WorldWideScience

Sample records for surface applied water

  1. Applying isotope methods in flowing surface waters

    International Nuclear Information System (INIS)

    Mook, W.G.

    1976-01-01

    The most frequent application of natural or environmental isotopes to investigate surface water is as tracer. Especially the natural variations in the 18 O/ 16 O ratio in rainfall are traced in streams and rivers. The isotopes deuterium, 13 C and 14 C enable refined applications such as the investigation of geochemical processes in waters. 18 O analyses are fairly fast (20 samples per day can be carried out) and require little water (1 to 10 ml). Therefore, the natural variations in the 18 O/ 16 O ratio of water are treated. There is a certain connection between the 18 O/ 16 O and D/H ratios in rainfall waters. 18 O analyses are somewhat easier to perform so that this technique is generally preferred. Additional D analyses are of great use in detecting geochemical processes, e.g. evaporation. Although tritium is still an important agent in hydrological studies, the concentration variations in nature are now lower than for 18 O compared to the usual experimental error. Furthermore, they are not so important geochemically. Accurate tritium measurements require relatively much time (1 or 2 analyses per day), are expensive (50 DM to 150 DM) and require more material (10 to 500 ml water), depending on the desired accuracy. The stable and radioactive carbon isotopes are mainly used in special cases to study certain geochemical processes. (orig./HK) [de

  2. GIS Technique Applied To Surface Water Survey In South Western ...

    African Journals Online (AJOL)

    A GIS is used to study the surface water in Ibadan. Data which relates to the physical parameters of the study area, were used in this study. These included a SPOT-multispectral imagery, topographic and geological maps of Ibadan, which were analyzed and interpreted. The enhancement of the digital image (SPOT- ...

  3. Pharmaceutical occurrence in groundwater and surface waters in forests land-applied with municipal wastewater.

    Science.gov (United States)

    McEachran, Andrew D; Shea, Damian; Bodnar, Wanda; Nichols, Elizabeth Guthrie

    2016-04-01

    The occurrence and fate of pharmaceutical and personal care products in the environment are of increasing public importance because of their ubiquitous nature and documented effects on wildlife, ecosystems, and potentially humans. One potential, yet undefined, source of entry of pharmaceuticals into the environment is via the land application of municipal wastewater onto permitted lands. The objective of the present study is to determine the extent to which pharmaceuticals are mitigated by or exported from managed tree plantations irrigated with municipal wastewater. A specific focus of the present study is the presence of pharmaceutical compounds in groundwater and surface water discharge. The study site is a municipality that land-applies secondary treated wastewater onto 930 hectares of a 2000-hectare managed hardwood and pine plantation. A suite of 33 pharmaceuticals and steroid hormones was targeted in the analysis, which consisted of monthly grab sampling of groundwater, surface water, and wastewater, followed by concentration and cleanup via solid phase extraction and separation, detection, and quantification via liquid chromatography coupled with tandem mass spectrometry. More than one-half of all compounds detected in irrigated wastewater were not present in groundwater and subsequent surface water. However, antibiotics, nonsteroidal anti-inflammatory drugs, caffeine, and other prescription and over-the-counter drugs remained in groundwater and were transported into surface water at concentrations up to 10 ng/L. These results provide important documentation for pharmaceutical fate and transport in forest systems irrigated with municipal wastewater, a previously undocumented source of environmental entry. © 2015 SETAC.

  4. Dynamic Water Surface Detection Algorithm Applied on PROBA-V Multispectral Data

    Directory of Open Access Journals (Sweden)

    Luc Bertels

    2016-12-01

    Full Text Available Water body detection worldwide using spaceborne remote sensing is a challenging task. A global scale multi-temporal and multi-spectral image analysis method for water body detection was developed. The PROBA-V microsatellite has been fully operational since December 2013 and delivers daily near-global synthesis with a spatial resolution of 1 km and 333 m. The Red, Near-InfRared (NIR and Short Wave InfRared (SWIR bands of the atmospherically corrected 10-day synthesis images are first Hue, Saturation and Value (HSV color transformed and subsequently used in a decision tree classification for water body detection. To minimize commission errors four additional data layers are used: the Normalized Difference Vegetation Index (NDVI, Water Body Potential Mask (WBPM, Permanent Glacier Mask (PGM and Volcanic Soil Mask (VSM. Threshold values on the hue and value bands, expressed by a parabolic function, are used to detect the water bodies. Beside the water bodies layer, a quality layer, based on the water bodies occurrences, is available in the output product. The performance of the Water Bodies Detection Algorithm (WBDA was assessed using Landsat 8 scenes over 15 regions selected worldwide. A mean Commission Error (CE of 1.5% was obtained while a mean Omission Error (OE of 15.4% was obtained for minimum Water Surface Ratio (WSR = 0.5 and drops to 9.8% for minimum WSR = 0.6. Here, WSR is defined as the fraction of the PROBA-V pixel covered by water as derived from high spatial resolution images, e.g., Landsat 8. Both the CE = 1.5% and OE = 9.8% (WSR = 0.6 fall within the user requirements of 15%. The WBDA is fully operational in the Copernicus Global Land Service and products are freely available.

  5. Developing an easy-to-apply model for identifying relevant pathogen pathways into surface waters used for recreational purposes.

    Science.gov (United States)

    Tondera, Katharina; Klaer, Kassandra; Roder, Silke; Brueckner, Ira; Strathmann, Martin; Kistemann, Thomas; Schreiber, Christiane; Pinnekamp, Johannes

    2016-10-01

    Swimming in inner-city surface waters is popular in the warm season, but can have negative consequences such as gastro-intestinal, ear and skin infections. The pathogens causing these infections commonly enter surface waters via several point source discharges such as the effluents from wastewater treatment plants and sewer overflows, as well as through diffuse non-point sources such as surface runoff. Nonetheless, the recreational use of surface waters is attractive for residents. In order to save financial and organizational resources, local authorities need to estimate the most relevant pathways of pathogens into surface waters. In particular, when detailed data on a local scale are missing, this is quite difficult to achieve. For this reason, we have developed an easy-to-apply model using the example of Escherichia coli and intestinal enterococci as a first approach to the local situation, where missing data can be replaced by data from literature. The model was developed based on a case study of a river arm monitored in western Germany and will be generalized for future applications. Although the limits of the EU Bathing Water Directive are already fulfilled during dry weather days, we showed that the effluent of wastewater treatment plants and overland flow had the most relevant impact on the microbial surface water quality. On rainy weather days, combined sewer overflows are responsible for the highest microbial pollution loads. The results obtained in this study can help decision makers to focus on reducing the relevant pathogen sources within a catchment area. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Effect of land-applied biosolids on surface-water nutrient yields and groundwater quality in Orange County, North Carolina

    Science.gov (United States)

    Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.

    2015-01-01

    Land application of municipal wastewater biosolids is the most common method of biosolids management used in North Carolina and the United States. Biosolids have characteristics that may be beneficial to soil and plants. Land application can take advantage of these beneficial qualities, whereas disposal in landfills or incineration poses no beneficial use of the waste. Some independent studies and laboratory analysis, however, have shown that land-applied biosolids can pose a threat to human health and surface-water and groundwater quality. The effect of municipal biosolids applied to agriculture fields is largely unknown in relation to the delivery of nutrients, bacteria, metals, and contaminants of emerging concern to surface-water and groundwater resources. Therefore, the North Carolina Department of Environment and Natural Resources (NCDENR) collaborated with the U.S. Geological Survey (USGS) through the 319 Nonpoint Source Program to better understand the transport of nutrients and bacteria from biosolids application fields to groundwater and surface water and to provide a scientific basis for evaluating the effectiveness of the current regulations.

  7. Applying 2-D resistivity imaging and ground penetrating radar (GPR) methods to identify infiltration of water in the ground surface

    Science.gov (United States)

    Yusof, Azim Hilmy Mohamad; Azman, Muhamad Iqbal Mubarak Faharul; Ismail, Nur Azwin; Ismail, Noer El Hidayah

    2017-07-01

    Infiltration of water into the soil mostly happens in area near to the ocean or area where rain occurred frequently. This paper explains about the water infiltration process that occurred vertically and horizontally at the subsurface layer. Infiltration act as an indicator of the soil's ability to allow water movement into and through the soil profile. This research takes place at Teluk Kumbar, Pulau Pinang, area that located near to the sea. Thus, infiltration process occurs actively. The study area consists of unconsolidated marine clay, sand and gravel deposits. Furthermore, the methods used for this research is 2-D Resistivity Imaging by using Wenner-Schlumberger array with 2.5 m minimum electrode spacing, and the second method is Ground Penetrating Radar (GPR) with antenna frequency of 250MHz. 2-D Resistivity Imaging is used to investigate the subsurface layer of the soil. Other than that, this method can also be used to investigate the water infiltration that happens horizontally. GPR is used to investigate shallow subsurface layer and to investigate the water infiltration from above. The results of inversion model of 2-D Resistivity Imaging shows that the subsurface layer at distance of 0 m to 20 m are suspected to be salt water intrusion zone due to the resistivity value of 0 Ω.m to 1 Ω.m. As for the radargram results from the GPR, the anomaly seems to be blurry and unclear, and EM waves signal can only penetrate up to 1.5 m depth. This feature shows that the subsurface layer is saturated with salt water. Applying 2-D resistivity imaging and GPR method were implemented to each other in identifying infiltration of water in the ground surface.

  8. Investigating temporal and spatial patterns of groundwater-surface water interaction on a river reach by applying transient thermal modelling

    Science.gov (United States)

    Anibas, Christian; Debele Tolche, Abebe; Ghysels, Gert; Schneidewind, Uwe; Nossent, Jiri; Touhidul Mustafa, Syed Md; Huysmans, Marijke; Batelaan, Okke

    2017-04-01

    The quantification of groundwater-surface water interaction is an important challenge for hydrologists and ecologists. Within the last decade, many new analytical and numerical estimation methods have been developed, including heat tracer techniques. In a number of publications, their sources of errors were investigated, and future directions for the research in groundwater-surface water exchange were discussed. To improve our respective knowledge of the Belgian lowland Aa River we reinvestigate temperature data which was gathered in the river bed and used for the quantification of the 1D vertical groundwater-surface water exchange. By assuming a thermal steady state of the river bed temperature distribution, Anibas et al. (2011) were unable to use the full potential of the entire large data set. The analysis tool STRIVE is modified to use the river water temperature time series as the upper model boundary. This transient thermal set up overcomes many of the limitations of the steady state assumption and allows for the analysis of vertical 1D exchange fluxes in space and time. Results of about 380 transient simulations covering a period of more than 1.5 years show high absolute changes in exchange fluxes in the upstream part of the river. However, in the downstream part, the relative changes in fluxes are larger. The 26 spatially distributed thermal profiles along the river reach are interpolated using kriging based on variograms calculated from the temperature dataset. Results indicate gaining conditions for most locations and most of the time. Few places in the downstream part show losing conditions in late winter and early spring. While in autumn and winter the mean exchange fluxes can be -90 mmd-1, in spring to early summer fluxes are only -42 mmd-1. The river bed near the banks shows elevated fluxes compared to the center of the river. Probably driven by regional groundwater flow, the river bed near the left and right bank shows fluxes respectively a factor 3

  9. Wettability behavior of water droplet on organic-polluted fused quartz surfaces of pillar-type nanostructures applying molecular dynamics simulation

    Science.gov (United States)

    Chen, Jiaxuan; Chen, Wenyang; Xie, Yajing; Wang, Zhiguo; Qin, Jianbo

    2017-02-01

    Molecular dynamics (MD) is applied to research the wettability behaviors of different scale of water clusters absorbed on organic-polluted fused quartz (FQ) surface and different surface structures. The wettability of water clusters is studied under the effect of organic pollutant. With the combined influence of pillar height and interval, the stair-step Wenzel-Cassie transition critical line is obtained by analyzing stable state of water clusters on different surface structures. The results also show that when interval of pillars and the height of pillars keep constant respectively, the changing rules are exactly the opposite and these are termed as the "waterfall" rules. The substrate models of water clusters at Cassie-Baxter state which are at the vicinity of critical line are chosen to analyze the relationship of HI (refers to the pillar height/interval) ratio and scale of water cluster. The study has found that there is a critical changing threshold in the wettability changing process. When the HI ratio keeps constant, the wettability decreases first and then increase as the size of cluster increases; on the contrary, when the size of cluster keeps constant, the wettability decreases and then increase with the decrease of HI ratio, but when the size of water cluster is close to the threshold the HI ratio has little effect on the wettability.

  10. Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies.

    Science.gov (United States)

    Shi, Bin; Wang, Peng; Jiang, Jiping; Liu, Rentao

    2018-01-01

    It is critical for surface water management systems to provide early warnings of abrupt, large variations in water quality, which likely indicate the occurrence of spill incidents. In this study, a combined approach integrating a wavelet artificial neural network (wavelet-ANN) model and high-frequency surrogate measurements is proposed as a method of water quality anomaly detection and warning provision. High-frequency time series of major water quality indexes (TN, TP, COD, etc.) were produced via a regression-based surrogate model. After wavelet decomposition and denoising, a low-frequency signal was imported into a back-propagation neural network for one-step prediction to identify the major features of water quality variations. The precisely trained site-specific wavelet-ANN outputs the time series of residual errors. A warning is triggered when the actual residual error exceeds a given threshold, i.e., baseline pattern, estimated based on long-term water quality variations. A case study based on the monitoring program applied to the Potomac River Basin in Virginia, USA, was conducted. The integrated approach successfully identified two anomaly events of TP variations at a 15-minute scale from high-frequency online sensors. A storm event and point source inputs likely accounted for these events. The results show that the wavelet-ANN model is slightly more accurate than the ANN for high-frequency surface water quality prediction, and it meets the requirements of anomaly detection. Analyses of the performance at different stations and over different periods illustrated the stability of the proposed method. By combining monitoring instruments and surrogate measures, the presented approach can support timely anomaly identification and be applied to urban aquatic environments for watershed management. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  12. Drag resistance of ship hulls: Effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, Stefan Møller; Andrés, Eduardo

    2018-01-01

    to the effects of coating water absorption on skin friction. Furthermore, to investigate the effects of welding seam height and density (number of welding seams per five meters of ship side) on drag resistance, a new flexible rotor was designed and used for experimentation. It was found, under the conditions...... selected, that a so-called fouling release (FR) coating caused approximately 5.6 % less skin friction (torque) over time than traditional biocide-based antifouling (AF) coatings at a tangential speed of 12 knots. Furthermore, results of immersion experiments and supporting “standard” water absorption...... experiments showed that water absorption of the FR coating did not result in any significant impacts on skin friction. On the other hand, water absorption was found to actually lower the skin friction of AF coatings. This may be attributed to a smoothening of the coating surface. The effects of welding seam...

  13. Surface exploration geophysics applied to the moon

    International Nuclear Information System (INIS)

    Ander, M.E.

    1984-01-01

    With the advent of a permanent lunar base, the desire to explore the lunar near-surface for both scientific and economic purposes will arise. Applications of exploration geophysical methods to the earth's subsurface are highly developed. This paper briefly addresses some aspects of applying this technology to near surface lunar exploration. It is noted that both the manner of application of some techniques, as well as their traditional hierarchy as assigned on earth, should be altered for lunar exploration. In particular, electromagnetic techniques may replace seismic techniques as the primary tool for evaluating near-surface structure

  14. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can’t we just use water ?) Why is milk “milky” Why do......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...

  15. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...... efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment...

  16. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  17. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical......Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...

  18. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  19. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  20. Applying Telecoupling Framework for Urban Water Sustainability Research and Management

    Science.gov (United States)

    Yang, W.; Hyndman, D. W.; Winkler, J. A.; Viña, A.; Deines, J.; Lupi, F.; Luo, L.; Li, Y.; Basso, B.; Zheng, C.; Ma, D.; Li, S.; Liu, X.; Zheng, H.; Cao, G.; Meng, Q.; Ouyang, Z.; Liu, J.

    2016-12-01

    Urban areas, especially megacities (those with populations greater than 10 million), are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and also interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need for applying integrated frameworks to systematically analyze urban water dynamics and factors influencing these dynamics. Here, we apply the framework of telecoupling (socioeconomic and environmental interactions over distances) to analyze urban water issues, using Beijing as a demonstration city. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems). The integrated framework presented here demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water receiving system), but also water sending systems and spillover systems. This framework helps integrate important components of local and distant human-nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. This study also provides a foundation to apply the telecoupling framework to better understand and

  1. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  2. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  3. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  4. Nodal aberration theory applied to freeform surfaces

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  5. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  6. Use of a watershed model to characterize the fate and transport of fluometuron, a soil-applied cotton herbicide, in surface water

    Science.gov (United States)

    Coupe, R.H.

    2007-01-01

    The Soil and Water Assessment Tool (SWAT) was used to characterize the fate and transport of fluometuron (a herbicide used on cotton) in the Bogue Phalia Basin in northwestern Mississippi, USA. SWAT is a basin-scale watershed model, able to simulate hydrological, chemical, and sediment transport processes. After adjustments to a few parameters (specifically the SURLAG variable, the runoff curve number, Manning's N for overland flow, soil available water capacity, and the base-flow alpha factor) the SWAT model fit the observed streamflow well (the Coefficient of Efficiency and R2 were greater than 60). The results from comparing observed fluometuron concentrations with simulated concentrations were reasonable. The simulated concentrations (which were daily averages) followed the pattern of observed concentrations (instantaneous values) closely, but could be off in magnitude at times. Further calibration might have improved the fit, but given the uncertainties in the input data, it was not clear that any improvement would be due to a better understanding of the input variables. ?? 2007 Taylor & Francis.

  7. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  8. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  9. Groundwater and surface water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.S.; Hamidi, A. [eds.

    2000-07-01

    This book contains almost all the technical know-how that is required to clean up the water supply. It provides a survey of up-to-date technologies for remediation, as well as a step-by-step guide to pollution assessment for both ground and surface waters. In addition to focusing on causes, effects, and remedies, the book stresses reuse, recycling, and recovery of resources. The authors suggest that through total recycling wastes can become resources.

  10. Method for Qualification of Coatings Applied to Wet Surfaces

    Science.gov (United States)

    2009-12-16

    The field application of a pipeline repair or rehabilitation coating usually cannot wait until ambient conditions become optimal. In a humid environment, water can condense on the pipe surface because the pipe surface is usually cooler than the ambie...

  11. Part 2: Surface water quality

    International Nuclear Information System (INIS)

    1997-01-01

    In 1996 the surface water quality measurements were performed, according to the Agreement, at 8 profiles on the Hungarian territory and at 15 profiles on the Slovak territory. Basic physical and chemical parameters (as water temperature, pH values, conductivity, suspended solids, cations and anions (nitrates, ammonium ion, nitrites, total nitrogen, phosphates, total phosphorus, oxygen and organic carbon regime parameters), metals (iron, manganese and heavy metals), biological and microbiological parameters (coliform bacteria, chlorophyll-a, saprobity index and other biological parameters) and quality of sediment were measured

  12. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... relatered to rainfall-runo events. By combining geochemical, geophysical and hydrogeological models with numerical modeling, groundwater flow paths to a stream were investigated in a wetland. By combining the dierent tracers, condence in the paramters of the numerical model could be established...

  13. Mitigation of water repellency in burned soils applying hydrophillic polymers

    Science.gov (United States)

    Neris, Jonay; de la Torre, Sara; Vidal-Vazquez, Eva; Lado, Marcos

    2017-04-01

    In this study, the effect of fire on water repellency was analyzed in soils from different parent materials, as well as the suitability of anionic polyacrylamide (PAM) to reduce water repellency in these soils. Samples were collected in four different sites where wildfires took place: two in the Canary Islands, with soils developed on volcanic materials, and two in Galicia (NW Spain), with soils developed on plutonic rocks. In Galicia, two soil samples were collected in each site, one in the burnt area and one in an adjacent unburnt area. In the Canary Islands, four samples were collected from each site, three inside the burnt area where the soils were affected by different fire intensities, and one in an unburnt adjacent area. Samples were air-dried and sieved by a 2-mm mesh sieve. Water repellency was measured using the Water Drop Penetration Time test. An amount of 10 g of soil was placed in a tray. Five drops of deionized water were place on the soil surface with a pipette, and the time for each drop to fully penetrate into the soil was recorded. PAM solution was applied to the burnt soils simulating a field application rate of 1gm-2. The polymer used was Superfloc A-110 (Kemira Water Solutions BV, Holland) with 1x107 Da molecular weigth and 15% hydrolysis. PAM was sprayed on the soil surface as solution with a concentration 0.2 g/L. After the application, the samples were dried and the WDPT test was performed. Three replicates for each treatment and soil were used, and the treatments included: dry soil, dry soil after a wetting treatment, dry PAM-treated soil. The results showed that water repellency was modified by fire differently in the various soils. In hydrophilic soils and soils with low water repellency, water repellency was increased after the action of fire. In soils with noticeable initial water repellency, this was reduced or eliminated after the fire. Wetting repellent soils caused a decrease in water repellency most probably because of the spatial

  14. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    The behavior of fluid on a solid surface under static and dynamic conditions are usually clubbed together. • On a wetting surface (hydrophilic), liquid water is believed to adhere to the surface causing multilayer sticking. • On a non-wetting surface (hydrophobic), water is believed to glide across the surface leading to slip ...

  15. Perfluorinated surfactants in surface and drinking waters.

    Science.gov (United States)

    Skutlarek, Dirk; Exner, Martin; Färber, Harald

    2006-09-01

    the Ruhr river and the Moehne river (tributary of the Ruhr) (Ruhr: up to 446 ng/L, Moehne: up to 4385 ng/L). The maximum concentration of all drinking water samples taken in the Rhine-Ruhr area was determined at 598 ng/L with the major component PFOA (519 ng/L). The surface water contaminations most likely stem from contaminated inorganic and organic waste materials (so-called 'Abfallgemisch'). This waste material was legally applied to several agricultural areas on the upper reaches of the Moehne. Perfluorinated surfactants could be detected in some suchlike soil samples. They contaminated the river and the reservoir belonging to it, likely by superficial run-off over several months or probably years. Downstream, dilution effects are held responsible for decreasing concentrations of PS in surface waters of the Moehne and the Ruhr river. In analogy to the surface water samples, PS (major component PFOA) can be determined in many drinking water samples of the Rhine-Ruhr area where the water supplies are mainly based on bank filtration and artificial recharge. The concentrations found in drinking waters decreased with the concentrations of the corresponding raw water samples along the flow direction of the Ruhr river (from east to west) and were not significantly different from surface water concentrations. This indicates that perfluorinated surfactants are at present not successfully removed by water treatment steps. Because of their different problematic properties (persistence, mobility, toxicity, bioaccumulation), the concentrations of specific perfluorinated surfactants and their precursors in drinking waters and food have to be minimised. Therefore, it is of utmost importance to take the initiative to establish suitable legal regulations (limitations/ban) concerning the production and use of these surfactants and their precursors. Furthermore, it is indispensable to protect water resources from these compounds. A discussion on appropriate limit values in drinking

  16. Applying Unmanned Ground Vehicle Technologies To Unmanned Surface Vehicles

    National Research Council Canada - National Science Library

    Ebken, John; Bruch, Mike; Lum, Jason

    2005-01-01

    Development of unmanned ground vehicles (UGVs) has been ongoing for decades. Much of the technology developed for UGVs can be applied directly to unmanned surface vehicles with little or no modification...

  17. Indices of quality surface water bodies in the planning of water resources

    OpenAIRE

    Rodríguez-Miranda, Juan Pablo; Serna Mosquera, Jorge Antonio; Sánchez Céspedes, Juan Manuel

    2016-01-01

    This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was...

  18. Surface water quality assessment using factor analysis | Boyacioglu ...

    African Journals Online (AJOL)

    In this study, the factor analysis technique is applied to surface water quality data sets obtained from the Buyuk Menderes River Basin, Turkey, during two different hydrological periods. Results show that the indices which changed the quality of water in two seasons and locations differed. During low-flow conditions, water ...

  19. Surface Water Interactions using Environmental Isotopes

    Indian Academy of Sciences (India)

    40

    lead to the deterioration of water quality of both surface and groundwater. One of the important features of karst terrains is the interaction between surface water and groundwater, which has been the subject of interest for many researchers because of the potential of contamination of the aquifer from surface water recharge.

  20. PIXE analysis applied to characterized water samples

    International Nuclear Information System (INIS)

    Santos, Maristela S.; Carneiro, Luana Gomes; Medeiros, Geiza; Sampaio, Camilla; Martorell, Ana Beatriz Targino; Gouvea, Stella; Cunha, Kenya Moore Dias da

    2011-01-01

    Araxa, in Brazil, is a naturally high background area located in the State of Minas Gerais with a population of about 93 672 people. Araxa is historical city famous for its mineral water sources and mud from Termas de Araxa spa, which have been used for therapeutic, and recreation purposes. Other important aspect of economy of the city are mining and metallurgic industries. In the Araxa area is located the largest deposit of pyrochlore, a niobium mineral, and also a deposit of apatite, a phosphate mineral both containing Th and U associated to crystal lattice. The minerals are obtained from open pit mines, the minerals are processed in industrial also located in city of Araxa, these plants process the pyrochlore and apatite to obtain the Fe-Nb alloy and the concentrate of phosphate, respectively. Studies were developed in this area to assessment the occupational risk of the workers due to exposure to dust particles during the routine working, however very few studies evaluated the water contamination outside the mines in order to determine the metal (stables elements) concentrations in water and also the concentrations of the radionuclides in water. This paper presents the previous results of a study to identify and determine the concentrations of metals (stables elements) and radionuclides in river around the city. The water from these rivers is used as drinking water and irrigation water. The water samples were collected in different rivers around the Araxa city and the samples were analyzed using PIXE technique. A proton beam of 2 MeV obtained from the van de Graaff electrostatic accelerator was used to induce the characteristic X-rays. S, K, Ca, Cr, Mn, Fe, Ni, Zn, Ba, Pb and U were identified in the mass spectrum of the samples. The elemental mass concentrations were compared using a non-parametric statistical test. The results of the statistical test showed that the elemental mass concentrations did not present the same distribution. These results indicated

  1. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    Science.gov (United States)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  2. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  3. Remote sensing applied to numerical modelling. [water resources pollution

    Science.gov (United States)

    Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.

    1975-01-01

    Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.

  4. Developments in surface contamination and cleaning fundamentals and applied aspects

    CERN Document Server

    Kohli, Rajiv

    2015-01-01

    Developments in Surface Contamination and Cleaning, Vol. 1: Fundamentals and Applied Aspects, Second Edition, provides an excellent source of information on alternative cleaning techniques and methods for characterization of surface contamination and validation. Each volume in this series contains a particular topical focus, covering the key techniques and recent developments in the area. This volume forms the heart of the series, covering the fundamentals and application aspects, characterization of surface contaminants, and methods for removal of surface contamination. In addition, new cleaning techniques effective at smaller scales are considered and employed for removal where conventional cleaning techniques fail, along with new cleaning techniques for molecular contaminants. The Volume is edited by the leading experts in small particle surface contamination and cleaning, providing an invaluable reference for researchers and engineers in R&D, manufacturing, quality control, and procurement specific...

  5. Scaling up ecohydrological processes: role of surface water flow in water-limited landscapes

    CSIR Research Space (South Africa)

    Popp, A

    2009-11-01

    Full Text Available microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, the authors derive transition probabilities from a fine-scale simulation model. They applied two versions of the landscape model, one that includes...

  6. Surface Water Treatment Rules State Implementation Guidance

    Science.gov (United States)

    These documents provide guidance to states, tribes and U.S. EPA Regions exercising primary enforcement responsibility under the Safe Drinking Water Act. The documents contain EPA’s recommendations for implementation of the Surface Water Treatment Rules.

  7. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    Indian Institute of Technology Kharagpur, India. Liquid Water may Stick on Hydrophobic. Surfaces. Suman Chakraborty. Professor. Department of Mechanical Engineering, IIT Kharagpur, India. July, 2016 ...

  8. water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    Dr Osondu

    temperature was expected to be lower compared to surface water without any geothermal energy in the area. The level of protection of the ground water sampling sites 5 and 6 was very minimal and methodological constraints of ground water sampling might have resulted in a slight increase of temperature in ground water ...

  9. Monitoring temporal changes of the surface water area of the Burullus and Manzala lagoons using automatic techniques applied to a Landsat satellite data series of the Nile Delta coast

    Directory of Open Access Journals (Sweden)

    KH.M. DEWIDAR

    2011-11-01

    Full Text Available This study introduces the automated shoreline techniques used to monitor the temporal change of surface water area of the Burullus and Manzala lagoons. In this study, a series of Landsat image data are acquired at intermittent intervals between 1972 and 2006 for the Burullus lagoon and between 1972 and 2007 for the Manzala lagoon. All Landsat images were radiometrically calibrated and converted to reflectance values. The reflectance values of each date were atmospherically corrected using the 6S model. The automated shoreline technique was checked against field observations by using GPS over the four seasons for each lagoon during reconnaissance for the shoreline boundary. The accuracy of the extracted shoreline boundary for each lagoon was validated by calculating the area of a big aquaculture farm in the study area from satellite imagery and the available topographic maps. The resulting accuracy of this technique used was approximately 97.5%. From the spatial temporal analysis of the satellite data, the results indicate that the rate change of aquatic surface area of the Manzala lagoon is –7.3 km2/yr and for the Burullus lagoon -2.7 km2/yr during the approximately 35 year period of study. The changes which were detected in this study indicate that the surface water area of Manzala lagoon and Burullus lagoon have decreased to 62.6% and 61.9 respectively of their original size during this time.

  10. Mathematical aspects of surface water waves

    International Nuclear Information System (INIS)

    Craig, Walter; Wayne, Clarence E

    2007-01-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.

  11. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  12. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales...

  13. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  14. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    The surface composition and surface properties of water hyacinth (Eichhornia crassipes) root biomass were studied before and after extraction with dilute nitric acid and toluene/ethanol (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, thermogravimetric analysis, x-ray diffraction, ...

  15. Geochemical characterization of surface water and spring water in ...

    Indian Academy of Sciences (India)

    The time series data on solute chemistry suggest that the hydrochemical processes controlling the chemistry of spring waters is more complex than the surface water. This is attributed to more time available for infiltrating water to interact with the diverse host lithology. Total dissolved solids (TDS), in general, increases with ...

  16. Shallow water sound propagation with surface waves.

    Science.gov (United States)

    Tindle, Chris T; Deane, Grant B

    2005-05-01

    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  17. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  18. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  19. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  20. Total Phosphorus in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALPFuture is reported in kilograms/hectare/year. More information about these resources,...

  1. Mars water vapor, near-surface

    Science.gov (United States)

    Ryan, J. A.; Sharman, R. D.; Lucich, R. D.

    1982-01-01

    In a previous paper we concluded that the temperature sensors aboard the Viking landers (VL-1 and VL-2) were detecting the water vapor frost point. Analysis of one Mars year of data at both lander sites substantiates this conclusion. At VL-1 it is found that the water vapor mixing ratio is constant with height through the bulk of the atmosphere, most of the time. Exceptions are during the onset phases of the two major dust storms when temporary enhancement of near-surface vapor occurs (the same phenomenon is observed at VL-2), and some depletion of near-surface vapor during the decay phase of the first storm, possibly the second storm as well. The former suggests near-surface, northward transport of water vapor with the storms. The latter suggests adsorption of vapor on dust particles followed by surface deposition. At VL-2, severe near-surface depletion of water vapor occurs during northern autumn and winter. The residual vapor is in equilibrium with the surface condensate observed at the site during this period, indicating that the source region for the condensate must be aloft with downward transport by dust fall-out. Since the near-surface water vapor mixing ratio and concentration at VL-1 generally parallels the column abundance over VL-1 obtained by the orbiters, this suggests that VL-1 can be used to give a measure of column abundance for as long as the temperature sensors remain operational.

  2. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  3. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  4. Geochemical characterization of surface water and spring water in ...

    Indian Academy of Sciences (India)

    The results show that some karst springs are recharged by surface water; Achabalnag by the. Bringi stream and ... and silicate weathering were found to be the main processes controlling the chemistry of the spring waters and calcite dissolution as ...... India 30. 1–70. Gunn J 2007 Contributory zone definition for groundwa-.

  5. The applied technologies to access clean water for remote communities

    Science.gov (United States)

    Rabindra, I. B.

    2018-01-01

    A lot of research is done to overcome the remote communities to access clean water, yet very little is utilized and implemented by the community. Various reasons can probably be made for, which is the application of research results is assessed less practical. The aims of this paper is seeking a practical approach, how to establish criteria for the design can be easier applied, at the proper locations, the simple construction, effectively producing a volume and quality of clean water designation. The methods used in this paper is a technological model assessment of treatment/filtering clean water produced a variety of previous research, to establish a model of appropriate technology for remote communities. Various research results collected from the study of literature, while the identification of opportunities and threats to its application is done using a SWOT analysis. This article discussion is looking for alternative models of clean water filtration technology from the previous research results, to be selected as appropriate technology, easily applied and bring of many benefits to the remote communities. The conclusions resulting from the discussion in this paper, expected to be used as the basic criteria of design model of clean water filtration technologies that can be accepted and applied effectively by the remote communities.

  6. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  7. Surface water pesticide modelling for decision support in drinking water production

    Science.gov (United States)

    Desmet, Nele; Dams, Jef; Bronders, Jan; Peleman, Gisèle; Verdickt, Liesbeth

    2015-04-01

    The occurrence of pesticides and other contaminants in river systems may compromise the use of surface water for drinking water production. To reduce the cost of removal of pesticides from the raw water, drinking water companies can: search for other raw water sources, invest in water storage capacity to overcome periods with high pesticide concentrations (often related to the application period), or impose measures to reduce the emission of pesticides to surface water (i.e. sustainable application strategies or use restrictions). To select the most appropriate water management options, the costs and effects of the aforementioned actions need to be evaluated. This evaluation requires knowledge on the concentrations and loads of pesticides at the point of drinking water abstraction, as well as insight in the contribution and the temporal variability of different sources or subbasins. In such a case, a modelling approach can assist in generating measurement-based datasets and to compare different scenarios for water management. We illustrate how a modelling approach can provide decision support for water management related to drinking water abstraction from surface water in a catchment that suffers from elevated pesticide concentrations. The study area is a water production center (WPC) located in northwestern Belgium. The WPC abstracts raw water from the river IJzer or from a natural pond and its connected streams. The available quantities as well as the quality of the water vary throughout the year. The WPC uses a reservoir of 3 million m³ to capture and store raw water to overcome periods with limited water availability and/or poor water quality. However, the pressure on water increases and in the future this buffering capacity might be no longer sufficient to fulfill the drinking water production demand. A surface water quality model for the area is set up using InfoWorks RS. The model is applied to obtain insight in the concentrations and loads at the different

  8. Water surface locomotion in tropical canopy ants.

    Science.gov (United States)

    Yanoviak, S P; Frederick, D N

    2014-06-15

    Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants. © 2014. Published by The Company of Biologists Ltd.

  9. Radioactivity in surface waters and its effects

    International Nuclear Information System (INIS)

    Stoeber, I.

    1987-01-01

    In consequence of the reactor accident in Chernobyl, the State Office for Water and Waste Disposal of North-Rhine Westphalia implemented immediate programmes for monitoring radioactivity in surface waters, including their sediments and organisms. Of the initially-measured radionuclides, only cesium-137, with its long half-life of 30 years, is of interest. Only trace amounts of the almost equally long-lived strontium 90 (half-life 28 years) were present in rainfall. Cs-137 is a non-natural-radionuclide, occurring solely as a by-product of nuclear installations and atomic bomb tests. Following the ban on surface testing of nuclear weapons, the Cs-137 content of surface waters had fallen significantly up to April 1986. The load due to the reactor disaster is of the same order of magnitude as that produced by atomic testing at the end of the nineteen-sixties. The paper surveys radioactive pollution of surface waters in North-Rhine Westphalia and its effects on water use, especially in regard to potable water supplies and the fish population. (orig./HSCH) [de

  10. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  11. Occurrence of Surface Water Contaminations: An Overview

    Science.gov (United States)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  12. Influence of surface structure and chemistry on water droplet splashing.

