WorldWideScience

Sample records for surface analysis analysis

  1. From analysis to surface

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    it with a “ground truth” analysis of the same music pro- duced by a human expert (see, in particular, [5]). In this paper, we explore the problem of generating an encoding of the musical surface of a work automatically from a systematic encoding of an analysis. The ability to do this depends on one having...... an effective (i.e., comput- able), correct and complete description of some aspect of the structure of the music. Generating the surface struc- ture of a piece from an analysis in this manner serves as a proof of the analysis' correctness, effectiveness and com- pleteness. We present a reductive analysis......In recent years, a significant body of research has focused on developing algorithms for computing analyses of mu- sical works automatically from encodings of these works' surfaces [3,4,7,10,11]. The quality of the output of such analysis algorithms is typically evaluated by comparing...

  2. The surface analysis methods

    International Nuclear Information System (INIS)

    Deville, J.P.

    1998-01-01

    Nowadays, there are a lot of surfaces analysis methods, each having its specificity, its qualities, its constraints (for instance vacuum) and its limits. Expensive in time and in investment, these methods have to be used deliberately. This article appeals to non specialists. It gives some elements of choice according to the studied information, the sensitivity, the use constraints or the answer to a precise question. After having recalled the fundamental principles which govern these analysis methods, based on the interaction between radiations (ultraviolet, X) or particles (ions, electrons) with matter, two methods will be more particularly described: the Auger electron spectroscopy (AES) and x-rays photoemission spectroscopy (ESCA or XPS). Indeed, they are the most widespread methods in laboratories, the easier for use and probably the most productive for the analysis of surface of industrial materials or samples submitted to treatments in aggressive media. (O.M.)

  3. Surface analysis the principal techniques

    CERN Document Server

    Vickerman, John C

    2009-01-01

    This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they c

  4. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  5. Surface analysis and techniques in biology

    CERN Document Server

    Smentkowski, Vincent S

    2014-01-01

    This book highlights state-of-the-art surface analytical instrumentation, advanced data analysis tools, and the use of complimentary surface analytical instrumentation to perform a complete analysis of biological systems.

  6. Surface computing and collaborative analysis work

    CERN Document Server

    Brown, Judith; Gossage, Stevenson; Hack, Chris

    2013-01-01

    Large surface computing devices (wall-mounted or tabletop) with touch interfaces and their application to collaborative data analysis, an increasingly important and prevalent activity, is the primary topic of this book. Our goals are to outline the fundamentals of surface computing (a still maturing technology), review relevant work on collaborative data analysis, describe frameworks for understanding collaborative processes, and provide a better understanding of the opportunities for research and development. We describe surfaces as display technologies with which people can interact directly, and emphasize how interaction design changes when designing for large surfaces. We review efforts to use large displays, surfaces or mixed display environments to enable collaborative analytic activity. Collaborative analysis is important in many domains, but to provide concrete examples and a specific focus, we frequently consider analysis work in the security domain, and in particular the challenges security personne...

  7. Global Analysis of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J

    2010-01-01

    Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of 'edge-crawling' along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integ

  8. Thin film surface reconstruction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Imperatori, P [CNR, Monterotondo Stazione, Rome (Italy). Istituto di Chimica dei materiali

    1996-09-01

    The study of the atomic structure of surfaces and interfaces is a fundamental step in the knowledge and the development of new materials. Among the several surface-sensitive techniques employed to characterise the atomic arrangements, grazing incidence x-ray diffraction (GIXD) is one of the most powerful. With a simple data treatment, based on the kinematical theory, and using the classical methods of x-ray bulk structure determination, it gives the atomic positions of atoms at a surface or an interface and the atomic displacements of subsurface layers for a complete determination of the structure. In this paper the main features of the technique will be briefly reviewed and selected of application to semiconductor and metal surfaces will be discussed.

  9. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...

  10. Analysis of gravity data using trend surfaces

    Science.gov (United States)

    Asimopolos, Natalia-Silvia; Asimopolos, Laurentiu

    2013-04-01

    In this paper we have developed algorithms and related software programs for calculating of trend surfaces of higher order. These methods of analysis of trends, like mobile media applications are filtration systems for geophysical data in surface. In particular we presented few case studies for gravity data and gravity maps. Analysis with polynomial trend surfaces contributes to the recognition, isolation and measurement of trends that can be represented by surfaces or hyper-surfaces (in several sizes), thus achieving a separation in regional variations and local variations. This separation is achieved by adjusting the trend function at different values. Trend surfaces using the regression analysis satisfy the criterion of least squares. The difference between the surface of trend and the observed value in a certain point is the residual value. Residual sum of squares of these values should be minimal as the criterion of least squares. The trend surface is considered as regional or large-scale and the residual value will be regarded as local or small-scale component. Removing the regional trend has the effect of highlighting local components represented by residual values. Surface analysis and hyper-surfaces principles are applied to the surface trend and any number of dimensions. For hyper-surfaces we can work with polynomial functions with four or more variables (three variables of space and other variables for interest parameters) that have great importance in some applications. In the paper we presented the mathematical developments about generalized trend surfaces and case studies about gravimetric data. The trend surfaces have the great advantage that the effect of regional anomalies can be expressed as analytic functions. These tendency surfaces allows subsequent mathematical processing and interesting generalizations, with great advantage to work with polynomial functions compared with the original discrete data. For gravity data we estimate the depth of

  11. PHOTOGRAMMETRIC TECHNIQUES FOR ROAD SURFACE ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. A. Knyaz

    2016-06-01

    Full Text Available The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  12. Level crossing analysis of growing surfaces

    International Nuclear Information System (INIS)

    Shahbazi, F; Sobhanian, S; Tabar, M Reza Rahimi; Khorram, S; Frootan, G R; Zahed, H

    2003-01-01

    We investigate the average frequency of positive slope ν + α , crossing the height α = h - h-bar in the surface growing processes. The exact level crossing analysis of the random deposition model and the Kardar-Parisi-Zhang equation in the strong coupling limit before creation of singularities is given

  13. SECTION 6.2 SURFACE TOPOGRAPHY ANALYSIS

    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo

    2005-01-01

    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilometry......, optical scanning techniques, and scanning probe microscopy (SPM). These methods, based on acquisition of topography data from point by point scans, give quantitative information of heights with respect to position. Based on a different approach, the so-called integral methods produce parameters...

  14. Specifications for surface reaction analysis apparatus

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-03-01

    A surface reaction analysis apparatus was installed at the JAERI soft x-ray beamline in the SPring-8 as an experimental end-station for the study of surface chemistry. The apparatus is devoted to the study concerning the influence of translational kinetic energy of incident molecules to chemical reactions on solid surfaces with gas molecules. In order to achieve the research purpose, reactive molecular scattering experiments and photoemission spectroscopic measurements using synchrotron radiation are performed in that apparatus via a supersonic molecular beam generator, an electron energy analyzer and a quadrupole mass analyzer. The detail specifications for the apparatus are described in this report. (author)

  15. SURFACE TEXTURE ANALYSIS FOR FUNCTIONALITY CONTROL

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido

    This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...

  16. Repository surface design site layout analysis

    International Nuclear Information System (INIS)

    Montalvo, H.R.

    1998-01-01

    The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond

  17. SURFAN, a programme for surface analysis

    International Nuclear Information System (INIS)

    Negoita, F.; Borcan, C.; Pantelica, D.

    1997-01-01

    Possible alternatives to Rutherford backscattering spectrometry (RBS) method of material analysis, overcoming the poor sensitivity to light elements of RBS, are the nuclear resonant reaction analysis (NRA) and elastic recoil detection analysis (ERDA). The last one is especially useful in surface and thin film analysis. To simulate the spectra obtained with any of these methods a programme SURFAN was worked out. In comparison with the code RUMP, published by Doolittle, it allows to simply change the charge of the projectile nature, implies no limitation to the energy of incident projectiles and permits the use of any depth profile function. The basic ideas and the structure of SURFAN are presented. Its application to ERDA and RBS methods resulted in important information on the processes implied in special materials obtained by advanced technologies

  18. Applications of ion scattering in surface analysis

    International Nuclear Information System (INIS)

    Armour, D.G.

    1981-01-01

    The study of ion scattering from surfaces has made an increasingly important contribution both to the development of highly surface specific analysis techniques and to the understanding of the atomic collision processes associated with ion bombardment of solid surfaces. From an analysis point of view, by appropriate choice of parameters such as ion energy and species, scattering geometry and target temperature, it is possible to study not only the composition of the surface layer but also the detailed atomic arrangement. The ion scattering technique is thus particularly useful for the study of surface compositional and structural changes caused by adsorption, thermal annealing or ion bombardment treatments of simple or composite materials. Ion bombardment induced desorption, damage or atomic mixing can also be effectively studied using scattering techniques. By reviewing the application of the technique to a variety of these technologically important surface investigations, it is possible to illustrate the way in which ion scattering has developed as the understanding of the underlying physics has improved. (author)

  19. Applications of surface analysis and surface theory in tribology

    Science.gov (United States)

    Ferrante, John

    1989-01-01

    Tribology, the study of adhesion, friction and wear of materials, is a complex field which requires a knowledge of solid state physics, surface physics, chemistry, material science, and mechanical engineering. It has been dominated, however, by the more practical need to make equipment work. With the advent of surface analysis and advances in surface and solid-state theory, a new dimension has been added to the analysis of interactions at tribological interfaces. In this paper the applications of tribological studies and their limitations are presented. Examples from research at the NASA Lewis Research Center are given. Emphasis is on fundamental studies involving the effects of monolayer coverage and thick films on friction and wear. A summary of the current status of theoretical calculations of defect energetics is presented. In addition, some new theoretical techniques which enable simplified quantitative calculations of adhesion, fracture, and friction are discussed.

  20. Surface and interface analysis of photovoltaic devices

    International Nuclear Information System (INIS)

    Kazmerski, L.L.

    1983-01-01

    Interface chemistry can control the performance and operational lifetime of solar cells, especially thin-film, polycrystalline devices. The composition and elemental integrity of device surfaces, internal junctions, layer and defect interfces can be related to and dominate the electroptical characteristics of the materials/ devices. This paper examines the compositional properties of external and internal surfaces in polycrystaline solar cells, utilizing high-resolution, complementary surface analysis techniques. The electronic properties of these same regions are evaluated using microelectrical characterization methods. Cell performance, in turn, is explained in terms of these relation-ships. Specifically, two solar cell types are used as examples: (1) the polycrystalline Si homojunction and (2) the (Cd Zn)S/CuInSe 2 heterojunction. Throughout these investigations of photovoltaic devices, the limitations and strengths of the surface and electrical microanalyses techniques are emphasized and discussed. (Author) [pt

  1. Surface analysis with STM and AFM

    CERN Document Server

    Magonov, Sergi N

    1996-01-01

    Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are powerful tools for surface examination. In the past, many STM and AFM studies led to erroneous conclusions due to lack of proper theoretical considerations and of an understanding of how image patterns are affected by measurement conditions. For this book, two world experts, one on theoretical analysis and the other on experimental characterization, have joined forces to bring together essential components of STM and AFM studies: The practical aspects of STM, the image simulation by surface electron density plot calculat

  2. Applied surface analysis of metal materials

    International Nuclear Information System (INIS)

    Weiss, Z.

    1987-01-01

    The applications of surface analytical techniques in the solution of technological problems in metalurgy and engineering are reviewed. Some important application areas such as corrosion, grain boundary segregation and metallurgical coatings are presented together with specific requirements for the type of information which is necessary for solving particular problems. The techniques discussed include: electron spectroscopies (Auger Electron Spectroscopy, Electron Spectroscopy for Chemical Analysis), ion spectroscopies (Secondary Ion Mass Spectrometry, Ion Scattering Spectroscopy), Rutherford Back-Scattering, nuclear reaction analysis, optical methods (Glow Discharge Optical Emission Spectrometry), ellipsometry, infrared and Raman spectroscopy, the Moessbauer spectroscopy and methods of consumptive depth profile analysis. Principles and analytical features of these methods are demonstrated and examples of their applications to metallurgy are taken from recent literature. (author). 4 figs., 2 tabs., 112 refs

  3. Surface analysis by RBS and NRA

    International Nuclear Information System (INIS)

    Braun, M.

    1984-01-01

    The use of Rutherford backscattering spectroscopy (RBS) and nuclear reaction analysis (NRA) for surface analysis is discussed. For the RBS technique, emphasis is laid on cases which are not discussed in existing review articles of the subject. The present work intends to describe a calculation procedure with the aid of which it is possible to obtain the depth distribution of a high concentration and non-homogeneously binary compound sample. This complicates the determination of the stopping and scattering cross-sections of the incoming particles at a certain depth below the surface. In addition, a method is described by which the thickness and composition of a two-element film, deposited on a single-element substrate, can be determined by RBS. One advantage with the method presented here is that it is not necessary to detect any signals from the lighter component of the film, in order to determine the composition. This improves the RBS technique to study light elements in connection with thin layers. Finally, the NRA method to measure concentration distributions of deuterium beneath a surface is presented. In the case discussed here, the analysis is done by the D( 3 He, H) 4 He nuclear reaction. (author)

  4. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  5. Surface Properties of TNOs: Preliminary Statistical Analysis

    Science.gov (United States)

    Antonieta Barucci, Maria; Fornasier, S.; Alvarez-Cantal, A.; de Bergh, C.; Merlin, F.; DeMeo, F.; Dumas, C.

    2009-09-01

    An overview of the surface properties based on the last results obtained during the Large Program performed at ESO-VLT (2007-2008) will be presented. Simultaneous high quality visible and near-infrared spectroscopy and photometry have been carried out on 40 objects with various dynamical properties, using FORS1 (V), ISAAC (J) and SINFONI (H+K bands) mounted respectively at UT2, UT1 and UT4 VLT-ESO telescopes (Cerro Paranal, Chile). For spectroscopy we computed the spectral slope for each object and searched for possible rotational inhomogeneities. A few objects show features in their visible spectra such as Eris, whose spectral bands are displaced with respect to pure methane-ice. We identify new faint absorption features on 10199 Chariklo and 42355 Typhon, possibly due to the presence of aqueous altered materials. The H+K band spectroscopy was performed with the new instrument SINFONI which is a 3D integral field spectrometer. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2. To investigate the surface properties of these bodies, a radiative transfer model has been applied to interpret the entire 0.4-2.4 micron spectral region. The diversity of the spectra suggests that these objects represent a substantial range of bulk compositions. These different surface compositions can be diagnostic of original compositional diversity, interior source and/or different evolution with different physical processes affecting the surfaces. A statistical analysis is in progress to investigate the correlation of the TNOs’ surface properties with size and dynamical properties.

  6. A radiation analysis of lunar surface habitats

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Tripathi, R.K.; Clowdsley, M.S.; Nealy, J.E.

    2003-01-01

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to minimize the astronaut radiation exposure and at the same time control the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process performs minimization of mass along all phases of a mission scenario, considered in terms of time frame, equipment, location, crew characteristics and performance required, radiation exposure annual and career limit constraints (those proposed in NCRP 132), and implementation of the ALARA principle. In the lunar environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in detail (e.g. shape, thickness, materials, etc) with considerations of various shielding strategies. The results for all scenarios clearly showed that the direct exposure to the space environment like in transfers and EVAs phases gives the most of the dose, with the proposed shielded habitats and shelters giving quite a good protection from radiation. Operational constraints on hardware and scenarios have all been considered by the optimization techniques. Within the limits of this preliminary analysis, the three Moon Base related mission scenarios are perfectly feasible from the astronaut radiation safety point of view with the currently adopted and proposed

  7. Detailed Analysis of ECMWF Surface Pressure Data

    Science.gov (United States)

    Fagiolini, E.; Schmidt, T.; Schwarz, G.; Zenner, L.

    2012-04-01

    Investigations of temporal variations within the gravity field of the Earth led us to the analysis of common surface pressure data products delivered by ECMWF. We looked into the characteristics of global as well as spatially and temporally confined phenomena being visible in the data. In particular, we were interested in the overall data quality, the local and temporal signal-to-noise ratio of surface pressure data sets, and the identification of irregular data. To this end, we analyzed a time series of a full year of surface pressure operational analysis data and their nominal standard deviations. The use of pressure data on a Gaussian grid data allowed us to remain close to the internal computations at ECMWF during data assimilation. Thus, we circumvented potential interpolation effects that would otherwise occur in cylindrical projections of conventional map products. The results obtained by us demonstrate the identification of a few distinct outliers, data quality effects over land or water and along coastlines as well as neighborhood effects of samples within and outside of the tropics. Small scale neighborhood effects depend on their geographical direction, sampling distance, land or water, and local time. In addition, one notices large scale seasonal effects that are latitude and longitude dependent. As a consequence, we obtain a cause-and-effect survey of pressure data peculiarities. One can then use background corrected pressure data to analyze seasonal effects within given latitude belts. Here time series of pressure data allow the tracking of high and low pressure areas together with the identification of their actual extent, velocity and life time. This information is vital to overall mass transport calculations and the determination of temporally varying gravity fields. However, one has to note that the satellite and ground-based instruments and the assimilation software being used for the pressure calculations will not remain the same over the years

  8. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  9. Surface Preparation for Microdebonding Analysis of Composites

    International Nuclear Information System (INIS)

    Kahraman, Ramazan; Mandell, J. F.

    1999-01-01

    The bond strength between fibers and matrix is an essential property of all composite materials and it must be measured accurately to be able to correlate it with the composite behavior. There are several factors affecting its measurement. This paper discusses the polishing and load application aspects of the indentation test technique for fibre-matrix bond strength determination in polymer and ceramic matrix composites. Different polishing procedures are suggested for polymer and ceramic surfaces for obtaining a smooth surface which is a must for the test results to be reliable. The geometry of the fibers tested was also found to affect the analysis results. For best results, fibers with similar size and which are similarly surrounded by other fibers should be tested. Care should be taken during load application on a fiber for the loading probe not to approach the fiber circumference. The force should be applied in a small increments as possible, however starting from a high enough level to prevent fiber breakage due to surface damage from several loading steps. (Author)

  10. Surface and interface analysis an electrochemists toolbox

    CERN Document Server

    Holze, Rudolf

    2009-01-01

    A broad, almost encyclopedic overview of spectroscopic and other analytical techniques useful for investigations of phase boundaries in electrochemistry is presented. The analysis of electrochemical interfaces and interphases on a microscopic, even molecular level, is of central importance for an improved understanding of the structure and dynamics of these phase boundaries. The gained knowledge will be needed for improvements of methods and applications reaching from electrocatalysis, electrochemical energy conversion, biocompatibility of metals, corrosion protection to galvanic surface treatment and finishing. The book provides an overview as complete as possible and enables the reader to choose methods most suitable for tackling his particular task. It is nevertheless compact and does not flood the reader with the details of review papers.

  11. Surface Management System Departure Event Data Analysis

    Science.gov (United States)

    Monroe, Gilena A.

    2010-01-01

    This paper presents a data analysis of the Surface Management System (SMS) performance of departure events, including push-back and runway departure events.The paper focuses on the detection performance, or the ability to detect departure events, as well as the prediction performance of SMS. The results detail a modest overall detection performance of push-back events and a significantly high overall detection performance of runway departure events. The overall detection performance of SMS for push-back events is approximately 55%.The overall detection performance of SMS for runway departure events nears 100%. This paper also presents the overall SMS prediction performance for runway departure events as well as the timeliness of the Aircraft Situation Display for Industry data source for SMS predictions.

  12. Development of international standards for surface analysis by ISO technical committee 201 on surface chemical analysis

    International Nuclear Information System (INIS)

    Powell, C.J.

    1999-01-01

    Full text: The International Organization for Standardization (ISO) established Technical Committee 201 on Surface Chemical Analysis in 1991 to develop documentary standards for surface analysis. ISO/TC 201 met first in 1992 and has met annually since. This committee now has eight subcommittees (Terminology, General Procedures, Data Management and Treatment, Depth Profiling, AES, SIMS, XPS, and Glow Discharge Spectroscopy (GDS)) and one working group (Total X-Ray Fluorescence Spectroscopy). Each subcommittee has one or more working groups to develop standards on particular topics. Australia has observer-member status on ISO/TC 201 and on all ISO/TC 201 subcommittees except GDS where it has participator-member status. I will outline the organization of ISO/TC 201 and summarize the standards that have been or are being developed. Copyright (1999) Australian X-ray Analytical Association Inc

  13. Analysis of surface with low energy ions

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.

    1989-01-01

    Nuclear techniques applied to element analysis presents different characteristics depending on projectile energy. It can seen observed than an energy (E ≅ 1 MeV) exists which separate two regions for which sensitivity, information analysis and resolution in detection are different. For this work, we describe for the energy region E ≤ 1 MeV, the advantage of the three most used techniques which are PIXE, RBS y RNR. (Author)

  14. 2nd international conference on ion beam surface layer analysis

    International Nuclear Information System (INIS)

    1975-01-01

    The papers of this conference are concerned with the fundamental aspects and with the application of surface layer analysis. It is reported amongst others about backscattering analysis, Auger electron spectroscopy, channelling and microprobe. (HPOE) [de

  15. Surface Operations Data Analysis and Adaptation Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort undertook the creation of a Surface Operations Data Analysis and Adaptation (SODAA) tool to store data relevant to airport surface research and...

  16. The analysis of pigments on rock surfaces

    International Nuclear Information System (INIS)

    Fankhauser, B.; O'Connor, S.; Pittelkow, Y.

    1997-01-01

    A limestone slab of roof fall coated with a red pigment was recovered from a Rockshelter in the Napier Ranges of the Kimberley region, Western Australia. Next to the roof fall fragment in the same stratigraphic layer was a piece of ochre. Three questions were presented: (1) is the red substance an ochre? (2) is the piece of ochre identical to the red substance on the roof fall? and (3) are the layers of pigment on the top and bottom of the limestone slab the same? In addition, as an extension from these questions, a general method was developed for the in situ analysis of ochre pigments on substrates to determine likely compositions and ochre sources. The analysis of the red pigment presented an analytical problem because the substance was intimately associated with the rock slab and therefore the analysis had to be done in situ. Not only was the red layer thin, but on a micro level it was uneven. Energy dispersive x-ray analysis (EDXA) penetrated the red layer, simultaneously analysing this layer and the rock substrate to different degrees depending upon the thickness of the red layer. Determining if the substance was actually ochre involved a comparison of elemental analyses between the background (slab) and background with red coating. Coatings of other ochres with known elemental concentrations on the same limestone background gave a comparison of the effect of simultaneously analysing a thin layer and background with different compositions. Three graphical methods useful for insitu analysis are demeonstrated. The find dates (around 40,000 BP) add to a growing body of data in support of the widespread use of ochre accompanying the earliest documented use of widely separated and environmentally diverse regions of Australia by Aboriginal people

  17. The analysis of pigments on rock surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Fankhauser, B.; O`Connor, S. [Australian National Univ., Canberra, ACT (Australia). Division of Archaeology and Natural History; Pittelkow, Y. [Australian National Univ., Canberra, ACT (Australia). Coombs Computing Unit

    1997-12-31

    A limestone slab of roof fall coated with a red pigment was recovered from a Rockshelter in the Napier Ranges of the Kimberley region, Western Australia. Next to the roof fall fragment in the same stratigraphic layer was a piece of ochre. Three questions were presented: (1) is the red substance an ochre? (2) is the piece of ochre identical to the red substance on the roof fall? and (3) are the layers of pigment on the top and bottom of the limestone slab the same? In addition, as an extension from these questions, a general method was developed for the in situ analysis of ochre pigments on substrates to determine likely compositions and ochre sources. The analysis of the red pigment presented an analytical problem because the substance was intimately associated with the rock slab and therefore the analysis had to be done in situ. Not only was the red layer thin, but on a micro level it was uneven. Energy dispersive x-ray analysis (EDXA) penetrated the red layer, simultaneously analysing this layer and the rock substrate to different degrees depending upon the thickness of the red layer. Determining if the substance was actually ochre involved a comparison of elemental analyses between the background (slab) and background with red coating. Coatings of other ochres with known elemental concentrations on the same limestone background gave a comparison of the effect of simultaneously analysing a thin layer and background with different compositions. Three graphical methods useful for insitu analysis are demeonstrated. The find dates (around 40,000 BP) add to a growing body of data in support of the widespread use of ochre accompanying the earliest documented use of widely separated and environmentally diverse regions of Australia by Aboriginal people.

  18. Global Surface Warming Hiatus Analysis Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were used to conduct the study of the global surface warming hiatus, an apparent decrease in the upward trend of global surface temperatures since 1998....

