determination of the lateral resolution limit. Based on these results, as well a new definition for the resolution criterion, the small scale fidelity, which is still under discussion, is presented. Additionally, a software solution for automated calibration procedures is outlined.

  8. Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling

    DEFF Research Database (Denmark)

    Zöll, Undine; Brümmer, Christian; Schrader, Frederik

    2016-01-01

    Recent advances in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we demonstrate the applicability of a quantum cascade laser (QCL) absorption spectrometer to continuously measure ammonia concentratio...

  9. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  10. Simulation of the Impact of New Aircraft- and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Krishnamurti, T. N.; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath ( 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses. The H*Wind analysis, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data_sub/wind.html. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state

  11. Protein-protein networks construction and their relevance measurement based on multi-epitope-ligand-kartographie and gene ontology data of T-cell surface proteins for polymyositis.

    Science.gov (United States)

    Li, Fang-Zhen; Gao, Feng

    2012-08-01

    Polymyositis is an inflammatory myopathy characterized by muscle invasion of T-cells penetrating the basal lamina and displacing the plasma membrane of normal muscle fibers. In order to understand the different adhesive mechanisms at the T-cell surface, Schubert randomly selected 19 proteins expressed at the T-cell surface and studied them using MELK technique [4], among which 15 proteins are picked up for further study by us. Two types of functional similarity networks are constructed for these proteins. The first type is MELK similarity network, which is constructed based on their MELK data by using the McNemar's test [24]. The second type is GO similarity network, which is constructed based on their GO annotation data by using the RSS method to measuring functional similarity. Then the subset surprisology theory is employed to measure the degree of similarity between two networks. Our computing results show that these two types of networks are high related. This conclusion added new values on MELK technique and expanded its applications greatly.

  12. Aspheric surface measurement using capacitive probes

    Science.gov (United States)

    Tao, Xin; Yuan, Daocheng; Li, Shaobo

    2017-02-01

    With the application of aspheres in optical fields, high precision and high efficiency aspheric surface metrology becomes a hot research topic. We describe a novel method of non-contact measurement of aspheric surface with capacitive probe. Taking an eccentric spherical surface as the object of study, the averaging effect of capacitive probe measurement and the influence of tilting the capacitive probe on the measurement results are investigated. By comparing measurement results from simultaneous measurement of the capacitive probe and contact probe of roundness instrument, this paper indicates the feasibility of using capacitive probes to test aspheric surface and proposes the compensation method of measurement error caused by averaging effect and the tilting of the capacitive probe.

  13. 234Th-based measurements of particle flux in surface water of the Bransfield Strait, western Antarctica

    International Nuclear Information System (INIS)

    Gulin, S.B.; National Academy of Sciences of Ukraine, Sevastopol, Autonomous Republic of Crimea

    2014-01-01

    Measurements of particulate and dissolved 234 Th were carried out in March 2002 in the Bransfield Strait located between the Antarctic Peninsula and the South Shetland Islands. The 234 Th/ 238 U disequilibrium found in the upper water column has allowed evaluation of downward particle fluxes across a frontal zone, which divides water masses coming from the Bellingshausen Sea and the Weddell Sea. The highest particle flux has been found in this mixing zone, where it was 3-5 times greater than in the adjacent waters. Total mass fluxes in the upper 150-m water column were estimated as about 2.2 g m -2 day -1 in the eastern part of the Strait and 3.1 g m -2 day -1 in the western area. (author)

  14. Surface texture measurement for dental wear applications

    Science.gov (United States)

    Austin, R. S.; Mullen, F.; Bartlett, D. W.

    2015-06-01

    The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.

  15. A new fiber optic sensor for inner surface roughness measurement

    Science.gov (United States)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  16. Simulation of the Impact of New Aircraft-and Satellite-based Ocean Surface Wind Measurements on Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, TImothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Gamache, John; Amarin, Ruba; El-Nimri, Salem; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state on numerical forecasts of the hurricane intensity and structure is assessed.

  17. Surface texture measurement for additive manufacturing

    Science.gov (United States)

    Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.

    2015-06-01

    The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.

  18. Surface texture measurement for additive manufacturing

    International Nuclear Information System (INIS)

    Triantaphyllou, Andrew; Tomita, Ben; Milne, Katherine A; Giusca, Claudiu L; Macaulay, Gavin D; Roerig, Felix; Hoebel, Matthias; Leach, Richard K

    2015-01-01

    The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting. (paper)

  19. Measuring Light Reflectance of BGO Crystal Surfaces

    Science.gov (United States)

    Janecek, Martin; Moses, William W.

    2008-10-01

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal's light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air-coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2pi of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 105:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  20. Sources, Sinks and Chemistry of Volatile Organic Compounds: A Summary of Results from Multiple Airborne, Ship-Based and Surface Measurements

    Science.gov (United States)

    de Gouw, J. A.; Gilman, J. B.; Goldan, P. D.; Kuster, W. C.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Welsh-Bon, D.

    2009-12-01

    Volatile Organic compounds (VOCs) are emitted from a wide variety of natural and man-made sources. In the atmosphere, VOCs are oxidized on a time scale ranging from minutes to months by reactions with OH, NO3 and ozone, and by photolysis. While the removal of hydrocarbons is well described by these removal processes, the chemical formation and direct emissions of oxygenated VOCs are poorly characterized and understood. VOC oxidation in the atmosphere contributes to the formation of ozone and secondary organic aerosol (SOA). Both species are important ingredients of polluted air and represent a significant radiative forcing to the climate system. We have measured VOCs during several different field studies using both mass spectrometric and gas chromatographic methods. Airborne measurements from the NOAA WP-3D aircraft were carried out along the U.S. West Coast in 2002, in the northeastern U.S. in 2004, in Texas in 2006 and in Alaska in 2008. Ship-based measurements were conducted in the Gulf of Maine in 2002 and 2004, in the Gulf of Mexico in 2006 and in the northern Atlantic in 2008. Surface measurements were made in Beijing in 2005, in Mexico City in 2006 and at Blodgett Forest in 2007. In this presentation we will first make a comparison of the averaged observations between these different field studies. Average altitude profiles, surface mixing ratios and the diurnal variations therein will be compared, which gives a unique and detailed insight into the atmospheric distribution of VOCs. We will next turn to several case studies describing our observations in urban, forest fire and industrial plumes with a special focus on oxygenated VOCs. Insights into the natural sources of oxygenated VOCs from forests and oceans are described. Finally, we will briefly discuss new instrument developments in our laboratory.

  1. Geometric Measure Theory and Minimal Surfaces

    CERN Document Server

    Bombieri, Enrico

    2011-01-01

    W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi's measure and thin obstacles.

  2. Accuracy of Surface Plate Measurements - General Purpose Software for Flatness Measurement

    NARCIS (Netherlands)

    Meijer, J.; Heuvelman, C.J.

    1990-01-01

    Flatness departures of surface plates are generally obtained from straightness measurements of lines on the surface. A computer program has been developed for on-line measurement and evaluation, based on the simultaneous coupling of measurements in all grid points. Statistical methods are used to

  3. Evaluation of process influences on surface chemistry of epoxy acrylate based solder mask via XPS, ToF-SIMS and contact angle measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, Caroline, E-mail: caroline.hofmeister@de.bosch.com [Robert Bosch GmbH, Postfach 30 02 40, 70442 Stuttgart (Germany); Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen (Germany); Maaß, Sebastian [Robert Bosch GmbH, Postfach 30 02 40, 70442 Stuttgart (Germany); Fladung, Thorsten; Mayer, Bernd [Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen (Germany)

    2017-01-01

    Epoxy acrylate based solder mask formulations were conditioned by different printed circuit board (PCB) manufacturing and PCB assembly process stages. Depending on these different influences the chemistry of the solder mask surface was investigated regarding adhesion to possible adhesion partners. The combination of X-ray photoelectron spectrometry (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and the contact angle method, for surface energy determination, provided a detailed understanding of the surface near region up to the topmost monolayer, which forms the contact zone in which adhesion takes place. The combination of ToF-SIMS and XPS provided molecular information of surface components comprising quantitative information. The influences of all process steps, like UV, chemical and thermal treatment, on the chemical surface composition and appearance were identified. Based on the results a chemical surface model could be created regarding the different adhesion mechanisms. It has been shown that an enrichment of siloxanes at the surface is generated by different mechanisms that were distinguished based on ToF-SIMS. Even though an oxidation process in the surface near region (10 nm) was indicated by XPS, no increase of the surface polar groups and thus no polarity increase could be observed within the first monolayer. A surface model derived from the analysis results shows generation and occupation of free sites at the surface through all stages of the process. An occupation of free sites by siloxanes from additives in the solder mask formulation results in a siloxane dominated topmost monolayer. - Highlights: • A surface model describing the process influences is proposed. • Detailed siloxane reaction analysis was possible with ToF-SIMS. • Photo-chemical, chemical and thermal surface modification occur during PCB manufacturing.

  4. In situ surface roughness measurement using a laser scattering method

    Science.gov (United States)

    Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.

    2003-03-01

    In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.

  5. Evaluation of FOCUS surface water pesticide concentration predictions and risk assessment of field-measured pesticide mixtures-a crop-based approach under Mediterranean conditions.

    Science.gov (United States)

    Pereira, Ana Santos; Daam, Michiel A; Cerejeira, Maria José

    2017-07-01

    FOCUS models are used in the European regulatory risk assessment (RA) to predict individual pesticide concentrations in edge-of-field surface waters. The scenarios used in higher tier FOCUS simulations were mainly based on Central/North European, and work is needed to underpin the validity of simulated exposure profiles for Mediterranean agroecosystems. In addition, the RA of chemicals are traditionally evaluated on the basis of single substances although freshwater life is generally exposed to a multitude of pesticides. In the present study, we monitored 19 pesticides in surface waters of five locations in the Portuguese 'Lezíria do Tejo' agricultural area. FOCUS step 3 simulations were performed for the South European scenarios to estimate predicted environmental concentrations (PECs). We verified that 44% of the PECs underestimated the measured environmental concentrations (MEC) of the pesticides, showing a non-compliance with the field data. Risk was assessed by comparing the environmental quality standards (EQS) and regulatory acceptable concentrations with their respective MECs. Risk of mixtures was demonstrated in 100% of the samples with insecticides accounting for 60% of the total risk identified. The overall link between the RA and the actual situation in the field must be considerably strengthened, and field studies on pesticide exposure and effects should be carried out to assist the improvement of predictive approaches used for regulatory purposes.

  6. Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects

    Science.gov (United States)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Ajay, P.; Bhuyan, P. K.; Solmon, F.

    2018-05-01

    Ground reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R2 0.97. The mean bias errors between these two varied from -40 W m-2 to +7 W m-2 with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m-2 τ-1 and a potential atmospheric forcing of +43.04 W m-2 τ-1. BC alone is responsible for >70% influence with a major role in building up of forcing efficiency of +55.69 W m-2 τ-1 (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFETOA -12.60 W m-2 ω-1), the absence of which would have resulted in ARFETOA of +16.91 W m-2 τ-1 (due to BC alone). As a result, 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of 1.0 K day-1, with 0.3 K day-1 heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R2 0.98 during retreating monsoon and winter; 0.65 during pre-monsoon and monsoon), indicating that the

  7. Quadrotor helicopter for surface hydrological measurements

    Science.gov (United States)

    Pagano, C.; Tauro, F.; Porfiri, M.; Grimaldi, S.

    2013-12-01

    Surface hydrological measurements are typically performed through user-assisted and intrusive field methodologies which can be inadequate to monitor remote and extended areas. In this poster, we present the design and development of a quadrotor helicopter equipped with digital acquisition system and image calibration units for surface flow measurements. This custom-built aerial vehicle is engineered to be lightweight, low-cost, highly customizable, and stable to guarantee optimal image quality. Quadricopter stability guarantees minimal vibrations during image acquisition and, therefore, improved accuracy in flow velocity estimation through large scale particle image velocimetry algorithms or particle tracking procedures. Stability during the vehicle pitching and rolling is achieved by adopting large arm span and high-wing configurations. Further, the vehicle framework is composed of lightweight aluminum and durable carbon fiber for optimal resilience. The open source Ardupilot microcontroller is used for remote control of the quadricopter. The microcontroller includes an inertial measurement unit (IMU) equipped with accelerometers and gyroscopes for stable flight through feedback control. The vehicle is powered by a 3 cell (11.1V) 3000 mAh Lithium-polymer battery. Electronic equipment and wiring are hosted into the hollow arms and on several carbon fiber platforms in the waterproof fuselage. Four 35A high-torque motors are supported at the far end of each arm with 10 × 4.7 inch propellers. Energy dissipation during landing is accomplished by four pivoting legs that, through the use of shock absorbers, prevent the impact energy from affecting the frame thus causing significant damage. The data capturing system consists of a GoPro Hero3 camera and in-house built camera gimbal and shock absorber damping device. The camera gimbal, hosted below the vehicle fuselage, is engineered to maintain the orthogonality of the camera axis with respect to the water surface by

  8. A computer-aided surface roughness measurement system

    International Nuclear Information System (INIS)

    Hughes, F.J.; Schankula, M.H.

    1983-11-01

    A diamond stylus profilometer with computer-based data acquisitions/analysis system is being used to characterize surfaces of reactor components and materials, and to examine the effects of surface topography on thermal contact conductance. The current system is described; measurement problems and system development are discussed in general terms and possible future improvements are outlined

  9. High-frequency background modulation fringe patterns based on a fringe-wavelength geometry-constraint model for 3D surface-shape measurement.

    Science.gov (United States)

    Liu, Xinran; Kofman, Jonathan

    2017-07-10

    A new fringe projection method for surface-shape measurement was developed using four high-frequency phase-shifted background modulation fringe patterns. The pattern frequency is determined using a new fringe-wavelength geometry-constraint model that allows only two corresponding-point candidates in the measurement volume. The correct corresponding point is selected with high reliability using a binary pattern computed from intensity background encoded in the fringe patterns. Equations of geometry-constraint parameters permit parameter calculation prior to measurement, thus reducing measurement computational cost. Experiments demonstrated the ability of the method to perform 3D shape measurement for a surface with geometric discontinuity, and for spatially isolated objects.

  10. Refractive index based measurements

    DEFF Research Database (Denmark)

    2014-01-01

    In a method for performing a refractive index based measurement of a property of a fluid such as chemical composition or temperature by observing an apparent angular shift in an interference fringe pattern produced by back or forward scattering interferometry, ambiguities in the measurement caused...... by the apparent shift being consistent with one of a number of numerical possibilities for the real shift which differ by 2n are resolved by combining measurements performed on the same sample using light paths therethrough of differing lengths....

  11. Surface resistivity measurement of plasma treated polymers

    International Nuclear Information System (INIS)

    Simon, D.; Pigram, P.J.; Liesegang, J.

    2000-01-01

    Full text: Resistivity of insulators is an important property of materials used within the integrated circuit and packaging industries. The measurement of electrical resistivity of insulator materials in the surface region in this work is interpreted through observations of surface charge decay. A self-field driven and diffusion charge transport theory is used to model the process and resistivity values obtained computationally. Data for the charge decay of surface charged samples are collected by suspending them inside a coaxial cylinder connected to an electrometer. Samples used have been low density polyethylene LDPE sheet, both pristine and surface treated. Some samples have been treated by air plasma at low vacuum pressures for different periods of time; others have been washed in ethyl acetate and then plasma treated before the resistivity measurement. The sets of resistivity measurements form the various treatments are compared below. X-ray photoelectron spectroscopy (XPS) has also been used to investigate and account for the observed variations in surface resistivity

  12. Refractive index based measurements

    DEFF Research Database (Denmark)

    2014-01-01

    In a method for performing a refractive index based measurement of a property of a fluid such as chemical composition or temperature, a chirp in the local spatial frequency of interference fringes of an interference pattern is reduced by mathematical manipulation of the recorded light intensity...

  13. Surface Tension Measurements with a Smartphone

    Science.gov (United States)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse

    2017-01-01

    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept…

  14. Surface charge measurement using an electrostatic probe

    DEFF Research Database (Denmark)

    Crichton, George C; McAllister, Iain Wilson

    1998-01-01

    During the 1960s, the first measurements of charge on dielectric surfaces using simple electrostatic probes were reported. However it is only within the last 10 years that a proper understanding of the probe response has been developed. This situation arose as a consequence of the earlier studies...

  15. Corrigendum to "A semi-empirical airfoil stall noise model based on surface pressure measurements" [J. Sound Vib. 387 (2017) 127-162

    Science.gov (United States)

    Bertagnolio, Franck; Madsen, Helge Aa.; Fischer, Andreas; Bak, Christian

    2018-06-01

    In the above-mentioned paper, two model formulae were tuned to fit experimental data of surface pressure spectra measured in various wind tunnels. They correspond to high and low Reynolds number flow scalings, respectively. It turns out that there exist typographical errors in both formulae numbered (9) and (10) in the original paper. There, these formulae read:

  16. Three dimensional contact stresses under the LINTRACK wide base single tyres, measured with the Vehicle-Road Surface Pressure Transducer Array (VRSPTA) system in South Africa

    CSIR Research Space (South Africa)

    De Beer, Morris

    1996-11-01

    Full Text Available testing. The vertical, transverse (or lateral) and longitudinal contact stresses between the tyres and the pavement were measured with the Vehicle-Road Surface Pressure Transducer Array (VRSPTA), developed in South Africa as part of the ongoing Accelerated...

  17. Surface dose extrapolation measurements with radiographic film

    International Nuclear Information System (INIS)

    Butson, Martin J; Cheung Tsang; Yu, Peter K N; Currie, Michael

    2004-01-01

    Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within ±3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. (note)

  18. Evaluation of Surface Fatigue Strength Based on Surface Temperature

    Science.gov (United States)

    Deng, Gang; Nakanishi, Tsutomu

    Surface temperature is considered to be an integrated index that is dependent on not only the load and the dimensions at the contact point but also the sliding velocity, rolling velocity, surface roughness, and lubrication conditions. Therefore, the surface durability of rollers and gears can be evaluated more exactly and simply by the use of surface temperature rather than Hertzian stress. In this research, surface temperatures of rollers under different rolling and sliding conditions are measured using a thermocouple. The effects of load P, mean velocity Vm and sliding velocity Vs on surface temperature are clarified. An experimental formula, which expresses the linear relationship between surface temperature and the P0.86Vs1.31Vm-0.83 value, is used to determine surface temperature. By comparing calculated and measured temperature on the tooth surface of a gear, this formula is confirmed to be applicable for gear tooth surface temperature calculation.

  19. Direct Measurement of the Surface Energy of Graphene.

    Science.gov (United States)

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  20. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  1. Surface aerosol measurements at Barrow during AGASP

    International Nuclear Information System (INIS)

    Bodhaine, B.A.; Dutton, E.G.; DeLuisi, J.J.

    1984-01-01

    Surface aerosol measurements were made at the Barrow GMCC Observatory during the AGASP flight series in March 1983. The condensation nucleus, scattering extinction coefficient, size distribution, and total aerosol optical depth measurements all clearly show conditions of background Arctic haze for March 9-11, a series of haze episodes during March 12-16, and a return to background haze for March 17-18. Angstrom exponents calculated from scattering coefficient data were low during March 9-11, relatively higher during March 12-14, and highest during March 15-18. Surface aerosol data and aerosol optical depth data are in good qualitative agreement for the 10-day period studied. Background haze was present when trajectories circled the Arctic basin, and haze episodes occurred when trajectories originated in western Asia and Europe

  2. Plasma measurements with surface barrier detectors

    International Nuclear Information System (INIS)

    Futch, A.H. Jr.; Bradley, A.E.

    1969-01-01

    A surface barrier detector system for measuring the loss rate of protons from a hydrogen plasma and their energy spectrum is described. A full width at half maximum (FWHM) resolution of 1.4 keV for 15-keV hydrogen atoms was obtained using a selected detector having a sensitive area of 3 mm 2 and a depletion depth of 700 microns

  3. Radioimmunoassay to quantitatively measure cell surface immunoglobulins

    International Nuclear Information System (INIS)

    Krishman, E.C.; Jewell, W.R.

    1975-01-01

    A radioimmunoassay techniques developed to quantitatively measure the presence of immunoglobulins on the surface of cells, is described. The amount of immunoglobulins found on different tumor cells varied from 200 to 1140 ng/10 6 cells. Determination of immunoglobulins on the peripheral lymphocytes obtained from different cancer patients varied between 340 to 1040 ng/10 6 cells. Cultured tumor cells, on the other hand, were found to contain negligible quantities of human IgG [pt

  4. Description of measurement techniques for surface contaminations

    International Nuclear Information System (INIS)

    Bourrez, E.

    2001-01-01

    The needs of evaluation of the surface contamination are numerous in the processes of production and management of radioactive waste. The market of radiation protection materials proposes a lot of devices answering to the almost all these needs. These device have however their conditions and particular limits for use. To realize correct measurements it is use the device, the technique and the methods adapted to the need, by taking into account the optimization of economical aspect. (N.C.)

  5. Doping profile measurement on textured silicon surface

    Science.gov (United States)

    Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice

    2018-04-01

    In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.

  6. Highly accurate surface maps from profilometer measurements

    Science.gov (United States)

    Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.

    2013-04-01

    Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.

  7. Evaluation of Arctic broadband surface radiation measurements

    Science.gov (United States)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-02-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  8. Surface-based 3D measurements of small aeolian bedforms on Mars and implications for estimating ExoMars rover traversability hazards

    Science.gov (United States)

    Balme, Matt; Robson, Ellen; Barnes, Rob; Butcher, Frances; Fawdon, Peter; Huber, Ben; Ortner, Thomas; Paar, Gerhard; Traxler, Christoph; Bridges, John; Gupta, Sanjeev; Vago, Jorge L.

    2018-04-01

    Recent aeolian bedforms comprising loose sand are common on the martian surface and provide a mobility hazard to Mars rovers. The ExoMars rover will launch in 2020 to one of two candidate sites: Mawrth Vallis or Oxia Planum. Both sites contain numerous aeolian bedforms with simple ripple-like morphologies. The larger examples are 'Transverse Aeolian Ridges' (TARs), which stereo imaging analyses have shown to be a few metres high and up to a few tens of metres across. Where they occur, TARs therefore present a serious, but recognized and avoidable, rover mobility hazard. There also exists a population of smaller bedforms of similar morphology, but it is unknown whether these bedforms will be traversable by the ExoMars rover. We informally refer to these bedforms as "mini-TARs", as they are about an order of magnitude smaller than most TARs observed to date. They are more abundant than TARs in the Oxia Planum site, and can be pervasive in areas. The aim of this paper is to estimate the heights of these features, which are too small to measured using High Resolution Imaging Science Experiment (HiRISE) Digital Elevation Models (DEMs), from orbital data alone. Thereby, we aim to increase our knowledge of the hazards in the proposed ExoMars landing sites. We propose a methodology to infer the height of these mini-TARs based on comparisons with similar features observed by previous Mars rovers. We use rover-based stereo imaging from the NASA Mars Exploration Rover (MER) Opportunity and PRo3D software, a 3D visualisation and analysis tool, to measure the size and height of mini-TARs in the Meridiani Planum region of Mars. These are good analogues for the smaller bedforms at the ExoMars rover candidate landing sites. We show that bedform height scales linearly with length (as measured across the bedform, perpendicular to the crest ridge) with a ratio of about 1:15. We also measured the lengths of many of the smaller aeolian bedforms in the ExoMars rover Oxia Planum

  9. Surface temperature measurement with radioactive kryptonates

    International Nuclear Information System (INIS)

    Pruzinec, J.; Piatrik, M.

    1976-01-01

    The preparation and use of radioactive kryptonates is described for measuring surface temperatures within the region of 45 to 70 degC. Two samples each were prepared of kryptonated beechwood and hydroquinone on a paper carrier. One sample served as the standard which during the experiment was placed in a thermostat at a constant temperature of 45 degC. The second sample was placed in another thermostat where the temperature changed from 45 to 70 degC. Both samples were in the thermostat for 30 mins. The temperature was raised in steps of 2.5 degC and the time of measurement was constant in both samples. The dependences are given of the drop in activity on temperature for both types of samples. The difference was determined of the drop in activity between the standard and the second sample and the relation for measuring the temperature of the sample was determined therefrom. (J.B.)

  10. Measurement and removal of surface contamination

    International Nuclear Information System (INIS)

    Neider, M.; Tamberg, T.

    1990-01-01

    This is a critical reappraisal of the sampling factor which is important for indirect contamination measurement. The factor gives the radioactivity collected by means of a wipe sample as a fraction of the total loose radioactivity i.e. without firm adhesion. It is used in national and international standard specifications and stated, frequently with excessive conservatism, as 0.1. Secondly, the standard specifications for the testing and appraisal of surface materials in relation to their decontamination capacity and for testing the effect of decontamination agents hitherto bond and Co-60 and Cs-137 are to be expanded to include radioactive iodine, which is important in nuclear medicine. The selection of optimum surface materials will thus be put on an improved basis. (orig./DG) [de

  11. Measuring the Valence of Nanocrystal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan Scharle [Columbia Univ., New York, NY (United States)

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystal with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.

  12. Optimized Estimation of Surface Layer Characteristics from Profiling Measurements

    Directory of Open Access Journals (Sweden)

    Doreene Kang

    2016-01-01

    Full Text Available New sampling techniques such as tethered-balloon-based measurements or small unmanned aerial vehicles are capable of providing multiple profiles of the Marine Atmospheric Surface Layer (MASL in a short time period. It is desirable to obtain surface fluxes from these measurements, especially when direct flux measurements are difficult to obtain. The profiling data is different from the traditional mean profiles obtained at two or more fixed levels in the surface layer from which surface fluxes of momentum, sensible heat, and latent heat are derived based on Monin-Obukhov Similarity Theory (MOST. This research develops an improved method to derive surface fluxes and the corresponding MASL mean profiles of wind, temperature, and humidity with a least-squares optimization method using the profiling measurements. This approach allows the use of all available independent data. We use a weighted cost function based on the framework of MOST with the cost being optimized using a quasi-Newton method. This approach was applied to seven sets of data collected from the Monterey Bay. The derived fluxes and mean profiles show reasonable results. An empirical bias analysis is conducted using 1000 synthetic datasets to evaluate the robustness of the method.

  13. Data Mining of Satellite-Based Measurements to Distinguish Natural From Man-Made Oil Slicks at the Sea Surface in Campeche Bay (Mexico)

    Science.gov (United States)

    Carvalho, G. D. A.; Minnett, P. J.; de Miranda, F. P.; Landau, L.; Paes, E.

    2016-02-01

    Campeche Bay, located in the Mexican portion of the Gulf of Mexico, has a well-established activity engaged with numerous oil rigs exploring and producing natural gas and oil. The associated risk of oil slicks in this region - that include oil spills (i.e. oil floating at the sea surface solely attributed to man-made activities) and oil seeps (i.e. surface footprint of the oil that naturally comes out of the seafloor reaching the surface of the ocean) - leads Pemex to be in a continuous state of alert for reducing possible negative influence on marine and coastal ecosystems. Focusing on a monitoring strategy, a multi-year dataset (2008-2012) of synthetic aperture radar (SAR) measurements from the RADARSAT-2 satellite is used to investigate the spatio-temporal distribution of the oil slicks observed at the surface of the ocean in the Campeche Bay region. The present study is an exploratory data analysis that seeks to discriminate between these two possible oil slick types: oil seeps and oil spills. Multivariate data analysis techniques (e.g. Principal Components Analysis, Clustering Analysis, Discriminant Function, etc.) are explored to design a data-learning classification algorithm to distinguish natural from man-made oil slicks. This analysis promotes a novel idea bridging geochemistry and remote sensing research to express geophysical differences between seeped and spilled oil. Here, SAR backscatter coefficients - i.e. sigma-naught (σo), beta-naught (βo), and gamma-naught (γo) - are combined with attributes referring to the geometry, shape, and dimension that describe the oil slicks. Results indicate that the synergy of combining these various characteristics is capable of distinguishing oil seeps from oil spills observed on the sea surface to a useful accuracy.

  14. Evaluation of Arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  15. Noise evaluation of a point autofocus surface topography measuring instrument

    Science.gov (United States)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  16. LOFT fuel rod surface temperature measurement testing

    International Nuclear Information System (INIS)

    Eaton, A.M.; Tolman, E.L.; Solbrig, C.W.

    1978-01-01

    Testing of the LOFT fuel rod cladding surface thermocouples has been performed to evaluate how accurately the LOFT thermocouples measure the cladding surface temperature during a loss-of-coolant accident (LOCA) sequence and what effect, if any, the thermocouple would have on core performance. Extensive testing has been done to characterize the thermocouple design. Thermal cycling and corrosion testing of the thermocouple weld design have provided an expected lifetime of 6000 hours when exposed to reactor coolant conditions of 620 K and 15.9 MPa and to sixteen thermal cycles with an initial temperature of 480 K and peak temperatures ranging from 870 to 1200K. Departure from nucleate boiling (DNB) tests have indicated a DNB penalty (5 to 28% lower) during steady state operation and negligible effects during LOCA blowdown caused by the LOFT fuel rod surface thermocouple arrangement. Experience with the thermocouple design in Power Burst Facility (PBF) and LOFT nonnuclear blowdown testing has been quite satisfactory. Tests discussed here were conducted using both stainless steel and zircaloy-clad electrically heated rod in the LOFT Test Support Facility (LTSF) blowdown simulation loop

  17. Adsorção e propriedades de volume de misturas binárias água álcool: um experimento didático com base em medidas de tensão superficial An undergraduate experiment in physical chemistry: adsorption and bulk properties of alcohol-water mixtures based on surface tension measurements

    Directory of Open Access Journals (Sweden)

    Michelly C. dos Santos

    2010-01-01

    Full Text Available An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, activity, and ideal solution.

  18. Surface Forces Apparatus measurements of interactions between rough and reactive calcite surfaces.

    Science.gov (United States)

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon Einar; Nilsen, Ola; Røyne, Anja

    2018-05-28

    Nm-range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials, and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the Surface Forces Apparatus (SFA), we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC), or between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by Atomic Layer Deposition (ALD). We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time and this increase was correlated with a decrease of roughness at contacts, which parameter could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm to µm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over µm-sized areas, and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  19. Advances in the Surface Renewal Flux Measurement Method

    Science.gov (United States)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  20. [Comparative Study for Anti-Hepatitis B Surface Antigen Titers Based on Two Measurement Methods: Using Monoclonal Antibodies Isolated from Hepatitis B Vaccinated Recipients].

    Science.gov (United States)

    Oone, Kumiko; Kani, Satomi; Oohashi, Minoru; Shinkai, Noboru; Inoue, Takako; Wakimoto, Yukio; Tanaka, Yasuhito

    2015-08-01

    As anti-hepatitis B surface antigen (anti-HBs) titers vary depending on the measurement methods, we compared two different methods to measure anti-HBs titers in sera and HBs monoclonal antibodies. The sera from 182 HB virus-resolved patients who were negative for HBsAg but positive for antiHB core protein (HBc) and/or anti-HBs were obtained. The measurement of anti-HBs was compared using either Lumipulse G1200 or Architect i2000SR. Six different monoclonal antibody (mAbs) clones isolated from healthy individuals inoculated with hepatitis B vaccine Bimmugen (genotype C) were used. A statistically significant correlation in anti-HBs titers was found between the two methods tested (Y = 0.951X + 100.7, R = 0.813, p Lumipulse and 12 (6.6%) were opposite results. Measuring 2 mAbs with HBV neutralizing activity, the titers of the 116 antibody (1.0 μg/mL) were comparable (689.3 mIU/mL by Lumipulse and 440.7 mIU/mL by Architect), whereas those of the 478 antibody (1.0 μg/mL) were much lower by Architect than by Lumipulse (42.6 vs. 818.6 mIU/mL, respectively). Of four other mAbs without HBV neutralizing activity, equal titers were observed for one; two mAbs had less anti-HB titers by Architect; and one was below the cut-off index (Lumipulse, and the potential ability to detect the 478 antibody with neutralizing activity is low, indicating that Architect might underestimate anti-HBs titers. Future studies should standardize the anti-HBs titer measurement system.

  1. Radioactivity Measurements on Glazed Ceramic Surfaces

    OpenAIRE

    Hobbs, Thomas G.

    2000-01-01

    A variety of commonly available household and industrial ceramic items and some specialty glass materials were assayed by alpha pulse counting and ion chamber voltage measurements for radioactivity concentrations. Identification of radionuclides in some of the items was performed by gamma spectroscopy. The samples included tableware, construction tiles and decorative tiles, figurines, and other products with a clay based composition. The concentrations of radioactivity ranged from near backgr...