    Science.gov (United States)

    Koch, Kerstin; Grichnik, Roland

    2016-08-06

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  13. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    The leaves of some natural plants show a micro structure that gives them the capacity of being cleaned from any undesired particles on them by rainfall. A thorough study of the physical laws that lay behind this phenomenon, known as the lotus effect was conducted in order to obtain a set of useful...... design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...

  14. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment scale water management

    DEFF Research Database (Denmark)

    Jacosen, T.; Refsgaard, A.; Jacobsen, Brian H.

    agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied...... in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse effects of specific, localized basin water management...... plans. The paper also includes a land rent modelling approach which can be used to choose the most cost effective measures and the location of these measures. As a forerunner to the use of basin scale models in WFD basin water management plans this project demonstrates potential and limitations...

  15. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  16. Surface Water Interactions using Environmental Isotopes

    Indian Academy of Sciences (India)

    40

    Quantification of Groundwater - Surface Water Interactions using Environmental. Isotopes; A Case Study of Bringi Watershed, Kashmir Himalayas, India. Nadeem A. Bhat* and Gh. Jeelani. Department of Earth Sciences, University of Kashmir, Srinagar, J&K 190 006, India. *Correspondence to: Nadeem A. Bhat. E-mail: ...

  17. Exploring global Cryptosporidium emissions to surface water

    NARCIS (Netherlands)

    Hofstra, N.; Bouwman, A.F.; Beusen, A.H.W.; Medema, G.J.

    2013-01-01

    The protozoan parasite Cryptosporidium is a major cause of diarrhoea worldwide. This paper presents the first model-based inventory with 0.5 by 0.5 degree resolution of global Cryptosporidium emissions for the year 2000 from humans and animals to surface water. The model is based on nutrient

  18. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  19. Occurence of pharmaceuticals in surface water

    Directory of Open Access Journals (Sweden)

    Dajana Gašo-Sokač

    2017-01-01

    Full Text Available Pharmaceuticals constitute a large group of human and veterinary medicinal organic compounds which have long been used throughout the world. According to their therapeutic activity they are classified in several groups: antibiotics, analgesics/antipyretic, CNS (Central nervous system drugs, cardiovascular drugs, endocrinology treatments, diagnostic aid-adsorbable organic halogen compounds. Pharmaceuticals are designed to have a physiological effect on humans and animals in trace concentrations. Pharmaceuticals end up in soil, surface waters and eventually in ground water, which can be used as a source of drinking water, after their excretion (in unmetabolized form or as active metabolites from humans or animals via urine or faeces. The possible fates of pharmaceuticals once they get into the aquatic environment are mainly three: (i ultimately they are mineralized to carbon dioxide and water, (ii the compound does not degrade readily because it is lipophilic and is partially retained in the sedimentation sludge and (iii the compound metabolizes to a more hydrophilic molecule, passes through the wastewater treatment plant and ends up in receiving waters (which are surface waters, mainly rivers. These compounds exhibit the highest persistence in the environment. In recent years, and in particular after the use of the advanced measurement technologies, many pharmaceuticals have been identified worldwide and detected at ng/L levels (trace concentrations in the aquatic environment, and are considered as an emerging environmental problem due to their continuous input and persistence in the aquatic ecosystem even at low concentrations.

  20. Spreading of Cholera through Surface Water

    Science.gov (United States)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  1. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    in their newly applied conditions. The effects of water absorption of newly applied antifouling coatings on frictional resistance were measured. A flexible rotor with artificial welding seams on its periphery has been designed and constructed to estimate the influence of welding seams on drag resistance. Both......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...... the density of welding seams (number per 5 m ship side) and the height of welding seams had a significant effect on drag resistance....

  2. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  3. Long Term 1 Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR) builds on the requirements of the Surface Water Treatment Rule and specifies treatment requirements to address Cryptosporidium m and other microbial contaminants in public water systems.

  4. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment scale water management

    DEFF Research Database (Denmark)

    Jacosen, T.; Refsgaard, A.; Jacobsen, Brian H.

    agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied......Abstract The EU WFD requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive...... in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse effects of specific, localized basin water management...

  5. Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana

    Science.gov (United States)

    Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

  6. Response surface method applied to optimization of estradiol ...

    Indian Academy of Sciences (India)

    mone is also a contaminant present in waste water effluent. Membrane technology involves the knowledge about poly- mer membranes and drug relationships. Essentially, based on permeation aspects, molecules can diffuse through the poly- mer or through water-filled pores. Interactions between the molecules to be ...

  7. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  8. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  9. Radiological monitoring. Controlling surface water pollution

    International Nuclear Information System (INIS)

    Morin, Maxime

    2018-01-01

    Throughout France, surface waters (from rivers to brooks) located at the vicinity of nuclear or industrial sites, are subject to regular radiological monitoring. An example is given with the radiological monitoring of a small river near La Hague Areva's plant, where contaminations have been detected with the help of the French IRSN nuclear safety research organization. The sampling method and various measurement types are described

  10. RISK ASSESSMENT OF SURFACE WATERS ASSOCIATED WITH WATER CIRCULATION TECHNOLOGIES ON TROUT FARMS

    Directory of Open Access Journals (Sweden)

    Marcin Sidoruk

    2014-07-01

    Full Text Available Dynamic development of aquaculture has led to an increasing impact on the status of surface waters. Fish production generates wastes that, at high concentrations, may present a serious risk to the aquatic environment. Studies on the assessment of the impact of water management technologies in trout production on the quality of surface waters were conducted in 2011. Six farms were selected for the studies and were divided into two groups based on water management solutions (n = 3: farms with a flow through system (FTS and farms with a recirculation aquaculture system (RAS. On all farms, water measurement points were set and they depicted the quality of inflow water, the quality of water in ponds and the quality of outflow water. The studies did not demonstrate any impact of applied technology on electrolyte conductivity or calcium and magnesium concentrations in outflow water from a trout operation. In addition, it was found that the use of water for production purposes resulted in a slight increase in phosphorus and total nitrogen concentrations in waste waters.

  11. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  12. Exploring global Cryptosporidium emissions to surface water.

    Science.gov (United States)

    Hofstra, N; Bouwman, A F; Beusen, A H W; Medema, G J

    2013-01-01

    The protozoan parasite Cryptosporidium is a major cause of diarrhoea worldwide. This paper presents the first model-based inventory with 0.5 by 0.5 degree resolution of global Cryptosporidium emissions for the year 2000 from humans and animals to surface water. The model is based on nutrient distribution modelling, because the sources and transport of oocysts and nutrients to the surface water are comparable. Total emissions consist of point source emissions from wastewater and nonpoint source emissions by runoff of oocysts in manure from agricultural lands. Results indicate a global emission of 3 × 10(17) oocysts per year, with comparable contributions from point and nonpoint sources. Hot-spot areas for point sources are big cities in China, India and Latin America, while the area with the largest nonpoint source emissions is in China. Uncertainties in the model are large. Main areas for further study are (i) excretion rates of oocysts by humans and animals, (ii) emissions of humans not connected to sewage systems, and (iii) retention of oocysts to determine surface water pathogen concentrations rather than emissions. Our results are useful to health organisations to identify priority areas for further study and intervention. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Water Surface Reconstruction in Airborne Laser Bathymetry from Redundant Bed Observations

    Science.gov (United States)

    Mandlburger, G.; Pfeifer, N.; Soergel, U.

    2017-09-01

    In airborne laser bathymetry knowledge of exact water level heights is a precondition for applying run-time and refraction correction of the raw laser beam travel path in the medium water. However, due to specular reflection especially at very smooth water surfaces often no echoes from the water surface itself are recorded (drop outs). In this paper, we first discuss the feasibility of reconstructing the water surface from redundant observations of the water bottom in theory. Furthermore, we provide a first practical approach for solving this problem, suitable for static and locally planar water surfaces. It minimizes the bottom surface deviations of point clouds from individual flight strips after refraction correction. Both theoretical estimations and practical results confirm the potential of the presented method to reconstruct water level heights in dm precision. Achieving good results requires enough morphological details in the scene and that the water bottom topography is captured from different directions.

  14. WATER SURFACE RECONSTRUCTION IN AIRBORNE LASER BATHYMETRY FROM REDUNDANT BED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    G. Mandlburger

    2017-09-01

    Full Text Available In airborne laser bathymetry knowledge of exact water level heights is a precondition for applying run-time and refraction correction of the raw laser beam travel path in the medium water. However, due to specular reflection especially at very smooth water surfaces often no echoes from the water surface itself are recorded (drop outs. In this paper, we first discuss the feasibility of reconstructing the water surface from redundant observations of the water bottom in theory. Furthermore, we provide a first practical approach for solving this problem, suitable for static and locally planar water surfaces. It minimizes the bottom surface deviations of point clouds from individual flight strips after refraction correction. Both theoretical estimations and practical results confirm the potential of the presented method to reconstruct water level heights in dm precision. Achieving good results requires enough morphological details in the scene and that the water bottom topography is captured from different directions.

  15. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Surface capturing and multigrid for steady free-surface water flows

    NARCIS (Netherlands)

    Wackers, J.

    2007-01-01

    Surface capturing is a technique for modelling the water surface in numerical computations of water flow: the computational grid is not deformed, a separate surface model gives the location of the water surface in the grid. Surface capturing is generally applicable and can handle complicated ship

  17. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  18. Durability of two water repelents applied to granite

    Directory of Open Access Journals (Sweden)

    Rivas, T.

    1998-06-01

    Full Text Available The durability of two water-repellents for granitic stonework was determined. Weathered and sound samples of granites widely used in building construction and restoration in Galicia (NW Spain were treated with water repellents of known efficacy, and then subjected to two artificial weathering tests: prolonged exposure to UV light, and sodium sulphate crystallization cycles. In both tests, but especially in the salt crystallization cycles, both treatments rapidly lost their water-repellency. Furthermore, the hydrophobic layer of water repellent impeded salt mobility, favouring fissuration parallel to the treated surface, which was eventually shed in the form of a plaque.

    Se presentan los resultados de la durabilidad de dos tratamientos de hidrofugación aplicados a rocas graníticas ampliamente utilizados en la construcción de edificios en Galicia (Noroeste de España. Tras la evaluación de la eficacia de dichos tratamientos, cuyos resultados se presentaron en un trabajo anterior, se someten las muestras tratadas a dos ensayos diferentes de envejecimiento acelerado: ciclos de exposición a la luz ultravioleta y ciclos de cristalización de sulfato de sodio. Los productos hidrofugantes muestran una escasa resistencia a ambos ensayos, sobre todo a los ciclos de cristalización de sulfato de sodio; esta débil durabilidad se manifiesta en una rápida pérdida de sus propiedades hidrofugantes. Así mismo, se observa que la presencia de la capa hidrófoba en la piedra funciona como una barrera frente a la movilidad de sales, lo que ocasiona el total desprendimiento de aquella y un fuerte deterioro del material rocoso.

  19. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    Science.gov (United States)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices

  20. Response surface method applied to optimization of estradiol ...

    Indian Academy of Sciences (India)

    An optimization process based on response surface methodology was carried out in order to develop a statistical model which describes the relationship between active independent variables and estradiol flux. This model can be used to find out a combination of factor levels during response optimization. Possible options ...

  1. Applying WEPP technologies to western alkaline surface coal mines

    Science.gov (United States)

    J. Q. Wu; S. Dun; H. Rhee; X. Liu; W. J. Elliot; T. Golnar; J. R. Frankenberger; D. C. Flanagan; P. W. Conrad; R. L. McNearny

    2011-01-01

    One aspect of planning surface mining operations, regulated by the National Pollutant Discharge Elimination System (NPDES), is estimating potential environmental impacts during mining operations and the reclamation period that follows. Practical computer simulation tools are effective for evaluating site-specific sediment control and reclamation plans for the NPDES....

  2. Long-range alpha detection applied to soil surface monitoring

    International Nuclear Information System (INIS)

    Caress, R.W.; Allander, K.S.; Bounds, J.A.; Catlett, M.M.; MacArthur, D.W.; Rutherford, D.A.

    1992-01-01

    The long-range alpha detection (LRAD) technique depends on the detection of ion pairs generated by alpha particles losing energy in air rather than on detection of the alpha particles themselves. Typical alpha particles generated by uranium will travel less than 3 cm in air. In contrast, the ions have been successfully detected many inches or feet away from the contamination. Since LRAD detection systems are sensitive to all ions simultaneously, large LRAD soil surface monitors (SSMS) can be used to collect all of the ions from a large sample. The LRAD SSMs are designed around the fan-less LRAD detector. In this case a five-sided box with an open bottom is placed on the soil surface. Ions generated by alpha decays on the soil surface are collected on a charged copper plate within the box. These ions create a small current from the plate to ground which is monitored with a sensitive electrometer. The current measured is proportional to the number of ions in the box, which is, in turn, proportional to the amount of alpha contamination on the surface of the soil. This report includes the design and construction of a 1-m by 1-m SSM as well as the results of a study at Fernald, OH, as part of the Uranium in Soils Integrated Demonstration

  3. Beamforming applied to surface EEG improves ripple visibility

    NARCIS (Netherlands)

    Mol, Arjen; van Klink, Nicole; Ferrier, Cyrille; Hillebrand, Arjan; Huiskamp, Geertjan; Zijlmans, Maeike

    2018-01-01

    Objective Surface EEG can show epileptiform ripples in people with focal epilepsy, but identification is impeded by the low signal-to-noise ratio of the electrode recordings. We used beamformer-based virtual electrodes to improve ripple identification. Methods We analyzed ten minutes of interictal

  4. Response surface method applied to optimization of estradiol ...

    Indian Academy of Sciences (India)

    torial design was built for the determination of the main factors affecting estradiol permeation. The independent factors analysed were: ... lation, waste water treatment, packaging in food industry and textile dyeing (Ravi Kumar 2000; ... Experimental design and optimization are tools that are used to systematically examine ...

  5. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  6. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  7. Isotopic correlations in fission gases applied to light water reactors

    International Nuclear Information System (INIS)

    Rousset, Pierre.

    1978-01-01

    The study of stable fission gases, released from irradiated fuel elements, allows not only the kinetics of release to be determined as a function of the irradiation conditions, but also very useful experimental correlations to be laid down in view of specifying irradiation parameters: specific burn-up and linear power. The LECI (Laboratoire d'Etude des Combustibles Irradies) at Saclay has effected for many years qualitative and quantitative analysis of the stable fission gases released from enriched UO 2 based fuels in the framework of quality control of the fuels for light water reactors (especially PWR). The use of the numerous results obtained in various conditions allowed a detail study of the isotope ratio for Xe and Kr, which may be applied to test elements and power assemblies [fr

  8. Mass transfer behavior of tritium from air to water through the water surface

    International Nuclear Information System (INIS)

    Takata, Hiroki; Nishikawa, Masabumi; Kamimae, Kozo

    2005-01-01

    It is anticipated that a certain amount of tritiated water exists in the atmosphere of tritium handling facilities, and it is recognized that the hazardous potential of tritiated water is rather high. Then, it is important to grasp the behavior of tritiated water for preserving of the radiation safety. The mass transfer behavior of tritium from air to water through the water surface was discussed in this study. The evaporation rate of water and the condensation rate of water were experimentally examined from measurement of change of the weight of distilled water. The tritium transfer rate from the tritiated water in air to the distilled water was also experimentally examined by using a liquid scintillation counter. Experimental results about change of tritium level in a small beaker placed in the atmosphere with tritiated water showed that diffusion of tritium in water and gas flow in the atmosphere gives considerable effect on tritium transfer. The estimation method of the tritium transfer made in this study was applied to explain the data at The Japan Atomic Power Company second power station at Tsuruga and good agreement was obtained. (author)

  9. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... scenarios are developed and visualized using maps, photography and artwork. The potential effects on the landscape N-cycle are discussed. Nitrogen removal by biomass production using forage or energy grasses, short rotation coppice willow/poplar or short rotation forestry with other tree species in buffers...

  10. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  11. Surface-wave-sustained plasma torch for water treatment

    Science.gov (United States)

    Marinova, P.; Benova, E.; Todorova, Y.; Topalova, Y.; Yotinov, I.; Atanasova, M.; Krcma, F.

    2018-02-01

    In this study the effects of water treatment by surface-wave-sustained plasma torch at 2.45 GHz are studied. Changes in two directions are obtained: (i) changes of the plasma characteristics during the interaction with the water; (ii) water physical and chemical characteristics modification as a result of the plasma treatment. In addition, deactivation of Gram positive and Gram negative bacteria in suspension are registered. A number of charged and excited particles from the plasma interact with the water. As a result the water chemical and physical characteristics such as the water conductivity, pH, H2O2 concentration are modified. It is observed that the effect depends on the treatment time, wave power, and volume of the treated liquid. At specific discharge conditions determined by the wave power, gas flow, discharge tube radius, thickness and permittivity, the surface-wave-sustained discharge (SWD) operating at atmospheric pressure in argon is strongly non-equilibrium with electron temperature T e much higher than the temperature of the heavy particles (gas temperature T g). It has been observed that SWD argon plasma with T g close to the room temperature is able to produce H2O2 in the water with high efficiency at short exposure times (less than 60 sec). The H2O2 decomposition is strongly dependant on the temperature thus the low operating gas temperature is crucial for the H2O2 production efficiency. After scaling up the device, the observed effects can be applied for the waste water treatment in different facilities. The innovation will be useful especially for the treatment of waters and materials for medical application.

  12. Thin, applied surfacing for improving skid resistance of concrete pavements

    Science.gov (United States)

    Scholer, C. F.

    1980-12-01

    The use of select aggregate in a thin wearing surface of portland cement mortar to prolone or restore a concrete pavement's ability to develop high friction was accomplished. Two fine aggregates, blast furnace slag and lightweight expanded shale were found to exhibit skid resistance greater than the other aggregates evaluated. The British polishing wheel was used in the laboratory evaluation of aggregate to simulate wear. The need for a method of restoring friction to a worn, but otherwise sound concrete pavement led to a field evaluation of several different techniques for placing a very thin overlay. The successful method was a broomed, very thin layer of mortar, 3 mm thick.

  13. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  14. Class frequency distribution for a surface raw water quality index in ...

    African Journals Online (AJOL)

    2013-01-01

    Jan 1, 2013 ... applied in raw water pricing structures, provide equity on tar- iffs among surface raw water users, in addition to .... target values for receiving water quality objectives (Fig. 6). The process of deriving quality .... The corresponding parameter could be viewed as a target for future impact mitigation measures.

  15. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  16. Ion microanalysis and implantation applied to fusion surface research

    International Nuclear Information System (INIS)

    Vook, F.L.; Doyle, B.L.; Picraux, S.T.

    1978-01-01

    Ion microanalysis and implantation have been used to investigate and analyze plasma-surface interactions relevant to fusion plasma materials. Previous results for pure metals are reviewed and new results are presented for TiB 2 coatings for Tokamak surfaces. Enhanced trapping of implanted, low-energy hydrogen has been shown to occur at room temperature in W, Au, Pd, Mo, Nb, and TiB 2 for He or other ion predamage. Hydrogen depth profiles obtained using 1 H( 19 F,αγ) 16 O resonant nuclear reaction show that the H decorates the He damage profiles at traps whose concentration is proportional to the He-induced damage. For room temperature implantation in TiB 2 , H is trapped at the end of range, and isochronal annealing indicates that the H is lost by release from traps followed by rapid diffusion. For He predamaged samples, annealing at 400 0 C causes the H to be retrapped in the region of the He-induced damage at traps whose cross section is approx. = 1.8 x 10 -18 cm 2 /trap

  17. Water infiltration into exposed fractured rock surfaces

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  18. Perception of surface pressure applied to the hand.

    Science.gov (United States)

    Johansson, L; Kjellberg, A; Kilbom, A; Hägg, G M

    1999-10-01

    The study aimed to determine the relationship between the physical magnitude and the subjective perception of applied pressure, and to determine discomfort and pain thresholds. Free modulus magnitude estimation of the subjective pressure level was made on three points: on the finger, the palm and the thenar area. The pressure was judged to be higher at the thenar point than at the finger and palm points. The slopes of the linear functions (log magnitude estimates as a function of log pressure) were 0.66, 0.78 and 0.76 for the finger, palm and thenar points respectively. The discomfort threshold was 38% of the pain pressure threshold at the finger point, 40% at the palm and 22% at the thenar point. The results are probably of importance in the performance of hand-intensive work, in particular in the design of hand tools.

  19. Groundwater–surface water interactions in wetlands for integrated water resources management (preface)

    NARCIS (Netherlands)

    Schot, P.P.; Winter, T.C.

    2006-01-01

    Groundwater–surface water interactions constitute an important link between wetlands and the surrounding catchment. Wetlands may develop in topographic lows where groundwater exfiltrates. This water has its functions for ecological processes within the wetland, while surface water outflow from

  20. Water Surface and Velocity Measurement-River and Flume

    Directory of Open Access Journals (Sweden)

    J. H. Chandler

    2014-06-01

    Full Text Available Understanding the flow of water in natural watercourses has become increasingly important as climate change increases the incidence of extreme rainfall events which cause flooding. Vegetation in rivers and streams reduce water conveyance and natural vegetation plays a critical role in flood events which needs to be understood more fully. A funded project at Loughborough University is therefore examining the influence of vegetation upon water flow, requiring measurement of both the 3-D water surface and flow velocities. Experimental work therefore requires the measurement of water surface morphology and velocity (i.e. speed and direction in a controlled laboratory environment using a flume but also needs to be adaptable to work in a real river. Measuring the 3D topographic characteristics and velocity field of a flowing water surface is difficult and the purpose of this paper is to describe recent experimental work to achieve this. After reviewing past work in this area, the use of close range digital photogrammetry for capturing both the 3D water surface and surface velocity is described. The selected approach uses either two or three synchronised digital SLR cameras in combination with PhotoModeler for data processing, a commercial close range photogrammetric package. One critical aspect is the selection and distribution of appropriate floating marker points, which are critical if automated and appropriate measurement methods are to be used. Two distinct targeting approaches are available: either large and distinct specific floating markers or some fine material capable of providing appropriate texture. Initial work described in this paper uses specific marker points, which also provide the potential measuring surface velocity. The paper demonstrates that a high degree of measurement and marking automation is possible in a flume environment, where lighting influences can be highly controlled. When applied to a real river it is apparent that

  1. Pipeline coating inspection in Mexico applying surface electromagnetic technology

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, O.; Mousatov, A.; Nakamura, E.; Villarreal, J.M. [Instituto Mexicano del Petroleo (IMP), Mexico City (Mexico); Shevnin, V. [Moscow State University (Russian Federation); Cano, B. [Petroleos Mexicanos (PEMEX), Mexico City (Mexico)

    2009-07-01

    The main problems in the pipeline systems in Mexico include: extremely aggressive soil characterized by a high clay content and low resistivity, interconnection between several pipes, including electrical contacts of active pipelines with out of service pipes, and short distances between pipes in comparison with their depths which reduce the resolution of coating inspection. The results presented in this work show the efficiency of the Surface Electromagnetic Pipeline Inspection (SEMPI) technology to determine the technical condition of pipelines in situations before mentioned. The SEMPI technology includes two stages: regional and detailed measurements. The regional stage consists of magnetic field measurements along the pipeline using large distances (10 - 100 m) between observation points to delimit zones with damaged coating. For quantitative assessing the leakage and coating resistances along pipeline, additional measurements of voltage and soil resistivity measurements are performed. The second stage includes detailed measurements of the electric field on the pipe intervals with anomalous technical conditions identified in the regional stage. Based on the distribution of the coating electric resistance and the subsoil resistivity values, the delimitation of the zones with different grade of coating quality and soil aggressiveness are performed. (author)

  2. General survey and conclusions with regard to the connection of water quantity and water quality studies of surface waters

    NARCIS (Netherlands)

    Rijtema, P.E.

    1979-01-01

    Publikatie die bestaat uit twee delen: 1. General survey of the relation between water quantity and water quality; 2. Conclusions with regard to the connection of water quantity and water quality studies of surface waters

  3. Hybrid membranes of polyamide applied in treatment of waste water

    International Nuclear Information System (INIS)

    Medeiros, Keila Machado de; Araujo, Edcleide Maria; Lira, Helio de Lucena; Lima, Diego de Farias; Lima, Carlos Antonio Pereira de

    2017-01-01

    In this work, it was prepared hybrid membranes of polyamide6 (PA6) with montmorillonite (MMT) and porogenic agent (CaCl 2 ). The hybrid membranes with CaCl 2 were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), porosimetry by mercury intrusion (PMI), flux measurements and rejection. By means of X-ray diffraction, it was revealed that the hybrid membranes with CaCl 2 have an exfoliated and/or partially exfoliated structure. For FTIR and DSC of hybrid membranes with CaCl 2 , it was found that the spectra and the crystalline melting temperature remained virtually unchanged compared to PA6 membrane. From the SEM images, it was observed that the addition of the MMT and the CaCl 2 in the membrane of PA6 caused an increase in the amount of pores the surface and cross section of these membranes. By PMI, it was observed that the presence of MMT and CaCl 2 in the membrane caused an increase in the average diameters of pores. The water-oil separation tests, indicated a significant reduction of oil in the permeate, allowing treatment of wastewater contaminated with oil. (author)

  4. Hybrid membranes of polyamide applied in treatment of waste water

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Keila Machado de; Araujo, Edcleide Maria; Lira, Helio de Lucena, E-mail: keilamachadodemedeiros@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Lima, Diego de Farias; Lima, Carlos Antonio Pereira de [Universidade Estadual da Paraiba (UEPB), Campina Grande, PB (Brazil). Departamento de Engenharia Sanitaria e Ambiental

    2017-03-15

    In this work, it was prepared hybrid membranes of polyamide6 (PA6) with montmorillonite (MMT) and porogenic agent (CaCl{sub 2} ). The hybrid membranes with CaCl{sub 2} were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), porosimetry by mercury intrusion (PMI), flux measurements and rejection. By means of X-ray diffraction, it was revealed that the hybrid membranes with CaCl{sub 2} have an exfoliated and/or partially exfoliated structure. For FTIR and DSC of hybrid membranes with CaCl{sub 2} , it was found that the spectra and the crystalline melting temperature remained virtually unchanged compared to PA6 membrane. From the SEM images, it was observed that the addition of the MMT and the CaCl{sub 2} in the membrane of PA6 caused an increase in the amount of pores the surface and cross section of these membranes. By PMI, it was observed that the presence of MMT and CaCl{sub 2} in the membrane caused an increase in the average diameters of pores. The water-oil separation tests, indicated a significant reduction of oil in the permeate, allowing treatment of wastewater contaminated with oil. (author)

  5. Applying Terrestrial Laser Scanning for Soil Surface Roughness Assessment

    Directory of Open Access Journals (Sweden)

    Milutin Milenković

    2015-02-01

    Full Text Available Terrestrial laser scanning can provide high-resolution, two-dimensional sampling of soil surface roughness. While previous studies demonstrated the usefulness of these roughness measurements in geophysical applications, questions about the number of required scans and their resolution were not investigated thoroughly. Here, we suggest a method to generate digital elevation models, while preserving the surface’s stochastic properties at high frequencies and additionally providing an estimate of their spatial resolution. We also study the impact of the number and positions of scans on roughness indices’ estimates. An experiment over a smooth and isotropic soil plot accompanies the analysis, where scanning results are compared to results from active triangulation. The roughness measurement conditions for ideal sampling are revisited and updated for diffraction-limited sampling valid for close-range laser scanning over smooth and isotropic soil roughness. Our results show that terrestrial laser scanning can be readily used for roughness assessment on scales larger than 5 cm, while for smaller scales, special processing is required to mitigate the effect of the laser beam footprint. Interestingly, classical roughness parametrization (correlation length, root mean square height (RMSh was not sensitive to these effects. Furthermore, comparing the classical roughness parametrization between one- and four-scan setups shows that the one-scan data can replace the four-scan setup with a relative loss of accuracy below 1% for ranges up to 3 m and incidence angles no larger than 50°, while two opposite scans can replace it over the whole plot. The incidence angle limit for the spectral slope is even stronger and is 40°. These findings are valid for scanning over smooth and isotropic soil roughness.

  6. Definition and experimental determination of a soil-water retention surface

    OpenAIRE

    Salager, S.; El Youssoufi, M. S.; Saix, C.

    2010-01-01

    International audience; This paper deals with the definition and determination methods of the soil-water retention surface (SWRS), which is the tool used to present the hydromechanical behaviour of soils to highlight both the effect of suction on the change in water and total volumes and the effect of deformation with respect to the water retention capability. An experimental method is introduced to determine the SWRS and applied to a clayey silty sand. The determination of this surface is ba...

  7. Structural analysis of fuel rod applied to pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Danilo P.; Pinheiro, Andre Ricardo M.; Lotto, André A., E-mail: danilo.pinheiro@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The design of fuel assemblies applied to Pressurized Water Reactors (PWR) has several requirements and acceptance criteria that must be attended for licensing. In the case of PWR fuel rods, an important mechanical structural requirement is to keep the radial stability when submitted to the coolant external pressure. In the framework of the Accident Tolerant Fuel (ATF) program new materials have been studied to replace zirconium based alloys as cladding, including iron-based alloys. In this sense, efforts have been made to evaluate the behavior of these materials under PWR conditions. The present work aims to evaluate the collapse cold pressure of a stainless steel thin-walled tube similar to that used as cladding material of fuel rods by means of the comparison of numeric data, and experimental results. As a result of the simulations, it was observed that the collapse pressure has a value intermediate value between those found by regulatory requirements and analytical calculations. The experiment was carried out for the validation of the computational model using test specimens of thin-walled tubes considering empty tube. The test specimens were sealed at both ends by means of welding. They were subjected to a high pressure device until the collapse of the tubes. Preliminary results obtained from experiments with the empty test specimens indicate that the computational model can be validated for stainless steel cladding, considering the difference between collapse pressure indicated in the regulatory document and the actual limit pressure concerning to radial instability of tubes with the studied characteristics. (author)

  8. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  9. Removing adsorbed heavy metal ions from sand surfaces via applying interfacial properties of rhamnolipid.

    Science.gov (United States)

    Haryanto, Bode; Chang, Chien-Hsiang

    2015-01-01

    In this study, the interfacial properties of biosurfactant rhamnolipid were investigated and were applied to remove adsorbed heavy metal ions from sand surfaces with flushing operations. The surface tension-lowering activity, micelle charge characteristic, and foaming ability of rhamnolipid were identified first. For rhamnolipid in water, the negatively charged characteristic of micelles or aggregates was confirmed and the foaming ability at concentrations higher than 40 mg/L was evaluated. By using the rhamnolipid solutions in a batch washing approach, the potential of applying the interfacial properties of rhamnolipid to remove adsorbed copper ions from sand surfaces was then demonstrated. In rhamnolipid solution flushing operations for sand-packed medium, higher efficiency was found for the removal of adsorbed copper ions with residual type than with inner-sphere interaction type, implying the important role of interaction type between the copper ion and the sand surface in the removal efficiency. In addition, the channeling effect of rhamnolipid solution flow in the sand-packed medium was clearly observed in the solution flushing operations and was responsible for the low removal efficiency with low contact areas between solution and sand. By using rhamnolipid solution with foam to flush the sand-packed medium, one could find that the channeling effect of the solution flow was reduced and became less pronounced with the increase in the rhamnolipid concentration, or with the enhanced foaming ability. With the reduced channeling effect in the flushing operations, the removal efficiency for adsorbed copper ions was significantly improved. The results suggested that the foam-enhanced rhamnolipid solution flushing operation was efficient in terms of surfactant usage and operation time.

  10. Structured free-water clusters near lubricating surfaces are essential in water-based lubrication.

    Science.gov (United States)

    Hou, Jiapeng; Veeregowda, Deepak H; de Vries, Joop; Van der Mei, Henny C; Busscher, Henk J

    2016-10-01

    Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as more hydrophobic Si crystal surfaces (61°), while lubrication by hydrophilic Ge crystal surfaces (44°) is best. Thus surface hydrophilicity is not sufficient for water-based lubrication. Surface-thermodynamic analyses demonstrated that all surfaces, regardless of their water-based lubrication, were predominantly electron donating, implying water binding with their hydrogen groups. X-ray photoelectron spectroscopy showed that Ge crystal surfaces providing optimal lubrication consisted of a mixture of -O and =O functionalities, while Si crystal and quartz surfaces solely possessed -O functionalities. Comparison of infrared absorption bands of the crystals in water indicated fewer bound-water layers on hydrophilic Ge than on hydrophobic Si crystal surfaces, while absorption bands for free water on the Ge crystal surface indicated a much more pronounced presence of structured, free-water clusters near the Ge crystal than near Si crystal surfaces. Accordingly, we conclude that the presence of structured, free-water clusters is essential for water-based lubrication. The prevalence of structured water clusters can be regulated by adjusting the ratio between surface electron-donating and electron-accepting groups and between -O and =O functionalities. © 2016 The Author(s).

  11. Metolachlor and atrazine fate in surface water systems

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.J.; Anderson, T.A.; Coats, J.R. [Iowa State Univ., Ames, IA (United States)

    1995-12-31

    The detection of pesticides in surface water and ground water provokes concern involving human health risks associated with pesticide exposure. Monitoring studies of surface waters have detected concentrations of herbicides that exceed the U.S. Environmental Protection Agency proposed maximum contamination level (MCL) for drinking water. Conventional water treatment processes do not remove many herbicides. Tap water drawn from surface-water sources has been reported to contain levels of herbicides above the regulatory limits. There is current interest in the use of artificial wetlands and macrophyte-cultured ponds in waste-water-treatment systems. Aquatic plant-based water treatment systems improve waste water effluent by solid filtration and nutrient assimilation. Various aquatic plants have been shown to accumulate metals, absorb inorganic ions, and accelerate the biodegradation of complex organics. Our research evaluates the fate of metolachlor and atrazine in surface water, surface water/sediment, and surface water/aquatic plant incubation systems to study the influence of sediment and aquatic plants in the removal and biotransformation of herbicides from contaminated waters. Aquatic macrophyte systems may prove to be useful in the remediation of herbicide contaminated surface waters in water treatment facilities or in the reduction of herbicide concentrations from tile drain effluents prior to entering watersheds.

  12. Quasilinear ridge structures in water surface waves

    Science.gov (United States)

    Blümel, R.; Davidson, I. H.; Reinhardt, W. P.; Lin, H.; Sharnoff, M.

    1992-02-01

    Nodal patterns of stationary capillary waves formed on the surface of water enclosed in an agitated ripple tank with circular and stadium-shaped cylindrical walls are examined in the low-frequency (ν700 Hz) regimes. In the low-frequency regime, in agreement with predictions of quantum-chaos theory, the shape of the tank's boundaries (integrable or nonintegrable) dictates the type of nodal patterns obtained. In the high-frequency regime we obtain nodal patterns characterized by short-range order (called ``scarlets'' because they are believed to be the precursors of quantum scars), as recently predicted in the quantum-chaos context by P. O'Connor, J. Gehlen, and E. J. Heller [Phys. Rev. Lett. 58, 1296 (1987)].

  13. High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia.

    Science.gov (United States)

    Steyer, Andrej; Torkar, Karmen Godič; Gutiérrez-Aguirre, Ion; Poljšak-Prijatelj, Mateja

    2011-09-01

    Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with real-time RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks

  14. China's transboundary waters: new paradigms for water and ecological security through applied ecology.

    Science.gov (United States)

    He, Daming; Wu, Ruidong; Feng, Yan; Li, Yungang; Ding, Chengzhi; Wang, Wenling; Yu, Douglas W

    2014-10-01

    China is Asia's most important upstream riparian country, sharing 110 rivers and lakes with 18 downstream countries. Consequently, China's management of transboundary water resources must consider both environmental and geopolitical risks.The major threats to and conflicts over international rivers in China revolve around biotic homogenisation due to the installation of transport links, water allocation, water pollution, alteration of natural flow patterns and disruption of fisheries due to the installation of hydropower dams, and droughts and floods exacerbated by climate change. Because these problems have an international component, they fall under China's Peaceful Rise strategy, mandating that transboundary conflicts be resolved amicably as part of the overarching goal of increasing regional economic growth with as little conflict as possible.Science-backed policy is more likely to result in long term, mutually agreeable solutions; the results of applied ecological research have already resulted in a number of mitigation measures, including setting operational thresholds to reduce the downstream impact of dams, designating protected areas along key river stretches where dams cannot be installed (one dam in a critical location has been cancelled), and the installation of terrestrial protected-area networks. Synthesis and applications . Applied ecology will continue to play an important role in the diagnosis and resolution of environmental threats to China's transboundary waters. More importantly, applied ecology can inform the development of a transboundary environmental compensation mechanism and regional consultative mechanisms that support informed, cooperative decision-making for China and its riparian neighbours.