  19. Surface analysis of selected hydrophobic materials

    Science.gov (United States)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  20. Analysis

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Liu, Wen; Zhang, Xiliang

    2014-01-01

    three major technological changes: energy savings on the demand side, efficiency improvements in energy production, and the replacement of fossil fuels by various sources of renewable energy. Consequently, the analysis of these systems must include strategies for integrating renewable sources...

  1. ROUGHNESS ANALYSIS OF VARIOUSLY POLISHED NIOBIUM SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Ribeill, G.; Reece, C.

    2008-01-01

    Niobium superconducting radio frequency (SRF) cavities have gained widespread use in accelerator systems. It has been shown that surface roughness is a determining factor in the cavities’ effi ciency and maximum accelerating potential achievable through this technology. Irregularities in the surface can lead to spot heating, undesirable local electrical fi eld enhancement and electron multipacting. Surface quality is typically ensured through the use of acid etching in a Buffered Chemical Polish (BCP) bath and electropolishing (EP). In this study, the effects of these techniques on surface morphology have been investigated in depth. The surface of niobium samples polished using different combinations of these techniques has been characterized through atomic force microscopy (AFM) and stylus profi lometry across a range of length scales. The surface morphology was analyzed using spectral techniques to determine roughness and characteristic dimensions. Experimentation has shown that this method is a valuable tool that provides quantitative information about surface roughness at different length scales. It has demonstrated that light BCP pretreatment and lower electrolyte temperature favors a smoother electropolish. These results will allow for the design of a superior polishing process for niobium SRF cavities and therefore increased accelerator operating effi ciency and power.

  2. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  3. Nuclear techniques for bulk and surface analysis of materials

    International Nuclear Information System (INIS)

    D'Agostino, M.D.; Kamykowski, E.A.; Kuehne, F.J.; Padawer, G.M.; Schneid, E.J.; Schulte, R.L.; Stauber, M.C.; Swanson, F.R.

    1978-01-01

    A review is presented summarizing several nondestructive bulk and surface analysis nuclear techniques developed in the Grumman Research Laboratories. Bulk analysis techniques include 14-MeV-neutron activation analysis and accelerator-based neutron radiography. The surface analysis techniques include resonant and non-resonant nuclear microprobes for the depth profile analysis of light elements (H, He, Li, Be, C, N, O and F) in the surface of materials. Emphasis is placed on the description and discussion of the unique nuclear microprobe analytical capacibilities of immediate importance to a number of current problems facing materials specialists. The resolution and contrast of neutron radiography was illustrated with an operating heat pipe system. The figure shows that the neutron radiograph has a resolution of better than 0.04 cm with sufficient contrast to indicate Freon 21 on the inner capillaries of the heat pipe and pooling of the liquid at the bottom. (T.G.)

  4. Microscopic Analysis and Modeling of Airport Surface Sequencing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The complexity and interdependence of operations on the airport surface motivate the need for a comprehensive and detailed, yet flexible and validated analysis and...

  5. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  6. Analysis of Terminal Metallic Armor Plate Free-Surface Bulging

    National Research Council Canada - National Science Library

    Rapacki, Jr, E. J

    2008-01-01

    An analysis of the bulge formed on the free-surface of the terminal metallic plate of an armor array is shown to lead to reasonable estimates of the armor array's remaining penetration/perforation resistance...

  7. Analysis of surface contaminants on beryllium windows

    International Nuclear Information System (INIS)

    Gmur, N.F.

    1986-12-01

    It is known that various crystalline and liquid compounds form on the downstream surfaces of beryllium windows exposed to air. It is also known that the integrity of such windows may be compromised resulting in leaks through the window. The purpose of this report is to document the occurrences described as they pertain to the NSLS and to analyze, where possible, the various substances formed

  8. Experimental and numerical analysis of microstructured surfaces

    OpenAIRE

    Diani, Andrea

    2014-01-01

    Heat dissipation is one of the most important issues for the reliability of electronics equipment. Up today, air represents the most safe, cheap, and common working fluid for electronics thermal management applications. Due to its poor heat transfer characteristics, air always flow through enhanced surfaces, such as plain and louvered fins, pin fins, offset strip fins and wire screens, in order to increase the heat transfer area and to create turbulence. Recently, metal foams have been propos...

  9. Plasma diagnostics surface analysis and interactions

    CERN Document Server

    Auciello, Orlando

    2013-01-01

    Plasmas and their interaction with materials have become subjects of major interest because of their importance in modern forefront technologies such as microelectronics, fusion energy, and space. Plasmas are used in microelectronics to process semiconductors (etching of patterns for microcircuits, plasma-induced deposition of thin films, etc.); plasmas produce deleterious erosion effects on surfaces of materials used for fusion devices and spaceships exposed to the low earth environment.Diagnostics of plasmas and materials exposed to them are fundamental to the understanding of the physical a

  10. Surface renewal analysis for estimating turbulent surface fluxes

    International Nuclear Information System (INIS)

    Castellvi, F.

    2009-01-01

    A decade ago, the need for a long-term surface monitoring was recognized to better understand the soil-vegetation-atmosphere scalar exchange and interaction processes. the AmeriFlux concept emerged in the IGBP workshop (La Thuile, IT, 1995). Continuous acquisition of surface fluxes for different species such as temperature, water vapour, CO x , halocarbon, ozone, etc.,) and momentum allows determination of the influence of local (canopy) exchanges, fossil fuel emission, large-scale biotic exchange on ambient concentrations which are crucial to take decisions for protecting natural environments and water resources, to develop new perspective for modern agriculture and forest management and to better understand the global climate change. (Author)

  11. Indian Ocean surface winds from NCMRWF analysis as compared

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  12. Surface reactivity and layer analysis of chemisorbed reaction films in ...

    Indian Academy of Sciences (India)

    Administrator

    Surface reactivity and layer analysis of chemisorbed reaction films in ... in the nitrogen environment. Keywords. Surface reactivity ... sium (Na–K) compounds in the coating or core of the ..... Barkshire I R, Pruton M and Smith G C 1995 Appl. Sur.

  13. Indian Ocean surface winds from NCMRWF analysis as compared to ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Fore- casts (NCMRWF), New .... mization of a generalized cost function using the. Spectral ... power from a given location on the sea surface at multiple ...

  14. Assessing ground compaction via time lapse surface wave analysis

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.

    2016-01-01

    Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016

  15. Critical reflection activation analysis - a new near-surface probe

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Trohidou, K.N.

    1988-09-01

    We propose a new surface analytic technique, Critical Reflection Activation Analysis (CRAA). This technique allows accurate depth profiling of impurities ≤ 100A beneath a surface. The depth profile of the impurity is simply related to the induced activity as a function of the angle of reflection. We argue that the technique is practical and estimate its accuracy. (author)

  16. Surface analysis of titanium dental implants with different topographies

    Directory of Open Access Journals (Sweden)

    Silva M.H. Prado da

    2000-01-01

    Full Text Available Cylindrical dental implants made of commercially pure titanium were analysed in four different surface finishes: as-machined, Al2O3 blasted with Al2O3 particles, plasma-sprayed with titanium beads and electrolytically coated with hydroxyapatite. Scanning electron microscopy (SEM with Energy Dispersive X-ray Analysis (EDX revealed the topography of the surfaces and provided qualitative results of the chemical composition of the different implants. X-ray Photoelectron Spectroscopy (XPS was used to perform chemical analysis on the surface of the implants while Laser Scanning Confocal Microscopy (LSM produced topographic maps of the analysed surfaces. Optical Profilometry was used to quantitatively characterise the level of roughness of the surfaces. The implant that was plasma-sprayed and the hydroxyapatite coated implant showed the roughest surface, followed by the implant blasted with alumina and the as-machined implant. Some remnant contamination from the processes of blasting, coating and cleaning was detected by XPS.

  17. Internal reflection spectroscopic analysis of sulphide mineral surfaces

    International Nuclear Information System (INIS)

    Kaoma, J.

    1989-01-01

    To establish the reason for flotation of sulfide minerals in the absence of any conventional collector, internal reflection spectroscopic analysis (IRS) of their surfaces was conducted. sulfur, sulfates, thiosulfates, and hydrocarbonates have been detected on the surface of as-grand sulfide minerals. On sodium sulfide-treated surfaces, both sulfur and polysulfide have also been found to be present. From these findings, the flotation of sulfide minerals without collectors is discussed. (author). 26 refs

  18. Ion induced optical emission for surface and depth profile analysis

    International Nuclear Information System (INIS)

    White, C.W.

    1977-01-01

    Low-energy ion bombardment of solid surfaces results in the emission of infrared, visible, and ultraviolet radiation produced by inelastic ion-solid collision processes. The emitted optical radiation provides important insight into low-energy particle-solid interactions and provides the basis for an analysis technique which can be used for surface and depth profile analysis with high sensitivity. The different kinds of collision induced optical radiation emitted as a result of low-energy particle-solid collisions are reviewed. Line radiation arising from excited states of sputtered atoms or molecules is shown to provide the basis for surface and depth profile analysis. The spectral characteristics of this type of radiation are discussed and applications of the ion induced optical emission technique are presented. These applications include measurements of ion implant profiles, detection sensitivities for submonolayer quantities of impurities on elemental surfaces, and the detection of elemental impurities on complex organic substrates

  19. Characterization of technical surfaces by structure function analysis

    Science.gov (United States)

    Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.

    2018-03-01

    The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.

  20. Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis.

    Science.gov (United States)

    Dongargaonkar, Alpana A; Clogston, Jeffrey D

    2018-01-01

    Nanoparticles are critical components in nanomedicine and nanotherapeutic applications. Some nanoparticles, such as metallic nanoparticles, consist of a surface coating or surface modification to aid in its dispersion and stability. This surface coating may affect the behavior of nanoparticles in a biological environment, thus it is important to measure. Thermogravimetric analysis (TGA) can be used to determine the amount of coating on the surface of the nanoparticle. TGA experiments run under inert atmosphere can also be used to determine residual metal content present in the sample. In this chapter, the TGA technique and experimental method are described.

  1. Recent characterization of steel by surface analysis methods

    International Nuclear Information System (INIS)

    Suzuki, Shigeru

    1996-01-01

    Surface analysis methods, such as Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, glow discharge optical emission spectrometry and so on, have become indispensable to characterize surface and interface of many kinds of steel. Although a number of studies on characterization of steel by these methods have been carried out, several problems still remain in quantification and depth profiling. Nevertheless, the methods have provided essential information on the concentration and chemical state of elements at the surface and interface. Recent results on characterization of oxide layers, coated films, etc. on the surface of steel are reviewed here. (author). 99 refs

  2. The present and future on surface analysis for corrosion study

    International Nuclear Information System (INIS)

    Ohtsuka, Toshiaki

    2015-01-01

    Surface analysis for corrosion study was reviewed. For the study, the in-situ analysis was desired to describe the real feature. Light i.e., electromagnetic wave from gamma rays to infrared light has been used for the in-situ measurement of the corroded surface, although various ideas should be introduced for the study. For the application of the electromagnetic waves, a suitable window material and a suitable distance between the window and specimen surface depending on the properties of the wave must be selected. Electron spectroscopy including X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) is not applicable for the in-situ study and, however, it is very available for the corrosion study from the following points; elemental analysis, state analysis of the element, and microscopic analysis. In future, the tip enhance Raman scattering (TERS) for which the scanning probe microscopy (SPM) is combined with the surface enhanced Raman scattering (SERS) may be useful for the in-situ corrosion study. (author)

  3. Ion beam analysis of metal ion implanted surfaces

    International Nuclear Information System (INIS)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T.; Sood, D.K.

    1993-01-01

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs

  4. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P J; Chu, J W; Johnson, E P; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  5. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  6. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    Science.gov (United States)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  7. Scanning tunneling microscopy: A powerful tool for surface analysis

    International Nuclear Information System (INIS)

    Walle, G.F.A. van de; Nelissen, B.J.; Soethout, L.L.; Kempen, H. van

    1987-01-01

    The invention of the Scanning Tunneling Microscope (STM) has opened a new area of surface analysis. A description of the principle of operation is given in this paper. Also the technical problems encountered and their solution are described. Two examples demonstrating the possibilities of the STM are presented: topographic and spectroscopic measurements on a stepped Ni (111) surface and photoconductive measurements on GaAs. (orig.)

  8. Multiscale analysis of surface morphologies by curvelet and contourlet transforms

    International Nuclear Information System (INIS)

    Li, Linfu; Zhang, Xiangchao; Zhang, Hao; He, Xiaoying; Xu, Min

    2015-01-01

    The surface topographies of precision components are critical to their functionalities. However, it is challenging to characterize the topographies of complex surfaces, especially for structured surfaces. The wavelet families are promising for the multiscale geometry analysis of nonstochastic surfaces. The second-generation curvelet transform provides a sparse representation and good multiscale decomposition for curve singularities. However, the contourlet expansion, composed of bases oriented along various directions in multiple scales with smaller redundancy rates, has a remarkable capability of representing borderlines. In this paper they are both adopted for the characterization of surface topographies. Different components can be extracted according to their scales and morphological characteristics; as a result, the corresponding manufacturing processes and functionalities can be analyzed specifically. Numerical experiments are given to demonstrate the capabilities of these methods in sparse representation and effective extraction of geometry features of different nonstochastic surfaces. (paper)

  9. Analysis of energy flow during playground surface impacts.

    Science.gov (United States)

    Davidson, Peter L; Wilson, Suzanne J; Chalmers, David J; Wilson, Barry D; Eager, David; McIntosh, Andrew S

    2013-10-01

    The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.

  10. Surface structure analysis by means of Rutherford scattering: methods to study surface relaxation

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Soszka, W.; Saris, F.W.; Kersten, H.H.; Colenbrander, B.G.

    1976-01-01

    The use of Rutherford backscattering for structural analysis of single crystal surfaces is reviewed, and a new method is introduced. With this method, which makes use of the channeling and blocking phenomenon of light ions of medium energy, surface atoms can be located with a precision of 0.02 A. This is demonstrated in a measurement of surface relaxation for the Cu(110) surface. (Auth.)

  11. Boundary surface and microstructure analysis of ceramic materials

    International Nuclear Information System (INIS)

    Woltersdorf, J.; Pippel, E.

    1992-01-01

    The article introduces the many possibilities of high voltage (HVEM) and high resolution electron microscopy (HREM) for boundary surface and microstructure analysis of ceramic materials. The investigations are limited to ceramic long fibre composites and a ceramic fibre/glass matrix system. (DG) [de

  12. Surface analysis of DLC coating on cam-tappet system

    OpenAIRE

    FOUVRY, Siegfried; PAGNOUX, Geoffrey; PEIGNEY, Michael; DELATTRE, Benoit; MERMAT-ROLLET, Guillaume

    2013-01-01

    Tribomechanical properties of diamond-like carbon (DLC) coatings make them particularly interesting for numerous applications, like automotive ones. But although DLC coatings show a generally high wear resistance, they sometimes can exhibit severe multiple wear. In this study, a surface analysis of worn coated tappets is performed, leading to a complete coupled wear scenario.

  13. Metal concentration at surface water using multivariate analysis and ...

    African Journals Online (AJOL)

    Metal concentration at surface water using multivariate analysis and human health risk assessment. F Azaman, H Juahir, K Yunus, A Azid, S.I. Khalit, A.D. Mustafa, M.A. Amran, C.N.C. Hasnam, M.Z.A.Z. Abidin, M.A.M. Yusri ...

  14. Contribution of surface analysis spectroscopic methods to the lubrication field

    International Nuclear Information System (INIS)

    Blanc, C.

    1979-01-01

    The analytical surface technics such as ESCA, AES and SIMS are tested to be applied to a particular lubrication field. One deals with a 100 C 6 steel surface innumered in tricresylphosphate at 110 0 C for 15 days. The nature of the first layers is studied after relevant solvant cleaning. An iron oxide layer is produced on the bearing surface, namely αFe 2 -O 3 . ESCA, AES and SIMS studies show an overlayer of iron phosphate. The exact nature of iron phosphate is not clearly established but the formation of a ferrous phosphate coating can be assumed from ESCA analysis [fr

  15. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  16. SURFACE ELECTROMYOGRAPHY IN BIOMECHANICS: APPLICATIONS AND SIGNAL ANALYSIS ASPECTS

    Directory of Open Access Journals (Sweden)

    DEAK GRAłIELA-FLAVIA

    2009-12-01

    Full Text Available Surface electromyography (SEMG is a technique for detecting and recording the electrical activity of the muscles using surface electrodes. The EMG signal is used in biomechanics mainly as an indicator of the initiation of muscle activation, as an indicator of the force produced by a contracting muscle, and as an index ofthe fatigue occurring within a muscle. EMG, used as a method of investigation, can tell us if the muscle is active or not, if the muscle is more or less active, when it is on or off, how much active is it, and finally, if it fatigues.The purpose of this article is to discuss some specific EMG signal analysis aspects with emphasis on comparison type analysis and frequency fatigue analysis.

  17. Surface composition of biomedical components by ion beam analysis

    International Nuclear Information System (INIS)

    Kenny, M.J.; Wielunski, L.S.; Baxter, G.R.

    1991-01-01

    Materials used for replacement body parts must satisfy a number of requirements such as biocompatibility and mechanical ability to handle the task with regard to strength, wear and durability. When using a CVD coated carbon fibre reinforced carbon ball, the surface must be ion implanted with uniform dose of nitrogen ions in order to make it wear resistant. The mechanism by which the wear resistance is improved is one of radiation damage and the required dose of about 10 16 cm -2 can have a tolerance of about 20%. To implant a spherical surface requires manipulation of the sample within the beam and control system (either computer or manually operated) to enable uniform dose all the way from polar to equatorial regions on the surface. A manipulator has been designed and built for this purpose. In order to establish whether the dose is uniform, nuclear reaction analysis using the reaction 14 N(d,α) 12 C is an ideal method of profiling. By taking measurements at a number of points on the surface, the uniformity of nitrogen dose can be ascertained. It is concluded that both Rutherford Backscattering and Nuclear Reaction Analysis can be used for rapid analysis of surface composition of carbon based materials used for replacement body components. 2 refs., 2 figs

  18. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    International Nuclear Information System (INIS)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R.

    2004-01-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle

  19. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Science.gov (United States)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  20. Surface analysis: its uses and abuses in waste form evaluation

    International Nuclear Information System (INIS)

    McVay, G.L.; Pederson, L.R.

    1981-01-01

    Surface and near-surface analytical techniques are significant aids in understanding waste form-aqueous solution interactions. They can be beneficially employed to evaluate reaction layers on waste forms, to assess surface treatments prior to and after leaching, and to identify interactions with waste forms. Surface analyses are best used in conjunction with other types of analyses, such as solution analyses, in order to obtain a better overall understanding of reaction processes. In spite of all the benefits to be gained by using surface analyses, misinterpretations can result if care is not taken to properly obtain and analyze the data. In particular, the density variations through a reaction layer must be accounted for in both sputtering and data analysis techniques

  1. Inverse analysis of inner surface temperature history from outer surface temperature measurement of a pipe

    International Nuclear Information System (INIS)

    Kubo, S; Ioka, S; Onchi, S; Matsumoto, Y

    2010-01-01

    When slug flow runs through a pipe, nonuniform and time-varying thermal stresses develop and there is a possibility that thermal fatigue occurs. Therefore it is necessary to know the temperature distributions and the stress distributions in the pipe for the integrity assessment of the pipe. It is, however, difficult to measure the inner surface temperature directly. Therefore establishment of the estimation method of the temperature history on inner surface of pipe is needed. As a basic study on the estimation method of the temperature history on the inner surface of a pipe with slug flow, this paper presents an estimation method of the temperature on the inner surface of a plate from the temperature on the outer surface. The relationship between the temperature history on the outer surface and the inner surface is obtained analytically. Using the results of the mathematical analysis, the inverse analysis method of the inner surface temperature history estimation from the outer surface temperature history is proposed. It is found that the inner surface temperature history can be estimated from the outer surface temperature history by applying the inverse analysis method, even when it is expressed by the multiple frequency components.

  2. A description of the BNL active surface analysis facility

    International Nuclear Information System (INIS)

    Tyler, J.W.

    1989-11-01

    Berkeley Nuclear Laboratories has a responsibility for the assessment of radioactive specimens arising both from post irradiation examination of power reactor components and structures and experimental programmes concerned with fission and activation product transport. Existing analytical facilities have been extended with the commissioning of an active surface analysis instrument (XSAM 800pci, Kratos Analytical). Surface analysis involves the characterisation of the outer few atomic layers of a solid surface/interface whose chemical composition and electronic structure will probably be different from the bulk. The new instrument consists three interconnected chambers positioned in series; comprising of a high vacuum sample introduction chamber, an ultra-high vacuum sample treatment/fracture chamber and an ultra-high vacuum sample analysis chamber. The sample analysis chamber contains the electron, X-ray and ion-guns and the electron and ion detectors necessary for performing X-ray photoelectron spectroscopy, scanning Auger microscopy and secondary-ion mass spectroscopy. The chamber also contains a high stability manipulator to enable sub-micron imaging of specimens to be achieved and provide sample heating and cooling between - 180 and 600 0 C. (author)

  3. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  4. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Papancea, Adina [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Baltes, Liana; Tierean, Mircea [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania)

    2015-12-15

    Highlights: • Glass fibre-reinforced polyester composites surface analysis by photographic method. • The composites are submitted to accelerated ageing by UV irradiation at 254 nm. • The UV irradiation promotes differences in the surface chemistry of the composites. • MB dye is differently adsorbed on surfaces with different degradation degrees. • Good correlation between the colouring degree and surface chemistry. - Abstract: The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  5. Analysis of the Surface of Deposited Copper After Electroerosion Treatment

    Science.gov (United States)

    Ablyaz, T. R.; Simonov, M. Yu.; Shlykov, E. S.

    2018-03-01

    An electron microscope analysis of the surface of deposited copper is performed after a profiling-piercing electroerosion treatment. The deposited copper is treated with steel, duralumin, and copper electrode tools at different pulse energies. The treatment with the duralumin electrode produces on the treated surface a web-like structure and cubic-morphology polyhedral dimples about 10 μm in size. The main components of the surface treated with the steel electrode are developed polyhedral dimples with a size of 10 - 50 μm. After the treatment with the copper electrode the main components of the treated surface are large polyhedral dimples about 30 - 80 μm in size.

  6. Stability analysis of a pressure-solution surface

    Science.gov (United States)

    Gal, Doron; Nur, Amos; Aharonov, Einat

    We present a linear stability analysis of a dissolution surface subjected to non-hydrostatic stress. A sinusoidal perturbation is imposed on an initially flat solid/fluid interface, and the consequent changes in elastic strain energy and surface energy are calculated. Our results demonstrate that if the far-field lateral stresses are either greater, or much smaller than the fluid pressure, the perturbed configuration has a lower strain energy than the initial one. For wavelengths greater than a critical wavelength this energy decrease may be large enough to offset the increased surface energy. Under these conditions, the perturbation grows unstably. If these conditions are not met, the surface becomes flat. The growth rate and wavelength of the maximally unstable mode depend on the mechanism of matter transport. We conclude that the instability discussed in this paper may account for the formation of stylolites and other pressure-solution phenomena, such as roughening of grain contacts.

  7. Data Analysis Techniques for a Lunar Surface Navigation System Testbed

    Science.gov (United States)

    Chelmins, David; Sands, O. Scott; Swank, Aaron

    2011-01-01

    NASA is interested in finding new methods of surface navigation to allow astronauts to navigate on the lunar surface. In support of the Vision for Space Exploration, the NASA Glenn Research Center developed the Lunar Extra-Vehicular Activity Crewmember Location Determination System and performed testing at the Desert Research and Technology Studies event in 2009. A significant amount of sensor data was recorded during nine tests performed with six test subjects. This paper provides the procedure, formulas, and techniques for data analysis, as well as commentary on applications.

  8. Automated analysis of damages for radiation in plastics surfaces

    International Nuclear Information System (INIS)

    Andrade, C.; Camacho M, E.; Tavera, L.; Balcazar, M.

    1990-02-01

    Analysis of damages done by the radiation in a polymer characterized by optic properties of polished surfaces, of uniformity and chemical resistance that the acrylic; resistant until the 150 centigrade grades of temperature, and with an approximate weight of half of the glass. An objective of this work is the development of a method that analyze in automated form the superficial damages induced by radiation in plastic materials means an images analyst. (Author)

  9. Multifractal scaling analysis of autopoisoning reactions over a rough surface

    International Nuclear Information System (INIS)

    Chaudhari, Ajay; Yan, Ching-Cher Sanders; Lee, S.-L.