  2. Intelligent sampling for the measurement of structured surfaces

    International Nuclear Information System (INIS)

    Wang, J; Jiang, X; Blunt, L A; Scott, P J; Leach, R K

    2012-01-01

    Uniform sampling in metrology has known drawbacks such as coherent spectral aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement for intelligent sampling strategies has been outlined over recent years, particularly where the measurement of structured surfaces is concerned. Most of the present research on intelligent sampling has focused on dimensional metrology using coordinate-measuring machines with little reported on the area of surface metrology. In the research reported here, potential intelligent sampling strategies for surface topography measurement of structured surfaces are investigated by using numerical simulation and experimental verification. The methods include the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods which originate from computer graphics, coordinate metrology and previous research by the authors. By combining the use of advanced reconstruction methods and feature-based characterization techniques, the measurement performance of the sampling methods is studied using case studies. The advantages, stability and feasibility of these techniques for practical measurements are discussed. (paper)

  3. Surface temperature measurement of plasma facing components in tokamaks

    International Nuclear Information System (INIS)

    Amiel, Stephane

    2014-01-01

    During this PhD, the challenges on the non-intrusive surface temperature measurements of metallic plasma facing components in tokamaks are reported. Indeed, a precise material emissivity value is needed for classical infrared methods and the environment contribution has to be known particularly for low emissivities materials. Although methods have been developed to overcome these issues, they have been implemented solely for dedicated experiments. In any case, none of these methods are suitable for surface temperature measurement in tokamaks.The active pyrometry introduced in this study allows surface temperature measurements independently of reflected flux and emissivities using pulsed and modulated photothermal effect. This method has been validated in laboratory on metallic materials with reflected fluxes for pulsed and modulated modes. This experimental validation is coupled with a surface temperature variation induced by photothermal effect and temporal signal evolvement modelling in order to optimize both the heating source characteristics and the data acquisition and treatment. The experimental results have been used to determine the application range in temperature and detection wavelengths. In this context, the design of an active pyrometry system on tokamak has been completed, based on a bicolor camera for a thermography application in metallic (or low emissivity) environment.The active pyrometry method introduced in this study is a complementary technique of classical infrared methods used for thermography in tokamak environment which allows performing local and 2D surface temperature measurements independently of reflected fluxes and emissivities. (author) [fr

  4. Comparative Measurement of Microcystins in Diverse Surface ...

    Science.gov (United States)

    The measurement of microcystins, cyanotoxins associated with cyanobacterial blooms which are increasingly prevalent in inland waters, is complicated by the diversity of congeners which have been observed in the environment. At present, more than 150 microcystin congeners have been identified, and this poses a significant challenge to analytical methods intended to assess human health risks in surface and drinking water systems. The most widely employed analytical method at present is the ADDA-ELISA technique which is potentially sensitive to all microcystins, but it is primarily intended as a semi-quantitative method, and questions have been raised regarding the potential for cross-reactivity and false positives. LC-MS/MS methods targeting specific congeners, such as US EPA Method 544, are intended for use as a secondary confirmation following a positive ELISA response, but these techniques can target only those congeners for which commercial standards are available. Accordingly, they are not suitable for ascertaining the safety of a given water sample, given the potential for omitting unknown microcystin congeners which might be present.An alternative approach involves oxidative transformation of microcystins to a common product, 2-methyl-3-methoxy-4-phenylbutyric acid, or MMPB. Measuring MMPB by LC-MS/MS can potentially provide a metric for the sum of all microcystin congeners present in a sample, subject to the efficiency and overall yield of conversion. The

  5. Topography measurements for determining the decay factors in surface replication

    International Nuclear Information System (INIS)

    Song, J; Zheng, A; Vorburger, T V; Rubert, P

    2008-01-01

    The electro-forming technique is used at National Institute of Standards and Technology (NIST) for the production of standard reference material (SRM) 2461 standard casings to support nationwide ballistics measurement traceability and measurement quality control in the US. In order to ensure that the SRM casings are produced with virtually the same surface topography, it is necessary to test the decay factors of the replication process. Twenty-six replica casings are replicated from the same master casing for the decay factor tests. The NIST topography measurement system is used for measurements and correlations of surface topography. The topography decays are quantified by the cross-correlation function maximum CCF max . Based on the test, it is expected that 256 SRM casings can be replicated from the same master with CCF max values higher than 95%

  6. Finite Elements on Point Based Surfaces

    NARCIS (Netherlands)

    Clarenz, U.; Rumpf, M.; Telea, A.

    2004-01-01

    We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based surfaces. Our method is based on the construction of local tangent planes and

  7. Thickness Measurement of Surface Attachment on Plate with Lamb Wave

    Science.gov (United States)

    Ma, Xianglong; Zhang, Yinghong; Wen, Lichao; He, Yehu

    2017-12-01

    Aiming at the thickness detection of the plate surface attachment, a nondestructive testing method based on the Lamb wave is presented. This method utilizes Lamb wave propagation characteristics of signals in a bi-layer medium to measure the surface attachment plate thickness. Propagation of Lamb wave in bi-layer elastic is modeled and analyzed. The two-dimensional simulation model of electromagnetic ultrasonic plate - scale is established. The simulation is conducted by software COMSOL for simulation analysis under different boiler scale thickness wave form curve. Through this study, the thickness of the attached material can be judged by analyzing the characteristics of the received signal when the thickness of the surface of the plate is measured.

  8. Experimental measurements of negative hydrogen ion production from surfaces

    International Nuclear Information System (INIS)

    Graham, W.G.

    1977-09-01

    Experimental measurements of the production of H - from surfaces bombarded with hydrogen are reviewed. Some measurements of H + and H 0 production from surfaces are also discussed with particular emphasis on work which might be relevant to ion source applications

  9. Wireless Sensor Node for Surface Seawater Density Measurements

    Directory of Open Access Journals (Sweden)

    Roberto Saletti

    2012-03-01

    Full Text Available An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  10. Wireless sensor node for surface seawater density measurements.

    Science.gov (United States)

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  11. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Science.gov (United States)

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  12. Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface

    Science.gov (United States)

    Rosenberry, Donald O.; Sheibley, Rich W.; Cox, Stephen E.; Simonds, Frederic W.; Naftz, David L.

    2013-01-01

    Seepage at the sediment-water interface in several lakes, a large river, and an estuary exhibits substantial temporal variability when measured with temporal resolution of 1 min or less. Already substantial seepage rates changed by 7% and 16% in response to relatively small rain events at two lakes in the northeastern USA, but did not change in response to two larger rain events at a lake in Minnesota. However, seepage at that same Minnesota lake changed by 10% each day in response to withdrawals from evapotranspiration. Seepage increased by more than an order of magnitude when a seiche occurred in the Great Salt Lake, Utah. Near the head of a fjord in Puget Sound, Washington, seepage in the intertidal zone varied greatly from −115 to +217 cm d−1 in response to advancing and retreating tides when the time-averaged seepage was upward at +43 cm d−1. At all locations, seepage variability increased by one to several orders of magnitude in response to wind and associated waves. Net seepage remained unchanged by wind unless wind also induced a lake seiche. These examples from sites distributed across a broad geographic region indicate that temporal variability in seepage in response to common hydrological events is much larger than previously realized. At most locations, seepage responded within minutes to changes in surface-water stage and within minutes to hours to groundwater recharge associated with rainfall. Likely implications of this dynamism include effects on water residence time, geochemical transformations, and ecological conditions at and near the sediment-water interface.

  13. Quantitative nanoscale surface voltage measurement on organic semiconductor blends

    International Nuclear Information System (INIS)

    Cuenat, Alexandre; Muñiz-Piniella, Andrés; Muñoz-Rojo, Miguel; Murphy, Craig E; Tsoi, Wing C

    2012-01-01

    We report on the validation of a method based on Kelvin probe force microscopy (KPFM) able to measure the different phases and the relative work function of polymer blend heterojunctions at the nanoscale. The method does not necessitate complex ultra-high vacuum setup. The quantitative information that can be extracted from the topography and the Kelvin probe measurements is critically analysed. Surface voltage difference can be observed at the nanoscale on poly(3-hexyl-thiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) blends and dependence on the annealing condition and the regio-regularity of P3HT is observed. (paper)

  14. Radioactivity Measurements on Glazed Ceramic Surfaces.

    Science.gov (United States)

    Hobbs, T G

    2000-01-01

    A variety of commonly available household and industrial ceramic items and some specialty glass materials were assayed by alpha pulse counting and ion chamber voltage measurements for radioactivity concentrations. Identification of radionuclides in some of the items was performed by gamma spectroscopy. The samples included tableware, construction tiles and decorative tiles, figurines, and other products with a clay based composition. The concentrations of radioactivity ranged from near background to about four orders of magnitude higher. Almost every nuclide identification test demonstrated some radioactivity content from one or more of the naturally occurring radionuclide series of thorium or uranium. The glazes seemed to contribute most of the activity, although a sample of unglazed pottery greenware showed some activity. Samples of glazing paints and samples of deliberately doped glass from the World War II era were included in the test, as was a section of foam filled poster board. A glass disc with known (232)Th radioactivity concentration was cast for use as a calibration source. The results from the two assay methods are compared, and a projection of sensitivity from larger electret ion chamber devices is presented.

  15. Behaviour of a surface EMG based measure for motor control: Motor unit action potential rate in relation to force and muscle fatigue

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2008-01-01

    Surface electromyography parameters such as root-mean-square value (RMS) and median power frequency (FMED) are commonly used to assess the input of the central nervous system (CNS) to a muscle. However, RMS and FMED are influenced not only by CNS input, but also by peripheral muscle properties. The

  16. The prediction of BRDFs from surface profile measurements

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.; Leonard, T.A.

    1989-01-01

    This paper discusses methods of predicting the BRDF of smooth surfaces from profile measurements of their surface finish. The conversion of optical profile data to the BRDF at the same wavelength is essentially independent of scattering models, while the conversion of mechanical measurements, and wavelength scaling in general, are model dependent. Procedures are illustrated for several surfaces, including two from the recent HeNe BRDF round robin, and results are compared with measured data. Reasonable agreement is found except for surfaces which involve significant scattering from isolated surface defects which are poorly sampled in the profile data

  17. Inspection of freeform surfaces considering uncertainties in measurement, localization and surface reconstruction

    International Nuclear Information System (INIS)

    Mehrad, Vahid; Xue, Deyi; Gu, Peihua

    2013-01-01

    Inspection of a manufactured freeform surface can be conducted by building its surface model and comparing this manufactured surface model with the ideal design surface model and its tolerance requirement. The manufactured freeform surface model is usually achieved by obtaining measurement points on the manufactured surface, transforming these measurement points from the measurement coordinate system to the design coordinate system through localization, and reconstructing the surface model using the localized measurement points. In this research, a method was developed to estimate the locations and their variances of any selected points on the reconstructed freeform surface considering different sources of uncertainties in measurement, localization and surface reconstruction processes. In this method, first locations and variances of the localized measurement points are calculated considering uncertainties of the measurement points and uncertainties introduced in the localization processes. Then locations and variances of points on the reconstructed freeform surface are obtained considering uncertainties of the localized measurement points and uncertainties introduced in the freeform surface reconstruction process. Two case studies were developed to demonstrate how these three different uncertainty sources influence the quality of the reconstructed freeform curve and freeform surface in inspection. (paper)

  18. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  19. Optical switches based on surface plasmons

    International Nuclear Information System (INIS)

    Chen Cong; Wang Pei; Yuan Guanghui; Wang Xiaolei; Min Changjun; Deng Yan; Lu Yonghua; Ming Hai

    2008-01-01

    Great attention is being paid to surface plasmons (SPs) because of their potential applications in sensors, data storage and bio-photonics. Recently, more and more optical switches based on surface plasmon effects have been demonstrated either by simulation or experimentally. This article describes the principles, advantages and disadvantages of various types of optical switches based on SPs, in particular the all-optical switches. (authors)

  20. On a model for the prediction of the friction coefficient in mixed lubrication based on a load-sharing concapt with measured surface roughness

    NARCIS (Netherlands)

    Akchurin, Aydar; Bosman, Rob; Lugt, Pieter Martin; van Drogen, Mark

    2015-01-01

    A new model was developed for the simulation of the friction coefficient in lubricated sliding line contacts. A half-space-based contact algorithm was linked with a numerical elasto-hydrodynamic lubrication solver using the load-sharing concept. The model was compared with an existing asperity-based

  1. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  2. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  3. Constructing Invariant Fairness Measures for Surfaces

    DEFF Research Database (Denmark)

    Gravesen, Jens; Ungstrup, Michael

    1998-01-01

    of the size of this vector field is used as the fairness measure on the family.Six basic 3rd order invariants satisfying two quadratic equations are defined. They form a complete set in the sense that any invariant 3rd order function can be written as a function of the six basic invariants together...

  4. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  5. Surface Current Measurements In Terra Nova Bay By Hf Radar

    Science.gov (United States)

    Flocco, D.; Falco, P.; Wadhams, P.; Spezie, G.

    We present the preliminary results of a field experiment carried out within frame- work of the CLIMA project of the Italian National Programme for Antarctic Research (PNRA) and in cooperation with the Scott Polar Research Institute of Cambridge. Dur- ing the second period (02/12/1999-23/01/2000) of the XV Italian expedition a coastal radar was used to characterize the current field in the area of Terra Nova Bay (TNB). One of the aims of the CLIMA (Climatic Long-term Interactions for the Mass balance in Antarctica) project is to determine the role of the polynya in the sea ice mass bal- ance, water structure and local climate. The OSCR-II experiment was planned in order to provide surface current measurements in the area of TNB polynya, one of the most important coastal polynya of the Ross Sea. OSCR (Ocean Surface Current Radar) is a shore based, remote sensing system designed to measure sea surface currents in coastal waters. Two radar sites (a master and a slave) provide with radial current mea- surements; data combined from both sites yield the total current vector. Unfortunately the master and slave stations did not work together throughout the whole period of the experiment. A description of the experiment and a discussion of the results, will be proposed.

  6. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  7. Surface Fitting for Quasi Scattered Data from Coordinate Measuring Systems.

    Science.gov (United States)

    Mao, Qing; Liu, Shugui; Wang, Sen; Ma, Xinhui

    2018-01-13

    Non-uniform rational B-spline (NURBS) surface fitting from data points is wildly used in the fields of computer aided design (CAD), medical imaging, cultural relic representation and object-shape detection. Usually, the measured data acquired from coordinate measuring systems is neither gridded nor completely scattered. The distribution of this kind of data is scattered in physical space, but the data points are stored in a way consistent with the order of measurement, so it is named quasi scattered data in this paper. Therefore they can be organized into rows easily but the number of points in each row is random. In order to overcome the difficulty of surface fitting from this kind of data, a new method based on resampling is proposed. It consists of three major steps: (1) NURBS curve fitting for each row, (2) resampling on the fitted curve and (3) surface fitting from the resampled data. Iterative projection optimization scheme is applied in the first and third step to yield advisable parameterization and reduce the time cost of projection. A resampling approach based on parameters, local peaks and contour curvature is proposed to overcome the problems of nodes redundancy and high time consumption in the fitting of this kind of scattered data. Numerical experiments are conducted with both simulation and practical data, and the results show that the proposed method is fast, effective and robust. What's more, by analyzing the fitting results acquired form data with different degrees of scatterness it can be demonstrated that the error introduced by resampling is negligible and therefore it is feasible.

  8. Surface characterization of graphene based materials

    International Nuclear Information System (INIS)

    Pisarek, M.; Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A.; Malolepszy, A.; Stobinski, L.; Jablonski, A.

    2016-01-01

    Highlights: • Two kind of samples: commercial graphene on Cu substrate and rGO flakes. • EPES applied to measure the IMFPs in graphene based materials. • Characterization by various techniques like: FE-SEM, AFM, XPS, AES and REELS. • EPES IMFPs for rGO deviated up to 14% from IMFPs calculated using the optical data. - Abstract: In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5–2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  9. Surface characterization of graphene based materials

    Energy Technology Data Exchange (ETDEWEB)

    Pisarek, M., E-mail: mpisarek@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Malolepszy, A. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-065 Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-065 Warsaw (Poland); Jablonski, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Two kind of samples: commercial graphene on Cu substrate and rGO flakes. • EPES applied to measure the IMFPs in graphene based materials. • Characterization by various techniques like: FE-SEM, AFM, XPS, AES and REELS. • EPES IMFPs for rGO deviated up to 14% from IMFPs calculated using the optical data. - Abstract: In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5–2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  10. Grain size measurements by ultrasonic Rayleigh surface waves

    International Nuclear Information System (INIS)

    Palanichamy, P.; Jayakumar, T.

    1996-01-01

    The use of Rayleigh surface waves to determine average grain size nondestructively in an austenitic stainless steel AISI type 316 stainless is discussed. Two commercial type 4MHz frequency surface wave transducers, one as transmitter and the other as receiver were employed for the measurement of surface wave amplitudes. Relative amplitudes of the Rayleigh surface waves were correlated with the metallographically obtained grain sizes. Results indicate that surface/sub-surface average grain sizes of AISI type 316 austenitic stainless steel can be estimated with a confidence level of more than 80% in the grain size range 30-170 μm. (author)

  11. The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam.

    Science.gov (United States)

    Amato, A; Luetkens, H; Sedlak, K; Stoykov, A; Scheuermann, R; Elender, M; Raselli, A; Graf, D

    2017-09-01

    We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SμS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon (GPS) instrument that has been for long the workhorse of the μSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers, a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built μSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared with the old GPS.

  12. Development of material measures for performance verifying surface topography measuring instruments

    International Nuclear Information System (INIS)

    Leach, Richard; Giusca, Claudiu; Rickens, Kai; Riemer, Oltmann; Rubert, Paul

    2014-01-01

    The development of two irregular-geometry material measures for performance verifying surface topography measuring instruments is described. The material measures are designed to be used to performance verify tactile and optical areal surface topography measuring instruments. The manufacture of the material measures using diamond turning followed by nickel electroforming is described in detail. Measurement results are then obtained using a traceable stylus instrument and a commercial coherence scanning interferometer, and the results are shown to agree to within the measurement uncertainties. The material measures are now commercially available as part of a suite of material measures aimed at the calibration and performance verification of areal surface topography measuring instruments

  13. Wavelet Packet based Detection of Surface Faults on Compact Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Wickerhauser, Mladen Victor

    2006-01-01

    based on these measurements. A precise detection of the surface fault is a prerequisite to a correct handling of the faults in order to protect the pick-up of the compact disc player from audible track losses. The actual fault handling which is addressed in other publications can be carried out......In this paper the detection of faults on the surface of a compact disc is addressed. Surface faults like scratches and fingerprints disturb the on-line measurement of the pick-up position relative to the track. This is critical since the pick-up is focused on and tracked at the information track...

  14. Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification

    International Nuclear Information System (INIS)

    Vladkova, T.G.; Keranov, I.L.; Dineff, P.D.; Youroukov, S.Y.; Avramova, I.A.; Krasteva, N.; Altankov, G.P.

    2005-01-01

    Plasma based Ar + beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow. XPS analysis was performed to study the changes in the surface chemical composition of the modified samples and the corresponding changes in the surface energy were monitored by contact angle measurements. We found that plasma based Ar + beam transforms the initially hydrophobic PDMS surface into a hydrophilic one mainly due to a raising of the polar component of the surface tension, this effect being most probably due to an enrichment of the modified surface layer with permanent dipoles of a [SiO x ]-based network and elimination of the original methyl groups. The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar + beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or bare surfaces. The cell response seems to be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar + beam treatment followed or not by AA grafting

  15. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    Energy Technology Data Exchange (ETDEWEB)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  16. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  17. Software-based acoustical measurements

    CERN Document Server

    Miyara, Federico

    2017-01-01

    This textbook provides a detailed introduction to the use of software in combination with simple and economical hardware (a sound level meter with calibrated AC output and a digital recording system) to obtain sophisticated measurements usually requiring expensive equipment. It emphasizes the use of free, open source, and multiplatform software. Many commercial acoustical measurement systems use software algorithms as an integral component; however the methods are not disclosed. This book enables the reader to develop useful algorithms and provides insight into the use of digital audio editing tools to document features in the signal. Topics covered include acoustical measurement principles, in-depth critical study of uncertainty applied to acoustical measurements, digital signal processing from the basics, and metrologically-oriented spectral and statistical analysis of signals. The student will gain a deep understanding of the use of software for measurement purposes; the ability to implement software-based...

  18. Measurements of radon progeny activity on typical indoor surfaces

    International Nuclear Information System (INIS)

    Knutson, E.O.; Gogolak, C.V.; Klemic, G.

    1992-01-01

    A number of studies aimed at defining how well radon progeny on surfaces can be measured, information that is needed in order to test physical/mathematical models governing indoor radon progeny behaviour, are described. One experiment compared the decomposition on to different surfaces. Only relatively small differences were found among metal, filter paper, broadcloth, corduroy fabric, vinyl wallpaper, glass, and latex paint, but polyethylene film collected two to four times as much as the others, due most likely to electrostatic charge on the plastic surface. Another experiment compared the gamma and gross alpha count methods of measuring surface activity for metal, filter paper, broadcloth and corduroy surfaces. No difference for the surfaces tested was found from which it is concluded that, even for rougher surfaces, progeny atoms deposit mainly on the outer layers. A final experiment compared in situ and surrogate-surface methods for measuring surface deposition. For most tests, the two methods agreed within 30%, and the average ratio was not significantly different from unity. 210 Po is a complication in the in situ method. An unexpected location effect was found in the experiments conducted in houses with high radon concentrations: the deposition on the ceiling was higher than on the surfaces. (author)

  19. Automatic Measurement of Low Level Contamination on Concrete Surfaces

    International Nuclear Information System (INIS)

    Tachibana, M.; Itoh, H.; Shimada, T.; Yanagihara, S.

    2002-01-01

    Automatic measurement of radioactivity is necessary for considering cost effectiveness in final radiological survey of building structures in decommissioning nuclear facilities. The RAPID (radiation measuring pilot device for surface contamination) was developed to be applied to automatic measurement of low level contamination on concrete surfaces. The RAPID has a capability to measure contamination with detection limit of 0.14 Bq/cm2 for 60Co in 30 seconds of measurement time and its efficiency is evaluated to be 5 m2/h in a normal measurement option. It was confirmed that low level contamination on concrete surfaces could be surveyed by the RAPID efficiently compared with direct measurement by workers through its actual application

  20. Autonomous target recognition using remotely sensed surface vibration measurements

    Science.gov (United States)

    Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.

    1993-09-01

    The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.

  1. Open questions in surface topography measurement: a roadmap

    International Nuclear Information System (INIS)

    Leach, Richard; Evans, Christopher; He, Liangyu; Davies, Angela; Duparré, Angela; Henning, Andrew; Jones, Christopher W; O’Connor, Daniel

    2015-01-01

    Control of surface topography has always been of vital importance for manufacturing and many other engineering and scientific disciplines. However, despite over one hundred years of quantitative surface topography measurement, there are still many open questions. At the top of the list of questions is ‘Are we getting the right answer?’ This begs the obvious question ‘How would we know?’ There are many other questions relating to applications, the appropriateness of a technique for a given scenario, or the relationship between a particular analysis and the function of the surface. In this first ‘open questions’ article we have gathered together some experts in surface topography measurement and asked them to address timely, unresolved questions about the subject. We hope that their responses will go some way to answer these questions, address areas where further research is required, and look at the future of the subject. The first section ‘Spatial content characterization for precision surfaces’ addresses the need to characterise the spatial content of precision surfaces. Whilst we have been manufacturing optics for centuries, there still isn’t a consensus on how to specify the surface for manufacture. The most common three methods for spatial characterisation are reviewed and compared, and the need for further work on quantifying measurement uncertainties is highlighted. The article is focussed on optical surfaces, but the ideas are more pervasive. Different communities refer to ‘figure, mid-spatial frequencies, and finish’ and ‘form, waviness, and roughness’, but the mathematics are identical. The second section ‘Light scattering methods’ is focussed on light scattering techniques; an important topic with in-line metrology becoming essential in many manufacturing scenarios. The potential of scattering methods has long been recognized; in the ‘smooth surface limit’ functionally significant relationships can be derived from first

  2. Variations in return value estimate of ocean surface waves - a study based on measured buoy data and ERA-Interim reanalysis data

    Science.gov (United States)

    Muhammed Naseef, T.; Sanil Kumar, V.

    2017-10-01

    An assessment of extreme wave characteristics during the design of marine facilities not only helps to ensure their safety but also assess the economic aspects. In this study, return levels of significant wave height (Hs) for different periods are estimated using the generalized extreme value distribution (GEV) and generalized Pareto distribution (GPD) based on the Waverider buoy data spanning 8 years and the ERA-Interim reanalysis data spanning 38 years. The analysis is carried out for wind-sea, swell and total Hs separately for buoy data. Seasonality of the prevailing wave climate is also considered in the analysis to provide return levels for short-term activities in the location. The study shows that the initial distribution method (IDM) underestimates return levels compared to GPD. The maximum return levels estimated by the GPD corresponding to 100 years are 5.10 m for the monsoon season (JJAS), 2.66 m for the pre-monsoon season (FMAM) and 4.28 m for the post-monsoon season (ONDJ). The intercomparison of return levels by block maxima (annual, seasonal and monthly maxima) and the r-largest method for GEV theory shows that the maximum return level for 100 years is 7.20 m in the r-largest series followed by monthly maxima (6.02 m) and annual maxima (AM) (5.66 m) series. The analysis is also carried out to understand the sensitivity of the number of observations for the GEV annual maxima estimates. It indicates that the variations in the standard deviation of the series caused by changes in the number of observations are positively correlated with the return level estimates. The 100-year return level results of Hs using the GEV method are comparable for short-term (2008 to 2016) buoy data (4.18 m) and long-term (1979 to 2016) ERA-Interim shallow data (4.39 m). The 6 h interval data tend to miss high values of Hs, and hence there is a significant difference in the 100-year return level Hs obtained using 6 h interval data compared to data at 0.5 h interval. The

  3. Measurement of Dynamic Friction Coefficient on the Irregular Free Surface

    International Nuclear Information System (INIS)

    Yeom, S. H.; Seo, K. S.; Lee, J. H.; Lee, K. H.

    2007-01-01

    A spent fuel storage cask must be estimated for a structural integrity when an earthquake occurs because it freely stands on ground surface without a restriction condition. Usually the integrity estimation for a seismic load is performed by a FEM analysis, the friction coefficient for a standing surface is an important parameter in seismic analysis when a sliding happens. When a storage cask is placed on an irregular ground surface, measuring a friction coefficient of an irregular surface is very difficult because the friction coefficient is affected by the surface condition. In this research, dynamic friction coefficients on the irregular surfaces between a concrete cylinder block and a flat concrete slab are measured with two methods by one direction actuator

  4. Measurement of near neighbor separations of surface atoms

    International Nuclear Information System (INIS)

    Cohen, P.I.

    Two techniques are being developed to measure the nearest neighbor distances of atoms at the surfaces of solids. Both measures extended fine structure in the excitation probability of core level electrons which are excited by an incident electron beam. This is an important problem because the structures of most surface systems are as yet unknown, even though the location of surface atoms is the basis for any quantitative understanding of the chemistry and physics of surfaces and interfaces. These methods would allow any laboratory to make in situ determinations of surface structure in conjunction with most other laboratory probes of surfaces. Each of these two techniques has different advantages; further, the combination of the two will increase confidence in the results by reducing systematic error in the data analysis

  5. Surface deposition measurements of the TMI-2 gross decontamination experiment

    International Nuclear Information System (INIS)

    McIssac, C.V.; Hetzer, D.C.

    1982-01-01

    In order to measure the effectiveness of the gross decontamination experiment (principally a water spray technique) performed in the TMI-2 reactor building, the Technical Information and Examination Program's Radiation and Environment personnel made surface activity measurements before and after the experiment. In conjunction with surface sampling, thermoluminescent dosimeter (TLD) and gamma spectrometry measurements were also performed to distinguish between radiation fields and contamination. The surface sampler used to collect samples from external surfaces within the reactor building is a milling tool having four major components: a 1.27-cm constant-speed drill; a drill support assembly that allows setting sample penetration depth; filter cartridges for intake air purification and sample collection; and an air pump that forces air across the surface being sampled and through the sample filter cartridge

  6. Entrance surface dose measurements in mammography using thermoluminescence technique

    International Nuclear Information System (INIS)

    Rivera, T.; Vega C, H.R.; Manzanares A, E; Azorin, J.; Gonzalez, P.R.

    2007-01-01

    Full text: Of the various techniques that can be used for personnel dosimetry, thermoluminescence dosimetry (TLD) has emerged as a superior technique due to its manifold advantages over other methods of dose estimation. Various phosphors have been therefore investigated regarding their suitability for dosimetry. In this paper, a dosimetry system based on thermally stimulated luminescence (TSL) from zirconium oxide phosphors embedded in polytetrafluorethylene (ZrO 2 +PTFE) was developed for entrance surface doses (ES) measurements in mammography. Small ZrO 2 pellets of 5 mm in diameter and 0.8 mm in thickness were used. The reproducibility of measurements and linearity of ZrO 2 were also studied. The results were compared with those obtained from LiF:Mg,Cu,P usually used for the determination of absorbed dose in mammography. Measurements both per unit air kerma and In vivo were performed using a mammography unit model DMR (General Electric). The results showed that ZrO 2 TLDs can be used for the same X-ray dosimetry applications as LiF:Mg,Cu,P, with each type having the disadvantage of a response dependent on energy, particularly at low energies. These results indicate a considerable potential for use in routine control and In vivo ES measurements in mammography. (Author)

  7. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  8. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  9. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Measurement of grassland evaporation using a surface-layer ...

    African Journals Online (AJOL)

    Measurement of grassland evaporation using a surface-layer scintillometer. ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... of soil heat flux and net irradiance, evaporation rates were calculated as a residual of the ...

  11. Calibration technique for the neutron surface moisture measurement system

    International Nuclear Information System (INIS)

    Watson, W.T.; Shreve, D.C.

    1996-01-01

    A technique for calibrating the response of a surface neutron moisture measurement probe to material moisture concentration has been devised. Tests to ensure that the probe will function in the expected in-tank operating environment are also outlined

  12. Surface Resistance Measurements of LHC Dipole Beam Screen Samples

    CERN Document Server

    Caspers, Friedhelm; Ruggiero, F; Tan, J; Tsutsui, H

    2000-01-01

    An estimate of the resistive losses in the LHC dipole beam screen is given from cold surface resistance measurements using the shielded pair technique. Several beam screen samples have been evaluated, with different copper coating methods, including a sample with ribbed surface envisaged to reduce electron cloud losses thanks to its low reflectivity. Experimental data, derived by a proper analysis of the measured Q-factors and including error estimates are compared with theoretical predictions of the anomalous skin effect.

  13. On $L_p$ Affine Surface Area and Curvature Measures

    OpenAIRE

    Zhao, Yiming

    2015-01-01

    The relationship between $L_p$ affine surface area and curvature measures is investigated. As a result, a new representation of the existing notion of $L_p$ affine surface area depending only on curvature measures is derived. Direct proofs of the equivalence between this new representation and those previously known are provided. The proofs show that the new representation is, in a sense, "polar" to that of Lutwak's and "dual" to that of Sch\\"utt & Werner's.

  14. A noncontact laser system for measuring soil surface topography

    International Nuclear Information System (INIS)

    Huang, C.; White, I.; Thwaite, E.G.; Bendeli, A.

    1988-01-01

    Soil surface topography profoundly influences runoff hydrodynamics, soil erosion, and surface retention of water. Here we describe an optical noncontact system for measuring soil surface topography. Soil elevation is measured by projecting a laser beam onto the surface and detecting the position of the interception point. The optical axis of the detection system is oriented at a small angle to the incident beam. A low-power HeNe (Helium-Neon) laser is used as the laser source, a photodiode array is used as the laser image detector and an ordinary 35-mm single lens reflex camera provides the optical system to focus the laser image onto the diode array. A wide spectrum of measurement ranges (R) and resolutions are selectable, from 1 mm to 1 m. These are determined by the laser-camera distance and angle, the focal length of the lens, and the sensing length of the diode array and the number of elements (N) contained in the array. The resolution of the system is approximately R/2N. We show for the system used here that this resolution is approximately 0.2%. In the configuration selected, elevation changes of 0.16 mm could be detected over a surface elevation range of 87 mm. The sampling rate of the system is 1000 Hz, which permits soil surfaces to be measured at speeds of up to 1 m s −1 with measurements taken at 1-mm spacing. Measurements of individual raindrop impacts on the soil and of soil surfaces before and after rain show the versatility of the laser surface profiler, which has applications in studies of erosion processes, surface storage and soil trafficability

  15. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    Science.gov (United States)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  16. Comparison of two methods of surface profile extraction from multiple ultrasonic range measurements

    NARCIS (Netherlands)

    Barshan, B; Baskent, D

    Two novel methods for surface profile extraction based on multiple ultrasonic range measurements are described and compared. One of the methods employs morphological processing techniques, whereas the other employs a spatial voting scheme followed by simple thresholding. Morphological processing

  17. Summations over equilaterally triangulated surfaces and the critical string measure

    International Nuclear Information System (INIS)

    Smit, D.J.; Lawrence Berkeley Lab., CA

    1992-01-01

    We propose a new approach to the summation over dynamically triangulated Riemann surfaces which does not rely on properties of the potential in a matrix model. Instead, we formulate a purely algebraic discretization of critical string path integral. This is combined with a technique which assigns to each equilateral triangulation of a two-dimensional surface a Riemann surface defined over a certain finite extension of the field of rational numbers, i.e. an arithmetic surface. Thus we establish a new formulated in which the sum over randomly triangulated surfaces defines an invariant measure on the moduli space of arithmetic surfaces. It is shown that because of this it is far from obvious that this measure for large genera approximates the measure defined by the continuum theory, i.e. Liouville theory or critical string theory. In low genus this subtlety does not exist. In the case of critical string theory we explicitly compute the volume of the moduli space of arithmetic surfaces in terms of the modular height function and show that for low genus it approximates correctly the continuum measure. We also discuss a continuum limit which bears some resemblance with a double scaling limit in matrix models. (orig.)

  18. Measurement for Surface Tension of Aqueous Inorganic Salt

    Directory of Open Access Journals (Sweden)

    Jiming Wen

    2018-03-01

    Full Text Available Bubble columns are effective means of filtration in filtered containment venting systems. Here, the surface tension has a significant influence on bubble size distribution and bubble deformation, which have a strong impact on the behavior of the bubble column. The influence of aqueous inorganic compounds on the surface tension depends on the electrolytic activity, Debye length, entropy of ion hydration, and surface deficiencies or excess. In this work, the surface tensions of same specific aqueous solutions have been measured by different methods including platinum plate method, platinum ring method, and maximum bubble pressure method. The measured surface tensions of both sodium hydroxide and sodium thiosulfate are less than that of water. As solution temperature ranges from 20 to 75°C, the surface tension of 0.5 mol/L sodium hydroxide solution decreases from 71 to 55 mN/m while that of 1 mol/L solution decreases from 60 to 45 mN/m. Similarly during the same temperature range, the surface tension of 0.5 mol/L sodium thiosulfate decreases from 70 to 38 mN/m, and that of 1 mol/L sodium thiosulfate is between 68 and 36 mN/m. The analysis for the influence mechanism of aqueous inorganic on surface tension is provided. In addition, experimental results show that the surface tension of solid aerosol suspension liquid has no obvious difference from that of distilled water.

  19. Method for Pre-Conditioning a Measured Surface Height Map for Model Validation

    Science.gov (United States)

    Sidick, Erkin

    2012-01-01

    This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to

  20. RZP 202 - a modular system for surface density measurement

    International Nuclear Information System (INIS)

    Severa, L.; Merinsky, J.