  15. China's transboundary waters: new paradigms for water and ecological security through applied ecology

    Science.gov (United States)

    He, Daming; Wu, Ruidong; Feng, Yan; Li, Yungang; Ding, Chengzhi; Wang, Wenling; Yu, Douglas W

    2014-01-01

    China is Asia's most important upstream riparian country, sharing 110 rivers and lakes with 18 downstream countries. Consequently, China's management of transboundary water resources must consider both environmental and geopolitical risks. The major threats to and conflicts over international rivers in China revolve around biotic homogenisation due to the installation of transport links, water allocation, water pollution, alteration of natural flow patterns and disruption of fisheries due to the installation of hydropower dams, and droughts and floods exacerbated by climate change. Because these problems have an international component, they fall under China's Peaceful Rise strategy, mandating that transboundary conflicts be resolved amicably as part of the overarching goal of increasing regional economic growth with as little conflict as possible. Science-backed policy is more likely to result in long term, mutually agreeable solutions; the results of applied ecological research have already resulted in a number of mitigation measures, including setting operational thresholds to reduce the downstream impact of dams, designating protected areas along key river stretches where dams cannot be installed (one dam in a critical location has been cancelled), and the installation of terrestrial protected-area networks. Synthesis and applications. Applied ecology will continue to play an important role in the diagnosis and resolution of environmental threats to China's transboundary waters. More importantly, applied ecology can inform the development of a transboundary environmental compensation mechanism and regional consultative mechanisms that support informed, cooperative decision-making for China and its riparian neighbours. PMID:25558084

  16. Surface Processing and Modification of Polymers by Water Cluster Ion Beam

    Science.gov (United States)

    Ryuto, H.; Takeuchi, M.; Ichihashi, G.; Sommani, P.; Takaoka, G. H.

    2011-01-01

    A water cluster ion beam was irradiated on a poly(methyl methacrylate) (PMMA) surface to examine the possibility of applying the water cluster ion beam technique to the surface processing and modification of polymers. The sputtering yields of PMMA substrates irradiated with water cluster ion beams increased with acceleration voltage and dose of the water cluster ion beam. The threshold acceleration voltage of sputtering was approximately 3 kV. The X-ray photoelectron spectroscopy (XPS) analysis of the PMMA surface irradiated with the water cluster ion beam suggested the degradation of the PMMA side chains. The XPS spectrum of the surface of the sputtered particle catcher at 45° backward direction showed approximately the same shape as the XPS spectrum of the PMMA surface irradiated with the water cluster ion beam.

  17. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    Science.gov (United States)

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Structured free-water clusters near lubricating surfaces are essential in water-based lubrication

    NARCIS (Netherlands)

    Hou, Jiapeng; Veeregowda, Deepak H; de Vries, Joop; Van der Mei, Henny C; Busscher, Henk J

    2016-01-01

    Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces

  19. Detection of nanoparticles in Dutch surface waters.

    Science.gov (United States)

    Peters, Ruud J B; van Bemmel, Greet; Milani, Nino B L; den Hertog, Gerco C T; Undas, Anna K; van der Lee, Martijn; Bouwmeester, Hans

    2018-04-15

    Nano-enabled consumer products are a likely source of nanoparticles in the environment and a number of studies have shown the release of nanoparticles from commercial products. Predicted environmental concentrations have been calculated but there is a need for real measurement data to validate these calculations. However, the detection of engineered nanoparticles in environmental matrices is challenging because of the low predicted environmental concentrations which may be in the ng/L range. In this study nanosized Ag, CeO 2 and TiO 2 have been measured in multiple surface water samples collected along the rivers Meuse and IJssel in the Netherlands using single-particle ICP-MS as measurement technique. Validation of the analytical method showed its capability to quantitatively determine nanoparticles at low concentrations. Concentration mass detection limits for Ag, CeO 2 and TiO 2 were 0.1ng/L, 0.05ng/L and 10ng/L respectively. Size detection limits for Ag, CeO 2 and TiO 2 were 14, 10 and 100nm. The results of the study confirm the presence of nano-sized Ag and CeO 2 particles and micro-sized TiO 2 particles in these surface waters. n-Ag was present in all samples in concentrations ranging from 0.3 to 2.5ng/L with an average concentration of 0.8ng/L and an average particle size of 15nm. n-CeO 2 was found in all samples with concentrations ranging from 0.4 to 5.2ng/L with an average concentration of 2.7ng/L and an average particle size of 19nm. Finally, μ-TiO 2 was found in all samples with a concentration ranging from 0.2 to 8.1μg/L with an average concentration of 3.1μg/L and an average particle size of 300nm. The particle sizes that were found are comparable with the particle sizes that are used in nanomaterial applications and consumer products. The nanoparticle concentrations confirm the predicted environmental concentrations values in water for all three nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Presence of active pharmaceutical ingredients in the continuum of surface and ground water used in drinking water production.

    Science.gov (United States)

    Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina

    2017-12-01

    Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.

  1. Radioactivity in surface water, drinking water and sewage treatment plants

    International Nuclear Information System (INIS)

    Steger, F.

    1988-01-01

    The author discusses the origin, occurrence, characteristics and behaviour of radioactive substances in waters, the use of various waters as drinking water and consequences to be drawn in the case of drinking water contamination. 1 ref. (Author)

  2. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Embedded water-based surface heating part 2: experimental validation

    DEFF Research Database (Denmark)

    Karlsson, Henrik

    2010-01-01

    : hybrid 3D numerical model. Journal of Building Physics 33: 357-391). The thermal response of the system is tested in both long (16 h) and short (30 min) cycle experiments where the water flow alters between on and off. Temperature distribution, within the floor construction, and the heat exchange process...... are studied throughout the test cycles. The model underestimates the steady-state heat exchange from the pipe loop by 16% when boundary conditions and thermal properties according to the reference case are applied. Temperatures at the floor surface are assessed with good precision while temperatures......The transient operation of an embedded water-based floor heating system has been studied by means of a numerical simulation tool. Prior to this study, Caccavelli and Richard (Caccavelli D, Richard P (1994) Etude portant sur le dimensionnement d'un plancher chauffant a eau chaude en CIC. Rapport n...

  4. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R 2 , RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  5. Physical basis for river segmentation from water surface observables

    Science.gov (United States)

    Samine Montazem, A.; Garambois, P. A.; Calmant, S.; Moreira, D. M.; Monnier, J.; Biancamaria, S.

    2017-12-01

    With the advent of satellite missions such as SWOT we will have access to high resolution estimates of the elevation, slope and width of the free surface. A segmentation strategy is required in order to sub-sample the data set into reach master points for further hydraulic analyzes and inverse modelling. The question that arises is : what will be the best node repartition strategy that preserves hydraulic properties of river flow? The concept of hydraulic visibility introduced by Garambois et al. (2016) is investigated in order to highlight and characterize the spatio-temporal variations of water surface slope and curvature for different flow regimes and reach geometries. We show that free surface curvature is a powerful proxy for characterizing the hydraulic behavior of a reach since concavity of water surface is driven by variations in channel geometry that impacts the hydraulic properties of the flow. We evaluated the performance of three segmentation strategies by means of a well documented case, that of the Garonne river in France. We conclude that local extrema of free surface curvature appear as the best candidate for locating the segment boundaries for an optimal hydraulic representation of the segmented river. We show that for a given river different segmentation scales are possible: a fine-scale segmentation which is driven by fine-scale hydraulic to large-scale segmentation driven by large-scale geomorphology. The segmentation technique is then applied to high resolution GPS profiles of free surface elevation collected on the Negro river basin, a major contributor of the Amazon river. We propose two segmentations: a low-resolution one that can be used for basin hydrology and a higher resolution one better suited for local hydrodynamic studies.

  6. Passive water control at the surface of a superhydrophobic lichen

    OpenAIRE

    Hamlett, Christopher; Shirtcliffe, Neil; Pyatt, F. Brian; Newton, Michael; McHale, Glen; Koch, Kerstin

    2011-01-01

    Some lichens have a super-hydrophobic upper surface, which repels water drops, keeping the surface dry but probably preventing water uptake. Spore ejection requires water and is most efficient just after rainfall. This study was carried out to investigate how super-hydrophobic lichens manage water uptake and repellence at their fruiting bodies, or podetia. Drops of water were placed onto separate podetia of Cladonia chlorophaea and observed using optical microscopy and cryo-scanning-electron ...

  7. Degradation Potential of Bulk Versus Incrementally Applied and Indirect Composites: Color, Microhardness, and Surface Deterioration.

    Science.gov (United States)

    El Gezawi, M; Kaisarly, D; Al-Saleh, H; ArRejaie, A; Al-Harbi, F; Kunzelmann, K H

    This study investigated the color stability and microhardness of five composites exposed to four beverages with different pH values. Composite discs were produced (n=10); Filtek Z250 (3M ESPE) and Filtek P90 (3M ESPE) were applied in two layers (2 mm, 20 seconds), and Tetric N-Ceram Bulk Fill (TetricBF, Ivoclar Vivadent) and SonicFill (Kerr) were applied in bulk (4 mm) and then light cured (40 seconds, Ortholux-LED, 1600 mW/cm 2 ). Indirect composite Sinfony (3M ESPE) was applied in two layers (2 mm) and cured (Visio system, 3M ESPE). The specimens were polished and tested for color stability; ΔE was calculated using spectrophotometer readings. Vickers microhardness (50 g, dwell time=45 seconds) was assessed on the top and bottom surfaces at baseline, 40 days of storage, subsequent repolishing, and 60 days of immersion in distilled water (pH=7.0), Coca-Cola (pH=2.3), orange juice (pH=3.75), or anise (pH=8.5) using scanning electron microscopy (SEM). The materials had similar ΔE values (40 days, p>0.05), but TetricBF had a significantly greater ΔE than P90 or SF (40 days). The ΔE was less for P90 and TetricBF than for Z250, SonicFill, and Sinfony (60 days). Repolishing and further immersion significantly affected the ΔE (pBulk-fill composites differ regarding color-stability and top-to-bottom microhardness changes compared with those of other composites. P90 showed better surface degradation resistance. In conclusion, bulk-fill composites are not promising alternatives to incremental and indirect composites regarding biodegradation.

  8. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  9. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  10. Hydrochemistry of surface water and groundwater from a fractured ...

    Indian Academy of Sciences (India)

    The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of ...

  11. An Expert System Applied in Construction Water Quality Monitoring

    OpenAIRE

    Leila Ooshaksaraie; Noor E.A. Basri

    2011-01-01

    Problem statement: An untoward environmental impact of urban growth in Malaysia has been deterioration in a number of watercourses due to severe siltation and other pollutants from the construction site. Water quality monitoring is a plan for decision makers to take into account the adverse impacts of construction activities on the receiving water bodies. It is also a process for collecting the construction water quality monitoring, baseline data and standard level. Approa...

  12. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    Science.gov (United States)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  13. Photochemical Transformation Processes in Sunlit Surface Waters

    Science.gov (United States)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  14. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  15. Physicochemical properties of concentrated Martian surface waters

    Science.gov (United States)

    Tosca, Nicholas J.; McLennan, Scott M.; Lamb, Michael P.; Grotzinger, John P.

    2011-05-01

    Understanding the processes controlling chemical sedimentation is an important step in deciphering paleoclimatic conditions from the rock records preserved on both Earth and Mars. Clear evidence for subaqueous sedimentation at Meridiani Planum, widespread saline mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated solutions on Mars in addition to, and as a function of, their distinct chemistry. Using thermodynamic models predicting saline mineral solubility, we generate likely brine compositions ranging from bicarbonate-dominated to sulfate-dominated and predict their saline mineralogy. For each brine composition, we then estimate a number of thermal, transport, and colligative properties using established models that have been developed for highly concentrated multicomponent electrolyte solutions. The available experimental data and theoretical models that allow estimation of these physicochemical properties encompass, for the most part, much of the anticipated variation in chemistry for likely Martian brines. These estimates allow significant progress in building a detailed analysis of physical sedimentation at the ancient Martian surface and allow more accurate predictions of thermal behavior and the diffusive transport of matter through chemically distinct solutions under comparatively nonstandard conditions.

  16. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    Science.gov (United States)

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  17. Engineering Extreme Hydrophobic and Super Slippery Water Shedding Surfaces

    Science.gov (United States)

    McHale, Glen

    2017-04-01

    The intrinsic water repellency of a material is fundamentally determined by its surface chemistry, but alone this does not determine the ability of a surface to shed water. Physical factors such as the surface texture/topography, rigidity/flexibility, granularity/porosity combined with the intrinsic wetting properties of the liquid with the surface and whether it is infused by a lubricating liquid are equally important. In this talk I will outline fundamental, but simple, ideas on the topographic enhancement of surface chemistry to create superhydrophobicity, the adhesion of particles to liquid-air interfaces to create liquid marbles, elastocapillarity to create droplet wrapping, and lubricant impregnated surfaces to create completely mobile droplets [1-3]. I will discuss how these ideas have their origins in natural systems and surfaces, such as Lotus leaves, galling aphids and the Nepenthes pitcher plant. I will show how we have applied these concepts to study the wetting of granular systems, such as sand, to understand extreme soil water repellency. I will argue that relaxing the assumption that a solid substrate is fixed in shape and arrangement, can lead to the formation of liquid marbles, whereby a droplet self-coats in a hydrophobic powder/grains. I will show that the concepts of wetting and porosity blur as liquids penetrate into a porous or granular substrate. I will also discuss how lubricant impregnated super slippery surfaces can be used to study a pure constant contact angle mode of droplet evaporation [4]. Finally, I will show dewetting of a surface is not simply a video reversal of wetting [5], and I will give an example of the use of perfect hydrophobicity using the Leidenfrost effect to create a new type of low friction mechanical and hear engine [6]. References: [1] Shirtcliffe, N. J., et al., An introduction to superhydrophobicity. Advances in Colloid and Interface Science, vol. 161, pp.124-138 (2010). [2] McHale, G. & Newton, M. I. Liquid

  18. The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry

    Science.gov (United States)

    Eid, K. F.; Panth, M.; Sommers, A. D.

    2018-03-01

    This paper explores the fluid property commonly called surface tension, its effect on droplet shape and contact angle, and the major influences of contact angle behaviour (i.e. surface roughness and surface chemistry). Images of water droplets placed on treated copper surfaces are used to measure the contact angles between the droplets and the surface. The surface wettability is manipulated either by growing a self-assembled monolayer on the surface to make it hydrophobic or by changing the surface roughness. The main activities in this experiment, then, are (1) preparing and studying surfaces with different surface wettability and roughness; (2) determining the shape and contact angles of water droplets on these surfaces; and (3) demonstrating the spontaneous motion of water droplets using surface tension gradients.

  19. 40 CFR 258.27 - Surface water requirements.

    Science.gov (United States)

    2010-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... the discharge of a nonpoint source of pollution to waters of the United States, including wetlands...

  20. Applying franchising principles to improving water and sanitation services reliability

    CSIR Research Space (South Africa)

    Wall, K

    2008-11-01

    Full Text Available CSIR research has found that franchising partnerships could alleviate and address many challenges in the operation and maintenance of water services infrastructure. Franchising brings appropriate training to those on-site, and also offers backup off...

  1. Cocaine and metabolites in waste and surface water across Belgium

    International Nuclear Information System (INIS)

    Nuijs, Alexander L.N. van; Pecceu, Bert; Theunis, Laetitia; Dubois, Nathalie; Charlier, Corinne; Jorens, Philippe G.; Bervoets, Lieven; Blust, Ronny; Neels, Hugo; Covaci, Adrian

    2009-01-01

    Cocaine abuse, a growing social problem, is currently estimated from population surveys, consumer interviews and crime statistics. A new approach based on the analysis of cocaine (COC) and metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in water samples was applied to 28 rivers and 37 waste water treatment plants in Belgium using solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. While EME was undetectable, COC and BE were detectable with concentrations ranging from <1 to 753 ng/L and <1 to 2258 ng/L, respectively. BE concentrations were employed to calculate the local amount of abused cocaine. The highest values (up to 1.8 g/day cocaine per 1000 inhabitants) were found in large cities and during weekends. The estimation of cocaine abuse through water analysis can be executed on regular basis without cooperation of patients. It also gives clear geographical information, while prevention campaigns can easily be implemented and evaluated. - Cocaine consumption can be evaluated through analysis of waste and surface water

  2. Hydrochemistry of shallow groundwater and surface water in the ...

    African Journals Online (AJOL)

    judevom

    The analysed water was suitable for irrigation. Key words: Water chemistry, hydrochemical controls, drinking-irrigation quality, Ndop plain, Cameroon. INTRODUCTION. Groundwater and surface water geochemical studies can provide a better understanding of potential water quality variations due to geology and land use ...

  3. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  4. Short Communication: Conductivity as an indicator of surface water ...

    African Journals Online (AJOL)

    Various water- soluble species are present in FeCr waste materials and in process water. Considering the size of the South African FeCr industry and its global importance, it is essential to assess the extent of potential surface water pollution in the proximity of FeCr smelters by such watersoluble species. In this study water ...

  5. The interaction between surface water and groundwater and its ...

    Indian Academy of Sciences (India)

    The relationship between surface water and groundwater not only influences the water quantity, but also affects the water quality. The stable isotopes (δD, δ18O) and hydrochemical compositions in water samples were analysed in the Second Songhua River basin. The deep groundwater is mainly recharged from shallow ...

  6. Groundwater/Surface-Water Interaction in the Context of South African Water Policy

    Science.gov (United States)

    Levy, J.; Xu, Y.

    2010-12-01

    Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. South Africa’s 1998 National Water Act (NWA) recognized water as a basic human right and its importance for ecological sustainability. Ecological integrity of water resources was considered an important component in redressing past social inequities, eliminating poverty, and encouraging economic development. Under the NWA, groundwater-use licenses are granted only after setting aside the groundwater Reserve, the amount of water needed to supply basic human needs and preserve a minimum degree of ecological integrity. One challenge to successful implementation of the NWA, therefore, is the accurate quantification of groundwater contributions to aquatic ecosystems. This is especially true considering that so many of South Africa’s aquifers are in highly heterogeneous and anisotropic fractured-rock settings. The most common approach taken in South Africa is estimation of average annual flux rates at the regional scale of quaternary catchments with baseflow separation techniques and then applying a water-budget approach, subtracting the groundwater discharge rate from the recharge rate. The water-balance approach might be a good first step, but it ignores spatial and temporal variability, potentially missing the local impacts associated with placement of production boreholes. Identification of discrete areas of groundwater discharge could be achieved with stable-isotopic and geochemical analyses and vegetative mapping. Groundwater-flow modeling should be used where possible as it holistically incorporates available data and can predict impacts of groundwater extraction and development based on the relative positions of boreholes and surface-water bodies. Sustainable development entails recognition of the trade-offs between preservation and development. There will always be scientific uncertainty associated with estimation and

  7. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  8. Abiotic Typology of Surface Water Bodies in the Hydrographic Basin of the Arieş River

    Directory of Open Access Journals (Sweden)

    GHEORGHE ŞERBAN

    2010-01-01

    Full Text Available Monitoring according to the Water Frame Directive (2000/60/E.C. guidelines demands the identification of river water bodies, typology, and investigation of reference conditions within each river basin. The identification of “water bodies” based on geographical and hydromorphological determinants is to enable the status to be accurately described and compared to environmental objectives of the Directive. A surface water body has to be a discrete element of surface water, which is not to overlap with each other or to be composed of elements of surface water that are not contiguous. Heavily modified water bodies may be identified and designated where good ecological status is not achieved because of impacts on the hydromorphological characteristics of surface water resulting from physical alterations. By applying the methodology described in the guidance document related to the WFD – Water Framework Directive, identification and designation of abiotic typology water bodies has led to a number of 32 types of water bodies related to streams and 18 types of water bodies related to natural lakes. Due to its position and its morphometric features, the Arieş Basin includes around 12 water body types (eight related to streams and four related to lakes. A detailed overview regarding the spatial distribution of these types is also exposed for inside analysis.

  9. Shallow Water Measurements Using a Single Green Laser Corrected by Building a Near Water Surface Penetration Model

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2017-04-01

    Full Text Available To reduce the size and cost of an integrated infrared (IR and green airborne LiDAR bathymetry (ALB system, and improve the accuracy of the green ALB system, this study proposes a method to accurately determine water surface and water bottom heights using a single green laser corrected by the near water surface penetration (NWSP model. The factors that influence the NWSP of green laser are likewise analyzed. In addition, an NWSP modeling method is proposed to determine the relationship between NWSP and the suspended sediment concentration (SSC of the surface layer, scanning angle of a laser beam and sensor height. The water surface and water bottom height models are deduced by considering NWSP and using only green laser based on the measurement principle of the IR laser and green laser, as well as employing the relationship between NWSP and the time delay of the surface return of the green laser. Lastly, these methods and models are applied to a practical ALB measurement. Standard deviations of 3.0, 5.3, and 1.3 cm are obtained by the NWSP, water-surface height, and water-bottom height models, respectively. Several beneficial conclusions and recommendations are drawn through the experiments and discussions.

  10. Advanced surface technology a holistic view on the extensive and intertwined world of applied surface engineering

    CERN Document Server

    Moller, Per

    2013-01-01

    These two volumes serve as an inclusive and practical reference in manufacturing as well as a comprehensive text for university-level course work. Before delving into the variety of conventional and emerging surface finishing processes available to the 21st century practitioner, the authors cover the principles behind the processes, including wear and other mechanical properties, corrosion and electrochemistry. Throughout, the material also covers testing, property measurement and a generic introduction to basically all surface relevant characterization techniques, keyed to the specific process and application under discussion.

  11. The impact of uncontrolled waste disposal on surface water quality ...

    African Journals Online (AJOL)

    The main threat to the surface water quality in Addis Ababa is environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants, people are forced to discharge wastes both on open surface and within water bodies.

  12. Protecting Surface Water Systems on Forest Sites Through Herbicide Use

    Science.gov (United States)

    J.L. Michael; H.L. Gibbs; J.B. Fischer; E.C. Webber

    2000-01-01

    Sediment, nutrients, and pesticides are universally accepted as the greatest threats to surface water quality world-wide. Sedimentation in surface waters is a natural phenomenon, but is magnified by human activities. Intensive forest management practices, particularly road building, harvesting and planting site preparation, result in the greatest increases in erosion...

  13. chemical and microbiological assessment of surface water samples ...

    African Journals Online (AJOL)

    PROF EKWUEME

    are to assess, ascertain and evaluate the level, degree and type of pollution that characterize the surface water resources of Enugu area of ... implications for economic development since people relies heavily on it for various uses such as ... surface water bodies are prone to impacts from anthropogenic activities apart from ...

  14. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  15. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  16. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  17. 33 CFR 89.27 - Waters upon which Inland Rule 24(i) applies.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Waters upon which Inland Rule 24(i) applies. 89.27 Section 89.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES INLAND NAVIGATION RULES: IMPLEMENTING RULES Waters Upon Which Certain...

  18. Investigating Ionic Effects Applied to Water Based Organocatalysed Aldol Reactions

    Directory of Open Access Journals (Sweden)

    Joshua P. Delaney

    2011-12-01

    Full Text Available Saturated aqueous solutions of various common salts were examined for their effect on aqueous aldol reactions catalysted by a highly active C2-symmetric diprolinamide organocatalyst developed in our laboratory. With respect to the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde, deionised water was always a superior medium to salt solutions though some correlation to increasing anion size and depression in enantiomeric excess could be observed. Additionally, the complete inhibition of catalyst activity observed when employing tap water could be alleviated by the inclusion of ethylenediaminetetraacetate (EDTA into the aqueous media prior to reaction initiation. Extension of these reaction conditions demonstrated that these ionic effects vary on a case-to-case basis depending on the ketone/aldehyde combination.

  19. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  20. Influence of water on the surface of graphene

    Science.gov (United States)

    Kaya, Yunus; Kalkan, Yalçin; Veenhof, Rob

    2018-02-01

    We have studied how water modifies the surface of graphene and in particular how the surface conductivity of graphene is affected. According to the literature, two types of interactions should be distinguished: physical, where a water molecule remains intact and is located at some distance from the mesh, and chemical, where a water molecule is imbricated in the graphene bond structure. We have developed theoretical models for both types of interactions using the density functional theory (DFT) with the B3LYP hybrid functional combined with the 6-31G(d) basis set. Our calculations show that the surface conductivity of graphene is reduced in the presence of water.

  1. Modelling and simulation of surface water waves

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Westhuis, J.H.

    2002-01-01

    The evolution of waves on the surface of a layer of fluid is governed by non-linear effects from surface deformations and dispersive effects from the interaction with the interior fluid motion. Several simulation tools are described in this paper and compared with real life experiments in large

  2. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    Density functional theory calculations are used as the basis for an analysis of the electrochemical process, where by water is split to form molecular oxygen and hydrogen. We develop a method for obtaining the thermochemistry of the electrochemical water splitting process as a function of the bia...

  3. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... factors extracted by the Centroid method, rotated by Varimax rotation (Ahmed et al., 2005). Calculated eigenvalues, per cent. Figure 1. Sketch map of water quality monitoring stations in Buyuk. Menderes Basin in Turkey. TABLE 1. Descriptive statistics of water quality data under low-flow conditions. Variable.

  4. Water aggregation and dissociation on the ZnO(101[combining macron]0) surface.

    Science.gov (United States)

    Kenmoe, Stephane; Biedermann, P Ulrich

    2017-01-04

    A comprehensive search for stable structures in the low coverage regime (0-1 ML) and at 2 ML and 3 ML using DFT revealed several new aggregation states of water on the non-polar ZnO(101[combining macron]0) surface. Ladder-like structures consisting of half-dissociated dimers, arranged side-by-side along the polar axis, constitute the most stable aggregate at low coverages (≤1 ML) with a binding energy exceeding that of the monolayer. At coverages beyond the monolayer - a regime that has hardly been studied previously - a novel type of structure with a continuous honeycomb-like 2D network of hydrogen bonds was discovered, where each surface oxygen atom is coordinated by additional H-bonding water molecules. This flat double-monolayer has a relatively high adsorption energy, every zinc and oxygen atom is 4-fold coordinated and every hydrogen atom is engaged in a hydrogen bond. Hence this honeycomb double monolayer offers no H-bond donor or acceptor sites for further growth of the water film. At 3 ML coverage, the interface restructures forming a contact layer of half-dissociated water dimers and a liquid-like overlayer of water attached by hydrogen bonds. The structures and their adsorption energies are analysed to understand the driving forces for aggregation and dissociation of water on the surface. We apply a decomposition scheme based on a Born-Haber cycle, discussing difficulties that may occur in applying such an analysis to the adsorption of dissociated molecules and point out alternatives to circumvent the bias against severely stretched bonds. Water aggregation on the ZnO surface is favoured by direct water-water interactions including H-bonds and dipole-dipole interactions and surface- or adsorption-mediated interactions including enhanced water-surface interactions and reduced relaxations of the water molecules and surface. While dissociation of isolated adsorbed molecules is unfavourable, partial or even full dissociation is preferred for aggregates

  5. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause a...

  6. Issues of the presence of parasitic protozoa in surface waters

    Directory of Open Access Journals (Sweden)

    Hawrylik Eliza

    2018-01-01

    This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  7. Effects of surface water on the adsorption of inert gases

    International Nuclear Information System (INIS)

    Gammage, R.B.; Holmes, H.F.

    1976-01-01

    Molecular water on mildly outgassed open oxide surfaces can, under special circumstances, significantly reduce the monolayer capacity for inert gas molecules. Non-porous thoria and cubic europia are two examples. The special proviso is that the surface be sufficiently uniform to permit the formation of a well structured, ice-like surface with non-polar character. This type of behavior reaches an extreme for a non-porous ground calcite; surface water converts a Type II isotherm for krypton into a Type III. These structured layers of adsorbed water adsorb nitrogen in a manner very similar to that found for various types of ice. For open oxide surface in a more thoroughly outgassed condition, the BET specific surface area does not generally vary with outgassing temperature at and above 150 0 C. The area occupied by an inert gas molecule does not change, therefore, with varying hydroxyl ion content of the surface

  8. Actinomycetes and Fungi in Surface Waters and in Potable Water

    OpenAIRE

    Niemi, R. Maarit; Knuth, Sisko; Lundström, Kenneth

    1982-01-01

    In Finnish lakes and rivers used as water supplies, mesophilic fungi and actinomycetes were common, whereas thermophilic fungi and actinomycetes were present only in low concentrations. Fungi and actinomycetes were more abundant in eutrophic and mesotrophic lakes than in oligotrophic lakes. River water contained more thermophilic actinomycetes and fungi and mesophilic actinomycetes than did lake water. Runoff from soil seemed to be an important factor contributing to the incidence of these mi...

  9. Environmental impact of by pass channel of surface waters

    International Nuclear Information System (INIS)

    Vismara, R.; Renoldi, M.; Torretta, V.

    1996-01-01

    In this paper are analyzed the impacts generated by surface waters drawing on river course. This impacts are generated also by reduction of water flow. This effect is most important for the presence of biological community: algae, fiches, micro invertebrates. Are also reported regional laws, water master plan of Lombardia region

  10. Treatability of South African surface waters by enhanced coagulation

    African Journals Online (AJOL)

    The majority of South African inland surface water sources are compromised due to a long-standing national policy of mandatory return flows. With renewed emphasis on the removal of organic carbon in the latest SANS 241 water quality standard, many South African water treatment managers may need to consider ...

  11. chemical and microbiological assessment of surface water samples ...

    African Journals Online (AJOL)

    PROF EKWUEME

    The importance of good quality water cannot be over emphasized. This is because it is only next to air as a critical sustainer of life therefore it is appropriate to evaluate its quality and quantity. A total number of thirteen water samples were investigated in this study: Nine samples from different surface water bodies, two ...

  12. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    The effect of the municipal solid waste landfill a Ring Road Ibadan on the quality of the underground water in the surrounding area and adjacent surface water was investigated. Samples of water from these sources were analyzed for the following physico-chemical parameters: Ph , conductivity, total solid, dissolved solid, ...

  13. Chemical and microbiological assessment of surface water samples ...

    African Journals Online (AJOL)

    The importance of good quality water cannot be over emphasized. This is because it is only next to air as a critical sustainer of life therefore it is appropriate to evaluate its quality and quantity. A total number of thirteen water samples were investigated in this study: Nine samples from different surface water bodies, two ...

  14. Hydrochemistry of surface water and groundwater from a fractured ...

    Indian Academy of Sciences (India)

    sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study ..... EC: electrical conductivity, DO: dissolved oxygen, SAR: sodium adsorption ratio, SI: saturation index. .... carbonate, bicarbonate for carbonate hardness. Hard water is not a health hazard, but it may ...

  15. Hydrochemistry of shallow groundwater and surface water in the ...

    African Journals Online (AJOL)

    This study was conducted on the hydrochemistry of shallow groundwater and surface water in the Ndop plain, North West Cameroon. The objectives were to determine the physico-chemical characteristics of water, controls on water chemistry and suitability for drinking and irrigation. Forty-six shallow groundwater and 26 ...

  16. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    OpenAIRE

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were com...

  17. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  18. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    Science.gov (United States)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  19. SurfaceWater Source Protection Areas (SPAs)

    Data.gov (United States)

    Vermont Center for Geographic Information — Source Protection Area (SPA) boundaries have been located on RF 24000 & RF 25000 scale USGS topographic maps by Water Supply Division (DEC) and VT Dept of Health...

  20. Interim Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  1. Water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    conductivity, total hardness and all the species of nitrogen (nitrite, nitrate and ammonium) were higher in the inner city than the remaining water habitats except the outer ground water stations. Conductivity decreased along the presumptive pollution categories significantly, i.e. inner > middle > out skirt (P< 0.05) and showed ...

  2. Geochemical characterization of surface water and spring water in ...

    Indian Academy of Sciences (India)

    Water samples from precipitation, glacier melt, snow melt, glacial lake, streams and karst springs were collected across SE of Kashmir Valley, to understand the hydrogeochemical processes governing the evolution of the water in a natural and non-industrial area of western Himalayas. The time series data on solute ...

  3. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    Science.gov (United States)

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  4. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  5. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  6. Fuel moisture content estimation: a land-surface modelling approach applied to African savannas

    Science.gov (United States)

    Ghent, D.; Spessa, A.; Kaduk, J.; Balzter, H.

    2009-04-01

    Despite the importance of fire to the global climate system, in terms of emissions from biomass burning, ecosystem structure and function, and changes to surface albedo, current land-surface models do not adequately estimate key variables affecting fire ignition and propagation. Fuel moisture content (FMC) is considered one of the most important of these variables (Chuvieco et al., 2004). Biophysical models, with appropriate plant functional type parameterisations, are the most viable option to adequately predict FMC over continental scales at high temporal resolution. However, the complexity of plant-water interactions, and the variability associated with short-term climate changes, means it is one of the most difficult fire variables to quantify and predict. Our work attempts to resolve this issue using a combination of satellite data and biophysical modelling applied to Africa. The approach we take is to represent live FMC as a surface dryness index; expressed as the ratio between the Normalised Difference Vegetation Index (NDVI) and land-surface temperature (LST). It has been argued in previous studies (Sandholt et al., 2002; Snyder et al., 2006), that this ratio displays a statistically stronger correlation to FMC than either of the variables, considered separately. In this study, simulated FMC is constrained through the assimilation of remotely sensed LST and NDVI data into the land-surface model JULES (Joint-UK Land Environment Simulator). Previous modelling studies of fire activity in Africa savannas, such as Lehsten et al. (2008), have reported significant levels of uncertainty associated with the simulations. This uncertainty is important because African savannas are among some of the most frequently burnt ecosystems and are a major source of greenhouse trace gases and aerosol emissions (Scholes et al., 1996). Furthermore, regional climate model studies indicate that many parts of the African savannas will experience drier and warmer conditions in future

  7. The use of chemical tracers to water injection processes applied on Romanian reservoirs

    Directory of Open Access Journals (Sweden)

    Zecheru M.

    2013-05-01

    Full Text Available The hydrocarbon reservoirs are extremely complex, each reservoir having its own identity. Reservoirs heterogeneity (mainly regarding the layered ones frequently results in low recovery efficiencies, both under the primary regime and when different agents are injected from the surface. EOR processes efficiency depends on how detailed the reservoir is known and on the information related to fluids flow through reservoir. There are certain analyzes, investigations and tests providing good knowledge about the reservoir. The tracer tests are among them, being frequently used to water injection processes. Depending on the method used, IWTT (Interwell tracer test, SWTT (Single-Well Tracer Test, TWTT (Two-Well Tracer Test, information are obtained as related to: the setting of the preferential flow path of the injected fluid, the identification of water channels, evidencing the geological barriers, determining the residual oil saturation, around the well bore or along the tracer's path between two wells. This paper is focused on ICPT Câmpina efforts related to the use of the chemical tracers to the water injection processes applied to the oil reservoirs of Romania. It describes the usual tracers and the methods used to detect them in the reaction wells. Up to now, more than 50 tests with IWTT tracers have been performed on-site and this work presents some of their results.

  8. Surface complexation at calcium mineral-water interfaces

    OpenAIRE

    Wu, Liuming

    1994-01-01

    Surface reactions occurring at solid-water interfaces in calcium mineral-ligands systems have been studied. Both hydrous apatite and fluorite surfaces show clear amphoteric properties. An ion exchange process between lattice ions of F- on fluorite and OH- ions in bulk solution is discovered. The surface adsorption of Alizarin Red S and sodium oleate are determined. Surface chemical reaction models are established based on acidbase potentiometric titrations, solubility, adsorption and zeta-pot...