    2003-01-01

    Decay type diffusion-limited reactions (DLR) over a rough surface generated by a random deposition model were performed. To study the effect of the decay profile on the reaction probability distribution (RPD), multifractal scaling analysis has been carried out. The dynamics of these autopoisoning reactions are controlled by the two parameters in the decay function, namely, the initial sticking probability (P ini ) of every site and the decay rate (m). The smaller the decay rate, the narrower is the range of α values in the α-f(α) multifractal spectrum. The results are compared with the earlier work of DLR over a surface of diffusion-limited aggregation (DLA). We also considered here the autopoisoning reactions over a smooth surface for comparing our results, which show clearly how the roughness affects the chemical reactions. The q-τ(q) multifractal curves for the smooth surface are linear whereas those for the rough surface are nonlinear. The range of α values in the case of a rough surface is wider than that of the smooth surface

  10. Surface analysis of graphite fiber reinforced polyimide composites

    Science.gov (United States)

    Messick, D. L.; Progar, D. J.; Wightman, J. P.

    1983-01-01

    Several techniques have been used to establish the effect of different surface pretreatments on graphite-polyimide composites. Composites were prepared from Celion 6000 graphite fibers and the polyimide LARC-160. Pretreatments included mechanical abrasion, chemical etching and light irradiation. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used in the analysis. Contact angle of five different liquids of varying surface tensions were measured on the composites. SEM results showed polymer-rich peaks and polymer-poor valleys conforming to the pattern of the release cloth used durng fabrication. Mechanically treated and light irradiated samples showed varying degrees of polymer peak removal, with some degradation down to the graphite fibers. Minimal changes in surface topography were observed on concentrations of surface fluorine even after pretreatment. The light irradiation pretreatment was most effective at reducing surface fluorine concentrations whereas chemical pretreatment was the least effective. Critical surface tensions correlated directly with the surface fluorine to carbon ratios as calculated from XPS.

  11. Comparison of different surface quantitative analysis methods. Application to corium

    International Nuclear Information System (INIS)

    Guilbaud, N.; Blin, D.; Perodeaud, Ph.; Dugne, O.; Gueneau, Ch.

    2000-01-01

    In case of a severe hypothetical accident in a pressurized water reactor, the reactor assembly melts partially or completely. The material formed, called corium, flows out and spreads at the bottom of the reactor. To limit and control the consequences of such an accident, the specifications of the O-U-Zr basic system must be known accurately. To achieve this goal, the corium mix was melted by electron bombardment at very high temperature (3000 K) followed by quenching of the ingot in the Isabel 1 evaporator. Metallographic analyses were then required to validate the thermodynamic databases set by the Thermo-Calc software. The study consists in defining an overall surface quantitative analysis method that is fast and reliable, in order to determine the overall corium composition. The analyzed ingot originated in a [U+Fe+Y+UO 2 +ZrO 2 ) mix, with a total mass of 2253.7 grams. Several successive heating with average power were performed before a very brief plateau at very high temperature, so that the ingot was formed progressively and without any evaporation liable to modify its initial composition. The central zone of the ingot was then analyzed by qualitative and quantitative global surface methods, to yield the volume composition of the analyzed zone. Corium sample analysis happens to be very complex because of the variety and number of elements present, and also because of the presence of oxygen in a heavy element like the uranium based matrix. Three different global quantitative surface analysis methods were used: global EDS analysis (Energy Dispersive Spectrometry), with SEM, global WDS analysis (Wavelength Dispersive Spectrometry) with EPMA, and coupling of image analysis with EDS or WDS point spectroscopic analyses. The difficulties encountered during the study arose from sample preparation (corium is very sensitive to oxidation), and the choice of acquisition parameters of the images and analyses. The corium sample studied consisted of two zones displaying

  12. Analysis of surface hardness of artificially aged resin composites

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2012-02-01

    Full Text Available This study evaluated the effect of artificially accelerated aging (AAA on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05, ANOVA and Tukey test (p < 0.05. With regard to hardness (F = 86.74, p < 0.0001 the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53. In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002. It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.

  13. Quantitative XPS analysis of high Tc superconductor surfaces

    International Nuclear Information System (INIS)

    Jablonski, A.; Sanada, N.; Suzuki, Y.; Fukuda, Y.; Nagoshi, M.

    1993-01-01

    The procedure of quantitative XPS analysis involving the relative sensitivity factors is most convenient to apply to high T c superconductor surfaces because this procedure does not require standards. However, a considerable limitation of such an approach is its relatively low accuracy. In the present work, a proposition is made to use for this purpose a modification of the relative sensitivity factor approach accounting for the matrix and the instrumental effects. The accuracy of this modification when applied to the binary metal alloys is 2% or better. A quantitative XPS analysis was made for surfaces of the compounds Bi 2 Sr 2 CuO 6 , Bi 2 Sr 2 CaCu 2 O 8 , and YBa 2 Cu 3 O Y . The surface composition determined for the polycrystalline samples corresponds reasonably well to the bulk stoichiometry. Slight deficiency of oxygen was found for the Bi-based compounds. The surface exposed on cleavage of the Bi 2 Sr 2 CaCu 2 O 8 single crystal was found to be enriched with bismuth, which indicates that the cleavage occurs along the BiO planes. This result is in agreement with the STM studies published in the literature

  14. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  15. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. An intelligent hybrid system for surface coal mine safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lilic, N.; Obradovic, I.; Cvjetic, A. [University of Belgrade, Belgrade (Serbia)

    2010-06-15

    Analysis of safety in surface coal mines represents a very complex process. Published studies on mine safety analysis are usually based on research related to accidents statistics and hazard identification with risk assessment within the mining industry. Discussion in this paper is focused on the application of AI methods in the analysis of safety in mining environment. Complexity of the subject matter requires a high level of expert knowledge and great experience. The solution was found in the creation of a hybrid system PROTECTOR, whose knowledge base represents a formalization of the expert knowledge in the mine safety field. The main goal of the system is the estimation of mining environment as one of the significant components of general safety state in a mine. This global goal is subdivided into a hierarchical structure of subgoals where each subgoal can be viewed as the estimation of a set of parameters (gas, dust, climate, noise, vibration, illumination, geotechnical hazard) which determine the general mine safety state and category of hazard in mining environment. Both the hybrid nature of the system and the possibilities it offers are illustrated through a case study using field data related to an existing Serbian surface coal mine.

  17. Surface analysis in steel nitrides by using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Figueiredo, R.S. de.

    1991-07-01

    The formation of iron nitride layer at low temperatures, 600-700 K, by Moessbauer spectroscopy is studied. These layers were obtained basically through two different processes: ion nitriding and ammonia gas nitriding. A preliminary study about post-discharge nitriding was made using discharge in hollow cathode as well as microwave excitation. The assembly of these chambers is also described. The analysis of the nitrided samples was done by CEMS and CXMS, aided by optical microscopy, and the CEMS and CXMS detectors were constructed by ourselves. We also made a brief study about these detectors, testing as acetone as the mixture 80% He+10% C H 4 as detection gases for the use of CEMS. The surface analysis of the samples showed that in the ammonia gas process nitriding the nitrided layer starts by the superficial formation of an iron nitride rich nitrogen. By thermal evolution this nitride promotes the diffusion of nitrogen and the formation of other more stable nitrides. (author)

  18. Multifractural analysis of AFM images of Nb thin film surfaces

    International Nuclear Information System (INIS)

    Altajskij, M.V; Chernenko, L.P.; Balebanov, V.M.; Erokhin, N.S.; Moiseev, S.S.

    2000-01-01

    The multifractal analysis of the atomic Force Microscope (AFM) images of the Niobium (Nb) thin film surfaces has been performed. These Nb films are being used for the measurements of the London penetration depth of stationary magnetic field by polarized neutron reflectometry. The analysis shows the behavior of Renyi dimensions of images (in the range of available scales 6-2000 nm), like the known multifractal p-model, with typical Hausdorff dimension of prevalent color in the range of 1.6-1.9. This indicates the fractal nature of film landscape on those scales. The perspective of new mechanism of order parameter suppression on superconductor-vacuum boundary, manifested in anomalous magnetic field penetration in discussed

  19. Textural Analysis of Fatique Crack Surfaces: Image Pre-processing

    Directory of Open Access Journals (Sweden)

    H. Lauschmann

    2000-01-01

    Full Text Available For the fatique crack history reconstitution, new methods of quantitative microfractography are beeing developed based on the image processing and textural analysis. SEM magnifications between micro- and macrofractography are used. Two image pre-processing operatins were suggested and proved to prepare the crack surface images for analytical treatment: 1. Normalization is used to transform the image to a stationary form. Compared to the generally used equalization, it conserves the shape of brightness distribution and saves the character of the texture. 2. Binarization is used to transform the grayscale image to a system of thick fibres. An objective criterion for the threshold brightness value was found as that resulting into the maximum number of objects. Both methods were succesfully applied together with the following textural analysis.

  20. Aberration analysis for freeform surface terms overlay on general decentered and tilted optical surfaces.

    Science.gov (United States)

    Yang, Tong; Cheng, Dewen; Wang, Yongtian

    2018-03-19

    Aberration theory helps designers to better understand the nature of imaging systems. However, the existing aberration theory of freeform surfaces has many limitations. For example, it only works in the special case when the central area of the freeform surface is used. In addition, the light footprint is limited to a circle, which does not match the case of an elliptical footprint for general systems. In this paper, aberrations generated by freeform surface term overlay on general decentered and tilted optical surfaces are analyzed. For the case when the off-axis section of a freeform surface is used, the aberration equation for using stop and nonstop surfaces is discussed, and the aberrations generated by Zernike terms up to Z 17/18 are analyzed in detail. To solve the problem of the elliptical light footprint for tilted freeform surfaces, the scaled pupil vector is used in the aberration analysis. The mechanism of aberration transformation is discovered, and the aberrations generated by different Zernike terms in this case are calculated. Finally we proposed aberration equations for freeform terms on general decentered and tilted freeform surfaces. The research result given in this paper offers an important reference for optical designers and engineers, and it is of great importance in developing analytical methods for general freeform system design, tolerance analysis, and system assembly.

  1. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    Science.gov (United States)

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  2. Storage fee analysis for a retrievable surface storage facility

    International Nuclear Information System (INIS)

    Field, B.B.; Rosnick, C.K.

    1973-12-01

    Conceptual design studies are in progress for a Water Basin Concept (WBC) and an alternative Sealed Storage Cask Concept (SSCC) of a Retrievable Surface Storage Facility (RSSF) intended as a Federal government facility for storing high-level radioactive wastes until a permanent disposal method is established. The RSSF will be a man-made facility with a design life of at least 100 y, and will have capacity to store all of the high-level waste from the reprocessing of nuclear power plant spent fuels generated by the industry through the year 2000. This report is a basic version of ARH-2746, ''Retrievable Surface Storage Facility, Water Basin Concept, User Charge Analysis.'' It is concerned with the issue of establishing a fee to cover the cost of storing nuclear wastes both in the RSSF and at the subsequent disposal facility. (U.S.)

  3. Bio-inspired nanotechnology from surface analysis to applications

    CERN Document Server

    Walsh, Tiffany

    2014-01-01

    This book focuses on the use of bio-inspired and biomimetic methods for the fabrication and activation of nanomaterials. This includes studies concerning the binding of the biomolecules to the surface of inorganic structures, structure/function relationships of the final materials, and extensive discussions on the final applications of such biomimetic materials in unique applications including energy harvesting/storage, biomedical diagnostics, and materials assembly. This book also: ·          Covers the sustainable features of bio-inspired nanotechnology ·          Includes studies on the unique applications of biomimetic materials, such as energy harvesting and biomedical diagnostics Bio-Inspired Nanotechnology: From Surface Analysis to Applications is an ideal book for researchers, students, nanomaterials engineers, bioengineers, chemists, biologists, physicists, and medical researchers.

  4. TED analysis of the Si(113) surface structure

    Science.gov (United States)

    Suzuki, T.; Minoda, H.; Tanishiro, Y.; Yagi, K.

    1999-09-01

    We carried out a TED (transmission electron diffraction) analysis of the Si(113) surface structure. The TED patterns taken at room temperature showed reflections due to the 3×2 reconstructed structure. The TED pattern indicated that a glide plane parallel to the direction suggested in some models is excluded. We calculated the R-factors (reliability factors) for six surface structure models proposed previously. All structure models with energy-optimized atomic positions have large R-factors. After revision of the atomic positions, the R-factors of all the structure models decreased below 0.3, and the revised version of Dabrowski's 3×2 model has the smallest R-factor of 0.17.

  5. The surface analysis methods; Les methodes d`analyse des surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Deville, J.P. [Institut de Physique et Chimie, 67 - Strasbourg (France)

    1998-11-01

    Nowadays, there are a lot of surfaces analysis methods, each having its specificity, its qualities, its constraints (for instance vacuum) and its limits. Expensive in time and in investment, these methods have to be used deliberately. This article appeals to non specialists. It gives some elements of choice according to the studied information, the sensitivity, the use constraints or the answer to a precise question. After having recalled the fundamental principles which govern these analysis methods, based on the interaction between radiations (ultraviolet, X) or particles (ions, electrons) with matter, two methods will be more particularly described: the Auger electron spectroscopy (AES) and x-rays photoemission spectroscopy (ESCA or XPS). Indeed, they are the most widespread methods in laboratories, the easier for use and probably the most productive for the analysis of surface of industrial materials or samples submitted to treatments in aggressive media. (O.M.) 11 refs.

  6. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  7. Multi-channel Analysis of Passive Surface Waves (MAPS)

    Science.gov (United States)

    Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.

    2017-12-01

    Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be

  8. Response surface analysis to improve dispersed crude oil biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Zahed, Mohammad A.; Aziz, Hamidi A.; Mohajeri, Leila [School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang (Malaysia); Isa, Mohamed H. [Civil Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia)

    2012-03-15

    In this research, the bioremediation of dispersed crude oil, based on the amount of nitrogen and phosphorus supplementation in the closed system, was optimized by the application of response surface methodology and central composite design. Correlation analysis of the mathematical-regression model demonstrated that a quadratic polynomial model could be used to optimize the hydrocarbon bioremediation (R{sup 2} = 0.9256). Statistical significance was checked by analysis of variance and residual analysis. Natural attenuation was removed by 22.1% of crude oil in 28 days. The highest removal on un-optimized condition of 68.1% were observed by using nitrogen of 20.00 mg/L and phosphorus of 2.00 mg/L in 28 days while optimization process exhibited a crude oil removal of 69.5% via nitrogen of 16.05 mg/L and phosphorus 1.34 mg/L in 27 days therefore optimization can improve biodegradation in shorter time with less nutrient consumption. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  10. Paired Expression Analysis of Tumor Cell Surface Antigens

    Directory of Open Access Journals (Sweden)

    Rimas J. Orentas

    2017-08-01

    Full Text Available Adoptive immunotherapy with antibody-based therapy or with T cells transduced to express chimeric antigen receptors (CARs is useful to the extent that the cell surface membrane protein being targeted is not expressed on normal tissues. The most successful CAR-based (anti-CD19 or antibody-based therapy (anti-CD20 in hematologic malignancies has the side effect of eliminating the normal B cell compartment. Targeting solid tumors may not provide a similar expendable marker. Beyond antibody to Her2/NEU and EGFR, very few antibody-based and no CAR-based therapies have seen broad clinical application for solid tumors. To expand the way in which the surfaceome of solid tumors can be analyzed, we created an algorithm that defines the pairwise relative overexpression of surface antigens. This enables the development of specific immunotherapies that require the expression of two discrete antigens on the surface of the tumor target. This dyad analysis was facilitated by employing the Hotelling’s T-squared test (Hotelling–Lawley multivariate analysis of variance for two independent variables in comparison to a third constant entity (i.e., gene expression levels in normal tissues. We also present a unique consensus scoring mechanism for identifying transcripts that encode cell surface proteins. The unique application of our bioinformatics processing pipeline and statistical tools allowed us to compare the expression of two membrane protein targets as a pair, and to propose a new strategy based on implementing immunotherapies that require both antigens to be expressed on the tumor cell surface to trigger therapeutic effector mechanisms. Specifically, we found that, for MYCN amplified neuroblastoma, pairwise expression of ACVR2B or anaplastic lymphoma kinase (ALK with GFRA3, GFRA2, Cadherin 24, or with one another provided the strongest hits. For MYCN, non-amplified stage 4 neuroblastoma, neurotrophic tyrosine kinase 1, or ALK paired with GFRA2, GFRA3, SSK

  11. Transcriptome analysis of Haloquadratum walsbyi: vanity is but the surface.

    Science.gov (United States)

    Bolhuis, Henk; Martín-Cuadrado, Ana Belén; Rosselli, Riccardo; Pašić, Lejla; Rodriguez-Valera, Francisco

    2017-07-03

    Haloquadratum walsbyi dominates saturated thalassic lakes worldwide where they can constitute up to 80-90% of the total prokaryotic community. Despite the abundance of the enigmatic square-flattened cells, only 7 isolates are currently known with 2 genomes fully sequenced and annotated due to difficulties to grow them under laboratory conditions. We have performed a transcriptomic analysis of one of these isolates, the Spanish strain HBSQ001 in order to investigate gene transcription under light and dark conditions. Despite a potential advantage for light as additional source of energy, no significant differences were found between light and dark expressed genes. Constitutive high gene expression was observed in genes encoding surface glycoproteins, light mediated proton pumping by bacteriorhodopsin, several nutrient uptake systems, buoyancy and storage of excess carbon. Two low expressed regions of the genome were characterized by a lower codon adaptation index, low GC content and high incidence of hypothetical genes. Under the extant cultivation conditions, the square hyperhalophile devoted most of its transcriptome towards processes maintaining cell integrity and exploiting solar energy. Surface glycoproteins are essential for maintaining the large surface to volume ratio that facilitates light and organic nutrient harvesting whereas constitutive expression of bacteriorhodopsin warrants an immediate source of energy when light becomes available.

  12. Trace drug analysis by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Farquharson, Stuart; Lee, Vincent Y.

    2000-12-01

    Drug overdose involves more than 10 percent of emergency room (ER) cases, and a method to rapidly identify and quantify the abused drug is critical to the ability of the ER physician to administer the appropriate care. To this end, we have been developing a surface-enhanced Raman (SER) active material capable of detecting target drugs at physiological concentrations in urine. The SER-active material consists of a metal-doped sol-gel that provides not only a million fold increase in sensitivity but also reproducible measurements. The porous silica network offers a unique environment for stabilizing SER active metal particles and the high surface area increase the interaction between the analyte and metal particles. The sol-gel has been coated on the inside walls of glass samples vials, such that urine specimens may simply be introduced for analysis. Here we present the surface-enhanced Raman spectra of a series of barbiturates, actual urine specimens, and a drug 'spiked' urine specimen. The utility of pH adjustment to suppress dominant biochemicals associated with urine is also presented.

  13. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  14. Application of response surfaces for reliability analysis of marine structures

    International Nuclear Information System (INIS)

    Leira, Bernt J.; Holmas, Tore; Herfjord, Kjell

    2005-01-01

    Marine structures subjected to multiple environmental loads (i.e. waves, current, wind) are considered. These loads are characterized by a set of corresponding parameters. The structural fatigue damage and long-term response are expressed in terms of these environmental parameters based on application of polynomial response surfaces. For both types of analysis, an integration across the range of variation for all the environmental parameters is required. The location of the intervals which give rise to the dominant contribution for these integrals depends on the relative magnitude of the coefficients defining the polynomials. The required degree of numerical subdivision in order to obtain accurate results is also of interest. These issues are studied on a non-dimensional form. The loss of accuracy which results when applying response surfaces of too low order is also investigated. Response surfaces with cut-off limits at specific lower-bound values for the environmental parameters are further investigated. Having obtained general expressions on non-dimensional form, examples which correspond to specific response quantities for marine structures are considered. Typical values for the polynomial coefficients, and for the statistical distributions representing the environmental parameters, are applied. Convergence studies are subsequently performed for the particular example response quantities in order to make comparison with the general formulation. For the extreme response, the application of 'extreme contours' obtained from the statistical distributions of the environmental parameters is explored

  15. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery.

    Science.gov (United States)

    Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya

    2015-05-01

    Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth

  16. Surface Analysis of the Laser Cleaned Metal Threads

    Science.gov (United States)

    Sokhan, M.; Hartog, F.; McPhail, D.

    The laser cleaning of the tarnished silver threads was carried out using Nd:YAG laser radiation at IR (1064 nm) and visible wavelengths (532 nm). The preliminary tests were made on the piece of silk with the silver embroidery with the clean and tarnished areas. FIBS and SIMS analysis were used for analysing the condition of the surface before and after laser irradiation. It was found that irradiation below 0.4 J/cm-2 and higher than 1.0 J/cm-2 fluences aggravates the process of tarnishing and leads to the yellowing effect. The results of preliminary tests were used for finding the optimum cleaning regime for the laser cleaning of the real museum artefact: "Women Riding Jacket" dated to the beginning of 18th century.

  17. Analysis of MAGSAT and surface data of the Indian region

    Science.gov (United States)

    Agarwal, G. C. (Principal Investigator)

    1983-01-01

    Techniques and significant results of an analysis of MAGSAT and surface data of the Indian region are described. Specific investigative tasks included: (1) use of the multilevel data at different altitudes to develop a model for variation of magnetic anomaly with altitude; (2) development of the regional model for the description of main geomagnetic field for the Indian sub-continent using MAGSAT and observatory data; (3) development of regional mathematical model of secular variations over the Indian sub-continent; and (4) downward continuation of the anomaly field obtained from MAGSAT and its combination with the existing observatory data to produce a regional anomaly map for elucidating tectonic features of the Indian sub-continent.

  18. Hygrothermal analysis of surface layers of historical masonry

    Science.gov (United States)

    Kočí, Václav; Maděra, Jiří; Keppert, Martin; Černý, Robert

    2017-11-01

    The paper deals with the hygrothermal analysis of surface layers of historical masonry. Solid brick provided with a traditional and two modified lime-based plasters is studied. The heat and moisture transport in the envelope is induced by an exposure of the wall from the exterior side to dynamic climatic conditions of Olomouc, Czech Republic. The transport processes are described using diffusion type of mathematical model based on experimentally determined material properties. The computational results indicate that hygric transport and accumulation properties of exterior plasters affect the hygrothermal performance of the underlying solid brick in a very significant way, being able to regulate the amount of transported moisture. The modified lime plasters are not found generally superior to the traditional lime plasters in that respect. Therefore, their suitability for historical masonry should be assessed case by case, with a particular attention to the climatic conditions and to the properties of the load bearing structure.

  19. Economic Analysis Of Radiation Surface Coating Of Parquet Flooring

    International Nuclear Information System (INIS)

    Danu, S.

    1989-01-01

    The surface coating of mosaic parquet flooring has been done using electron beam and UV irradiation in a pilot scale and technically successful. Economic analysis of the coating process will be discussed in this paper. Four kinds of irradiated parquet flooring were used for comparing costs and important factors on the analysis such as capital, production cost, selling price, break-event point, payout time and internal rate of return. The results showed there the higher quality of the products, the higher are its production cost and selling price. The selling price of irradiated parquet flooring per m2 for process A, B, C and D were Rp. 20,700; Rp. 23,900; Rp. 24,500; and Rp. 25,000 at the lowest profit level of 10% and RP. 25,500; Rp. 34,700; Rp. 35,500; and Rp. 36,400 at the highest profit level of 150% of the fixed capital. The total capital required were Rp. 1.9 billion up to 3.3 billion. (author). 5 refs, 9 tabs

  20. Below-surface analysis of inclusions with PIXE and PIGE

    International Nuclear Information System (INIS)

    MacArthur, J.D.; Ma, X.P.; Palmer, G.R.; Anderson, A.J.; Clark, A.H.

    1990-01-01

    The composition of fluid inclusions in host minerals holds much information about the chemical environment of mineral formation. When solid inclusions are exposed through polishing, their content can readily be investigated with an electron or proton probe. However, with an electron probe, only the daughter minerals or the residue material left when a fluid inclusion is opened can be analyzed since electrons with energies of tens of keV cannot penetrate to the unexposed inclusion. On the other hand, proton beams of a few MeV can penetrate a few tens of μm of material and still be able to excite characteristic radiation. This phenomenon has been exploited for the analysis of subsurface inclusions. Ideally, standard petrographic sections are polished to that inclusions, targetted for analysis, are brought to within 10 μm of the surface. The overlying matrix reduces the sensitivity of PIXE for the elements of low Z such as Na and Al because of the attenuation of the X-rays. However, these elements, as well as elements of even lower Z, which cannot be analyzed with the electron probe, can readily be detected with PIGE at good sensitivity. (orig.)

  1. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    Science.gov (United States)

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-07

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.