    The sensing element is an ionization chamber of the type that has maximum sensitivity to beta radiation of the used radionuclide ( 147 Pm, 85 Kr, 90 Sr- 90 Y) or to gamma radiation of radionuclide 241 Am. Collimation shields were developed for the said sources. Measurement of the ionization currents is made with an electrometer with a vibration capacitor. Invariable configuration is secured by a measuring arm. The modular units are of the CAMAC system design. The surface density meters measure deviations from the rated surface density. The scale for inputting surface density is linear. The configuration, functional continuity of the individual parts and the possibility of variant designs of surface density meters are described and the technical parameters of RZP 202 and its configuration and design are given

  1. Measurement of the specific surface area of loose copper deposit by electrochemical methods

    Directory of Open Access Journals (Sweden)

    E. A. Dolmatova

    2016-07-01

    Full Text Available In the work the surface area of the electrode with dispersed copper deposit obtained within 30 seconds was evaluated by techniques of chronopotentiometry (CPM and impedance spectroscopy. In method CPM the electrode surface available for measurement depends on the value of the polarizing current. At high currents during the transition time there is a change of surface relief that can not determine the full surface of loose deposit. The electrochemical impedance method is devoid of this shortcoming since the measurements are carried out in indifferent electrolyte in the absence of current. The area measured by the impedance is tens of times higher than the value obtained by chronopotentiometry. It is found that from a solution containing sulfuric acid the deposits form with a high specific surface area. Based on these data it was concluded that the method of impedance spectroscopy can be used to measure in situ the surface area of the dispersed copper deposits.

  2. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  3. Automatic centroid detection and surface measurement with a digital Shack–Hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Zhao, Liping; Li, Xiang; Fang, Zhongping

    2010-01-01

    With the breakthrough of manufacturing technologies, the measurement of surface profiles is becoming a big issue. A Shack–Hartmann wavefront sensor (SHWS) provides a promising technology for non-contact surface measurement with a number of advantages over interferometry. The SHWS splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. So the accuracy of the centroid measurement determines the accuracy of the SHWS. In this paper, we have presented a new centroid measurement algorithm based on an adaptive thresholding and dynamic windowing method by utilizing image-processing techniques. Based on this centroid detection method, we have developed a digital SHWS system which can automatically detect centroids of focal spots, reconstruct the wavefront and measure the 3D profile of the surface. The system has been tested with various simulated and real surfaces such as flat surfaces, spherical and aspherical surfaces as well as deformable surfaces. The experimental results demonstrate that the system has good accuracy, repeatability and immunity to optical misalignment. The system is also suitable for on-line applications of surface measurement

  4. Outdoor surface temperature measurement: ground truth or lie?

    Science.gov (United States)

    Skauli, Torbjorn

    2004-08-01

    Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.

  5. Optical microscope for three-dimensional surface displacement and shape measurements at the microscale.

    Science.gov (United States)

    Xia, Shuman; Pan, Zhipeng; Zhang, Jingwen

    2014-07-15

    We report a novel optical microscope for full-field, noncontact measurements of three-dimensional (3D) surface deformation and topography at the microscale. The microscope system is based on a seamless integration of the diffraction-assisted image correlation (DAIC) method with fluorescent microscopy. We experimentally demonstrate the microscope's capability for 3D measurements with submicrometer spatial resolution and subpixel measurement accuracy.

  6. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  7. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data presented in this data file is a product of a journal publication. The dataset contains measured and model predicted OPFRs gas-phase and surface-phase...

  8. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  9. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  10. Surface Moisture Measurement System Operation and Maintenance Manual

    International Nuclear Information System (INIS)

    Ritter, G.A.; Pearce, K.L.; Stokes, T.L.

    1995-12-01

    This operations and maintenance manual addresses deployment, equipment and field hazards, operating instructions, calibration verification, removal, maintenance, and other pertinent information necessary to safely operate and store the Surface Moisture Measurement System (SMMS) and Liquid Observation Well Moisture Measurement System (LOWMMS). These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  11. Inverse analysis of inner surface temperature history from outer surface temperature measurement of a pipe

    International Nuclear Information System (INIS)

    Kubo, S; Ioka, S; Onchi, S; Matsumoto, Y

    2010-01-01

    When slug flow runs through a pipe, nonuniform and time-varying thermal stresses develop and there is a possibility that thermal fatigue occurs. Therefore it is necessary to know the temperature distributions and the stress distributions in the pipe for the integrity assessment of the pipe. It is, however, difficult to measure the inner surface temperature directly. Therefore establishment of the estimation method of the temperature history on inner surface of pipe is needed. As a basic study on the estimation method of the temperature history on the inner surface of a pipe with slug flow, this paper presents an estimation method of the temperature on the inner surface of a plate from the temperature on the outer surface. The relationship between the temperature history on the outer surface and the inner surface is obtained analytically. Using the results of the mathematical analysis, the inverse analysis method of the inner surface temperature history estimation from the outer surface temperature history is proposed. It is found that the inner surface temperature history can be estimated from the outer surface temperature history by applying the inverse analysis method, even when it is expressed by the multiple frequency components.

  12. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    surfaces in use have changed - for instance to road surface types with less noise from wheel passages. Because of this, a co-operation between the road administrations of the Nordic countries (abbreviated NMF) decided to construct a portable instrument to be used on selections of traffic roads within......Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  13. Direct measurement of sub-Debye-length attraction between oppositely charged surfaces.

    Science.gov (United States)

    Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S A; Klein, Jacob

    2009-09-11

    Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities sigma(+), sigma(-)) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length lambda(S). At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at Dbased on solving the Poisson-Boltzmann theory, when due account is taken of the independently-determined surface charge asymmetry (sigma(+) not equal to |sigma(-)|).

  14. Accuracy and reliability of three-dimensional surface reconstruction measurement

    International Nuclear Information System (INIS)

    Mizukami, Chikashi; Yamamoto, Etsuo; Ohmura, Masaki; Oiki, Hiroyuki; Tsuji, Jun; Muneta, Yuki; Tanabe, Makito; Hakuba, Nobuhiro; Azemoto, Syougo.

    1993-01-01

    We are using a new three-dimensional (3-D) surface reconstruction system to measure the temporal bones. This system offers the advantage of observation of the external aperture of the vestibular aqueduct and the porus acusticus internus in living subjects. However, its accuracy has not been confirmed. To investigate the accuracy of this new system, we measured the length of an in situ ceramic ossicular replacement prosthesis (CORP) of known length of 6.0 mm using 3-D surface reconstruction, conventional plain X-ray and polytomography. The CORP was scanned in the axial, sagittal and oblique directions. The mean measured length obtained with the 3-D surface reconstruction images was 5.94±0.21 on vertical scans, 5.91±0.27 on horizontal scans, and 6.01±0.25 on oblique scans. There were no significant differences among the measured lengths obtained in the three directions. Therefore, this 3-D surface reconstruction measurement system is considered to be reliable. Conversely, the mean measured length obtained by plain X-ray was 7.98±0.20, and by polytomography it was 7.94±0.23. These conventional methods have the inherent disadvantage of magnification of size which consequently requires correction. (author)

  15. Field measurement of albedo for limited extent test surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David J. [Portland State University, Department of Mechanical and Materials Engineering, P.O. Box 751-ME, Portland, OR 97207 (United States); Resh, Kyle; Segura, Del [Tulane University, Department of Mechanical Engineering, 400 Lindy Boggs Center, New Orleans, LA 70118 (United States)

    2006-05-15

    A new method is introduced for field measurement of surface albedo. This method consists of the use of a cylindrical shade ring made of opaque fabric with a known (low) albedo placed over a test surface. The albedo measurement is accomplished using two small pyranometers situated so that the downward-facing pyranometer receives radiation only from the test surface and the shade ring. The upward-facing pyranometer simultaneously records the incoming solar radiation. The radiation received by the downward-facing pyramometer is a combination of reflected radiation from shaded and unshaded portions of these two surfaces, requiring detailed accounting of the resulting view factor geometries. The method presented here improves upon past approaches by allowing for smaller sample sizes, minimizing errors associated with reflective properties of the surroundings, and allowing for accurate measurements even under partially cloudy skies. In addition to these methodological improvements we introduce an approach for estimating the uncertainty in the resulting albedo measurements. Results from field measurements are presented to validate the measurement protocol, and to compare its accuracy with the accuracy of a published standard. (author)

  16. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  17. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    International Nuclear Information System (INIS)

    Bietti, Sergio; Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano; Fedorov, Alexey

    2014-01-01

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E A =1.31±0.15 eV, a diffusivity prefactor of D 0  = 0.53(×2.1±1) cm 2 s −1 that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  18. Direct measurement of Cu surface self-diffusion on a checked surface

    International Nuclear Information System (INIS)

    Cousty, Jacques; Peix, Roger; Perraillon, Bernard.

    1976-01-01

    A radiotracer technique ( 64 Cu) was developed to measure surface diffusion on copper surfaces of total impurity concentration not exceeding some 10 -3 monolayers. The apparatus used consists of a slow electron diffraction device, an Auger analysis spectrometer (CMA), an ion gun and an evaporation device assembled in an ultra-vacuum chamber holding a residual pressure below 10 -10 Torr. A sample handler enables the surface studied to be positioned in front of each of these instruments. During the diffusion treatment the chemical composition of the surface is checked intermittently, and afterwards the spread of the deposit is measured outside the ultravacuum chamber. Slices several microns thick are removed and dissolved separately in dishes containing HNO 3 . The activity is then measured with a flow counter [fr

  19. Measurement of surface recombination velocity on heavily doped indium phosphide

    International Nuclear Information System (INIS)

    Jenkins, P.; Ghalla-Goradia, M.; Faur, M.; Bailey, S.

    1990-01-01

    The controversy surrounding the published low values of surface recombination velocity (SRV) in n-InP, solidified in recent years when modeling of existing n/p InP solar cells revealed that the front surface SRV had to be higher than 1 x 10 6 cm/sec in order to justify the poor blue response that is characteristic of all n/p InP solar cells. In this paper, SRV on heavily doped (>10 18 cm -3 )n-type and p-type InP is measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of ∼10 5 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of >10 6 cm/sec

  20. Response mechanism for surface acoustic wave gas sensors based on surface-adsorption.

    Science.gov (United States)

    Liu, Jiansheng; Lu, Yanyan

    2014-04-16

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data.

  1. Fermi surface measurements in actinide metals and compounds

    International Nuclear Information System (INIS)

    Arko, A.J.; Schirber, J.E.

    1978-01-01

    The various techniques of measuring Fermi Surface parameters are briefly discussed in terms f application to actinide systems. Particular emphasis is given the dHvA effect. Some general results found in the dHvA studies of actinide compounds are given. The dHvA effect has been measured in α-U and is presented in detail. None of the observed frequencies corresponds to closed surfaces. Results are compared to the calculations of Freeman, Koelling and Watson-Yang where qualitative agreement is observed

  2. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  3. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  4. Measuring the Surface Temperature of the Cryosphere using Remote Sensing

    Science.gov (United States)

    Hall, Dorothy K.

    2012-01-01

    A general description of the remote sensing of cryosphere surface temperatures from satellites will be provided. This will give historical information on surface-temperature measurements from space. There will also be a detailed description of measuring the surface temperature of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data which will be the focus of the presentation. Enhanced melting of the Greenland Ice Sheet has been documented in recent literature along with surface-temperature increases measured using infrared satellite data since 1981. Using a recently-developed climate data record, trends in the clear-sky ice-surface temperature (IST) of the Greenland Ice Sheet have been studied using the MODIS IST product. Daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 are now freely available to download at 6.25-km spatial resolution on a polar stereographic grid. Maps showing the maximum extent of melt for the entire ice sheet and for the six major drainage basins have been developed from the MODIS IST dataset. Twelve-year trends of the duration of the melt season on the ice sheet vary in different drainage basins with some basins melting progressively earlier over the course of the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The consistency of this IST record, with temperature and melt records from other sources will be discussed.

  5. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  6. Diffuse Reflectance Spectroscopy for Surface Measurement of Liver Pathology.

    Science.gov (United States)

    Nilsson, Jan H; Reistad, Nina; Brange, Hannes; Öberg, Carl-Fredrik; Sturesson, Christian

    2017-01-01

    Liver parenchymal injuries such as steatosis, steatohepatitis, fibrosis, and sinusoidal obstruction syndrome can lead to increased morbidity and liver failure after liver resection. Diffuse reflectance spectroscopy (DRS) is an optical measuring method that is fast, convenient, and established. DRS has previously been used on the liver with an invasive technique consisting of a needle that is inserted into the parenchyma. We developed a DRS system with a hand-held probe that is applied to the liver surface. In this study, we investigated the impact of the liver capsule on DRS measurements and whether liver surface measurements are representative of the whole liver. We also wanted to confirm that we could discriminate between tumor and liver parenchyma by DRS. The instrumentation setup consisted of a light source, a fiber-optic contact probe, and two spectrometers connected to a computer. Patients scheduled for liver resection due to hepatic malignancy were included, and DRS measurements were performed on the excised liver part with and without the liver capsule and alongside a newly cut surface. To estimate the scattering parameters and tissue chromophore volume fractions, including blood, bile, and fat, the measured diffuse reflectance spectra were applied to an analytical model. In total, 960 DRS spectra from the excised liver tissue of 18 patients were analyzed. All factors analyzed regarding tumor versus liver tissue were significantly different. When measuring through the capsule, the blood volume fraction was found to be 8.4 ± 3.5%, the lipid volume fraction was 9.9 ± 4.7%, and the bile volume fraction was 8.2 ± 4.6%. No differences could be found between surface measurements and cross-sectional measurements. In measurements with/without the liver capsule, the differences in volume fraction were 1.63% (0.75-2.77), -0.54% (-2.97 to 0.32), and -0.15% (-1.06 to 1.24) for blood, lipid, and bile, respectively. This study shows that it is possible to manage DRS

  7. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms, there is a n......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  8. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  9. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  10. Freeform surface measurement and characterisation using a toolmakers microscope

    International Nuclear Information System (INIS)

    Wong, Francis Seung-yin; Chauh, Kong-Bieng; Venuvinod, Patri K

    2014-01-01

    Current freeform surface (FFS) characterization systems mainly cover aspects related to computer-aided design/manufacture (CAD/CAM). This paper describes a new approach that extends into computer-aided inspection (CAI).The following novel features are addressed: - ◼ Feature recognition and extraction from surface data; - ◼ Characterisation of properties of the surface's M and N vectors at individual vertex; - ◼ Development of a measuring plan using a toolmakers microscope for the inspection of the FFS; - ◼ Inspection of the actual FFS produced by CNC milling; - ◼ Verification of the measurement results and comparison with the CAD design data; Tests have shown that the deviations between the CAI and CAD data were within the estimated uncertainty limits

  11. Surface moisture measurement system acceptance testing work plan

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1996-01-01

    This work plan addresses testing of the Surface Moisture Measurement System (SMMS) at the Fuels and Materials Examination Facility (FMEF). The purpose of this plan is to define the scope of work, identify organizational responsibilities, describe test control requirements, and provide estimated costs and schedule associated with acceptance testing

  12. Silicon surface barrier detectors used for liquid hydrogen density measurement

    Science.gov (United States)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  13. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  14. Novel spirometry based on optical surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org; Huang, Hailiang; Li, Diana G.; Chen, Qing; Gaebler, Carl P.; Mechalakos, James [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York 10031 (United States); Sullivan, James [Pulmonary Laboratories, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Zatcky, Joan; Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States)

    2015-04-15

    Purpose: To evaluate the feasibility of using optical surface imaging (OSI) to measure the dynamic tidal volume (TV) of the human torso during free breathing. Methods: We performed experiments to measure volume or volume change in geometric and deformable phantoms as well as human subjects using OSI. To assess the accuracy of OSI in volume determination, we performed experiments using five geometric phantoms and two deformable body phantoms and compared the values with those derived from geometric calculations and computed tomography (CT) measurements, respectively. To apply this technique to human subjects, an institutional review board protocol was established and three healthy volunteers were studied. In the human experiment, a high-speed image capture mode of OSI was applied to acquire torso images at 4–5 frames per second, which was synchronized with conventional spirometric measurements at 5 Hz. An in-house MATLAB program was developed to interactively define the volume of interest (VOI), separate the thorax and abdomen, and automatically calculate the thoracic and abdominal volumes within the VOIs. The torso volume change (TV C = ΔV{sub torso} = ΔV{sub thorax} + ΔV{sub abdomen}) was automatically calculated using full-exhalation phase as the reference. The volumetric breathing pattern (BP{sub v} = ΔV{sub thorax}/ΔV{sub torso}) quantifying thoracic and abdominal volume variations was also calculated. Under quiet breathing, TVC should equal the tidal volume measured concurrently by a spirometer with a conversion factor (1.08) accounting for internal and external differences of temperature and moisture. Another MATLAB program was implemented to control the conventional spirometer that was used as the standard. Results: The volumes measured from the OSI imaging of geometric phantoms agreed with the calculated volumes with a discrepancy of 0.0% ± 1.6% (range −1.9% to 2.5%). In measurements from the deformable torso/thorax phantoms, the volume

  15. Novel spirometry based on optical surface imaging

    International Nuclear Information System (INIS)

    Li, Guang; Huang, Hailiang; Li, Diana G.; Chen, Qing; Gaebler, Carl P.; Mechalakos, James; Wei, Jie; Sullivan, James; Zatcky, Joan; Rimner, Andreas

    2015-01-01

    Purpose: To evaluate the feasibility of using optical surface imaging (OSI) to measure the dynamic tidal volume (TV) of the human torso during free breathing. Methods: We performed experiments to measure volume or volume change in geometric and deformable phantoms as well as human subjects using OSI. To assess the accuracy of OSI in volume determination, we performed experiments using five geometric phantoms and two deformable body phantoms and compared the values with those derived from geometric calculations and computed tomography (CT) measurements, respectively. To apply this technique to human subjects, an institutional review board protocol was established and three healthy volunteers were studied. In the human experiment, a high-speed image capture mode of OSI was applied to acquire torso images at 4–5 frames per second, which was synchronized with conventional spirometric measurements at 5 Hz. An in-house MATLAB program was developed to interactively define the volume of interest (VOI), separate the thorax and abdomen, and automatically calculate the thoracic and abdominal volumes within the VOIs. The torso volume change (TV C = ΔV torso = ΔV thorax + ΔV abdomen ) was automatically calculated using full-exhalation phase as the reference. The volumetric breathing pattern (BP v = ΔV thorax /ΔV torso ) quantifying thoracic and abdominal volume variations was also calculated. Under quiet breathing, TVC should equal the tidal volume measured concurrently by a spirometer with a conversion factor (1.08) accounting for internal and external differences of temperature and moisture. Another MATLAB program was implemented to control the conventional spirometer that was used as the standard. Results: The volumes measured from the OSI imaging of geometric phantoms agreed with the calculated volumes with a discrepancy of 0.0% ± 1.6% (range −1.9% to 2.5%). In measurements from the deformable torso/thorax phantoms, the volume differences measured using OSI

  16. Development of measurement standards for verifying functional performance of surface texture measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, A [Life and Industrial Product Development Department Olympus Corporation, 2951 Ishikawa-machi, Hachiouji-shi, Tokyo (Japan); Suzuki, H [Industrial Marketing and Planning Department Olympus Corporation, Shinjyuku Monolith, 3-1 Nishi-Shinjyuku 2-chome, Tokyo (Japan); Yanagi, K, E-mail: a_fujii@ot.olympus.co.jp [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka-shi, Niigata (Japan)

    2011-08-19

    A new measurement standard is proposed for verifying overall functional performance of surface texture measuring instruments. Its surface is composed of sinusoidal surface waveforms of chirp signals along horizontal cross sections of the material measure. One of the notable features is that the amplitude of each cycle in the chirp signal form is geometrically modulated so that the maximum slope is kept constant. The maximum slope of the chirp-like signal is gradually decreased according to movement in the lateral direction. We fabricated the measurement standard by FIB processing, and it was calibrated by AFM. We tried to evaluate the functional performance of Laser Scanning Microscope by this standard in terms of amplitude response with varying slope angles. As a result, it was concluded that the proposed standard can easily evaluate the performance of surface texture measuring instruments.

  17. Surface Flux Measurements at King Sejong Station in West Antarctica

    Science.gov (United States)

    Choi, T.; Lee, B.; Lee, H.; Shim, J.

    2004-12-01

    The Antarctic Peninsula is important in terms of global warming research due to pronounced increase of air temperature over the last century. The first eddy covariance system was established and turbulent fluxes of heat, water vapor, CO2 and momentum have been measured at King Sejong Station (62 \\deg 13øØS, 58 \\deg 47øØW) located in the northern edge of the Antarctic Peninsula since December in 2002. Our objectives are to better understand the interactions between the Antarctic land surface and the atmosphere and to test the feasibility of the long-term operation of eddy covariance system under extreme weather conditions. Various lichens cover the study area and the dominant species is Usnea fasciata-Himantormia. Based on the analyses on turbulent statistics such as integral turbulence characteristics of vertical velocity (w) and heat (T), stationarity test and investigation of correlation coefficient, they follow the Monin-Obukhov similarity and eddy covariance flux data were reliable. About 50 % of total retrieved sensible heat flux data could be used for further analysis. We will report on seasonal variations of energy and mass fluxes and environmental variables. In addition, factors controlling these fluxes will be presented. Acknowledgement: This study was supported by ¡rEnvironmental Monitoring on Human Impacts at the King Sejong Station, Antarctica¡_ (Project PP04102 of Korea Polar Research Institute) and ¡rEco-technopia 21 project¡_ (Ministry of Environment of Korea).

  18. Seafloor geodesy: Measuring surface deformation and strain-build up

    Science.gov (United States)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian

    2017-04-01

    Seafloor deformation is intrinsically related to tectonic processes, which potentially may evolve into geohazards, including earthquakes and tsunamis. The nascent scientific field of seafloor geodesy provides a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The measurements extract information on stress and elastic strain stored in the oceanic crust. Horizontal seafloor displacement can be obtained by acoustic/GPS combination to provide absolute positioning or by long-term acoustic telemetry between different beacons fixed on the seafloor. The GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array uses acoustic telemetry for relative positioning at mm-scale resolution. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. The seafloor acoustic transponders are mounted on 4 m high tripod steel frames to ensure clear line-of-sight between the stations. The transponders also include high-precision pressure sensors to monitor vertical movements and dual-axis inclinometers in order to measure their level as well as any tilt of the seafloor. Sound velocity sensor measurements are used to correct for water sound speed variations. A further component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is able to upload the seafloor data to the sea surface and to transfer it via satellite. The GeoSEA array is capable of both continuously monitoring horizontal and vertical ground displacement rates along submarine fault zones and characterizing their behavior (locked or aseismically creeping). Seafloor transponders are currently installed along the Siliviri segment of the North Anatolian Fault offshore Istanbul for measurements of strain build-up along the fault. The first 18 month of baseline ranging were analyzed by a joint-least square inversion

  19. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  20. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  1. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  2. Field Measurement of Surface Ship Magnetic Signature Using Multiple AUVs

    Science.gov (United States)

    2009-10-01

    been equipped with a tri-axial fluxgate magnetometer and used to perform preliminary magnetic field measurements. Measurements of this type will be...mounted on the AUVs, shown in Fig. 1, was a three-axis fluxgate type [16] magnetometer with a range of ±100,000 nT and a sensitivity of 100μV/nT. The...surface ship. The system will employ a formation of multiple AUVs, each equipped with a magnetometer . The objective is to measure total magnetic

  3. Measurement of annual dose on porcelain using surface TLD method

    International Nuclear Information System (INIS)

    Xia Junding; Wang Weida; Leung, P.L.

    2001-01-01

    In order to improve accuracy of TL authentication test for porcelain, a method of measurement of annual dose using ultrathin (CaSO 4 :Tm) dosage layer on porcelain was studied. The TLD was placed on the part of porcelain without glaze. A comparison of measurement of annual dose for surface TLD, inside TLD and alpha counting on porcelain was made. The results show that this technique is suitable for measuring annual dose and improving accuracy of TL authentication test for both porcelain and pottery

  4. In vivo measurement of vocal fold surface resistance.

    Science.gov (United States)

    Mizuta, Masanobu; Kurita, Takashi; Dillon, Neal P; Kimball, Emily E; Garrett, C Gaelyn; Sivasankar, M Preeti; Webster, Robert J; Rousseau, Bernard

    2017-10-01

    A custom-designed probe was developed to measure vocal fold surface resistance in vivo. The purpose of this study was to demonstrate proof of concept of using vocal fold surface resistance as a proxy of functional tissue integrity after acute phonotrauma using an animal model. Prospective animal study. New Zealand White breeder rabbits received 120 minutes of airflow without vocal fold approximation (control) or 120 minutes of raised intensity phonation (experimental). The probe was inserted via laryngoscope and placed on the left vocal fold under endoscopic visualization. Vocal fold surface resistance of the middle one-third of the vocal fold was measured after 0 (baseline), 60, and 120 minutes of phonation. After the phonation procedure, the larynx was harvested and prepared for transmission electron microscopy. In the control group, vocal fold surface resistance values remained stable across time points. In the experimental group, surface resistance (X% ± Y% relative to baseline) was significantly decreased after 120 minutes of raised intensity phonation. This was associated with structural changes using transmission electron microscopy, which revealed damage to the vocal fold epithelium after phonotrauma, including disruption of the epithelium and basement membrane, dilated paracellular spaces, and alterations to epithelial microprojections. In contrast, control vocal fold specimens showed well-preserved stratified squamous epithelia. These data demonstrate the feasibility of measuring vocal fold surface resistance in vivo as a means of evaluating functional vocal fold epithelial barrier integrity. Device prototypes are in development for additional testing, validation, and for clinical applications in laryngology. NA Laryngoscope, 127:E364-E370, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Aggregate surface areas quantified through laser measurements for South African asphalt mixtures

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-02-01

    Full Text Available design. This paper introduces the use of a three-dimensional (3D) laser scanning method to directly measure the surface area of aggregates used in road pavements in South Africa. As an application of the laser-based measurements, the asphalt film...

  6. Comparative investigation of optical techniques for topography measurement of rough plastic surfaces

    DEFF Research Database (Denmark)

    Bariani, Paolo; Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2003-01-01

    An experimental assessment of three-dimensional surface topography characterisation methods for use with rough plastic parts has been carried out. Also, calibration methods and measuring procedures including optimal measuring conditions have been developed and applied. The study is based on rough...

  7. Surface characterization of graphene based materials

    Science.gov (United States)

    Pisarek, M.; Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A.; Malolepszy, A.; Stobinski, L.; Jablonski, A.

    2016-12-01

    In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5-2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  8. DNA conformation on surfaces measured by fluorescence self-interference.

    Science.gov (United States)

    Moiseev, Lev; Unlü, M Selim; Swan, Anna K; Goldberg, Bennett B; Cantor, Charles R

    2006-02-21

    The conformation of DNA molecules tethered to the surface of a microarray may significantly affect the efficiency of hybridization. Although a number of methods have been applied to determine the structure of the DNA layer, they are not very sensitive to variations in the shape of DNA molecules. Here we describe the application of an interferometric technique called spectral self-interference fluorescence microscopy to the precise measurement of the average location of a fluorescent label in a DNA layer relative to the surface and thus determine specific information on the conformation of the surface-bound DNA molecules. Using spectral self-interference fluorescence microscopy, we have estimated the shape of coiled single-stranded DNA, the average tilt of double-stranded DNA of different lengths, and the amount of hybridization. The data provide important proofs of concept for the capabilities of novel optical surface analytical methods of the molecular disposition of DNA on surfaces. The determination of DNA conformations on surfaces and hybridization behavior provide information required to move DNA interfacial applications forward and thus impact emerging clinical and biotechnological fields.

  9. Virtual environment assessment for laser-based vision surface profiling

    Science.gov (United States)

    ElSoussi, Adnane; Al Alami, Abed ElRahman; Abu-Nabah, Bassam A.

    2015-03-01

    Oil and gas businesses have been raising the demand from original equipment manufacturers (OEMs) to implement a reliable metrology method in assessing surface profiles of welds before and after grinding. This certainly mandates the deviation from the commonly used surface measurement gauges, which are not only operator dependent, but also limited to discrete measurements along the weld. Due to its potential accuracy and speed, the use of laser-based vision surface profiling systems have been progressively rising as part of manufacturing quality control. This effort presents a virtual environment that lends itself for developing and evaluating existing laser vision sensor (LVS) calibration and measurement techniques. A combination of two known calibration techniques is implemented to deliver a calibrated LVS system. System calibration is implemented virtually and experimentally to scan simulated and 3D printed features of known profiles, respectively. Scanned data is inverted and compared with the input profiles to validate the virtual environment capability for LVS surface profiling and preliminary assess the measurement technique for weld profiling applications. Moreover, this effort brings 3D scanning capability a step closer towards robust quality control applications in a manufacturing environment.

  10. A new surface resistance measurement method with ultrahigh sensitivity

    International Nuclear Information System (INIS)

    Liang, Changnian.

    1993-01-01

    A superconducting niobium triaxial cavity has been designed and fabricated to study residual surface resistance of planar superconducting materials. The edge of a 25.4 mm or larger diameter sample in the triaxial cavity is located outside the strong field region. Therefore, the edge effects and possible losses between the thin film and the substrate have been minimized, ensuring that induced RF losses are intrinsic to the test material. The fundamental resonant frequency of the cavity is the same as the working frequency of CEBAF cavities. The cavity has a compact size compared to its TE 011 counterpart, which makes it more sensitive to the sample's loss. For even higher sensitivity, a calorimetry method has been used to measure the RF losses on the superconducting sample. At 2 K, a 2 μK temperature change can be resolved by using carbon resistor sensors. The temperature distribution caused by RF heating is measured by 16 carbon composition resistor sensors. A 0.05 μW heating power can be detected as such a resolution, which translates to a surface resistance of 0.02 nΩ at a surface magnetic field of 52 Oe. This is the most sensitive device for surface resistance measurements to date. In addition, losses due to the indium seal, coupling probes, field emission sites other than the sample, and all of the high field resonator surface, are excluded in the measurement. Surface resistance of both niobium and high-Tc superconducting thin films has been measured. A low R s of 35.2 μΩ was measured for a 25.4 mm diameter YBa 2 Cu 3 O 7 thin film at 1.5 GHz and at 2 K. The measurement result is the first result for a large area epitaxially grown thin film sample at such a low RF frequency. The abrupt disappearance of multipacting between two parallel plates has been observed and monitored with the 16 temperature mapping sensors. Field emission or some field dependent anomalous RF losses on the niobium plate have also been observed

  11. Measurements of the near-surface flow over a hill

    Science.gov (United States)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  12. Simultaneous measurements of top surface and its underlying film surfaces in multilayer film structure.

    Science.gov (United States)

    Ghim, Young-Sik; Rhee, Hyug-Gyo; Davies, Angela

    2017-09-19

    With the growth of 3D packaging technology and the development of flexible, transparent electrodes, the use of multilayer thin-films is steadily increasing throughout high-tech industries including semiconductor, flat panel display, and solar photovoltaic industries. Also, this in turn leads to an increase in industrial demands for inspection of internal analysis. However, there still remain many technical limitations to overcome for measurement of the internal structure of the specimen without damage. In this paper, we propose an innovative optical inspection technique for simultaneous measurements of the surface and film thickness corresponding to each layer of multilayer film structures by computing the phase and reflectance over a wide range of wavelengths. For verification of our proposed method, the sample specimen of multilayer films was fabricated via photolithography process, and the surface profile and film thickness of each layer were measured by two different techniques of a stylus profilometer and an ellipsometer, respectively. Comparison results shows that our proposed technique enables simultaneous measurements of the top surface and its underlying film surfaces with high precision, which could not be measured by conventional non-destructive methods.

  13. Airborne spectral measurements of surface anisotropy during SCAR-B

    Science.gov (United States)

    Tsay, Si-Chee; King, Michael D.; Arnold, G. Thomas; Li, Jason Y.

    1998-12-01

    During the Smoke, Clouds, and Radiation-Brazil (SCAR-B) deployment, angular distributions of spectral reflectance for vegetated surfaces and smoke layers were measured using the scanning cloud absorption radiometer (CAR) mounted on the University of Washington C-131A research aircraft. The CAR contains 13 narrowband spectral channels between 0.3 and 2.3 μm with a 190° scan aperture (5° before zenith to 5° past nadir) and 1° instantaneous field of view. The bidirectional reflectance is obtained by flying a clockwise circular orbit above the surface, resulting in a ground track ˜3 km in diameter within about 2 min. Although the CAR measurements are contaminated by minor atmospheric effects, results show distinct spectral characteristics for various types of surfaces. Spectral bidirectional reflectances of three simple and well-defined surfaces are presented: cerrado (August 18, 1995) and dense forest (August 25, 1995), both measured in Brazil under nearly clear-sky conditions, and thick smoke layers over dense forest (September 6 and 11, 1995). The bidirectional reflectances of cerrado and dense forest revealed fairly symmetric patterns along the principal plane, with varying maximal strengths and widths spectrally in the backscattering direction. In the shortwave-infrared region the aerosol effect is very small due to low spectral optical depth. Also, these backscattering maxima can be seen on the bidirectional reflectance of smoke layer over dense forest. These detailed measurements of the angular distribution of spectral reflectance can be parameterized by a few independent variables and utilized to retrieve either surface characteristics or aerosol microphysical and optical properties (e.g., size distribution and single-scattering parameters), if proper physical and radiation models are used. The spectral-hemispherical albedo of these surfaces is obtained directly by integrating all angular measurements and is compared with the measured nadir reflectance

  14. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  15. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  16. Modeling apple surface temperature dynamics based on weather data.