  9. Possibilities of surface waters monitoring at mining areas using UAV

    Science.gov (United States)

    Lisiecka, Ewa; Motyka, Barbara; Motyka, Zbigniew; Pierzchała, Łukasz; Szade, Adam

    2018-04-01

    The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV). The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  10. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    Science.gov (United States)

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2008

    Science.gov (United States)

    ,

    2008-01-01

    Surface water provides 5 billion gallons per day, or 78 percent, of the total freshwater used (including thermoelectric) in Georgia (Fanning, 2003). Climate, geology, and landforms control the natural distribution of Georgia's water resources. Georgia is a 'headwaters' State, with most of the rivers beginning in northern Georgia and increasing in size downstream (see map at right for major watersheds). Surface water is the primary source of water in the northern one-half of the State, including the Atlanta metropolitan area, where limited ground-water resources are difficult to obtain. In Georgia, periodic droughts exacerbate competition for surface-water supplies. Many areas of Georgia also face a threat of flooding because of spring frontal thunderstorms and the potential for hurricanes from both the Atlantic Ocean and Gulf of Mexico. As the population of Georgia increases, these flood risks will increase with development in flood-risk zones, particularly in the coastal region.

  12. Deep Groundwater Contributions to Surface Water in a Mountainous Watershed

    Science.gov (United States)

    Tolley, D. G.; Harding, J. J.; Wilson, J. L.; Frisbee, M. D.

    2012-12-01

    With growing concerns about declining snowpack, warmer temperatures, and land use changes, it is becoming increasingly important to determine the sources that contribute to surface water. In western states, such as New Mexico, most of the surface water is derived from mountainous watersheds. However, the interaction between the groundwater and the surface water within these mountain systems is poorly understood. Geochemical data collected from a mesoscale (~200 km2) watershed in northern New Mexico indicate there may be significant groundwater contributions to the surface water that have largely been ignored in previous studies. Stable isotopic analysis of δ18O and δ2H and Piper diagrams for surface water, groundwater, and spring water are not geochemically distinct. Surface water solute concentrations for most constituents increase as a function of the drainage area while the stable isotopic signature remains constant, suggesting that the water is sourced from similar areas but has undergone differing degrees of geochemical evolution along different flow paths. Plots of SiO2 vs Ca2+, Na+, Mg2+, and K+ show evidence of spatial evolution of groundwater with solute concentrations from the headwaters to the watershed outlet. We hypothesize that the increasing solute concentrations in the surface water are controlled by inputs from deep, more geochemically evolved groundwater. This is similar to what Frisbee et al. (2011) saw in the Saguache Watershed, though our watershed is significantly smaller and has a different geological setting. Due to the chemical kinetics involved, this more geochemically evolved groundwater would require longer residence time along a given flow path to achieve the observed chemical compositions. Significant contributions of old groundwater to surface water could result in the surface water system having increased buffering capacity against climate change. This deep groundwater component in watersheds has largely been unexplored. Our

  13. Thin Water Films at Multifaceted Hematite Particle Surfaces.

    Science.gov (United States)

    Boily, Jean-François; Yeşilbaş, Merve; Uddin, Munshi Md Musleh; Baiqing, Lu; Trushkina, Yulia; Salazar-Alvarez, Germàn

    2015-12-08

    Mineral surfaces exposed to moist air stabilize nanometer- to micrometer-thick water films. This study resolves the nature of thin water film formation at multifaceted hematite (α-Fe2O3) nanoparticle surfaces with crystallographic faces resolved by selected area electron diffraction. Dynamic vapor adsorption (DVA) in the 0-19 Torr range at 298 K showed that these particles stabilize water films consisting of up to 4-5 monolayers. Modeling of these data predicts water loadings in terms of an "adsorption regime" (up to 16 H2O/nm(2)) involving direct water binding to hematite surface sites, and of a "condensation regime" (up to 34 H2O/nm(2)) involving water binding to hematite-bound water nanoclusters. Vibration spectroscopy identified the predominant hematite surface hydroxo groups (-OH, μ-OH, μ3-OH) through which first layer water molecules formed hydrogen bonds, as well as surface iron sites directly coordinating water molecules (i.e., as geminal η-(OH2)2 sites). Chemometric analyses of the vibration spectra also revealed a strong correspondence in the response of hematite surface hydroxo groups to DVA-derived water loadings. These findings point to a near-saturation of the hydrogen-bonding environment of surface hydroxo groups at a partial water vapor pressure of ∼8 Torr (∼40% relative humidity). Classical molecular dynamics (MD) resolved the interfacial water structures and hydrogen bonding populations at five representative crystallographic faces expressed in these nanoparticles. Simulations of single oriented slabs underscored the individual roles of all (hydro)oxo groups in donating and accepting hydrogen bonds with first layer water in the "adsorption regime". These analyses pointed to the preponderance of hydrogen bond-donating -OH groups in the stabilization of thin water films. Contributions of μ-OH and μ3-OH groups are secondary, yet remain essential in the stabilization of thin water films. MD simulations also helped resolve crystallographic

  14. Guidelines for surface water quality, vol. l

    International Nuclear Information System (INIS)

    1983-01-01

    A literature survey was carried out on the chemically toxic effects of uranium and uranium compounds on human health, aquatic life, plants and livestock. All the information collected is summarized in this document and, from it, maximum uranium concentrations in water at which toxic effects will not appear are recommended

  15. Formation of metal-F bonds during frictional sliding : Influence of water and applied load

    NARCIS (Netherlands)

    Shen, J. T.; Pei, Y. T.; De Hosson, J. Th. M.

    2016-01-01

    Effects of water lubrication and applied load on the formation of PTFE transfer films and metal-F bonds during sliding when PTFE filled composites sliding against steel and Al2O3 are investigated. In water lubricated conditions, XPS analysis reveals that a thin layer of water molecules at the

  16. Water security for productive economies : Applying an assessment framework in southern Africa

    NARCIS (Netherlands)

    Holmatov, Bunyod; Lautze, Jonathan; Manthrithilake, Herath; Makin, Ian

    2017-01-01

    Achieving water security has emerged as a major objective in Africa, yet an analytical or diagnostic framework for assessing water security in African countries is not known to exist. This paper applies one key dimension of the 2016 Asian Development Bank's (ADB) Asian Water Development Outlook

  17. Water on hydrophobic surfaces: Mechanistic modeling of hydrophobic interaction chromatography.

    Science.gov (United States)

    Wang, Gang; Hahn, Tobias; Hubbuch, Jürgen

    2016-09-23

    Mechanistic models are successfully used for protein purification process development as shown for ion-exchange column chromatography (IEX). Modeling and simulation of hydrophobic interaction chromatography (HIC) in the column mode has been seldom reported. As a combination of these two techniques is often encountered in biopharmaceutical purification steps, accurate modeling of protein adsorption in HIC is a core issue for applying holistic model-based process development, especially in the light of the Quality by Design (QbD) approach. In this work, a new mechanistic isotherm model for HIC is derived by consideration of an equilibrium between well-ordered water molecules and bulk-like ordered water molecules on the hydrophobic surfaces of protein and ligand. The model's capability of describing column chromatography experiments is demonstrated with glucose oxidase, bovine serum albumin (BSA), and lysozyme on Capto™ Phenyl (high sub) as model system. After model calibration from chromatograms of bind-and-elute experiments, results were validated with batch isotherms and prediction of further gradient elution chromatograms. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  19. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  20. Planetary-scale surface water detection from space

    Science.gov (United States)

    Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.

    2017-12-01

    Accurate, efficient and high-resolution methods of surface water detection are needed for a better water management. Datasets on surface water extent and dynamics are crucial for a better understanding of natural and human-made processes, and as an input data for hydrological and hydraulic models. In spite of considerable progress in the harmonization of freely available satellite data, producing accurate and efficient higher-level surface water data products remains very challenging. This presentation will provide an overview of existing methods for surface water extent and change detection from multitemporal and multi-sensor satellite imagery. An algorithm to detect surface water changes from multi-temporal satellite imagery will be demonstrated as well as its open-source implementation (http://aqua-monitor.deltares.nl). This algorithm was used to estimate global surface water changes at high spatial resolution. These changes include climate change, land reclamation, reservoir construction/decommissioning, erosion/accretion, and many other. This presentation will demonstrate how open satellite data and open platforms such as Google Earth Engine have helped with this research.

  1. Water adsorption on the stoichiometric and defected Fe(110) surfaces

    Science.gov (United States)

    Ossowski, Tomasz; Da Silva, Juarez L. F.; Kiejna, Adam

    2018-02-01

    The adsorption of water molecules on defect-free (called here as stoichiometric) and defected Fe(110) surfaces has been investigated using density functional theory (DFT) calculations. It is found that on the stoichiometric surface H2O molecules do not dissociate spontaneously and adsorbs flat on top of the surface Fe atom. By studying different orientations of the flat lying molecule in different adsorption sites it is found that some of them are degenerated in energy thus suggesting a possibility of molecule rotation around direction normal to the surface. At the vacancy defected surface the water molecule favors undercoordinated adsorption sites at or next to the vacancy edge - not the ones in the stoichiometric region of the surface. Moreover, similarly to the stoichiometric surface, at defected one some different configurations are degenerated in energy, making possible molecules circling around the vacancy. The influence of the van der Waals interactions on the adsorption properties of the system is also considered and discussed.

  2. Electron bombardment of water adsorbed on Zr(0001) surfaces

    CERN Document Server

    Ankrah, S; Ramsier, R D

    2003-01-01

    A study of the effects of electron bombardment on water adsorbed on Zr(0001) is reported. Zirconium surfaces are dosed with isotopic water mixtures at 160 K followed by electron bombardment (485 eV). The system is then probed by low energy electron diffraction, temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). No evidence is found that would indicate preferential mixing of hydrogen from the bulk with isotopic water dissociation products during TPD. However, electron bombardment results in the sharpening of a hydrogen/deuterium desorption peak near 320 K and the production of water near 730 K at low water exposures. In addition, although water does not oxidize Zr(0001) thermally, electron bombardment of adsorbed water induces a shift of about 2 eV in the Zr AES features indicating that the surface is partially oxidized by electron bombardment.

  3. Precipitation of salt in saline water drop on superhydrophobic surface

    Science.gov (United States)

    Shin, Bongsu; Moon, Myoung-Woon; Kim, Ho-Young

    2012-11-01

    In the membrane distillation process, water vapor of heated, pressurized saline water is transported across the membrane to be collected as pure water. While the water-repellency of the membrane surface has been considered an important parameter affecting the distillation efficiency, the resistance of the membrane to the contamination due to salt has gathered little scientific interest thus far. Here we experimentally investigate the precipitation of salt in sessile saline water drops, to find drastic differences in salt crystallization behavior depending on the water-repellency of solid surface. On a moderately hydrophobic surface with a static contact angle with water being about 150 degrees, salt crystals are aligned and stacked along the initial contact line, forming an interesting structure resembling an igloo. On a superhydrophobic surface with about 164 degrees of static contact angle with water, salt crystallizes only at the center of the drop-solid contact area, forming a pebble-shaped structure. We explain this difference by comparing the evaporation modes (constant contact radius versus constant contact angle) of the sessile drops on those surfaces. We also visualize the liquid flow within drops undergoing evaporation and precipitation at the same time using PIV.

  4. Ground-water/surface-water interaction in nearshore areas of Three Lakes on the Grand Portage Reservation, northeastern Minnesota, 2003-04

    Science.gov (United States)

    Jones, Perry M.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Grand Portage Band of Chippewa Indians, applied three techniques to assess ground-water/surface-water interaction in nearshore areas of three lakes (North, Teal, and Taylor) on the Grand Portage Reservation in northeastern Minnesota. At each lake, analyses of existing aerial photographs, in-situ temperature measurements of shoreline lake sediment, and chemical analyses of surface water and pore water were conducted. Surface-water and pore-water samples were analyzed for major constituents, nutrients, and stable isotopes of oxygen and hydrogen. Bulk precipitation samples were collected and analyzed (1) for nutrient concentrations to determine nutrient input to the lakes through atmospheric deposition and (2) for stable isotope ratios of oxygen and hydrogen to determine a meteoric waterline that was needed for the stable isotope analyses of surface-water and pore-water samples.

  5. In-situ NAP XPS studies of dissociative water adsorption on GaAs(100) surfaces

    Science.gov (United States)

    Ptasinska, Sylwia; Zhang, Xueqiang

    2014-03-01

    In current semiconductor-based technology it is important to design and fabricate new materials in order to achieve specific well-defined properties and functionalities. Before such systems can be applied they first need to be understood, refined and controlled. Therefore, a basic knowledge about molecule/semiconductor surface interfaces is essential. In the present work dissociative water adsorption on the GaAs(100) surface is monitored using X-ray Photoelectron Spectroscopy (XPS) performed in situ under near ambient conditions. Firstly, the crystal surface is exposed to water vapor pressures ranging from UHV to 0.5 kPa. At elevated pressures an increase of oxygenation and hydroxylation of Ga surface atoms has been observed in the Ga2p XPS spectra. Moreover, intense signals obtained from molecularly adsorbed water molecules or water molecules adsorbed via hydrogen bond to surface OH groups have been also observed in the O1s spectra. Finally, the crystal surface is annealed up to 700 K at water vapor pressure of 0.01 kPa, which leads to desorption of physisorbed water molecules and further increase of surface oxidation. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through grant number DE-FC02-04ER15533.

  6. A siphon gage for monitoring surface-water levels

    Science.gov (United States)

    McCobb, T.D.; LeBlanc, D.R.; Socolow, R.S.

    1999-01-01

    A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold

  7. Titanium Dioxide-Based Antibacterial Surfaces for Water Treatment

    Science.gov (United States)

    The field of water disinfection is gaining much interest since waterborne diseases caused by pathogenic microorganisms directly endanger human health. Antibacterial surfaces offer a new, ecofriendly technique to reduce the harmful disinfection byproducts that form in medical and ...

  8. Passive water control at the surface of a superhydrophobic lichen.

    Science.gov (United States)

    Hamlett, Christopher A E; Shirtcliffe, Neil James; Pyatt, F Brian; Newton, Michael I; McHale, Glen; Koch, Kerstin

    2011-12-01

    Some lichens have a super-hydrophobic upper surface, which repels water drops, keeping the surface dry but probably preventing water uptake. Spore ejection requires water and is most efficient just after rainfall. This study was carried out to investigate how super-hydrophobic lichens manage water uptake and repellence at their fruiting bodies, or podetia. Drops of water were placed onto separate podetia of Cladonia chlorophaea and observed using optical microscopy and cryo-scanning-electron microscopy (cryo-SEM) techniques to determine the structure of podetia and to visualise their interaction with water droplets. SEM and optical microscopy studies revealed that the surface of the podetia was constructed in a three-level structural hierarchy. By cryo-SEM of water-glycerol droplets placed on the upper part of the podetium, pinning of the droplet to specific, hydrophilic spots (pycnidia/apothecia) was observed. The results suggest a mechanism for water uptake, which is highly sophisticated, using surface wettability to generate a passive response to different types of precipitation in a manner similar to the Namib Desert beetle. This mechanism is likely to be found in other organisms as it offers passive but selective water control.

  9. Water evaporation from substrate tooth surface during dentin treatments.

    Science.gov (United States)

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  10. Shale gas development impacts on surface water quality in Pennsylvania

    OpenAIRE

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale...

  11. Unique water-water coordination tailored by a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; MacNaughton, J.

    2013-01-01

    (2006)]. Using x-ray absorption spectroscopy we find an anomalous low-energy resonance at ~533.1 eV which, based on density functional theory spectrum simulations, we assign to an unexpected configuration of water units whose uncoordinated O-H bonds directly face those of their neighbors...

  12. Applying horizontal diffusion on pressure surface to mesoscale models on terrain-following coordinates

    Science.gov (United States)

    Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...

  13. Recovery of acidified European surface waters

    Czech Academy of Sciences Publication Activity Database

    Wright, R. F.; Larssen, T.; Camarero, L.; Cosby, B. J.; Ferrier, R. C.; Helliwell, R.; Forsius, M.; Jenkins, A.; Kopáček, Jiří; Majer, V.; Moldan, F.; Posch, M.; Rogora, M.; Schöpp, W.

    2005-01-01

    Roč. 39, č. 3 (2005), 64A-72A ISSN 0013-936X. [ Acid Rain 2005. International Conference on Acid Deposition /7./. Prague, 12.06.2005-17.06.2005] Grant - others:EC(XE) EMERGE EVK1-CT-1999-00032; EC(XE) RECOVER:2010 EVK1-CT-1999-00018; DEFRA(GB) EPG 1/3/194; ICST(ES) REN2000-0889/GLO Institutional research plan: CEZ:AV0Z60170517 Keywords : acid ification * recovery * European lake districts Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.054, year: 2005

  14. Recovery from acidification in European surface waters

    Czech Academy of Sciences Publication Activity Database

    Evans, C. D.; Cullen, J. M.; Alewell, C.; Kopáček, Jiří; Marchetto, A.; Moldan, F.; Prechtel, A.; Rogora, M.; Veselý, J.; Wright, R.

    2001-01-01

    Roč. 5, č. 3 (2001), s. 283-297 ISSN 1027-5606 R&D Projects: GA ČR GA206/00/0063 Grant - others:CEC RECOVER(XE) 2010 EVK1-CT-1999-00018; GMER(DE) PT BEO 51-0339476; UKDETR(GB) EPG1/3/92; NNP(NO) SFT2000; CEC(XE) EMERGE EVK1-CT-1999-00032 Keywords : acidification * recovery * sulphate Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.127, year: 2001

  15. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  16. Methods on estimation of the evaporation from water surface

    International Nuclear Information System (INIS)

    Trajanovska, Lidija; Tanushevska, Dushanka; Aleksovska, Nina

    2001-01-01

    The whole world water supply on the Earth is in close dependence on hydrological cycle connected with water circulation at Earth-Atmosphere route through evaporation, precipitation and water runoff. Evaporation exists worldwide where the atmosphere is unsatiated of water steam (when there is humidity in short supply) and it depends on climatic conditions in some regions. The purpose of this paper is to determine a method for estimation of evaporation of natural water surface in our areas, that means its determination as exact as possible. (Original)

  17. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    OpenAIRE

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This project, conducted in cooperation between the TNO Institute for Applied Scientific Research (IGG-TNO) and !he Winand Staring Centre for Integrated Land, Soil and Water Research (SC-DLO), is aimed at defin...

  18. The interaction between surface water and groundwater and its ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 7. The interaction between surface water and groundwater and its effect on water quality in the Second Songhua River basin, northeast China. Bing Zhang Xianfang Song Yinghua Zhang Ying Ma Changyuan Tang Lihu Yang Zhong-Liang Wang. Volume ...

  19. Macro-invertebrate decline in surface water polluted with imidacloprid

    NARCIS (Netherlands)

    van Dijk, T.; van Staalduinen, M.A.; van der Sluijs, J.P.

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we

  20. Pesticides distribution in surface waters and sediments of lotic and ...

    African Journals Online (AJOL)

    An investigation on the availability and distribution of Lindane (HCHs) and Total organochlorine phosphate (TOCP) in the surface waters and sediments of selected water bodies in Agbede wetlands was carried out from December, 2012 to May, 2014 in order to cover seasonal trends in both matrixes. A Gas Chromatograph ...

  1. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  2. Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis.

    Science.gov (United States)

    Wang, Yalin; Yuan, Lei; Shi, Jie; Greve, Alexander; Ye, Jieping; Toga, Arthur W; Reiss, Allan L; Thompson, Paul M

    2013-07-01

    Many methods have been proposed for computer-assisted diagnostic classification. Full tensor information and machine learning with 3D maps derived from brain images may help detect subtle differences or classify subjects into different groups. Here we develop a new approach to apply tensor-based morphometry to parametric surface models for diagnostic classification. We use this approach to identify cortical surface features for use in diagnostic classifiers. First, with holomorphic 1-forms, we compute an efficient and accurate conformal mapping from a multiply connected mesh to the so-called slit domain. Next, the surface parameterization approach provides a natural way to register anatomical surfaces across subjects using a constrained harmonic map. To analyze anatomical differences, we then analyze the full Riemannian surface metric tensors, which retain multivariate information on local surface geometry. As the number of voxels in a 3D image is large, sparse learning is a promising method to select a subset of imaging features and to improve classification accuracy. Focusing on vertices with greatest effect sizes, we train a diagnostic classifier using the surface features selected by an L1-norm based sparse learning method. Stability selection is applied to validate the selected feature sets. We tested the algorithm on MRI-derived cortical surfaces from 42 subjects with genetically confirmed Williams syndrome and 40 age-matched controls, multivariate statistics on the local tensors gave greater effect sizes for detecting group differences relative to other TBM-based statistics including analysis of the Jacobian determinant and the largest eigenvalue of the surface metric. Our method also gave reasonable classification results relative to the Jacobian determinant, the pair of eigenvalues of the Jacobian matrix and volume features. This analysis pipeline may boost the power of morphometry studies, and may assist with image-based classification. Copyright © 2013

  3. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  4. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  5. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  6. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  7. Water Permeability of Pervious Concrete Is Dependent on the Applied Pressure and Testing Methods

    Directory of Open Access Journals (Sweden)

    Yinghong Qin

    2015-01-01

    Full Text Available Falling head method (FHM and constant head method (CHM are, respectively, used to test the water permeability of permeable concrete, using different water heads on the testing samples. The results indicate the apparent permeability of pervious concrete decreasing with the applied water head. The results also demonstrate the permeability measured from the FHM is lower than that from the CHM. The fundamental difference between the CHM and FHM is examined from the theory of fluid flowing through porous media. The testing results suggest that the water permeability of permeable concrete should be reported with the applied pressure and the associated testing method.

  8. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  9. Optimization of the ethanolysis of Raphanus sativus (L. Var.) crude oil applying the response surface methodology.

    Science.gov (United States)

    Domingos, Anderson Kurunczi; Saad, Emir Bolzani; Wilhelm, Helena Maria; Ramos, Luiz Pereira

    2008-04-01

    Raphanus sativus (L. Var) is a perennial plant of the Brassicaceae (or Cruciferae) family whose oil has not been investigated in detail for biodiesel production, particularly when ethanol is used as the alcoholysis agent. In this work, response surface methodology (RSM) was used to determine the optimum condition for the ethanolysis of R. sativus crude oil. Three process variables were evaluated at two levels (2(3) experimental design): the ethanol:oil molar ratio (6:1 and 12:1), the catalyst concentration in relation to oil mass (0.4 and 0.8 wt% NaOH) and the alcoholysis temperature (45 and 65 degrees C). When the experimental results were tentatively adjusted by linear regression, only 58.15% of its total variance was explained. Therefore, a quadratic model was investigated to improve the poor predictability of the linear model. To apply the quadratic model, the 2(3) experimental design had to be expanded to a circumscribed central composite design. This allowed the development of a response surface that was able to predict 97.75% of the total variance of the system. Validation was obtained by performing one ethanolysis experiment at the conditions predicted by the model (38 degrees C, ethanol:oil molar ratio of 11.7:1 and 0.6 wt% NaOH). The resulting ester yield (104.10 wt% or 99.10% of the theoretical yield of 105.04 wt%) was shown to be the highest among all conditions tested in this study. The second ethanolysis stage of the best RSM product required 50% less ethanol and 90% less catalyst consumption. The amount of ethyl esters obtained after this procedure reached 94.5% of the theoretical yield. The resulting ethyl esters were shown to comply with most of the Brazilian biodiesel specification parameters except for oxidation stability. Addition of 500 ppm of BHT to the esters, however, complied with the specification target of 6h. The application of 2 wt% Magnesol after the second ethanolysis stage eliminated the need for water washing and helped generate a

  10. Technologies for surface-treatment and under water cutting

    International Nuclear Information System (INIS)

    Bach, F.W.; Redeker, C.F.; Versemann, R.; Brueggemann, P.

    2003-01-01

    Technologies for processing surfaces and decomposition of installations under water will be presented and compared in their use for dismantling of nuclear facilities. For the removal of surfaces the dry ice- and the dry ice laser blasting process are examined. Experiences in the use of a 1kW Nd:YAG laser for under water cutting of metals are presented. An assisting tool to choose a suitable process for removing coatings and component's surfaces will be developed. The presented work is part of the progress made in a research project consisting of 11 partners: developers, operators and end-users. (orig.)

  11. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  12. The Effect of Water Repellent Surface Impregnation on Durability of Cement-Based Materials

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2017-01-01

    Full Text Available In many cases, service life of reinforced concrete structures is severely limited by chloride penetration until the steel reinforcement or by carbonation of the covercrete. Water repellent treatment on the surfaces of cement-based materials has often been considered to protect concrete from these deteriorations. In this paper, three types of water repellent agents have been applied on the surface of concrete specimens. Penetration profiles of silicon resin in treated concrete have been determined by FT-IR spectroscopy. Water capillary suction, chloride penetration, carbonation, and reinforcement corrosion in both surface impregnated and untreated specimens have been measured. Results indicate that surface impregnation reduced the coefficient of capillary suction of concrete substantially. An efficient chloride barrier can be established by deep impregnation. Water repellent surface impregnation by silanes also can make the process of carbonation action slow. In addition, it also has been concluded that surface impregnation can provide effective corrosion protection to reinforcing steel in concrete with migrating chloride. The improvement of durability and extension of service life for reinforced concrete structures, therefore, can be expected through the applications of appropriate water repellent surface impregnation.

  13. Influence of water on the surface of graphene

    Directory of Open Access Journals (Sweden)

    Kaya Yunus

    2018-01-01

    Full Text Available We have studied how water modifies the surface of graphene and in particular how the surface conductivity of graphene is affected. According to the literature, two types of interactions should be distinguished: physical, where a water molecule remains intact and is located at some distance from the mesh, and chemical, where a water molecule is imbricated in the graphene bond structure. We have developed theoretical models for both types of interactions using the density functional theory (DFT with the B3LYP hybrid functional combined with the 6-31G(d basis set. Our calculations show that the surface conductivity of graphene is reduced in the presence of water.

  14. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  15. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water–surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface–water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of

  16. Excitation of plane Lamb wave in plate-like structures under applied surface loading

    Science.gov (United States)

    Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun

    2018-02-01

    Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.

  17. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  18. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    Science.gov (United States)

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  19. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  20. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  1. Issues of the presence of parasitic protozoa in surface waters

    Science.gov (United States)

    Hawrylik, Eliza

    2018-02-01

    Parasitic protozoa are very numerous organisms in the environment that play an important role in the spread of water-borne diseases. Water-borne epidemics caused by parasitic protozoa are noted throughout the world. Within these organisms, intestinal protozoa of the genera Cryptosporidium and Giardia are ones of the most serious health hazards for humans. This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  2. Multi-Decadal Surface Water Dynamics in North American Tundra

    Science.gov (United States)

    Carroll, Mark L.; Loboda, Tatiana V.

    2017-01-01

    Over the last several decades, warming in the Arctic has outpaced the already impressive increases in global mean temperatures. The impact of these increases in temperature has been observed in a multitude of ecological changes in North American tundra including changes in vegetative cover, depth of active layer, and surface water extent. The low topographic relief and continuous permafrost create an ideal environment for the formation of small water bodies - a definitive feature of tundra surface. In this study, water bodies in Nunavut territory in northern Canada were mapped using a long-term record of remotely sensed observations at 30 meters spatial resolution from the Landsat suite of instruments. The temporal trajectories of water extent between 1985 and 2015 were assessed. Over 675,000 water bodies have been identified over the 31-year study period with over 168,000 showing a significant (probability is less than 0.05) trend in surface area. Approximately 55 percent of water bodies with a significant trend were increasing in size while the remaining 45 percent were decreasing in size. The overall net trend for water bodies with a significant trend is 0.009 hectares per year per water body.

  3. Sulfamide chemistry applied to the functionalization of self-assembled monolayers on gold surfaces

    Directory of Open Access Journals (Sweden)

    Loïc Pantaine

    2017-04-01

    Full Text Available Aniline-terminated self-assembled monolayers (SAMs on gold surfaces have successfully reacted with ArSO2NHOSO2Ar (Ar = 4-MeC6H4 or 4-FC6H4 resulting in monolayers with sulfamide moieties and different end groups. Moreover, the sulfamide groups on the SAMs can be hydrolyzed showing the partial regeneration of the aniline surface. SAMs were characterized by water contact angle (WCA measurements, Fourier-transform infrared reflection absorption spectroscopy (IRRAS and X-ray photoelectron spectroscopy (XPS.

  4. High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes

    International Nuclear Information System (INIS)

    Wang Xiaoping; Zhang Xingwang; Lei Lecheng

    2013-01-01

    Although electrohydraulic discharge is effective for wastewater treatment, its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment, water-surface discharge is the preferred choice. However, the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water. As a result, the efficiency of the water treatment might be affected and the service life of the reactor might be shortened. In order to avoid the corrosion problem, nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study. Carbon-felt and water were used as the high voltage electrode and ground electrode, respectively. A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency, and furthermore, the corrosion of metal electrodes was avoided.

  5. Reaction of water vapor with a clean liquid uranium surface

    International Nuclear Information System (INIS)

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  6. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    , or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...... of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface...

  7. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  8. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China.

    Science.gov (United States)

    Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying

    2012-05-15

    Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  10. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  11. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  12. Surface-water quality assessment of the Clover Creek basin, Pierce County, Washington, 1991-1992

    Science.gov (United States)

    McCarthy, K.A.

    1996-01-01

    in stream discharge in response to rainfall. Substantial increases in concentrations of constituents associated with surface wash off, for example, suspended sediment, ammonia, phosphorus, and fecal coliform, also were observed in this subbasin during rainfall. In the Lower Clover Creek subbasin, which is the most downstream subbasin, stream-discharge and water-quality characteristics show the integrated effects of the entire basin. The data show that further characterization of local ground water and discharge from stormwater outfalls entering Clover Creek and its tributaries would be necessary to successfully apply a numerical water-quality model to the basin.

  13. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment-scale water management

    DEFF Research Database (Denmark)

    Refsgaard, A.; Jacobsen, T.; Jacobsen, Brian H.

    2007-01-01

    The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized...... by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling...... basin water management plans. The paper also includes a land rent modelling approach which can be used to choose the most cost-effective measures and the location of these measures. As a forerunner to the use of basin-scale models in WFD basin water management plans this project demonstrates...

  14. First-principles study of water on Cu (110) surface

    Science.gov (United States)

    Ren, Jun; Meng, Sheng

    2009-03-01

    The persistent demand for cheaper and high efficient catalysts in industrial chemical synthesis, such as ammonia, and in novel energy applications, hydrogen generation and purification in fuel cells motivated us to study the fundamental interaction involved in water-Cu system, with an intension to examine Cu as a possible competitive candidate for cheaper catalysts. Water structure and dissociation kinetics on a model open metal surface: Cu (110), have been investigated in detail based on first-principles electronic structure calculations. We revealed that in both monomer and overlayer forms, water adsorbs molecularly, with a high tendency for diffusion and/or desorption rather than dissociation on clean surfaces at low temperature. With the increase of the water coverage on the Cu (110) surface, the H-bond pattern lowers the dissociation barrier efficiently. More importantly, if the water molecule is dissociated, the hydrogen atoms can diffuse freely along the [110] direction, which is very useful in the hydrogen collection. In addition, we extended to study water on other noble metal (110) surfaces. The result confirms that Cu (110) is the borderline between intact and dissociative adsorption, differing in energy by only 0.08 eV. This may lead to promising applications in hydrogen generation and fuel cells.

  15. Surface Roughness Reduction of Additive Manufactured Products by Applying a Functional Coating Using Ultrasonic Spray Coating

    OpenAIRE

    Deferme, Wim; Reddy, Naveen; D'Haen, Jan; Drijkoningen, Jeroen

    2017-01-01

    To reduce the high surface roughness of additive manufactured (AM) products, typically a post-treatment is required. Subtractive post-treatments are often performed by hand and are therefore expensive and time consuming, whereas conventional additive post-treatments, such as pneumatic spray coating, require large quantities of coating material. Ultrasonic spray coating, in contrast, is an additive post-treatment technology capable of applying coatings in an efficient way, resulting in less ma...

  16. A global, 30-m resolution land-surface water body dataset for 2000

    Science.gov (United States)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    amounts of Landsat images on high-performance computing machines. It has been applied to the ~9,000 Landsat scenes of the Global Land Survey (GLS) 2000 data collection to produce a global, 30m resolution inland surface water body data set, which will be made available on the Global Land Cover Facility (GLCF) website (http://www.landcover.org).

  17. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  18. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    Directory of Open Access Journals (Sweden)

    Xu Ping

    2015-01-01

    Full Text Available Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS, protein (PN, and polysaccharide (PS in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  19. Water security for productive economies: Applying an assessment framework in southern Africa

    Science.gov (United States)

    Holmatov, Bunyod; Lautze, Jonathan; Manthrithilake, Herath; Makin, Ian

    2017-08-01

    Achieving water security has emerged as a major objective in Africa, yet an analytical or diagnostic framework for assessing water security in African countries is not known to exist. This paper applies one key dimension of the 2016 Asian Development Bank's (ADB) Asian Water Development Outlook (AWDO) to assess levels of water security for productive economies in countries of the Southern African Development Community (SADC). Economic aspects of water security cover four areas: economic activities in the broad sense, agriculture, electricity, and industry. Water security in each area is measured through application of a set of indicators; results of indicator application are then aggregated to determine economic water security at a country-level. Results show that economic water security in SADC is greatest in the Seychelles and South Africa, and lowest in Madagascar and Malawi. Opportunities for strengthening economic water security in the majority of SADC countries exist through improving agricultural water productivity, strengthening resilience, and expanding sustainable electricity generation. More profoundly, this paper suggests that there is clear potential and utility in applying approaches used elsewhere to assess economic water security in southern Africa.

  20. Influence of building resolution on surface water inundation outputs

    Science.gov (United States)

    Green, Daniel; Yu, Dapeng; Pattison, Ian

    2016-04-01

    Surface water (pluvial) flooding occurs when intense precipitation events overwhelm the drainage capacity of an area and excess water is unable to infiltrate into the ground or drain via natural or artificial drainage channels. In the UK, over 3 million properties are at risk from surface water flooding alone, accounting for approximately one third of all UK flood risk. This risk is predicted to increase due to future climatic changes resulting in an increasing magnitude and frequency of intense precipitation events. Numerical modelling is a well-established method of investigating surface water flood risk, allowing the researcher to gain an understanding of the depth, extent and severity of actual or hypothetical flood scenarios. Although numerical models allow the simulation of surface water inundation in a particular region, the model parameters (e.g. roughness, hydraulic conductivity) and resolution of topographic data have been shown to exert a profound influence on the inundation outputs which often leads to an over- or under-estimation of flood depths and extent without the use of external validation data to calibrate model outputs. Although previous research has demonstrated that model outputs are highly sensitive to Digital Elevation Model (DEM) mesh resolution, with flood inundation over large and complex topographies often requiring mesh resolutions coarser than the structural features (e.g. buildings) present within the study catchment, the specific influence of building resolution on surface flowpaths and connectivity during a surface water flood event has not been investigated. In this study, a LiDAR-derived DEM and OS MasterMap buildings layer of the Loughborough University campus, UK, were rasterized into separate 1m, 5m and 10m resolution layers. These layers were combined to create a series of Digital Surface Models (DSM) with varying, mismatching building and DEM resolutions (e.g. 1m DEM resolution, 10m building resolution, etc.) to understand

  1. DFT study of water adsorption on lignite molecule surface.

    Science.gov (United States)

    Gao, Zhengyang; Ding, Yi; Yang, Weijie; Han, Wentao

    2017-01-01

    High moisture content is a main characteristic of low-rank coal, such as lignite. Numerous oxygen containing functional groups in lignite make it represent some special properties, and these functional groups affect the adsorption mechanisms of water molecules on lignite surface. This study reports some typical water · · · lignite conformations, along with a detailed analysis of the geometry, electrostatic potential distribution, reduced density gradient of interaction, and interaction energy decomposition. The results show that water molecules tend to aggregate around functional groups, and hydrogen bonds play a dominant role in the interaction. The adsorption energy of water cluster on lignite surface is larger than that of isolated water molecule, a good linear relationship between the interaction distance and adsorption energy of layers has been found. Since water is a polar molecule, the local minima and maxima of electrostatic potential in conformations increase along with more water adsorbing on lignite surface. Reduced density gradient analysis shows that H-bonds, van der Waals interaction, and a little steric make up the interaction between water cluster and lignite molecule. In these studied conformations which mainly are H-bond complexes, electrostatic and exchange repulsion play a dominant role, whereas polarization and dispersion make relatively small contribution to the interaction. Attractive and repulsive interaction both affect the stability of water · · · lignite conformations.