  2. Log-Normality and Multifractal Analysis of Flame Surface Statistics

    Science.gov (United States)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2013-11-01

    The turbulent flame surface is typically highly wrinkled and folded at a multitude of scales controlled by various flame properties. It is useful if the information contained in this complex geometry can be projected onto a simpler regular geometry for the use of spectral, wavelet or multifractal analyses. Here we investigate local flame surface statistics of turbulent flame expanding under constant pressure. First the statistics of local length ratio is experimentally obtained from high-speed Mie scattering images. For spherically expanding flame, length ratio on the measurement plane, at predefined equiangular sectors is defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at corresponding area-ratio pdfs. Both the pdfs are found to be near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis. Currently at Indian Institute of Science, India.

  3. SEM Analysis of Surface Impact on Biofilm Antibiotic Treatment.

    Science.gov (United States)

    Gomes, Luciana Calheiros; Mergulhão, Filipe José

    2017-01-01

    The aim of this work was to use scanning electron microscopy (SEM) to investigate the effect of ampicillin treatment on Escherichia coli biofilms formed on two surface materials with different properties, silicone (SIL) and glass (GLA). Epifluorescence microscopy (EM) was initially used to assess biofilm formation and killing efficiency on both surfaces. This technique showed that higher bacterial colonization was obtained in the hydrophobic SIL than in the hydrophilic GLA. It has also shown that higher biofilm inactivation was attained for GLA after the antibiotic treatment (7-log reduction versus 1-log reduction for SIL). Due to its high resolution and magnification, SEM enabled a more detailed analysis of the antibiotic effect on biofilm cells, complementing the killing efficiency information obtained by EM. SEM micrographs revealed that ampicillin-treated cells have an elongated form when compared to untreated cells. Additionally, it has shown that different materials induced different levels of elongation on cells exposed to antibiotic. Biofilms formed on GLA showed a 37% higher elongation than those formed on SIL. Importantly, cell elongation was related to viability since ampicillin had a higher bactericidal effect on GLA-formed biofilms. These findings raise the possibility of using SEM for understanding the efficacy of antimicrobial treatments by observation of biofilm morphology.

  4. Rate equation analysis of hydrogen uptake on Si (100) surfaces

    International Nuclear Information System (INIS)

    Inanaga, S.; Rahman, F.; Khanom, F.; Namiki, A.

    2005-01-01

    We have studied the uptake process of H on Si (100) surfaces by means of rate equation analysis. Flowers' quasiequilibrium model for adsorption and desorption of H [M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, Surf. Sci. 396, 227 (1998)] is extended so that in addition to the H abstraction (ABS) and β 2 -channel thermal desorption (TD) the proposed rate equation further includes the adsorption-induced desorption (AID) and β 1 -TD. The validity of the model is tested by the experiments of ABS and AID rates in the reaction system H+D/Si (100). Consequently, we find it can well reproduce the experimental results, validating the proposed model. We find the AID rate curve as a function of surface temperature T s exhibits a clear anti-correlation with the bulk dangling bond density versus T s curve reported in the plasma-enhanced chemical vapor deposition (CVD) for amorphous Si films. The significance of the H chemistry in plasma-enhanced CVD is discussed

  5. Surface-Source Downhole Seismic Analysis in R

    Science.gov (United States)

    Thompson, Eric M.

    2007-01-01

    This report discusses a method for interpreting a layered slowness or velocity model from surface-source downhole seismic data originally presented by Boore (2003). I have implemented this method in the statistical computing language R (R Development Core Team, 2007), so that it is freely and easily available to researchers and practitioners that may find it useful. I originally applied an early version of these routines to seismic cone penetration test data (SCPT) to analyze the horizontal variability of shear-wave velocity within the sediments in the San Francisco Bay area (Thompson et al., 2006). A more recent version of these codes was used to analyze the influence of interface-selection and model assumptions on velocity/slowness estimates and the resulting differences in site amplification (Boore and Thompson, 2007). The R environment has many benefits for scientific and statistical computation; I have chosen R to disseminate these routines because it is versatile enough to program specialized routines, is highly interactive which aids in the analysis of data, and is freely and conveniently available to install on a wide variety of computer platforms. These scripts are useful for the interpretation of layered velocity models from surface-source downhole seismic data such as deep boreholes and SCPT data. The inputs are the travel-time data and the offset of the source at the surface. The travel-time arrivals for the P- and S-waves must already be picked from the original data. An option in the inversion is to include estimates of the standard deviation of the travel-time picks for a weighted inversion of the velocity profile. The standard deviation of each travel-time pick is defined relative to the standard deviation of the best pick in a profile and is based on the accuracy with which the travel-time measurement could be determined from the seismogram. The analysis of the travel-time data consists of two parts: the identification of layer-interfaces, and the

  6. The Planet Mercury Surface Spectroscopy and Analysis from the Kuiper Airborne Observatory and Analysis and Modeling to Determine Surface Composition

    Science.gov (United States)

    Sprague, Ann

    1997-01-01

    We had two successful flights to observe Mercury from the Kuiper Airborne Observatory (KAO) using High-efficiency Infrared Faint-Object Grating Spectrograph (HIFOGS). Flights were May 8, 1995 (eastern elongation) and July 6, 1995 (western elongation) For the observations one half of the primary mirror was covered to prevent sunlight from entering the telescope. All equipment and the airplane and its crew performed well. These flights were historical firsts for the KAO and for spectroscopy of Mercury in that it was the first time any spectroscopic observations of Mercury from above the Earth's atmosphere had been made. It was the first time the KAO had been used to @bserve an object less than 30 degrees from the Sun. Upon completion of the basic data reduction it became obvious that extensive modeling and analysis would be required to understand the data. It took three years of a graduate student's time and part time the PI to do the thermal modeling and the spectroscopic analysis. This resulted in a lengthy publication. A copy of this publication is attached and has all the data obtained in both KAO flights and the results clearly presented. Notable results are: (1) The observations found an as yet unexplained 5 micron emission enhancement that we think may be a real characteristic of Mercury's surface but could have an instrumental cause; (2) Ground-based measurements or an emission maximum at 7.7 microns were corroborated. The chemical composition of Mercury's surface must be feldspathic in order to explain spectra features found in the data obtained during the KAO flights.

  7. Surface analysis of transition metal oxalates: Damage aspects

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@imp.kiev.ua [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Institute of Metal Physics, Nat. Acad. Sci. of Ukraine, Akad. Vernadsky Blvd. 36, 03680 Kiev (Ukraine); Szukiewicz, R. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Barbosa, R.; Kruse, N. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Voiland School of Chemical Engineering and Bioengineering, Washington State University, 155 Wegner Hall, Pullman, WA 99164-6515 (United States)

    2016-05-15

    Highlights: • Gas evolution from the Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation is studied. • A comparative study of the damage caused by X-rays in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} is carried out. • Effect of Ar{sup +} bombardment on the structure and composition of CoC{sub 2}O{sub 4} is studied. - Abstract: The behavior of transition metal oxalates in vacuum, under X-ray irradiation and low-energy Ar{sup +} ion bombardment was studied. A comparative mass-spectrometric analysis was carried out of gas evolution from the surface of Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation. The rates of H{sub 2}O and CO{sub 2} liberation from the oxalates were found to be in an inverse correlation with the temperatures of dehydration and decomposition, respectively. X-ray photoelectron spectroscopy (XPS) was employed to study the X-ray induced damage in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} by measuring the various XP spectral characteristics and surface composition of the oxalates as a function of time of exposure to X-rays. It was shown that Cu oxalate underwent a significantly faster degradation than Ni oxalate and demonstrated a high degree of X-ray induced reduction from the Cu{sup 2+} to the Cu{sup 1+} chemical state. 500 eV Ar{sup +} sputter cleaning of CoC{sub 2}O{sub 4} for 10 min was found to cause a strong transformation of the oxalate structure which manifested itself in an appreciable alteration of the XP core-level and valence band spectra. The analysis of changes in stoichiometry and comparison of XP spectra of bombarded oxalate with respective spectra of a reference carbonate CoCO{sub 3} implied that the bombardment-induced decomposition of CoC{sub 2}O{sub 4} gave rise to the formation of CoO-like and disordered CoCO{sub 3}-like phases.

  8. Statistical analysis of planktic foraminifera of the surface Continental ...

    African Journals Online (AJOL)

    Planktic foraminiferal assemblage recorded from selected samples obtained from shallow continental shelf sediments off southwestern Nigeria were subjected to statistical analysis. The Principal Component Analysis (PCA) was used to determine variants of planktic parameters. Values obtained for these parameters were ...

  9. Pressure relieving support surfaces (PRESSURE) trial: cost effectiveness analysis.

    Science.gov (United States)

    Iglesias, Cynthia; Nixon, Jane; Cranny, Gillian; Nelson, E Andrea; Hawkins, Kim; Phillips, Angela; Torgerson, David; Mason, Su; Cullum, Nicky

    2006-06-17

    To assess the cost effectiveness of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers in patients admitted to hospital. Cost effectiveness analysis carried out alongside the pressure relieving support surfaces (PRESSURE) trial; a multicentre UK based pragmatic randomised controlled trial. 11 hospitals in six UK NHS trusts. Intention to treat population comprising 1971 participants. Kaplan Meier estimates of restricted mean time to development of pressure ulcers and total costs for treatment in hospital. Alternating pressure mattresses were associated with lower overall costs (283.6 pounds sterling per patient on average, 95% confidence interval--377.59 pounds sterling to 976.79 pounds sterling) mainly due to reduced length of stay in hospital, and greater benefits (a delay in time to ulceration of 10.64 days on average,--24.40 to 3.09). The differences in health benefits and total costs for hospital stay between alternating pressure mattresses and alternating pressure overlays were not statistically significant; however, a cost effectiveness acceptability curve indicated that on average alternating pressure mattresses compared with alternating pressure overlays were associated with an 80% probability of being cost saving. Alternating pressure mattresses for the prevention of pressure ulcers are more likely to be cost effective and are more acceptable to patients than alternating pressure overlays.

  10. An Analysis of Fundamental Mode Surface Wave Amplitude Measurements

    Science.gov (United States)

    Schardong, L.; Ferreira, A. M.; van Heijst, H. J.; Ritsema, J.

    2014-12-01

    Seismic tomography is a powerful tool to decipher the Earth's interior structure at various scales. Traveltimes of seismic waves are widely used to build velocity models, whereas amplitudes are still only seldomly accounted for. This mainly results from our limited ability to separate the various physical effects responsible for observed amplitude variations, such as focussing/defocussing, scattering and source effects. We present new measurements from 50 global earthquakes of fundamental-mode Rayleigh and Love wave amplitude anomalies measured in the period range 35-275 seconds using two different schemes: (i) a standard time-domain amplitude power ratio technique; and (ii) a mode-branch stripping scheme. For minor-arc data, we observe amplitude anomalies with respect to PREM in the range of 0-4, for which the two measurement techniques show a very good overall agreement. We present here a statistical analysis and comparison of these datasets, as well as comparisons with theoretical calculations for a variety of 3-D Earth models. We assess the geographical coherency of the measurements, and investigate the impact of source, path and receiver effects on surface wave amplitudes, as well as their variations with frequency in a wider range than previously studied.

  11. Introduction to global analysis minimal surfaces in Riemannian manifolds

    CERN Document Server

    Moore, John Douglas

    2017-01-01

    During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of this subject is Morse theory, according to which the critical points of a generic smooth proper function on a manifold M determine the homology of the manifold. Morse envisioned applying this idea to the calculus of variations, including the theory of periodic motion in classical mechanics, by approximating the space of loops on M by a finite-dimensional manifold of high dimension. Palais and Smale reformulated Morse's calculus of variations in terms of infinite-dimensional manifolds, and these infinite-dimensional manifolds were found useful for studying a wide variety of nonlinear PDEs. This book applies infinite-dimensional manifold theory to the Morse theory of closed geodesics in a Riemannian manifold. It then describes the problems encountered when extending this theory to maps from surfaces instead of curves. It treats critical point theory for closed param...

  12. Global analysis of urban surface water supply vulnerability

    International Nuclear Information System (INIS)

    Padowski, Julie C; Gorelick, Steven M

    2014-01-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)

  13. A method of non-destructive quantitative analysis of the ancient ceramics with curved surface

    International Nuclear Information System (INIS)

    He Wenquan; Xiong Yingfei

    2002-01-01

    Generally the surface of the sample should be smooth and flat in XRF analysis, but the ancient ceramics and hardly match this condition. Two simple methods are put forward in fundamental method and empirical correction method of XRF analysis, so the analysis of little sample or the sample with curved surface can be easily completed

  14. Parametric analysis of change in wave number of surface waves

    Directory of Open Access Journals (Sweden)

    Tadić Ljiljana

    2015-01-01

    Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.

  15. QAPP for Hydraulic Fracturing (HF) Surface Spills Data Analysis

    Science.gov (United States)

    This QAPP provides information concerning the analysis of spills associated with hydraulic fracturing. This project is relevant to both the chemical mixing and flowback and produced water stages of the HF water cycle as found in the HF Study Plan.

  16. Size and surface AREA analysis of some metallic and intermetallic powders

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Elsayed, A.A.; Abadir, M.F.

    1988-01-01

    The powder characterization of three intermetallic compounds ( Cr B, B 4 c and S ib 4 ) and three metallic powders (Fe, Co, and Ni) has been performed. This included the determination of powder density, chemical analysis, impurity analysis, shape factor, particle size analysis and specific surface area. The particle size analysis for the six powders was carried out using three techniques, namely; the 0-23, the microtrac and the fisher sub sieve and size. It was found that the analysis of the two powders and deviates from the log-normal probability distribution and the deviation was corrected. The specific surface area of the powders was measured using the high speed surface area analysis (BET method), and it was also calculated from surface area analysis findings, the BET technique was found to give the highest specific surface area values, and was attributed to the inclusion of internal porosity in the measurement. 8 fig., 10 tab

  17. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This high-resolution sea surface temperature (SST) analysis product was developed using an optimum interpolation (OI) technique. The SST analysis has a spatial grid...

  18. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  19. Assessment of surface water quality using hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Dheeraj Kumar Dabgerwal

    2016-02-01

    Full Text Available This study was carried out to assess the physicochemical quality river Varuna inVaranasi,India. Water samples were collected from 10 sites during January-June 2015. Pearson correlation analysis was used to assess the direction and strength of relationship between physicochemical parameters. Hierarchical Cluster analysis was also performed to determine the sources of pollution in the river Varuna. The result showed quite high value of DO, Nitrate, BOD, COD and Total Alkalinity, above the BIS permissible limit. The results of correlation analysis identified key water parameters as pH, electrical conductivity, total alkalinity and nitrate, which influence the concentration of other water parameters. Cluster analysis identified three major clusters of sampling sites out of total 10 sites, according to the similarity in water quality. This study illustrated the usefulness of correlation and cluster analysis for getting better information about the river water quality.International Journal of Environment Vol. 5 (1 2016,  pp: 32-44

  20. Quantitative surface analysis using deuteron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Afarideh, Hossein

    1991-01-01

    The nuclear reaction analysis (NRA) technique consists of looking at the energies of the reaction products which uniquely define the particular elements present in the sample and it analysis the yield/energy distribution to reveal depth profiles. A summary of the basic features of the nuclear reaction analysis technique is given, in particular emphasis is placed on quantitative light element determination using (d,p) and (d,alpha) reactions. The experimental apparatus is also described. Finally a set of (d,p) spectra for the elements Z=3 to Z=17 using 2 MeV incident deutrons is included together with example of more applications of the (d,alpha) spectra. (author)

  1. GHRSST Level 4 DMI_OI Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  2. GHRSST Level 4 MUR North America Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset at the JPL Physical...

  3. GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  4. GHRSST Level 4 AVHRR_AMSR_OI Global Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  5. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  6. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean...

  7. GHRSST Level 4 MW_OI Global Foundation Sea Surface Temperature analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at Remote Sensing...

  8. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  9. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  10. GHRSST Level 4 ODYSSEA Eastern Central Pacific Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  11. Diterpenoic acids analysis using a coupled TLC-surface-enhanced Raman spectroscopy system

    NARCIS (Netherlands)

    Orinak, A.; Talian, I.; Efremov, E.V.; Ariese, F.; Oriaakova, R.

    2008-01-01

    Hyphenation of thin layer chromatography (TLC) with surface-based spectral methods requires a homogeneous surface for direct and quantitative analysis on the chromatographic plate after separation. Since most chromatographic materials do not produce strong background signals in Raman spectroscopy

  12. GHRSST Level 4 ODYSSEA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  13. GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  14. GHRSST Level 4 GAMSSA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  15. GHRSST Level 4 RAMSSA Australian Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  16. GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature Analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the UK Met Office...

  17. Analysis of coatings appearance and durability testing induced surface defects using image capture/processing/analysis

    Directory of Open Access Journals (Sweden)

    Lee, F.

    2003-12-01

    Full Text Available There are no established and accepted techniques available for accurate characterization appearance changes brought about by scratch and mar damage. Scratch and mar resistance is related to the ability of a coating in resisting deformation. The appearance change is brought about by surface roughening which in turn leads to a reduction in gloss and reflectivity. This paper focuses on the measurement of the appearance of coating by image analysis and gloss measurement.

    No hay técnicas establecidas o aceptadas para una caracterización precisa de los cambios de apariencia dados por los rayones profundos y daños superficiales en los recubrimientos. La resistencia a estos eventos está relacionada con la habilidad del recubrimiento a resistir la deformación. El cambio de apariencia se presenta en la superficie como una aspereza que va llevando a la reducción del brillo y de la reflectancia. Este trabajo se centra en las mediciones de apariencia de un recubrimiento por análisis de imágenes y medición de brillo.

  18. Surface analysis of thin film coatings on container glass

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, A. [GCC Pty Ltd., Jindalee, QLD (Australia); Wood, B. [The University of Queensland, Brisbane, QLD (Australia). Department of Chemistry

    1999-12-01

    Full text: Container glass is generally coated with a tin oxide layer followed by a coating of polymer. These coatings are believed to improve the mechanical properties of container glass as well as aid in the application of advertising labels to glass. The tin oxide layer on commercial beer bottles has a total thickness of about 15-20nm which consists of an interfacial layer comprising 70-85% of the total thickness. The polymer coating is about 2-5nm thick and also possesses an interfacial layer with tin oxide. A PHI Model 560 XPS/ SAM/ SIMS multi-technique system Is used to estimate concentration profiles of Sn, O, C, Si, Ca, Na and O. A combination of XPS, AES and SIMS is necessary to describe the coatings. Instrumental conditions and sample preparation methods are developed to optimize the analysis of thin films on glass. The coating comprises of three areas, namely (A) where polymer and tin co-exist (B) a pure tin oxide layer and (C) where tin co-exists with glass. By varying the chemical source of tin, it is possible to systematically vary the thickness of the interface and the concentration profile of Sn. Using XRD, crystalline phase(s) could be detected in tin oxide films as thin as 15nm. While the principle phase is cassiterite, a second phase is also detected which is believed to originate from the interface. Using a UMIS 2000 nanoindentor system, instrumental parameters are optimized for measurement of elastic modulus of films at varying depths, i.e. from surface of coating to the bulk of the glass. A sharp rise is observed at depth corresponding to the interface which is indicative of the significance of the interfacial layer. Samples are prepared by systematic ion-milling which are representative of various regions of the coating, namely (A), (B) and (C). These samples are analyzed by XRD and TEM. Based on these studies, a structural model of tin oxide layer and interface is presented to explain increase in elastic modulus at the interface. Copyright

  19. Surface analysis of thin film coatings on container glass

    International Nuclear Information System (INIS)

    Bhargava, A.; Wood, B.

    1999-01-01

    Full text: Container glass is generally coated with a tin oxide layer followed by a coating of polymer. These coatings are believed to improve the mechanical properties of container glass as well as aid in the application of advertising labels to glass. The tin oxide layer on commercial beer bottles has a total thickness of about 15-20nm which consists of an interfacial layer comprising 70-85% of the total thickness. The polymer coating is about 2-5nm thick and also possesses an interfacial layer with tin oxide. A PHI Model 560 XPS/ SAM/ SIMS multi-technique system Is used to estimate concentration profiles of Sn, O, C, Si, Ca, Na and O. A combination of XPS, AES and SIMS is necessary to describe the coatings. Instrumental conditions and sample preparation methods are developed to optimize the analysis of thin films on glass. The coating comprises of three areas, namely (A) where polymer and tin co-exist (B) a pure tin oxide layer and (C) where tin co-exists with glass. By varying the chemical source of tin, it is possible to systematically vary the thickness of the interface and the concentration profile of Sn. Using XRD, crystalline phase(s) could be detected in tin oxide films as thin as 15nm. While the principle phase is cassiterite, a second phase is also detected which is believed to originate from the interface. Using a UMIS 2000 nanoindentor system, instrumental parameters are optimized for measurement of elastic modulus of films at varying depths, i.e. from surface of coating to the bulk of the glass. A sharp rise is observed at depth corresponding to the interface which is indicative of the significance of the interfacial layer. Samples are prepared by systematic ion-milling which are representative of various regions of the coating, namely (A), (B) and (C). These samples are analyzed by XRD and TEM. Based on these studies, a structural model of tin oxide layer and interface is presented to explain increase in elastic modulus at the interface. Copyright

  20. Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA)

    Science.gov (United States)

    SRD 100 Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA) (PC database for purchase)   This database has been designed to facilitate quantitative interpretation of Auger-electron and X-ray photoelectron spectra and to improve the accuracy of quantitation in routine analysis. The database contains all physical data needed to perform quantitative interpretation of an electron spectrum for a thin-film specimen of given composition. A simulation module provides an estimate of peak intensities as well as the energy and angular distributions of the emitted electron flux.

  1. Direct mass spectrometric screening of antibiotics from bacterial surfaces using liquid extraction surface analysis.

    Science.gov (United States)

    Kai, Marco; González, Ignacio; Genilloud, Olga; Singh, Sheo B; Svatoš, Aleš

    2012-10-30

    There is a need to find new antibiotic agents to fight resistant pathogenic bacteria. To search successfully for novel antibiotics from bacteria cultivated under diverse conditions, we need a fast and cost-effective screening method. A combination of Liquid Extraction Surface Analysis (LESA), automated chip-based nanoelectrospray ionization, and high-resolution mass or tandem mass spectrometry using an Orbitrap XL was tested as the screening platform. Actinobacteria, known to produce well-recognized thiazolyl peptide antibiotics, were cultivated on a plate of solid medium and the antibiotics were extracted by organic solvent mixtures from the surface of colonies grown on the plate and analyzed using mass spectrometry (MS). LESA combined with high-resolution MS is a powerful tool with which to extract and detect thiazolyl peptide antibiotics from different Actinobacteria. Known antibiotics were correctly detected with high mass accuracy (antibiotics in particular and natural products in general. The method described in this paper is suitable for (1) screening the natural products produced by bacterial colonies on cultivation plates within the first 2 min following extraction and (2) detecting antibiotics at high mass accuracy; the cost is around 2 Euro per sample. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Planetary SUrface Portal (PSUP): a tool for easy visualization and analysis of Martian surface

    Science.gov (United States)

    Poulet, Francois; Quantin-Nataf, Cathy; Ballans, Hervé; Lozac'h, Loic; Audouard, Joachim; Carter, John; Dassas, karin; Malapert, Jean-Christophe; Marmo, Chiara; Poulleau, Gilles; Riu, Lucie; Séjourné, antoine

    2016-10-01

    PSUP is two software application platforms for working with raster, vector, DTM, and hyper-spectral data acquired by various space instruments analyzing the surface of Mars from orbit. The first platform of PSUP is MarsSI (Martian surface data processing Information System, http://emars.univ-lyon1.fr). It provides data analysis functionalities to select and download ready-to-use products or to process data though specific and validated pipelines. To date, MarsSI handles CTX, HiRISE and CRISM data of NASA/MRO mission, HRSC and OMEGA data of ESA/MEx mission and THEMIS data of NASA/ODY mission (Lozac'h et al., EPSC 2015). The second part of PSUP is also open to the scientific community and can be visited at http://psup.ias.u-psud.fr/. This web-based user interface provides access to many data products for Mars: image footprints and rasters from the MarsSI tool; compositional maps from OMEGA and TES; albedo and thermal inertia from OMEGA and TES; mosaics from THEMIS, Viking, and CTX; high level specific products (defined as catalogues) such as hydrated mineral sites derived from CRISM and OMEGA data, central peaks mineralogy,… In addition, OMEGA C channel data cubes corrected for atmospheric and aerosol contributions can be downloaded. The architecture of PSUP data management and visualization is based on SITools2 and MIZAR, two CNES generic tools developed by a joint effort between CNES and scientific laboratories. SITools2 provides a self-manageable data access layer deployed on the PSUP data, while MIZAR is 3D application in a browser for discovering and visualizing geospatial data. Further developments including the addition of high level products of Mars (regional geological maps, new global compositional maps,…) are foreseen. Ultimately, PSUP will be adapted to other planetary surfaces and space missions in which the French research institutes are involved.