    Science.gov (United States)

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-10-27

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  17. Magnetic flux surface measurements at the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Matthias; Andreeva, Tamara; Biedermann, Christoph; Bozhenkov, Sergey; Geiger, Joachim; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Lazerson, Samuel [Princeton Plasma Physics Laboratory, Princeton (United States)

    2016-07-01

    Recently the first plasma operation phase of the Wendelstein 7-X stellarator has been started at IPP Greifswald. Wendelstein 7-X is an optimized stellarator with a complex superconducting magnet system consisting of 50 non-planar and 20 planar field coils and further 10 normal conducting control and 5 trim coils. The magnetic confinement and hence the expected plasma performance are decisively determined by the properties of the magnet system, especially by the existence and quality of the magnetic flux surfaces. Even small error fields may result in significant changes of the flux surface topology. Therefore, measurements of the vacuum magnetic flux surfaces have been performed before plasma operation. The first experimental results confirm the existence and quality of the flux surfaces to the full extend from low field up to the nominal field strength of B=2.5T. This includes the dedicated magnetic limiter configuration that is exclusively used for the first plasma operation. Furthermore, the measurements are indicating that the intrinsic error fields are within the tolerable range and can be controlled utilizing the trim coils as expected.

  18. Surface albedo measurements in Mexico City metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Castro, T; Mar, B; Longoria, R; Ruiz Suarez, L. G [Centro de Ciencias de la Atmosfera, UNAM, Mexico, D.F. (Mexico); Morales, L [Instituto de Geografia, UNAM, Mexico, D.F. (Mexico)

    2001-04-01

    Optical and thermal properties of soils are important input data for the meteorological and photochemical modules of air quality models. As development of these models increase on spatial resolution good albedo data become more important. In this paper measurements of surface albedo of UV (295-385 nm) and visible (450-550 nm) radiation are reported for different urban and rural surfaces in the vicinity of Mexico City. It was found for the downtown zone and average albedo value of 0.05 which is in very good agreement with reported values for urban surfaces. Our albedo values measured in UV region for grey cement and green grass are of 0.10 and 0.009, respectively, and quite similar to those found at the literature of 0.11 and 0.008 for those type of surfaces. [Spanish] Las propiedades opticas y termicas de suelos son datos importantes para los modulos meteorologicos y fotoquimicos de los modelos de calidad del aire. Conforme aumenta la resolucion espacial del modelo se vuelve mas importante contar con buenos datos de albedo. En este articulo se presentan mediciones de albedo superficial de radiacion Ultravioleta (295-385 nm) y visible (450-550 nm) para diferentes superficies urbanas. Los valores medidos de albedo en la region UV para cemento gris y pasto verde son de 0.10 y 0.009, respectivamente, y son muy similares a los reportados en la literatura, 0.11 y 0.008 para este tipo de superficies.

  19. Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Morgenstjerne, Axel; Rathmann, Ole

    1996-01-01

    Surface temperatures are estimated with high precision based on a multitemperature method for Fourier-transform spectrometers. The method is based on Planck's radiation law and a nonlinear least-squares fitting algorithm applied to two or more spectra at different sample temperatures and a single...... of blackbody sources are estimated with an uncertainty of 0.2-2 K. The method is demonstrated for measuring the spectral emissivity of a brass specimen and an oxidized nickel specimen. (C) 1996 Optical Society of America...... measurement at a known sample temperature, for example, at ambient temperature. The temperature of the sample surface can be measured rather easily at ambient temperature. The spectrum at ambient temperature is used to eliminate background effects from spectra as measured at other surface temperatures...

  20. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  1. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  2. Surface Coverage in Wireless Sensor Networks Based on Delaunay Tetrahedralization

    International Nuclear Information System (INIS)

    Ribeiro, M G; Neves, L A; Zafalon, G F D; Valêncio, C; Pinto, A R; Nascimento, M Z

    2015-01-01

    In this work is presented a new method for sensor deployment on 3D surfaces. The method was structured on different steps. The first one aimed discretizes the relief of interest with Delaunay algorithm. The tetrahedra and relative values (spatial coordinates of each vertex and faces) were input to construction of 3D Voronoi diagram. Each circumcenter was calculated as a candidate position for a sensor node: the corresponding circular coverage area was calculated based on a radius r. The r value can be adjusted to simulate different kinds of sensors. The Dijkstra algorithm and a selection method were applied to eliminate candidate positions with overlapped coverage areas or beyond of surface of interest. Performance evaluations measures were defined using coverage area and communication as criteria. The results were relevant, once the mean coverage rate achieved on three different surfaces were among 91% and 100%

  3. Surface moisture measurement system hardware acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-05-28

    This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

  4. System design description for surface moisture measurement system (SMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.F.

    1996-09-23

    The SMMS has been developed to measure moisture in the top few centimeters of tank waste. The SMMS development was initiated by the preliminary findings of SAR-033, and does not necessarily fulfill any established DQO. After the SAR-033 is released, if no significant changes are made, moisture measurements in the organic waste tanks will rapidly become a DQO. The SMMS was designed to be installed in any 4 inch or larger riser, and to allow maximum adjustability for riser lengths, and is used to deploy a sensor package on the waste surface within a 6 foot radius about the azimuth. The first sensor package will be a neutron probe.

  5. Surface moisture measurement system hardware acceptance test procedure

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1996-01-01

    The purpose of this acceptance test procedure is to verify that the mechanical and electrical features of the Surface Moisture Measurement System are operating as designed and that the unit is ready for field service. This procedure will be used in conjunction with a software acceptance test procedure, which addresses testing of software and electrical features not addressed in this document. Hardware testing will be performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  6. Reliability of surface EMG measurements from the suprahyoid muscle complex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Stubbs, Peter William; Pedersen, Asger Roer

    2017-01-01

    of using the suprahyoid muscle complex (SMC) using surface electromyography (sEMG) to assess changes to neural pathways by determining the reliability of measurements in healthy participants over days. Methods: Seventeen healthy participants were recruited. Measurements were performed twice with one week...... on stimulus type/intensity) had significantly different MEP values between day 1 and day 2 for single pulse and paired pulse TMS. A large stimulus artefact resulted in MEP responses that could not be assessed in four participants. Conclusions: The assessment of the SMC using sEMG following TMS was poorly...... reliable for ≈50% of participants. Although using sEMG to assess swallowing musculature function is easier to perform clinically and more comfortable to patients than invasive measures, as the measurement of muscle activity using TMS is unreliable, the use of sEMG for this muscle group is not recommended...

  7. Photometric imaging in particle size measurement and surface visualization.

    Science.gov (United States)

    Sandler, Niklas

    2011-09-30

    The aim of this paper is to give an insight into photometric particle sizing approaches, which differ from the typical particle size measurement of dispersed particles. These approaches can often be advantageous especially for samples that are moist or cohesive, when dispersion of particles is difficult or sometimes impossible. The main focus of this paper is in the use of photometric stereo imaging. The technique allows the reconstruction of three-dimensional images of objects using multiple light sources in illumination. The use of photometric techniques is demonstrated in at-line measurement of granules and on-line measurement during granulation and dry milling. Also, surface visualization and roughness measurements are briefly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Surface and Flow Field Measurements on the FAITH Hill Model

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  9. Interferometry with flexible point source array for measuring complex freeform surface and its design algorithm

    Science.gov (United States)

    Li, Jia; Shen, Hua; Zhu, Rihong; Gao, Jinming; Sun, Yue; Wang, Jinsong; Li, Bo

    2018-06-01

    The precision of the measurements of aspheric and freeform surfaces remains the primary factor restrict their manufacture and application. One effective means of measuring such surfaces involves using reference or probe beams with angle modulation, such as tilted-wave-interferometer (TWI). It is necessary to improve the measurement efficiency by obtaining the optimum point source array for different pieces before TWI measurements. For purpose of forming a point source array based on the gradients of different surfaces under test, we established a mathematical model describing the relationship between the point source array and the test surface. However, the optimal point sources are irregularly distributed. In order to achieve a flexible point source array according to the gradient of test surface, a novel interference setup using fiber array is proposed in which every point source can be independently controlled on and off. Simulations and the actual measurement examples of two different surfaces are given in this paper to verify the mathematical model. Finally, we performed an experiment of testing an off-axis ellipsoidal surface that proved the validity of the proposed interference system.

  10. Advanced construction management for lunar base construction - Surface operations planner

    Science.gov (United States)

    Kehoe, Robert P.

    1992-01-01

    The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.

  11. Modeled effects on permittivity measurements of water content in high surface area porous media

    International Nuclear Information System (INIS)

    Jones, S.B.; Or, Dani

    2003-01-01

    Time domain reflectometry (TDR) has become an important measurement technique for determination of porous media water content and electrical conductivity due to its accuracy, fast response and automation capability. Water content is inferred from the measured bulk dielectric constant based on travel time analysis along simple transmission lines. TDR measurements in low surface area porous media accurately describe water content using an empirical relationship. Measurement discrepancies arise from dominating influences such as bound water due to high surface area, extreme aspect ratio particles or atypical water phase configuration. Our objectives were to highlight primary factors affecting dielectric permittivity measurements for water content determination in porous mixtures, and demonstrate the influence of these factors on mixture permittivity as predicted by a three-phase dielectric mixture model. Modeled results considering water binding, higher porosity, constituent geometry or phase configuration suggest any of these effects individually are capable of causing permittivity reduction, though all likely contribute in high surface area porous media

  12. Actively stabilized optical fiber interferometry technique for online/in-process surface measurement

    International Nuclear Information System (INIS)

    Wang Kaiwei; Martin, Haydn; Jiang Xiangqian

    2008-01-01

    In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm

  13. Surface electronic transport measurements: A micro multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas

    2014-01-01

    This work is mostly focused on the study of electronic transport properties of two-dimensional materials, in particular graphene and topological insulators. To study these, we have improved a unique micro multi-point probe instrument used to perform transport measurements. Not only the experimental...... quantities are extracted, such as conductivity, carrier density and carrier mobility. • A method to insulate electrically epitaxial graphene grown on metals, based on a stepwise intercalation methodology, is developed and transport measurements are performed in order to test the insulation. • We show...... a direct measurement of the surface electronic transport on a bulk topological insulator. The surface state conductivity and mobility are obtained. Apart from transport properties, we also investigate the atomic structure of the Bi2Se3(111) surface via surface x-ray diraction and low-energy electron...

  14. Calibration of the geometrical characteristics of areal surface topography measuring instruments

    International Nuclear Information System (INIS)

    Giusca, C L; Leach, R K; Helery, F; Gutauskas, T

    2011-01-01

    The use of areal surface topography measuring instruments has increased significantly over the past ten years as industry starts to embrace the use of surface structuring to affect the function of a component. This has led to a range of areal surface topography measuring instruments being developed and becoming available commercially. For such instruments to be used as part of quality control during production, it is essential for them to be calibrated according to international standards. The ISO 25178 suite of specification standards on areal surface topography measurement presents a series of tests that can be used to calibrate the metrological characteristics of an areal surface topography measuring instrument. Calibration artefacts and test procedures have been developed that are compliant with ISO 25178. The material measures include crossed gratings, resolution artefacts and pseudorandom surfaces. Traceability is achieved through the NPL Areal Instrument - a primary stylus-based instrument that uses laser interferometers to measure the displacement of the stylus tip. Good practice guides on areal calibration have also been drafted for stylus instruments, coherence scanning interferometers, scanning confocal microscopes and focus variation instruments.

  15. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  16. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  17. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  18. Status of radiation-based measurement technology

    International Nuclear Information System (INIS)

    Moon, B. S.; Lee, J. W.; Chung, C. E.; Hong, S. B.; Kim, J. T.; Park, W. M.; Kim, J. Y.

    1999-03-01

    This report describes the status of measurement equipment using radiation source and new technologies in this field. This report includes the development status in Korea together with a brief description of the technology development and application status in ten countries including France, America, and Japan. Also this report describes technical factors related to radiation-based measurement and trends of new technologies. Measurement principles are also described for the equipment that is widely used among radiation-based measurement, such as level measurement, density measurement, basis weight measurement, moisture measurement, and thickness measurement. (author). 7 refs., 2 tabs., 21 figs

  19. Photoelectric work function measurement of a cesiated metal surface and its correlation with the surface-produced H- ion flux

    International Nuclear Information System (INIS)

    Wada, M.; Berkner, K.H.; Pyle, R.V.; Stearns, J.W.

    1982-09-01

    For application in plasma heating, fueling, and current drive of magnetic fusion devices, high current negative deuterium ion sources for intense neutral beam injectors are being developed using efficient production of negative hydrogen isotope ions on low work function metal surfaces imbedded in hydrogen plasmas. In order to investigate the correlation between work function and negative hydrogen ion production, photoelectron emission from a cesiated metal surface, which is immersed in a hydrogen plasma with an electron density less than 5 x 10 10 /cc, was measured in the photon energy range of 1.3 to 4.1 eV. The work function determination was based on Fowler's analysis, and at the optimum coverage a work function of less than 1.5 eV was observed for a Cs-Cu surface. Measured values of work functions for different Cs coverages were compared to the negative hydrogen currents produced at the metal surface in the discharge; the surface production of negative hydrogen ion current is monotonically increasing with decreasing work function

  20. Measurements of flux surfaces in the ATF torsatron

    International Nuclear Information System (INIS)

    England, A.C.; Colchin, R.J.; Harris, J.H.; Hillis, D.L.; Jernigan, T.C.; Anderson, F.S.B.

    1989-01-01

    Flux surfaces in the advanced toroidal facility (ATF) torsatron have been measured using electron-beam techniques. The beam was injected toroidally and impinged on a phosphor-coated screen located ∼ 180 degrees from the gun. The gun was mounted on a drive mechanism that enabled the beam to scan the entire cross section of the last closed flux surface in ATF. The screen material was st. steel, coated with ZnO:Zn (P-15 or P-24) phosphor, and the transparency was ∼ 90%. The emitted light was detected with an image-intensified CCD camera that viewed the mesh through a nearby port. The images were displayed directly on a TV monitor and stored on video tape. Frames from the video tape were transferred to a computer, where the image was enhanced and transformed to remove spatial distortions due to the lens and the viewing angle of the camera

  1. BOREAS RSS-20 POLDER C-130 Measurements of Surface BRDF

    Science.gov (United States)

    Leroy, Marc; Hall, Forrest G. (Editor); Nickerson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    This Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-20 data set contains measurements of surface bidirectional reflectance distribution function (BRDF) made by the polarization and Directionality of Earth reflectances (POLDER) instrument over several surface types (pine, spruce, fen) of the BOREAS southern study area (SSA) during the 1994 intensive field campaigns (IFCs). Single-point BRDF values were acquired either from the NASA Ames Research Center (ARC) C-130 aircraft or from a NASA Wallops Flight Facility (WFF) helicopter. A related data set collected from the helicopter platform is available as is POLDER imagery acquired from the C-130. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. Local high precision 3D measurement based on line laser measuring instrument

    Science.gov (United States)

    Zhang, Renwei; Liu, Wei; Lu, Yongkang; Zhang, Yang; Ma, Jianwei; Jia, Zhenyuan

    2018-03-01

    In order to realize the precision machining and assembly of the parts, the geometrical dimensions of the surface of the local assembly surfaces need to be strictly guaranteed. In this paper, a local high-precision three-dimensional measurement method based on line laser measuring instrument is proposed to achieve a high degree of accuracy of the three-dimensional reconstruction of the surface. Aiming at the problem of two-dimensional line laser measuring instrument which lacks one-dimensional high-precision information, a local three-dimensional profile measuring system based on an accurate single-axis controller is proposed. First of all, a three-dimensional data compensation method based on spatial multi-angle line laser measuring instrument is proposed to achieve the high-precision measurement of the default axis. Through the pretreatment of the 3D point cloud information, the measurement points can be restored accurately. Finally, the target spherical surface is needed to make local three-dimensional scanning measurements for accuracy verification. The experimental results show that this scheme can get the local three-dimensional information of the target quickly and accurately, and achieves the purpose of gaining the information and compensating the error for laser scanner information, and improves the local measurement accuracy.

  3. Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements

    Science.gov (United States)

    Wye, Lauren C.; Zebker, Howard A.; Ostro, Steven J.; West, Richard D.; Gim, Yonggyu; Lorenz, Ralph D.; The Cassini Radar Team

    2007-06-01

    albedo feature Shangri-La is best fit by a Hagfors model with a dielectric constant close to 2.4 and an rms slope near 9.5°. From the modeled backscatter curves, we find the average radar albedo in the same linear (SL) polarization to be near 0.34. We constrain the total-power albedo in order to compare the measurements with available groundbased radar results, which are typically obtained in both senses of circular polarization. We estimate an upper limit of 0.4 on the total-power albedo, a value that is significantly higher than the 0.21 total albedo value measured at 13 cm [Campbell, D., Black, G., Carter, L., Ostro, S., 2003. Science 302, 431-434]. This is consistent with a surface that has more small-scale structure and is thus more reflective at 2-cm than 13-cm. We compare results across overlapping observations and observe that the reduction and analysis are repeatable and consistent. We also confirm the strong correlations between radar and near-infrared images.

  4. SQUID-based measuring systems

    Indian Academy of Sciences (India)

    field produced by a given two-dimensional current density distribution is inverted using the Fourier transform technique. Keywords ... Superconducting quantum interference devices (SQUIDs) are the most sensitive detectors for measurement of ... omagnetic prospecting, detection of gravity waves etc. Judging the importance ...

  5. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  6. Design parameters for measurements of local catalytic activity on surfaces

    DEFF Research Database (Denmark)

    Johansson, Martin; Johannessen, Tue; Jørgensen, Jan Hoffmann

    2006-01-01

    Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward......, the limits of the range in reaction rate, which can be Studied are estimated. (c) 2005 Elsevier B.V. All rights reserved.......Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward...... limit for the lateral resolution of the measurement, and that a flow rate of the order of 240 (ml/min)(n) is sufficient to achieve this resolution. The sensitivity is reasonable also with high flow rates, due to the presence of a pocket of stagnant gas under the tip of the capillary. Furthermore...

  7. Improving the surface metrology accuracy of optical profilers by using multiple measurements

    Science.gov (United States)

    Xu, Xudong; Huang, Qiushi; Shen, Zhengxiang; Wang, Zhanshan

    2016-10-01

    The performance of high-resolution optical systems is affected by small angle scattering at the mid-spatial-frequency irregularities of the optical surface. Characterizing these irregularities is, therefore, important. However, surface measurements obtained with optical profilers are influenced by additive white noise, as indicated by the heavy-tail effect observable on their power spectral density (PSD). A multiple-measurement method is used to reduce the effects of white noise by averaging individual measurements. The intensity of white noise is determined using a model based on the theoretical PSD of fractal surface measurements with additive white noise. The intensity of white noise decreases as the number of times of multiple measurements increases. Using multiple measurements also increases the highest observed spatial frequency; this increase is derived and calculated. Additionally, the accuracy obtained using multiple measurements is carefully studied, with the analysis of both the residual reference error after calibration, and the random errors appearing in the range of measured spatial frequencies. The resulting insights on the effects of white noise in optical profiler measurements and the methods to mitigate them may prove invaluable to improve the quality of surface metrology with optical profilers.

  8. Spectrophotometer-Based Color Measurements

    Science.gov (United States)

    2017-10-24

    equipment. There are several American Society for Testing and Materials ( ASTM ) chapters covering the use of spectrometers for color measurements (refs. 3...Perkin Elmer software and procedures described in ASTM chapter E308 (ref. 3). All spectral data was stored on the computer. A summary of the color...similarity, or lack thereof, between two colors (ref. 5). In this report, the Euclidean distance metric, E, is used and recommended in ASTM D2244

  9. UNMANNED AIRCRAFT SYSTEMS FOR RAPID NEAR SURFACE GEOPHYSICAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    J. B. Stoll

    2013-08-01

    Full Text Available This paper looks at some of the unmanned aircraft systems (UAS options and deals with a magnetometer sensor system which might be of interest in conducting rapid near surface geophysical measurements. Few of the traditional airborne geophysical sensors are now capable of being miniaturized to sizes and payload within mini UAS limits (e.g. airborne magnetics, gamma ray spectrometer. Here the deployment of a fluxgate magnetometer mounted on an UAS is presented demonstrating its capability of detecting metallic materials that are buried in the soil. The effectiveness in finding ferrous objects (e.g. UXO, landslides is demonstrated in two case studies.

  10. Triangulation-based edge measurement using polyview optics

    Science.gov (United States)

    Li, Yinan; Kästner, Markus; Reithmeier, Eduard

    2018-04-01

    Laser triangulation sensors as non-contact measurement devices are widely used in industry and research for profile measurements and quantitative inspections. Some technical applications e.g. edge measurements usually require a configuration of a single sensor and a translation stage or a configuration of multiple sensors, so that they can measure a large measurement range that is out of the scope of a single sensor. However, the cost of both configurations is high, due to the additional rotational axis or additional sensor. This paper provides a special measurement system for measurement of great curved surfaces based on a single sensor configuration. Utilizing a self-designed polyview optics and calibration process, the proposed measurement system allows an over 180° FOV (field of view) with a precise measurement accuracy as well as an advantage of low cost. The detailed capability of this measurement system based on experimental data is discussed in this paper.

  11. Measurement of a surface heat flux and temperature

    Science.gov (United States)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  12. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  13. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    International Nuclear Information System (INIS)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH 2 ) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  14. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    Science.gov (United States)

    Liu, Kesong; Li, Zhou; Wang, Weihua; Jiang, Lei

    2011-12-01

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  15. "Rapid Revisit" Measurements of Sea Surface Winds Using CYGNSS

    Science.gov (United States)

    Park, J.; Johnson, J. T.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a space-borne GNSS-R (GNSS-Reflectometry) mission that launched December 15, 2016 for ocean surface wind speed measurements. CYGNSS includes 8 small satellites in the same LEO orbit, so that the mission provides wind speed products having unprecedented coverage both in time and space to study multi-temporal behaviors of oceanic winds. The nature of CYGNSS coverage results in some locations on Earth experiencing multiple wind speed measurements within a short period of time (a "clump" of observations in time resulting in a "rapid revisit" series of measurements). Such observations could seemingly provide indications of regions experiencing rapid changes in wind speeds, and therefore be of scientific utility. Temporally "clumped" properties of CYGNSS measurements are investigated using early CYGNSS L1/L2 measurements, and the results show that clump durations and spacing vary with latitude. For example, the duration of a clump can extend as long as a few hours at higher latitudes, with gaps between clumps ranging from 6 to as high as 12 hours depending on latitude. Examples are provided to indicate the potential of changes within a clump to produce a "rapid revisit" product for detecting convective activity. Also, we investigate detector design for identifying convective activities. Results from analyses using recent CYGNSS L2 winds will be provided in the presentation.

  16. Contact angle measurements at the colemanite and realgar surfaces

    Science.gov (United States)

    Koca, Sabiha; Savas, Mehmet

    2004-03-01

    Colemanite is one of the most important boron minerals and covers an important part of Turkey's boron mineral deposits. The friable nature of the colemanite tends to produce a large amount of fines. Flotation appears to be a promising technique to recover colemanite from such fines. During flotation process, selectivity problem arises between colemanite and associated gangue minerals such as realgar. There is a close relationship between floatability of minerals and contact angle. Therefore, surface hydrophobicity of colemanite and realgar minerals were investigated by receding contact angle measurements in the absence and presence of flotation reagents. The water contact angle values at the colemanite surface remained almost unchanged at 32-35° in the solutions of potassium amyl xanthate (KAX), potassium ethyl xanthate (KEX) and petroleum sulphanate (R825) while another petroleum sulphanate (R840), sodium oleate and tallow amine (Armac-T) affected hydrophobicity of colemanite, and the contact angle values increased up to 47°. The contact angle values of 62, 63, 45, 46, 39, and 43° at the realgar surface were obtained in the solutions of KAX, KEX, sodium oleate, R825, R840 and Armac-T, respectively.

  17. Measurement of Tritium Surface Distribution on TFTR Bumper Limiter Tiles

    International Nuclear Information System (INIS)

    Sugiyama, K.; Tanabe, T.; Skinner, C.H.; Gentile, C.A.

    2004-01-01

    The tritium surface distribution on graphite tiles used in the Tokamak Fusion Test Reactor (TFTR) bumper limiter and exposed to TFTR deuterium-tritium (D-T) discharges from 1993 to 1997 was measured by the Tritium Imaging Plate Technique (TIPT). The TFTR bumper limiter shows both re-/co-deposition and erosion. The tritium images for all tiles measured are strongly correlated with erosion and deposition patterns, and long-term tritium retention was found in the re-/co-depositions and flakes. The CFC tiles located at erosion dominated areas clearly showed their woven structure in their tritium images owing to different erosion yields between fibers and matrix. Significantly high tritium retention was observed on all sides of the erosion tiles, indicating carbon transport via repetition of local erosion/deposition cycles

  18. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal

    DEFF Research Database (Denmark)

    Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie

    2012-01-01

    We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...

  19. Determination and compensation of the “reference surface” from redundant sets of surface measurements

    Energy Technology Data Exchange (ETDEWEB)

    Polack, François, E-mail: francois.polack@synchrotron-soleil.fr [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette Cedex (France); Thomasset, Muriel, E-mail: muriel.thomasset@synchrotron-soleil.fr [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette Cedex (France)

    2013-05-11

    When trying to measure an optical surface at utmost absolute precision, the problem of the missing or unknown “reference surface” is often encountered. It is obvious with Fizeau and Michelson's interferometry, where the height difference between the surface under test (SUT) and a reference surface is measured. It is also true from slope measurements in long trace profilers (LTP), where due to small construction errors, the response to a perfectly flat ideal surface can be considered as an unknown reference to be subtracted from the measurement data. As no “perfect artifact” can exist, these references cannot be directly determined. The addition of the unknown reference can severely bias the reconstructed surface when field stitching is applied. The results of ptychography have proved that when a measurement is a function of a unique object function with a translated but unique response function, the redundancy of a large set of data allows accurate reconstructions of the object and response function despite the presence of measurement noise. In the case of LTP and interferometry, the basic problem is linear and can be solved by linear algebra rather than iteratively. The method has been already applied to SOLEIL and ESRF LTPs and is succesfully used on a regular base. We show here that the method can be also applied to interferometry and improve stitching results.

  20. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    Science.gov (United States)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  1. Preliminary GRS Measurement of Chlorine Distribution on Surface of Mars

    Science.gov (United States)

    Keller, J. M.; Boynton, W. V.; Taylor, G. J.; Hamara, D.; Janes, D. M.; Kerry, K.

    2003-12-01

    Ongoing measurements with the Gamma Ray Spectrometer (GRS) aboard Mars Odyssey provide preliminary detection of chlorine at the surface of Mars. Summing all data since boom deployment and using a forward calculation model, we estimate values for chlorine concentration at 5° resolution. Rebinning this data and smoothing with a 15-degree-radius boxcar filter reveal regions of noticeable chlorine enrichment at scales larger than the original 5° resolution and allow for preliminary comparison with previous Mars datasets. Analyzing chlorine concentrations within 30 degrees of the equator, we find a negative correlation with thermal inertia (R2=0.55) and positive correlation with albedo (R2=0.52), indicating that chlorine is associated with fine, non-rock surface materials. Although possibly a smoothing artifact, the spatial correlation is more noticeable in the region covering Tharsis and Amazonis than around Arabia and Elysium. Additionally, a noticeable region of chlorine enrichment appears west of Tharsis Montes ( ˜0 to 20N, ˜110 to 150W) and chlorine concentration is estimated to vary in the equatorial region by over a factor of two. A simplified two-component model involving chlorine-poor rocks and a homogenous chlorine-rich fine material requires rock abundance to vary from zero to over 50%, a result inconsistent with previous measurements and models. In addition to variations in rock composition and distribution, substantial variations in chlorine content of various types of fine materials including dust, sand, and duricrust appear important in explaining this preliminary observation. Surprisingly, visual comparison of surface units mapped by Christensen and Moore (1992) does not show enrichment in chlorine associated with regions of indurated surfaces, where cementation has been proposed. Rather, Tharsis, a region of active deposition with proposed mantling of 0.1 to 2 meters of recent dust (Christensen 1986), shows the greatest chlorine signal. In light of

  2. Precise measurement of cat patellofemoral joint surface geometry with multistation digital photogrammetry.

    Science.gov (United States)

    Ronsky, J L; Boyd, S K; Lichti, D D; Chapman, M A; Salkauskas, K

    1999-04-01

    Three-dimensional joint models are important tools for investigating mechanisms related to normal and pathological joints. Often these models necessitate accurate three-dimensional joint surface geometric data so that reliable model results can be obtained; however, in models based on small joints, this is often problematic due to limitations of the present techniques. These limitations include insufficient measurement precision the requirement of contact for the measurement process, and lack of entire joint description. This study presents a new non-contact method for precise determination of entire joint surfaces using multistation digital photogrammetry (MDPG) and is demonstrated by determining the cartilage and subchondral bone surfaces of the cat patellofemoral (PF) joint. The digital camera-lens setup was precisely calibrated using 16 photographs arranged to achieve highly convergent geometry to estimate interior and distortion parameters of the camera-lens setup. Subsequently, six photographs of each joint surface were then acquired for surface measurement. The digital images were directly imported to a computer and newly introduced semi-automatic computer algorithms were used to precisely determine the image coordinates. Finally, a rigorous mathematical procedure named the bundle adjustment was used to determine the three-dimensional coordinates of the joint surfaces and to estimate the precision of the coordinates. These estimations were validated by comparing the MDPG measurements of a cylinder and plane to an analytical model. The joint surfaces were successfully measured using the MDPG method with mean precision estimates in the least favorable coordinate direction being 10.3 microns for subchondral bone and 17.9 microns for cartilage. The difference in measurement precision for bone and cartilage primarily reflects differences in the translucent properties of the surfaces.

  3. Surface contact potential patches and Casimir force measurements

    International Nuclear Information System (INIS)

    Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.

    2010-01-01

    We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.

  4. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  5. An Analysis of Fundamental Mode Surface Wave Amplitude Measurements

    Science.gov (United States)

    Schardong, L.; Ferreira, A. M.; van Heijst, H. J.; Ritsema, J.

    2014-12-01

    Seismic tomography is a powerful tool to decipher the Earth's interior structure at various scales. Traveltimes of seismic waves are widely used to build velocity models, whereas amplitudes are still only seldomly accounted for. This mainly results from our limited ability to separate the various physical effects responsible for observed amplitude variations, such as focussing/defocussing, scattering and source effects. We present new measurements from 50 global earthquakes of fundamental-mode Rayleigh and Love wave amplitude anomalies measured in the period range 35-275 seconds using two different schemes: (i) a standard time-domain amplitude power ratio technique; and (ii) a mode-branch stripping scheme. For minor-arc data, we observe amplitude anomalies with respect to PREM in the range of 0-4, for which the two measurement techniques show a very good overall agreement. We present here a statistical analysis and comparison of these datasets, as well as comparisons with theoretical calculations for a variety of 3-D Earth models. We assess the geographical coherency of the measurements, and investigate the impact of source, path and receiver effects on surface wave amplitudes, as well as their variations with frequency in a wider range than previously studied.

  6. Measurement range of phase retrieval in optical surface and wavefront metrology

    International Nuclear Information System (INIS)

    Brady, Gregory R.; Fienup, James R.

    2009-01-01

    Phase retrieval employs very simple data collection hardware and iterative algorithms to determine the phase of an optical field. We have derived limitations on phase retrieval, as applied to optical surface and wavefront metrology, in terms of the speed of beam (i.e., f-number or numerical aperture) and amount of aberration using arguments based on sampling theory and geometrical optics. These limitations suggest methodologies for expanding these ranges by increasing the complexity of the measurement arrangement, the phase-retrieval algorithm, or both. We have simulated one of these methods where a surface is measured at unusual conjugates

  7. Compact terahertz spectrometer based on disordered rough surfaces

    Science.gov (United States)

    Yang, Tao; Jiang, Bing; Ge, Jia-cheng; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    In this paper, a compact spectrometer based on disordered rough surfaces for operation in the terahertz band is presented. The proposed spectrometer consists of three components, which are used for dispersion, modulation and detection respectively. The disordered rough surfaces, which are acted as the dispersion component, are modulated by the modulation component. Different scattering intensities are captured by the detection component with different extent of modulation. With a calibration measurement process, one can reconstruct the spectra of the probe terahertz beam by solving a system of simultaneous linear equations. A Tikhonov regularization approach has been implemented to improve the accuracy of the spectral reconstruction. The reported broadband, compact, high-resolution terahertz spectrometer is well suited for portable terahertz spectroscopy applications.

  8. Characterization of gloss properties of differently treated polymer coating surfaces by surface clarity measurement methodology.

    Science.gov (United States)

    Gruber, Dieter P; Buder-Stroisznigg, Michael; Wallner, Gernot; Strauß, Bernhard; Jandel, Lothar; Lang, Reinhold W

    2012-07-10

    With one measurement configuration, existing gloss measurement methodologies are generally restricted to specific gloss levels. A newly developed image-analytical gloss parameter called "clarity" provides the possibility to describe the perceptual result of a broad range of different gloss levels with one setup. In order to analyze and finally monitor the perceived gloss of products, a fast and flexible method also for the automated inspection is highly demanded. The clarity parameter is very fast to calculate and therefore usable for fast in-line surface inspection. Coated metal specimens were deformed by varying degree and polished afterwards in order to study the clarity parameter regarding the quantification of varying surface gloss types and levels. In order to analyze the correlation with the human gloss perception a study was carried out in which experts were asked to assess gloss properties of a series of surface samples under standardized conditions. The study confirmed clarity to exhibit considerably better correlation to the human perception than alternative gloss parameters.

  9. Analytical real-time measurement of a three-dimensional weld pool surface

    International Nuclear Information System (INIS)

    Zhang, WeiJie; Zhang, YuMing; Wang, XueWu

    2013-01-01

    The ability to observe and measure weld pool surfaces in real-time is the core of the foundation for next generation intelligent welding that can partially imitate skilled welders who observe the weld pool to acquire information on the welding process. This study aims at the real-time measurement of the specular three-dimensional (3D) weld pool surface under a strong arc in gas tungsten arc welding (GTAW). An innovative vision system is utilized in this study to project a dot-matrix laser pattern on the specular weld pool surface. Its reflection from the surface is intercepted at a distance from the arc by a diffuse plane. The intercepted laser dots illuminate this plane producing an image showing the reflection pattern. The deformation of this reflection pattern from the projected pattern (e.g. the dot matrix) is used to derive the 3D shape of the reflection surface, i.e., the weld pool surface. Based on careful analysis, the underlying reconstruction problem is formulated mathematically. An analytic solution is proposed to solve this formulated problem resulting in the weld pool surface being reconstructed on average in 3.04 ms during welding experiments. A vision-based monitoring system is thus established to measure the weld pool surface in GTAW in real-time. In order to verify the effectiveness of the proposed reconstruction algorithm, first numerical simulation is conducted. The proposed algorithm is then tested on a spherical convex mirror with a priori knowledge of its geometry. The detailed analysis of the measurement error validates the accuracy of the proposed algorithm. Results from the real-time experiments verify the robustness of the proposed reconstruction algorithm. (paper)

  10. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    OpenAIRE

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-01-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, w...