  2. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  3. A Coupled Groundwater-Surface Water Modeling Framework for Simulating Transition Zone Processes.

    Science.gov (United States)

    Mugunthan, Pradeep; Russell, Kevin T; Gong, Binglei; Riley, Michael J; Chin, Arthur; McDonald, Blair G; Eastcott, Linda J

    2017-05-01

    There is an identified need for fully representing groundwater-surface water transition zone (i.e., the sediment zone that connects groundwater and surface water) processes in modeling fate and transport of contaminants to assist with management of contaminated sediments. Most existing groundwater and surface water fate and transport models are not dynamically linked and do not consider transition zone processes such as bioturbation and deposition and erosion of sediments. An interface module is developed herein to holistically simulate the fate and transport by coupling two commonly used models, Environmental Fluid Dynamics Code (EFDC) and SEAWAT, to simulate surface water and groundwater hydrodynamics, while providing an enhanced representation of the processes in the transition zone. Transition zone and surface water contaminant processes were represented through an enhanced version of the EFDC model, AQFATE. AQFATE also includes SEDZLJ, a state-of-the-science surface water sediment transport model. The modeling framework was tested on a published test problem and applied to evaluate field-scale two- and three-dimensional contaminant transport. The model accurately simulated concentrations of salinity from a published test case. For the field-scale applications, the model showed excellent mass balance closure for the transition zone and provided accurate simulations of all transition zone processes represented in the modeling framework. The model predictions for the two-dimensional field case were consistent with site-specific observations of contaminant migration. This modeling framework represents advancement in the simulation of transition zone processes and can help inform risk assessment at sites where contaminant sources from upland areas have the potential to impact sediments and surface water. © 2016, National Ground Water Association.

  4. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  5. APPLYING SPARSE CODING TO SURFACE MULTIVARIATE TENSOR-BASED MORPHOMETRY TO PREDICT FUTURE COGNITIVE DECLINE.

    Science.gov (United States)

    Zhang, Jie; Stonnington, Cynthia; Li, Qingyang; Shi, Jie; Bauer, Robert J; Gutman, Boris A; Chen, Kewei; Reiman, Eric M; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2016-04-01

    Alzheimer's disease (AD) is a progressive brain disease. Accurate diagnosis of AD and its prodromal stage, mild cognitive impairment, is crucial for clinical trial design. There is also growing interests in identifying brain imaging biomarkers that help evaluate AD risk presymptomatically. Here, we applied a recently developed multivariate tensor-based morphometry (mTBM) method to extract features from hippocampal surfaces, derived from anatomical brain MRI. For such surface-based features, the feature dimension is usually much larger than the number of subjects. We used dictionary learning and sparse coding to effectively reduce the feature dimensions. With the new features, an Adaboost classifier was employed for binary group classification. In tests on publicly available data from the Alzheimers Disease Neuroimaging Initiative, the new framework outperformed several standard imaging measures in classifying different stages of AD. The new approach combines the efficiency of sparse coding with the sensitivity of surface mTBM, and boosts classification performance.

  6. Laser-assisted surface modification of Ti-implant in air and water environment

    Science.gov (United States)

    Trtica, M.; Stasic, J.; Batani, D.; Benocci, R.; Narayanan, V.; Ciganovic, J.

    2018-01-01

    A study of the surface modification of titanium CP grade 2 implant/target with high intensity picosecond (Nd:YAG) laser, operating at 1064 nm wavelength and pulse duration of 40 ps, in gaseous (air) and liquid (water) medium, is presented. The exposure of Ti to a laser pulse energy of 17 mJ in both media - gaseous and liquid, induced specific surface features and phenomena: (i) enhancement of the implant surface roughness (higher in water). In this context, the damage depth is more prominent in water (as high as ∼40 μm) vs. air (∼14 μm). Also, the appearance of laser induced periodic surface structures (LIPSS) is recorded in both media, at periphery area, while in water they are registered at lower pulse count; (ii) variation of chemical surface content depending on the applied medium. Thus, in the central irradiation region, the oxygen was absent in air while its concentration was relatively high (6.44 wt%) in case of water; (iii) possibility of direct collection of synthesized titanium based nanoparticles in water environment, and (iv) formation of the plasma above the sample in both mediums, more volumetrically confined in water. These investigations showed that surface structuring and observed phenomena are in strong correlation with the medium used. The liquid - water seems like the medium of choice in regard to titanium implant biocompatibility and bio-activity (the water is a favorable medium for build-up of the oxide layer which affects bioactivity). The process of laser interaction with titanium implant targets was accompanied by the formation of plasma plume, which provides the additional sterilizing effect facilitating contaminant-free conditions.

  7. Macroelements in the surface microlayer of water of urban ponds

    Directory of Open Access Journals (Sweden)

    Antonowicz Józef Piotr

    2016-03-01

    Full Text Available Analyses were conducted concerning the accumulation of four metals representing the group of macroelements, i.e. sodium, potassium, calcium and magnesium in two ponds located in the city of Słupsk. Water samples for chemical analyses were collected from the surface microlayer using a Garrett net. At the same time subsurface water samples were collected. Concentrations of metals were determined using a mass spectrometer. Generally, amounts of sodium, potassium, calcium and magnesium were similar in surface microlayer and subsurface water. Only in the case of potassium and calcium was low enrichment observed in the surface microlayer in one pond, while the greatest extent for magnesium enrichment was observed in the spring period.

  8. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Smith, Christian

    2014-01-01

    sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements......Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface...... water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water...

  9. Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality.

    Science.gov (United States)

    Atanacković, Nebojša; Dragišić, Veselin; Stojković, Jana; Papić, Petar; Zivanović, Vladimir

    2013-11-01

    Upon completion of exploration and extraction of mineral resources, many mining sites have been abandoned without previously putting environmental protection measures in place. As a consequence, mine waters originating from such sites are discharged freely into surface water. Regional scale analyses were conducted to determine the hydrochemical characteristics of mine waters from abandoned sites featuring metal (Cu, Pb-Zn, Au, Fe, Sb, Mo, Bi, Hg) deposits, non-metallic minerals (coal, Mg, F, B) and uranium. The study included 80 mine water samples from 59 abandoned mining sites. Their cation composition was dominated by Ca2+, while the most common anions were found to be SO4(2-) and HCO3-. Strong correlations were established between the pH level and metal (Fe, Mn, Zn, Cu) concentrations in the mine waters. Hierarchical cluster analysis was applied to parameters generally indicative of pollution, such as pH, TDS, SO4(2-), Fe total, and As total. Following this approach, mine water samples were grouped into three main clusters and six subclusters, depending on their potential environmental impact. Principal component analysis was used to group together variables that share the same variance. The extracted principal components indicated that sulfide oxidation and weathering of silicate and carbonate rocks were the primary processes, while pH buffering, adsorption and ion exchange were secondary drivers of the chemical composition of the analyzed mine waters. Surface waters, which received the mine waters, were examined. Analysis showed increases of sulfate and metal concentrations and general degradation of surface water quality.

  10. Surface hydration drives rapid water imbibition into strongly hydrophilic nanopores.

    Science.gov (United States)

    Fang, Chao; Qiao, Rui

    2017-08-09

    The imbibition of liquids into nanopores plays a critical role in numerous applications, and most prior studies focused on imbibition due to capillary flows. Here we report molecular simulations of the imbibition of water into single mica nanopores filled with pressurized gas. We show that, while capillary flow is suppressed by the high gas pressure, water is imbibed into the nanopore through surface hydration in the form of monolayer liquid films. As the imbibition front moves, the water film behind it gradually densifies. Interestingly, the propagation of the imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the pore walls. We clarify the mechanism for the rapid water imbibition observed here.

  11. Improved simulation of groundwater - surface water interaction in catchment models

    Science.gov (United States)

    teklesadik, aklilu; van Griensven, Ann; Anibas, Christian; Huysmans, Marijke

    2016-04-01

    Groundwater storage can have a significant contribution to stream flow, therefore a thorough understanding of the groundwater surface water interaction is of prime important when doing catchment modeling. The aim of this study is to improve the simulation of groundwater - surface water interaction in a catchment model of the upper Zenne River basin located in Belgium. To achieve this objective we used the "Groundwater-Surface water Flow" (GSFLOW) modeling software, which is an integration of the surface water modeling tool "Precipitation and Runoff Modeling system" (PRMS) and the groundwater modeling tool MODFLOW. For this case study, the PRMS model and MODFLOW model were built and calibrated independently. The PRMS upper Zenne River basin model is divided into 84 hydrological response units (HRUs) and is calibrated with flow data at the Tubize gauging station. The spatial discretization of the MODFLOW upper Zenne groundwater flow model consists of 100m grids. Natural groundwater divides and the Brussels-Charleroi canal are used as boundary conditions for the MODFLOW model. The model is calibrated using piezometric data. The GSFLOW results were evaluated against a SWAT model application and field observations of groundwater-surface water interactions along a cross section of the Zenne River and riparian zone. The field observations confirm that there is no exchange of groundwater beyond the Brussel-Charleroi canal and that the interaction at the river bed is relatively low. The results show that there is a significant difference in the groundwater simulations when using GSFLOW versus SWAT. This indicates that the groundwater component representation in the SWAT model could be improved and that a more realistic implementation of the interactions between groundwater and surface water is advisable. This could be achieved by integrating SWAT and MODFLOW.

  12. Optical triangulation method for height measurements on water surfaces

    Science.gov (United States)

    Maas, Hans-Gerd; Hentschel, Bernd; Schreiber, Frank

    2003-01-01

    Optical triangulation methods based on a laser light sheet and a camera are frequently used as a surface measurement technique in a wide range of applications. They allow for the fast accurate determination of height profiles, based on relatively simple hardware and software configurations. Moreover, they can be implemented very efficiently and are especially suited for measurements on moving objects such as products on an assembly line. The study presented in the paper describes the adaptation of laser light sheet optical triangulation techniques to the task of water level profile measurements in hydromechanics experimental facilities. The properties of water surfaces necessitate several modifications of optical triangulation techniques to make them applicable: The mirror-like reflection properties of water surfaces form a contradiction to the assumption of diffuse reflection, on which standard light sheet triangulation techniques are based; this problem can be circumvented by using a diffuse reflecting projection plane to capture the mirror-like reflection of the laser line from the water surface. Due to the angle of incidence law, however, water surface tilts caused by waves will usually cause a strong degradation of the quality of the results when using reflected light; this effect can largely be compensated by processing max-store images derived from short image sequences rather than single images. These extensions of optical triangulation turned out to be crucial for the applicability of the method on water surfaces. Besides the theoretical concept and a sensitivity analysis of the method, a system configuration is outlined, and the results of a number of practical experiments are shown and discussed.

  13. Can the water content of highly compacted bentonite be increased by applying a high water pressure?

    International Nuclear Information System (INIS)

    Pusch, R.; Kasbohm, J.

    2001-10-01

    A great many laboratory investigations have shown that the water uptake in highly compacted MX-80 clay takes place by diffusion at low external pressure. It means that wetting of the clay buffer in the deposition holes of a KBS-3 repository is very slow if the water pressure is low and that complete water saturation can take several tens of years if the initial degree of water saturation of the buffer clay and the ability of the rock to give off water are low. It has therefore been asked whether injection of water can raise the degree of water saturation and if a high water pressure in the nearfield can have the same effect. The present report describes attempts to moisten highly compacted blocks of MX-80 clay with a dry density of 1510 kg/m 3 by injecting water under a pressure of 650 kPa through a perforated injection pipe for 3 and 20 minutes, respectively. The interpretation was made by determining the water content of a number of samples located at different distances from the pipe. An attempt to interpret the pattern of distribution of injected uranium acetate solution showed that the channels into which the solution went became closed in a few minutes and that dispersion in the homogenized clay gave low U-concentrations. The result was that the water content increased from about 9 to about 11-12 % within a distance of about 1 centimeter from the injection pipe and to slightly more than 9 % at a distance of about 4-5 cm almost independently of the injection time. Complete water saturation corresponds to a water content of about 30 % and the wetting effect was hence small from a practical point of view. By use of microstructural models it can be shown that injected water enters only the widest channels that remain after the compaction and that these channels are quickly closed by expansion of the hydrating surrounding clay. Part of the particles that are thereby released become transported by the flowing water and cause clogging of the channels, which is

  14. Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment

    Science.gov (United States)

    Li, Linlin; Vrieling, Anton; Skidmore, Andrew; Wang, Tiejun; Turak, Eren

    2018-04-01

    also in accurately capturing temporal fluctuations of surface water. Based on this good performance, we produced surface water fraction maps at 16-day interval for the 2000-2015 MODIS archive. Our approach is promising for monitoring surface water fraction at high frequency time intervals over much larger regions provided that training data are collected across the spatial domain for which the model will be applied.

  15. Surface-Heating Algorithm for Water at Nanoscale.

    Science.gov (United States)

    Y D, Sumith; Maroo, Shalabh C

    2015-09-17

    A novel surface-heating algorithm for water is developed for molecular dynamics simulations. The validated algorithm can simulate the transient behavior of the evaporation of water when heated from a surface, which has been lacking in the literature. In this work, the algorithm is used to study the evaporation of water droplets on a platinum surface at different temperatures. The resulting contact angles of the droplets are compared to existing theoretical, numerical, and experimental studies. The evaporation profile along the droplet's radius and height is deduced along with the temperature gradient within the drop, and the evaporation behavior conforms to the Kelvin-Clapeyron theory. The algorithm captures the realistic differential thermal gradient in water heated at the surface and is promising for studying various heating/cooling problems, such as thin film evaporation, Leidenfrost effect, and so forth. The simplicity of the algorithm allows it to be easily extended to other surfaces and integrated into various molecular simulation software and user codes.

  16. Water Surface Ripples Generated by the Turbulent Boundary Layer of a Surface-Piercing Moving Wall

    Science.gov (United States)

    Washuta, N.; Masnadi, N.; Duncan, J. H.

    2014-11-01

    Free surface ripples created by subsurface turbulence along a surface-piercing moving wall are studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. One of the two 7.5-m-long belt sections between the rollers is in contact with the water in a large open-surface water tank and the water level is adjusted so that the top of the belt pierces the water free surface. The belt is launched from rest with a 3 g acceleration in order to quickly reach a steady state velocity. This belt motion creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along the side of a ship hull moving at the belt velocity, with a length equivalent to the length of belt that has passed the measurement region. The water surface ripples generated by the subsurface turbulence are measured in a plane normal to the belt using a cinematic LIF technique. It is found that the overall RMS surface fluctuations increase linearly with belt speed and that the spatial distributions of the fluctuations show a sharp increase near the wall. The support of the Office of Naval Research is gratefully acknowledged.

  17. Pesticides in surface waters: distribution, trends, and governing factors

    Science.gov (United States)

    Larson, Steven J.; Capel, Paul D.; Majewski, Michael

    1997-01-01

    Pesticde use in agriculture and non-agriculture settings has increased dramatically over the last several decades. Concern about adverse effects on the environment and human health has spurred an enormous amount of research into their environmental behavior and fate. Pesticides in Surface Waters presents a comprehensive summary of this research. This book evaluates published studies that focus on measuring pesticide concentration. The studies chosen include peer reviewed scientific literature, government reports, laboratory studies, and those using microcosms and artificial streams and ponds. The authors used this information to develop their overview of pesticide contamination of surface waters. The exhaustive compilation of data along with the fundamental science make this book essential for those involved in pesticide use, environmental protection, water quality, and human or ecological risk assessment. Pesticides in Surface Waters covers the results of actual studies, sources of pesticides to surface water, fate and transport, and environmental significance. Hundreds of data-packed tables, maps, charts, and drawings illustrate the key points, making research and application easy and cost effective.

  18. Modification of surface properties of LLDPE by water plasma discharge

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Hill, D.J.T.; Firas Rasoul; Whittaker, A.K.; Imelda Keen

    2007-01-01

    Linear low density polyethylene (LLDPE) surface was modified by water plasma treatment. The LLDPE surface was treated at 10 and 20 W discharge power at various exposure times. A laboratory scale Megatherm radio frequency (RF) plasma apparatus that operates at 27 MHz was used to generate the water plasmas. The changes in chemical structure of the LLDPE polymeric chain upon plasma treatment were characterized by FTIR and XPS techniques. The selectivity of trifluoroacetic anhydride (TFAA) toward hydroxyl groups is used to quantify the hydroxyl groups formed on the polymer surface upon plasma treatment. After exposition to the plasma discharge a decline in water contact angle were observed. FTIR and XPS measurements indicate an oxidation of degraded polymeric chains and creation of hydroxyl, carbonyl, ether, ester and carboxyl groups. Chemical derivatization with TFAA of water plasma treated polymer surfaces has shown that under the conditions employed, a very small (less than 5%) of the oxygen introduced by the water plasma treatment was present as hydroxyl group. (Author)

  19. Spring and surface water quality of the Cyprus ophiolites

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1 Mg-HCO3, (2 Na-SO4-Cl-HCO3, (3 Na-Ca-Cl-SO4-OH-CO3, (4 Na-Cl-SO4 and (5 Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high. Keywords: Cyprus, Troodos, ophiolite, serpentinisation, spring, stream, water quality, bromide, iodine, boron, trace elements, hyperalkaline.

  20. Crawling beneath the free surface: Water snail locomotion

    OpenAIRE

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric

    2008-01-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being g...

  1. Molecular characterization of water and surfactant AOT at nanoemulsion surfaces.

    Science.gov (United States)

    Hensel, Jennifer K; Carpenter, Andrew P; Ciszewski, Regina K; Schabes, Brandon K; Kittredge, Clive T; Moore, Fred G; Richmond, Geraldine L

    2017-12-19

    Nanoemulsions and microemulsions are environments where oil and water can be solubilized in one another to provide a unique platform for many different biological and industrial applications. Nanoemulsions, unlike microemulsions, have seen little work done to characterize molecular interactions at their surfaces. This study provides a detailed investigation of the near-surface molecular structure of regular (oil in water) and reverse (water in oil) nanoemulsions stabilized with the surfactant dioctyl sodium sulfosuccinate (AOT). Vibrational sum-frequency scattering spectroscopy (VSFSS) is used to measure the vibrational spectroscopy of these AOT stabilized regular and reverse nanoemulsions. Complementary studies of AOT adsorbed at the planar oil-water interface are conducted with vibrational sum-frequency spectroscopy (VSFS). Jointly, these give comparative insights into the orientation of interfacial water and the molecular characterization of the hydrophobic and hydrophilic regions of AOT at the different oil-water interfaces. Whereas the polar region of AOT and surrounding interfacial water molecules display nearly identical behavior at both the planar and droplet interface, there is a clear difference in hydrophobic chain ordering even when possible surface concentration differences are taken into account. This chain ordering is found to be invariant as the nanodroplets grow by Ostwald ripening and also with substitution of different counterions (Na:AOT, K:AOT, and Mg:AOT) that consequently also result in different sized nanoparticles. The results paint a compelling picture of surfactant assembly at these relatively large nanoemulsion surfaces and allow for an important comparison of AOT at smaller micellar (curved) and planar oil-water interfaces.

  2. Fluctuations of water near extended hydrophobic and hydrophilic surfaces

    OpenAIRE

    Patel, Amish J.; Chandler, David

    2009-01-01

    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a biased sampling of coarse-grained densities, which in turn biases the actual solvent density. The technique is easily combined with molecular dynamics integration algorithms. Our principal result is t...

  3. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  4. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    Science.gov (United States)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  5. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 1998

    National Research Council Canada - National Science Library

    Truini, Margot; Baum, B. M; Littin, G. R; Shingoitewa-Honanie, Gayl

    2000-01-01

    ...) flowmeter tests, and (5) ground-water and surface-water chemistry. In 1998 ,ground-water withdrawals for industrial and municipal use totaled about 7,060 acre-feet, which is less than a 1 percent decrease from 1997...

  6. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map

    Directory of Open Access Journals (Sweden)

    Yan An

    2016-01-01

    Full Text Available In this study, principal component analysis (PCA and a self-organising map (SOM were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong, covering the period of 2009–2011. PCA was initially applied to identify the principal components (PCs among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.

  7. The Impact of Adsorbed Triethylene Glycol on Water Wettability of the {1014} Calcium Carbonate Surface

    Science.gov (United States)

    Olsen, R.

    2015-12-01

    Water flooding is increasingly being used as a method of enhanced oil recovery and frequently involves calcium carbonate reservoirs. Very often, thermodynamic conditions in the upper few hundred meters allow for hydrate formation. One possible method of preventing hydrates is to inject hydrate inhibitors such as triethylene glycol (TEG) into the reservoir. Thus, it is of importance to know how such glycols affect water wettability, which is an important factor defining the oil behavior in such reservoirs. Wettability of a surface is defined by the contact angle of a liquid drop on the surface. The stronger the liquid is attracted to the surface, the smaller the wetting angle becomes, implying an increased degree of wetting. Therefore, it is possible to gain qualitative knowledge of the change in wetting properties with respect to external influences by studying corresponding changes in free energy of adsorption of the liquid. In our work [1], we used molecular dynamics (MD) and Born-Oppenheimer molecular dynamics (BOMD) to study how adsorbed TEG on the {1014} calcium carbonate surface affected adsorbed water. We used the changes in density profiles of water to estimate changes in adsorption free energy of water. The adaptive biasing force (ABF) method was applied to TEG to calculate the adsorption free energy of TEG on the calcium carbonate surface. We found that water wetting of the calcium carbonate surface decreased in the presence of adsorbed TEG. [1] - Olsen, R.; Leirvik, K.; Kvamme, B.; Kuznetsova, T. Adsorption Properties of Triethylene Glycol on a Hydrated {1014} Calcite Surface and Its Effect on Adsorbed Water, Langmuir 2015, DOI: 10.1021/acs.langmuir.5b02228

  8. Use of Clay Deposits in Water Management of Calcareous Sandy Soils Under-surface and Sub-surface Drip Irrigation

    International Nuclear Information System (INIS)

    Al-Omran, A.; Falatah, A.; Sheta, A.; Al-Harbi, A.

    2006-01-01

    The objective of this study was to investigate the effect of irrigation (levels and methods) and type of clay deposits on lettuce yield, water use efficiency WUE and the distributions of soil moisture and salts in the root zone of sandy calcareous soils. A field experiment was conducted at the college experimental station in 2002-2003. It consists of three clay deposits, three rates (0, 1.0 and 2.0%), and four total irrigation applied water levels, 360 mm (T1), 520 mm (T2), 635 mm (T3) and 822 mm (T4), using surface and subsurface drip irrigation. Results indicated that yield was significantly increased with the increase of irrigation level, whereas WUE significantly decreased with increase of irrigation level. The average yield increased by 9.30% in a high irrigation level compared to a moderate irrigation level, and decreased by 14.2% at the more stressed irrigation level. WUE decreased by 49.0% at a moderate irrigation level and yield was significantly affected by amendment rates. The difference between surface and subsurface drip on yields and WUE were also significant. Results indicated that the moisture content of the subsurface treated layer increased dramatically, while salts were accumulated at the surface and away from the emitters in subsurface drip irrigation. The advantages of surface drip irrigation were related to the relative decrease in salt accumulation in the root zone area where the plant roots were active and the water content was relatively high. (author)

  9. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    Science.gov (United States)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    Split Based Approach (MSBA) is used in order to focus on surface water areas automatically and facilitate the estimation of class models for water and non-water areas. A Finite Mixture Model is employed as the underlying statistical model to produce probabilistic maps. Subsequently, bilateral filtering is applied to take into account spatial neighborhood relationships in the generation of final map. The elimination of shadows effect is performed in a post-processing step. The processing chain is tested on three case studies. The first case is a flood event in central Ireland, the second case is located in Yorkshire county / Great Britain, and the third test case covers a recent flood event in northern Italy. The tests showed that the modified SBA step and the Finite Mixture Models can be applied for the automatic surface water detection in a variety of test cases. An evaluation again Copernicus products derived from very-high resolution imagery was performed, and showed a high overall accuracy and F-measure of the obtained maps. This evaluation also showed that the use of probability maps and bilateral filtering improved the accuracy of classification results significantly. Based on this quantitative evaluation, it is concluded that the processing chain can be applied for flood mapping from Sentinel-1 data. To estimate robust statistical distributions the method requires sufficient surface waters areas in the observed zone and sufficient contrast between surface waters and other land use classes. Ongoing research addresses the fusion of Sentinel-1 and passive remote sensing data (e.g. Sentinel-2) in order to reduce the current shortcomings in the developed processing chain. In this work, fusion is performed at the feature level to better account for the difference image properties of SAR and optical sensors. Further, the processing chain is currently being optimized in terms of calculation time for a further integration as a flood mapping service on the A2S (Alsace Aval

  10. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Fadong, E-mail: lifadong@igsnrr.ac.cn [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Qiuying [Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Li, Jing [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Qiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-08-15

    Water pollution in the form of nitrate nitrogen (NO{sub 3}{sup −}–N) contamination is a major concern in most agricultural areas in the world. Concentrations and nitrogen and oxygen isotopic compositions of nitrate, as well as oxygen and deuterium isotopic compositions of surface and groundwater from a typical irrigated region in the North China Plain (NCP) collected from May to October in 2012 were analyzed to examine the major nitrate sources and transformations. Concentrations of NO{sub 3}{sup −}–N ranged from 0.2 to 29.6 mg/L (mean of 11.2 mg/L) in surface water, and from 0.1 to 19.4 mg/L (mean of 2.8 mg/L) in groundwater. Approximately 46.7% of the surface water samples and 10% of the groundwater samples exceeded the World Health Organization (WHO) drinking water standard for NO{sub 3}{sup −}–N. Surface water samples that exceeded the standard were collected mainly in the dry season (May and October), while groundwater samples that exceeded the standard were collected in the wet season (June). Overall, the highest nitrate levels were observed in surface water in May and in groundwater in June, indicating that fertilizer application, precipitation, and irrigation strongly influence the NO{sub 3}{sup −}–N concentrations. Analyses of isotopic compositions suggest that the main sources of nitrate are nitrification of fertilizer and sewage in surface water, in contrast, mineralization of soil organic N and sewage is the groundwater sources during the dry season. When fertilizers are applied, nitrate will be transported by precipitation through the soil layers to the groundwater in the wet season (June). Denitrification only occurred in surface water in the wet season. Attempts should be made to minimize overuse of nitrogen fertilizers and to improve nitrogen use efficiency in irrigated agricultural regions. - Highlights: • Nitrate sources in surface and groundwater were identified by multiple isotopes. • Nitrate pollution displayed obvious

  11. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  12. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  13. A Fluorine-free Slippery Surface with Hot Water Repellency and Improved Stability against Boiling.

    Science.gov (United States)

    Togasawa, Ryo; Tenjimbayashi, Mizuki; Matsubayashi, Takeshi; Moriya, Takeo; Manabe, Kengo; Shiratori, Seimei

    2018-01-31

    Inspired by natural living things such as lotus leaves and pitcher plants, researchers have developed many excellent antifouling coatings. In particular, hot-water-repellent surfaces have received much attention in recent years because of their wide range of applications. However, coatings with stability against boiling in hot water have not been achieved yet. Long-chain perfluorinated materials, which are often used for liquid-repellent coatings owing to their low surface energy, hinder the potential application of antifouling coatings in food containers. Herein, we design a fluorine-free slippery surface that immobilizes a biocompatible lubricant layer on a phenyl-group-modified smooth solid surface through OH-π interactions. The smooth base layer was fabricated by modification of phenyltriethoxysilane through a sol-gel method. The π-electrons of the phenyl groups interact with the carboxyl group of the oleic acid used as a lubricant, which facilitates immobilization on the base layer. Water droplets slid off the surface in the temperature range from 20 to 80 °C at very low sliding angles (boiling stability under hot water. We believe that this surface will be applied in fields in which the practical use of antifouling coatings is desirable, such as food containers, drink cans, and glassware.

  14. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...... of air. Hence, nanobubles have been observed and proposed as the origin of long range ``hydrophobic'' forces19-30 even for hydrophilic silica-water interfaces unusual phenomena related to nanobubbles have been observed.31-33 In this work we study the role of air on the wetting of amorphous silica...

  15. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  16. Theoretical study of sodium-water surface reaction mechanism

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    2012-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  17. Molecular Dynamics Simulations of Water Droplets On Hydrophilic Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems. For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence of air. Hence......Wetting is essential and ubiquitous in a variety of natural and technological processes. Silicon dioxides-water systems are abundant in nature and play fundamental roles in a vast variety of novel science and engineering activities such as silicon based devices, nanoscale lab on a chip systems...... and DNA microarrays technologies.Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water, at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle computations...

  18. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    Science.gov (United States)

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  19. THE SURFACE WATER STORAGE PROBLEM IN ARID REGIONS:

    African Journals Online (AJOL)

    H. Benfetta

    2017-09-01

    Sep 1, 2017 ... B. Barrage de Foum el Gherza face au problème des fuites d'eau. Revue Larhyyss de Biskra, 2004: 3. 25-38. [15] WS. Atkins. Preparatory project detailed, Gargar Dam. England International, 1982: 145–186. How to cite this article: Benfetta H, Ouadja A.The surface water storage problem in arid regions: a ...

  20. Dissolved Carbon Dioxide in Tropical East Atlantic Surface Waters

    NARCIS (Netherlands)

    Bakker, D.C.E.; Baar, H.J.W. de; Jong, E. de

    1999-01-01

    Variability of dissolved inorganic carbon (DIC) and the fugacity of carbon dioxide (fCO2) is discussed for tropical East Atlantic surface waters in October–November 1993 and May–June 1994. High precipitation associated with the Intertropical Convergence Zone, river input and equatorial upwelling

  1. Circulation of the surface waters in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Sharma, G.S.

    The circulation pattern of the surface waters in the North Indian Ocean for different months of the year is discussed. In order to arrive at a reliable and detailed picture of the circulation pattern, streamlines are drawn using the isogon technique...

  2. heavy metals pollution on surface water sources in kaduna

    African Journals Online (AJOL)

    ABSTRACT. This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted ...

  3. Shale gas development impacts on surface water quality in Pennsylvania.

    Science.gov (United States)

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  4. Surface water assessment on the influence of space distribution on ...

    African Journals Online (AJOL)

    In this work, the influence of space distribution on physico-chemical parameters of refinery effluent discharge has been studied, using treated effluent water discharged from the Port Harcourt Refinery Company (PHRC) into the Ekerekana Creek in Okrika as reference. Samples were collected at surface level from the ...

  5. The interaction of water and hydrogen with nickel surfaces

    NARCIS (Netherlands)

    Shan, Junjun

    2009-01-01

    As nickel and platinum are in the same group of the periodic table, the Ni(111) and Pt(111) surfaces may be expected to show similar interaction with water and hydrogen. However in this thesis, we show these interactions for Ni(111) are quite different from those of Pt(111). Moreover, our results

  6. A Surface Water Model for the Orinoco river basin

    NARCIS (Netherlands)

    Schot, P.P.; Poot, A.; Vonk, G.; Peeters, W.H.M.

    2001-01-01

    This report describes the surface water model developed for the Orinoco river basin. In the next chapter hydrology and climate of the study area are presented. In the third chapter the general model concept is described. The fourth chapter describes the effects of various processes in the model

  7. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  8. Hydrobiological constraints of trace metals in surface water, coastal ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... of Calabar River are presented in Tables 1, 2 and 3. Table 4, 5 and 6 present the correlation matrices for sediment, surface water and N. lotus samples respec- tively, showing values of Pearson's correlation coefficient. (p<0.05, n=4) for pairs of heavy metals at the four locations. The concentrations of As, Cd, ...

  9. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  10. evaluation of metal contaminants of surface water sources in an ...

    African Journals Online (AJOL)

    SAMSUNG

    This study evaluated the potential health risks associated with domestic use of surface water from an active Pb-Zn mine pit, compared to a ... about the health and environmental risks associated with high levels of metal ... S. O. Ngele, Department of Industrial Chemistry, Ebonyi State University Abakaliki, Nigeria. E. J. Itumoh ...

  11. Surface water risk assessment of pesticides in Ethiopia

    NARCIS (Netherlands)

    Teklu, B.M.; Adriaanse, P.I.; Horst, ter M.M.S.; Deneer, J.W.; Brink, van den P.J.

    2015-01-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small

  12. Recovery of condensate water quality in power generator's surface condenser

    Science.gov (United States)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  13. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    Science.gov (United States)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  14. Modelling the effects of surface water flood pulses on groundwater

    NARCIS (Netherlands)

    Schot, P.P.; Wassen, M.J.

    2010-01-01

    Flood pulses in wetlands steer ecosystem development directly through surface water processes and indirectly through the effects of the flood pulse on groundwater. Direct effects on ecosystems are exerted by e.g. inundation and deposition of sediments containing nutrients. Indirect effects include

  15. Variation In Surface Water Vapour Density Over Four Nigerian Stations

    African Journals Online (AJOL)

    The surface water vapour density ρ has been studied using monthly averages of temperature and relative humidity at four selected weather stations in Nigeria for the years 1987 to 1991. It is found that during the dry season months of November to March, ρ is higher at night by an average of about 9.9% than during the day ...

  16. Dissolved gaseous Hg (DGM in the Mediterranean surface and deep waters

    Directory of Open Access Journals (Sweden)

    Kotnik J.

    2013-04-01

    Full Text Available Dissolved gaseous mercury (DGM was studied in surface and deep waters of the Mediterranean Sea for last 12 years during several oceanographic cruises on board the Italian research vessel Urania and covered both Western and Eastern Mediterranean Basins as well as Adriatic Sea. DGM was measured together with other mercury species (RHg - reactive Hg, THg - total Hg, MeHg - monomethyl Hg and DMeHg - dimethylmercury, and with some water quality parameters in coastal and open sea deep water profiles, however only DGM will be discussed here. DGM represents a considerable portion of THg (average of about 20 % in Mediterranean waters. Spatial and seasonal variations of measured DGM concentrations were observed in different indentified water masses as well as iwere observed. DGM was the highest in the northern Adriatic, most polluted part of the Mediterranean Sea as the consequence of Hg mining in Idrija and heavy industry of northern Italy.Generally, average DGM concentration was higher in W and E Mediteranean Deep Waters (WMDW and EMDW and Leavantine Intermediate Water (LIW than overlaying Modified Atlantic Water (MAW, however it was the highest in N Adriatic Surface waters and consequently in out flowing Adriatic Deep Waters (ADW. In deep water profiles the portion of DGM typically increased at depths with oxygen minimum and then towards the bottom, especially in areas with strong tectonic activity (Alboran Sea, Strait of Sicily, Tyrrhenian Sea, indicating its bacterial and/or geotectonic origin. A comparison of the results obtained in this study to others performed in the Mediterranean shows no significant differences. Results were also compared to the results obtained in the Pacific and Atlantic Oceans. During last oceanographic cruise in 2011 covering area between Livorno and Lipari Islands a novel method for continuous DGM determination in surface waters (Wangberg and Gardfeldt, 2011 was applied and compared to standard method.

  17. Removal of waterborne bacteria from surface water and ...

    African Journals Online (AJOL)

    2013-06-24

    Jun 24, 2013 ... 1Department of Environmental, Water and Earth Science, Tshwane University of Technology, 175 Nelson Mandela Drive, Pretoria 0002, South Africa. 2Department of Applied Chemistry, University .... material cover with a pore size of 5 µm, placed over a hollow, dome-shaped ceramic candle (10 cm x 10 cm ...