  3. Neutron radiative capture methods for surface elemental analysis

    Science.gov (United States)

    Trombka, J.I.; Senftle, F.; Schmadebeck, R.

    1970-01-01

    Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.

  4. Preparation of polymeric superhydrophobic surfaces and analysis of their wettability

    Science.gov (United States)

    Zhuang, Jian; Huang, Manling; Zhang, Yajun; Wu, Daming; Kuang, Tairong; Xu, Hong; Zhang, Xiaoxu

    2015-10-01

    In this paper, we presented three simple, facile and low-cost manufacturing methods—template method, nanoparticle filling method and extrusion stamping forming method—to fabricate the polymeric superhydrophobic surfaces. The stainless steel wire mesh as the template and glass beads was investigated in this study for the first time and low-cost hollow glass beads were rarely used as particles for fabricating the superhydrophobic surface. The water contact angle measurement of polymeric surfaces was used to investigate the effect of mesh count, glass beads and PTFE on fabricating polymeric superhydrophobic surface. It was found that the mesh count significantly affected the hydrophobicity of polymer surface in template method. The addition of glass beads improved the hydrophobicity by nanoparticle filling method. The addition of PTFE was of importance to fabricate the superhydrophobic surface by extrusion stamping forming method. The surface microstructure was also observed by scanning electron microscope.

  5. Analysis of multi lobe journal bearings with surface roughness using finite difference method

    Science.gov (United States)

    PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.

    2018-04-01

    Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.

  6. Anisotropic characterization of rock fracture surfaces subjected to profile analysis

    International Nuclear Information System (INIS)

    Zhou, H.W.; Xie, H.

    2004-01-01

    The mechanical parameters of a rock fracture are dependent on its surface roughness anisotropy. In this Letter, we show how quantitatively describe the anisotropy of a rock fracture surface. A parameter, referred to as the index for the accumulation power spectral density psd*, is proposed to characterize the anisotropy of a rock fracture surface. Variation of psd*, with orientation angle θ of sampling, is also discussed

  7. Albumin adsorption onto surfaces of urine collection and analysis containers.

    Science.gov (United States)

    Robinson, Mary K; Caudill, Samuel P; Koch, David D; Ritchie, James; Hortin, Glen; Eckfeldt, John H; Sandberg, Sverre; Williams, Desmond; Myers, Gary; Miller, W Greg

    2014-04-20

    Adsorption of albumin onto urine collection and analysis containers may cause falsely low concentrations. We added (125)I-labeled human serum albumin to urine and to phosphate buffered solutions, incubated them with 22 plastic container materials and measured adsorption by liquid scintillation counting. Adsorption of urine albumin (UA) at 5-6 mg/l was containers, and to instrument sample cups and showed <1% change in concentration at 5 mg/l and <0.5% change at 20 mg/l or higher concentrations. Adsorption of albumin from phosphate buffered solutions (2-28%) was larger than that from urine. Albumin adsorption differed among urine samples and plastic materials, but the total influence of adsorption was <1% for all materials and urine samples tested. Adsorption of albumin from phosphate buffered solutions was larger than that from urine and could be a limitation for preparations used as calibrators. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Physical characterization of asteroid surfaces from photometric analysis

    International Nuclear Information System (INIS)

    Helfenstein, P.; Veverka, J.

    1989-01-01

    Rigorous photometric models, like Hapke's equation, can be applied to the analysis of disk-integrated phase curves in order to estimate a variety of regolith physical properties (average particle single-scattering albedo, particle transparency, soil compaction and large-scale roughness). Unfortunately, unambiguous interpretation is difficult due to uncertainties introduced by the irregular shapes of many asteroids and because Earth-based observations are often restricted to small phase angles (<30 degrees). In this chapter, the authors explore in detail how incomplete phase-angle coverage and nonsphericity of asteroids limits the reliable determination of Hapke's photometric parameters from asteroid phase curves. From obtainable Earth-based observations, it is possible to derive useful relative comparisons of single-scattering albedos, opposition-surge amplitudes, and regolith compaction states for different asteroids

  9. Analysis of surface contaminants on beryllium and aluminum windows

    International Nuclear Information System (INIS)

    Gmur, N.F.

    1987-06-01

    An effort has been made to document the types of contamination which form on beryllium window surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined

  10. Multi-component joint analysis of surface waves

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Moura, R.M.M.; Moustafa, S.S.R.

    2015-01-01

    Roč. 119, AUG (2015), s. 128-138 ISSN 0926-9851 Institutional support: RVO:67985891 Keywords : surface waves * surface wave dispersion * seismic data acquisition * seismic data inversion * velocity spectrum Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.355, year: 2015

  11. Isolation of residuals using trend surface analysis to magnetic data ...

    African Journals Online (AJOL)

    Polynomial surfaces of various degrees are fitted to a magnetic data of Awo area, southwestern Nigeria with the aim of isolating the residuals of the area associated with mineralogy. The fourth degree surface correlates better with the magnetic map of the study area. The residualized data were obtained by subtracting the ...

  12. Surface analysis of polydimethylsiloxane fouled with bovine serum albumin

    CSIR Research Space (South Africa)

    Windvoel, T

    2010-01-01

    Full Text Available -specific adsorption of proteins. The non specific adsorption becomes a limitation in applications that require clean hydrophobic surfaces and the use of proteins. This paper investigates the changes in the surface of PDMS after being in contact with bovine serum...

  13. Performance analysis of PV panel under varying surface temperature

    Directory of Open Access Journals (Sweden)

    Kumar Tripathi Abhishek

    2018-01-01

    Full Text Available The surface temperature of PV panel has an adverse impact on its performance. The several electrical parameters of PV panel, such as open circuit voltage, short circuit current, power output and fill factor depends on the surface temperature of PV panel. In the present study, an experimental work was carried out to investigate the influence of PV panel surface temperature on its electrical parameters. The results obtained from this experimental study show a significant reduction in the performance of PV panel with an increase in panel surface temperature. A 5W PV panel experienced a 0.4% decrease in open circuit voltage for every 1°C increase in panel surface temperature. Similarly, there was 0.6% and 0.32% decrease in maximum power output and in fill factor, respectively, for every 1°C increase in panel surface temperature. On the other hand, the short circuit current increases with the increase in surface temperature at the rate of 0.09%/°C.

  14. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  15. Roughness analysis of graphite surfaces of casting elements

    Directory of Open Access Journals (Sweden)

    M. Wieczorowski

    2010-01-01

    Full Text Available In the paper profilometric measurements of graphite casting elements were described. Basic topics necessary to assess roughness of their surfaces and influence of asperities on various properties related to manufacturing and use were discussed. Stylus profilometer technique of surface irregularities measurements including its limits resulting from pickup geometry and its contact with measured object were ana-lyzed. Working principle of tactile profilometer and phenomena taking place during movement of a probe on a measured surface were shown. One of the important aspects is a flight phenomenon, which means movement of a pickup without contact with a surface during inspection resulting from too high scanning speed. results of comparison research for graphite elements of new and used mould and pin composing a set were presented. Using some surface roughness, waviness and primary profile parameters (arithmetical mean of roughness profile heights Ra, biggest roughness profile height Rz, maximum primary profile height Pt as well as maximum waviness profile height Wt a possibility of using surface asperities parameters as a measure of wear of chill graphite elements was proved. The most often applied parameter is Ra, but with a help of parameters from W and P family it was shown, that big changes occur not only for roughness but also for other components of surface irregularities.

  16. Contribution of the surface contamination of uranium-materials on the quantitative analysis results by electron probe microbeam analysis

    International Nuclear Information System (INIS)

    Bonino, O.; Fournier, C.; Fucili, C.; Dugne, O.; Merlet, C.

    2000-01-01

    The analytical testing of uranium materials is necessary for quality research and development in nuclear industry applications (enrichment, safety studies, fuel, etc). Electron Probe Microbeam Analysis Wavelength Dispersive Spectrometry (EPMA-WDS) is a dependable non-destructive analytical technology. The characteristic X-ray signal is measured to identify and quantify the sample components, and the analyzed volume is about one micron cube. The surface contamination of uranium materials modifies and contributes to the quantitative analysis results of EPMA-WDS. This contribution is not representative of the bulk. A thin oxidized layer appears in the first instants after preparation (burnishing, cleaning) as well as a carbon contamination layer, due to metallographic preparation and carbon cracking under the impact of the electron probe. Several analytical difficulties subsequently arise, including an overlapping line between the carbon Ka ray and the Uranium U NIVOVI ray. Sensitivity and accuracy of the quantification of light elements like carbon and oxygen are also reduced by the presence of uranium. The aim of this study was to improve the accuracy of quantitative analysis on uranium materials by EPMA-WDS by taking account of the contribution of surface contamination. The first part of this paper is devoted to the study of the contaminated surface of the uranium materials U, UFe 2 and U 6 Fe a few hours after preparation. These oxidation conditions are selected so as to reproduce the same contamination surfaces occurring in microprobe analytical conditions. Surface characterization techniques were SIMS and Auger spectroscopy. The contaminated surfaces are shown. They consist of successive layers: a carbon layer, an oxidized iron layer, followed by an iron depletion layer (only in UFe 2 and U 6 Fe), and a ternary oxide layer (U-Fe-O for UFe 2 et U 6 Fe and UO 2+x for uranium). The second part of the paper addresses the estimation of the errors in quantitative

  17. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  18. Surface analysis of Borkron glass for neutron optics applications

    International Nuclear Information System (INIS)

    Farnoux, B.; Maaza, M.; Maaza, M.; Samuel, F.; Sella, C.

    1991-01-01

    Grazing Angle Neutron Reflectometry, Optical and Mechanical Roughness Profilometry techniques have been used to study the effects of the polishing operations on the surface of Borkron Schott glass (special borosilicate glass for neutron optics applications) as the polishing tool pressure P and the mean grain size of the polishing powder Φ. The neutron reflectivity investigations have shown that there is formation of a layer at the surface glass substrate. This layer is less dense than the bulk substrate and its thickness is around 60A. The optical and mechanical profilometry measurements have shown that both roughness and waviness decrease with P and Φ. All the experimental results show a good correlation between the neutron refractive index, the thickness and the roughness of the surface layer and the waviness of the glass surface with the two mechanical polishing parameters. The previous techniques have been completed by Secondary Ion Mass Spectroscopy and Atomic Force Microscopy measurements

  19. Statistical analysis and modelling of surface runoff from arable fields

    OpenAIRE

    P. Fiener; K. Auerswald; F. Winter; M. Disse

    2013-01-01

    Surface runoff generation on arable fields is an important driver of (local) flooding, on-site and off-site damages by erosion, and of nutrient and agrochemical transport. In general, three different processes generate surface runoff (Hortonian runoff, saturation excess runoff, and return of subsurface flow). Despite the developments in our understanding of these processes it remains difficult to predict, which processes govern runoff generation during the course of an event or through...

  20. Synthesis, Structure and Hirshfeld surface analysis, vibrational and ...

    Indian Academy of Sciences (India)

    3

    expression for dnorm, where two Hirshfeld surfaces touch, both will display a red spot identical in color intensity as well ... surface by using a red-blue-white color scheme: where red regions correspond to closer contacts and ..... A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y,. 1. 2. 3. 4. 5. 6. 7.

  1. Surface free energy analysis of adsorbents used for radioiodine adsorption

    International Nuclear Information System (INIS)

    González-García, C.M.; Román, S.; González, J.F.; Sabio, E.; Ledesma, B.

    2013-01-01

    In this work, the surface free energy of biomass-based activated carbons, both fresh and impregnated with triethylenediamine, has been evaluated. The contribution of Lifshitz van der Waals components was determined by the model proposed by van Oss et al. The results obtained allowed predicting the most probable configurations of the impregnant onto the carbon surface and its influence on the subsequent adsorption of radioactive methyl iodide.

  2. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    Science.gov (United States)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  3. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    Science.gov (United States)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  4. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    Science.gov (United States)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  5. Surface Fire Hazards Analysis Technical Report-Constructor Facilities

    International Nuclear Information System (INIS)

    Flye, R.E.

    2000-01-01

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  6. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces

    Directory of Open Access Journals (Sweden)

    Tairacan Augusto Pereira da Fonseca

    2015-10-01

    Full Text Available Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$ notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or “feiras” in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  7. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces.

    Science.gov (United States)

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Sanabani, Sabri Saeed

    2015-10-22

    Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$) notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or "feiras" in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  8. Eddy current analysis by BEM utilizing loop electric and surface magnetic currents as unknowns

    International Nuclear Information System (INIS)

    Ishibashi, Kazuhisa

    2002-01-01

    The surface integral equations whose unknowns are the surface electric and magnetic currents are widely used in eddy current analysis. However, when the skin depth is thick, computational error is increased especially in obtaining electromagnetic fields near the edge of the conductor. In order to obtain the electromagnetic field accurately, we propose an approach to solve surface integral equations utilizing loop electric and surface magnetic currents as unknowns. (Author)

  9. Analysis and suppression of passive noise in surface microseismic data

    Science.gov (United States)

    Forghani-Arani, Farnoush

    Surface microseismic surveys are gaining popularity in monitoring the hydraulic fracturing process. The effectiveness of these surveys, however, is strongly dependent on the signal-to-noise ratio of the acquired data. Cultural and industrial noise generated during hydraulic fracturing operations usually dominate the data, thereby decreasing the effectiveness of using these data in identifying and locating microseismic events. Hence, noise suppression is a critical step in surface microseismic monitoring. In this thesis, I focus on two important aspects in using surface-recorded microseismic seismic data: first, I take advantage of the unwanted surface noise to understand the characteristics of these noise and extract information about the propagation medium from the noise; second, I propose effective techniques to suppress the surface noise while preserving the waveforms that contain information about the source of microseisms. Automated event identification on passive seismic data using only a few receivers is challenging especially when the record lengths span over long durations of time. I introduce an automatic event identification algorithm that is designed specifically for detecting events in passive data acquired with a small number of receivers. I demonstrate that the conventional STA/LTA (Short-term Average/Long-term Average) algorithm is not sufficiently effective in event detection in the common case of low signal-to-noise ratio. With a cross-correlation based method as an extension of the STA/LTA algorithm, even low signal-to-noise events (that were not detectable with conventional STA/LTA) were revealed. Surface microseismic data contains surface-waves (generated primarily from hydraulic fracturing activities) and body-waves in the form of microseismic events. It is challenging to analyze the surface-waves on the recorded data directly because of the randomness of their source and their unknown source signatures. I use seismic interferometry to extract

  10. Surface analysis of anodized aluminum clamps from NASA-LDEF satellite

    Science.gov (United States)

    Grammer, H. L.; Wightman, J. P.; Young, Philip R.

    1992-01-01

    Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.

  11. Infrared Analysis Of Enzymes Adsorbed Onto Model Surfaces

    Science.gov (United States)

    Story, Gloria M.; Rauch, Deborah S.; Brode, Philip F.; Marcott, Curtis A.

    1989-12-01

    The adsorption of the enzymes, subtilisin BPN' and lysozyme, onto model surfaces was examined using attenuated total reflectance (ATR) infrared (IR) spectroscopy. Using a cylindrical internal reflection (CIRcle) cell with a Germanium (Ge) internal reflection element (IRE), model hydrophilic surfaces were made by plasma cleaning the IRE and model hydrophobic surfaces were made by precoating the IRE with a thin film of polystyrene. Gas chromatography (GC)-IR data collection software was used to monitor adsorption kinetics during the first five minutes after injection of the enzyme into the CIRcle cell. It was found that for both lysozyme and BPN', most of the enzyme that was going to adsorb onto the model surface did so within ten seconds after injection. Nearly an order-of-magnitude more BPN' adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. Overnight, the lysozyme layer continued to increase in thickness, while BPN' maintained its initial coverage. The appearance of carboxylate bands in some of the adsorbed BPN' spectra suggests the occurrence of peptide bond hydrolysis. A Au/Pd coating on the CIRcle cell o-rings had a significant effect on the adsorption of BPN'. (This coating was applied in an attempt to eliminate interfering Teflon absorption bands.) An apparent electrochemical reaction occurred, involving BPN', Ge, Au/Pd, and the salt solution used to stabilize BPN'. The result of this reaction was enhanced adsorption of the enzyme around the coated o-rings, etching of the Ge IRE at the o-ring site, and some autolysis of the enzyme. No such reaction was observed with lysozyme.

  12. Preliminary surface analysis of etched, bleached, and normal bovine enamel

    International Nuclear Information System (INIS)

    Ruse, N.D.; Smith, D.C.; Torneck, C.D.; Titley, K.C.

    1990-01-01

    X-ray photoelectron spectroscopic (XPS) and secondary ion-mass spectroscopic (SIMS) analyses were performed on unground un-pumiced, unground pumiced, and ground labial enamel surfaces of young bovine incisors exposed to four different treatments: (1) immersion in 35% H2O2 for 60 min; (2) immersion in 37% H3PO4 for 60 s; (3) immersion in 35% H2O2 for 60 min, in distilled water for two min, and in 37% H3PO4 for 60 s; (4) immersion in 37% H3PO4 for 60 s, in distilled water for two min, and in 35% H2O2 for 60 min. Untreated unground un-pumiced, unground pumiced, and ground enamel surfaces, as well as synthetic hydroxyapatite surfaces, served as controls for intra-tooth evaluations of the effects of different treatments. The analyses indicated that exposure to 35% H2O2 alone, besides increasing the nitrogen content, produced no other significant change in the elemental composition of any of the enamel surfaces investigated. Exposure to 37% H3PO4, however, produced a marked decrease in calcium (Ca) and phosphorus (P) concentrations and an increase in carbon (C) and nitrogen (N) concentrations in unground un-pumiced specimens only, and a decrease in C concentration in ground specimens. These results suggest that the reported decrease in the adhesive bond strength of resin to 35% H2O2-treated enamel is not caused by a change in the elemental composition of treated enamel surfaces. They also suggest that an organic-rich layer, unaffected by acid-etching, may be present on the unground un-pumiced surface of young bovine incisors. This layer can be removed by thorough pumicing or by grinding. An awareness of its presence is important when young bovine teeth are used in a model system for evaluation of resin adhesiveness

  13. ANALYSIS OF COMBINED POLYSURFACES TO MESH SURFACES MATCHING

    Directory of Open Access Journals (Sweden)

    Marek WYLEŻOŁ

    2014-06-01

    Full Text Available This article applies to an example of the process of quantitatively evaluate the fit of combined polysurface (NURBS class to a surface mesh. The fitting process of the polysurface and the evaluation of obtained results have been realized in the environment of the CATIA v5 system. Obtained quantitative evaluation are shown graphically in the form of three-dimensional graphs and histograms. As the base surface mesh was used a pelvic bone stl model (the model was created by digitizing didactic physical model.

  14. Phase-shifting Real-time Holographic Microscopy applied in micro-structures surface analysis

    International Nuclear Information System (INIS)

    Brito, I V; Gesualdi, M R R; Muramatsu, M; Ricardo, J

    2011-01-01

    The microscopic real-time analysis of micro structured materials is of great importance in various domains of science and technology. For other hand, the holographic interferometry comprises a group of powerful optical methods for non-destructive testing in surface analysis. The holographic microscopy uses the holographic interferometric techniques to obtain quantitative intensity and phase information of the optical waves by microscopic systems. With the development of CCD cameras, computers (hardware and software), and new materials for holographic recording, these techniques can be used to replace the classical form of registration and became promising tools in surface analysis. In this work, we developed a prototype of Photorefractive and Digital Holographic Microscope for real-time analysis of micro-structured systems based on the phase-shifting real-time holographic interferometry techniques. Using this apparatus, we are made analysis of shapes and surfaces to obtain the phase maps and the 3D profiles of some samples.

  15. Extended Reconstructed Sea Surface Temperature (ERSST) Monthly Analysis, Version 3b

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 3b (v3b) of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a monthly SST analysis on a 2-degree global grid based on the International...

  16. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    Science.gov (United States)

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  17. Mossbauer analysis of Luna 16 lunar surface material

    Science.gov (United States)

    Nady, D. L.; Cher, L.; Kulcsar, K.

    1974-01-01

    Samples of Apollo 11 lunar surface material were studied by the Mossbauer effect. Owing to the small number of other resonant isotopes, all measurements were made with Fe-57 nuclei. The principal constituents of the material were as follows: Iron containing silicates (olivine, pyroxene, and so on), ilmenite (FeTiO3), and metallic iron.

  18. A surface brightness analysis of eight RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III; Moffett, T.J.

    1987-01-01

    The authors have used a surface brightness, (V-R) relation to analyze new contemporaneous photometry and radial velocity data for 6 RR-ab type stars and to re-analyze previously published data for RR Lyrae and X Arietis. Systematic effects were found in the surface brightness at phases near minimum radius. Excluding these phases, they determine the slope of the surface brightness relation and the mean radius for each star. They also find a zero point which includes both a distance term and the zero point of the surface brightness relation. The sample includes stars with Preston's metallicity indicator ΔS = 0 to 9, with periods ranging from 0.397 days to 0.651 days. Their results indicate a log(R/R solar ) vs. log P relation in the sense that stars with longer periods have larger radii, in agreement with theoretical predictions. Their radii are consistent with bolometric magnitudes in the range 0.2 - 0.8 magnitude but accurate magnitudes must await a reliable T e - color calibration

  19. Surface analysis by electron spectroscopy. General concepts and applications

    International Nuclear Information System (INIS)

    Feliu, S.

    1993-01-01

    An introduction is made to the techniques of electron spectroscopy (XPS and AES) used in the study of surface phenomena. Their theoretical principles, the singular information supplied by these techniques and their basic instrumentation (vacuum systems, excitation sources and electron analysers) are described. A revision of their applications to the Materials Science and the Corrosion Sciences is also made. Author. 44 refs

  20. Strain-stress analysis of surface prosthesis of hip joint

    Czech Academy of Sciences Publication Activity Database

    Návrat, Tomáš; Fuis, Vladimír; Florian, Z.; Hlavoň, Pavel

    2007-01-01

    Roč. 40, č. 2 (2007), S559-S559 ISSN 0021-9290. [ISB 2007. Taipei, 01.07.2007-05.07.2007] R&D Projects: GA ČR GA101/05/0136 Institutional research plan: CEZ:AV0Z20760514 Keywords : surface prosthesis * hip joint * FEM Subject RIV: BO - Biophysics Impact factor: 2.897, year: 2007

  1. Surface stability analysis of dikes subject to overtopping and infiltration

    NARCIS (Netherlands)

    Karim, U. F.A.; Tran, Q.T.; Meij, R.

    2015-01-01

    The key contribution of this paper is the coupling of hydraulic loading conditions due to wave overtopping with slope stability of the surface layer of earthen flood protection embankments. Overtopping wave conditions impact overtopping discharges and infiltration time, and thereby the infiltration

  2. Modeling and analysis for surface roughness and material removal ...

    African Journals Online (AJOL)

    The cutting parameters considered were tool nose radius, tool rake angle, feed rate, cutting speed, depth of cut and cutting environment (dry, wet and cooled) on the surface roughness and material removal ... A second order mathematical model in terms of cutting parameters is also developed using regression modeling.

  3. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. ... A case study using the TRMM Microwave Imager (TMI) and ... parameter is essential when the values of the parameter ...

  4. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  5. Monitoring and analysis of surface changes from undermining

    Czech Academy of Sciences Publication Activity Database

    Kajzar, Vlastimil; Doležalová, Hana

    2013-01-01

    Roč. 59, č. 4 (2013), s. 1-10 ISSN 1802-5420 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : undermining * surface changes * surveying methods Subject RIV: DH - Mining, incl. Coal Mining http://gse.vsb.cz/2013/LIX-2013-4-1-10.pdf

  6. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  7. Near-surface analysis with nuclear reactions and scattering

    International Nuclear Information System (INIS)

    Dunning, K.L.; Hirvonen, J.K.

    1974-01-01

    Very useful information about the elemental composition of solids in the surface and near-surface regions can be obtained with small accelerators and suitable auxiliary apparatus. Two methods which produce data from which quantitative concentration depth profiles can be constructed and which have been used extensively at this laboratory are: nuclear resonance profiling and Rutherford backscattering. The first method is described in detail. Data are given on profiles of Al and Al + Na films implanted on silicon substrates. Rutherford backscattering spectra for chromium implanted into silicon dioxide are used to illustrate the improved depth sensitivity that can be obtained with a magnetic spectrometer in depth concentration profiles of heavy impurities relative to that obtainable with a conventional semiconductor detector

  8. Correction of systematic behaviour in topographical surface analysis

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    Four specimens in the sub-micrometre range and with different polishing were topographically investigated in fiveareas over their respective surfaces. Uncertainties were evaluated with and without correction for systematicbehaviour and successively analysed by a design of experiment (DOE). Result...... showed that the correction forsystematic behaviour allowed for a lower value of the estimated uncertainty when the correction was adequate tocompletely recognise the systematic effects. If not, the correction can produce an overestimation of the uncertainty....