  11. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David

    2017-01-01

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement....... These limitations create inconsistencies for the kinetic analysis of surfactant adsorption/desorption, especially significant for ionic surfactants. Here, the “micropipette interfacial area-expansion method” was introduced and validated as a new DST measurement having a high enough sensitivity to detect diffusion...... for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2 ± 0.8 × 10−6 cm2/s, showed excellent agreement with the result from an alternative method, “single microdroplet catching method”, to measure the diffusion coefficient from diffusion-controlled microdroplet...

  12. Measurement of pressure on a surface using bubble acoustic resonances

    International Nuclear Information System (INIS)

    Aldham, Ben; Manasseh, Richard; Liffman, Kurt; Šutalo, Ilija D; Illesinghe, Suhith; Ooi, Andrew

    2010-01-01

    The frequency response of gas bubbles as a function of liquid ambient pressure was measured and compared with theory. A bubble size with equivalent spherical radius of 2.29 mm was used over a frequency range of 1000–1500 Hz. The ultimate aim is to develop an acoustic sensor that can measure static pressure and is sensitive to variations as small as a few kPa. The classical bubble resonance frequency is known to vary with ambient pressure. Experiments were conducted with a driven bubble in a pressurizable tank with a signal processing system designed to extract the resonant peak. Since the background response of the containing tank is significant, particularly near tank-modal resonances, it must be carefully removed from the bubble response signal. A dual-hydrophone method was developed to allow rapid and reliable real-time measurements. The expected pressure dependence was found. In order to obtain a reasonable match with theory, the classical theory was modified by the introduction of a 'mirror bubble' to account for the influence of a nearby surface. (technical design note)

  13. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    International Nuclear Information System (INIS)

    Mao, Shuai; Hu, Peng-Cheng; Ding, Xue-Mei; Tan, Jiu-Bin

    2016-01-01

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibration show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.

  14. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements

    International Nuclear Information System (INIS)

    Kumar, P.; Martin, H.; Jiang, X.

    2016-01-01

    Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateral scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.

  15. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.; Martin, H.; Jiang, X. [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom)

    2016-06-15

    Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateral scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.

  16. Bluetooth-based distributed measurement system

    International Nuclear Information System (INIS)

    Tang Baoping; Chen Zhuo; Wei Yuguo; Qin Xiaofeng

    2007-01-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit

  17. Bluetooth-based distributed measurement system

    Science.gov (United States)

    Tang, Baoping; Chen, Zhuo; Wei, Yuguo; Qin, Xiaofeng

    2007-07-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  18. Bluetooth-based distributed measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Tang Baoping; Chen Zhuo; Wei Yuguo; Qin Xiaofeng [Department of Mechatronics, College of Mechanical Engineering, Chongqing University, Chongqing, 400030 (China)

    2007-07-15

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  19. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  20. The measurement of surface roughness to determine the suitability of different methods for stone cleaning

    International Nuclear Information System (INIS)

    Vazquez-Calvo, Carmen; Alvarez de Buergo, Monica; Fort, Rafael; Varas-Muriel, Maria Jose

    2012-01-01

    The roughness of stone surface was measured, before and after bead blasting-based cleaning methods, to select the most efficient one to be used in masonry and stonework of specific areas of the Cathedral of Segovia (Spain). These types of cleaning methods can, besides the removal of soiling and surface deposits, leave a rougher surface, which would mean higher and more rapid water retention and deposit accumulation due to a specific surface increase, therefore accelerating stone decay. Or, in contrast, the cleaning method can be so aggressive that it can smooth the surface by reducing its roughness, a fact that usually corresponds to excessive material removal—soot and deposits–-but also part of the stone substrate. Roughness results were complemented with scanning electron microscopy observations and analyses and colour measurements. Finally, it was possible to select the best cleaning method among the six that were analysed, for different areas and different stone materials. Therefore, this study confirms the measurement of surface roughness as a reliable test to determine the suitability of stone cleaning methods; it is a non-destructive technique, portable and friendly to use, which can help us to rapidly assess—together with other techniques—the efficacy and aggressiveness of the stone cleaning method. (paper)

  1. Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system

    Science.gov (United States)

    Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong

    2017-06-01

    The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.

  2. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  3. Channel Storage change: a new remote sensed surface water measurement

    Science.gov (United States)

    Coss, S. P.; Durand, M. T.; Yi, Y.; Guo, Q.; Shum, C. K.; Allen, G. H.; Pavelsky, T.

    2017-12-01

    Here we present river channel storage change (CSC) measurements for 17 major world rivers from 2002-2016. We combined interpolated daily 1 km resolution Global River Radar Altimeter Time Series (GRRATS) river surface elevation data with static widths from the global river Global River Widths from Landsat (GRWL) dataset, to generate preliminary channel storage measurements. CSC is a previously unmeasured component of the terrestrial water balance It is a fundamental Earth science quantity with global bearing on floodplains, ecology, and geochemistry. CSC calculations require only remote sensed data, making them an ideal tool for studying remote regions where hydrological data is not easily accessible. CSC is uniquely suited to determine the role of hydrologic and hydraulic controls in basins with strong seasonal cycles (freeze-up and break-up). The cumulative CSC anomaly can impart spatial details that discharge measurements cannot. With this new measurement, we may be able to determine critical hydrological and hydraulic controls on rapidly changing systems like Arctic rivers. Results for Mississippi River indicate that peak CSC anomaly was the highest in 2011 (12.6 km3) and minimum CSC anomaly was in 2012 (-12.2 km3). Peak CSC has most frequently occurs in May (5 years), but has come as late in the year as July, and as early as January. Results for the Yukon River indicate that peak CSC anomaly was the highest in 2013 (13.9 km3) and minimum CSC anomaly was in 2010 (-14.2 km3). Peak CSC has most frequently come in early to mid-June (4-18), but has occurred in May (19-31) four years in the study period (three of the last 6 years) and once on April 30th.

  4. DEPTH MEASUREMENT OF DISRUPTED LAYER ON SILICON WAFER SURFACE USING AUGER SPECTROSCOPY METHOD

    Directory of Open Access Journals (Sweden)

    V. A. Solodukha

    2016-01-01

    Full Text Available The paper proposes a method for depth measurement of a disrupted layer on silicon wafer surface which is based on application of Auger spectroscopy with the precision sputtering of surface silicon layers and registration of the Auger electron yield intensity. In order to measure the disrupted layer with the help of Auger spectroscopy it is necessary to determine dependence of the released Auger electron amount on sputtering time (profile and then the dependence is analyzed. Silicon amount in the disrupted layer is less than in the volume. While going deeper the disruptive layer is decreasing that corresponds to an increase of atom density in a single layer. The essence of the method lies in the fact the disruptive layer is removed by ion beam sputtering and detection of interface region is carried out with the help of registration of the Auger electron yield intensity from the sputtered surface up to the moment when it reaches the value which is equal to the Auger electron yield intensity for single-crystal silicon. While removing surface silicon layers the registration of the Auger electron yield intensity from silicon surface makes it possible to control efficiently a presence of the disrupted layer on the silicon wafer surface. In this case depth control locality is about 1.0 nm due to some peculiarities of Auger spectroscopy method. The Auger electron yield intensity is determined automatically while using Auger spectrometer and while removing the disrupted layer the intensity is gradually increasing. Depth of the disrupted layer is determined by measuring height of the step which has been formed as a result of removal of the disrupted layer from the silicon wafer surface. Auger spectroscopy methods ensures an efficient depth control surface disruptions at the manufacturing stages of silicon wafers and integrated circuits. The depth measurement range of disruptions constitutes 0.001–1.000 um.

  5. Flow visualizations, velocity measurements, and surface convection measurements in simulated 20.8-cm Nova box amplifier cavities

    International Nuclear Information System (INIS)

    Julien, J.L.; Molishever, E.L.

    1983-01-01

    Reported are fluid mechanics experiments performed in models of the 20.8-cm Nova amplifier lamp and disk cavities. Lamp cavity nitrogen flows are shown, by both flow visualization and velocity measurements, to be acceptably uniform and parallel to the flashlamps. In contrast, the nitrogen flows in the disk cavity are shown to be disordered. Even though disk cavity flows are disordered, the simplest of three proposed nitrogen introduction systems for the disk cavity was found to be acceptable based on convection measurements made at the surfaces of simulated laser disks

  6. LOGISMOS-B for primates: primate cortical surface reconstruction and thickness measurement

    Science.gov (United States)

    Oguz, Ipek; Styner, Martin; Sanchez, Mar; Shi, Yundi; Sonka, Milan

    2015-03-01

    Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 +/- 0.03mm and an unsigned surface error of 0.42 +/- 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 +/- 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.

  7. Reconciling Electrical Properties of Titan's Surface Derived from Cassini RADAR Scatterometer and Radiometer Measurements

    Science.gov (United States)

    Zebker, H. A.; Wye, L. C.; Janssen, M.; Paganelli, F.; Cassini RADAR Team

    2006-12-01

    We observe Titan, Saturn's largest moon, using active and passive microwave instruments carried on board the Cassini spacecraft. The 2.2-cm wavelength penetrates the thick atmosphere and provides surface measurements at resolutions from 10-200 km over much of the satellite's surface. The emissivity and reflectivity of surface features are generally anticorrelated, and both values are fairly high. Inversion of either set of data alone yields dielectric constants ranging from 1.5 to 3 or 4, consistent with an icy hydrocarbon or water ice composition. However, the dielectric constants retrieved from radiometric data alone are usually less than those inferred from backscatter measurements, a discrepancy consistent with similar analyses dating back to lunar observations in the 1960's. Here we seek to reconcile Titan's reflectivity and emissivity observations using a single physical model of the surface. Our approach is to calculate the energy scattered by Titan's surface and near subsurface, with the remainder absorbed. In equilibrium the absorption equals the emission, so that both the reflectivity and emissivity are described by the model. We use a form of the Kirchhoff model for modeling surface scatter, and a model based on weak localization of light for the volume scatter. With this model we present dielectric constant and surface roughness parameters that match both sets of Cassini RADAR observations over limited regions on Titan's surface, helping to constrain the composition and roughness of the surface. Most regions display electrical properties consistent with solid surfaces, however some of the darker "lake-like" features at higher latitudes can be modeled as either solid or liquid materials. The ambiguity arises from the limited set of observational angles available.

  8. Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces.

    Science.gov (United States)

    Levine, Zachary A; Rapp, Michael V; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H; Mittal, Jeetain; Waite, J Herbert; Israelachvili, Jacob N; Shea, Joan-Emma

    2016-04-19

    Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.

  9. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Laura Aulbach

    2017-03-01

    Full Text Available The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler.

  10. Ferroelectric based catalysis: Switchable surface chemistry

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2015-03-01

    We describe a new class of catalysts that uses an epitaxial monolayer of a transition metal oxide on a ferroelectric substrate. The ferroelectric polarization switches the surface chemistry between strongly adsorptive and strongly desorptive regimes, circumventing difficulties encountered on non-switchable catalytic surfaces where the Sabatier principle dictates a moderate surface-molecule interaction strength. This method is general and can, in principle, be applied to many reactions, and for each case the choice of the transition oxide monolayer can be optimized. Here, as a specific example, we show how simultaneous NOx direct decomposition (into N2 and O2) and CO oxidation can be achieved efficiently on CrO2 terminated PbTiO3, while circumventing oxygen (and sulfur) poisoning issues. One should note that NOx direct decomposition has been an open challenge in automotive emission control industry. Our method can expand the range of catalytically active elements to those which are not conventionally considered for catalysis and which are more economical, e.g., Cr (for NOx direct decomposition and CO oxidation) instead of canonical precious metal catalysts. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  11. X-Band high range resolution radar measurements of sea surface forward scatter at low grazing angles

    CSIR Research Space (South Africa)

    Smit, JC

    2008-05-01

    Full Text Available in the sea surface forward scatter component exists. Based on this measurement, we propose a temporal correlation extension to an existing low-angle propagation model, together with a correlation filter structure to realize the correlation extension...

  12. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Yearly Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  13. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Seasonal Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  14. ClimoBase: Rouse Canadian Surface Observations of Weather, Climate, and Hydrological Variables, 1984-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ClimoBase is a collection of surface climate measurements collected in Northern Canada by Dr. Wayne Rouse between 1984 and 1998 in three locations: Churchill,...

  15. Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT.

    Science.gov (United States)

    Kim, Young Kook; Ha, Ahnul; Lee, Won June; Jeoung, Jin Wook; Park, Ki Ho

    2017-12-01

    To introduce the measurement method of optic disc cup surface depth using spectral-domain optical coherence tomography (SD-OCT) and then evaluate the rates of cup surface depression at 3 different stages of glaucoma. We retrospectively identified 52 eyes with preperimetric glaucoma, 56 with mild-or-moderate glaucoma and 50 with severe glaucoma and followed them for at least 48 months. Eyes were imaged using SD-OCT (Cirrus HD-OCT) at 12-month intervals. The mean cup surface depth was calculated using the following formula: Cup volume/(disc area×average cup-to-disc ratio)-200 μm. The rates of mean cup surface depression (μm/y) were significantly greater in mild-or-moderate glaucoma (-7.96±1.03) than in preperimetric (-3.11±0.61) and severe glaucoma (-0.70±0.12; all Pcup surface depression (%/y) were significantly greater than those of average of retinal nerve fiber layer (RNFL) thinning (%/y) in preperimetric glaucoma (-1.64±0.12 vs. -1.11±0.07; Pcup surface depth changed slower than did average RNFL thickness (-0.64±0.06 vs. -0.75±0.08%/y; Pcup surface depth changed faster than did the RNFL thickness. These results signify the possibility that SD-OCT-based estimation of cup surface depth might be useful for monitoring of glaucoma development and progression.

  16. Hydrogenation of nitriles on a well-characterized nickel surface: From surface science studies to liquid phase catalytic activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gardin, Denis Emmanuel [Univ. of California, Berkeley, CA (United States)

    1993-12-01

    Nitrile hydrogenation is the most commonly used method for preparing diverse amines. This thesis is aimed at the mechanism and factors affecting the performance of Ni-based catalysts in nitrile hydrogenations. Surface science techniques are used to study bonding of nitriles and amines to a Ni(111) surface and to identify surface intermediates. Liquid-phase hydrogenations of cyclohexene and 1-hexene on a Pt foil were carried out successfully. Finally, knowledge about the surface structure, surface chemical bond, dynamics of surface atoms (diffusion, growth), and reactivity of metal surfaces from solid-gas interface studies, is discussed.

  17. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  18. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    Science.gov (United States)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER

  19. Conformal-Based Surface Morphing and Multi-Scale Representation

    Directory of Open Access Journals (Sweden)

    Ka Chun Lam

    2014-05-01

    Full Text Available This paper presents two algorithms, based on conformal geometry, for the multi-scale representations of geometric shapes and surface morphing. A multi-scale surface representation aims to describe a 3D shape at different levels of geometric detail, which allows analyzing or editing surfaces at the global or local scales effectively. Surface morphing refers to the process of interpolating between two geometric shapes, which has been widely applied to estimate or analyze deformations in computer graphics, computer vision and medical imaging. In this work, we propose two geometric models for surface morphing and multi-scale representation for 3D surfaces. The basic idea is to represent a 3D surface by its mean curvature function, H, and conformal factor function λ, which uniquely determine the geometry of the surface according to Riemann surface theory. Once we have the (λ, H parameterization of the surface, post-processing of the surface can be done directly on the conformal parameter domain. In particular, the problem of multi-scale representations of shapes can be reduced to the signal filtering on the λ and H parameters. On the other hand, the surface morphing problem can be transformed to an interpolation process of two sets of (λ, H parameters. We test the proposed algorithms on 3D human face data and MRI-derived brain surfaces. Experimental results show that our proposed methods can effectively obtain multi-scale surface representations and give natural surface morphing results.

  20. A Method for Dimensional and Surface Optical Measurements Uncertainty Assessment on Micro Structured Surfaces Manufactured by Jet-ECM

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Islam, Aminul

    2015-01-01

    Surface texture and step height measurements of electrochemically machined cavities have been compared among optical and tactile instruments. A procedure is introduced for correcting possible divergences among the instruments and, ultimately, for evaluating the measurement uncertainty according t...

  1. Measurement system for special surface mapping using miniature displacement sensors

    Directory of Open Access Journals (Sweden)

    Zowade Martyna

    2018-01-01

    Full Text Available The aim of the work was to design a special system for measurements of elements with repetitive geometry or assemblies with repeating components, set in a linear patterns. The main focus was based on developing a computer program for signal analysis from variable number of miniature displacement sensors. It was set that the response for displacement of measuring tip from each sensor was a 0-5 V voltage signal with possibility of using different type of sensors. Requirements were determined based on projected measurement method. A special design of sensor was made for testing the computer program. If the characteristics of the sensor is known, it is possible to compute the type A evaluation of uncertainty. The results are presented in XY chart on computer screen. The program allows the user to choose any number of the sensors and determine the distance between them. Also, the possibility of calibration of sensors’ set was provided. The test were conducted on a prototype handle for sensors, made on a 3D printer.

  2. Determination of the transfer function for optical surface topography measuring instruments—a review

    International Nuclear Information System (INIS)

    Foreman, Matthew R; Török, Peter; Giusca, Claudiu L; Leach, Richard K; Coupland, Jeremy M

    2013-01-01

    A significant number of areal surface topography measuring instruments, largely based on optical techniques, are commercially available. However, implementation of optical instrumentation into production is currently difficult due to the lack of understanding of the complex interaction between the light and the component surface. Studying the optical transfer function of the instrument can help address this issue. Here a review is given of techniques for the measurement of optical transfer functions. Starting from the basis of a spatially coherent, monochromatic confocal scanning imaging system, the theory of optical transfer functions in three-dimensional (3D) imaging is presented. Further generalizations are reviewed allowing the extension of the theory to the description of conventional and interferometric 3D imaging systems. Polychromatic transfer functions and surface topography measurements are also discussed. Following presentation of theoretical results, experimental methods to measure the optical transfer function of each class of system are presented, with a focus on suitable methods for the establishment of calibration standards in 3D imaging and surface topography measurements. (topical review)

  3. Leidenfrost drops cooling surfaces: theory and interferometric measurement

    OpenAIRE

    Van Limbeek, Michiel A. J.; Klein Schaarsberg, Martin H.; Sobac, Benjamin; Rednikov, Alexey; Sun, Chao; Colinet, Pierre; Lohse, Detlef

    2017-01-01

    When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower surface temperatures, where the drop is in direct contact with the solid surface. A commonly made assumption is that this solid surface is isothermal, which is at least questionable for materials of lo...

  4. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  5. 3D Surface Temperature Measurement of Plant Canopies Using Photogrammetry Techniques From A UAV.

    Science.gov (United States)

    Irvine, M.; Lagouarde, J. P.

    2017-12-01

    Surface temperature of plant canopies and within canopies results from the coupling of radiative and energy exchanges processes which govern the fluxes at the interface soil-plant-atmosphere. As a key parameter, surface temperature permits the estimation of canopy exchanges using processes based modeling methods. However detailed 3D surface temperature measurements or even profile surface temperature measurements are rarely made as they have inherent difficulties. Such measurements would greatly improve multi-level canopy models such as NOAH (Chen and Dudhia 2001) or MuSICA (Ogée and Brunet 2002, Ogée et al 2003) where key surface temperature estimations, at present, are not tested. Additionally, at larger scales, canopy structure greatly influences satellite based surface temperature measurements as the structure impacts the observations which are intrinsically made at varying satellite viewing angles and solar heights. In order to account for these differences, again accurate modeling is required such as through the above mentioned multi-layer models or with several source type models such as SCOPE (Van der Tol 2009) in order to standardize observations. As before, in order to validate these models, detailed field observations are required. With the need for detailed surface temperature observations in mind we have planned a series of experiments over non-dense plant canopies to investigate the use of photogrammetry techniques. Photogrammetry is normally used for visible wavelengths to produce 3D images using cloud point reconstruction of aerial images (for example Dandois and Ellis, 2010, 2013 over a forest). From these cloud point models it should be possible to establish 3D plant surface temperature images when using thermal infrared array sensors. In order to do this our experiments are based on the use of a thermal Infrared camera embarked on a UAV. We adapt standard photogrammetry to account for limits imposed by thermal imaginary, especially the low

  6. Field Measurements of PCB emissions from Building Surfaces Using a New Portable Emission Test Cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Haven, Rune; Gunnarsen, Lars Bo

    2016-01-01

    The purpose of the study was to measure PCB-emission rates from indoor surfaces on-site in contaminated buildings using a newly developed portable emission test cell. Emission rates were measured from six different surfaces; three untreated surfaces and three remediated surfaces in a contaminated...

  7. Entrance surface dose measurements in pediatric radiological examinations

    International Nuclear Information System (INIS)

    Ribeiro, L.A.; Yoshimura, E.M.

    2008-01-01

    A survey of pediatric radiological examinations was carried out in a reference pediatric hospital of the city of Sao Paulo, in order to investigate the doses to children undergoing conventional X-ray examinations. The results showed that the majority of pediatric patients are below 4 years, and that about 80% of the examinations correspond to chest projections. Doses to typical radiological examinations were measured in vivo with thermoluminescent dosimeters (LiF: Mg, Ti and LiF: Mg, Cu, P) attached to the skin of the children to determine entrance surface dose (ESD). Also homogeneous phantoms were used to obtain ESD to younger children, because the technique uses a so small kVp that the dosimeters would produce an artifact image in the patient radiograph. Four kinds of pediatric examinations were investigated: three conventional examinations (chest, skull and abdomen) and a fluoroscopic procedure (barium swallow). Relevant information about kVp and mAs values used in the examinations was collected, and we discuss how these parameters can affect the ESD. The ESD values measured in this work are compared to reference levels published by the European Commission for pediatric patients. The results obtained (third-quartile of the ESD distribution) for chest AP examinations in three age groups were: 0.056 mGy (2-4 years old); 0.068 mGy (5-9 years old); 0.069 mGy (10-15 years old). All of them are below the European reference level (0.100 mGy). ESD values measured to the older age group in skull and abdomen AP radiographs (mean values 3.44 and 1.20 mGy, respectively) are above the European reference levels (1.5 mGy to skull and 1.0 mGy to abdomen). ESD values measured in the barium swallow examination reached 10 mGy in skin regions corresponding to thyroid and esophagus. It was noticed during this survey that some technicians use, improperly, X-ray fluoroscopy in conventional examinations to help them in positioning the patient. The results presented here are a

  8. FJ-2207 measuring instrument detection pipe surface a level of pollution method

    International Nuclear Information System (INIS)

    Wang Jiangong

    2010-01-01

    On the pipe surface contamination were detected α level of pollution is a frequently encountered dose-detection work. Because the pipeline surface arc, while the measuring probe for the plane, which for accurate measurement difficult. In this paper, on the FJ-2207-type pipe surface contamination measuring instrument measuring pollution levels in the α method was studied. Introduced the FJ-2207 measuring instrument detection pipe surface α pollution levels. Studied this measuring instrument on the same sources of surface, plane α level of radioactivity measured differences in the results obtained control of the apparatus when the direct measurement of the surface correction factor, and gives 32-216 specifications commonly used pipe direct measurement of the amendment factor. Convenient method, test results are reliable for the accurate measurement of pipe pollution levels in the surface of α as a reference and learning. (authors)

  9. Effects of drop size and measuring condition on static contact angle measurement on a superhydrophobic surface with goniometric technique

    International Nuclear Information System (INIS)

    Seo, Kwangseok; Kim, Minyoung; Kim, Do Hyun; Ahn, Jeong Keun

    2015-01-01

    It is not a simple task to measure a contact angle of a water drop on a superhydrophobic surface with sessile drop method, because a roll-off angle is very low. Usually contact angle of a water drop on a superhydrophobic surface is measured by fixing a drop with intentional defects on the surface or a needle. We examined the effects of drop size and measuring condition such as the use of a needle or defects on the static contact angle measurement on superhydrophobic surface. Results showed that the contact angles on a superhydrophobic surface remain almost constant within intrinsic measurement errors unless there is a wetting transition during the measurement. We expect that this study will provide a deeper understanding on the nature of the contact angle and convenient measurement of the contact angle on the superhydrophobic surface.

  10. Aquaplaning : Development of a Risk Pond Model from Road Surface Measurements

    OpenAIRE

    Nygårdhs, Sara

    2003-01-01

    Aquaplaning accidents are relatively rare, but could have fatal effects. The task of this master’s thesis is to use data from the Laser Road Surface Tester to detect road sections with risk of aquaplaning. A three-dimensional model based on data from road surface measurements is created using MATLAB (version 6.1). From this general geometrical model of the road, a pond model is produced from which the theoretical risk ponds are detected. A risk pond indication table is fur-ther created. The...

  11. Low-Cost Alternative for the Measurement of Water Levels in Surface Water Streams

    Directory of Open Access Journals (Sweden)

    Luis E. PEÑA

    2017-11-01

    Full Text Available Flood risk management and water resources planning involve a deep knowledge of surface streams so that mitigation strategies and climate change adaptations can be implemented. Commercially, there is a wide range of technologies for the measurement of hydroclimatic variables; however, many of these technologies may not be affordable for institutions with limited budgets. This paper has two main objectives: 1 Present the design of an ultrasound-based water level measurement system, and 2 Propose a methodological alternative for the development of instruments, according to the needs of institutions conducting monitoring of surface waterbodies. To that end, the proposed methodology is based on selection processes defined according to the specific needs of each waterbody. The prototype was tested in real-world scale, with the potential to obtain accurate measurements. Lastly, we present the design of the ultrasound-based water level measurement instrument, which can be built at a low cost. Low-cost instruments can potentially contribute to the sustainable instrumental autonomy of environmental entities and help define measurement and data transmission standards based on the specific requirements of the monitoring.

  12. Influence of surface layer removal of shade guide tabs on the measured color by spectrophotometer and spectroradiometer.

    Science.gov (United States)

    Kim, Jin-Cheol; Yu, Bin; Lee, Yong-Keun

    2008-12-01

    To determine the changes in color parameters of Vitapan 3D-Master shade guide tabs by a spectrophotometer (SP) or a spectroradiometer (SR), and by the removal of the surface layer of the tabs that was performed to make a flat measuring surface for the SP color measurement. Color of the shade tabs was measured before and after removing the surface layer of the tabs using SP and SR. Correlations between the color parameters between the original (OR) and the surface layer removed (RM) tabs and between the SP and the SR measurements were determined (alpha=0.05). Based on SP, the lightness, chroma, CIE a* and b* values measured after the surface layer removal were higher than those of the original tabs except a few cases. Based on SR, the chroma and CIE a* and b* values measured after surface layer removal were higher than those of the original tabs except a few cases; however, in case of the lightness, the changes varied by the shade designation. Type of instrument influenced the changes in color parameters based on paired t-test (pspectrophotometer or a spectroradiometer, measurement protocols should be specified because color difference by the surface layer removal and the instrument was high.

  13. Surface temperature measurements on superconducting cavities in superfluid helium

    International Nuclear Information System (INIS)

    Fouaidy, T.; Junquera, T.; Caruette, A.

    1991-01-01

    Two thermometry systems have been developed: a scanning thermometer system routinely used for the 1.5 GHz monocell cavity studies and a fixed thermometer array used to investigate spatial surface resistance distribution on various SC removable endplates of a cylindrical TE011mode cavity. Thermometers used in these systems are thermally insulated from the surrounding HeII bath by an epoxy housing ('epoxy'thermometers). Accurate calibration of the fixed thermometers was conducted by using different test cells and the experimental results were compared to model calculations performed with a finite element computational code. Measured thermometer efficiency and linearity are in good agreement with numerical results. Some typical temperature maps of different Nb samples obtained with the TE011 array (40 epoxy thermometers) are discussed. On the basis of numerical modelling results, a new type of thermometer with an improved efficiency has been designed. The thermal insulation against Helium II has been drastically improved by placing the sensitive part of the thermometer in a small vacuum jacket ('vacuum' thermometers). Two main goals have been reached with the first prototypes: improved efficiency by a factor of 2.5 - 3, and a bath temperature dependence of the thermal response in good agreement with the expected Kapitza conductance behaviour. Fitting experimental results with numerical modelling data, allow us to estimate the Kapitza conductance. The obtained values are in good agreement with the previous results reported by several authors using a different measurement method. The 'vacuum' thermometers are currently used on the TE011 mode cavity with Nb and NbTiN plates and the first results are presented

  14. Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants

    Science.gov (United States)

    Zhao, Xingke; Xie, Feiming; Fan, Jinsheng; Liu, Dayong; Huang, Jihua; Chen, Shuhai

    2018-06-01

    With the purpose of developing a feasible approach for measuring the surface tension of solders containing surfactants, the surface tension of Sn-3Ag-0.5Cu-xP solder alloys, with various drop sizes as well as different phosphorus (P) content, was evaluated using the Dorsey method based on the sessile drop test. The results show that the accuracy of the surface tension calculations depends on both of sessile drop size and the liquid metal composition. With a proper drop size, in the range of 4.5 mm to 5.3 mm in equivalent spherical diameters, the deviation of the surface tension calculation can be limited to 1.43 mN·m-1 and 6.30 mN·m-1 for SnAgCu and SnAgCu-P, respectively. The surface tension of SnAgCu-xP solder alloys decreases quickly to a minimum value when the P content reaches 0.5 wt% and subsequently increases slowly with the P content further increasing. The formation of a P-enriched surface layer and Sn4P3 intermetallic phases is regarded to be responsible for the decreasing and subsequent increasing of surface tension, respectively.

  15. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  16. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    Science.gov (United States)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  17. Standard test method for calibration of surface/stress measuring devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    Return to Contents page 1.1 This test method covers calibration or verification of calibration, or both, of surface-stress measuring devices used to measure stress in annealed and heat-strengthened or tempered glass using polariscopic or refractometry based principles. 1.2 This test method is nondestructive. 1.3 This test method uses transmitted light, and therefore, is applicable to light-transmitting glasses. 1.4 This test method is not applicable to chemically tempered glass. 1.5 Using the procedure described, surface stresses can be measured only on the “tin” side of float glass. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Surface magnetic anisotropy in glass-coated amorphous microwires as determined from ferromagnetic resonance measurements

    International Nuclear Information System (INIS)

    Garcia-Miquel, H.; Garcia, J.M.; Garcia-Beneytez, J.M.; Vazquez, M.

    2001-01-01

    The ferromagnetic resonance frequency of different Co base glass-coated amorphous magnetic microwires about 3.5 μm in diameter with negative, vanishing and positive magnetostriction has been investigated from power absorption measurements in the microwave frequency range. The experimental technique employed here involves the replacement of the dielectric of a coaxial transmission line by the sample to be measured. From the evolution of the resonance frequency with DC applied magnetic field, the surface magnetic anisotropy field of the microwires has been quantitatively obtained and, as expected, found to depend on the sign and strength of the magnetostriction. Similar values for the surface anisotropy are obtained in comparison with bulk anisotropy as determined from quasi-static hysteresis loops measurements

  19. On the measurement of the surface energy budget over a land ...

    Indian Academy of Sciences (India)

    The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are ...

  20. Measurements and TCAD Simulations of Bulk and Surface Radiation Damage Effects

    CERN Document Server

    F. Moscatelli; G. M. Bilei; A. Morozzi; G.-F. Dalla Betta; R. Mendicino; M. Boscardin; N. Zorzi; L. Servoli; P. Maccagnani

    2016-01-01

    In this work we propose the application of a radiation damage model based on the introduction of deep level traps/recombination centers suitable for device level numerical simulation of radiation detectors at very high fluences (e.g. 1÷2×1016 1-MeV equivalent neutrons per square centimeter) combined with a surface damage model developed by using experimental parameters extracted from measurements from gamma irradiated p-type dedicated test structures.

  1. Korean Clinic Based Outcome Measure Studies

    OpenAIRE

    Jongbae Park

    2003-01-01

    Background: Evidence based medicine has become main tools for medical practice. However, conducting a highly ranked in the evidence hierarchy pyramid is not easy or feasible at all times and places. There remains a room for descriptive clinical outcome measure studies with admitting the limit of the intepretation. Aims: Presents three Korean clinic based outcome measure studies with a view to encouraging Korean clinicians to conduct similar studies. Methods: Three studies are presented...

  2. Friction and surface chemistry of some ferrous-base metallic glasses

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  3. T-Spline Based Unifying Registration Procedure for Free-Form Surface Workpieces in Intelligent CMM

    Directory of Open Access Journals (Sweden)

    Zhenhua Han

    2017-10-01

    Full Text Available With the development of the modern manufacturing industry, the free-form surface is widely used in various fields, and the automatic detection of a free-form surface is an important function of future intelligent three-coordinate measuring machines (CMMs. To improve the intelligence of CMMs, a new visual system is designed based on the characteristics of CMMs. A unified model of the free-form surface is proposed based on T-splines. A discretization method of the T-spline surface formula model is proposed. Under this discretization, the position and orientation of the workpiece would be recognized by point cloud registration. A high accuracy evaluation method is proposed between the measured point cloud and the T-spline surface formula. The experimental results demonstrate that the proposed method has the potential to realize the automatic detection of different free-form surfaces and improve the intelligence of CMMs.

  4. Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.

    Science.gov (United States)

    Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene

    2016-03-01

    Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

  5. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    Science.gov (United States)

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pK a values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pK a values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  6. The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture

    Science.gov (United States)

    Nelson, S.; Schmutz, P. P.

    2017-12-01

    Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.