  18. The effect of ochre applied to buffer zones on soluble phosphorus retention during combined surface and subsurface flow conditions

    Science.gov (United States)

    Habibiandehkordi, R.; Quinton, J.; Surridge, B.

    2012-12-01

    Despite invention of a wide range of mitigating measures, diffuse phosphorus (P) pollution from agricultural lands still remains a major threat to the water resources. Thus, reducing P inputs along with improving the effectiveness of current best management practices (BMPs) is necessary to avoid eutrophication. Buffer zones are considered to be among the BMPs to control diffuse P pollution. However, these features are less effective in controlling soluble P loss with a retention range of -71 to +95% which is generally governed by the process of infiltration. Moreover, the soil in buffer strip system can be saturated over a course of time thereby enriching surface and subsurface runoff with soluble P. The aim of this study is to evaluate effectiveness of ochre applied to buffer strips in reducing the loss of soluble P during coupled surface and subsurface flow conditions. Batch experiments showed a maximum P retention capacity of 17.2 g kg-1 for ochre collected from a mine water treatment plant in Capehouse, UK without any risk of P desorption or releasing trace elements to the environment. The preliminarily results of flume experiments confirms the suitability of ochre to be used as a soil amendment in conjunction with buffer strips for tackling soluble P loss.

  19. Solar chimney integrated with passive evaporative cooler applied on glazing surfaces

    International Nuclear Information System (INIS)

    Al Touma, Albert; Ghali, Kamel; Ghaddar, Nesreen; Ismail, Nagham

    2016-01-01

    This study investigates the performance of a hybrid system applied on glazing surfaces for reducing the space cooling load and radiation asymmetry. The proposed system combines the principles of passive evaporative cooling with the natural buoyant flow in solar chimneys to entrain outdoor air and attenuate the window surface temperature. A predictive heat and mass transport model combining the evaporative cooler, glazing section, solar chimney and an office space is developed to study the system performance in harshly hot climates. The developed model was validated through experiments conducted in a twin climatic chamber for given ambient temperature, humidity, and solar radiation conditions. Good agreement was found between the measured and the predicted window temperatures and space loads at maximum discrepancy lower than 4.3%. The proposed system is applied to a typical office space to analyze its effectiveness in reducing the window temperature, the space load and radiation asymmetry, while maintaining the indoor comfort conditions. Results have shown that the system is reduced the space load by −19.8% and attenuated the radiation asymmetry significantly for office spaces having window-to-wall ratio of 40% in climate of Riyadh, KSA. The system performance diminished when applied in locations suffering from humid weather climates. - Highlights: • A passive evaporative-cooled solar chimney system is introduced to decrease window temperature. • A mathematical model is developed of the system to predict induce air flow and window surface temperature. • The model is validated with experiments in twin room climatic chamber and using artificial solar lamps. • The system reduces window maximum temperature by 5 °C in the hot dry climate of Riyadh, KSA. • It reduced the space load by 19.4% for office spaces at window-to-wall ratio of 40% in Riyadh, KSA.

  20. Surface temperature and thermal penetration depth of Nd:YAG laser applied to enamel and dentin

    Science.gov (United States)

    White, Joel M.; Neev, Joseph; Goodis, Harold E.; Berns, Michael W.

    1992-06-01

    The determination of the thermal effects of Nd:YAG laser energy on enamel and dentin is critical in understanding the clinical applications of caries removal and surface modification. Recently extracted non-carious third molars were sterilized with gamma irradiation. Calculus and cementum were removed using scaling instruments and 600 grit sand paper. The smear layer produced by sanding was removed with a solution of 0.5 M EDTA (pH 7.4) for two minutes. Enamel and dentin surfaces were exposed to a pulsed Nd:YAG laser with 150 microsecond(s) pulse duration. Laser energy was delivered to the teeth with a 320 micrometers diameter fiberoptic delivery system, for exposure times of 1, 10 and 30 seconds. Laser parameters varied from 0.3 to 3.0 W, 10 to 30 Hz and 30 to 150 mJ/pulse. Other conditions included applications of hot coffee, carbide bur in a dental air-cooled turbine drill and soldering iron. Infrared thermography was used to measure the maximum surface temperature on, and thermal penetration distance into enamel and dentin. Thermographic data were analyzed with a video image processor to determine the diameter of maximum surface temperature and thermal penetration distance of each treatment. Between/within statistical analysis of variance (p pulpal direction were significantly less than those of the dental drill. Therefore, the pulsed infrared Nd:YAG laser, with 320 micrometers fiber optic delivery, can be applied to enamel and dentin without detrimental thermal pulpal effects.

  1. Topology optimization applied to room acoustic problems and surface acoustic wave devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Jensen, Jakob Søndergaard

    of the project is concerned with simulation and optimization of surface acoustic wave (SAW) devices [4]. SAWs are for instance used in filters and resonators in mobile phones and to modulate light waves [5], and it is here essential to obtain waves with a high intensity, to direct the waves or to optimize...... of engineering fields such as mechanism design, fluid problems and photonic and phononic band-gap materials and structures [1,2]. In this project topology optimization is first applied to control acoustic properties in a room [3]. It is shown how the squared sound pressure amplitude in a certain part of a room...

  2. Surface modification of ZnS films by applying an external magnetic field in vacuum chamber

    Science.gov (United States)

    Ehsani, M. H.; Zarei Moghadam, R.; Rezagholipour Dizaji, H.; Kameli, P.

    2017-09-01

    In this paper, ZnS films were prepared using pulsed laser deposition technique in vacuum chamber in the presence and absence of an external magnetic field. The applied magnetic field effects on optical properties and film growth conditions were studied. For this reason, morphological, structural and optical properties of the grown films have been investigated by atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and UV-vis spectroscopy analysis techniques. The structural studies revealed that the ZnS films deposited at 200 °C crystallized in hexagonal structure. The results showed the improvement of the film crystallinity upon grain size increment and the surface morphology modification resulted from applying an external magnetic field. Using the UV-vis spectroscopy data, absorption coefficient (α), refractive index (n) and extinction coefficient (k) of the samples were calculated. The band gap energy (E g) and Urbach energy were also calculated by Tauc, ASF and DASF methods. The results show that by applying magnetic field, the band gap and Urbach energies reduced, due to improvement in the film crystallinity. For describing the magnetic field effect, a simulation of applied magnetic field effect on vapor flux in vacuum chamber was performed using Multi-Physics COMSOL package.

  3. Numerical Simulation of the Effects of Water Surface in Building Environment

    Science.gov (United States)

    Li, Guangyao; Pan, Yuqing; Yang, Li

    2018-03-01

    Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.

  4. Multivariate statistical techniques for the evaluation of surface water quality of the Himalayan foothills streams, Pakistan

    Science.gov (United States)

    Malik, Riffat Naseem; Hashmi, Muhammad Zaffar

    2017-10-01

    Himalayan foothills streams, Pakistan play an important role in living water supply and irrigation of farmlands; thus, the water quality is closely related to public health. Multivariate techniques were applied to check spatial and seasonal trends, and metals contamination sources of the Himalayan foothills streams, Pakistan. Grab surface water samples were collected from different sites (5-15 cm water depth) in pre-washed polyethylene containers. Fast Sequential Atomic Absorption Spectrophotometer (Varian FSAA-240) was used to measure the metals concentration. Concentrations of Ni, Cu, and Mn were high in pre-monsoon season than the post-monsoon season. Cluster analysis identified impaired, moderately impaired and least impaired clusters based on water parameters. Discriminant function analysis indicated spatial variability in water was due to temperature, electrical conductivity, nitrates, iron and lead whereas seasonal variations were correlated with 16 physicochemical parameters. Factor analysis identified municipal and poultry waste, automobile activities, surface runoff, and soil weathering as major sources of contamination. Levels of Mn, Cr, Fe, Pb, Cd, Zn and alkalinity were above the WHO and USEPA standards for surface water. The results of present study will help to higher authorities for the management of the Himalayan foothills streams.

  5. Rate law analysis of water oxidation on a hematite surface.

    Science.gov (United States)

    Le Formal, Florian; Pastor, Ernest; Tilley, S David; Mesa, Camilo A; Pendlebury, Stephanie R; Grätzel, Michael; Durrant, James R

    2015-05-27

    Water oxidation is a key chemical reaction, central to both biological photosynthesis and artificial solar fuel synthesis strategies. Despite recent progress on the structure of the natural catalytic site, and on inorganic catalyst function, determining the mechanistic details of this multiredox reaction remains a significant challenge. We report herein a rate law analysis of the order of water oxidation as a function of surface hole density on a hematite photoanode employing photoinduced absorption spectroscopy. Our study reveals a transition from a slow, first order reaction at low accumulated hole density to a faster, third order mechanism once the surface hole density is sufficient to enable the oxidation of nearest neighbor metal atoms. This study thus provides direct evidence for the multihole catalysis of water oxidation by hematite, and demonstrates the hole accumulation level required to achieve this, leading to key insights both for reaction mechanism and strategies to enhance function.

  6. Radioactive 129I in surface water of the Celtic Sea

    DEFF Research Database (Denmark)

    He, Peng; Hou, Xiaolin; Aldahan, Ala

    2014-01-01

    available data are sparse. Most likely, however, that discharges originated from La Hague may have more influence on the Celtic Sea 129I concentrations than the Sellafield. Comprehensive surface water and depth profiles 129I data will be needed in the future for assessment of environmental impact......Relatively large amounts of radioactive iodine 129I (T 1/2 = 15.7 Ma) have been documented in seawater such as the English Channel, the Irish Sea and the North Sea. Data on the concentration of the iodine isotopes in waters of the Celtic Sea are missing. Aiming to provide first 129I data...... in the Celtic Sea and compare them with levels in the other close-by seawater bodies, surface seawater samples were analyzed for the determination of 127I and 129I concentrations. The results revealed a high level of 129I in these waters and suggest strong influence by liquid discharges from La Hague...

  7. A theoretical investigation of water adsorption on titanium dioxide surfaces

    Science.gov (United States)

    Fahmi, Adil; Minot, Christian

    1994-03-01

    Water adsorption on various crystallographic faces of TiO 2 (anatase and rutile) are calculated using a periodic Hartree-Fock method. Titanium oxide is an amphoteric compound. Water adsorbs on the acidic site, the titanium atom, and then dissociates to give hydroxyl groups. The adsorption energy is larger on the (110) face of the rutile structure than on other faces and is correlated with its very acidic sites. The OH groups are oriented to maximize hydrogen bonding. Hydrogen bonding is particularly important for molecular adsorption on the (100) face of the rutile structure; in this case, the molecular adsorption becomes competitive with the dissociative one. The thermodynamics of water adsorption strongly favor dissociation when singly-coordinated oxygen atoms are present on the surface as it is in a perfectly truncated anatase surface.

  8. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  9. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    Bondareva, L.G.; Bolsunovsky, A.Ya.

    2005-01-01

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  10. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  11. Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands.

    Science.gov (United States)

    Krimmer, Stefan G; Cramer, Jonathan; Betz, Michael; Fridh, Veronica; Karlsson, Robert; Heine, Andreas; Klebe, Gerhard

    2016-12-08

    A previously studied congeneric series of thermolysin inhibitors addressing the solvent-accessible S 2 ' pocket with different hydrophobic substituents showed modulations of the surface water layers coating the protein-bound inhibitors. Increasing stabilization of water molecules resulted in an enthalpically more favorable binding signature, overall enhancing affinity. Based on this observation, we optimized the series by designing tailored P 2 ' substituents to improve and further stabilize the surface water network. MD simulations were applied to predict the putative water pattern around the bound ligands. Subsequently, the inhibitors were synthesized and characterized by high-resolution crystallography, microcalorimetry, and surface plasmon resonance. One of the designed inhibitors established the most pronounced water network of all inhibitors tested so far, composed of several fused water polygons, and showed 50-fold affinity enhancement with respect to the original methylated parent ligand. Notably, the inhibitor forming the most perfect water network also showed significantly prolonged residence time compared to the other tested inhibitors.

  12. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  13. Water and oil wettability of anodized 6016 aluminum alloy surface

    Science.gov (United States)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA mechanisms of porous structures, was broken. Moreover, thicker oxide layers with narrow pores of about 29 nm diameter allowed to achieve WCA mechanical components or in water-oil separation process.

  14. Drainage-water travel times as a key factor for surface water contamination

    NARCIS (Netherlands)

    Groenendijk, P.; Eertwegh, van den G.A.P.H.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it

  15. Application of an Environmental Decision Support System to a Water Quality Trading Program Affected by Surface Water Diversions

    Science.gov (United States)

    Obropta, Christopher C.; Niazi, Mehran; Kardos, Josef S.

    2008-12-01

    Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon’s (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions.

  16. Perfluoroalkyl substances in the Maltese Environment - (I) Surface water and rain water

    NARCIS (Netherlands)

    Sammut, G.; Sinagra, E.; Helmus, R.; de Voogt, P.

    2017-01-01

    The presence of perfluoroalkyl substances (PFASs) in rain water on the Maltese Islands is reported here for the first time and an extensive survey of these substances in surface water also reported. The Maltese archipelago lies at the centre of the Mediterranean Sea and consists of three main

  17. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  18. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  19. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten

    2017-01-01

    . However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, while spaceborne observations have limited spatial and temporal resolution. UAVs (Unmanned Aerial Vehicles) can retrieve river water level measurements, providing: i) high...

  20. Multi-functional surfaces with controllable wettability and water adhesion

    Science.gov (United States)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Kenanakis, George; Kaklamani, Georgia; Papoutsakis, Lampros

    The design of multifunctional surfaces based on biomimetic structures has gained the interest of the scientific community. Novel multifunctional surfaces have been developed, able to alter their wetting properties in response to temperature and pH as well as light illumination, by combining proper chemistry and surface micro/nano-structuring using ultrafast (femtosecond) laser irradiation. The combination of the hierarchical surface with a ZnO and/or a responsive polymer coating results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces in response to external stimuli. These surfaces can be optimized to exhibit high or zero water adhesion and/or controllable directionality as well. Moreover, they can be seeded with human fibroblasts to examine the cellular response on both surface roughness and surface chemistry. Acknowledgements: This research has been co-financed by the General Secretariat for Research and Technology (''ARISTEIA II'' Action, SMART-SURF) and the European Union (NFFA Europe -Grant agreement No. 654360).

  1. Classifying terrestrial surface water systems using integrated residence time

    Science.gov (United States)

    Jones, Allan; Hodges, Ben; McClelland, James; Hardison, Amber; Moffett, Kevan

    2017-04-01

    Linkages between ecology and hydrology in terrestrial surface water often invoke a discussion of lentic (reservoir) vs. lotic (riverine) system behaviors. However, the literature shows a wide range of thresholds separating lentic/lotic regimes and little agreement on a quantitative, repeatable classification metric that can be broadly and reliably applied across a range of systems hosting various flow regimes and suspended/benthic taxa. We propose an integrated Residence Time (iTR) metric as part of a new Freshwater Continuum Classification (FCC) to address this issue. The iTR is computed as the transit time of a water parcel across a system given observed temporal variations in discharge and volume, which creates a temporally-varying metric applicable across a defined system length. This approach avoids problems associated with instantaneous residence times or average residence times that can lead to misleading characterizations in seasonally- or episodically-dynamic systems. The iTR can be directly related to critical flow thresholds and timescales of ecology (e.g., zooplankton growth). The FCC approach considers lentic and lotic to be opposing end-members of a classification continuum and also defines intermediate regimes that blur the line between the two ends of the spectrum due to more complex hydrological system dynamics. We also discover the potential for "oscillic" behavior, where a system switches between lentic and lotic classifications either episodically or regularly (e.g., seasonally). Oscillic behavior is difficult to diagnose with prior lentic/lotic classification schemes, but can be readily identified using iTR. The FCC approach was used to analyze 15 tidally-influenced river segments along the Texas (USA) coast of the Gulf of Mexico. The results agreed with lentic/lotic designations using prior approaches, but also identified more nuanced intermediate and oscillic regimes. Within this set of systems, the oscillic nature of some of the river

  2. Radioactivity levels in surface water of lakes around Izmir / Turkey

    International Nuclear Information System (INIS)

    Doyurum, S.; Turkozu, D. A.; Aslani, M. A. A.; Aytas, S.; Eral, M.; Kaygun, A. K.

    2006-01-01

    Radioactivity presents in surface continental waters is mainly due to the presence of radioactive elements in the earth's crust, other artificial radionuclides have appeared due to such human activities as nuclear power plants, nuclear weapons testing and manufacture and use of radioactive sources It is well known that natural radionuclides can be effective as tracers for the different processes controlling the distribution of elements among dissolved and particulate phases in aquatic systems. The detection of high radionuclide concentrations was proposed as a public health problem in several areas and consequently studies into the risks of radionuclides were started in the 2000s. Especially, these radioactive substances in groundwater are an unwanted and involuntary risk factor from natural sources, not artificial sources. These radioactive substances include uranium, radon found in uranium series, and other radioactive substances such as radium and gross alpha. Uranium present in rock, soil, and natural materials, and is found in small quantities in air, water, and food that people always contact. In this project, lake water samples were collected from three lakes around Izmir-Turkey. In surface lake water samples, pH, mV and conductivity values were measured and alkaline content was determined titrimetrically. The uranium concentrations in the lake water samples were measured using uranium analyzer. The radioactivity concentrations related to gross radium isotopes, gross-? and gross-? activities in the surface lake water were determined. The correlation among some parameters for water samples and concentrations of uranium, activity concentration of gross radium isotopes, gross alpha and gross beta radioactivity are also discussed

  3. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    Science.gov (United States)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  4. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  5. The Assessment of Instruments for Detecting Surface Water Spills Associated with Oil and Gas Operations

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Aubrey E. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); U.S. Bureau of Reclamation, Albuquerque, NM (United States); Hopkinson, Leslie [West Virginia Univ., Morgantown, WV (United States); Soeder, Daniel [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-12-02

    Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been used to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.

  6. Scaling relationship for surface water transport in stream networks and sub-surface flow interaction

    Science.gov (United States)

    Worman, A.

    2005-12-01

    Ground surface topography is known to control the circulation pattern of groundwater and also reflects the surface hydrological pathways through the landscape. This means that similar geometrical distributions typical to the landscape can be related physically-mathematically to the overall circulation of water and solute elements on land. Such understanding is needed in the management of water resources, especially on the watershed scale or larger. This paper outlines a theory by which we represent landscape topography in terms of its Fourier spectrum of a typical wave-function, formally relate this spectrum to the sub-surface flow of water and solute elements. Further, the stream network characteristics is analysed both in terms of the fractal distribution of individual stream lengths and the distribution of total transport distances in the watershed. Empirical relationships between the three types of distributions are established for two example watersheds in the middle and southern Sweden. Because the flow of water and solute elements in the stream network can also be described by convoluting unit solutions over the stream network, this paper describes an approach that relate lanscape topography to hydrological and geochemical circulation. The study shows that surface topography, stream network characteristics and thickness of quaternary deposits controls the circulation pattern of the deep groundwater. The water exchange is controlled by topography on both the continental scale as well as regional scale. The residence of deep groundwater in the stream network - before entering the coastal zone - is, therefore also controlled by the landscape topography.

  7. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukeš, Petr; Akiyama, M.

    2016-01-01

    Roč. 49, č. 41 (2016), č. článku 415202. ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : water surface * spectroscopy * high-speed photography * pulsed plasma discharge * Atmospheric-pressure plasmas * electric discharges * liquids * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/41/415202

  8. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    Science.gov (United States)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  9. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  10. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  11. Modelling of long term nitrogen retention in surface waters

    Science.gov (United States)

    Halbfaß, S.; Gebel, M.; Bürger, S.

    2010-12-01

    In order to derive measures to reduce nutrient loadings into waters in Saxony, we calculated nitrogen inputs with the model STOFFBILANZ on the regional scale. Thereby we have to compare our modelling results to measured loadings at the river basin outlets, considering long term nutrient retention in surface waters. The most important mechanism of nitrogen retention is the denitrification in the contact zone of water and sediment, being controlled by hydraulic and micro-biological processes. Retention capacity is derived on the basis of the nutrient spiralling concept, using water residence time (hydraulic aspect) and time-specific N-uptake by microorganisms (biological aspect). Short time related processes of mobilization and immobilization are neglected, because they are of minor importance for the derivation of measures on the regional scale.

  12. Trace-level mercury removal from surface water

    International Nuclear Information System (INIS)

    Klasson, K.T.; Bostick, D.T.

    1998-01-01

    Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, most of the data published thus far do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. Mercury was successfully removed from surface water via adsorption onto Ionac SR-4 and Mersorb resins to levels below the target goal of 12 ng/L in batch studies. A thiol-based resin performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1,000 gal of water

  13. Determination of antibiotic residues in manure, soil, and surface waters

    Science.gov (United States)

    Christian, T.; Schneider, R.J.; Farber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E.

    2003-01-01

    In the last years more and more often detections of antimicrobially active compounds ("antibiotics") in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1...2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 ??g/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.

  14. Macro-invertebrate decline in surface water polluted with imidacloprid.

    Science.gov (United States)

    Van Dijk, Tessa C; Van Staalduinen, Marja A; Van der Sluijs, Jeroen P

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (Pwater quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1). For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1) (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

  15. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  16. Surface-water exposure to quinoxyfen: Assessment in landscape vineyards

    Science.gov (United States)

    Merli, Annalisa; Reeves, Graham; Meregalli, Giovanna; Piccinini, Armando; Negri, Ilaria; Carmignano, Pasquale; Balderacchi, Matteo; Capri, Ettore

    2010-03-01

    SummaryProtection of surface- and ground-water quality is critical for economic viability, as well as for human health and the environment. Furthermore, maintenance of the biodiversity of natural aquatic ecosystems is very important. The objective of this paper is to report methodology developed for the assessment of the surface-water exposure to pesticide using as example the fungicide quinoxyfen because persistent, lipophylic and hazard for the aquatic organisms. Exposure monitoring was carried out over two years (2005 and 2006) following historical and subsequent applications in Italian vineyards and to investigate the presence of residue in non-target areas close to the crop receiving repeated applications. After development of the monitoring procedures, surface-water contamination and biota exposure were determined during and after field treatments. Very low concentrations were found in sediments, often in contradiction with model and laboratory results, leading to the conclusion that even the historical use of quinoxyfen in vineyards within the catchment was not contaminating sediment in water bodies, which was regarded as the natural sink for such a pesticide due to its strong sorptive properties. For biota, quinoxyfen residues in benthic macroinvertebrates and fish in the vast majority of the samples were below the corresponding limit of detection (LOD). Thus long-term accumulation of quinoxyfen in sediments and organisms of the aquatic ecosystems would not be expected due main to the environmental conditions of the landscape that mitigate the overall exposure.

  17. Prediction of water droplet evaporation on zircaloy surface

    International Nuclear Information System (INIS)

    Lee, Chi Young; In, Wang Kee

    2014-01-01

    In the present experimental study, the prediction of water droplet evaporation on a zircaloy surface was investigated using various initial droplet sizes. To the best of our knowledge, this may be the first valuable effort for understanding the details of water droplet evaporation on a zircaloy surface. The initial contact diameters of the water droplets tested ranged from 1.76 to 3.41 mm. The behavior (i.e., time-dependent droplet volume, contact angle, droplet height, and contact diameter) and mode-transition time of the water droplet evaporation were strongly influenced by the initial droplet size. Using the normalized contact angle (θ*) and contact diameter (d*), the transitions between evaporation modes were successfully expressed by a single curve, and their criteria were proposed. To predict the temporal droplet volume change and evaporation rate, the range of θ* > 0.25 and d* > 0.9, which mostly covered the whole evaporation period and the initial contact diameter remained almost constant during evaporation, was targeted. In this range, the previous contact angle functions for the evaporation model underpredicted the experimental data. A new contact angle function of a zircaloy surface was empirically proposed, which represented the present experimental data within a reasonable degree of accuracy. (author)

  18. Dynamics of Surface Reorganization of Poly(methyl methacrylate) in Contact with Water

    Science.gov (United States)

    Horinouchi, Ayanobu; Atarashi, Hironori; Fujii, Yoshihisa; Tanaka, Keiji

    2013-03-01

    New tools for tailor-made diagnostics, such as DNA arrays and tips for micro-total-analysis systems, are generally made from polymers. In these applications, the polymer surface is in contact with a water phase. However, despite the importance of detailed knowledge of the fundamental interactions of polymer interfaces with liquids, such studies are very limited. As an initial benchmark for designing and constructing specialized biomedical surfaces containing polymer, aggregation states and dynamics of chains at the water interface should be systematically examined. We here apply time-resolved contact angle measurement to study the dynamics of the surface reorganization of poly(methyl methacrylate) (PMMA) in contact with water. By doing the measurements at various temperatures, it is possible to discuss the surface dynamics of PMMA based on the apparent activation energy. Also, sum-frequency generation spectroscopy revealed that the surface reorganization involves the conformational changes in the main chain part as well as the side chains. Hence, the dynamics observed here may reflect the segmental motion at the outermost region of the PMMA film, in which water plays as a plasticizer.

  19. Effects of water inlet configuration in a service reservoir applying CFD modelling

    Directory of Open Access Journals (Sweden)

    Carolina Montoya Pachongo

    2016-01-01

    Full Text Available This study investigated the state of a service reservoir of a drinking water distribution network. Numerical simulation was applied to establish its flow pattern, mixing conditions, and free residual chlorine decay. The influence of the change in the water inlet configuration on these characteristics was evaluated. Four scenarios were established with different water level and flow rate as the differences between the first three scenarios. The fourth scenario was evaluated to assess the influence of the inlet configuration, momentum flow and water level on hydrodynamic conditions within the service reservoir. The distribution of four nozzles of 152.4mm diameter was identified as a viable measure to preserve the water quality in this type of hydraulic structures.

  20. Constructing ab initio and empirical potential energy surfaces for water

    International Nuclear Information System (INIS)

    Kain, Jacqueline Sophie

    2001-01-01

    The infrared spectrum of water is possibly one of the most well studied and yet portions of it are still poorly understood. Recently, significant advances have been made in assigning water spectra using variational nuclear calculations. The major factor determining the accuracy of ro-vibrational spectra of water is the accuracy of the underlying Potential Energy Surface. Even the most accurate ab initio Potential Energy Surface does not reproduce the Born-Oppenheimer surface to sufficient accuracy for spectroscopic studies. Furthermore, effects beyond this model such as the adiabatic correction, the relativistic correction and the non-adiabatic correction have to be considered. This thesis includes a discussion on how the relativistic correction was calculated, for the water molecule, from first-order perturbation theory. The relativistic correction improved vibrational stretching motion while making the prediction of the bending modes far worse. For rotational motion the relativistic effect had an increasing effect with increasing Ka. A further alteration to the ab initio calculations is introduced by adjusting the barrier to linearity in the water potential. This alteration to the barrier was considered in order to compensate for the lack of convergence of quantum chemical calculations of the Born-Oppenheimer surface. This barrier attempts to represent the change in the potential from linear to equilibrium. We show the improvements this has on the calculated energy levels by comparison with the HITRAN database. This then led the way to the improved spectroscopic potential presented here in this thesis. This new spectroscopic potential reduces the overall standard deviation significantly for vibrational and rotational energy levels. (author)

  1. Transitions for fipronil quant in surface water, Summary of Current Fipronil Water Data and Water Data for WWTPs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. This dataset is...

  2. Typology of macrofaunal assemblages applied to water and nature management: a Dutch approach

    NARCIS (Netherlands)

    Verdonschot, P.F.M.; Nijboer, R.C.

    2000-01-01

    Multivariate analysis of an extensive dataset based on the macroinvertebrate fauna of surface waters in the province of Overijssel (The Netherlands) has resulted in the description of 42 site groups. These include springs, streams, rivers, canals, ditches, pools and lakes. The site groups are

  3. Applying Recreation Survey Results to Recreation Planning for Water-Based Recreation Areas in California

    Science.gov (United States)

    Garrett Duncan; John Mintz; Douglas Rischbieter; John Baas

    2004-01-01

    This paper focuses on identifying applications of recreation survey results in the context of water-based recreation planning. Recreation researchers have sometimes been criticized for conducting research that is weak in applied value (Cordell 1999). The paper also focuses on the important, but sometimes forgotten role that private entities play (e.g., Pacific Gas and...

  4. Evaluation of the use of fresh water by four Egyptian farms applying integrated aquaculture – agriculture

    NARCIS (Netherlands)

    Heijden, van der P.G.M.; Nasr-Alla, A.; Kenawy, D.; El-Naggar, G.; Beveridge, M.

    2012-01-01

    This report describes a study done in 2010 by researchers of the WorldFish Center on water use in Egyptian farms that apply aquaculture – agriculture integration. Two of the four farms that were monitored derived the main income from farming and selling fish, the two other farms were mainly

  5. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A.; Putschew, A.; Jekel, M. [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  6. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Studies on the treatment of surface water using rajma seeds

    Science.gov (United States)

    Merlin, S. Babitha; Abirami, M.; Kumar, R. Suresh

    2018-03-01

    Indiscriminate disposal of wastewater with suspended solids have led to higher amount of pollution to the natural water bodies. Turbidity removal becomes an essential part in the water treatment when surface water is used for drinking purpose, this can be achieved by means of coagulation process. Coagulation process is the dosing of a coagulant in water, resulting in the destabilization of negatively charged particles. Commercial coagulants which were widely used can synthesize by-products in turn may pollute the environment and deteriorate the ecosystem at a slow rate. So, now-a-days natural coagulants are used as a potential substitute because it's biodegradable, ecofriendly and non-toxic. In this study, the turbid surface water samples were treated using powdered seeds of Rajma (natural coagulant) followed by variations in dosage, settling time and pH were also studied. From the results obtained, it was found that the Rajma seeds powder achieved 48.80% efficiency for 0.5 g/l of optimum dose at pH 6 for 20 min settling time respectively.

  8. Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, E N; Krotova, L I; Minaev, N V; Minaeva, S A; Mironov, A V; Popov, V K [Institute on Laser and Information Technologies of the Russian Academy of Sciencies, Troitsk, Moscow (Russian Federation); Bagratashvili, V N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 – 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering. (interaction of laser radiation with matter. laser plasma)

  9. Biological methods used to assess surface water quality

    Directory of Open Access Journals (Sweden)

    Szczerbiñska Natalia

    2015-12-01

    Full Text Available In accordance with the guidelines of the Water Framework Directive 2000/60 (WFD, both ecological and chemical statuses determine the assessment of surface waters. The profile of ecological status is based on the analysis of various biological components, and physicochemical and hydromorphological indicators complement this assessment. The aim of this article is to present the biological methods used in the assessment of water status with a special focus on bioassay, as well as to provide a review of methods of monitoring water status. Biological test methods include both biomonitoring and bioanalytics. Water biomonitoring is used to assess and forecast the status of water. These studies aim to collect data on water pollution and forecast its impact. Biomonitoring uses organisms which are characterized by particular vulnerability to contaminants. Bioindicator organisms are algae, fungi, bacteria, larval invertebrates, cyanobacteria, macroinvertebrates, and fish. Bioanalytics is based on the receptors of contaminants that can be biologically active substances. In bioanalytics, biosensors such as viruses, bacteria, antibodies, enzymes, and biotests are used to assess degrees of pollution.

  10. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    International Nuclear Information System (INIS)

    Blake, R W

    2009-01-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number (∼0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  11. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water.

    Science.gov (United States)

    Blake, R W

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ( approximately 0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid

  12. Numerical comparison between deep water and intermediate water depth expressions applied to a wave energy converter

    Directory of Open Access Journals (Sweden)

    Pedro Beirão

    2015-09-01

    Full Text Available The energy that can be captured from the sea waves and converted into electricity should be seen as a contribution to decrease the excessive dependency and growing demand of fossil fuels. Devices suitable to harness this kind of renewable energy source and convert it into electricity—wave energy converters (WECs—are not yet commercially competitive. There are several types of WECs, with different designs and working principles. One possible classification is their distance to the shoreline and thus their depth. Near-shore devices are one of them since they are typically deployed at intermediate water depth (IWD. The selection of the WEC deployment site should be a balance between several parameters; water depth is one of them. Another way of classifying WECs is grouping them by their geometry, size and orientation. Considering a near-shore WEC belonging to the floating point category, this paper is focused on the numerical study about the differences arising in the power captured from the sea waves when the typical deep water (DW assumption is compared with the more realistic IWD consideration. Actually, the production of electricity will depend, among other issues, on the depth of the deployment site. The development of a dynamic model including specific equations for the usual DW assumption as well as for IWD is also described. Derived equations were used to build a time domain simulator (TDS. Numerical results were obtained by means of simulations performed using the TDS. The objective is to simulate the dynamic behavior of the WEC due to the action of sea waves and to characterize the wave power variations according with the depth of the deployment site.

  13. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines

    Science.gov (United States)

    Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja

    2016-05-01

    Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

  14. Coupling a groundwater model with a land surface model to improve water and energy cycle simulation

    Directory of Open Access Journals (Sweden)

    W. Tian

    2012-12-01

    Full Text Available Water and energy cycles interact, making these two processes closely related. Land surface models (LSMs can describe the water and energy cycles on the land surface, but their description of the subsurface water processes is oversimplified, and lateral groundwater flow is ignored. Groundwater models (GWMs describe the dynamic movement of the subsurface water well, but they cannot depict the physical mechanisms of the evapotranspiration (ET process in detail. In this study, a coupled model of groundwater flow with a simple biosphere (GWSiB is developed based on the full coupling of a typical land surface model (SiB2 and a 3-D variably saturated groundwater model (AquiferFlow. In this coupled model, the infiltration, ET and energy transfer are simulated by SiB2 using the soil moisture results from the groundwater flow model. The infiltration and ET results are applied iteratively to drive the groundwater flow model. After the coupled model is built, a sensitivity test is first performed, and the effect of the groundwater depth and the hydraulic conductivity parameters on the ET are analyzed. The coupled model is then validated using measurements from two stations located in shallow and deep groundwater depth zones. Finally, the coupled model is applied to data from the middle reach of the Heihe River basin in the northwest of China to test the regional simulation capabilities of the model.

  15. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...... before release to the environment. The human health risks of trace amounts of pharmaceuticals in drinking water have however not been evaluated in any great depth. Preliminary screening level assessments suggest risk to be low – but the public and decision-makers are concerned and would like the matter...... investigated more thoroughly, especially with regards to mixture effects, chronic long-term effects and sensitive sub-populations. The World Health Organization is currently evaluating the need for credible health based guidance associated with low concentrations of pharmaceuticals in drinking water....

  16. The study of dynamic force acted on water strider leg departing from water surface

    Directory of Open Access Journals (Sweden)

    Peiyuan Sun

    2018-01-01

    Full Text Available Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  17. Perfluoroalkyl substances in the Maltese environment - (I) surface water and rain water.

    Science.gov (United States)

    Sammut, G; Sinagra, E; Helmus, R; de Voogt, P

    2017-07-01

    The presence of perfluoroalkyl substances (PFASs) in rain water on the Maltese Islands is reported here for the first time and an extensive survey of these substances in surface water also reported. The Maltese archipelago lies at the centre of the Mediterranean Sea and consists of three main inhabited islands: Malta, Gozo and Comino. Surface water was collected from 41 valleys during the months of February and March 2015 at the peak of the wet season. Rain water was collected during the months of December 2014, February, August, September and October 2015. PFASs were extracted from the water samples using solid phase extraction and the extracts were then analysed using ultra performance liquid chromatography coupled to mass spectrometry in tandem (UPLC-MS/MS). All surface and rain water samples were contaminated with at least one PFAS. PFOS (waters respectively. The ΣPFAS concentrations in rain water ranged between 0.38ng/L (1st October 2015) and 6ng/L (21st February 2015). The Maltese archipelago is surrounded by sea and disconnected from any other mainland; therefore the results confirm that remote environments can become contaminated by PFASs from rain events depending on wind prevailing trajectories. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The study of dynamic force acted on water strider leg departing from water surface

    Science.gov (United States)

    Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong

    2018-01-01

    Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  19. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs

    Science.gov (United States)

    Yin, W.; Zheng, Y. L.; Lu, H. Y.; Zhang, X. J.; Tian, Y.