  9. Spectral analysis of vortex/free-surface interaction

    OpenAIRE

    Hofert, Glenn D.

    1994-01-01

    The unsteady flow phenomena resulting from the interaction of vorticity with a free surface has been investigated through the use of a three- color Laser Doppler-Velocimeter. The vorticity field was provided by a single tip vortex generated by an airfoil, placed in the test section of a recirculating water tunnel at a suitable angle of attack. All of the statistical quantities of flow such as turbulence and Reynolds stresses and in particular the spectrum of the fluctuations have been measure...

  10. Thermal analysis of protruding surfaces in the JET divertor

    Czech Academy of Sciences Publication Activity Database

    Corre, Y.; Bunting, P.; Coenen, J.W.; Gaspar, J.; Iglesias, D.; Matthews, G.F.; Balboa, I.; Coffey, I.; Dejarnac, Renaud; Firdaouss, M.; Gauthier, E.; Jachmich, S.; Krieger, K.; Pitts, R.A.; Rack, M.; Silburn, S.A.

    2017-01-01

    Roč. 57, č. 6 (2017), č. článku 066009. ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : IR thermography * heat flux * tungsten melting Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa687e/meta

  11. Statistical analysis of solar radiation on variously oriented sloping surfaces

    International Nuclear Information System (INIS)

    Garg, H.P.; Garg, S.N.

    1985-12-01

    For four years, daily global radiation on a south facing surface and on four vertical walls namely south wall, north wall, east wall and west wall, has been computed and statistically analysed for each of the 4 stations: New Delhi, Calcutta, Poona and Madras. Daily direct radiation at normal incidence at New Delhi has also been studied. It has been found that maximum global radiation is 30 MJ/m 2 /day for a south facing tilted surface, 21 MJ/m 2 /day for a south wall, 18 MJ/m 2 /day for an east west wall and 12 MJ/m 2 /day for a north wall. Maximum direct radiation at normal incidence at New Delhi is also 30 MJ/m 2 /day. For a south facing tilted surface, nearly 80% of the days have energy between 21-27 MJ/m 2 /day. Atmospheric transmittance for direct radiation is seen to vary from 20% in July to 52% in November

  12. Surface analysis of Li-ion battery model anodes

    Energy Technology Data Exchange (ETDEWEB)

    Seemayer, Andreas; Bach, Philipp; Renner, Frank Uwe [Max Planck Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-07-01

    Lithium ion batteries are the most promising power source for future electromobility applications. Research on the battery systems aims to achieve higher rate capability, cycle life, or better safety. To achieve necessary further improvements a better understanding of the basic processes is needed. Following a surface science approach we focus on the investigation of simple model systems (like single crystals or thin film electrodes) of relevant anode materials. We report investigations of the electrochemical insertion of lithium in Au, Ag, Al, Mg and Si model surfaces, i.e. alloying and dealloying of lithium alloys. As electrolyte we use the ionic liquid 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesolfonyl)imide (PYR14TFSI) with 0.3M LiTFSI. The electrochemical characterisation is performed by cyclic voltammetry (CV). The surface and film characterisation regarding its geometrical structure is investigated by means of scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM). The chemical composition is characterised ex-situ by photoelectron spectroscopy (PES) and secondary ion mass spectrometry (SIMS).

  13. Atmospheric stability analysis over statically and dynamically rough surfaces

    Science.gov (United States)

    Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza

    2011-11-01

    The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.

  14. Quantitative Analysis and Efficient Surface Modification of Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hak-Sung Jung

    2012-01-01

    Full Text Available Aminofunctional trialkoxysilanes such as aminopropyltrimethoxysilane (APTMS and (3-trimethoxysilylpropyldiethylenetriamine (DETAS were employed as a surface modification molecule for generating monolayer modification on the surface of silica (SiO2 nanoparticles. We were able to quantitatively analyze the number of amine functional groups on the modified SiO2 nanoparticles by acid-base back titration method and determine the effective number of amine functional groups for the successive chemical reaction by absorption measurements after treating with fluorescent rhodamine B isothiocyanate (RITC molecules. The numbers of amine sites measured by back titration were 2.7 and 7.7 ea/nm2 for SiO2-APTMS and SiO2-DETAS, respectively, while the numbers of effective amine sites measured by absorption calibration were about one fifth of the total amine sites, namely, 0.44 and 1.3 ea/nm2 for SiO2-APTMS(RITC and SiO2-DETAS(RITC, respectively. Furthermore, it was confirmed that the reactivity of amino groups on the surface-modified silica nanoparticles could be maintained in ethanol for more than 1.5 months without showing any significant differences in the reactivity.

  15. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  16. Multispectral UV imaging for surface analysis of MUPS tablets with special focus on the pellet distribution

    DEFF Research Database (Denmark)

    Novikova, Anna; Carstensen, Jens Michael; Rades, Thomas

    2016-01-01

    In the present study the applicability of multispectral UV imaging in combination with multivariate image analysis for surface evaluation of MUPS tablets was investigated with respect to the differentiation of the API pellets from the excipients matrix, estimation of the drug content as well as p...... image analysis is a promising approach for the automatic quality control of MUPS tablets during the manufacturing process....

  17. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    Science.gov (United States)

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.

  18. Multivariate analysis of attachment of biofouling organisms in response to material surface characteristics.

    Science.gov (United States)

    Gatley-Montross, Caitlyn M; Finlay, John A; Aldred, Nick; Cassady, Harrison; Destino, Joel F; Orihuela, Beatriz; Hickner, Michael A; Clare, Anthony S; Rittschof, Daniel; Holm, Eric R; Detty, Michael R

    2017-12-29

    Multivariate analyses were used to investigate the influence of selected surface properties (Owens-Wendt surface energy and its dispersive and polar components, static water contact angle, conceptual sign of the surface charge, zeta potentials) on the attachment patterns of five biofouling organisms (Amphibalanus amphitrite, Amphibalanus improvisus, Bugula neritina, Ulva linza, and Navicula incerta) to better understand what surface properties drive attachment across multiple fouling organisms. A library of ten xerogel coatings and a glass standard provided a range of values for the selected surface properties to compare to biofouling attachment patterns. Results from the surface characterization and biological assays were analyzed separately and in combination using multivariate statistical methods. Principal coordinate analysis of the surface property characterization and the biological assays resulted in different groupings of the xerogel coatings. In particular, the biofouling organisms were able to distinguish four coatings that were not distinguishable by the surface properties of this study. The authors used canonical analysis of principal coordinates (CAP) to identify surface properties governing attachment across all five biofouling species. The CAP pointed to surface energy and surface charge as important drivers of patterns in biological attachment, but also suggested that differentiation of the surfaces was influenced to a comparable or greater extent by the dispersive component of surface energy.

  19. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    International Nuclear Information System (INIS)

    Liu, Jun; Zhou, Ji; Tang, Bin; Zeng, Tian; Li, Yaling; Li, Jingliang; Ye, Yong; Wang, Xungai

    2016-01-01

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  20. Surface topographical and structural analysis of Ag+-implanted polymethylmethacrylate

    International Nuclear Information System (INIS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Sagheer, Riffat; Bashir, Shazia; Zia, Rehana; Siraj, Khurram; Iqbal, Saman

    2016-01-01

    Specimens of polymethylmethacrylate (PMMA) were implanted with 400-keV Ag + ions at different ion fluences ranging from 1 × 10 14 to 5 × 10 15 ions/cm 2 using a 400-kV NEC ion implanter. The surface topographical features of the implanted PMMA were investigated by a confocal microscope. Modifications in the structural properties of the implanted specimens were analyzed in comparison with pristine PMMA by X-ray diffraction (XRD) and Raman spectroscopy. UV–Visible spectroscopy was applied to determine the effects of ion implantation on optical transmittance of the implanted PMMA. The confocal microscopic images revealed the formation of hillock-like microstructures along the ion track on the implanted PMMA surface. The increase in ion fluence led to more nucleation of hillocks. The XRD pattern confirmed the amorphous nature of pristine and implanted PMMA, while the Raman studies justified the transformation of Ag + -implanted PMMA into amorphous carbon at the ion fluence of ⩾5 × 10 14 ions/cm 2 . Moreover, the decrease in optical transmittance of PMMA is associated with the formation of hillocks and ion-induced structural modifications after implantation.

  1. Analysis of surface stains on modern gold coins

    Energy Technology Data Exchange (ETDEWEB)

    Corregidor, V., E-mail: vicky.corregidor@itn.pt [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); CFNUL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Alves, L.C. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); CFNUL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Cruz, J. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); CFNUL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Dep. Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-216 Caparica (Portugal)

    2013-07-01

    It is a mandatory practice in the European Mint Houses to provide a certificate of guarantee of their products specially when issuing commemorative gold or silver coins. This practise should assure satisfaction and trust both for the mint house and for the demanding numismatic collector. For these reasons the Mint Houses follow a strict quality control in all the production steps in order to ensure a no-defect, fully supervised output. In spite of all the undertaken precautions, different surface stains with diverse origin on gold coins recently minted in Europe were observed. Those were compositionally studied by means of IBA techniques at the end-stage nuclear microprobe installed at IST/ITN. From this study it was possible to identify several possible sources for these stains. The presence of defects at the surface of these commemorative coins address the need of improving the quality control system and the results here presented point out where these improvements should occur, in order to reduce/eliminate them and give the customer a product that with time probably will be revalued.

  2. Grip Analysis of Road Surface and Tire Footprint Using FEM

    Science.gov (United States)

    Sabri, M.; Abda, S.

    2018-02-01

    Road grip involve a touch between road pavement and the tire tread pattern. The load bearing surface, which depends on pavement roughness and local pressures in the contact patch. This research conducted to develop a Finite element model for simulating the experimentally testing of asphalt in Jl. AH Nasution Medan, North Sumatera Indonesia base on the value of grip coefficient from various tire loads and the various speed of the vehicle during contact to the road. A tire model and road pavement are developed for the analyses the geometry of tire footprint. The results showed that the greater the mass of car will increase grip coefficient. The coefficient of grip on the road surface contact trough the tire footprint strongly influence the kinetic coefficient of friction at certain speeds. Experimentally show that Concrete road grip coefficient of more than 34% compared to the asphalt road at the same IRI parameters (6-8). Kinetic friction coefficient more than 0.33 was obtained in a asphalt path at a speed of 30-40 Km/hour.

  3. Analysis of iris surface features in populations of diverse ancestry

    Science.gov (United States)

    Edwards, Melissa; Cha, David; Krithika, S.; Johnson, Monique; Parra, Esteban J.

    2016-01-01

    There are many textural elements that can be found in the human eye, including Fuchs’ crypts, Wolfflin nodules, pigment spots, contraction furrows and conjunctival melanosis. Although iris surface features have been well-studied in populations of European ancestry, the worldwide distribution of these traits is poorly understood. In this paper, we develop a new method of characterizing iris features from photographs of the iris. We then apply this method to a diverse sample of East Asian, European and South Asian ancestry. All five iris features showed significant differences in frequency between the three populations, indicating that iris features are largely population dependent. Although none of the features were correlated with each other in the East and South Asian groups, Fuchs’ crypts were significantly correlated with contraction furrows and pigment spots and contraction furrows were significantly associated with pigment spots in the European group. The genetic marker SEMA3A rs10235789 was significantly associated with Fuchs’ crypt grade in the European, East Asian and South Asian samples and a borderline association between TRAF3IP1 rs3739070 and contraction furrow grade was found in the European sample. The study of iris surface features in diverse populations may provide valuable information of forensic, biomedical and ophthalmological interest. PMID:26909168

  4. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)

    2016-11-15

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  5. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    Science.gov (United States)

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  6. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  7. Stability analysis of rough surfaces in adhesive normal contact

    Science.gov (United States)

    Rey, Valentine; Bleyer, Jeremy

    2018-03-01

    This paper deals with adhesive frictionless normal contact between one elastic flat solid and one stiff solid with rough surface. After computation of the equilibrium solution of the energy minimization principle and respecting the contact constraints, we aim at studying the stability of this equilibrium solution. This study of stability implies solving an eigenvalue problem with inequality constraints. To achieve this goal, we propose a proximal algorithm which enables qualifying the solution as stable or unstable and that gives the instability modes. This method has a low computational cost since no linear system inversion is required and is also suitable for parallel implementation. Illustrations are given for the Hertzian contact and for rough contact.

  8. Transient space-time surface waves characterization using Gabor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L; Wilkie-Chancellier, N; Caplain, E [Universite de Cergy Pontoise, ENS Cachan, UMR CNRS 8029, Laboratoire Systemes et Applications des Techniques de l' Information et de l' Energie (SATIE), 5 mail Gay-Lussac, F 9500 Cergy-Pontoise (France); Glorieux, C; Sarens, B, E-mail: nicolas.wilkie-chancellier@u-cergy.f [Katholieke Universiteit Leuven, Laboratorium voor Akoestiek en Thermische Fysica (LATF), Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2009-11-01

    Laser ultrasonics allow the observation of transient surface waves along their propagation media and their interaction with encountered objects like cracks, holes, borders. In order to characterize and localize these transient aspects in the Space-Time-Wave number-Frequency domains, the 1D, 2D and 3D Gabor transforms are presented. The Gabor transform enables the identification of several properties of the local wavefronts such as their shape, wavelength, frequency, attenuation, group velocity and the full conversion sequence along propagation. The ability of local properties identification by Gabor transform is illustrated by two experimental studies: Lamb waves generated by an annular source on a circular quartz and Lamb wave interaction with a fluid droplet. In both cases, results obtained with Gabor transform enable ones to identify the observed local waves.

  9. Microscopic examination and elemental analysis of surface defects in LEP superconducting cavities

    International Nuclear Information System (INIS)

    Benvenuti, C.; Cosso, R.; Hauer, M.; Hellgren, N.; Lacarrere, D.

    1996-01-01

    A diagnostic tool, based on a computer controlled surface analysis instrument, incorporating secondary electron imaging, static auger electron spectroscopy and scanning auger mapping has been designed and built at CERN to characterize the inner surface of LEP superconducting cavities with provide unsatisfactory radio-frequency performance. The experimental results obtained to date are reported and discussed. (author)

  10. Quantitative analysis of surface characteristics and morphology in Death Valley, California using AIRSAR data

    Science.gov (United States)

    Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.

    1992-01-01

    The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.

  11. CFD Analysis of Hypersonic Flowfields With Surface Thermochemistry and Ablation

    Science.gov (United States)

    Henline, W. D.

    1997-01-01

    In the past forty years much progress has been made in computational methods applied to the solution of problems in spacecraft hypervelocity flow and heat transfer. Although the basic thermochemical and physical modeling techniques have changed little in this time, several orders of magnitude increase in the speed of numerically solving the Navier-Stokes and associated energy equations have been achieved. The extent to which this computational power can be applied to the design of spacecraft heat shields is dependent on the proper coupling of the external flow equations to the boundary conditions and governing equations representing the thermal protection system in-depth conduction, pyrolysis and surface ablation phenomena. A discussion of the techniques used to do this in past problems as well as the current state-of-art is provided. Specific examples, including past missions such as Galileo, together with the more recent case studies of ESA/Rosetta Sample Comet Return, Mars Pathfinder and X-33 will be discussed. Modeling assumptions, design approach and computational methods and results are presented.

  12. Application of tomographic techniques to two-dimensional surface analysis using the Harwell nuclear microprobe

    International Nuclear Information System (INIS)

    Huddleston, J.; Hutchinson, I.G.; Pierce, T.B.

    1983-01-01

    Nuclear methods of surface analysis are discussed briefly, and the circumstances are described in which a two-dimensional analysis of the sample surface is desirable to enable the surface composition to be mapped accurately. Tomographic techniques of data manipulation are outlined. Data acquisition in the present case is performed by moving the sample in a defined sequence of positions, at each of which analytical data are gathered by the proton microprobe. The method and equipment are outlined. Data processing leading to the reconstruction of the image is summarised. (U.K.)

  13. Multi-scale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland

    OpenAIRE

    Grohmann, Carlos

    2017-01-01

    Surface roughness is an important geomorphological variable which has been used in the earth and planetary sciences to infer material properties, current/past processes and the time elapsed since formation. No single definition exists, however within the context of geomorphometry we use surface roughness as a expression of the variability of a topographic surface at a given scale, where the scale of analysis is determined by the size of the landforms or geomorphic features of interest. Six te...

  14. Surface topography analysis for dimensional quality control of replication at the micrometre scale

    DEFF Research Database (Denmark)

    Balcon, M.; Marinello, F.; Tosello, Guido

    2011-01-01

    Replication of geometrical features and surfaces are present at different production levels, from realization of moulds to final product. Geometrical features must be reproduced within specification limits, to ensure product functionality . In order to control the replication quality, mould...... and replica surfaces must be quantitatively analysed and compared. In the present work, reference simulated surfaces were considered and studied in order to evaluate the effectiveness and traceability of different analysis tools for replication quality control. Topographies were analysed simulating different...

  15. Applications of factor analysis to electron and ion beam surface techniques

    International Nuclear Information System (INIS)

    Solomon, J.S.

    1987-01-01

    Factor analysis, a mathematical technique for extracting chemical information from matrices of data, is used to enhance Auger electron spectroscopy (AES), core level electron energy loss spectroscopy (EELS), ion scattering spectroscopy (ISS), and secondary ion mass spectroscopy (SIMS) in studies of interfaces, thin films, and surfaces. Several examples of factor analysis enhancement of chemical bonding variations in thin films and at interfaces studied with AES and SIMS are presented. Factor analysis is also shown to be of great benefit in quantifying electron and ion beam doses required to induce surface damage. Finally, examples are presented of the use of factor analysis to reconstruct elemental profiles when peaks of interest overlap each other during the course of depth profile analysis. (author)

  16. Influence of the atomic force microscope tip on the multifractal analysis of rough surfaces

    International Nuclear Information System (INIS)

    Klapetek, Petr; Ohlidal, Ivan; Bilek, Jindrich

    2004-01-01

    In this paper, the influence of atomic force microscope tip on the multifractal analysis of rough surfaces is discussed. This analysis is based on two methods, i.e. on the correlation function method and the wavelet transform modulus maxima method. The principles of both methods are briefly described. Both methods are applied to simulated rough surfaces (simulation is performed by the spectral synthesis method). It is shown that the finite dimensions of the microscope tip misrepresent the values of the quantities expressing the multifractal analysis of rough surfaces within both the methods. Thus, it was concretely shown that the influence of the finite dimensions of the microscope tip changed mono-fractal properties of simulated rough surface to multifractal ones. Further, it is shown that a surface reconstruction method developed for removing the negative influence of the microscope tip does not improve the results obtained in a substantial way. The theoretical procedures concerning both the methods, i.e. the correlation function method and the wavelet transform modulus maxima method, are illustrated for the multifractal analysis of randomly rough gallium arsenide surfaces prepared by means of the thermal oxidation of smooth gallium arsenide surfaces and subsequent dissolution of the oxide films

  17. Individual IOL Surface Topography Analysis by the WaveMaster Reflex UV

    Directory of Open Access Journals (Sweden)

    Marc Kannengießer

    2013-01-01

    Full Text Available Purpose. In order to establish inspection routines for individual intraocular lenses (IOLs, their surfaces have to be measured separately. Currently available measurement devices lack this functionality. The purpose of this study is to evaluate a new topography measurement device based on wavefront analysis for measuring individual regular and freeform IOL surfaces, the “WaveMaster Reflex UV” (Trioptics, Wedel, Germany. Methods. Measurements were performed on IOLs with increasingly complex surface geometries: spherical surfaces, surfaces modelled by higher-order Zernike terms, and freeform surfaces from biometrical patient data. Two independent parameters were measured: the sample’s radius of curvature (ROC and its residual (difference of sample topography and its best-fit sphere. We used a quantitative analysis method by calculating the residuals’ root-mean-square (RMS and peak-to-Valley (P2V values. Results. The sample’s best-fit ROC differences increased with the sample’s complexity. The sample’s differences of RMS values were 80 nm for spherical surfaces, 97 nm for higher-order samples, and 21 nm for freeform surfaces. Graphical representations of both measurement and design topographies were recorded and compared. Conclusion. The measurements of spherical surfaces expectedly resulted in better values than those of freeform surfaces. Overall, the wavefront analysing method proves to be an effective method for evaluating individual IOL surfaces.

  18. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    Science.gov (United States)

    Shi, Chunhu; Dumville, Jo C; Cullum, Nicky

    2018-01-01

    Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or

  19. Surface chemistry and microstructural analysis of CexZr1-xO2-y model catalyst surfaces

    International Nuclear Information System (INIS)

    Nelson, Alan E.; Schulz, Kirk H.

    2003-01-01

    Cerium-zirconium mixed metal oxides are widely used as promoters in automotive emissions control catalyst systems (three-way catalysts). The addition of zirconium in the cubic lattice of ceria improves the redox properties and the thermal stability, thereby increasing the catalyst efficiency and longevity. The surface composition and availability of surface oxygen of model ceria-zirconia catalyst promoters was considered to develop a reference for future catalytic reactivity studies. The microstructure was characterized with X-ray diffraction (XRD) to determine the effect of zirconium substitution on crystalline structure and grain size. Additionally, the Ce/Zr surface atomic ratio and existence of Ce 3+ defect sites were examined with X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) for samples with different zirconium concentrations. The surface composition of the model systems with respect to cerium and zirconium concentration is representative of the bulk, indicating no appreciable surface species segregation during model catalyst preparation or exposure to ultrahigh vacuum conditions and analysis techniques. Additionally, the concentration of Ce 3+ defect sites was constant and independent of composition. The quantity of surface oxygen was unaffected by electron bombardment or prolonged exposure to ultrahigh vacuum conditions. Additionally, XRD analysis did not indicate the presence of additional crystalline phases beyond the cubic structure for compositions from 100 to 25 at.% cerium, although additional phases may be present in undetectable quantities. This analysis is an important initial step for determining surface reactions and pathways for the development of efficient and sulfur-tolerant automotive emissions control catalysts

  20. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    Science.gov (United States)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  1. Residual analysis applied to S-N data of a surface rolled cast iron

    Directory of Open Access Journals (Sweden)

    Omar Maluf

    2005-09-01

    Full Text Available Surface rolling is a process extensively employed in the manufacture of ductile cast iron crankshafts, specifically in regions containing stress concentrators with the main aim to enhance fatigue strength. Such process hardens and introduces compressive residual stresses to the surface as a result of controlled strains, reducing cyclic tensile stresses near the surface of the part. The main purpose of this work was to apply the residual analysis to check the suitability of the S-N approach to describe the fatigue properties of a surface rolled cast iron. The analysis procedure proved to be very efficient and easy to implement and it can be applied in the verification of any other statistical model used to describe fatigue behavior. Results show that the conventional S-N methodology is able to model the high cycle fatigue behavior of surface rolled notch testpieces of a pearlitic ductile cast iron submitted to rotating bending fatigue tests.

  2. Numerical analysis of the effect of surface roughness on mechanical fields in polycrystalline aggregates

    Science.gov (United States)

    Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges

    2018-06-01

    This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.

  3. Surface Coating Technique of Northern Black Polished Ware by the Microscopic Analysis

    Directory of Open Access Journals (Sweden)

    Dilruba Sharmin

    2012-12-01

    Full Text Available An organic substance has been identified in the top layer of Northern Black Polished Ware (NBPW excavated from the Wari-Boteshwar and Mahasthangarh sites in Bangladesh. NBPW is the most distinctive ceramic of Early Historic period and the technique of its surface gloss acquired numerous theories. This particular paper is an analytical study of collected NBPW sherds from these two sites including surface observations using binocular and scanning electron microscopes and Thin Section Analysis of potsherds. Thin section analysis identified two different layers of coating on the surface of the NBPW. One layer is a ‘slip’ (ground coat and the other is a ‘top layer or top coat ’. The slip was made from refined clay and the top layer was derived from organic substance. Microscopic analysis confirmed the solid and non-clayey characteristics of the top coat.

  4. Analysis of Shift and Deformation of Planar Surfaces Using the Least Squares Plane

    Directory of Open Access Journals (Sweden)

    Hrvoje Matijević

    2006-12-01

    Full Text Available Modern methods of measurement developed on the basis of advanced reflectorless distance measurement have paved the way for easier detection and analysis of shift and deformation. A large quantity of collected data points will often require a mathematical model of the surface that fits best into these. Although this can be a complex task, in the case of planar surfaces it is easily done, enabling further processing and analysis of measurement results. The paper describes the fitting of a plane to a set of collected points using the least squares distance, with previously excluded outliers via the RANSAC algorithm. Based on that, a method for analysis of the deformation and shift of planar surfaces is also described.