  7. MEASURING PROTOPLANETARY DISK GAS SURFACE DENSITY PROFILES WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jonathan P.; McPartland, Conor, E-mail: jpw@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-10-10

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams and Best to show that gas surface density profiles can be measured from high fidelity {sup 13}CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M {sub gas} = 0.048 M {sub ⊙}, and accretion disk characteristic size R {sub c} = 213 au and gradient γ = 0.39. The same parameters match the C{sup 18}O 2–1 image and indicate an abundance ratio [{sup 12}CO]/[C{sup 18}O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large {sup 13}CO 2–1 image library and fit simulated data. For disks with gas masses 3–10 M {sub Jup} at 150 pc, ALMA observations with a resolution of 0.″2–0.″3 and integration times of ∼20 minutes allow reliable estimates of R {sub c} to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  8. Cantilever-based sensing: the origin of surface stress and optimization strategies

    International Nuclear Information System (INIS)

    Godin, Michel; Tabard-Cossa, Vincent; Miyahara, Yoichi; Grutter, Peter; Monga, Tanya; Bruce Lennox, R; Williams, P J; Beaulieu, L Y

    2010-01-01

    Many interactions drive the adsorption of molecules on surfaces, all of which can result in a measurable change in surface stress. This article compares the contributions of various possible interactions to the overall induced surface stress for cantilever-based sensing applications. The surface stress resulting from adsorption-induced changes in the electronic density of the underlying surface is up to 2-4 orders of magnitude larger than that resulting from intermolecular electrostatic or Lennard-Jones interactions. We reveal that the surface stress associated with the formation of high quality alkanethiol self-assembled monolayers on gold surfaces is independent of the molecular chain length, supporting our theoretical findings. This provides a foundation for the development of new strategies for increasing the sensitivity of cantilever-based sensors for various applications.

  9. A consideration on internal dose evaluation and intervention based on a surface contamination concept

    International Nuclear Information System (INIS)

    Yasuda, H.

    1997-01-01

    Long-term radiation doses received by the inhabitants after the Chernobyl accident have been evaluated according to the surface contamination levels on the ground surface. The health effects have also been discussed by comparison between the surface-contaminated area and the uncontaminated control area. Selected protective measures were carried out in accordance with the contamination level of surface soil. These have been based on the 'surface contamination concept' which assumes that the radiation risk to inhabitants is proportional to the level of ground-surface contamination. The observations collected in regions around Chernobyl, however, show that the internal radiation doses to the inhabitants poorly correlate with the surface contamination level. This fact poses a question on the suitability of dose evaluations and interventions based on this concept

  10. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  11. Measurement of residual radioactive surface contamination by 2-D laser heated TLD

    International Nuclear Information System (INIS)

    Jones, S.C.

    1997-06-01

    The feasibility of applying and adapting a two-dimensional laser heated thermoluminescence dosimetry system to the problem of surveying for radioactive surface contamination was studied. The system consists of a CO 2 laser-based reader and monolithic arrays of thin dosimeter elements. The arrays consist of 10,201 thermoluminescent phosphor elements of 40 micron thickness, covering a 900 cm 2 area. Array substrates are 125 micron thick polyimide sheets, enabling them to easily conform to regular surface shapes, especially for survey of surfaces that are inaccessible for standard survey instruments. The passive, integrating radiation detectors are sensitive to alpha and beta radiation at contamination levels below release guideline limits. Required contact times with potentially contaminated surfaces are under one hour to achieve detection of transuranic alpha emission at 100 dpm/100 cm 2 . Positional information obtained from array evaluation is useful for locating contamination zones. Unique capabilities of this system for survey of sites, facilities and material include measurement inside pipes and other geometrical configurations that prevent standard surveys, and below-surface measurement of alpha and beta emitters in contaminated soils. These applications imply a reduction of material that must be classified as radioactive waste by virtue of its possibility of contamination, and cost savings in soil sampling at contaminated sites

  12. The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model

    Science.gov (United States)

    Fraser, Annemarie; Chan Miller, Christopher; Palmer, Paul I.; Deutscher, Nicholas M.; Jones, Nicholas B.; Griffith, David W. T.

    2011-10-01

    We investigate the Australian methane budget from 2005-2008 using the GEOS-Chem 3D chemistry transport model, focusing on the relative contribution of emissions from different sectors and the influence of long-range transport. To evaluate the model, we use in situ surface measurements of methane, methane dry air column average (XCH4) from ground-based Fourier transform spectrometers (FTSs), and train-borne surface concentration measurements from an in situ FTS along the north-south continental transect. We use gravity anomaly data from Gravity Recovery and Climate Experiment to describe the spatial and temporal distribution of wetland emissions and scale it to a prior emission estimate, which better describes observed atmospheric methane variability at tropical latitudes. The clean air sites of Cape Ferguson and Cape Grim are the least affected by local emissions, while Wollongong, located in the populated southeast with regional coal mining, samples the most locally polluted air masses (2.5% of the total air mass versus Asia, accounting for ˜25% of the change in surface concentration above background. At Cape Ferguson and Cape Grim, emissions from ruminant animals are the largest source of methane above background, at approximately 20% and 30%, respectively, of the surface concentration. At Wollongong, emissions from coal mining are the largest source above background representing 60% of the surface concentration. The train data provide an effective way of observing transitions between urban, desert, and tropical landscapes.

  13. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra

    Science.gov (United States)

    Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.

    1999-01-01

    Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.

  14. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  15. Evaluation of Tire/Surfacing/Base Contact Stresses and Texture Depth

    Directory of Open Access Journals (Sweden)

    W.J.vdM. Steyn

    2015-03-01

    Full Text Available Tire rolling resistance has a major impact on vehicle fuel consumption. Rolling resistance is the loss of energy due to the interaction between the tire and the pavement surface. This interaction is a complicated combination of stresses and strains which depend on both tire and pavement related factors. These include vehicle speed, vehicle weight, tire material and type, road camber, tire inflation pressure, pavement surfacing texture etc. In this paper the relationship between pavement surface texture depth and tire/surfacing contact stress and area is investigated. Texture depth and tire/surfacing contact stress were measured for a range of tire inflation pressures on five different pavement surfaces. In the analysis the relationship between texture and the generated contact stresses as well as the contact stress between the surfacing and base layer are presented and discussed, and the anticipated effect of these relationships on the rolling resistance of vehicles on the surfacings, and subsequent vehicle fuel economy discussed.

  16. Assessment of nanoparticle surface area by measuring unattached fraction of radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Ruzer, Lev S. [Ernest Orlando Lawrence Berkeley National Laboratory, Indoor Environment Department (United States)], E-mail: LSRuzer@lbl.gov

    2008-05-15

    A number of studies on the exposure of nanometer aerosols have indicated that health effects associated with low-solubility inhaled particles in the range of 1-100 nm may be more appropriately associated with particulate surface area than mass concentration. Such data on correlation between number, surface area and mass concentration are needed for exposure investigations, but the means for measuring aerosol surface area are not readily available. In this paper we propose a method for particle surface area assessment based on a new approach, deposition of the 'unattached fraction of radon progeny' onto nanometer aerosols.The proposed approach represents a synthesis of:(1) Derived direct analytical correlation between the 'unattached fraction' of radon progeny and surface area particle concentration in the range of 1-100 nm particle diameter;(2) Experimental data on correlation between the unattached fraction of radon progeny and particle surface area for particles with diameter in the range of 44 nm-2.1 {mu}m.

  17. Application and Analysis of Measurement Model for Calibrating Spatial Shear Surface in Triaxial Test

    Science.gov (United States)

    Zhang, Zhihua; Qiu, Hongsheng; Zhang, Xiedong; Zhang, Hang

    2017-12-01

    Discrete element method has great advantages in simulating the contacts, fractures, large displacement and deformation between particles. In order to analyze the spatial distribution of the shear surface in the three-dimensional triaxial test, a measurement model is inserted in the numerical triaxial model which is generated by weighted average assembling method. Due to the non-visibility of internal shear surface in laboratory, it is largely insufficient to judge the trend of internal shear surface only based on the superficial cracks of sheared sample, therefore, the measurement model is introduced. The trend of the internal shear zone is analyzed according to the variations of porosity, coordination number and volumetric strain in each layer. It shows that as a case study on confining stress of 0.8 MPa, the spatial shear surface is calibrated with the results of the rotated particle distribution and the theoretical value with the specific characteristics of the increase of porosity, the decrease of coordination number, and the increase of volumetric strain, which represents the measurement model used in three-dimensional model is applicable.

  18. First observations of tropospheric δD data observed by ground- and space-based remote sensing and surface in-situ measurement techniques at MUSICA's principle reference station (Izaña Observatory, Spain)

    Science.gov (United States)

    González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas

    2013-04-01

    The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.

  19. Contribution to the study of techniques of measurement of interface surface area in bubble flows

    International Nuclear Information System (INIS)

    Veteau, Jean-Michel

    1981-01-01

    This research thesis addresses problems raised by the measurement of the interface area per volume unit in duct bubble flows. The author first reports a literature survey of existing methods (photographic, chemical and optical methods) which give access to the value of the parameter which is commonly named 'specific surface area'. He analyses under which conditions these methods lead to a rigorous determination of the SVIM (mean integral volume surface). The author highlights the theoretical contributions of models related to each of these methods which are indeed global methods as they allow the interface surface area to be directly obtained in a given volume of a two-phase mixture. Then, the author reports the development of an original technique based on the use of phase detecting local probes. In the next part, the author compares photographic and optical methods, on the one hand, and optical and local methods, on the other hand. Recommendations are made for the development of local methods [fr

  20. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography.

    Directory of Open Access Journals (Sweden)

    João Freitas

    Full Text Available Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI, collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics.

  1. Determining surface areas of marine alga cells by acid-base titration method.

    Science.gov (United States)

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.

  2. pH measurements of FET-based (bio)chemical sensors using portable measurement system.

    Science.gov (United States)

    Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G

    2015-01-01

    In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.

  3. Damage identification in beams by a response surface based technique

    Directory of Open Access Journals (Sweden)

    Teidj S.

    2014-01-01

    Full Text Available In this work, identification of damage in uniform homogeneous metallic beams was considered through the propagation of non dispersive elastic torsional waves. The proposed damage detection procedure consisted of the following sequence. Giving a localized torque excitation, having the form of a short half-sine pulse, the first step was calculating the transient solution of the resulting torsional wave. This torque could be generated in practice by means of asymmetric laser irradiation of the beam surface. Then, a localized defect assumed to be characterized by an abrupt reduction of beam section area with a given height and extent was placed at a known location of the beam. Next, the response in terms of transverse section rotation rate was obtained for a point situated afterwards the defect, where the sensor was positioned. This last could utilize in practice the concept of laser vibrometry. A parametric study has been conducted after that by using a full factorial design of experiments table and numerical simulations based on a finite difference characteristic scheme. This has enabled the derivation of a response surface model that was shown to represent adequately the response of the system in terms of the following factors: defect extent and severity. The final step was performing the inverse problem solution in order to identify the defect characteristics by using measurement.

  4. Measuring the role of seagrasses in regulating sediment surface elevation

    KAUST Repository

    Potouroglou, Maria; Bull, James C.; Krauss, Ken W.; Kennedy, Hilary A.; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M.; Githaiga, Michael N.; Diele, Karen; Huxham, Mark

    2017-01-01

    in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya

  5. Surface pressure retrieval from SCIAMACHY measurements in the O2 A Band: validation of the measurements and sensitivity on aerosols

    Directory of Open Access Journals (Sweden)

    B. van Diedenhoven

    2005-01-01

    Full Text Available We perform surface pressure retrievals from cloud-free Oxygen A band measurements of SCIAMACHY. These retrievals can be well validated because surface pressure is a quantity that is, in general, accurately known from meteorological models. Therefore, surface pressure retrievals and their validation provide important insight into the quality of the instrument calibration. Furthermore, they can provide insight into retrievals which are affected by similar radiation transport processes, for example the retrieval of total columns of H2O, CO, CO2 and CH4. In our retrieval aerosols are neglected. Using synthetic measurements, it is shown that for low to moderate surface albedos this leads to an underestimation of the retrieved surface pressures. For high surface albedos this generally leads to an overestimation of the retrieved surface pressures. The surface pressures retrieved from the SCIAMACHY measurements indeed show this dependence on surface albedo, when compared to the corresponding pressures from a meteorological database. However, an offset of about 20 hPa was found, which can not be caused by neglecting aerosols in the retrieval. The same offset was found when comparing the retrieved surface pressures to those retrieved from co-located GOME Oxygen A band measurements. This implies a calibration error in the SCIAMACHY measurements. By adding an offset of 0.86% of the continuum reflectance at 756 nm to the SCIAMACHY reflectance measurements, this systematic bias vanishes.

  6. Measuring the surface inhomogeneity of metals on accreting white dwarfs

    International Nuclear Information System (INIS)

    Montgomery, M H; Hippel, T von; Thompson, S E

    2009-01-01

    Due to the short settling times of metals in DA white dwarf atmospheres, any white dwarfs with photospheric metals must be actively accreting. It is therefore natural to expect that the metals may not be deposited uniformly on the surface of the star. We present calculations showing how the temperature variations associated with white dwarf pulsations lead to an observable diagnostic of the surface metal distribution, and we show what constraints current data sets are able to provide.

  7. Structural dependence of the 5d-metal surface energies as deduced from surface core-level shift measurements

    International Nuclear Information System (INIS)

    Mrartensson, N.; Saalfeld, H.B.; Kuhlenbeck, H.; Neumann, M.

    1989-01-01

    Surface core-level shift measurements performed at the BESSY storage ring yield -0.41(2) eV for Os(0001) and 0.00(10) eV for Re(0001). An analysis of the surface shifts in the 5d transition series shows that the surface energy as a function of Z has a maximum at lower Z for the bcc phase than for the fcc-hcp phases, at W and between Re and Os, respectively

  8. Depletion region surface effects in electron beam induced current measurements

    Energy Technology Data Exchange (ETDEWEB)

    Haney, Paul M.; Zhitenev, Nikolai B. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Yoon, Heayoung P. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Gaury, Benoit [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland NanoCenter, University of Maryland, College Park, Maryland 20742 (United States)

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.

  9. Measuring the surface-heating of medical ultrasonic probes

    International Nuclear Information System (INIS)

    Kollmann, Chr; Vacariu, G; Fialka-Moser, V; Bergmann, H

    2004-01-01

    Due to converting losses the probe's surface itself is heated up, especially when emitting into air. Possible temperature increases in an ensemble of 15 different diagnostic and therapeutic ultrasound probes from 7 manufacturers in the frequency range between 0.05-7.5 MHz have been examined. Surface temperatures were detected by means of a calibrated IR-thermographic camera using a scheme of various power and pulse settings, as well as different imaging modalitites as used in clinical routine. Depending on the setup and the output power, the absolute surface temperatures of some of the probes emitting in air can be beyond 43 deg. C within 5-7 min.; a maximum surface temperature of 84 deg. C has been detected. Continuous mode or high pulse repetition frequencies on the therapeutic system side, small focused Doppler modes on the diagnostic system side combined with increased emitted acoustic intensities result in high surface temperatures. Within a worst case scenario a potential risk of negative skin changes (heat damage) or non-optimal therapeutic effects seems to be possible if a therapeutic system is used very often and if its emission continues unintentionally. In general the user should be aware that low emission intensities of e.g. 50 mW cm -2 could already produce hot surfaces

  10. A probability measure for random surfaces of arbitrary genus and bosonic strings in 4 dimensions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.; Paycha, S.; Scarlatti, S.

    1989-01-01

    We define a probability measure describing random surfaces in R D , 3≤D≤13, parametrized by compact Riemann surfaces of arbitrary genus. The measure involves the path space measure for scalar fields with exponential interaction in 2 space time dimensions. We show that it gives a mathematical realization of Polyakov's heuristic measure for bosonic strings. (orig.)

  11. Simulation of surface cracks measurement in first walls by laser spot array thermography

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Cuixiang; Qiu, Jinxin; Liu, Haocheng; Chen, Zhenmao, E-mail: chenzm@mail.xjtu.edu.cn

    2016-11-01

    The inspection of surface cracks in first walls (FW) is very important to ensure the safe operation of the fusion reactors. In this paper, a new laser excited thermography technique with using laser spot array source is proposed for the surface cracks imaging and evaluation in the FW with an intuitive and non-contact measurement method. Instead of imaging a crack by scanning a single laser spot and superimposing the local discontinuity images with the present laser excited thermography methods, it can inspect a relatively large area at one measurement. It does not only simplify the measurement system and data processing procedure, but also provide a faster measurement for FW. In order to investigate the feasibility of this method, a numerical code based on finite element method (FEM) is developed to simulate the heat flow and the effect of the crack geometry on the thermal wave fields. An imaging method based on the gradient of the thermal images is proposed for crack measurement with the laser spot array thermography method.

  12. Some remarks on the solid surface tension determination from contact angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław, E-mail: bronislaw.janczuk@poczta.umcs.lublin.pl

    2017-05-31

    Graphical abstract: Surface tension of PE, nylon 6 and quartz from different approaches to the interface tension. - Highlights: • New values of water and formamide surface tension components were established. • Quartz surface tension depends on its crystal face. • Usefulness of different approaches for solid surface tension determination was tested. - Abstract: The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  13. Measurement-based reliability/performability models

    Science.gov (United States)

    Hsueh, Mei-Chen

    1987-01-01

    Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.

  14. Nano-displacement measurement based on virtual pinhole confocal method

    International Nuclear Information System (INIS)

    Li, Long; Kuang, Cuifang; Xue, Yi; Liu, Xu

    2013-01-01

    A virtual pinhole confocal system based on charge-coupled device (CCD) detection and image processing techniques is built to measure axial displacement with 10 nm resolution, preeminent flexibility and excellent robustness when facing spot drifting. Axial displacement of the sample surface is determined by capturing the confocal laser spot using a CCD detector and quantifying the energy collected by programmable virtual pinholes. Experiments indicate an applicable measuring range of 1000 nm (Gaussian fitting r = 0.9902) with a highly linear range of 500 nm (linear fitting r = 0.9993). A concentric subtraction algorithm is introduced to further enhance resolution. Factors affecting measuring precision, sensitivity and signal-to-noise ratio are discussed using theoretical deductions and diffraction simulations. The virtual pinhole technique has promising applications in surface profiling and confocal imaging applications which require easily-customizable pinhole configurations. (paper)

  15. Development of ballistics identification—from image comparison to topography measurement in surface metrology

    International Nuclear Information System (INIS)

    Song, J; Chu, W; Vorburger, T V; Thompson, R; Renegar, T B; Zheng, A; Yen, J; Silver, R; Ols, M

    2012-01-01

    Fired bullets and ejected cartridge cases have unique ballistics signatures left by the firearm. By analyzing the ballistics signatures, forensic examiners can trace these bullets and cartridge cases to the firearm used in a crime scene. Current automated ballistics identification systems are primarily based on image comparisons using optical microscopy. The correlation accuracy depends on image quality which is largely affected by lighting conditions. Because ballistics signatures are geometrical micro-topographies by nature, direct measurement and correlation of the surface topography is being investigated for ballistics identification. A Two-dimensional and Three-dimensional Topography Measurement and Correlation System was developed at the National Institute of Standards and Technology for certification of Standard Reference Material 2460/2461 bullets and cartridge cases. Based on this system, a prototype system for bullet signature measurement and correlation has been developed for bullet signature identifications, and has demonstrated superior correlation results. (paper)

  16. In situ droplet surface tension and viscosity measurements in gas metal arc welding

    International Nuclear Information System (INIS)

    Bachmann, B; Siewert, E; Schein, J

    2012-01-01

    In this paper, we present an adaptation of a drop oscillation technique that enables in situ measurements of thermophysical properties of an industrial pulsed gas metal arc welding (GMAW) process. Surface tension, viscosity, density and temperature were derived expanding the portfolio of existing methods and previously published measurements of surface tension in pulsed GMAW. Natural oscillations of pure liquid iron droplets are recorded during the material transfer with a high-speed camera. Frame rates up to 30000 fps were utilized to visualize iron droplet oscillations which were in the low kHz range. Image processing algorithms were employed for edge contour extraction of the droplets and to derive parameters such as oscillation frequencies and damping rates along different dimensions of the droplet. Accurate surface tension measurements were achieved incorporating the effect of temperature on density. These are compared with a second method that has been developed to accurately determine the mass of droplets produced during the GMAW process which enables precise surface tension measurements with accuracies up to 1% and permits the study of thermophysical properties also for metals whose density highly depends on temperature. Thermophysical properties of pure liquid iron droplets formed by a wire with 1.2 mm diameter were investigated in a pulsed GMAW process with a base current of 100 A and a pulse current of 600 A. Surface tension and viscosity of a sample droplet were 1.83 ± 0.02 N m -1 and 2.9 ± 0.3 mPa s, respectively. The corresponding droplet temperature and density are 2040 ± 50 K and 6830 ± 50 kg m -3 , respectively. (paper)

  17. Surface measurements of upper tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile

    Science.gov (United States)

    Galewsky, Joseph; Rella, Christopher; Sharp, Zachary; Samuels, Kimberly; Ward, Dylan

    2011-09-01

    Simultaneous, real-time measurements of atmospheric water vapor mixing ratio and isotopic composition (δD and δ18O) were obtained using cavity ringdown spectroscopy on the arid Chajnantor Plateau in the subtropical Chilean Andes (elevation 5080 m or 550 hPa; latitude 23°S) during July and August 2010. The measurements show surface water vapor mixing ratio as low as 215 ppmv, δD values as low as -540‰, and δ18O values as low as -68‰, which are the lowest atmospheric water vapor δ values reported from Earth's surface. The results are consistent with previous measurements from the base of the tropical tropopause layer (TTL) and suggest large-scale subsidence of air masses from the upper troposphere to the Earth's surface. The range of measurements is consistent with condensation under conditions of ice supersaturation and mixing with moister air from the lower troposphere that has been processed through shallow convection. Diagnostics using reanalysis data show that the extreme aridity of the Chajnantor Plateau is controlled by condensation in the upper tropical troposphere.

  18. Comparison of CFD Predictions with Shuttle Global Flight Thermal Imagery and Discrete Surface Measurements

    Science.gov (United States)

    Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.

    2010-01-01

    Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.

  19. Deformation Measurements of Gabion Walls Using Image Based Modeling

    Directory of Open Access Journals (Sweden)

    Marek Fraštia

    2014-06-01

    Full Text Available The image based modeling finds use in applications where it is necessary to reconstructthe 3D surface of the observed object with a high level of detail. Previous experiments showrelatively high variability of the results depending on the camera type used, the processingsoftware, or the process evaluation. The authors tested the method of SFM (Structure fromMotion to determine the stability of gabion walls. The results of photogrammetricmeasurements were compared to precise geodetic point measurements.

  20. Measurement of Near-Surface Salinity, Temperature and Directional Wave Spectra using a Novel Wave-Following, Lagrangian Surface Contact Buoy

    Science.gov (United States)

    Boyle, J. P.

    2016-02-01

    Results from a surface contact drifter buoy which measures near-surface conductivity ( 10 cm depth), sea state characteristics and near-surface water temperature ( 2 cm depth) are described. This light (righting. It has a small above-surface profile and low windage, resulting in near-Lagrangian drift characteristics. It is autonomous, with low power requirements and solar panel battery recharging. Onboard sensors include an inductive toroidal conductivity probe for salinity measurement, a nine-degrees-of-freedom motion package for derivation of directional wave spectra and a thermocouple for water temperature measurement. Data retrieval for expendable, ocean-going operation uses an onboard Argos transmitter. Scientific results as well as data processing algorithms are presented from laboratory and field experiments which support qualification of buoy platform measurements. These include sensor calibration experiments, longer-term dock-side biofouling experiments during 2013-2014 and a series of short-duration ocean deployments in the Gulf Stream in 2014. In addition, a treatment method will be described which appears to minimize the effects of biofouling on the inductive conductivity probe when in coastal surface waters. Due to its low cost and ease of deployment, scores, perhaps hundreds of these novel instruments could be deployed from ships or aircraft during process studies or to provide surface validation for satellite-based measurements, particularly in high precipitation regions.

  1. Measuring the role of seagrasses in regulating sediment surface elevation

    KAUST Repository

    Potouroglou, Maria

    2017-09-13

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other \\'blue carbon\\' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  2. Measuring the role of seagrasses in regulating sediment surface elevation

    Science.gov (United States)

    Potouroglou, Maria; Bull, James C.; Krauss, Ken W.; Kennedy, Hilary A.; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M.; Githaiga, Michael N.; Diele, Karen; Huxham, Mark

    2017-01-01

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other ‘blue carbon’ habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  3. An USB-based time measurement system

    International Nuclear Information System (INIS)

    Qin Xi; Liu Shubin; An Qi

    2010-01-01

    In this paper,we report the electronics of a timing measurement system of PTB(portable TDC board), which is a handy tool based on USB interface, customized for high precision time measurements without any crates. The time digitization is based on the High Performance TDC Chip (HPTDC). The real-time compensation for HPTDC outputs and the USB master logic are implemented in an ALTERA's Cyclone FPGA. The architecture design and logic design are described in detail. Test of the system showed a time resolution of 13.3 ps. (authors)

  4. Measurement of the radon exhalation rate from the medium surface by tracing the radon concentration

    International Nuclear Information System (INIS)

    Yanliang Tan; Detao Xiao

    2013-01-01

    The paper will present a method based on the accumulation chamber technique for measuring of radon exhalation from the medium surface. A radon monitor traces the change of radon concentration in the accumulation chamber, and then the radon exhalation can be obtained accurately through linear fit. Based on our recent experiments, the radon exhalation rate from the medium surface obtained from this method is in good agreement with the actual exhalation rate of our simulation facility. This method is superior to the competition method which obtains the radon exhalation through the exponential fit by an external PC-system. The calculation for the exponential fit is very easy by computer and related software. However, for portable instruments, the single chip microcomputer can't calculate the exponential fit rapidly. Thus, this method is usable for developing the new portable instrument to classify building materials, etc. (author)

  5. Toward Measuring Network Aesthetics Based on Symmetry

    Directory of Open Access Journals (Sweden)

    Zengqiang Chen

    2017-05-01

    Full Text Available In this exploratory paper, we discuss quantitative graph-theoretical measures of network aesthetics. Related work in this area has typically focused on geometrical features (e.g., line crossings or edge bendiness of drawings or visual representations of graphs which purportedly affect an observer’s perception. Here we take a very different approach, abandoning reliance on geometrical properties, and apply information-theoretic measures to abstract graphs and networks directly (rather than to their visual representaions as a means of capturing classical appreciation of structural symmetry. Examples are used solely to motivate the approach to measurement, and to elucidate our symmetry-based mathematical theory of network aesthetics.

  6. Reproducibility of UAV-based earth surface topography based on structure-from-motion algorithms.

    Science.gov (United States)

    Clapuyt, François; Vanacker, Veerle; Van Oost, Kristof

    2014-05-01

    A representation of the earth surface at very high spatial resolution is crucial to accurately map small geomorphic landforms with high precision. Very high resolution digital surface models (DSM) can then be used to quantify changes in earth surface topography over time, based on differencing of DSMs taken at various moments in time. However, it is compulsory to have both high accuracy for each topographic representation and consistency between measurements over time, as DSM differencing automatically leads to error propagation. This study investigates the reproducibility of reconstructions of earth surface topography based on structure-from-motion (SFM) algorithms. To this end, we equipped an eight-propeller drone with a standard reflex camera. This equipment can easily be deployed in the field, as it is a lightweight, low-cost system in comparison with classic aerial photo surveys and terrestrial or airborne LiDAR scanning. Four sets of aerial photographs were created for one test field. The sets of airphotos differ in focal length, and viewing angles, i.e. nadir view and ground-level view. In addition, the importance of the accuracy of ground control points for the construction of a georeferenced point cloud was assessed using two different GPS devices with horizontal accuracy at resp. the sub-meter and sub-decimeter level. Airphoto datasets were processed with SFM algorithm and the resulting point clouds were georeferenced. Then, the surface representations were compared with each other to assess the reproducibility of the earth surface topography. Finally, consistency between independent datasets is discussed.

  7. Accuracy of magnetic resonance based susceptibility measurements

    Science.gov (United States)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  8. Surface transport properties of Fe-based superconductors: The influence of degradation and inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Plecenik, T.; Gregor, M.; Sobota, R.; Truchly, M.; Satrapinskyy, L.; Kus, P.; Plecenik, A. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Kurth, F.; Holzapfel, B.; Iida, K. [Institute for Metallic Materials, IFW Dresden, P. O. Box 270116, D-01171 Dresden (Germany)

    2013-07-29

    Surface properties of Co-doped BaFe{sub 2}As{sub 2} epitaxial superconducting thin films were inspected by X-ray photoelectron spectroscopy, scanning spreading resistance microscopy (SSRM), and point contact spectroscopy (PCS). It has been shown that surface of Fe-based superconductors degrades rapidly if being exposed to air, what results in suppression of gap-like structure on PCS spectra. Moreover, SSRM measurements revealed inhomogeneous surface conductivity, what is consistent with strong dependence of PCS spectra on contact position. Presented results suggest that fresh surface and small probing area should be assured for surface sensitive measurements like PCS to obtain intrinsic properties of Fe-based superconductors.

  9. Surface-based prostate registration with biomechanical regularization

    Science.gov (United States)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  10. Oxidation of clean silicon surfaces studied by four-point probe surface conductance measurements

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Aono, M.

    1997-01-01

    We have investigated how the conductance of Si(100)-(2 x 1) and Si(111)-(7 x 7) surfaces change during exposure to molecular oxygen. A monotonic decrease in conductance is seen as the (100) surfaces oxidizes. In contract to a prior study, we propose that this change is caused by a decrease in sur...

  11. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-01-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3–5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. - Highlights: • Radon exhalation rate from the soil surface area of 32 cm"2 can be measured at level of 10 mBq/(m"2s) at the uncertainty ≤30%. • The method has a metrological justification. • No need to consider climate conditions, soil properties and conditions, mechanism and rate of radon transport in the soil.

  12. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures.

    Science.gov (United States)

    Müller, Frank A; Kunz, Clemens; Gräf, Stephan

    2016-06-15

    Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  13. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures

    Directory of Open Access Journals (Sweden)

    Frank A. Müller

    2016-06-01

    Full Text Available Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS. In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  14. A web-based tool for ranking landslide mitigation measures

    Science.gov (United States)

    Lacasse, S.; Vaciago, G.; Choi, Y. J.; Kalsnes, B.

    2012-04-01

    As part of the research done in the European project SafeLand "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies", a compendium of structural and non-structural mitigation measures for different landslide types in Europe was prepared, and the measures were assembled into a web-based "toolbox". Emphasis was placed on providing a rational and flexible framework applicable to existing and future mitigation measures. The purpose of web-based toolbox is to assist decision-making and to guide the user in the choice of the most appropriate mitigation measures. The mitigation measures were classified into three categories, describing whether the mitigation measures addressed the landslide hazard, the vulnerability or the elements at risk themselves. The measures considered include structural measures reducing hazard and non-structural mitigation measures, reducing either the hazard or the consequences (or vulnerability and exposure of elements at risk). The structural measures include surface protection and control of surface erosion; measures modifying the slope geometry and/or mass distribution; measures modifying surface water regime - surface drainage; measures mo¬difying groundwater regime - deep drainage; measured modifying the mechanical charac¬teristics of unstable mass; transfer of loads to more competent strata; retaining structures (to modify slope geometry and/or to transfer stress to compe¬tent layer); deviating the path of landslide debris; dissipating the energy of debris flows; and arresting and containing landslide debris or rock fall. The non-structural mitigation measures, reducing either the hazard or the consequences: early warning systems; restricting or discouraging construction activities; increasing resistance or coping capacity of elements at risk; relocation of elements at risk; sharing of risk through insurance. The measures are described in the toolbox with fact sheets providing a

  15. Interferometer for measuring the dynamic surface topography of a human tear film

    Science.gov (United States)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-03-01

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  16. Characterizing boundary layer height using surface and column measurements of NO2 and formaldehyde

    Science.gov (United States)

    Valin, L.; Szykman, J.; Long, R.; Whitehill, A.; Williams, D. J.; Knepp, T. N.; Crawford, J. H.; Al-Saadi, J. A.; Judd, L.; Brown, S.; Matichuk, R.; Tonnesen, G.; Appel, W.; Hogrefe, C.; Abuhassan, N.; Cede, A.; Spinei, E.; Herman, J. R.; Swap, R.; Cohen, R. C.; Fried, A.; Weinheimer, A. J.

    2017-12-01

    The rate of vertical mixing near the surface determines the rate of human exposure to emitted pollutants and also influences the rate at which ozone and particulate matter are formed. To characterize the variability of atmospheric composition near the surface and above, the EPA Office of Research and Development has deployed instruments to measure surface and column concentrations of NO2, an emitted species, and formaldehyde (HCHO) during KORUS-AQ (May - June 2016, Seoul, Korea), UWFPS (Jan-Feb 2016, Salt Lake City) and LMOS (May - June, 2017, Lake Michigan). We compare the mixed layer height determined by aerosol backscatter profiles to a value determined by dividing the NO2 and HCHO column density (molecule cm-2) by its surface concentration (molecule cm-3), using linear regression to remove influence of layers aloft (y-intercept), such as subtraction of the stratospheric NO2 column. We evaluate our findings by using aircraft soundings of NO2 and HCHO and discuss the implications with respect to photochemical transport modeling results from CMAQ and space-based satellite retrievals. Finally we discuss an overall strategy to make these measurements part of routine monitoring at Photochemical Assessment Monitoring System locations (PAMS).

  17. Leidenfrost drops cooling surfaces: theory and interferometric measurement

    NARCIS (Netherlands)

    Van Limbeek, Michiel A. J.; Klein Schaarsberg, Martin H.; Sobac, Benjamin; Rednikov, Alexey; Sun, Chao; Colinet, Pierre; Lohse, Detlef

    2017-01-01

    When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower

  18. Cheap and fast measuring roughness on big surfaces with an imprint method

    Science.gov (United States)

    Schopf, C.; Liebl, J.; Rascher, R.