    2016-10-01

    A water strider has a remarkable capability to stand and walk freely on water. Supporting forces of a water strider and a bionic robot have been calculated from the side view of pressed depth of legs to reconstruct the water surface dimples. However, in situ measurements of the multiple leg forces and significantly small leg/water contact dimples have not been realized yet. In this study, a shadow method was proposed to reconstruct the in situ three-dimensional topographies of leg/water contact dimples and their corresponding supporting forces. Results indicated that the supporting forces were affected by the depth, width, and length of the dimple, and that the maximum dimple depth was not proportional to the supporting forces. The shadow method also has advantages in disclosing tiny supporting force of legs in their subtle actions. These results are helpful for understanding the locomotion principles of water-walking insects and the design of biomimetic aquatic devices.

  20. Surface water hydrology and the Greenland Ice Sheet

    Science.gov (United States)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  1. Multiple sources of boron in urban surface waters and groundwaters.

    Science.gov (United States)

    Hasenmueller, Elizabeth A; Criss, Robert E

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (<25μg/L), but have similar concentrations (150 to 259μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO4(2-)-S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during "first flush" events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Contamination of the ground waters and surface waters by boron in Lerma Valley, NW-Argentina - an inventory

    International Nuclear Information System (INIS)

    Bundschuh, J.

    1992-01-01

    Ground- and surface waters in areas unaffected by pollution from borax and boric acid producing plants exhibit low boron concentrations of less than 300 μg B/l. Only at the boric acid plant 'Mineratea' is the groundwater contaminated, with up to 6200 μg B/l occurring within an area of 8 to 10 km 2 with more than 1000 μg boron/l. Even higher boron concentrations (up to 18 μg B/l) are present in polluted surface waters. Not the boron concentration in the irrigation water, but the absolute amount of boron added to the plants by irrigation is what determines plant toxicity. For the contaminated area of the boric acid 'Mineratea', characterized by boron concentrations of between 1000 and 6000 μg B/l, the maximal amounts of irrigation water that can be applied lies between 300 and 8 mm. In order to protect the local groundwater resoures from present and future contamination, environmental impact assessment on industrial projects in the area are required. In this way, the quality of the drinking and irrigation water can be guaranteed through suitable measures, without hindering further necessary industrial development of the region. (orig./UWA) [de

  3. Surface water quality deterioration during low-flow

    Science.gov (United States)

    Hellwig, Jost; Stahl, Kerstin; Lange, Jens

    2017-04-01

    Water quality deterioration during low streamflow has mostly been linked to a lower dilution potential for pollutants. Some studies have also found spatial heterogeneities and a different behavior of different water quality parameters. Even though the general mechanisms that cause water quality changes during low-flow are well understood, only a few efforts have been made to explain the differences in the magnitudes of observed deteriorations. We investigated 72 catchments across the federal state of Baden-Wuerttemberg, Germany, for changes in water quality during low-flow events. Data from the state's water quality monitoring network provided seven water quality parameters (water temperature, electrical conductivity, concentrations of chloride, sodium, sulfate, nitrate and phosphate), which we statistically related to streamflow variability. Water temperatures increased during low flow in summer but decreased during low flow in winter. Nitrate concentrations revealed high spatial heterogeneity with about one third of the stations showing decreasing values during drought. For all other parameters concentrations rose during low-flow with only a few exceptions. Despite consistent trend directions, the magnitudes of changes with streamflow differed markedly across the state. Both multiple linear regression and a multiple analysis of variances were applied to explain these differences with the help of catchment characteristics. Results indicated that for sulfate and conductivity geology of the catchments was the most important control whereas for chloride, sodium and nitrate sewage treatment plants had largest influence. For phosphate no clear control could be identified. Independent from the applied method, land use was a less important control on river water quality during drought than geology or inflow from sewage treatment plants. These results show that the effects of diffuse and point sources, as well as those of natural and anthropogenic sources differ for

  4. Characterizing the concentration of Cryptosporidium in Australian surface waters for setting health-based targets for drinking water treatment.

    Science.gov (United States)

    Petterson, S; Roser, D; Deere, D

    2015-09-01

    It is proposed that the next revision of the Australian Drinking Water Guidelines will include 'health-based targets', where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values.

  5. ICEMENERG technologies of water treatment applied at Cernavoda NPP Unit 1

    International Nuclear Information System (INIS)

    Stanca, Angela; Bolma, Aurelia; Serbanescu, Agnes; Raducanu, Alice

    2002-01-01

    The paper presents the ICEMENERG technologies for water treatment applied at Cernavoda Unit 1, the treatment of the additional water for power steam generators and the chemical treatment of cooling system water. The requirements for quality of water totally demineralized as imposed by the AECL-ANSALDO consortium are as following: electrical conductivity, < 0.2 mS/cm; total silicon, <0.02 mg/L; ionic silicon, <0.01 mg/L; sodium, < 0.05 mg/L; TOC, <0.300 mg/L. These requirements raise rather difficult problems to be solved because the raw water source in case of Cernavoda NPP is Danube River which presents a raising trend of organic and inorganic contamination. Accordingly, experiments at laboratory scale reproducing the entire technological flow were conducted. The following operations were studied: pretreatment with limewash, ferric chloride (with and without coagulation additives); demineralization with ion exchangers of Purolite and Amberlite types. The system consisted of a cationic stage, formed of an strongly acid step with countercurrent recovery and an anionic stage formed of two steps, namely, a weakly basic step and a strongly basic step with recovery inserted; finishing on mixed bed. The paper presents also the chemical treatment/conditioning of the cooling loop of turbine condenser. The Cernavoda NPP cooling system is an open system with a single flow of cooling water comprising two systems, namely, the circulation water system ensuring the steam condenser cooling and the servicing water system ensuring the cooling of heat exchangers in the recirculated water circuit (RCWS), the turbine oil coolants, the coolants of auxiliary steam as well as the emergency core cooling system. Studies were conducted to ensure the chemical conditioning of the raw water from Danube River, particularly, to destroy and remove the shells, the algae and other components. Finally, the following four steps of conditioning the water of the cooling system are summarized: 1

  6. Water-filtered infrared-A (wIRA can act as a penetration enhancer for topically applied substances

    Directory of Open Access Journals (Sweden)

    Sterry, Wolfram

    2008-07-01

    Full Text Available Background: Water-filtered infrared-A (wIRA irradiation has been shown to enhance penetration of clinically used topically applied substances in humans through investigation of functional effects of penetrated substances like vasoconstriction by cortisone. Aim of the study: Investigation of the influence of wIRA irradiation on the dermatopharmacokinetics of topically applied substances by use of optical methods, especially to localize penetrating substances, in a prospective randomised controlled study in humans. Methods: The penetration profiles of the hydrophilic dye fluorescein and the lipophilic dye curcumin in separate standard water-in-oil emulsions were determined on the inner forearm of test persons by tape stripping in combination with spectroscopic measurements. Additionally, the penetration was investigated in vivo by laser scanning microscopy. Transepidermal water loss, hydration of the epidermis, and surface temperature were determined. Three different procedures (modes A, B, C were used in a randomised order on three separate days of investigation in each of 12 test persons. In mode A, the two dyes were applied on different skin areas without water-filtered infrared-A (wIRA irradiation. In mode B, the skin surface was irradiated with wIRA over 30 min before application of the two dyes (Hydrosun® radiator type 501, 10 mm water cuvette, orange filter OG590, water-filtered spectrum: 590–1400 nm with dominant amount of wIRA. In mode C, the two dyes were applied and immediately afterwards the skin was irradiated with wIRA over 30 min. In all modes, tape stripping started 30 min after application of the formulations. Main variable of interest was the ratio of the amount of the dye in the deeper (second 10% of the stratum corneum to the amount of the dye in the upper 10% of the stratum corneum. Results: The penetration profiles of the hydrophilic fluorescein showed in case of pretreatment or treatment with wIRA (modes B and C an

  7. Effects of pulsating water jet impact on aluminium surface

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Sitek, Libor; Ščučka, Jiří; Martinec, Petr; Valíček, Jan; Páleníková, K.

    2009-01-01

    Roč. 2009, č. 20 (2009), s. 6174-6180 ISSN 0924-0136 R&D Projects: GA ČR GA101/07/1451; GA ČR GP101/07/P512 Institutional research plan: CEZ:AV0Z30860518 Keywords : pulsating water jet * jet impact * material erosion * surface characteristics Subject RIV: JQ - Machines ; Tools Impact factor: 1.420, year: 2009 http://www.sciencedirect.com/science

  8. Diurnal and seasonal variations of surface water vapour density ...

    African Journals Online (AJOL)

    Diurnal and seasonal variations of surface water vapour density over some meteorological stations in Nigeria. ... Ife Journal of Science ... the three Sahelian stations, was 5.29±0.39; while during the rainy season, they were 21.72±1.22, 19.60±0.12 and 19.47±0.07 for the Southern, Midland and Northern regions respectively.

  9. Surface potential of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.

    1988-01-01

    An analysis of an extended molecular dynamics calculation of the surface potential (SP) of the water liquid-vapor interface is presented. The SP predicted by the TIP4P model is -(130 + or - 50) mV. This value is of reasonable magnitude but of opposite sign to the expectations based on laboratory experiments. The electrostatic potential shows a nonmonotonic variation with depth into the liquid.

  10. Circumnutation on the water surface: female flowers of Vallisneria

    OpenAIRE

    Kosuge, Keiko; Iida, Satoko; Katou, Kiyoshi; Mimura, Tetsuro

    2013-01-01

    Circumnutation, the helical movement of growing organ tips, is ubiquitous in land plants. The mechanisms underlying circumnutation have been debated since Darwin's time. Experiments in space and mutant analyses have revealed that internal oscillatory (tropism-independent) movement and gravitropic response are involved in circumnutation. Female flower buds of tape grass (Vallisneria asiatica var. biwaensis) circumnutate on the water surface. Our observations and experiments with an artificial ...

  11. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows

    Science.gov (United States)

    Legleiter, Carl; Mobley, Curtis D.; Overstreet, Brandon

    2017-01-01

    This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.

  12. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows

    Science.gov (United States)

    Legleiter, Carl J.; Mobley, Curtis D.; Overstreet, Brandon T.

    2017-09-01

    This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.

  13. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  14. Macro-invertebrate decline in surface water polluted with imidacloprid.

    Directory of Open Access Journals (Sweden)

    Tessa C Van Dijk

    Full Text Available Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001 between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051. However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1 (MTR seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

  15. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

    Science.gov (United States)

    Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (Pmacro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  16. Surface water and groundwater interaction in Marala - Khanki area, Punjab

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Latif, Z.; Tariq, J.A.; Malik, M.R.

    2011-07-01

    Isotope hydrological investigations were carried out in two selected areas of Indus Basin viz. Haripur Area and Chashma- Taunsa Area for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no contribution of surface water to groundwater recharge in Haripur Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of the Haripur pocket of Tarbela Lake are higher than those of Main Lake / Indus River meaning that there is a significant contribution of base flow in this pocket. Indus River appeared to be the dominant source of groundwater recharge at most of the locations in Chashma- Taunsa Area. Isotopic data of Indus River showed an increase at Taunsa as compared to Chashma in low flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  17. Water and Regolith Shielding for Surface Reactor Missions

    Science.gov (United States)

    Poston, David I.; Ade, Brian J.; Sadasivan, Pratap; Leichliter, Katrina J.; Dixon, David D.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  18. Water and Regolith Shielding for Surface Reactor Missions

    International Nuclear Information System (INIS)

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density

  19. Nitrate reducing activity pervades surface waters during upwelling

    Science.gov (United States)

    Fernandes, Sheryl Oliveira; Halarnekar, Reena; Malik, Ashish; Vijayan, Vijitha; Varik, Sandesh; Kumari, Ritu; V. K., Jineesh; Gauns, Manguesh U.; Nair, Shanta; LokaBharathi, P. A.

    2014-09-01

    Nitrate reducing activity (NRA) is known to be mediated by microaerophilic to anaerobic bacteria and generally occurs in the sub-surface waters. However, we hypothesize that NRA could become prominent in the surface waters during upwelling. Hence, we examined nitrification and nitrate reduction along with hydrographic and environmental parameters off Trivandrum and Kochi, south-west-India in June 2010. Shoaling isolines of temperature, density, and nutrients revealed the onset of upwelling off Trivandrum. Shoaling of these signatures was absent in the northern transect off Kochi. The degree of nutrient consumption (DNC) was low emphasizing the presence of newly upwelled water off Trivandrum. A significant increase in NRA (df = 1, p < 0.05) was observed off Trivandrum than at Kochi. Moreover, as hypothesized, NRA at Trivandrum was pronounced at the surface with a maximum rate of 0.85 (± 0.02) μmol L1 h- 1 nearshore which was ~ 29 × higher than that at Kochi. Further, an inverse relationship between NRA and NO3- concentration (n = 34, r = - 0.415, p < 0.01) suggested transformation of the upwelled nutrient. Nitrification/NRA was ~ 10 × lower at 0.28 off Trivandrum indicating a discernible shift towards reduction. Such contribution from bacterial activity could be a response towards restoration of homeostasis.

  20. Surface Water Quality Assessment and Prioritize the Factors Pollute This Water Using Topsis Fuzzy Hierarchical Analysis

    Directory of Open Access Journals (Sweden)

    Mehdi Komasi

    2017-03-01

    Full Text Available Background & Objective: Nowadays, according to growth of industry and increasing population, water resources are seriousely shortened. This lack of water resources will require special management to be considered in industry and agriculture. Among the various sources of water, surface waters are more susceptible to infection. The most important of these sources of pollution are industrial pollution, detergent, pesticides, radioactive materials, heat and salt concentration.  Materials & methods: In this article, at first the importance of each pollutant will be evaluated base on the effects and its results and then quality evaluation of surface water will be studied. In order to assess the relative importance of these pollutants primarily using TOPSIS software, prioritize these factors as one of the hierarchical analysis and then is modeled with decision tree method using Weka software, the importance of each factor is evaluated and if it does not meet the minimal importance of the decision tree will be removed. Results: The results obtained from the Topsis fuzzy analysis indicate that surface water and groundwater are exposed to pollution about 74% and 26% respectively among the six pollutants examined in this study. In addition, results obtaned from the hierarchical tree in software Weka has shown that the heat factor, soluble salts and industrial pollutants give impac factor or purity about 0.1338, 0.0523 and 1.2694 respectively. Conclusion: Surface water is at greater risk of being polluted compared with groundwater. The heat factor and low concentration of dissolved salts have the low impact and industrial pollutants are considered as the most influential factors in surface water pollution.

  1. Enhanced water repellency of surfaces coated with multiscale carbon structures

    Science.gov (United States)

    Marchalot, Julien; Ramos, Stella. M. M.; Pirat, Christophe; Journet, Catherine

    2018-01-01

    Low cost and well characterized superhydrophobic surfaces are frequently required for industrial applications. Materials are commonly structured at the micro or nano scale. Surfaces decorated with nanotube derivatives synthesized by plasma enhanced chemical vapor deposition (PECVD) are of particular interest, since suitable modifications in the growth parameters can lead to numerous designs. In this article, we present surfaces that are selected for their specific wetting features with patterns ranging from dense forests to jungles with concave (re-entrant) surface such as flake-like multiscale roughness. Once these surfaces are functionalized adequately, their wetting properties are investigated. Their ability to sustain a superhydrophobic state for sessile water drops is examined. Finally, we propose a design to achieve a robust so-called ;Fakir; state, even for micrometer-sized drops, whereas with classic nanotubes forests it is not achievable. Thus, the drop remains on the apex of the protrusions with a high contact angle and a low contact angle hysteresis, while the surface features demonstrate good mechanical resistance against capillary forces.

  2. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  3. Organic polar pollutants in surface waters of inland seas.

    Science.gov (United States)

    Orlikowska, Anna; Fisch, Kathrin; Schulz-Bull, Detlef E

    2015-12-30

    Available data about contamination by polar substances are mostly reported for rivers and near-shore waters and only limited studies exists about their occurrence in marine waters. We present concentrations and distribution of several polar pesticides and UV-filters in surface waters of three inland seas, the Baltic, Black and Mediterranean Sea. Many of the investigated compounds were below detection limits, however, those found in off-shore waters raise a concern about their persistence and possible adverse effect on the ecosystem. Despite a longstanding EU-wide ban we were able to detect atrazine in the Mediterranean and the Baltic Sea. Concentrations in the Black Sea were substantially higher. Runoff from agricultural and urban areas was the main transport route to marine ecosystems for investigated compounds, though irgarol in Mediterranean waters was attributed to intense maritime traffic. 2-Phenylbenzimidazole-5-sulfonic acid was the only UV-filter detected in marine waters, while benzophenone-4 was observed in the estuaries. Occurrence of UV-filters was seasonal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  5. Adsorption of water, sulfates and chloride on arsenopyrite surface

    Science.gov (United States)

    Silva, Juliana C. M.; dos Santos, Egon C.; de Oliveira, Aline; Heine, Thomas; De Abreu, Heitor A.; Duarte, Hélio A.

    2018-03-01

    Arsenopyrite is one of the sulfide minerals responsible for acid rock drainage (ARD) and is one of the most hazardous in regions affected by mining activities. This phenomenon involves complex reaction mechanism. Although it is intensely investigated, there is a lack of consensus concerning the reaction mechanisms and more information is still necessary. In this work, the adsorption of water, hydrochloric acid, and sulfuric acid on arsenopyrite (001) surface was investigated by means of Density Functional calculations and the results compared to other sulfides aiming to understand the mineral/water interface. The interaction of the chemical species with the (001) FeAsS surface is the first step to understand the intricate oxidation mechanism of arsenopyrite. Molecular water adsorption on (001) FeAsS is more favored than the adsorption of sulfate favoring the dissolution of sulfates and enhancing its oxidation. The estimated adsorption energies of water, sulfates and chloride on other sulfide minerals are compared with the estimated values for arsenopyrite and the chemical reactivity differences discussed in detail.

  6. A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems.

    Science.gov (United States)

    Kaandorp, Vince P; Molina-Navarro, Eugenio; Andersen, Hans E; Bloomfield, John P; Kuijper, Martina J M; de Louw, Perry G B

    2018-02-02

    Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming. Copyright © 2018. Published by Elsevier B.V.

  7. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  8. Improvement of water transport mechanisms during potato drying by applying ultrasound.

    Science.gov (United States)

    Ozuna, César; Cárcel, Juan A; García-Pérez, José V; Mulet, Antonio

    2011-11-01

    The drying rate of vegetables is limited by internal moisture diffusion and convective transport mechanisms. The increase of drying air temperature leads to faster water mobility; however, it provokes quality loss in the product and presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during convective drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve convective drying of potato and quantify the influence of the applied power in the water transport mechanisms. Drying kinetics of potato cubes were increased by the ultrasonic application. The influence of power ultrasound was dependent on the ultrasonic power (from 0 to 37 kW m(-3) ), the higher the applied power, the faster the drying kinetic. The diffusion model considering external resistance to mass transfer provided a good fit of drying kinetics. From modelling, it was observed a proportional and significant (P < 0.05) influence of the applied ultrasonic power on the identified kinetic parameters: effective moisture diffusivity and mass transfer coefficient. The ultrasonic application during drying represents an interesting alternative to traditional convective drying by shortening drying time, which may involve an energy saving concerning industrial applications. In addition, the ultrasonic effect in the water transport is based on mechanical phenomena with a low heating capacity, which is highly relevant for drying heat sensitive materials and also for obtaining high-quality dry products. Copyright © 2011 Society of Chemical Industry.

  9. Assessing surface water availability considering human water use and projected climate variability

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan

    2017-04-01

    Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.

  10. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland.

    Science.gov (United States)

    Barchanska, Hanna; Sajdak, Marcin; Szczypka, Kornelia; Swientek, Angelika; Tworek, Martyna; Kurek, Magdalena

    2017-01-01

    The aim of this study was to monitor the sediment, soil and surface water contamination with selected popular triketone herbicides (mesotrione (MES) and sulcotrione(SUL)), atrazine (ATR) classified as a possible carcinogen and endocrine disrupting chemical, as well as their degradation products, in Silesia (Poland). Seventeen sediment samples, 24 soil samples, and 64 surface water samples collected in 2014 were studied. After solid-liquid extraction (SLE) and solid phase extraction (SPE), analytes were determined by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Ten years after the withdrawal from the use, ATR was not detected in any of the collected samples; however, its degradation products are still present in 41 % of sediment, 71 % of soil, and 8 % of surface water samples. SUL was determined in 85 % of soil samples; its degradation product (2-chloro-4-(methylosulfonyl) benzoic acid (CMBA)) was present in 43 % of soil samples. In 17 % of sediment samples, CMBA was detected. Triketones were detected occasionally in surface water samples. The chemometric analysis (clustering analysis (CA), single-factor analysis of variance (ANOVA), N-Way ANOVA) was applied to find relations between selected soil and sediment parameters and herbicides concentration. In neither of the studied cases a statistically significant relationship between the concentrations of examined herbicides, their degradation products and soil parameters (organic carbon (OC), pH) was observed.

  11. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    Science.gov (United States)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  12. Adsorption of the water molecule on monolayer graphene surface has effect on its optical properties

    International Nuclear Information System (INIS)

    Peng, Y F; Wang, J; Lu, Z S; Han, X Y

    2015-01-01

    The adsorption of water molecules on the surface of a monolayer graphene can be studied with the Materials Studio software and be applied density function theory from first principles. By studying the interaction of graphene with water molecule, it uses DFT (density function theory) with the PBE-GGA (the generalized gradient approximation of Perdew- Burke-Ernzerhof) and Periodic plane model, on the one hand working out the adsorption energy, and on the other hand getting related optical properties. It is shown that a single water molecule on graphene has very small adsorption energy, mainly owning to the van der Waals interactions. Graphene has high hydrophobic; adsorbed water molecule has little effect on the electronic structure of the graphene. The optical properties of the graphene have changed after the adsorption. (paper)

  13. Geometric methods for estimating representative sidewalk widths applied to Vienna's streetscape surfaces database

    Science.gov (United States)

    Brezina, Tadej; Graser, Anita; Leth, Ulrich

    2017-04-01

    Space, and in particular public space for movement and leisure, is a valuable and scarce resource, especially in today's growing urban centres. The distribution and absolute amount of urban space—especially the provision of sufficient pedestrian areas, such as sidewalks—is considered crucial for shaping living and mobility options as well as transport choices. Ubiquitous urban data collection and today's IT capabilities offer new possibilities for providing a relation-preserving overview and for keeping track of infrastructure changes. This paper presents three novel methods for estimating representative sidewalk widths and applies them to the official Viennese streetscape surface database. The first two methods use individual pedestrian area polygons and their geometrical representations of minimum circumscribing and maximum inscribing circles to derive a representative width of these individual surfaces. The third method utilizes aggregated pedestrian areas within the buffered street axis and results in a representative width for the corresponding road axis segment. Results are displayed as city-wide means in a 500 by 500 m grid and spatial autocorrelation based on Moran's I is studied. We also compare the results between methods as well as to previous research, existing databases and guideline requirements on sidewalk widths. Finally, we discuss possible applications of these methods for monitoring and regression analysis and suggest future methodological improvements for increased accuracy.

  14. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NARCIS (Netherlands)

    van der Grift, Bas|info:eu-repo/dai/nl/373433484; Rozemeijer, Joachim|info:eu-repo/dai/nl/304838403; Griffioen, Jasper|info:eu-repo/dai/nl/091129265; van der Velde, Ype

    2014-01-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in

  15. Comparison of heterotrophic and autotrophic denitrification processes for nitrate removal from phosphorus-limited surface water.

    Science.gov (United States)

    Wang, Zheng; He, Shengbing; Huang, Jungchen; Zhou, Weili; Chen, Wanning

    2018-03-29

    Phosphorus (P) limitation has been demonstrated for micro-polluted surface water denitrification treatment in previous study. In this paper, a lab-scale comparative study of autotrophic denitrification (ADN) and heterotrophic denitrification (HDN) in phosphorus-limited surface water was investigated, aiming to find out the optimal nitrogen/phosphorus (N/P) ratio and the mechanism of the effect of P limitation on ADN and HDN. Furthermore, the optimal denitrification process was applied to the West Lake denitrification project, aiming to improve the water quality of the West Lake from worse than grade V to grade IV (GB3838-2006). The lab-scale study showed that the lack of P indeed inhibited HDN more greatly than ADN. The optimal N/P ratio for ADN and HDN was 25 and a 0.15 mg PO 4 3- -P L -1 of microbial available phosphorus (MAP) was observed. P additions could greatly enhance the resistance of ADN and HDN to hydraulic loading shock. Besides, The P addition could effectively stimulate the HDN performance via enriching the heterotrophic denitrifiers and the denitrifying phosphate-accumulating organisms (DNPAOs). Additionally, HDN was more effective and cost-effective than ADN for treating P-limited surface water. The study of the full-scale HDBF (heterotrophic denitrification biofilter) indicated that the denitrification performance was periodically impacted by P limitation, particularly at low water temperatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Survey of users and providers of recycled water: quality concerns and directions for applied research.

    Science.gov (United States)

    Higgins, J; Warnken, J; Sherman, P P; Teasdale, P R

    2002-12-01

    Users and providers of recycled water in Queensland, Australia, were canvassed to ascertain concerns about recycled water quality and directions for applied research. Some 79% of respondents had concerns about recycled water quality including microbiological components, such as viruses, parasites and bacteria, salinity related components, aggregate components, such as pH and solids, nutrients, organic components, including pesticides and endocrine disruptors, as well as quality variability. Relative differences in the proportion of concern for some quality characteristics were observed between the areas of different population density with those from the low population areas being more concerned than those from medium or high areas. Some users and providers observed changes in recycled water quality during distribution including nutrients, chlorine, solids, colour and odour. Some 52% of providers and 19% of current users propose to expand their usage and 30% of non-users propose to commence doing so in the next 5 years. Recycled water quality characteristics identified for applied research included microbiological components, organic components, nutrients and salinity.

  17. Applying Machine Learning and High Performance Computing to Water Quality Assessment and Prediction

    Directory of Open Access Journals (Sweden)

    Ruijian Zhang

    2017-12-01

    Full Text Available Water quality assessment and prediction is a more and more important issue. Traditional ways either take lots of time or they can only do assessments. In this research, by applying machine learning algorithm to a long period time of water attributes’ data; we can generate a decision tree so that it can predict the future day’s water quality in an easy and efficient way. The idea is to combine the traditional ways and the computer algorithms together. Using machine learning algorithms, the assessment of water quality will be far more efficient, and by generating the decision tree, the prediction will be quite accurate. The drawback of the machine learning modeling is that the execution takes quite long time, especially when we employ a better accuracy but more time-consuming algorithm in clustering. Therefore, we applied the high performance computing (HPC System to deal with this problem. Up to now, the pilot experiments have achieved very promising preliminary results. The visualized water quality assessment and prediction obtained from this project would be published in an interactive website so that the public and the environmental managers could use the information for their decision making.

  18. The effect of applying different water levels and irrigation frequencies in propagating rosemary (Rosmarinus officinalis L.

    Directory of Open Access Journals (Sweden)

    Javier Giovanni Álvarez Herrera

    2010-01-01

    Full Text Available Rosemary seedlings are obtained by vegetative propagation because the seeds present low viability. Despite being an expanding crop, there is little information on water consumption during the propagation stage. Water levels and irrigation frequencies were therefore applied using a completely randomised design having a 4 x 2 factorial arrangement. The first factor concerned irrigation frequency (4 and 8 days and the second concerned water level (0.6, 0.8, 1.0 and 1.2 evaporation inside the greenhouse. A 1.0 coefficient combined with 4-day irrigation frequency presented the best results regarding height (39.3 cm, fresh weight, dry weight and branch length (146 cm. Water level affected the fresh and dry weight of leaves regardless of frequency. Relative water content in leaves did not present differences due to environmental conditions minimising treatment effect. Rooting percent- tage showed no significant differences regarding irrigation frequency or water level. Irrigation frequency did not affect rosemary growing pattern because sphagnum retains high moisture content. The best branch number (34 was obtained with 1.0 coefficient and 4-day frequency, this being important from the production point of view because this is the material which is sold. Water management changes photoassimilate distribution in rosemary plants.

  19. Remote sensing of surface water for environmental flows

    Science.gov (United States)

    Tulbure, M. G.; Kingsford, R.; Lucas, R.; Keith, D.

    2013-12-01

    Environmental flows represent water management activities that release flushes of water stored in dams on regulated rivers during dry periods. These flows aim to mimic natural flow and inundation regimes to maintain ecological health and function of rivers and wetlands. Assessment and understanding of the effectiveness of environmental flows requires quantification of temporal and spatial pattern of surface water and inundation dynamic in a synoptic yet detailed way and understanding dynamics of vegetation response to flooding. Here we focused on the on the entire Murray-Darling Basin (MDB) of Australia as a case study. The MDB is a large semi-arid region with scarce water resources, high hydroclimatic variability and competing water demands, impacted by climate change, altered flow regimes and land use changes. The basin covers 14% of the Australian continent and contains the nation's largest river system, important groundwater systems, and represents the most important agricultural area in the country. We used Landsat TM and ETM+ data time series to synoptically map the dynamic of surface water extent with an internally consistent algorithm over decades. Within the basin-wide study area we carried out a detailed investigation of the largest river red gum forest in the world, a key site for environmental flow and conservation management. Here we tracked the response of vegetation community condition to flooding across space and time. Results show high interannual variability in number and size of flooded areas. Vegetation community response to flooding varied in space and time and with vegetation types, densities and location relative to areas frequently inundated by environmental water release. Knowledge of the spatial and temporal dynamic of flooding and the response of vegetation communities to flooding is important for management of floodplain wetlands and vegetation communities and for investigating effectiveness of environmental flows and flow regimes in the

  20. Assesment of pesticide fluxes to surface water using Uranine in Colombia

    Science.gov (United States)

    Garcia-Santos, G.; Scheiben, D.; Diaz, J.; Leuenberger, F.; Binder, C. R.

    2009-04-01

    In the highlands of Colombia, potato farmers maximize their yields by the application of pesticides. Properly applied pesticides can significantly reduce yield loss and improve product quality; however their misuse leads to human health and environmental problems, i.e. water bodies contaminated with pesticides. Due to the lack of control regarding local pesticide use, unmeasured hydrological parameters and use of local water runoff as a drinking water supply, an assessment of the impact of agricultural practice on water quality is mandatory as first stage. In order to accomplish this, our study assesses pesticide fluxes to surface water using the tracer Uranine. The experimental area La Hoya main basin (3 km2) contains the Pantano Verde river which flows into the Teatinos river in the Boyaca region (Colombia). Some facts such as the deep soils in the area and the importance of the unsaturated zone for the sorption and degradation of pesticides suggest a lack of contaminants in groundwater. However, due to the humid conditions, steep slopes and an intensive agricultural with high pesticide use, we expect surface water to be highly contaminated. In order to assess pesticide pathways, a tracer (Uranine), detectable at very low amount was used. Four local farmers applied the tracer instead of the pesticide mixture covering a total surface of 1.2 10-2 km2. Meteorological data were measured every 15 min with one compact meteorological station installed within the basin and water flow and water sampling were obtained using an ISCO-6700 water sampler, during one week every 10 min in the outlet of Pantano Verde River. In addition, three pairs of membranes were installed down the river and collected 1 week, one month and 4 months after the experiment to measure tracer accumulation. The tracer in water was analysed using a fluorescent spectrometer. Results of this study show first variations of tracer concentration in water in La Hoya basin and constitute an initial steep in

  1. Low-order aberration coefficients applied to design of telescopes with freeform surfaces

    Science.gov (United States)

    Stone, Bryan D.; Howard, Joseph M.

    2017-09-01

    As the number of smallsats and cubesats continues to increase [1], so does the interest in the space optics community to miniaturize reflective optical instrumentation for these smaller platforms. Applications of smallsats are typically for the Earth observing community, but recently opportunities for them are being made available for planetary science, heliophysics and astrophysics concepts [2]. With the smaller satellite platforms come reduced instrument sizes that they accommodate, but the specifications such as field of view and working f/# imposed on the smaller optical systems are often the same, or even more challenging. To meet them, and to "fit in the box", it is necessary to employ additional degrees of freedom to the optical design. An effective strategy to reduce package size is to remove rotational symmetry constraints on the system layout, allowing it to minimize the unused volume by applying rigid body tilts and decenters to mirrors. Requirements for faster systems and wider fields of view can be addressed by allowing optical surfaces to become "freeform" in shape, essentially removing rotational symmetry constraints on the mirrors themselves. This dual approach not only can reduce package size, but also can allow for increased fields of view with improved image quality. Tools were developed in the 1990s to compute low-order coefficients of the imaging properties of asymmetric tilted and decentered systems [3][4]. That approach was then applied to reflective systems with plane symmetry, where the coefficients were used to create closed-form constraints to reduce the number of degrees of freedom of the design space confronting the designer [5][6]. In this paper we describe the geometric interpretation of these coefficients for systems with a plane of symmetry, and discuss some insights that follow for the design of systems without closed-form constraints. We use a common three-mirror design form example to help illustrate these concepts, and

  2. Best Available Technique (BAT) assessment applied to ACR-1000 waste and heavy water management systems

    International Nuclear Information System (INIS)

    Sachar, M.; Julien, S.; Hau, K.

    2010-01-01

    The ACR-1000 design is the next evolution of the proven CANDU reactor design. One of the key objectives for this project was to systematically apply the As Low As Reasonably Achievable (ALARA) principle to the reactor design. The ACR design team selected the Best Available Technique (BAT) assessment for this purpose to document decisions made during the design of each ACR-1000 waste and heavy water management systems. This paper describes the steps in the BAT assessment that has been applied to the ACR-1000 design. (author)

  3. Agricultural insecticides threaten surface waters at the global scale.

    Science.gov (United States)

    Stehle, Sebastian; Schulz, Ralf

    2015-05-05

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  4. Dissolution of organic solvents from painted surfaces into water

    International Nuclear Information System (INIS)

    Wren, J.C.; Jobe, D.J.; Sanipelli, G.G.; Ball, J.M.

    2000-01-01

    The presence of volatile iodine in containment buildings is one of the major safety concerns in the potential event of nuclear reactor accidents. Organic impurities in containment water, originating from various painted structural surfaces and organic materials, could have a significant impact on iodine volatility following an accident. To determine the source and magnitude of organic impurities and their effects on time-dependent iodine volatility, the dissolution for organic constituents from paints used in reactor buildings has been studied under postulated accident conditions. The studies of the organic dissolution from carbon steel coupons coated with zinc-primed vinyl, epoxy-primed polyurethane or epoxy paints over the temperature range 25-90 deg C are reported. Relatively large activation energies were measured for the release of the principal organic compounds from painted surfaces, suggesting it is the release of the solvents from the paint matrix rather than their diffusion through the solution that is the rate determining step for the dissolution mechanism. The similarities in the values of activation energies for the dissolution of different organic compounds from the paints suggest the release rate is independent of the nature of the painted surface or the type of organic being released from the surface. These two observations indicate that it may be possible to write a generalized rate expression for the release of organic compounds from painted surfaces in containment following an accident. The possible implications of these results for predicting iodine volatility in containment are also discussed. (author)

  5. Geophysical characterisation of the groundwater-surface water interface

    Science.gov (United States)

    McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.

    2017-11-01

    Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.

  6. Consolidating and water repellent treatments applied to wet and salt contaminated granite

    Directory of Open Access Journals (Sweden)

    Silva, B.

    2000-03-01

    Full Text Available A comparison was made of the efficacy of two consolidants and two water repellents applied to samples of granite under optimum conditions, with the efficacy of the same products applied to the granite in the presence of soluble salts or water. The amount of product absorbed and the amount of dry polymer remaining after treatment were compared. The results show that the presence of water and soluble salts in the stone significantly modifies the consumption of the products (in particular the water repellents and also the level of dry polymer retained. The water repellents were found to be much less effective when the substrate contained salts, whereas the presence of water did not appear to influence their efficacy. The lack of correlation between uptake, active dry polymer, and efficacy led to the conclusion that the presence of salts or water markedly changes the kinetics of the polymerization of the products.