  5. An Intelligent Method for Structural Reliability Analysis Based on Response Surface

    Institute of Scientific and Technical Information of China (English)

    桂劲松; 刘红; 康海贵

    2004-01-01

    As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved,and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.

  6. AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dallaeva, Dinara, E-mail: dinara.dallaeva@yandex.ru [Brno University of Technology, Faculty of Electrical Engineering and Communication, Physics Department, Technická 8, 616 00 Brno (Czech Republic); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii Street, Cluj-Napoca 400641, Cluj (Romania); Stach, Sebastian [University of Silesia, Faculty of Computer Science and Materials Science, Institute of Informatics, Department of Biomedical Computer Systems, ul. Będzińska 39, 41-205 Sosnowiec (Poland); Škarvada, Pavel; Tománek, Pavel; Grmela, Lubomír [Brno University of Technology, Faculty of Electrical Engineering and Communication, Physics Department, Technická 8, 616 00 Brno (Czech Republic)

    2014-09-01

    Graphical abstract: - Highlights: • We determined the complexity of 3D surface roughness of aluminum nitride layers. • We used atomic force microscopy and analyzed their fractal geometry. • We determined the fractal dimension of surface roughness of aluminum nitride layers. • We determined the dependence of layer morphology on substrate temperature. - Abstract: The paper deals with AFM imaging and characterization of 3D surface morphology of aluminum nitride (AlN) epilayers on sapphire substrates prepared by magnetron sputtering. Due to the effect of temperature changes on epilayer's surface during the fabrication, a surface morphology is studied by combination of atomic force microscopy (AFM) and fractal analysis methods. Both methods are useful tools that may assist manufacturers in developing and fabricating AlN thin films with optimal surface characteristics. Furthermore, they provide different yet complementary information to that offered by traditional surface statistical parameters. This combination is used for the first time for measurement on AlN epilayers on sapphire substrates, and provides the overall 3D morphology of the sample surfaces (by AFM imaging), and reveals fractal characteristics in the surface morphology (fractal analysis)

  7. Surface analysis of lipids by mass spectrometry: more than just imaging.

    Science.gov (United States)

    Ellis, Shane R; Brown, Simon H; In Het Panhuis, Marc; Blanksby, Stephen J; Mitchell, Todd W

    2013-10-01

    Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented

  9. The structural and compositional analysis of single crystal surfaces using low energy ion scattering

    International Nuclear Information System (INIS)

    Armour, D.G.; Van der Berg, J.A.; Verheij, IL.K.

    1979-01-01

    The use of ion scattering for surface composition and structure analysis has been reviewed. The extreme surface specificity of this technique has been widely used to obtain quitative information in a straightforward way, but the/aolc/currence of charge exchange processes, thermal lattice vibrations and multiple scattering have precluded quantitative analysis of experimental data. Examples are quoted to illustrate the progress that has been made in understanding these fundamental processes and in applying this knowledge to the development of the analytical capabilities of the technique. (author)

  10. TXRF with synchrotron radiation. Analysis of Ni on Si-wafer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wobrauschek, P [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Kregsamer, P [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Ladisich, W [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Streli, C [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Pahlke, S [Wacker Chemitronic GmbH, D-84479 Burghausen (Germany); Fabry, L [Wacker Chemitronic GmbH, D-84479 Burghausen (Germany); Garbe, S [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Haller, M [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Knoechel, A [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Radtke, M [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany)

    1995-09-11

    SR-TXRF (Synchrotron Radiation excited Total Reflection X-ray Fluorescence Analysis) with monoenergetic radiation produced by a W/C multilayer monochromator has been applied to the analysis of Ni on a Si-wafer surface. An intentionally contaminated wafer with 100 pg has been used to determine the detection limits. 13 fg have been achieved for Ni at a beam current of 73 mA and extrapolated to 1000 s. This technique simulates the sample preparation technique of Vapour Phase Decomposition (VPD) on a wafer surface. (orig.).

  11. Experimental parameters for quantitative surface analysis by medium energy ion scattering, ch. 1

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Kersten, H.H.; Colenbrander, B.G.; Jongh, A.P. de; Saris, F.W.

    1976-01-01

    A new UHV chamber for surface and surface layer analysis by collision spectroscopy of backscattered ions at medium energies is described. Experimental parameters like energy, angular and depth resolution, crystal alignment and background pressure are discussed. Formulae based on the use of an electrostatic energy analyser show that the analysis can be quantitative. Effects of beam induced build-up of a hydro-carbon layer, sputter cleaning and creation of radiation damage have been investigated for Cu (110) and Ni (110). Detection sensitivity for Carbon, Oxygen and Sulfur on Cu and Ni has been found to be 0.2, 0.1 and 0.03 of a monolayer respectively

  12. TXRF with synchrotron radiation. Analysis of Ni on Si-wafer surfaces

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Kregsamer, P.; Ladisich, W.; Streli, C.; Pahlke, S.; Fabry, L.; Garbe, S.; Haller, M.; Knoechel, A.; Radtke, M.

    1995-01-01

    SR-TXRF (Synchrotron Radiation excited Total Reflection X-ray Fluorescence Analysis) with monoenergetic radiation produced by a W/C multilayer monochromator has been applied to the analysis of Ni on a Si-wafer surface. An intentionally contaminated wafer with 100 pg has been used to determine the detection limits. 13 fg have been achieved for Ni at a beam current of 73 mA and extrapolated to 1000 s. This technique simulates the sample preparation technique of Vapour Phase Decomposition (VPD) on a wafer surface. (orig.)

  13. Low energy ion scattering as a tool for surface structure and composition analysis

    International Nuclear Information System (INIS)

    Armour, D.G.

    1980-01-01

    Low energy ion scattering is finding increasing application in the study of areas such as gas adsorption, thin film deposition and surface damage creation and annealing during ion irradiation where structural and compositional changes occurring in only the outermost atomic layer need to be monitored. The capabilities of the technique and the ways in which it has been developed for different types of analysis depend strongly on the fundamental atomic collision processes taking place at the surface and it is these processes, together with examples of their role in analysis applications, that form the subject of this paper. (author)

  14. Synthesis and Surface-Specific Analysis of Molecular Constituents Relevant to Biogenic Secondary Organic Aerosol Material

    Science.gov (United States)

    Be, A. G.; Upshur, M. A.; Chase, H. M.; Geiger, F.; Thomson, R. J.

    2017-12-01

    Secondary organic aerosol (SOA) particles formed from the oxidation of biogenic volatile organic compounds (BVOCs) remain a principal, yet elusive, class of airborne particulate matter that impacts the Earth's radiation budget. Given the characteristic molecular complexity comprising biogenic SOA particles, chemical information selective to the gas-aerosol interface may be valuable in the investigation of such systems, as surface considerations likely dictate the phenomena driving particle evolution mechanisms and climate effects. In particular, cloud activation processes may be parameterized using the surface tension depression that coincides with partitioning of surface-active organic species to the gas-droplet interface. However, the extent to which surface chemical processes, such as cloud droplet condensation, are influenced by the chemical structure and reactivity of individual surface-active molecules in SOA particles is largely unknown. We seek to study terpene-derived organic species relevant to the surfaces of biogenic SOA particles via synthesis of putative oxidation products followed by analysis using surface-selective physicochemical measurements. Using dynamic surface tension measurements, considerable differences are observed in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from abundant terpene precursors. Furthermore, sum frequency generation spectroscopy is utilized for comparison of the surface vibrational spectral responses of synthesized reference compounds with those observed for laboratory aerosol toward probing the surface composition of SOA material. Such ongoing findings highlight the underlying importance of molecular structure and reactivity when considering the surface chemistry of biogenic terpene-derived atmospheric aerosols.

  15. Cell behavior related to implant surfaces with different microstructure and chemical composition: an in vitro analysis.

    Science.gov (United States)

    Conserva, Enrico; Lanuti, Anna; Menini, Maria

    2010-01-01

    This paper reports on an in vitro comparison of osteoblast and mesenchymal stem cell (MSC) adhesion, proliferation, and differentiation related to two different surface treatments applied to the same implant design to determine whether the interaction between cells and implants is influenced by surface structure and chemical composition of the implants. Thirty-nine implants with a sandblasted (SB) surface and 39 implants with a grit-blasted and high-temperature acid-etched (GBAE) surface were used. The implant macrostructures and microstructures were analyzed by high- and low-voltage scanning electron microscopy (SEM) and by stereo-SEM. The surface chemical composition was investigated by energy dispersive analysis and x-ray photoemission spectroscopy. SaOS-2 osteoblasts and human MSCs were used for the evaluation of cell proliferation and alkaline phosphatase enzymatic activity in contact with the two surfaces. The GBAE surface showed fewer contaminants and a very high percentage of titanium (19.7%) compared to the SB surface (14.2%). The two surfaces showed similar mean roughness (Ra), but the depth (Rz) and density (RSm) of the porosity were significantly increased in the GBAE surface. The GBAE surface presented more osteoblast and MSC proliferation than the SB surface. No statistically significant differences in alkaline phosphatase activity were found between surfaces for either cellular line. The GBAE surface showed less surface contaminants and a higher percentage of titanium (19.7%) than the SB surface. The macro/micropore structured design and chemical composition of the GBAE surface allowed greater cell adhesion and proliferation and an earlier cell spreading but did not play an obvious role in in vitro cellular differentiation.

  16. Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Laboratoire de Mecanique des Contacts et des Structures (LaMCoS), INSA Lyon, 20 Avenue des Sciences, F-69621 Villeurbanne Cedex (France); Li, H. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Li, M.Q., E-mail: zc9997242256@126.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China)

    2016-05-15

    Graphical abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural component. A special surface with regular patterns was processed to be joined so as to observe the extent of surface asperity deformation under different applied bonding pressures. Fracture surface characteristic combined with surface roughness profiles distinctly revealed the enhanced surface asperity deformation as the applied pressure increases. The influence of surface asperity deformation mechanism on joint formation was analyzed: (a) surface asperity deformation not only directly expanded the interfacial contact areas, but also released deformation heat and caused defects, indirectly accelerating atomic diffusion, then benefits to void shrinkage; (b) surface asperity deformation readily introduced stored energy difference between two opposite sides of interface grain boundary, resulting in strain induced interface grain boundary migration. In addition, the influence of void on interface grain boundary migration was analyzed in detail. - Highlights: • A high quality hollow structural component has been fabricated by diffusion bonding. • Surface asperity deformation not only expands the interfacial contact areas, but also causes deformation heat and defects to improve the atomic diffusion. • Surface asperity deformation introduces the stored energy difference between the two opposite sides of interface grain boundary, leading to strain induced interface grain boundary migration. • The void exerts a dragging force on the interface grain boundary to retard or stop interface grain boundary migration. - Abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in similar diffusion bonding as well as on the fabrication of high quality martensitic stainless steel hollow structural components. A special surface with regular patterns was processed to be joined so as to

  17. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data

    DEFF Research Database (Denmark)

    Greve, Douglas N; Svarer, Claus; Fisher, Patrick M

    2014-01-01

    Exploratory (i.e., voxelwise) spatial methods are commonly used in neuroimaging to identify areas that show an effect when a region-of-interest (ROI) analysis cannot be performed because no strong a priori anatomical hypothesis exists. However, noise at a single voxel is much higher than noise...... in a ROI making noise management critical to successful exploratory analysis. This work explores how preprocessing choices affect the bias and variability of voxelwise kinetic modeling analysis of brain positron emission tomography (PET) data. These choices include the use of volume- or cortical surface...

  18. Treatment by gliding arc of epoxy resin: preliminary analysis of surface modifications

    Science.gov (United States)

    Faubert, F.; Wartel, M.; Pellerin, N.; Pellerin, S.; Cochet, V.; Regnier, E.; Hnatiuc, B.

    2016-12-01

    Treatments with atmospheric pressure non-thermal plasma are easy to implement and inexpensive. Among them gliding arc (GlidArc) remains rarely used in surface treatment of polymers. However, it offers economic and flexible way to treat quickly large areas. In addition the choice of carrier gas makes it possible to bring the active species and other radicals allowing different types of grafting and functionalization of the treated surfaces, for example in order to apply for anti-biofouling prevention. This preliminary work includes analysis of the surface of epoxy resins by infrared spectroscopy: the different affected chemical bonds were studied depending on the duration of treatment. The degree of oxidation (the C/O ratio) is obtained by X-ray microanalysis and contact angle analysis have been performed to determinate the wettability properties of the treated surface. A spectroscopic study of the plasma allows to determine the possible active species in the different zones of the discharge.

  19. Stability analysis on the free surface phenomena of a magnetic fluid for general use

    International Nuclear Information System (INIS)

    Mizuta, Yo

    2011-01-01

    This paper presents an analysis for elucidating a variety of physical processes on the interface (free surface) of magnetic fluid. The present analysis is composed of the magnetic and the fluid analysis, both of which have no limitations concerning the interface elevation or its profile. The magnetic analysis provides rigorous interface magnetic field under arbitrary distributions of applied magnetic field. For the fluid analysis, the equation for interface motion includes all nonlinear effects. Physical quantities such as the interface magnetic field or the interface stresses, obtained first as the wavenumber components, facilitate confirming the relations with those by the conventional theoretical analyses. The nonlinear effect is formulated as the nonlinear mode coupling between the interface profile and the applied magnetic field. The stability of the horizontal interface profile is investigated by the dispersion relation, and summarized as the branch line. Furthermore, the balance among the spectral components of the interface stresses are shown, within the sufficient range of the wavenumber space. - Research Highlights: → General, rigorous but compact analysis for free surface phenomena is shown. → Analysis is applied without limitations on the interface elevation or its profile. → Nonlinear effects are formulated as the nonlinear mode coupling. → Bifurcation of stability is summarized as the branch line. → Balance among the interface stresses are shown in the wavenumber space.

  20. Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis

    Science.gov (United States)

    2015-09-01

    ADDRESS(ES) US Army Research Laboratory ATTN: RDRL- CIE -M 2800 Powder Mill Road Adelphi, MD 20783-1138 8. PERFORMING ORGANIZATION REPORT NUMBER...air radii of influence to account for the smaller error correlation length scales at the surface. However, the surface observations are limited to a...analysis will only account for errors in the first guess due to errors in the meteorological features (e.g., the strength of an area of high pressure

  1. Surface Roughness Analysis in the Hard Milling of JIS SKD61 Alloy Steel

    OpenAIRE

    Huu-That Nguyen; Quang-Cherng Hsu

    2016-01-01

    Hard machining is an efficient solution that can be used to replace the grinding operation in the mold and die manufacturing industry. In this study, an attempt is made to analyze the effect of process parameters on workpiece surface roughness (Ra) in the hard milling of JIS (Japanese Industrial Standard) SKD61 steel, based on a combination of the Taguchi method and response surface methodology (RSM). The cutting parameters are selected based on the structural dynamic analysis of the machine ...

  2. Axisymmetric Drop Shape Analysis for Estimating the Surface Tension of Cell Aggregates by Centrifugation

    OpenAIRE

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M.I.; David, Robert; Winklbauer, Rudolf; Neumann, A. Wilhelm

    2009-01-01

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates ...

  3. Surface functionalization of SPR chip for specific molecular interaction analysis under flow condition

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-03-01

    Full Text Available Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance (SPR sensors. In this paper, we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip. The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis. These operations are all performed under flow condition in the fluidic system, and have the advantages of easy implementation, less time consuming, and low cost, because the reagents and devices used in the operations are routinely applied in most laboratories. In this study, the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.

  4. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  5. Surface return direction-of-arrival analysis for radar ice sounding surface clutter suppression

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen

    2015-01-01

    Airborne radar ice sounding is challenged by surface clutter masking the depth signal of interest. Surface clutter may even be prohibitive for potential space-based ice sounding radars. To some extent the radar antenna suppresses the surface clutter, and a multi-phase-center antenna in combination...... with coherent signal processing techniques can improve the suppression, in particular if the direction of arrival (DOA) of the clutter signal is estimated accurately. This paper deals with data-driven DOA estimation. By using P-band data from the ice shelf in Antarctica it is demonstrated that a varying...

  6. Advanced measurement and analysis of surface textures produced by micro-machining processes

    International Nuclear Information System (INIS)

    Bordatchev, Evgueni V; Hafiz, Abdullah M K

    2014-01-01

    Surface texture of a part or a product has significant effects on its functionality, physical-mechanical properties and visual appearance. In particular for miniature products, the implication of surface quality becomes critical owing to the presence of geometrical features with micro/nano-scale dimensions. Qualitative and quantitative assessments of surface texture are carried out predominantly by profile parameters, which are often insufficient to address the contribution of constituent spatial components with varied amplitudes and wavelengths. In this context, this article presents a novel approach for advanced measurement and analysis of profile average roughness (R a ) and its spatial distribution at different wavelength intervals. The applicability of the proposed approach was verified for three different surface topographies prepared by grinding, laser micro-polishing and micro-milling processes. From the measurement and analysis results, R a (λ) spatial distribution was found to be an effective measure of revealing the contributions of various spatial components within specific wavelength intervals towards formation of the entire surface profile. In addition, the approach was extended to the measurement and analysis of areal average roughness S a (λ) spatial distribution within different wavelength intervals. Besides, the proposed method was demonstrated to be a useful technique in developing a functional correlation between a manufacturing process and its corresponding surface profile. (paper)

  7. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering.

    Science.gov (United States)

    Doğan, İlker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C M

    2016-07-08

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions.

  8. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian, E-mail: florian.maier@fau.de [Lehrstuhl für Physikalische Chemie II, FAU Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany)

    2016-04-15

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  9. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    International Nuclear Information System (INIS)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian

    2016-01-01

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  10. Development of resonance ionization spectroscopy system for fusion material surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Satoh, Yasushi; Nakazawa, Masaharu

    1996-10-01

    A Resonance Ionization Spectroscopy (RIS) system is now under development aiming at in-situ observation and analysis neutral particles emitted from fusion material surfaces under irradiation of charged particles and neutrons. The basic performance of the RIS system was checked through a preliminary experiment on Xe atom detection. (author)

  11. Neutron activation analysis to the profile surface sediments from several sites on the Havana Bay

    International Nuclear Information System (INIS)

    Diaz Riso, O.; Gelen, A.; Lopez, N.; Gonzalez, H.; Manso, M.V.; Graciano, A.M.; Nogueira, C.A.; Beltran, J.; Soto, J.

    2003-01-01

    Instrumental neutron activation analysis (INAA) technique was employed to analyze the surface sediments from several sites on the Havana Bay, Cuba. Measurements of heavy and trace elements in the sediments are reported. The results show that the concentration of the elements is site dependent. The data suggest that an anthropogenic input into the bay from domestic sewage and industries occurred

  12. The use of artificial intelligence methods for visual analysis of properties of surface layers

    Directory of Open Access Journals (Sweden)

    Tomasz Wójcicki

    2014-12-01

    Full Text Available [b]Abstract[/b]. The article presents a selected area of research on the possibility of automatic prediction of material properties based on the analysis of digital images. Original, holistic model of forecasting properties of surface layers based on a multi-step process that includes the selected methods of processing and analysis of images, inference with the use of a priori knowledge bases and multi-valued fuzzy logic, and simulation with the use of finite element methods is presented. Surface layers characteristics and core technologies of their production processes such as mechanical, thermal, thermo-mechanical, thermo-chemical, electrochemical, physical are discussed. Developed methods used in the model for the classification of images of the surface layers are shown. The objectives of the use of selected methods of processing and analysis of digital images, including techniques for improving the quality of images, segmentation, morphological transformation, pattern recognition and simulation of physical phenomena in the structures of materials are described.[b]Keywords[/b]: image analysis, surface layer, artificial intelligence, fuzzy logic

  13. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    NARCIS (Netherlands)

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This

  14. Surface analysis of uranyl fluoride layers with a glow discharge lamp

    International Nuclear Information System (INIS)

    Nel, J.T.; Stander, C.M.; Boehmer, R.G.

    1991-01-01

    Surface analysis with a Grimm-type glow discharge lamp was used to analyse uranyl fluoride layers that had formed on a nickel substrate after exposure to UF 6 . Narrow-band optical filters were used to isolate the intensities of three fluorine emission lines. An in-depth profile of layer composition was obtained. (author)

  15. Multi-Parameter Analysis of Surface Finish in Electro-Discharge Machining of Tool Steels

    Directory of Open Access Journals (Sweden)

    Cornelia Victoria Anghel

    2006-10-01

    Full Text Available The paper presents a multi- parameter analysis of surface finish imparted to tool-steel plates by electro-discharge machining (EDM is presented. The interrelationship between surface texture parameters and process parameters is emphasized. An increased number of parameters is studied including amplitude, spacing, hybrid and fractal parameters,, as well. The correlation of these parameters with the machining conditions is investigated. Observed characteristics become more pronounced, when intensifying machining conditions. Close correlation exists between certain surface finish parameters and EDM input variables and single and multiple statistical regression models are developed.

  16. The multilevel analysis of surface acting and mental health: A moderation of positive group affective tone

    Science.gov (United States)

    Lee, Meng-Shiu; Huang, Jui-Chan; Wu, Tzu-Jung

    2017-06-01

    The purpose of this study is to investigate the relationship among surface acting, mental health, and positive group affective tone. According to the prior theory, this study attempts to establish a comprehensive research framework among these variables, and furthermore tests the moderating effect of positive group affective tone. Data were collected from 435 employees in 52 service industrial companies by questionnaire, and this study conducted multilevel analysis. The results showed that surface acting will negatively affect the mental health. In addition, the positive group affective tone have significant moderating effect on the relationship among surface acting and mental health. Finally, this study discusses managerial implications and highlights future research suggestions.

  17. Evaluation of abrasive waterjet produced titan surfaces topography by spectral analysis techniques

    Directory of Open Access Journals (Sweden)

    D. Kozak

    2012-01-01

    Full Text Available Experimental study of a titan grade 2 surface topography prepared by abrasive waterjet cutting is performed using methods of the spectral analysis. Topographic data are acquired by means of the optical profilometr MicroProf®FRT. Estimation of the areal power spectral density of the studied surface is carried out using the periodogram method combined with the Welch´s method. Attention is paid to a structure of the areal power spectral density, which is characterized by means of the angular power spectral density. This structure of the areal spectral density is linked to the fine texture of the surface studied.

  18. Modal analysis and cut-off conditions of multichannel surface-acoustic-waveguide structures.

    Science.gov (United States)

    Griffel, G; Golan, G; Ruschin, S; Seidman, A; Croitoru, N

    1988-01-01

    Multichannel guides for surface acoustic waves can improve the efficiency of SAW (surface acoustic-wave) devices significantly. Focusing, steering, and modulating the propagating acoustical modes can be achieved similarly to optical waveguided devices. A general formulation is presented for the analysis of the lateral waveguiding properties of Rayleigh modes in surfaces loaded with deposited strips of different materials. General expressions are obtained for the number of modes and cutoff conditions in these structures. As examples of applications, a simple directional coupler and an electrically controlled coupler are proposed.

  19. Failure Surface Analysis of Polyimide/Titanium Notched Coating Adhesion Specimens

    Energy Technology Data Exchange (ETDEWEB)

    GIUNTA,RACHEL K.; KANDER,RONALD G.

    2000-12-18

    Adhesively bonded joints of LaRC{trademark} PETI-5, a phenylethynyl-terminated polyimide, with chromic acid anodized titanium were fabricated and debonded interfacially. The adhesive-substrate failure surfaces were investigated using several surface analysis techniques. From Auger spectroscopy, field emission scanning electron microscopy, and atomic force microscopy studies, polymer appears to be penetrating the pores of the anodized substrate to a depth of approximately 100 nm. From x-ray photoelectron spectroscopy data, the polymer penetrating the pores appears to be in electrical contact with the titanium substrate, leading to differential charging. These analyses confirm that the polymer is becoming mechanically interlocked within the substrate surface.

  20. A hybrid instrument combining electronic and photonic tunnelling for surface analysis

    International Nuclear Information System (INIS)

    Pechou, R.; Ajustron, F.; Seine, G.; Coratger, R.; Maurel, C.; Beauvillain, J.