    2017-10-01

    Roughness, shape and structure of a surface offer information on the state, shape and surface characteristics of a component. Particularly the roughness of the surface dictates the subsequent polishing of the optical surface. The roughness is usually measured by a white light interferometer, which is limited by the size of the components. Using a moulding method of surfaces that are difficult to reach, an imprint is taken and analysed regarding to roughness and structure. This moulding compound method is successfully used in dental technology. In optical production, the moulding compound method is advantageous in roughness determination in inaccessible spots or on large components (astrological optics). The "replica method" has been around in metal analysis and processing. Film is used in order to take an impression of a surface. Then, it is analysed for structures. In optical production, compound moulding seems advantageous in roughness determination in inaccessible spots or on large components (astrological optics). In preliminary trials, different glass samples with different roughness levels were manufactured. Imprints were taken from these samples (based on DIN 54150 "Abdruckverfahren für die Oberflächenprüfung"). The objective of these feasibility tests was to determine the limits of this method (smallest roughness determinable / highest roughness). The roughness of the imprint was compared with the roughness of the glass samples. By comparing the results, the uncertainty of the measuring method was determined. The spectrum for the trials ranged from rough grind (0.8 μm rms), over finishing grind (0.6 μm rms) to polishing (0.1 μm rms).

  19. Automated Measurement for Sensitivity Analysis of Runoff-Sediment Load at Varying Surface Gradients

    Directory of Open Access Journals (Sweden)

    Imanogor P.A.

    2015-07-01

    Full Text Available Direct measurement of surface runoff is often associated with errors and inaccuracies which results to unreliable hydrological data. An automatic Runoff-meter using tipping buckets arrangement calibrated to tip 0.14 liter of runoff water per tip with an accuracy of ± 0.001 litre was used to measure surface runoff from a steel bounded soil tray of dimension (1200 mm X 900 mm X 260 mm filled with sand loamy to the depth of 130 mm and inclined at angle (0 0 , 5 0 ,12 0 and 15 0 horizontal to the instrument. The effect of varying angles of inclination on runoff intensity, sediment loss rate and sediment loss is significant at 5 % confidence level, while surface runoff is not significant at 5 % confidence level. Total highest sediment loss of 458.2 g and 313.4 g were observed at angle 15 0 and 12 0 respectively. Total surface runoff of 361.5 mm and 445.8 mm were generated at inclined angle of 0 0 and 5 0 , while at angle 12 0 and 15 0 , 564.3 mm and 590.0 mm of surface runoff were generated. In addition, runoff intensity and sediment loss rate were highest at angle 15 0 , while the lowest values of 1.5mm/min and 5.43 g/min were obtained at angle of inclination 5 0 . The results showed that strong relationship existed among the hydrological variables as a result of subjecting the steel bounded soil tray to different angles of inclination. Such results would provide useful data for the running of physics-based deterministic model of surface runoff and erosion which will be useful for the design of hydrological structures, land use planning and management.

  20. Evaluation of upper limb muscle fatigue based on surface electromyography.

    Science.gov (United States)

    Zhou, Qianxiang; Chen, Yuhong; Ma, Chao; Zheng, Xiaohui

    2011-10-01

    Fatigue is believed to be a major contributory factor to occupational injuries in machine operators. The development of accurate and usable techniques to measure operator fatigue is therefore important. In this study, we used a novel method based on surface electromyography (sEMG) of the biceps brachii and the Borg scale to evaluate local muscle fatigue in the upper limb after isometric muscle action. Thirteen young males performed isometric actions with the upper limb at different force levels. sEMG activities of the biceps brachii were recorded during the actions. Borg scales were used to evaluate the subjective sensation of local fatigue of the biceps brachii after the actions. sEMG activities were analyzed using the one-third band octave method, and an equation to determine the degree of fatigue was derived based on the relationship between the variable and the Borg scale. The results showed that the relationship could be expressed by a conic curve, and could be used to evaluate muscle fatigue during machine operation.

  1. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  2. Automated system for measuring the surface dilational modulus of liquid–air interfaces

    International Nuclear Information System (INIS)

    Stadler, Dominik; Shamonin, Mikhail; Hofmann, Matthias J; Motschmann, Hubert

    2016-01-01

    The surface dilational modulus is a crucial parameter for describing the rheological properties of aqueous surfactant solutions. These properties are important for many technological processes. The present paper describes a fully automated instrument based on the oscillating bubble technique. It works in the frequency range from 1 Hz to 500 Hz, where surfactant exchange dynamics governs the relaxation process. The originality of instrument design is the consistent combination of modern measurement technologies with advanced imaging and signal processing algorithms. Key steps on the way to reliable and precise measurements are the excitation of harmonic oscillation of the bubble, phase sensitive evaluation of the pressure response, adjustment and maintenance of the bubble shape to half sphere geometry for compensation of thermal drifts, contour tracing of the bubbles video images, removal of noise and artefacts within the image for improving the reliability of the measurement, and, in particular, a complex trigger scheme for the measurement of the oscillation amplitude, which may vary with frequency as a result of resonances. The corresponding automation and programming tasks are described in detail. Various programming strategies, such as the use of MATLAB ® software and native C++ code are discussed. An advance in the measurement technique is demonstrated by a fully automated measurement. The instrument has the potential to mature into a standard technique in the fields of colloid and interface chemistry and provides a significant extension of the frequency range to established competing techniques and state-of-the-art devices based on the same measurement principle. (paper)

  3. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  4. Surface versus Edge-Based Determinants of Visual Recognition.

    Science.gov (United States)

    Biederman, Irving; Ju, Ginny

    1988-01-01

    The latency at which objects could be identified by 126 subjects was compared through line drawings (edge-based) or color photography (surface depiction). The line drawing was identified about as quickly as the photograph; primal access to a mental representation of an object can be modeled from an edge-based description. (SLD)

  5. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  6. Evaluation of thermocouple fin effect in cladding surface temperature measurement during film boiling

    International Nuclear Information System (INIS)

    Tsuruta, Takaharu; Fujishiro, Toshio

    1984-01-01

    Thermocouple fin effect on surface temperature measurement of a fuel rod has been studied at elevated wall temperatures under film boiling condition in a reactivity initiated accident (RIA) situation. This paper presents an analytical equation to evaluate temperature drops caused by the thermocouple wires attached to cladding surface. The equation yielded the local temperature drop at measuring point depending on thermocouple diameter, cladding temperature, coolant flow condition and vapor film thickness. The temperature drops by the evaluating equation were shown in cases of free and forced convection conditions. The analytical results were compared with the measured data for various thermocouple sizes, and also with the estimated maximum cladding temperature based on the oxidation layer thickness in the cladding outer surface. It was concluded that the temperature drops at above 1,000 0 C in cladding temperature were around 120 and 150 0 C for 0.2 and 0.3 mm diameter Pt-Pt.Rh thermocouples, respectively, under a stagnant coolant condition. The fin effect increases with the decrease of vapor film thickness such as under forced flow cooling or at near the quenching point. (author)

  7. Titanium-based spectrally selective surfaces for solar thermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A D; Holmes, J P

    1983-10-01

    A study of spectrally selective surfaces based on anodic oxide films on titanium is presented. These surfaces have low values of solar absorptance, 0.77, due to the nonideal optical properties of the anodic TiO2 for antireflection of titanium. A simple chemical etching process is described which gives a textured surface with dimensions similar to the wavelengths of solar radiation, leading to spectral selectivity. The performance of this dark-etched surface can be further improved by anodising, and optimum absorbers have been produced with alpha(s) 0.935 and hemispherical emittances (400 K) 0.23. The surface texturing effects a significant improvement in alpha(s) at oblique incidence.

  8. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  9. Spatially telescoping measurements for improved characterization of groundwater-surface water interactions

    Science.gov (United States)

    Kikuchi, Colin; Ferre, Ty P.A.; Welker, Jeffery M.

    2012-01-01

    The suite of measurement methods available to characterize fluxes between groundwater and surface water is rapidly growing. However, there are few studies that examine approaches to design of field investigations that include multiple methods. We propose that performing field measurements in a spatially telescoping sequence improves measurement flexibility and accounts for nested heterogeneities while still allowing for parsimonious experimental design. We applied this spatially telescoping approach in a study of ground water-surface water (GW-SW) interaction during baseflow conditions along Lucile Creek, located near Wasilla, Alaska. Catchment-scale data, including channel geomorphic indices and hydrogeologic transects, were used to screen areas of potentially significant GW-SW exchange. Specifically, these data indicated increasing groundwater contribution from a deeper regional aquifer along the middle to lower reaches of the stream. This initial assessment was tested using reach-scale estimates of groundwater contribution during baseflow conditions, including differential discharge measurements and the use of chemical tracers analyzed in a three-component mixing model. The reach-scale measurements indicated a large increase in discharge along the middle reaches of the stream accompanied by a shift in chemical composition towards a regional groundwater end member. Finally, point measurements of vertical water fluxes -- obtained using seepage meters as well as temperature-based methods -- were used to evaluate spatial and temporal variability of GW-SW exchange within representative reaches. The spatial variability of upward fluxes, estimated using streambed temperature mapping at the sub-reach scale, was observed to vary in relation to both streambed composition and the magnitude of groundwater contribution from differential discharge measurements. The spatially telescoping approach improved the efficiency of this field investigation. Beginning our assessment

  10. Measurements of skin friction in water using surface stress sensitive films

    International Nuclear Information System (INIS)

    Crafton, J W; Fonov, S D; Jones, E G; Goss, L P; Forlines, R A; Fontaine, A

    2008-01-01

    The measurement of skin friction on hydrodynamic surfaces is of significant value for the design of advanced naval technology, particularly at high Reynolds numbers. Here we report on the development of a new sensor for measurement of skin friction and pressure that operates in both air and water. This sensor is based on an elastic polymer film that deforms under the action of applied normal and tangential loads. Skin friction and pressure gradients are determined by monitoring these deformations and then solving an inverse problem using a finite element model of the elastic film. This technique is known as surface stress sensitive films. In this paper, we describe the development of a sensor package specifically designed for two-dimensional skin friction measurements at a single point. The package has been developed with the goal of making two-dimensional measurements of skin friction in water. Quantitative measurements of skin friction are performed on a high Reynolds number turbulent boundary layer in the 12 inch water tunnel at Penn State University. These skin friction measurements are verified by comparing them to measurements obtained with a drag plate as well as by performing two-dimensional velocity measurements above the sensor using a laser Doppler velocimetry system. The results indicate that the sensor skin friction measurements are accurate to better than 5% and repeatable to better than 2%. The directional sensitivity of the sensor is demonstrated by positioning the sensor at several orientations to the flow. A final interesting feature of this sensor is that it is sensitive to pressure gradients, not to static pressure changes. This feature should prove useful for monitoring the skin friction on a seafaring vessel as the operating depth is changed

  11. Current Options for Measuring the Surface Temperature of Dairy Cattle in a Stable Technology: Review

    Directory of Open Access Journals (Sweden)

    Kateřina Švejdová

    2016-05-01

    Full Text Available Regular measurement of the body surface temperature can help to assess the health status of animals. There are many technological possibilities of contactless temperature measurement of body surface. The important thing is to find the right part of the body whose temperature will point to the first possible symptoms and immediately react to the first signs of the disease. Disagreements about how to measure body surface temperature and accuracy of the method can occur when different measures are used. We review work showing possibilities of contactless surface temperature measurements using 1 thermography, 2 electronic transponders and 3 other possibilities of measuring the body surface temperature of dairy cattle. For example, when we scan the surface temperature with the thermal imager there can operate in individual animals confounding factors such as the nature or degree of muscular coat, which may significantly affect the results.

  12. Measurement of the surface susceptibility and the surface conductivity of atomically thin by spectroscopic ellipsometry

    KAUST Repository

    Jayaswal, Gaurav; Dai, Zhenyu; Zhang, Xixiang; Bagnarol, Mirko; Martucci, Alessandro; Merano, Michele

    2017-01-01

    We show how to correctly extract from the ellipsometric data the surface susceptibility and the surface conductivity that describe the optical properties of monolayer $\\rm MoS_2$. Theoretically, these parameters stem from modelling a single-layer two-dimensional crystal as a surface current, a truly two-dimensional model. Currently experimental practice is to consider this model equivalent to a homogeneous slab with an effective thickness given by the interlayer spacing of the exfoliating bulk material. We prove that the error in the evaluation of the surface susceptibility of monolayer $\\rm MoS_2$, owing to the use of the slab model, is at least 10% or greater, a significant discrepancy in the determination of the optical properties of this material.

  13. Measurement of the surface susceptibility and the surface conductivity of atomically thin by spectroscopic ellipsometry

    KAUST Repository

    Jayaswal, Gaurav

    2017-10-01

    We show how to correctly extract from the ellipsometric data the surface susceptibility and the surface conductivity that describe the optical properties of monolayer $\\ m MoS_2$. Theoretically, these parameters stem from modelling a single-layer two-dimensional crystal as a surface current, a truly two-dimensional model. Currently experimental practice is to consider this model equivalent to a homogeneous slab with an effective thickness given by the interlayer spacing of the exfoliating bulk material. We prove that the error in the evaluation of the surface susceptibility of monolayer $\\ m MoS_2$, owing to the use of the slab model, is at least 10% or greater, a significant discrepancy in the determination of the optical properties of this material.

  14. Measurement noise of a point autofocus surface topography instrument

    DEFF Research Database (Denmark)

    Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo

    Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....

  15. Acid-base characteristics of powdered-activated-carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E. (West Virginia Univ., Morgantown (United States)); Jensen, J.N.; Matsumoto, M.R. (State Univ. of New York, Buffalo (United States))

    Adsorption of heavy metals onto activated carbon has been described using the surface-complex-formation (SCF) model, a chemical equilibrium model. The SCF model requires a knowledge of the amphoteric nature of activated carbon prior to metal adsorption modeling. In the past, a single-diprotic-acid-site model had been employed to describe the amphoteric nature of activated-carbon surfaces. During this study, the amphoteric nature of two powdered activated carbons were investigated, and a three-monoprotic site surface model was found to be a plausible alternative. The single-diprotic-acid-site and two-monoprotic-site models did not describe the acid-base behavior of the two carbons studied adequately. The two-diprotic site was acceptable for only one of the study carbons. The acid-base behavior of activated carbon surfaces seem to be best modeled as a series of weak monoprotic acids.

  16. Trends in interfacial design for surface plasmon resonance based immunoassays

    International Nuclear Information System (INIS)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir-Blodgett film, polymer thin film, self-assembly, sol-gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles. (review article)

  17. Trends in interfacial design for surface plasmon resonance based immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Dhesingh Ravi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan); Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan)

    2007-12-07

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir-Blodgett film, polymer thin film, self-assembly, sol-gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles. (review article)

  18. Inference-Based Surface Reconstruction of Cluttered Environments

    KAUST Repository

    Biggers, K.

    2012-08-01

    We present an inference-based surface reconstruction algorithm that is capable of identifying objects of interest among a cluttered scene, and reconstructing solid model representations even in the presence of occluded surfaces. Our proposed approach incorporates a predictive modeling framework that uses a set of user-provided models for prior knowledge, and applies this knowledge to the iterative identification and construction process. Our approach uses a local to global construction process guided by rules for fitting high-quality surface patches obtained from these prior models. We demonstrate the application of this algorithm on several example data sets containing heavy clutter and occlusion. © 2012 IEEE.

  19. Design of structurally colored surfaces based on scalar diffraction theory

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Andkjær, Jacob Anders; Sigmund, Ole

    2014-01-01

    In this paper we investigate the possibility of controlling the color and appearance of surfaces simply by modifying the height profile of the surface on a nanoscale level. The applications for such methods are numerous: new design possibilities for high-end products, color engraving on any highly...... reflective surface, paint-free text and coloration, UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results. For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results, several design issues...

  20. Correlation and uncertainties evaluation in backscattering of entrance surface air kerma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, G.J.; Sousa, C.H.S.; Peixoto, J.G.P., E-mail: gt@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The air kerma measurement is important to verify the applied doses in radiodiagnostic. The literature determines some methods to measure the entrance surface air kerma or entrance surface dose but some of this methods may increase the measurement with the backscattering. Were done setups of measurements to do correlations between them. The expanded uncertainty exceeded 5% for measurements with backscattering, reaching 8.36%, while in situations where the backscattering was avoided, the uncertainty was 3.43%. (author)

  1. Commencement measurements giving fundamental surface tension determinations in tensiometry

    International Nuclear Information System (INIS)

    Carbery, D; Morrin, D; O'Rourke, B; McMillan, N D; O'Neill, M; Riedel, S; Pringuet, P; Smith, S R P

    2011-01-01

    This study provides experimental testing of a ray-tracing model of the tensiotrace that explores the measurement potential of a well-defined optical position in the tensiotrace signal known as the 'commencement'. This point is defined as the first measureable optical coupling in the fiber drophead between source and collector fibers for light injected inside a growing drop. Tensiotrace ray-tracing model is briefly introduced. Empirical relationships of commencement measures from a wide-ranging study are presented. A number of conclusions can be drawn from the successful linking of computer predictions to these experimental relationships.

  2. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  3. Time-Resolved Surface Temperature Measurement for Pulsed Ablative Thrusters

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2003-01-01

    .... The diagnostic draws on heritage from the experimental dynamic crack propagation community which has used photovoltaic infrared detectors to measure temperature rise in materials in the process of fracture...

  4. Earth System Research Laboratory Long-Term Surface Aerosol Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerosol measurements began at the NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division (GMD) baseline observatories in the mid-1970's with the...

  5. Nanoparticle-Based Surface Modifications for Microtribology Control and Superhydrophobicity

    Science.gov (United States)

    Hurst, Kendall Matthew

    2010-11-01

    The emergence of miniaturization techniques for consumer electronics has brought forth the relatively new and exciting field of microelectromechanical systems (MEMS). However, due to the inherent forces that exist between surfaces at the micro- and nanoscale, scientists and semiconductor manufacturers are still struggling to improve the lifetime and reliability of complex microdevices. Due to the extremely large surface area-to-volume ratio of typical MEMS and microstructured surfaces, dominant interfacial forces exist which can be detrimental to their operational lifetime. In particular, van der Waals, capillary, and electrostatic forces contribute to the permanent adhesion, or stiction , of microfabricated surfaces. This strong adhesion force also contributes to the friction and wear of these silicon-based systems. The scope of this work was to examine the effect of utilizing nanoparticles as the basis for roughening surfaces for the purpose of creating films with anti-adhesive and/or superhydrophobic properties. All of the studies presented in this work are focused around a gas-expanded liquid (GXL) process that promotes the deposition of colloidal gold nanoparticles (AuNPs) into conformal thin films. The GXL particle deposition process is finalized by a critical point drying step which is advantageous to the microelectromechanical systems and semiconductor (IC) industries. In fact, preliminary results illustrated that the GXL particle deposition process can easily be integrated into current MEMS microfabrication processes. Thin films of AuNPs deposited onto the surfaces of silicon-based MEMS and tribology test devices were shown to have a dramatic effect on the adhesion of microstructures. In the various investigations, the apparent work of adhesion between surfaces was reduced by 2-4 orders of magnitude. This effect is greatly attributed to the roughening of the typically smooth silicon oxide surfaces which, in turn, dramatically decreases the "real are of

  6. Cuantificación de la contaminación del gas de protección en procesos de soldadura con arco eléctrico por medio de mediciones de oxígeno en la superficie del material base Quantification of contamination of the shielding gas in arc welding processes through measurement of oxygen on the surface of the base material

    Directory of Open Access Journals (Sweden)

    Julio Fuentes-Muñoz

    2012-09-01

    Full Text Available A metodologia apresentada neste trabalho se baseia em medições do teor de oxigênio na superfície do metal base, possibilitando assim, uma avaliação quantitativa da contaminação do gás de proteção. Os gases utilizados nos processos de soldagem definem as características do arco e protegem a poça de soldagem. A contaminação do gás, por exemplo, com o ar do meio ambiente, prejudica as propriedades da união soldada. A contaminação do gás de proteção não é somente dependente da qualidade do gás utilizado, como também tem que ser considerado os componentes contidos na tocha. Até agora, o nível da contaminação do gás produzido pela tocha tem sido analisado somente de forma empírica, avaliando a qualidade e forma do cordão de solda. A medição do oxigênio na superfície do metal de base é um método simples e preciso para analisar o nível de contaminação do gás de proteção. Este procedimento permite uma avaliação quantitativa, inclusive na presença do arco. No contexto deste trabalho se apresentará por meio de exemplos em tochas TIG e MIG/MAG as possibilidades da utilização desta metodologia para o desenvolvimento e análise de processos de soldagem a arco.The method presented in this paper is based on the measurement of oxygen on the surface of the base metal to enable a quantitative assessment of the contamination in the shielding gas. The gas used in arc processes affected arc properties and simultaneously protected the welding pool. The contamination of the shielding gases, e.g. with atmospheric air, damages the properties of the weld joint. The contamination in the shielding gas is not only dependent on the purity of the utilized gas, but also on the components of the welding torch. The level of contamination in the gas produced by the torch had been analyzed so far only by empirical evaluation of the quality and appearance of the welding seam. The measurement of oxygen on the surface of the base

  7. A SVD Based Image Complexity Measure

    DEFF Research Database (Denmark)

    Gustafsson, David Karl John; Pedersen, Kim Steenstrup; Nielsen, Mads

    2009-01-01

    Images are composed of geometric structures and texture, and different image processing tools - such as denoising, segmentation and registration - are suitable for different types of image contents. Characterization of the image content in terms of geometric structure and texture is an important...... problem that one is often faced with. We propose a patch based complexity measure, based on how well the patch can be approximated using singular value decomposition. As such the image complexity is determined by the complexity of the patches. The concept is demonstrated on sequences from the newly...... collected DIKU Multi-Scale image database....

  8. Ordinal-Measure Based Shape Correspondence

    Directory of Open Access Journals (Sweden)

    Faouzi Alaya Cheikh

    2002-04-01

    Full Text Available We present a novel approach to shape similarity estimation based on distance transformation and ordinal correlation. The proposed method operates in three steps: object alignment, contour to multilevel image transformation, and similarity evaluation. This approach is suitable for use in shape classification, content-based image retrieval and performance evaluation of segmentation algorithms. The two latter applications are addressed in this papers. Simulation results show that in both applications our proposed measure performs quite well in quantifying shape similarity. The scores obtained using this technique reflect well the correspondence between object contours as humans perceive it.

  9. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    Science.gov (United States)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the

  10. Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness...... parameter in the range (101—103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements...... of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation...

  11. A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces

    International Nuclear Information System (INIS)

    Li, Bin; Li, Feng; Liu, Hongqi; Cai, Hui; Mao, Xinyong; Peng, Fangyu

    2014-01-01

    This study presents a novel measurement strategy and an error-compensation model for the measurement of large-scale free-form surfaces in on-machine laser measurement systems. To improve the measurement accuracy, the effects of the scan depth, surface roughness, incident angle and azimuth angle on the measurement results were investigated experimentally, and a practical measurement strategy considering the position and orientation of the sensor is presented. Also, a semi-quantitative model based on geometrical optics is proposed to compensate for the measurement error associated with the incident angle. The normal vector of the measurement point is determined using a cross-curve method from the acquired surface data. Then, the azimuth angle and incident angle are calculated to inform the measurement strategy and error-compensation model, respectively. The measurement strategy and error-compensation model are verified through the measurement of a large propeller blade on a heavy machine tool in a factory environment. The results demonstrate that the strategy and the model are effective in increasing the measurement accuracy. (paper)

  12. Sea level: measuring the bounding surfaces of the ocean

    Science.gov (United States)

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  13. Sea level: measuring the bounding surfaces of the ocean.

    Science.gov (United States)

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Remote measurement of surface roughness, surface reflectance, and body reflectance with LiDAR.

    Science.gov (United States)

    Li, Xiaolu; Liang, Yu

    2015-10-20

    Light detection and ranging (LiDAR) intensity data are attracting increasing attention because of the great potential for use of such data in a variety of remote sensing applications. To fully investigate the data potential for target classification and identification, we carried out a series of experiments with typical urban building materials and employed our reconstructed built-in-lab LiDAR system. Received intensity data were analyzed on the basis of the derived bidirectional reflectance distribution function (BRDF) model and the established integration method. With an improved fitting algorithm, parameters involved in the BRDF model can be obtained to depict the surface characteristics. One of these parameters related to surface roughness was converted to a most used roughness parameter, the arithmetical mean deviation of the roughness profile (Ra), which can be used to validate the feasibility of the BRDF model in surface characterizations and performance evaluations.

  15. Green maritime transportation: Market based measures

    DEFF Research Database (Denmark)

    Psaraftis, Harilaos N.

    2016-01-01

    The purpose of this chapter is to introduce the concept of Market Based Measures (MBMs) to reduce Green House Gas (GHG) emissions from ships, and review several distinct MBM proposals that have been under consideration by the International Maritime Organization (IMO). The chapter discusses the me...... the mechanisms used by MBMs, and explores how the concept of the Marginal Abatement Cost (MAC) can be linked to MBMs. It also attempts to discuss the pros and cons of the submitted proposals....

  16. Preliminary analysis of surface radiation measurements recorded at the Nansen ice sheet (Antarctica)

    International Nuclear Information System (INIS)

    Bonafe', U.; Dalpane, E.; Georgiadis, T.; Pitacco, A.

    1996-01-01

    An experiment on radiation and surface energy balance was conducted during the 9. Italian expedition in Antarctica at the Nancen ice sheet, a glacier situated close to the Italian base at Terra Nova Bay, to correlate surface balances to the formation and development of katabatic winds. Measurements were taken by radiometers covering the whole spectra of solar and terrestrial emissions and by fast sensors of atmospheric wind velocity and humidity for the application of the eddy correlation technique. A preliminary analysis of the radiometric data collected in order to quantify the major components of radiative energy balance during the Antarctic summer in clear sky conditions is reported and discussed. The findings show the very low available energy (mean about 1 W/m 2 ), in terms of net radiation, for the physical processes such as sensible- and latent-heat fluxes. Long-wave radiation balance was applied to estimate the reliability of the Swinbank's parametrization, relative to general conditions of the atmosphere

  17. A method of surface area measurement of fuel materials by fission gas release at low temperature

    International Nuclear Information System (INIS)

    Kaimal, K.N.G.; Naik, M.C.; Paul, A.R.; Venkateswarlu, K.S.

    1989-01-01

    The present report deals with the development of a method for surface area measurement of nuclear fuel as well as fissile doped materials by fission gas release study at low temperature. The method is based on the evaluation of knock-out release rate of fission 133 Xe from irradiated fuel after sufficient cooling to decay the short lived activity. The report also describes the fabrication of an ampoule breaker unit for such study. Knock-out release rate of 133 Xe has been studied from UO 2 powders having varying surface area 'S' ranging from 270 cm 2 /gm to 4100 cm 2 /gm at two fissioning rates 10 12 f/cm 3 . sec. and 3.2x10 10 f/cm.sec. A relation between K and A has been established and discussed in this report. (author). 6 refs

  18. Statistical inference based on divergence measures

    CERN Document Server

    Pardo, Leandro

    2005-01-01

    The idea of using functionals of Information Theory, such as entropies or divergences, in statistical inference is not new. However, in spite of the fact that divergence statistics have become a very good alternative to the classical likelihood ratio test and the Pearson-type statistic in discrete models, many statisticians remain unaware of this powerful approach.Statistical Inference Based on Divergence Measures explores classical problems of statistical inference, such as estimation and hypothesis testing, on the basis of measures of entropy and divergence. The first two chapters form an overview, from a statistical perspective, of the most important measures of entropy and divergence and study their properties. The author then examines the statistical analysis of discrete multivariate data with emphasis is on problems in contingency tables and loglinear models using phi-divergence test statistics as well as minimum phi-divergence estimators. The final chapter looks at testing in general populations, prese...

  19. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  20. Measurement of the interaction between the flow and the free surface of a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koji [Univ. of Tokyo, Ibaraki (Japan); Schmidl, W.D.; Philip, O.G. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow.

  1. Measurement of the interaction between the flow and the free surface of a liquid

    International Nuclear Information System (INIS)

    Okamoto, Koji; Schmidl, W.D.; Philip, O.G.

    1995-01-01

    The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow

  2. Bioimpedance measurement based evaluation of wound healing.

    Science.gov (United States)

    Kekonen, Atte; Bergelin, Mikael; Eriksson, Jan-Erik; Vaalasti, Annikki; Ylänen, Heimo; Viik, Jari

    2017-06-22

    Our group has developed a bipolar bioimpedance measurement-based method for determining the state of wound healing. The objective of this study was to assess the capability of the method. To assess the performance of the method, we arranged a follow-up study of four acute wounds. The wounds were measured using the method and photographed throughout the healing process. Initially the bioimpedance of the wounds was significantly lower than the impedance of the undamaged skin, used as a baseline. Gradually, as healing progressed, the wound impedance increased and finally reached the impedance of the undamaged skin. The clinical appearance of the wounds examined in this study corresponded well with the parameters derived from the bioimpedance data. Hard-to-heal wounds are a significant and growing socioeconomic burden, especially in the developed countries, due to aging populations and to the increasing prevalence of various lifestyle related diseases. The assessment and the monitoring of chronic wounds are mainly based on visual inspection by medical professionals. The dressings covering the wound must be removed before assessment; this may disturb the wound healing process and significantly increases the work effort of the medical staff. There is a need for an objective and quantitative method for determining the status of a wound without removing the wound dressings. This study provided evidence of the capability of the bioimpedance based method for assessing the wound status. In the future measurements with the method should be extended to concern hard-to-heal wounds.

  3. Tire-to-Surface Friction-Coefficient Measurements with a C-123B Airplane on Various Runway Surfaces

    Science.gov (United States)

    Sawyer, Richard H.; Kolnick, Joseph J.

    1959-01-01

    An investigation was conducted to obtain information on the tire-to-surface friction coefficients available in aircraft braking during the landing run. The tests were made with a C-123B airplane on both wet and dry concrete and bituminous pavements and on snow-covered and ice surfaces at speeds from 12 to 115 knots. Measurements were made of the maximum (incipient skidding) friction coefficient, the full-skidding (locked wheel) friction coefficient, and the wheel slip ratio during braking.

  4. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  5. Helioseismic measurements in the solar envelope using group velocities of surface waves

    Science.gov (United States)

    Vorontsov, S. V.; Baturin, V. A.; Ayukov, S. V.; Gryaznov, V. K.

    2014-07-01

    At intermediate- and high-degree l, solar p and f modes can be considered as surface waves. Using variational principle, we derive an integral expression for the group velocities of the surface waves in terms of adiabatic eigenfunctions of normal modes, and address the benefits of using group-velocity measurements as a supplementary diagnostic tool in solar seismology. The principal advantage of using group velocities, when compared with direct analysis of the oscillation frequencies, comes from their smaller sensitivity to the uncertainties in the near-photospheric layers. We address some numerical examples where group velocities are used to reveal inconsistencies between the solar models and the seismic data. Further, we implement the group-velocity measurements to the calibration of the specific entropy, helium abundance Y, and heavy-element abundance Z in the adiabatically stratified part of the solar convective envelope, using different recent versions of the equation of state. The results are in close agreement with our earlier measurements based on more sophisticated analysis of the solar oscillation frequencies. These results bring further support to the downward revision of the solar heavy-element abundances in recent spectroscopic measurements.

  6. High-speed 3D surface measurement with mechanical projector

    Science.gov (United States)

    Hyun, Jae-Sang; Zhang, Song

    2017-05-01

    This paper presents a method to overcome the light spectral range limitation of using digital-light-processing (DLP) projector for 3D shape measurement by developing a mechanical projector. The mechanical projector enables much broader spectral range of light than that the DLP projector allows. The rapidly spinning disk with binary structures can generate desired sinusoidal patterns at a frequency of 10 kHz or higher with a single DC motor. By precisely synchronizing the camera with the projector, phase-shifted fringe patterns can be accurately captured for high-accuracy 3D shape measurement. We further employed a computational framework that could enable absolute phase and thus absolute 3D shape measurement. We developed such prototype system that experimentally demonstrated the success of the proposed method.

  7. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  8. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  9. An airport surface surveillance solution based on fusion algorithm

    Science.gov (United States)

    Liu, Jianliang; Xu, Yang; Liang, Xuelin; Yang, Yihuang

    2017-01-01

    In this paper, we propose an airport surface surveillance solution combined with Multilateration (MLAT) and Automatic Dependent Surveillance Broadcast (ADS-B). The moving target to be monitored is regarded as a linear stochastic hybrid system moving freely and each surveillance technology is simplified as a sensor with white Gaussian noise. The dynamic model of target and the observation model of sensor are established in this paper. The measurements of sensors are filtered properly by estimators to get the estimation results for current time. Then, we analysis the characteristics of two fusion solutions proposed, and decide to use the scheme based on sensor estimation fusion for our surveillance solution. In the proposed fusion algorithm, according to the output of estimators, the estimation error is quantified, and the fusion weight of each sensor is calculated. The two estimation results are fused with weights, and the position estimation of target is computed accurately. Finally the proposed solution and algorithm are validated by an illustrative target tracking simulation.

  10. Calorimetry Minisensor for the Localised Measurement of Surface Heat Dissipated from the Human Body.

    Science.gov (United States)

    Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Manuel

    2016-11-06

    We have developed a calorimetry sensor that can perform a local measurement of the surface heat dissipated from the human body. The operating principle is based on the law of conductive heat transfer: heat dissipated by the human body passes across a thermopile located between the individual and a thermostat. Body heat power is calculated from the signals measured by the thermopile and the amount of power dissipated across the thermostat in order to maintain a constant temperature. The first prototype we built had a detection area measuring 6 × 6 cm², while the second prototype, which is described herein, had a 2 × 2 cm² detection area. This new design offers three advantages over the initial one: (1) greater resolution and three times greater thermal sensitivity; (2) a twice as fast response; and (3) it can take measurements from smaller areas of the body. The sensor has a 5 mW resolution, but the uncertainty is greater, up to 15 mW, due to the measurement and calculation procedure. The order of magnitude of measurements made in healthy subjects ranged from 60 to 300 mW at a thermostat temperature of 28 °C and an ambient room temperature of 21 °C. The values measured by the sensor depend on the ambient temperature and the thermostat's temperature, while the power dissipated depends on the individual's metabolism and any physical and/or emotional activity.