    Se analiza la eficacia de dos consolidantes y dos hidrofugantes aplicados a rocas graníticas en condiciones óptimas comparativamente a la eficacia de los mismos productos aplicados sobre los mismos sustratos conteniendo cierta cantidad de sales solubles o de agua. Se compara la cantidad de producto absorbido y la cantidad de materia seca presente tras el curado. Los resultados indican que la presencia de agua y de sales solubles en la piedra modifica significativamente el consumo de los productos, sobre todo el de los hidrofugantes, así como la cantidad de materia seca. Se observa, asimismo, un fuerte detrimento en la eficacia de los hidrofugantes cuando el sustrato contiene sales mientras que, al contrario, la presencia de agua no parece infiuir en dicha eficacia. La falta de correlación entre el consumo, materia seca activa y eficacia lleva a concluir que la presencia de sales o agua modifica sensiblemente la cinética de la polimeración de los productos.

  7. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  8. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  9. A Variable Incremental Conductance MPPT Algorithm Applied to Photovoltaic Water Pumping System

    OpenAIRE

    S. Abdourraziq; R. El Bachtiri

    2015-01-01

    The use of solar energy as a source for pumping water is one of the promising areas in the photovoltaic (PV) application. The energy of photovoltaic pumping systems (PVPS) can be widely improved by employing an MPPT algorithm. This will lead consequently to maximize the electrical motor speed of the system. This paper presents a modified incremental conductance (IncCond) MPPT algorithm with direct control method applied to a standalone PV pumping system. The influence of ...

  10. Innovative coatings and surface modification of titanium for sea water condenser applications

    International Nuclear Information System (INIS)

    George, R.P.; Anandkumar, B.; Vanithakumari, S.C.; Kamachi Mudali, U.

    2016-01-01

    Effectiveness of cooling water systems in various power plants to maintain highest electrical energy output per tonne of fuel is important as part of good energy management. Cooling water systems of nuclear power plants using seawater for cooling comes under constant attack from the marine and sea water environment. Many metallic components and civil structures in the cooling water systems like bridges, intake wells, intake pipes, pump house wells, water boxes, condenser pipes are subjected to severe fouling and corrosion which limits the service life and availability of power plants. The experience with a coastal water cooled power plant at Kalpakkam (MAPS), India, showed that chlorination and screening control macrofouling to a great extend by controlling protozoans, invertebrates, algae and fungi. However 90% of marine bacteria are resistant to such control measures, and they cause microfouling of condenser pipes leading to poor heat transfer and microbially influenced corrosion (MIC) failures. Titanium is used as condenser for Indian nuclear power plants employing sea water cooling, including the PFBR at Kalpakkam. Though titanium is excellent with respect to corrosion behavior under sea water conditions, its biocompatible nature results in biofouling and MIC during service. Therefore innovative antifouling coatings and surface modification techniques for titanium condenser applications in seawater and marine environments are the need of the hour. Extensive investigations were carried out by different methods including nanostructuring of surfaces for making them antibacterial. The microroughness of titanium was produced by repeated pickling and polishing which by itself reduced microbial adhesion. To utilize photocatalytic activity for antibacterial property, anodization of titanium surfaces followed by heat treatment was adopted and this also has controlled microbial fouling. Electroless plating of nanofilm of copper-nickel alloy decreased biofouling of

  11. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  12. WATER ICE AT THE SURFACE OF THE HD 100546 DISK

    International Nuclear Information System (INIS)

    Honda, M.; Kudo, T.; Terada, H.; Takato, N.; Takatsuki, S.; Nakamoto, T.; Inoue, A. K.; Fukagawa, M.; Tamura, M.

    2016-01-01

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H 2 O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models

  13. A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection

    Directory of Open Access Journals (Sweden)

    John Anthony Byrne

    2015-03-01

    Full Text Available Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give “self-disinfecting” surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  14. Viral persistence in surface and drinking water: Suitability of PCR pre-treatment with intercalating dyes.

    Science.gov (United States)

    Prevost, B; Goulet, M; Lucas, F S; Joyeux, M; Moulin, L; Wurtzer, S

    2016-03-15

    After many outbreaks of enteric virus associated with consumption of drinking water, the study of enteric viruses in water has increased significantly in recent years. In order to better understand the dynamics of enteric viruses in environmental water and the associated viral risk, it is necessary to estimate viral persistence in different conditions. In this study, two representative models of human enteric viruses, adenovirus 41 (AdV 41) and coxsackievirus B2 (CV-B2), were used to evaluate the persistence of enteric viruses in environmental water. The persistence of infectious particles, encapsidated genomes and free nucleic acids of AdV 41 and CV-B2 was evaluated in drinking water and surface water at different temperatures (4 °C, 20 °C and 37 °C). The infectivity of AdV 41 and CV-B2 persisted for at least 25 days, whatever the water temperature, and for more than 70 days at 4 °C and 20 °C, in both drinking and surface water. Encapsidated genomes persisted beyond 70 days, whatever the water temperature. Free nucleic acids (i.e. without capsid) also were able to persist for at least 16 days in drinking and surface water. The usefulness of a detection method based on an intercalating dye pre-treatment, which specifically targets preserved particles, was investigated for the discrimination of free and encapsidated genomes and it was compared to virus infectivity. Further, the resistance of AdV 41 and CV-B2 against two major disinfection treatments applied in drinking water plants (UV and chlorination) was evaluated. Even after the application of UV rays and chlorine at high doses (400 mJ/cm(2) and 10 mg.min/L, respectively), viral genomes were still detected with molecular biology methods. Although the intercalating dye pre-treatment had little use for the detection of the effects of UV treatment, it was useful in the case of treatment by chlorination and less than 1 log10 difference in the results was found as compared to the infectivity measurements

  15. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  16. Molecular quantification of viruses in surface water : development of indicator of viral contamination in water

    OpenAIRE

    Hamza Ewess, Ibrahim

    2010-01-01

    Viruses are a major cause of waterborne and water related diseases. A few viral particles can be found in surface water, so enrichment steps are required prior to the analysis of water samples. The virus adsorption elution method was optimized for enterovirus (EV), human adenovirus (HAdV), human polyomavirus (HPyV), norovirus (NoV) and somatic coliphages (SOMCPH). The results revealed that high salt-alkaline solution of phosphate buffer with 0.1%Trition X-100 is the buffer of choi...

  17. SWOT, The Surface Water and Ocean Topography Satellite Mission (Invited)

    Science.gov (United States)

    Alsdorf, D.; Andreadis, K.; Bates, P. D.; Biancamaria, S.; Clark, E.; Durand, M. T.; Fu, L.; Lee, H.; Lettenmaier, D. P.; Mognard, N. M.; Moller, D.; Morrow, R. A.; Rodriguez, E.; Shum, C.

    2009-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation fundamentally drives global climate variability, yet the ocean current and eddy field that affects ocean circulation and heat transport at the sub-mesoscale resolution and particularly near coastal and estuary regions, is poorly known. About 50% of the vertical exchange of water properties (nutrients, dissovled CO2, heat, etc) in the upper ocean is taking place at the sub-mesoscale. Measurements from the Surface Water and Ocean Topography satellite mission (SWOT) will make strides in understanding these processes and improving global ocean models for studying climate change. SWOT is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. The mission will provide measurements of storage changes in lakes, reservoirs, and wetlands as well as estimates of discharge in rivers. These measurements are important for global water and energy budgets, constraining hydrodynamic models of floods, carbon evasion through wetlands, and water management, especially in developing nations. Perhaps most importantly, SWOT measurements will provide a fundamental understanding of the spatial and temporal variations in global surface waters, which for many countries are the primary source of water. An on-going effort, the “virtual mission” (VM) is designed to help constrain the required height and slope accuracies, the spatial sampling (both pixels and orbital coverage), and the trade-offs in various temporal revisits. Example results include the following: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation period, relative to a simulation without assimilation. (2) Ensemble-based data assimilation of SWOT like measurements yields

  18. 33 CFR 89.25 - Waters upon which Inland Rules 9(a)(ii), 14(d), and 15(b) apply.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Waters upon which Inland Rules 9(a)(ii), 14(d), and 15(b) apply. 89.25 Section 89.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES INLAND NAVIGATION RULES: IMPLEMENTING RULES Waters...

  19. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  20. Novel Hydrophilic Resin Applied in Heat-Resistant Water-Borne Coatings

    Science.gov (United States)

    Liu, Z. Y.; Wang, J. Y.; Yan, Q. L.; Kou, Y.; Jian, X. G.

    Poly(phthalazinone ether nitrile ketone)s (PPENK) was modified with NaOH in N,N-dimethyl acetamide (DMAc) in order to find a hydrophilic resin applied in heat-resistant water-borne coatings. The properties of hydrolyzates (HPPENK) in different hydrolysis time were characterized by FT-IR and 1H-NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), contact angle (water) as well as solubility measurements. The results indicated that, along with the prolonged hydrolysis time, nitrile groups conversion ratio and glass transition temperature (Tg) of hydrolyzates increase, whereas weight loss ratio of HPPENK decreases. As expected, the hydrophilicity of HPPENK was improved greatly, e.g., when CN conversion ratio was 93.82%, the water contact angles were found to decrease from 75.3° of PPENK to 54.4° of HPPENK. HPPENKc dispersion has no separation more than 20 days in terms of shelf-life.

  1. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements

  2. Crawling beneath the free surface: Water snail locomotion

    Science.gov (United States)

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric

    2008-08-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be nonzero for moderate values of the capillary number but vanishes in the limits of high and low capillary number. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.

  3. Concentration of involatile salts at evaporating water surfaces

    International Nuclear Information System (INIS)

    Gardner, G.C.

    1988-02-01

    Safety cases for the PWR often need to know how much of the soluble salts in the water will evaporate with the steam during flashing and when the steam is discharged to the atmosphere. Some ideal evaporating systems to give guidance. Simple formulae are derived for the surface concentration relative to the bulk concentration. An analysis is also presented which derives a formula for the mass transfer process in the steam due to both diffusion and convection, which arises from the evaporation process. The convection process will usually dominate. (author)

  4. Surface water - groundwater interactions at different spatial and temporal scales

    DEFF Research Database (Denmark)

    Sebök, Éva

    As there is a growing demand for the protection and optimal management of both the surface water and groundwater resources, the understanding of their exchange processes is of great importance. This PhD study aimed at describing the natural spatial and temporal variability of these interactions...... detected large spatial variability in SWI temperatures with scattered high-discharge sites in a stream and also in a lake where discharge fluxes were estimated by vertical temperature profiles and seepage meter measurements. On the kilometre scale DTS indicated less spatial variability in streambed...

  5. Properties of water surface discharge at different pulse repetition rates

    Czech Academy of Sciences Publication Activity Database

    Ruma, R.; Hosseini, S.H.R.; Yoshihara, K.; Akiyama, M.; Sakugawa, T.; Lukeš, Petr; Akiyama, H.

    2014-01-01

    Roč. 116, č. 12 (2014), s. 123304-123304 ISSN 0021-8979 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : plasma in air * water surface discharge * pulse frequency * hydrogen peroxide * organic dye Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.183, year: 2014 http://dx.doi.org/ 10.1063/1.4896266

  6. Microbial Monitoring of Surface Water in South Africa: An Overview

    Directory of Open Access Journals (Sweden)

    Brendan S. Wilhelmi

    2012-07-01

    Full Text Available Infrastructural problems force South African households to supplement their drinking water consumption from water resources of inadequate microbial quality. Microbial water quality monitoring is currently based on the Colilert®18 system which leads to rapidly available results. Using Escherichia coli as the indicator microorganism limits the influence of environmental sources on the reported results. The current system allows for understanding of long-term trends of microbial surface water quality and the related public health risks. However, rates of false positive for the Colilert®18-derived concentrations have been reported to range from 7.4% to 36.4%. At the same time, rates of false negative results vary from 3.5% to 12.5%; and the Colilert medium has been reported to provide for cultivation of only 56.8% of relevant strains. Identification of unknown sources of faecal contamination is not currently feasible. Based on literature review, calibration of the antibiotic-resistance spectra of Escherichia coli or the bifidobacterial tracking ratio should be investigated locally for potential implementation into the existing monitoring system. The current system could be too costly to implement in certain areas of South Africa where the modified H2S strip test might be used as a surrogate for the Colilert®18.

  7. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  8. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, S.; Setiadipura, Topan [National Nuclear Energy Agency of Indonesia, Serpong Tagerang Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Su' ud, Zaki [Bandung Institute of Technology (Indonesia). Dept. of Physics

    2017-03-15

    Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1200 K. Three options of UO{sub 2}, PuO{sub 2}, and ThO{sub 2}/UO{sub 2} fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO{sub 2}-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO{sub 2}/UO{sub 2}-fueled pebble-bed HTR showed a similar trend to that of UO{sub 2}, but did not show reactivity peak caused by water ingress. In contrast with UO{sub 2}- and ThO{sub 2}-fueled pebble-bed HTR, although the reactivity of PuO{sub 2}-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0

  9. A Multilayer Surface Temperature, Surface Albedo, and Water Vapor Product of Greenland from MODIS

    Directory of Open Access Journals (Sweden)

    Dorothy K. Hall

    2018-04-01

    Full Text Available A multilayer, daily ice surface temperature (IST–albedo–water vapor product of Greenland, extending from March 2000 through December 2016, has been developed using standard MODerate-resolution Imaging Spectroradiometer (MODIS data products from the Terra satellite. To meet the needs of the ice sheet modeling community, this new Earth Science Data Record (ESDR is provided in a polar stereographic projection in NetCDF format, and includes the existing standard MODIS Collection 6.1 IST and derived melt maps, and Collection 6 snow albedo and water vapor maps, along with ancillary data, and is provided at a spatial resolution of ~0.78 km. This ESDR enables relationships between IST, surface melt, albedo, and water vapor to be evaluated easily. We show examples of the components of the ESDR and describe some uses of the ESDR such as for comparison with skin temperature, albedo, and water vapor output from Modern Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2. Additionally, we show validation of the MODIS IST using in situ and aircraft data, and validation of MERRA-2 skin temperature maps using MODIS IST and in situ data. The ESDR has been assigned a DOI and will be available through the National Snow and Ice Data Center by the summer of 2018.

  10. Occurrence of estrogenic activities in second-grade surface water and ground water in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Shi, Wei; Hu, Guanjiu; Chen, Sulan; Wei, Si; Cai, Xi; Chen, Bo; Feng, Jianfang; Hu, Xinxin; Wang, Xinru; Yu, Hongxia

    2013-01-01

    Second-grade surface water and ground water are considered as the commonly used cleanest water in the Yangtze River Delta, which supplies centralized drinking water and contains rare species. However, some synthetic chemicals with estrogenic disrupting activities are detectable. Estrogenic activities in the second-grade surface water and ground water were surveyed by a green monkey kidney fibroblast (CV-1) cell line based ER reporter gene assay. Qualitative and quantitative analysis were further conducted to identify the responsible compounds. Estrogen receptor (ER) agonist activities were present in 7 out of 16 surface water and all the ground water samples. Huaihe River and Yangtze River posed the highest toxicity potential. The highest equivalent (2.2 ng E 2 /L) is higher than the predicted no-effect-concentration (PNEC). Bisphenol A (BPA) contributes to greater than 50% of the total derived equivalents in surface water, and the risk potential in this region deserves more attention and further research. -- Highlights: •Estrogenic activities were present in second-grade surface water and ground water. •Most of the detected equivalents were higher than the predicted no-effect-concentration of E 2 . •ER-EQ 20–80 ranges showed that samples in Huaihe River and Yangtze River posed the highest toxicity. •Bisphenol A contributes to most of the instrumentally derived equivalents in surface water. -- Estrogenic activities were observed in second-grade surface water and ground water in Yangtze River Delta, and BPA was the responsible contaminant

  11. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  12. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  13. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  14. Applying CFD in the Analysis of Heavy Oil/Water Separation Process via Hydrocyclone

    Directory of Open Access Journals (Sweden)

    K Angelim

    2017-06-01

    Full Text Available In recent years most of the oil reserves discovered has been related to heavy oil reservoirs whose reserves are abundant but still show operational difficulties. This fact provoked great interest of the petroleum companies in developing new technologies for increasing the heavy oil production. Produced water generation, effluent recovered from the production wells together with oil and natural gas, is among the greatest potential factors for environmental degradation. Thus, a new scenario of the oil industry appears requiring improvement in treatment units for produced water. Among the technological improvements in the facilities, the use of hydrocyclones has been applied in the treatment of the oily water. In this sense, this study aims to investigate numerically the separation process of heavy oil from a water stream via hydrocyclone, using the computational fluid dynamics technique. In the mathematical modeling was considered a two-phase, three-dimensional, stationary, isothermal and turbulent flow. Results of streamlines, pressure and volume fraction fields of the involved phases (oil and water into the hydrocyclone, and mechanical efficiency and pumping power of the fluids are shown and analyzed. In conclusion, it seems that with increasing fluid input velocity in the device there is an increase in pressure drop, indicating a greater pumping energy consumption of the mixture, and greatly influences the separation process efficiency.

  15. Water spray cooling technique applied on a photovoltaic panel: The performance response

    International Nuclear Information System (INIS)

    Nižetić, S.; Čoko, D.; Yadav, A.; Grubišić-Čabo, F.

    2016-01-01

    Highlights: • An experimental study was conducted on a monocrystalline photovoltaic panel (PV). • A water spray cooling technique was implemented to determine PV panel response. • The experimental results showed favorable cooling effect on the panel performance. • A feasibility aspect of the water spray cooling technique was also proven. - Abstract: This paper presents an alternative cooling technique for photovoltaic (PV) panels that includes a water spray application over panel surfaces. An alternative cooling technique in the sense that both sides of the PV panel were cooled simultaneously, to investigate the total water spray cooling effect on the PV panel performance in circumstances of peak solar irradiation levels. A specific experimental setup was elaborated in detail and the developed cooling system for the PV panel was tested in a geographical location with a typical Mediterranean climate. The experimental result shows that it is possible to achieve a maximal total increase of 16.3% (effective 7.7%) in electric power output and a total increase of 14.1% (effective 5.9%) in PV panel electrical efficiency by using the proposed cooling technique in circumstances of peak solar irradiation. Furthermore, it was also possible to decrease panel temperature from an average 54 °C (non-cooled PV panel) to 24 °C in the case of simultaneous front and backside PV panel cooling. Economic feasibility was also determined for of the proposed water spray cooling technique, where the main advantage of the analyzed cooling technique is regarding the PV panel’s surface and its self-cleaning effect, which additionally acts as a booster to the average delivered electricity.

  16. Soil Specific Surface Area and Non-Singularity of Soil-Water Retention at Low Saturations

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2013-01-01

    The dry end of the soil water characteristic (SWC) is important for modeling vapor flow dynamics and predicting soil properties such as specific surface area (SSA) and clay content (CL). Verification of new instrumentation for rapid measurement of the dry end of the SWC is relevant to avoid long...... equilibration times and potential for hydraulic decoupling. The objectives of this study were to measure both adsorption and desorption branches of the dry end of the SWC for 21 variably-textured Arizona soils using new, fully automated instrumentation (AquaSorp); apply the data to parameterize the Tuller...... and Or (TO) and new single-parameter non-singularity (SPN) models; and evaluate estimates of SSA from water sorption, ethylene glycol monoethyl ether (EGME), and N2–BET methods. The AquaSorp successfully measured water sorption isotherms (∼140 data points) within a reasonably short time (1–3 d). The SPN...

  17. An Ab Initio Based Potential Energy Surface for Water

    Science.gov (United States)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  18. Comparison of fipronil sources in North Carolina surface water ...

    Science.gov (United States)

    Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10–500 ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered. Journal Article Highlights • The most important sources of fipronil in

  19. Spatial aspects of surface water quality in the Jakara Basin, Nigeria using chemometric analysis.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin

    2012-01-01

    Multivariate statistical techniques such as hierarchical Agglomerated cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA), and factor analysis (FA) were applied to identify the spatial variation and pollution sources of Jakara River, Kano, Nigeria. Thirty surface water samples were collected: 23 along Getsi River and 7 along the main channel of River Jakara. Twenty-three water quality parameters, namely pH, temperature, turbidity, electrical conductivity (EC), dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), Faecal coliform, total solids (TS), nitrates (NO(3)(-)), phosphates (PO(4)(3-)), cobalt (Co), iron (Fe), nickel (Ni), manganese (Mn), copper (Cu), sodium (Na), potassium (K), mercury (Hg), chromium (Cr), cadmium (Cd), lead (Pb), magnesium (Mg), and calcium(Ca) were analysed. HACA grouped the sampling points into three clusters based on the similarities of river water quality characteristics: industrial, domestic, and agricultural water pollution sources. Forward and backward DA effectively discriminated 5 and 15 water quality variables, respectively, each assigned with 100% correctness from the original 23 variables. PCA and FA were used to investigate the origin of each water quality parameter due to various land use activities, 7 principal components were obtained with 77.5% total variance, and in addition PCA identified 3 latent pollution sources to support HACA. From this study, one can conclude that the application of multivariate techniques derives meaningful information from water quality data.

  20. Forces due to surface water measured by force microscopy. Consequences for anchoring biological cells to surfaces

    International Nuclear Information System (INIS)

    Schilcher, K.

    1997-05-01

    Interaction forces in 'Scanning Force Microscopy' (SFM). Force curves revealed exponentially decaying, attractive forces between silicon tip and silicon sample in aqueous media. Replacing the silicon sample by a sheet of mica, the interaction forces had both, an attractive and a repulsive component. Addition of salts generally reduced the forces. At 500 mM salt concentration, the attractive force became quantized with a residual force value of 23 pN. The attractive force is attributed to the gain in energy of water molecules which are released from surface water into free water during tip-sample approach. This conclusion is supported by a statistical model. The repulsive force contribution in the case of mica, is caused by hydration forces due to the spatial organization of crystalline water on the mica surface. Anchoring of biological cells. Molecular resolution of cell surfaces by SFM requires cell anchoring without interference with cell physiology. For this a novel strategy, 'hydrophobic anchoring' was designed. It avoids strong attractive forces between cell and by using a flexible spacer molecule. It establishes anchoring by a lipid (bound to the spacer), which weakly interacts with the hydrophobic core of the cell membrane. The method was subjected to tests using RBL-2H3, CH0 αβ and HEK-293 cells. The strength of cell anchoring was assayed by shear forces. In all cases 'hydrophobic anchoring' via a spacer caused elective anchoring much beyond controls. Such cell anchoring was employed for the imaging of RBL-2H3 cells by SFM. Images showed considerable finer details than images of loosely adsorbed cells. With about 50 rim resolution, SFM succeeded in imaging microvilli, filopodia, single cytoskeletal fibers (microtubules, microfilaments) and vesicles. In addition, as a consequence of cell stimulation upon ionomycin treatment, lamellae formation and the appearance of secretory granules on top of them were observed which indicates the viability of anchored

  1. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    Science.gov (United States)

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Commercial pesticide applicators, farmers, and homeowners apply about 1 billion pounds of pesticides annually to agricultural land, non-crop land, and urban areas throughout the United States (Gilliom and others, 2006, p. 1). The U.S. Environmental Protection Agency (USEPA) defines a pesticide as any substance used to kill or control insects, weeds, plant diseases, and other pest organisms. Although there are important benefits from the proper use of pesticides, like crop protection and prevention of human disease outbreaks, there are also risks. One risk is the contamination of groundwater and surface-water resources. Data collected during 1992-2001 from 51 major hydrologic systems across the United States indicate that one or more pesticide or pesticide breakdown product was detected in more than 50 percent of 5,057 shallow (less than 20 feet below land surface) wells and in all of the 186 stream sites that were sampled in agricultural and urban areas (Gilliom and others, 2006, p. 2-4). Pesticides can contaminate surface water and groundwater from both point sources and non-point sources. Point sources are from specific locations such as spill sites, disposal sites, pesticide drift during application, and application of pesticides to control aquatic pests. Non-point sources represent the dominant source of surface water and groundwater contamination and may include agricultural and urban runoff, erosion, leaching from application sites, and precipitation that has become contaminated by upwind applications. Pesticides typically enter surface water when rainfall or irrigation exceeds the infiltration capacity of soil and resulting runoff then transports pesticides to streams, rivers, and other surface-water bodies. Contamination of groundwater may result directly from spills near poorly sealed well heads and from pesticide applications through improperly designed or malfunctioning irrigation systems that also are used to apply pesticides (chemigation; Carpenter and

  2. Desert water harvesting from TAKYR surfaces: assessing the potential of traditional and experimental technologies in the karakum

    NARCIS (Netherlands)

    Fleskens, L.; Ataev, A.; Mamedov, B.; Spaan, W.P.

    2007-01-01

    From historical times the traditionally nomadic people in desert environments of Turkmenistan have applied a range of innovative technologies to secure water supply for consumptive and productive purposes. These technologies make use of takyrs, flat or slightly sloping dense clay surfaces which act

  3. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    Science.gov (United States)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This

  4. Integrated modeling of groundwater–surface water interactions in a tile-drained agricultural field

    NARCIS (Netherlands)

    Rosemeijer, J.C.; Velde, van der Y.; McLaren, R.G.; Geer, van F.C.; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Understanding the dynamics of groundwater–surface water interaction is needed to evaluate and simulate water and solute transport in catchments. However, direct measurements of the contributions of different flow routes from specific surfaces within a catchment toward the surface water are rarely

  5. A survey of Cr(VI) contamination of surface water in the proximity of ...

    African Journals Online (AJOL)

    In this study, Cr(VI) levels present in surface water within the vicinity of ferrochrome smelters located in the Bushveld Igneous Complex were monitored for a period of 1 year. The results indicated that surface water in the proximity of ferrochrome smelters was mostly unaffected by Cr(VI) pollution. Two surface water sampling ...

  6. The Influence of Climate Change on Irrigated Water Demands and Surface Water Availability of the Yellow River Basin

    Science.gov (United States)

    Troy, T. J.; Zhang, J.

    2017-12-01

    Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.

  7. Hydraulic "fracking": are surface water impacts an ecological concern?

    Science.gov (United States)

    Burton, G Allen; Basu, Niladri; Ellis, Brian R; Kapo, Katherine E; Entrekin, Sally; Nadelhoffer, Knute

    2014-08-01

    Use of high-volume hydraulic fracturing (HVHF) in unconventional reservoirs to recover previously inaccessible oil and natural gas is rapidly expanding in North America and elsewhere. Although hydraulic fracturing has been practiced for decades, the advent of more technologically advanced horizontal drilling coupled with improved slickwater chemical formulations has allowed extensive natural gas and oil deposits to be recovered from shale formations. Millions of liters of local groundwaters are utilized to generate extensive fracture networks within these low-permeability reservoirs, allowing extraction of the trapped hydrocarbons. Although the technology is relatively standardized, the geographies and related policies and regulations guiding these operations vary markedly. Some ecosystems are more at risk from these operations than others because of either their sensitivities or the manner in which the HVHF operations are conducted. Generally, the closer geographical proximity of the susceptible ecosystem to a drilling site or a location of related industrial processes, the higher the risk of that ecosystem being impacted by the operation. The associated construction of roads, power grids, pipelines, well pads, and water-extraction systems along with increased truck traffic are common to virtually all HVHF operations. These operations may result in increased erosion and sedimentation, increased risk to aquatic ecosystems from chemical spills or runoff, habitat fragmentation, loss of stream riparian zones, altered biogeochemical cycling, and reduction of available surface and hyporheic water volumes because of withdrawal-induced lowering of local groundwater levels. The potential risks to surface waters from HVHF operations are similar in many ways to those resulting from agriculture, silviculture, mining, and urban development. Indeed, groundwater extraction associated with agriculture is perhaps a larger concern in the long term in some regions. Understanding the

  8. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  9. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  10. Engaging the Applications Community of the future Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Srinivasan, M.; Andral, A.; Dejus, M.; Hossain, F.; Peterson, C.; Beighley, E.; Pavelsky, T.; Chao, Y.; Doorn, B.; Bronner, E.; Houpert, L.

    2015-04-01

    NASA and the French space agency, CNES, with contributions from the Canadian Space Agency (CSA) and United Kingdom Space Agency (UKSA) are developing new wide swath altimetry technology that will cover most of the world's ocean and surface freshwater bodies. The proposed Surface Water and Ocean Topography (SWOT) mission will have the capability to make observations of surface water (lakes, rivers, wetland) heights and measurements of ocean surface topography with unprecedented spatial coverage, temporal sampling, and spatial resolution compared to existing technologies. These data will be useful for monitoring the hydrologic cycle, flooding, and characterizing human impacts on a changing environment. The applied science community is a key element in the success of the SWOT mission, demonstrating the high value of the science and data products in addressing societal issues and needs. The SWOT applications framework includes a working group made up of applications specialists, SWOT science team members, academics and SWOT Project members to promote applications research and engage a broad community of potential SWOT data users. A defined plan and a guide describing a program to engage early adopters in using proxies for SWOT data, including sophisticated ocean and hydrology simulators, an airborne analogue for SWOT (AirSWOT), and existing satellite datasets, are cornerstones for the program. A user survey is in development and the first user workshop was held in 2015, with annual workshops planned. The anticipated science and engineering advances that SWOT will provide can be transformed into valuable services to decision makers and civic organizations focused on addressing global disaster risk reduction initiatives and potential science-based mitigation activities for water resources challenges of the future. With the surface water measurements anticipated from SWOT, a broad range of applications can inform inland and coastal managers and marine operators of

  11. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  12. Exposure and risk assessment of zinc in Japanese surface waters.

    Science.gov (United States)

    Naito, Wataru; Kamo, Masashi; Tsushima, Koji; Iwasaki, Yuichi

    2010-09-15

    In recent years, due to concerns on the potential effects of zinc on aquatic biota, zinc is receiving particular attention from regulatory agencies. A comprehensive exposure and risk assessment of zinc in Japanese surface waters was conducted to provide a scientific basis for developing realistic risk reduction measures for zinc. Emissions from corrosion contribute approximately 37% of the total zinc emissions to surface water in Japan. The zinc concentration distributions estimated using 12 years of monitoring data from 2075 sites by a maximum likelihood method indicated that the mean concentrations have gradually declined. The threshold concentrations (HC5 and PHC5) derived from organism- and population-level species sensitivity distributions were estimated to be 27 and 107 microg/L for total zinc, respectively. The risk characterization identified that during 1991-2002, 14.5-26.8% of the monitoring sites likely exceeded the HC5, whereas only 0.7-3.5% likely exceeded the PHC5. Evaluation of the effect of stormwater runoff to zinc concentrations in a river showed that zinc concentrations in river water increased significantly from roadway drainage flowing into the river. The cost-effectiveness analyses demonstrated that enforcement of the zinc national effluent standard may be effective at a certain level for public water areas in Japan; however, the degree of the effectiveness is highly dependent on the characteristics (e.g., sources and background) of the watersheds. An emissions and exposure assessment along with cost-effectiveness analysis is crucial for developing realistic and appropriate ecological risk management of zinc. The zinc RAD in Japan illustrated that in any "state-of-the science" method used, some degree of ecological risk from zinc can be observed in some Japanese water environments. On the other hand, zinc is a beneficial material for human industrial activities. Because zinc is an element, its role in industrial activities would be difficult

  13. Pesticide volatilization from small surface waters : rationale of a new parameterization for TOXSWA

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Adriaanse, P.I.

    2012-01-01

    In the TOXSWA (TOXic substances in Surface WAters) model volatilization of pesticides from surface water is computed because it may be an important component of the mass balance of pesticides in water bodies. Here, we briefly review the physics of air-water gas exchange relevant in this context. A

  14. Redistribution of charged aluminum nanoparticles on oil droplets in water in response to applied electrical field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengqi; Li, Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)

    2016-05-15

    Janus droplets with two opposite faces of different physical or chemical properties have great potentials in many fields. This paper reports a new method for making Janus droplets by covering one side of the droplet with charged nanoparticles in an externally applied DC electric field. In this paper, aluminum oxide nanoparticles on micro-sized and macro-sized oil droplets were studied. In order to control the surface area covered by the nanoparticles on the oil droplets, the effects of the concentration of nanoparticle suspension, the droplet size as well as the strength of electric field on the final accumulation area of the nanoparticles are studied.Graphical abstract.

  15. The effect of water temperature and synoptic winds on the development of surface flows over narrow, elongated water bodies

    Science.gov (United States)

    Segal, M.; Pielke, R. A.

    1985-01-01

    Simulations of the thermally induced breeze involved with a relatively narrow, elongated water body is presented in conjunction with evaluations of sensible heat fluxes in a stable marine atmospheric surface layer. The effect of the water surface temperature and of the large-scale synoptic winds on the development of surface flows over the water is examined. As implied by the sensible heat flux patterns, the simulation results reveal the following trends: (1) when the synoptic flow is absent or light, the induced surface breeze is not affected noticeably by a reduction of the water surface temperature; and (2) for stronger synoptic flow, the resultant surface flow may be significantly affected by the water surface temperature.

  16. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

    Science.gov (United States)

    Frampton, Andrew; Destouni, Georgia

    2016-04-01

    In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

  17. Site-specific estimates of water yield applied in regional acid sensitivity surveys across western Canada

    Directory of Open Access Journals (Sweden)

    Patrick D. SHAW

    2010-08-01

    Full Text Available Runoff or water yield is an important input to the Steady-State Water Chemistry (SSWC model for estimating critical loads of acidity. Herein, we present site-specific water yield estimates for a large number of lakes (779 across three provinces of western Canada (Manitoba, Saskatchewan, and British Columbia using an isotope mass balance (IMB approach. We explore the impact of applying site-specific hydrology as compared to use of regional runoff estimates derived from gridded datasets in assessing critical loads of acidity to these lakes. In general, the average water yield derived from IMB is similar to the long-term average runoff; however, IMB results suggest a much larger range in hydrological settings of the lakes, attributed to spatial heterogeneity in watershed characteristics and landcover. The comparison of critical loads estimates from the two methods suggests that use of average regional runoff data in the SSWC model may overestimate critical loads for the majority of lakes due to systematic skewness in the actual runoff distributions. Implications for use of site-specific hydrology in regional critical loads assessments across western Canada are discussed.

  18. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  19. Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Markus Moosmann

    2017-08-01

    Full Text Available Underwater air retention of superhydrophobic hierarchically structured surfaces is of increasing interest for technical applications. Persistent air layers (the Salvinia effect are known from biological species, for example, the floating fern Salvinia or the backswimmer Notonecta. The use of this concept opens up new possibilities for biomimetic technical applications in the fields of drag reduction, antifouling, anticorrosion and under water sensing. Current knowledge regarding the shape of the air–water interface is insufficient, although it plays a crucial role with regards to stability in terms of diffusion and dynamic conditions. Optical methods for imaging the interface have been limited to the micrometer regime. In this work, we utilized a nondynamic and nondestructive atomic force microscopy (AFM method to image the interface of submerged superhydrophobic structures with nanometer resolution. Up to now, only the interfaces of nanobubbles (acting almost like solids have been characterized by AFM at these dimensions. In this study, we show for the first time that it is possible to image the air–water interface of submerged hierarchically structured (micro-pillars surfaces by AFM in contact mode. By scanning with zero resulting force applied, we were able to determine the shape of the interface and thereby the depth of the water penetrating into the underlying structures. This approach is complemented by a second method: the interface was scanned with different applied force loads and the height for zero force was determined by linear regression. These methods open new possibilities for the investigation of air-retaining surfaces, specifically in terms of measuring contact area and in comparing different coatings, and thus will lead to the development of new applications.

  20. Overview of groundwater and surface water standards pertinent to the Idaho National Engineering Laboratory. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Lundahl, A.L.; Williams, S.; Grizzle, B.J.

    1995-09-01

    This document presents an overview of groundwater- and surface water-related laws, regulations, agreements, guidance documents, Executive Orders, and DOE orders pertinent to the Idaho National Engineering Laboratory. This document is a summary and is intended to help readers understand which regulatory requirements may apply to their particular circumstances. However, the document is not intended to be used in lieu of applicable regulations. Unless otherwise noted, the information in this report reflects a summary and evaluation completed July 1, 1995. This document is considered a Living Document, and updates on changing laws and regulations will be provided.