  11. Runoff velocity behaviour on smooth pavement and paving blocks surfaces measured by a tilted plot

    Directory of Open Access Journals (Sweden)

    Sedyowati Laksni

    2017-06-01

    Full Text Available Paving blocks have been widely known as an alternative technology for reducing runoff discharge due to their infiltration performance and capability of retarding the flow. Surface configuration of the different paving blocks types and the openings area play important role in decreasing the runoff velocity. In this study, we investigated the surface runoff velocity on two types of paving blocks layers, and a smooth pavement as comparison. The paving blocks type were rectangular blocks, which have 3.2% openings ratio and hexagonal blocks, which have 6.5% openings ratio. We used a tilted plot covering area of 2 × 6 m, equipped by a rainfall simulator to accommodate the variation of surface slope and rainfall intensity. We measured the velocity by using modification of dye tracer and buoyancy method. The data were then tabulated and graphed based on the paving types and the surface slopes. Generally, the velocity-slope relationship has demonstrated that the increase in surface slope leads to the increase in velocity. In this study, the result showed that slope and rainfall intensity simultaneously influenced the velocity (F = 19.91 > Ftable = 5.14; P < 0.05. However, the findings of this study showed a weak relationship between the changes of surface slope and the changes of runoff velocity on the rectangular blocks (R2 = 0.38. The greater slope did not always invariably lead to the greater runoff velocity. It was likely that there was other predictor variable that was not identified before, and need to be further investigated.

  12. Characterization of the Micro-shell Surface Using Holographic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sandras, F.; Hermerel, C.; Choux, A.; Merillot, P.; Pin, G.; Jeannot, L. [CEA Valduc, Dept Rech Mat Nucl, Serv Microcibles, 21 - Is-sur-Tille (France)

    2009-05-15

    To characterize the shape, the quality, and the roughness of micro-shells, typically used technologies are scanning electron microscopy, scanning interferometric microscopy, or atomic force microscopy. One of the drawbacks of these techniques is that they are generally slow because of their scanning process. Digital holographic microscopy technology is an innovation that can offer ability adapted to these studies. It captures holograms instead of intensity images, as done by conventional microscopes. The holograms are then digitally interpreted (10 per second) to reconstruct a double image, one for the intensity and another one for the phase. Using a rotation axis, the bump counting for the complete micro-shell surface is possible with a very high speed. Using an image stitching software, mapping can be done in a few minutes. Wavelets such as 'Mexican hat' are used to model the bumps. Each bump can then be characterized on the map by its position, diameter, and height. (authors)

  13. Measuring surface current velocities in the Agulhas region with ASAR

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-01-01

    Full Text Available is known to perform well. Although radial velocities derived from ASAR are on occasion able to represent the measured flow with incredible accuracy, the overall performance of the ASAR radial velocity product is negatively impacted by a few very large...

  14. Animal-based measures for welfare assessment

    Directory of Open Access Journals (Sweden)

    Agostino Sevi

    2010-01-01

    Full Text Available Animal welfare assessment can’t be irrespective of measures taken on animals. Indeed, housing parametersrelatedtostructures, designandmicro-environment, evenifreliable parameters related to structures, design and micro-environment, even if reliable and easier to take, can only identify conditions which could be detrimental to animal welfare, but can’t predict poor welfare in animals per se. Welfare assessment through animal-based measures is almost complex, given that animals’ responses to stressful conditions largely depend on the nature, length and intensity of challenges and on physiological status, age, genetic susceptibility and previous experience of animals. Welfare assessment requires a multi-disciplinary approach and the monitoring of productive, ethological, endocrine, immunological and pathological param- eters to be exhaustive and reliable. So many measures are needed, because stresses can act only on some of the mentioned parameters or on all of them but at different times and degree. Under this point of view, the main aim of research is to find feasible and most responsive indicators of poor animal welfare. In last decades, studies focused on the following parameters for animal wel- fare assessment indexes of biological efficiency, responses to behavioral tests, cortisol secretion, neutrophil to lymphocyte ratio, lymphocyte proliferation, production of antigen specific IgG and cytokine release, somatic cell count and acute phase proteins. Recently, a lot of studies have been addressed to reduce handling and constraint of animals for taking measures to be used in welfare assessment, since such procedures can induce stress in animals and undermined the reliability of measures taken for welfare assessment. Range of animal-based measures for welfare assessment is much wider under experimental condition than at on-farm level. In welfare monitoring on-farm the main aim is to find feasible measures of proved validity and reliability

  15. Measurement of adhesion properties between topcoat paint and metallized/galvanized steel with surface energy measurement equipment.

    Science.gov (United States)

    2013-09-01

    The objectives of this research project are: (1) Compare the adhesion properties of NEPCOAT-approved topcoat paint over : metallized or galvanized steel. Use surface-energy measuring technique to characterize the wetting properties of the liqui...

  16. Measuring globalization-based acculturation in Ladakh

    DEFF Research Database (Denmark)

    Ozer, Simon; Schwartz, Seth

    2016-01-01

    Theories and methodologies within acculturation psychology have been advanced in orderto capture the complex process of intercultural contact in various contexts. Differentiatingglobalization-based acculturation from immigrant-based acculturation has broadened thefield of acculturation psychology...... to include groups who are exposed to global culturalstreams without international migration. The globalization-based acculturation process inthe North Indian region of Ladakh appears to be a tricultural encounter, suggesting anaddendum to the bidimensional acculturation model for this group (and perhaps...... for othersas well). This study explores the development, usability, and validity of a tridimensionalacculturation measure aiming to capture the multicultural orientations initiated by theprocess of globalization in Ladakh. The tridimensional acculturation scale was found to fitthe data significantly better...

  17. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces......, is one possible explanation for the observed low global diffusion rates in the pore system of positively charged ions compared to the negatively charged ones. Here it is of interest to simulate the multi ionic diffusion behavior when assigning positively charged ions a comparably lower diffusion constant...

  18. An objective device for measuring surface roughness of skin and scars

    NARCIS (Netherlands)

    Bloemen, Monica C. T.; van Gerven, Maaike S.; van der Wal, Martijn B. A.; Verhaegen, Pauline D. H. M.; Middelkoop, Esther

    2011-01-01

    Scar formation remains a major clinical problem; therefore, various therapies have been developed to improve scar quality. To evaluate the effectiveness of these therapies, objective measurement tools are necessary. An appropriate, objective measuring instrument for assessment of surface roughness

  19. An objective device for measuring surface roughness of skin and scars

    NARCIS (Netherlands)

    Bloemen, M.C.T.; van Gerven, M.S.; van der Wal, M.B.A.; Verhaegen, P.D.H.M.; Middelkoop, E.

    2011-01-01

    Background: Scar formation remains a major clinical problem; therefore, various therapies have been developed to improve scar quality. To evaluate the effectiveness of these therapies, objective measurement tools are necessary. An appropriate, objective measuring instrument for assessment of surface

  20. Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection

    Science.gov (United States)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-05-01

    Three-dimensional (3D) shape measurement based on fringe pattern projection techniques has been commonly used in various fields. One of the remaining challenges in fringe pattern projection is that camera sensor saturation may occur if there is a large range of reflectivity variation across the surface that causes measurement errors. To overcome this problem, a novel fringe pattern projection method is proposed to avoid image saturation and maintain high-intensity modulation for measuring shiny surfaces by adaptively adjusting the pixel-to-pixel projection intensity according to the surface reflectivity. First, three sets of orthogonal color fringe patterns and a sequence of uniform gray-level patterns with different gray levels are projected onto a measured surface by a projector. The patterns are deformed with respect to the object surface and captured by a camera from a different viewpoint. Subsequently, the optimal projection intensity at each pixel is determined by fusing different gray levels and transforming the camera pixel coordinate system into the projector pixel coordinate system. Finally, the adapted fringe patterns are created and used for 3D shape measurement. Experimental results on a flat checkerboard and shiny objects demonstrate that the proposed method can measure shiny surfaces with high accuracy.

  1. Property-Based Software Engineering Measurement

    Science.gov (United States)

    Briand, Lionel C.; Morasca, Sandro; Basili, Victor R.

    1997-01-01

    Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under the same label (complexity is the most common case). There is a need to define unambiguously the most important measurement concepts used in the measurement of software products. One way of doing so is to define precisely what mathematical properties characterize these concepts, regardless of the specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the software engineering community and provide a means for better communication among researchers, better guidelines for analysts, and better evaluation methods for commercial static analyzers for practitioners. In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software artifact and rigorous, because it is based on precise mathematical concepts. We use this framework to propose definitions of several important measurement concepts (size, length, complexity, cohesion, coupling). It does not intend to be complete or fully objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the formalisms and properties we introduce are convenient and intuitive. This framework contributes constructively to a firmer theoretical ground of software measurement.

  2. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    Science.gov (United States)

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  3. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...... is precisely positioned on targeted areas of the sample surface by using piezoactuators. This apparatus enables conductivity measurement with extremely high surface sensitivity, resulting in direct access to surface-state conductivity of the surface superstructures, and clarifying the influence of atomic steps...

  4. Quantitative Measurement of Serum Hepatitis B Surface Antigen Using an Immunoradiometric Assay in Chronic Hepatitis B

    International Nuclear Information System (INIS)

    Kwon, Hyun Woo; Lee, Ho Young; Kim, Seog Gyun; Kim, Won; Jung, Wong Jin; Kang, Keon Wook; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo

    2011-01-01

    Measurement of serum hepatitis B virus surface antigen (HBsAg) levels is important for the management of chronic hepatitis D patients in terms of monitoring response to antiviral therapy. This study aimed to evaluate the diagnostic performance of a new diagnostic kit, which quantitatively measures serum HBsAg level using an immunoradiometric assay (IRMA) based method. Measurements were compared with those obtained using a chemiluminescent microparticle immunoassay (CMIA) based method. The blood samples of 96 patients with chronic hepatitis B were used in this study. Copy numbers of serum hepatitis B virus (HBV) DNA were determined in 23 of these samples. The correlation between and the concordance of IRMA and CMIA results were determined using Pearson's correlation coefficients. P values of 0.05 were considered to be statistically significant throughout. Laboratory diagnoses based on CMIA. Furthermors, serum HBsAg levels by IRMA were found to be highly correlated with those determined by CMIA (correlation coefficient R 2= 0.838, P 2= 0.067, P=0.316 by IRMA, and R 2= 0.101, P=0.215 by CMIA). The diagnostic performance of the investigated IRMA method of determining HBsAg levels was found to be comparable with that of a CMIA based method in chronic hepatitis B patients

  5. Quantitative Measurement of Serum Hepatitis B Surface Antigen Using an Immunoradiometric Assay in Chronic Hepatitis B

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyun Woo; Lee, Ho Young; Kim, Seog Gyun; Kim, Won; Jung, Wong Jin; Kang, Keon Wook; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National Univ. Seoul (Korea, Republic of)

    2011-03-15

    Measurement of serum hepatitis B virus surface antigen (HBsAg) levels is important for the management of chronic hepatitis D patients in terms of monitoring response to antiviral therapy. This study aimed to evaluate the diagnostic performance of a new diagnostic kit, which quantitatively measures serum HBsAg level using an immunoradiometric assay (IRMA) based method. Measurements were compared with those obtained using a chemiluminescent microparticle immunoassay (CMIA) based method. The blood samples of 96 patients with chronic hepatitis B were used in this study. Copy numbers of serum hepatitis B virus (HBV) DNA were determined in 23 of these samples. The correlation between and the concordance of IRMA and CMIA results were determined using Pearson's correlation coefficients. P values of 0.05 were considered to be statistically significant throughout. Laboratory diagnoses based on CMIA. Furthermors, serum HBsAg levels by IRMA were found to be highly correlated with those determined by CMIA (correlation coefficient R{sup 2=}0.838, P<0.001). Serum HBsAg level and serum HBV DNA copies were found to be linearly related by both methods (R{sup 2=}0.067, P=0.316 by IRMA, and R{sup 2=}0.101, P=0.215 by CMIA). The diagnostic performance of the investigated IRMA method of determining HBsAg levels was found to be comparable with that of a CMIA based method in chronic hepatitis B patients.

  6. Spatial Representativeness of Surface-Measured Variations of Downward Solar Radiation

    Science.gov (United States)

    Schwarz, M.; Folini, D.; Hakuba, M. Z.; Wild, M.

    2017-12-01

    When using time series of ground-based surface solar radiation (SSR) measurements in combination with gridded data, the spatial and temporal representativeness of the point observations must be considered. We use SSR data from surface observations and high-resolution (0.05°) satellite-derived data to infer the spatiotemporal representativeness of observations for monthly and longer time scales in Europe. The correlation analysis shows that the squared correlation coefficients (R2) between SSR times series decrease linearly with increasing distance between the surface observations. For deseasonalized monthly mean time series, R2 ranges from 0.85 for distances up to 25 km between the stations to 0.25 at distances of 500 km. A decorrelation length (i.e., the e-folding distance of R2) on the order of 400 km (with spread of 100-600 km) was found. R2 from correlations between point observations and colocated grid box area means determined from satellite data were found to be 0.80 for a 1° grid. To quantify the error which arises when using a point observation as a surrogate for the area mean SSR of larger surroundings, we calculated a spatial sampling error (SSE) for a 1° grid of 8 (3) W/m2 for monthly (annual) time series. The SSE based on a 1° grid, therefore, is of the same magnitude as the measurement uncertainty. The analysis generally reveals that monthly mean (or longer temporally aggregated) point observations of SSR capture the larger-scale variability well. This finding shows that comparing time series of SSR measurements with gridded data is feasible for those time scales.

  7. Surface topography measurement by frequency sweeping digital holography.

    Czech Academy of Sciences Publication Activity Database

    Lédl, Vít; Psota, Pavel; Kaván, František; Matoušek, Ondřej; Mokrý, Pavel

    2017-01-01

    Roč. 56, č. 28 (2017), s. 7808-7814 ISSN 1559-128X R&D Projects: GA MŠk(CZ) LO1206; GA ČR(CZ) GA16-11965S Institutional support: RVO:61389021 Keywords : Wavelenght Scanning Interferometry * Shape measurement * Profilomerty Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 1.650, year: 2016 https://doi.org/10.1364/AO.56.007808

  8. Studies of non-contact methods for roughness measurements on wood surfaces

    International Nuclear Information System (INIS)

    Lundberg, I.A.S.; Porankiewicz, B.

    1995-01-01

    The quality of wood surfaces after different kinds of machining processes is a property of great importance for the wood processing industries. Present work is a study, whose objective was to evaluate different non-contact methods, for measurement of the quality of the wood surfaces by correlating them with stylus tracing. A number of Scots Pine samples were prepared by different kinds of wood machining processing. Surface roughness measurements were performed, utilizing two optical noncontact methods. The results indicate that the laser scan method can measure surface roughness on sawn wood with a sufficient degree of accuracy. (author) [de

  9. Low density lipoprotein sensor based on surface plasmon resonance

    International Nuclear Information System (INIS)

    Matharu, Zimple; Sumana, G.; Pandey, M.K.; Gupta, Vinay; Malhotra, B.D.

    2009-01-01

    Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin-biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m o /μM.

  10. Low density lipoprotein sensor based on surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matharu, Zimple [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Department of Physics and Astrophysics, University of Delhi, New Delhi-110007 (India); Sumana, G.; Pandey, M.K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, New Delhi-110007 (India); Malhotra, B.D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India)

    2009-11-30

    Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin-biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m{sup o}/{mu}M.

  11. Automated sulcal depth measurement on cortical surface reflecting geometrical properties of sulci.

    Directory of Open Access Journals (Sweden)

    Hyuk Jin Yun

    Full Text Available Sulcal depth that is one of the quantitative measures of cerebral cortex has been widely used as an important marker for brain morphological studies. Several studies have employed Euclidean (EUD or geodesic (GED algorithms to measure sulcal depth, which have limitations that ignore sulcal geometry in highly convoluted regions and result in under or overestimated depth. In this study, we proposed an automated measurement for sulcal depth on cortical surface reflecting geometrical properties of sulci, which named the adaptive distance transform (ADT. We first defined the volume region of cerebrospinal fluid between the 3D convex hull and the cortical surface, and constructed local coordinates for that restricted region. Dijkstra's algorithm was then used to compute the shortest paths from the convex hull to the vertices of the cortical surface based on the local coordinates, which may be the most proper approach for defining sulcal depth. We applied our algorithm to both a clinical dataset including patients with mild Alzheimer's disease (AD and 25 normal controls and a simulated dataset whose shape was similar to a single sulcus. The mean sulcal depth in the mild AD group was significantly lower than controls (p = 0.007, normal [mean±SD]: 7.29±0.23 mm, AD: 7.11±0.29 and the area under the receiver operating characteristic curve was relatively high, showing the value of 0.818. Results from clinical dataset that were consistent with former studies using EUD or GED demonstrated that ADT was sensitive to cortical atrophy. The robustness against inter-individual variability of ADT was highlighted through simulation dataset. ADT showed a low and constant normalized difference between the depth of the simulated data and the calculated depth, whereas EUD and GED had high and variable differences. We suggest that ADT is more robust than EUD or GED and might be a useful alternative algorithm for measuring sulcal depth.

  12. Universal Quantum Transducers Based on Surface Acoustic Waves

    NARCIS (Netherlands)

    Schuetz, M.J.A.; Kessler, E.M.; Giedke, G.; Vandersypen, L.M.K.; Lukin, M.D.; Cirac, J.I.

    2015-01-01

    We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezoactive materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits,

  13. A silicon-based electrical source for surface plasmon polaritons

    NARCIS (Netherlands)

    Walters, Robert J.; van Loon, Rob V.A.; Brunets, I.; Schmitz, Jurriaan; Polman, Albert

    2009-01-01

    This work demonstrates the fabrication of a silicon-based electrical source for surface plasmon polaritons (SPPs) at low temperatures using silicon nanocrystal doped alumina within a metal-insulator-metal (MIM) waveguide geometry. The fabrication method uses established microtechnology processes

  14. Measurement of natural and anthropogenic radiation in surface waters

    International Nuclear Information System (INIS)

    Turcotte, Jacques

    1981-01-01

    The use of alumina gel in municipal water treatment plants is proving very promising for the measurement of radioactivity in watercourses. The amazing fixation power of aluminum hydroxide and the large volume of water treated daily in one plant permits alumina gel to concentrate traces of natural and artificial radioisotopes to a level at which it becomes possible to observe very small amounts of radioactive fallout from nuclear tests, or even to follow over hundreds of kilometers the wastes of nuclear stations, no matter how weak the radioactivity may be [fr

  15. Free energy surfaces from nonequilibrium processes without work measurement

    Science.gov (United States)

    Adib, Artur B.

    2006-04-01

    Recent developments in statistical mechanics have allowed the estimation of equilibrium free energies from the statistics of work measurements during processes that drive the system out of equilibrium. Here a different class of processes is considered, wherein the system is prepared and released from a nonequilibrium state, and no external work is involved during its observation. For such "clamp-and-release" processes, a simple strategy for the estimation of equilibrium free energies is offered. The method is illustrated with numerical simulations and analyzed in the context of tethered single-molecule experiments.

  16. Sub-Surface Windscreen for Outdoor Measurement of Infrasound

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Shams, Qamar A. (Inventor)

    2014-01-01

    A windscreen is configured for measuring outdoor infrasonic sound. The windscreen includes a container and a microphone. The container defines a chamber. The microphone is disposed in the chamber and can be operatively supported by the floor. The microphone is configured for detecting infrasonic sound. The container is advantageously formed from material that exhibits an acoustic impedance of between 0 and approximately 3150 times the acoustic impedance of air. A reflector plate may be disposed in the container. The reflector plate operatively can support the microphone and provides a doubling effect of infrasonic pressure at the microphone.

  17. Predictive Measures of Locomotor Performance on an Unstable Walking Surface

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Caldwell, E. E.; Batson, C. D.; De Dios, Y. E.; Gadd, N. E.; Goel, R.; Wood, S. J.; Cohen, H. S.; hide

    2016-01-01

    Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.

  18. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    Science.gov (United States)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  19. Visible imaging measurement of position and displacement of the last closed flux surface in EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.F. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, G.S., E-mail: gsxu@ipp.ac.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Y.L.; Yang, J.H.; Yan, N.; Liu, L.; Yuan, S.; Luo, Z.P. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Sang, C.F. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Gu, S.; Xu, J.C.; Hu, G.H.; Wang, Y.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Peng, Y.K.M.; Wan, B.N. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-06-15

    Highlights: • A new method for measuring the position and displacement of the LCFS has been developed in EAST tokamak. • This method is based on the visible imaging diagnostic and shown to be an effective and convenient approach. • This method can be applied to measure displacements of the LCFS during application of resonant magnetic perturbation fields. - Abstract: A new method for measuring the position and displacement of the last closed flux surface (LCFS) with visible imaging diagnostics has been developed in EAST. By measuring the relative intensity profiles of the green visible Li-II emission in the tangential planes of the optical systems, it is possible to infer the positions of certain points on the LCFS. This emission line is readily available in discharges with Li-coating wall routinely employed to improve the plasma performance. We describe the measuring method, giving results which are compared with those obtained by EFIT, and showing this as an effective and convenient approach to determine the position of the LCFS. This method is further applied to measure the displacements of the LCFS during application of resonant magnetic perturbation fields in the EAST tokamak.

  20. Decontamination and radioactivity measurement on building surfaces related to dismantling of Japan power demonstration reactor (JPDR)

    International Nuclear Information System (INIS)

    Hatakeyama, Mutsuo; Tachibana, Mitsuo; Yanagihara, Satoshi

    1997-12-01

    In the final stage of dismantling activities for decommissioning a nuclear power plant, building structures have to be demolished to release the site for unrestricted use. Since building structures are generally made from massive reinforced concrete materials, it is not a rational way to treat all concrete materials arising from its demolition as radioactive waste. Segregation of radioactive parts from building structures is therefore indispensable. The rational procedures were studied for demolition of building structures by treating arising waste as non-radioactive materials, based on the concept established by Nuclear Safety Commission, then these were implemented in the following way by the JPDR dismantling demonstration project. Areas of the JPDR facilities are categorized into two groups : possibly contaminated areas, and possibly non-contaminated areas, based on the document of the reactor operation. Radioactivity on the building surfaces was then measured to confirm that the qualitative categorization is reasonable. After that, building surfaces were decontaminated in such a way that the contaminated layers were removed with enough margin to separate radioactive parts from non-radioactive building structures. Thought it might be possible to demolish the building structures by treating arising waste as non-radioactive materials, confirmation survey for radioactivity was conducted to show that there is no artificial radioactive nuclides produced by operation in the facility. This report describes the procedures studied on measurement of radioactivity and decontamination, and the results of its implementation in the JPDR dismantling demonstration project. (author)

  1. Korean Clinic Based Outcome Measure Studies

    Directory of Open Access Journals (Sweden)

    Jongbae Park

    2003-02-01

    Full Text Available Background: Evidence based medicine has become main tools for medical practice. However, conducting a highly ranked in the evidence hierarchy pyramid is not easy or feasible at all times and places. There remains a room for descriptive clinical outcome measure studies with admitting the limit of the intepretation. Aims: Presents three Korean clinic based outcome measure studies with a view to encouraging Korean clinicians to conduct similar studies. Methods: Three studies are presented briefly here including 1 Quality of Life of liver cancer patients after 8 Constitutional acupuncture; 2 Developing a Korean version of Measuring yourself Medical Outcome profile (MYMOP; and 3 Survey on 5 Shu points: a pilot In the first study, we have included 4 primary or secondary liver cancer patients collecting their diagnostic X-ray film and clinical data f개m their hospital, and asked them to fill in the European Organization Research and Treatment of Cancer, Quality of Life Questionnaire before the commencement of the treatment. The acupuncture treatment is set up format but not disclosed yet. The translation and developing a Korean version of outcome measures that is Korean clinician friendly has been sought for MYMOP is one of the most appropriate one. The permission was granted, the translation into Korean was done, then back translated into English only based on the Korean translation by the researcher who is bilingual in both languages. The back translation was compared by the original developer of MYMOP and confirmed usable. In order to test the existence of acupoints and meridians through popular forms of Korean acupuncture regimes, we aim at collecting opinions from 101 Korean clinicians that have used those forms. The questions asked include most effective symptoms, 5 Shu points, points those are least likely to use due to either adverse events or the lack of effectiveness, theoretical reasons for the above proposals, proposing outcome measures

  2. Multifunctional Surface Modification of Nanodiamonds Based on Dopamine Polymerization.

    Science.gov (United States)

    Zeng, Yun; Liu, Wenyan; Wang, Zheyu; Singamaneni, Srikanth; Wang, Risheng

    2018-04-03

    Surface functionalization of nanodiamonds (NDs), which is of great interest in advanced material and therapeutic applications, requires the immobilization of functional species, such as nucleic acids, bioprobes, drugs, and metal nanoparticles, onto NDs' surfaces to form stable nanoconjugates. However, it is still challenging to modify the surface of NDs due to the complexity of their surface chemistry and the low density of each functional group on the surfaces of NDs. In this work, we demonstrate a general applicable surface functionalization approach for the preparation of ND-based core-shell nanoconjugates using dopamine polymerization. By taking advantage of the universal adhesion and versatile reactivity of polydopamine, we have effectively conjugated DNA and silver nanoparticles onto NDs. Moreover, the catalytic activity of ND-supported silver nanoparticle was characterized by the reduction of 4-nitrophenol, and the addressability of NDs was tested through DNA hybridization that formed satellite ND-gold nanorod conjugation. This simple and robust method we have presented may significantly improve the capability for attaching various functionalities onto NDs and open up new platforms for applications of NDs.

  3. Fractal Image Coding Based on a Fitting Surface

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2014-01-01

    Full Text Available A no-search fractal image coding method based on a fitting surface is proposed. In our research, an improved gray-level transform with a fitting surface is introduced. One advantage of this method is that the fitting surface is used for both the range and domain blocks and one set of parameters can be saved. Another advantage is that the fitting surface can approximate the range and domain blocks better than the previous fitting planes; this can result in smaller block matching errors and better decoded image quality. Since the no-search and quadtree techniques are adopted, smaller matching errors also imply less number of blocks matching which results in a faster encoding process. Moreover, by combining all the fitting surfaces, a fitting surface image (FSI is also proposed to speed up the fractal decoding. Experiments show that our proposed method can yield superior performance over the other three methods. Relative to range-averaged image, FSI can provide faster fractal decoding process. Finally, by combining the proposed fractal coding method with JPEG, a hybrid coding method is designed which can provide higher PSNR than JPEG while maintaining the same Bpp.

  4. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Science.gov (United States)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  5. An in situ study of zirconium-based conversion treatment on zinc surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, P. [Materials innovation institute (M2i), Elektronicaweg 25, 2628 XG Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Laha, P. [Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Terryn, H. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Mol, J.M.C., E-mail: J.M.C.Mol@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-11-30

    Highlights: • We investigated the deposition mechanism of zirconium conversion layer on zinc. • In situ FTIR and electrochemical measurements are conducted. • The initial hydroxyl fraction plays an important role in the deposition process. • Deposition starts with hydroxyl removal by fluoride ions. • An increase of alkalinity adjacent to the surface promotes deposition of Zr. - Abstract: This study is focused on the deposition process of zirconium-based conversion layers on Zn surfaces. The analysis approach is based on a Kretschmann configuration in which in situ ATR-FTIR spectroscopy is combined with open circuit potential (OCP) and near surface pH measurements. Differently pretreated Zn surfaces were subjected to conversion treatments, while the Zr-based deposition mechanism was probed in situ. It was found that the initial hydroxyl fraction promotes the overall Zr conversion process as the near surface pH values are influenced by the initial hydroxyl fraction. Kinetics of the early surface activation and the subsequent Zr-based conversion process are discussed and correlated to the initial hydroxyl fractions.

  6. Functionality of novel black silicon based nanostructured surfaces studied by TOF SIMS

    DEFF Research Database (Denmark)

    Talian, Ivan; Aranyosiova, M.; Orinak, A.

    2010-01-01

    A functionality of the novel black silicon based nanostructured surfaces (BS 2) with different metal surface modifications was tested by time-of-flight secondary ion mass spectrometry (TOF SIMS). Mainly two surface functions were studied: analytical signal enhancement and analyte pre-ionization e......A functionality of the novel black silicon based nanostructured surfaces (BS 2) with different metal surface modifications was tested by time-of-flight secondary ion mass spectrometry (TOF SIMS). Mainly two surface functions were studied: analytical signal enhancement and analyte pre......-ionization effect in SIMS due to nanostructure type and the assistance of the noble metal surface coating (Ag or Au) for secondary ion formation. As a testing analyte a Rhodamine 6G was applied. Bi+ has been used as SIMS primary ions. It was found out that SIMS signal enhancement of the analyte significantly...... depends on Ag layer thickness and measured ion mode (negative, positive). The best SIMS signal enhancement was obtained at BS2 surface coated with 400 nm of Ag layer. SIMS fragmentation schemes were developed for a model analyte deposited onto a silver and gold surface. Significant differences in pre...

  7. Measurement of molecular length of self-assembled monolayer probed by localized surface plasmon resonance

    Science.gov (United States)

    Ito, Juri; Kajikawa, Kotaro

    2016-02-01

    We propose a method to measure the variation of the molecular length of self-assembled monolayers (SAMs) when it is exposed to solutions at different pH conditions. The surface immobilized gold nanospheres (SIGNs) shows strong absorption peak at the wavelengths of 600-800 nm when p-polarized light is illuminated. The peak wavelength depends on the length of the gap distance between the SIGNs and the substrate. The gap is supported by the SAM molecules. According to the analytical calculation based on multiple expansion, the relation between the peak wavelength of the SIGN structures and the gap distance is calculated, to evaluate the molecular length of the SAM through the optical absorption spectroscopy for the SIGN structures. The molecular length of the SIGN structure was measured in air, water, acidic, and basic solutions. It was found that the molecular lengths are longer in acidic solutions.

  8. Towed underwater PIV measurement for free-surface effects on turbulent wake of a surface-piercing body

    Directory of Open Access Journals (Sweden)

    Dong Myung Seol

    2013-09-01

    Full Text Available In the present study, a towed underwater particle image velocimetry (PIV system was validated in uniform flow and used to investigate the free-surface effects on the turbulent wake of a simple surface-piercing body. The selected test model was a cylindrical geometry formed by extruding the Wigley hull's waterplane shape in the vertical direction. Due to the constraints of the two-dimensional (2D PIV system used for the present study, the velocity field measurements were done separately for the vertical and horizontal planes. Using the measured data at several different locations, it was possible to identify the free-surface effects on the turbulent wake in terms of the mean velocity components and turbulence quantities. In order to provide an accuracy level of the data, uncertainty assessment was done following the International Towing Tank Conference standard procedure.

  9. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  10. Surface Roughness Measurements Utilizing Long-Range Surface-Plasma Waves

    Science.gov (United States)

    1984-11-01

    8217 The theory dealt only with the depen- modes, one symmetric and one antisymmetric, dence of the real wave vector on the real part of that propagate...quantity, while the wave vector is complex. It is shown that for both the supported and unsup- From Eqs. (1) and (2) one obtains the real implic- ported...Opt. Soc. sabbatical leave from the University of Toledo. Am.). Optical feild enhancemeft by long-range surface- I" ouT In O’ in OUT way@, plasma waves

  11. Face recognition based on depth maps and surface curvature

    Science.gov (United States)

    Gordon, Gaile G.

    1991-09-01

    This paper explores the representation of the human face by features based on the curvature of the face surface. Curature captures many features necessary to accurately describe the face, such as the shape of the forehead, jawline, and cheeks, which are not easily detected from standard intensity images. Moreover, the value of curvature at a point on the surface is also viewpoint invariant. Until recently range data of high enough resolution and accuracy to perform useful curvature calculations on the scale of the human face had been unavailable. Although several researchers have worked on the problem of interpreting range data from curved (although usually highly geometrically structured) surfaces, the main approaches have centered on segmentation by signs of mean and Gaussian curvature which have not proved sufficient in themselves for the case of the human face. This paper details the calculation of principal curvature for a particular data set, the calculation of general surface descriptors based on curvature, and the calculation of face specific descriptors based both on curvature features and a priori knowledge about the structure of the face. These face specific descriptors can be incorporated into many different recognition strategies. A system that implements one such strategy, depth template comparison, giving recognition rates between 80% and 90% is described.

  12. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  13. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    Science.gov (United States)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime

  14. Measuring Modularity in Open Source Code Bases

    Directory of Open Access Journals (Sweden)

    Roberto Milev

    2009-03-01

    Full Text Available Modularity of an open source software code base has been associated with growth of the software development community, the incentives for voluntary code contribution, and a reduction in the number of users who take code without contributing back to the community. As a theoretical construct, modularity links OSS to other domains of research, including organization theory, the economics of industry structure, and new product development. However, measuring the modularity of an OSS design has proven difficult, especially for large and complex systems. In this article, we describe some preliminary results of recent research at Carleton University that examines the evolving modularity of large-scale software systems. We describe a measurement method and a new modularity metric for comparing code bases of different size, introduce an open source toolkit that implements this method and metric, and provide an analysis of the evolution of the Apache Tomcat application server as an illustrative example of the insights gained from this approach. Although these results are preliminary, they open the door to further cross-discipline research that quantitatively links the concerns of business managers, entrepreneurs, policy-makers, and open source software developers.

  15. Remote measurement of surface-water velocity using infrared videography and PIV: a proof-of-concept for Alaskan rivers

    Science.gov (United States)

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.; Conaway, Jeffrey S.

    2017-01-01

    Thermal cameras with high sensitivity to medium and long wavelengths can resolve features at the surface of flowing water arising from turbulent mixing. Images acquired by these cameras can be processed with particle image velocimetry (PIV) to compute surface velocities based on the displacement of thermal features as they advect with the flow. We conducted a series of field measurements to test this methodology for remote sensing of surface velocities in rivers. We positioned an infrared video camera at multiple stations across bridges that spanned five rivers in Alaska. Simultaneous non-contact measurements of surface velocity were collected with a radar gun. In situ velocity profiles were collected with Acoustic Doppler Current Profilers (ADCP). Infrared image time series were collected at a frequency of 10Hz for a one-minute duration at a number of stations spaced across each bridge. Commercial PIV software used a cross-correlation algorithm to calculate pixel displacements between successive frames, which were then scaled to produce surface velocities. A blanking distance below the ADCP prevents a direct measurement of the surface<