    2004-01-01

    A PSTM working in the collection mode and based on an STM probe-sample regulation scheme has been developed. This original hybrid instrument for surface analysis uses apertureless metal-coated chemically etched optical fibres. The use of an electronic tunnelling-based feedback loop significantly reduces tip-sample distance and leads to the collection of a high level near-field optical (NFO) signal. A simple amplified photodiode is thus used to perform optical signal acquisition and to draw electromagnetic field maps of sample surfaces. Experimental results on nanostructured gold surfaces are presented

  1. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States); Hammond, Karl D. [Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-10-28

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.

  2. Determination of Substances Content of Soil Surface Using Fast Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Elin Nuraini; Elisabeth; Sunardi

    2002-01-01

    Determination of substances content of soil surface using neutron activation analysis has been performed. The aim of this research is to determine whether there are any dangerous, hazardous and toxic substances that released from The Research and Development Center for Advanced Technology (RDCAT) as a government institution has possibility in releasing that substances to the environment by surface water, sewage or rain water that give any dangerous the environmental. The fast neutron activation analysis was used to analyze the type and concentration of substances qualitative and quantitatively. The quantitative analysis was performed using relative method. Samples were counted using NaI(TI) detector. The result showed that there are several substances such as Mn-55, Fe-56, P-31, Al-27. Zn,65 and Mg-24. And there are found any hazardous, dangerous and toxic substances in the samples that causing any danger to human and environment. (author)

  3. Risk analysis of breakwater caisson under wave attack using load surface approximation

    Science.gov (United States)

    Kim, Dong Hyawn

    2014-12-01

    A new load surface based approach to the reliability analysis of caisson-type breakwater is proposed. Uncertainties of the horizontal and vertical wave loads acting on breakwater are considered by using the so-called load surfaces, which can be estimated as functions of wave height, water level, and so on. Then, the first-order reliability method (FORM) can be applied to determine the probability of failure under the wave action. In this way, the reliability analysis of breakwaters with uncertainties both in wave height and in water level is possible. Moreover, the uncertainty in wave breaking can be taken into account by considering a random variable for wave height ratio which relates the significant wave height to the maximum wave height. The proposed approach is applied numerically to the reliability analysis of caisson breakwater under wave attack that may undergo partial or full wave breaking.

  4. Analysis of the intergranular fracture surface by the Fourier spectrum method

    Energy Technology Data Exchange (ETDEWEB)

    Hao Yao; Tian Jifeng; Wang Zhongguang (National Lab. for Fatigue and Fracture of Materials, Inst. of Metal Research, Academia Sinica, Shen Yang (China))

    1991-11-30

    A quantitative analysis of the fracture surface of a 1045 steel was undertaken in order to relate important microstructural features to brittle intergranular fractures in the steel. It was found that the character of the profile was not random but periodic. There is a direct correspondence between the Fourier spectrum of the profile and the microstructure features. Utilization of secondary-electron line scanning facilitated the analysis of the fracture surface in this case. The results of the analysis from both the profile and the scanning line showed that the first autocorrelation length is related to the average grain size and that the total power corresponds to the impact energy of the fracture. (orig.).

  5. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    International Nuclear Information System (INIS)

    Chan, Kwai S.

    2015-01-01

    Rectangular plates of Ti–6Al–4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti–6Al–4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%–75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm. (paper)

  6. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    Science.gov (United States)

    Chan, Kwai S.

    2015-12-01

    Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.

  7. [Observation of topography and analysis of surface contamination of titanium implant after roughness treatment].

    Science.gov (United States)

    Cao, Hongdan; Yang, Xiaodong; Wu, Dayi; Zhang, Xingdong

    2007-04-01

    The roughness treatment of dental implant surface could improve the bone bonding and increase the success rate of implant, but the difference of diverse treatments is still unknown. In this study using scanning electron microscopy (SEM), energy disperse spectrometer (EDS) and the test of contact angle, we studied the microstructure, surface contamination and surface energy, and hence conducted a comparative analysis of the following surface roughness treatments: Polished Treatment (PT), Sandblasting with Alumina(SA), Sandblasting with Aluminia and Acid-etched (SAA), Sandblasting with Titanium Acid-etched (STA), Electro-erosion Treatment(ET). The result of SEM showed that the surface displayed irregularities after roughness treatments and that the surface properties of different roughness treatments had some distinctions. SAA and SA had some sharp edges and protrutions; the STA showed a regular pattern like honeycomb, but the ET sample treated by electric erosion exhibited the deeper pores of different sizes and the pores with a perforated secondary structure. The EDS indicated that the surface was contaminated after the treatment with foreign materials; the SA surface had some embedded contaminations even after acid etching. The measurement of water contact angle indicated that the morphology correlated with the surface treatments. These findings suggest that the distinction of surface structure and composition caused by different treatments may result in the disparity in biological behavior of dental implant.

  8. Time-domain analysis of surface-plasmon-polariton propagation in Ag nano-films using a generalized polarization approach

    KAUST Repository

    Al-Jabr, Ahmad; Alsunaidi, Mohammad A.

    2010-01-01

    A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi

  9. Analysis of surface dark current dependent upon surface passivation in APD based on GaAs

    International Nuclear Information System (INIS)

    Song, Hong Joo; Roh, Cheong Hyun; Lee, Jun Ho; Choi, Hong Goo; Hahn, Cheol-Koo; Kim, Dong Ho; Park, Jung Ho

    2009-01-01

    In this paper, we investigated the dependence of reverse dark current on two types of surface passivation, one of which is polyimide and the other is SiN x , for InAs quantum dots/GaAs separate absorption, charge, multiplication avalanche photodiode (SACM APD). From the experimental results, we found that dark current was dominated by surface current, and not bulk current. It was also noted that SiN x passivation has a surface current that is lower by three to nine times in magnitude than that in polyimide passivation in the whole range of bias. To analyze the difference in dark current due to the passivation types, we propose the theoretical current components. This shows that the dark current of both passivation types is mainly composed of generation–recombination (G–R) and tunneling components, originating from the surface. However, each component has a different magnitude for passivation types, which can be explained by carrier concentration and trap density. The dependence of dark current on temperature shows the different behaviors between passivation types and supports a theoretical description of current components

  10. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  11. Adhesion and friction in polymer films on solid substrates: conformal sites analysis and corresponding surface measurements.

    Science.gov (United States)

    An, Rong; Huang, Liangliang; Mineart, Kenneth P; Dong, Yihui; Spontak, Richard J; Gubbins, Keith E

    2017-05-21

    In this work, we present a statistical mechanical analysis to elucidate the molecular-level factors responsible for the static and dynamic properties of polymer films. This analysis, which we term conformal sites theory, establishes that three dimensionless parameters play important roles in determining differences from bulk behavior for thin polymer films near to surfaces: a microscopic wetting parameter, α wx , defined as the ratio of polymer-substrate interaction to polymer-polymer interaction; a dimensionless film thickness, H*; and dimensionless temperature, T*. The parameter α wx introduced here provides a more fundamental measure of wetting than previous metrics, since it is defined in terms of intermolecular forces and the atomic structure of the substrate, and so is valid at the nanoscale for gas, liquid or solid films. To test this theoretical analysis, we also report atomic force microscopy measurements of the friction coefficient (μ), adhesion force (F A ) and glass transition temperature (T g ) for thin films of two polymers, poly(methyl methacrylate) (PMMA) and polystyrene (PS), on two planar substrates, graphite and silica. Both the friction coefficient and the glass transition temperature are found to increase as the film thickness decreases, and this increase is more pronounced for the graphite than for the silica surface. The adhesion force is also greater for the graphite surface. The larger effects encountered for the graphite surface are attributed to the fact that the microscopic wetting parameter, α wx , is larger for graphite than for silica, indicating stronger attraction of polymer chains to the graphite surface.

  12. Classification of Surface and Deep Soil Samples Using Linear Discriminant Analysis

    International Nuclear Information System (INIS)

    Wasim, M.; Ali, M.; Daud, M.

    2015-01-01

    A statistical analysis was made of the activity concentrations measured in surface and deep soil samples for natural and anthropogenic gamma-emitting radionuclides. Soil samples were obtained from 48 different locations in Gilgit, Pakistan covering about 50 km/sup 2/ areas at an average altitude of 1550 m above sea level. From each location two samples were collected: one from the top soil (2-6 cm) and another from a depth of 6-10 cm. Four radionuclides including /sup 226/Ra, /sup 232/Th, /sup 40/K and /sup 137/Cs were quantified. The data was analyzed using t-test to find out activity concentration difference between the surface and depth samples. At the surface, the median activity concentrations were 23.7, 29.1, 4.6 and 115 Bq kg/sup -1/ for 226Ra, 232Th, 137Cs and 40K respectively. For the same radionuclides, the activity concentrations were respectively 25.5, 26.2, 2.9 and 191 Bq kg/sup -1/ for the depth samples. Principal component analysis (PCA) was applied to explore patterns within the data. A positive significant correlation was observed between the radionuclides /sup 226/Ra and /sup 232/Th. The data from PCA was further utilized in linear discriminant analysis (LDA) for the classification of surface and depth samples. LDA classified surface and depth samples with good predictability. (author)

  13. Analysis of WEDM Process Parameters on Surface Roughness and Kerf using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Asfana Banu

    2017-12-01

    Full Text Available In obtaining the best quality of engineering parts, the quality of machined surface plays an essential role. The fatigue strength, wear resistance, and corrosion of workpiece are some of the aspects of the qualities that can be improved. This paper investigates the effect of wire electrical discharge machining (WEDM process parameters on surface roughness and kerf on stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The selected process parameters are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical models using Taguchi method were developed for the estimation of surface roughness and kerf. The analysis revealed that off time has major influence on surface roughness and kerf. The optimum machining parameters for minimum surface roughness and kerf were found to be 10 V open voltage, 2.84 µs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  14. An interaction analysis of twin surface cracks by the line-spring model

    International Nuclear Information System (INIS)

    Kim, Y.J.; Yang, W.H.; Choy, Y.S.; Lee, J.S.

    1992-01-01

    The fracture mechanics analysis of surface cracks is important for the integrity evaluation of flawed structural components. The objective of this paper is to numerically investigate the interaction effect of twin surface cracks in plate and cylindrical geometrie. First the usefulness of the line-spring model is verified by analyzing a single surface crack in a plate, and then the model is extended to twin surface crack in plate and cylindrical geometries. For the case of a finite plate under uniaxial loading, the effect of crack spacing on the stress intensity factor is negligible. However, for the case of a cylinder under moderate internal pressure, a significant increase in stress intensity factor is observed at the deepest point of the surface crack. (orig.)

  15. Failure Analysis and Thermochemical Surface Engineering of Bearings in the Wind Turbine Drivetrain

    DEFF Research Database (Denmark)

    West, Ole H.E.; Dahl, Kristian Vinter; Christiansen, Thomas Lundin

    charged rollers to reproduce WEC formation. The influence of different hoop stress levels was studied. The fracture surfaces as well as formed WECs were investigated. A detrimental effect of higher hoop stress levels on roller lifetime was found and based on the analysis of the formed WECs an incremental...... the influence of different alloying concepts, prior heat treatments and nitriding parameters on the case properties. With optimum nitriding conditions a maximum nitriding depth of 800 μm was achieved, without formation of a thick porous compound layer. The build-up of near surface compressive stresses...... was confirmed by synchrotron X–ray diffraction stress analysis. The performance of surface engineered rollers was evaluated by RCF testing under conditions that are known to provoke failure in rollers made from a standard bearing steel. One of the nitrided materials showed promising results....

  16. Analysis of stress intensity factors for surface cracks in pre/post penetration

    International Nuclear Information System (INIS)

    Miyoshi, Toshiro; Yoshida, Yuichiro

    1988-01-01

    It is important to evaluate the penetration of surface cracks in a Leak-Before-Break analysis. Because the stress intensity factors for surface cracks in pre/post penetration had not yet been analyzed, the authors carried three-dimensional boundary element analyses in order to obtain them. First, the authors developed the technique of nodal breakdown appropriate for cracks with short ligament length in a two-dimensional boundary element analysis. Next, analyses of stress intensity factor for surface cracks in pre/post penetration were carried out using the technique of nodal breakdown for cracks with short ligament length and the three-dimensional boundary element code BEM 3 D which was designed for a supercomputer. (author)

  17. Exploring Surface Analysis Techniques for the Detection of Molecular Contaminants on Spacecraft

    Science.gov (United States)

    Rutherford, Gugu N.; Seasly, Elaine; Thornblom, Mark; Baughman, James

    2016-01-01

    Molecular contamination is a known area of concern for spacecraft. To mitigate this risk, projects involving space flight hardware set requirements in a contamination control plan that establishes an allocation budget for the exposure of non-volatile residues (NVR) onto critical surfaces. The purpose of this work will focus on non-contact surface analysis and in situ monitoring to mitigate molecular contamination on space flight hardware. By using Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM-EDS) with Raman Spectroscopy, an unlikely contaminant was identified on space flight hardware. Using traditional and surface analysis methods provided the broader view of the contamination sources allowing for best fit solutions to prevent any future exposure.

  18. Support surfaces for pressure ulcer prevention: A network meta-analysis

    Science.gov (United States)

    Dumville, Jo C.; Cullum, Nicky

    2018-01-01

    Background Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. Objectives To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. Methods We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. Main results We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). Conclusions This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard

  19. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    Directory of Open Access Journals (Sweden)

    Chunhu Shi

    Full Text Available Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult.To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness.We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence.We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR 0.42, 95% confidence intervals (CI 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively. The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence.This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was

  20. The hidden radiation chemistry in plasma modification and XPS analysis of polymer surfaces

    International Nuclear Information System (INIS)

    George, G.A.; Le, T.T.; Elms, F.M.; Wood, B.J.

    1996-01-01

    Full text: The surface modification of polymers using plasma treatments is being widely researched to achieve changes in the surface energetics and consequent wetting and reactivity for a range of applications. These include i) adhesion for polymer bonding and composite material fabrication and ii) biocompatibility of polymers when used as orthopedic implants, catheters and prosthetics. A low pressure rf plasma produces a variety of species from the introduced gas which may react with the surface of a hydrocarbon polymer, such as polyethylene. In the case of 0 2 and H 2 0, these species include oxygen atoms, singlet molecular oxygen and hydroxyl radicals, all of which may oxidise and, depending on their energy, ablate the polymer surface. In order to better understand the reactive species formed both in and downstream from a plasma and the relative contributions of oxidation and ablation, self-assembled monolayers of n-alkane thiols on gold are being used as well characterised substrates for quantitative X-ray photoelectron spectroscopy (XPS). The identification and quantification of oxidised carbon species on plasma treated polymers from broad, asymmetric XPS signals is difficult, so derivatisation is often used to enhance sensitivity and specificity. For example, trifluoroacetic anhydride (TFAA) selectively labels hydroxyl functionality. The surface analysis of a modified polymer surface may be confounded by high energy radiation chemistry which may occur during XPS analysis. Examples include scission of carbon-halogen bonds (as in TFM adducts), decarboxylation and main-chain polyene formation. The extent of free-radical chemistry occurring in polyethylene while undergoing XPS analysis may be seen by both ESR and FT-IR analysis

  1. Liquid extraction surface analysis (LESA) of food surfaces employing chip-based nano-electrospray mass spectrometry.

    Science.gov (United States)

    Eikel, Daniel; Henion, Jack

    2011-08-30

    An automated surface-sampling technique called liquid extraction surface analysis (LESA), coupled with infusion nano-electrospray high-resolution mass spectrometry and tandem mass spectrometry (MS/MS), is described and applied to the qualitative determination of surface chemical residues resulting from the artificial spraying of selected fresh fruits and vegetables with representative pesticides. Each of the targeted pesticides was readily detected with both high-resolution and full-scan collision-induced dissociation (CID) mass spectra. In the case of simazine and sevin, a mass resolution of 100,000 was insufficient to distinguish the isobaric protonated molecules for these compounds. When the surface of a spinach leaf was analyzed by LESA, trace levels of diazinon were readily detected on the spinach purchased directly from a supermarket before they were sprayed with the five-pesticide mixture. A 30 s rinse under hot running tap water appeared to quantitatively remove all remaining residues of this pesticide. Diazinon was readily detected by LESA analysis on the skin of the artificially sprayed spinach. Finally, incurred pyrimethanil at a level of 169 ppb in a batch slurry of homogenized apples was analyzed by LESA and this pesticide was readily detected by both high-resolution mass spectrometry and full-scan CID mass spectrometry, thus showing that pesticides may also be detected in whole fruit homogenized samples. This report shows that representative pesticides on fruit and vegetable surfaces present at levels 20-fold below generally allowed EPA tolerance levels are readily detected and confirmed by the title technologies making LESA-MS as interesting screening method for food safety purposes. Copyright © 2011 John Wiley & Sons, Ltd.

  2. 'The surface management system' (SuMS) database: a surface-based database to aid cortical surface reconstruction, visualization and analysis

    Science.gov (United States)

    Dickson, J.; Drury, H.; Van Essen, D. C.

    2001-01-01

    Surface reconstructions of the cerebral cortex are increasingly widely used in the analysis and visualization of cortical structure, function and connectivity. From a neuroinformatics perspective, dealing with surface-related data poses a number of challenges. These include the multiplicity of configurations in which surfaces are routinely viewed (e.g. inflated maps, spheres and flat maps), plus the diversity of experimental data that can be represented on any given surface. To address these challenges, we have developed a surface management system (SuMS) that allows automated storage and retrieval of complex surface-related datasets. SuMS provides a systematic framework for the classification, storage and retrieval of many types of surface-related data and associated volume data. Within this classification framework, it serves as a version-control system capable of handling large numbers of surface and volume datasets. With built-in database management system support, SuMS provides rapid search and retrieval capabilities across all the datasets, while also incorporating multiple security levels to regulate access. SuMS is implemented in Java and can be accessed via a Web interface (WebSuMS) or using downloaded client software. Thus, SuMS is well positioned to act as a multiplatform, multi-user 'surface request broker' for the neuroscience community.

  3. Surface integrity analysis of abrasive water jet-cut surfaces of friction stir welded joints

    Czech Academy of Sciences Publication Activity Database

    Kumar, R.; Chattopadhyaya, S.; Dixit, A. R.; Bora, B.; Zeleňák, Michal; Foldyna, Josef; Hloch, Sergej; Hlaváček, Petr; Ščučka, Jiří; Klich, Jiří; Sitek, Libor; Vilaca, P.

    2017-01-01

    Roč. 88, č. 5 (2017), s. 1687-1701 ISSN 0268-3768 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : friction stir welding (FSW) * abrasive water jet (AWJ) * optical profilometer * topography * surface roughness Subject RIV: JQ - Machines ; Tools OBOR OECD: Mechanical engineering Impact factor: 2.209, year: 2016 http://link.springer.com/article/10.1007/s00170-016-8776-0

  4. Low energy ion scattering (LEIS) and the compositional and structural analysis of solid surfaces

    International Nuclear Information System (INIS)

    Berg, J.A. van den; Armour, D.G.

    1981-01-01

    The physics of Low Energy Ion Scattering (LEIS) and its application as a surface analytical technique are reviewed. It is shown that compositional and short-range structural information can be obtained by choosing experimental conditions which optimize the contributions of single and double (or multiple) collisions, respectively. The LEIS technique allows mass analysis in a straightforward way, possesses a high surface selectivity but is unable to provide quantitative information in isolation due to scattering cross-section uncertainties and not easily quantifiable charge exchange effects. Structural information regarding adsorbate positions on single crystal surfaces and the short-range substrate structure (including damaged and reconstructed surfaces) can be obtained by exploiting shadowing and/or multiple scattering phenomena. The progress made in recent years in this area is charted. It is shown that computer simulations often play an important role in this type of study. Effects, such as charge exchange, inelastic energy loss and ion beam surface perturbations, which complicate the use of low energy ion scattering for surface analysis are discussed in detail. The present status of the technique in the different areas of study is indicated. (author)

  5. Automated analysis of art object surfaces using time-averaged digital speckle pattern interferometry

    Science.gov (United States)

    Lukomski, Michal; Krzemien, Leszek

    2013-05-01

    Technical development and practical evaluation of a laboratory built, out-of-plane digital speckle pattern interferometer (DSPI) are reported. The instrument was used for non-invasive, non-contact detection and characterization of early-stage damage, like fracturing and layer separation, of painted objects of art. A fully automated algorithm was developed for recording and analysis of vibrating objects utilizing continuous-wave laser light. The algorithm uses direct, numerical fitting or Hilbert transformation for an independent, quantitative evaluation of the Bessel function at every point of the investigated surface. The procedure does not require phase modulation and thus can be implemented within any, even the simplest, DSPI apparatus. The proposed deformation analysis is fast and computationally inexpensive. Diagnosis of physical state of the surface of a panel painting attributed to Nicolaus Haberschrack (a late-mediaeval painter active in Krakow) from the collection of the National Museum in Krakow is presented as an example of an in situ application of the developed methodology. It has allowed the effectiveness of the deformation analysis to be evaluated for the surface of a real painting (heterogeneous colour and texture) in a conservation studio where vibration level was considerably higher than in the laboratory. It has been established that the methodology, which offers automatic analysis of the interferometric fringe patterns, has a considerable potential to facilitate and render more precise the condition surveys of works of art.

  6. Numerical analysis of free surface instabilities in the IFMIF lithium target

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Moeslang, A.

    2007-01-01

    The International Fusion Materials Facility (IFMIF) facility uses a high speed (10-20 m/s) Lithium (Li) jet flow as a target for two 40 MeV/125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. For the understanding the lithium jet behaviour and elimination of the free-surface flow instabilities a detailed analysis of the Li jet flow is necessary. Different kinds of instability mechanisms in the liquid jet flow have been evaluated and classified based on analytical and experimental data. Numerical investigations of the target free surface flow have been performed. Previous numerical investigations have shown in principle the suitability of CFD code Star- CD for the simulation of the Li-target flow. The main objective of this study is detailed numerical analysis of instabilities in the Li-jet flow caused by boundary layer relaxation near the nozzle exit, transition to the turbulence flow and back wall curvature. A number of CFD models are developed to investigate the formation of instabilities on the target surface. Turbulence models are validated on the experimental data. Experimental observations have shown that the change of the nozzle geometry at the outlet such as a slight divergence of the nozzle surfaces or nozzle edge defects causes the flow separation and occurrence of longitudinal periodic structures on the free surface with an amplitude up to 5 mm. Target surface fluctuations of this magnitude can lead to the penetration of the deuteron beam in the target structure and cause the local overheating of the back plat. Analysis of large instabilities in the Li-target flow combined with the heat distribution in lithium depending on the free surface shape is performed in this study. (orig.)

  7. Gridded Surface Subsurface Hydrologic Analysis (GSSHA) User's Manual; Version 1.43 for Watershed Modeling System 6.1

    National Research Council Canada - National Science Library

    Downer, Charles W; Ogden, Fred L

    2006-01-01

    The need to simulate surface water flows in watersheds with diverse runoff production mechanisms has led to the development of the physically-based hydrologic model Gridded Surface Subsurface Hydrologic Analysis (GSSHA...

  8. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1) (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset (four day latency) and...

  9. GHRSST Level 4 RTO Terra MODIS-AMSRE Day North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  10. GHRSST Level 4 RTO Terra MODIS-AMSRE Night North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  11. GHRSST Level 4 ODYSSEA North-Western Europe Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  12. GHRSST Level 4 DMI_OI North Sea and Baltic Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  13. Determination of the appropriate use of pavement surface history in the KDOT life-cycle analysis process.

    Science.gov (United States)

    2008-09-01

    The primary objective of this study was to evaluate KDOTs pavement surfacing history and recommend : whether or not the departments life-cycle cost analysis (LCCA) procedure should include a surfacing history : component, and, if so, how the LC...

  14. GHRSST Level 4 RTO Aqua MODIS-AMSRE Night North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  15. GHRSST Level 4 RTO Aqua MODIS-AMSRE Day North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  16. GHRSST Level 4 CMC0.1deg Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis at the Canadian...

  17. GHRSST Level 4 REMO_OI_SST_5km Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis by the...

  18. GHRSST Level 4 CMC0.2deg Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis at the Canadian...

  19. GHRSST Level 4 MW_IR_OI Global Foundation Sea Surface Temperature analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.81 degree grid at Remote Sensing...

  20. Surface analysis of 316 stainless steel treated with cold atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Williams, David F., E-mail: david.williams@surrey.ac.uk [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Kellar, Ewen J.C. [TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Jesson, David A.; Watts, John F. [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2017-05-01

    Highlights: • Reduction in carbon contamination from ∼80 at.% to 40 at.% after 15 s treatment. • Associated carbon thickness reduction from 4.5 nm to 0.5 nm. • Area treated by torch has a diameter of 11 mm measured using imaging XPS. - Abstract: The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m{sup −1} to >72 mJ m{sup −1} after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.

  1. Analysis of surfaces for characterization of fungal burden – Does it matter?

    Directory of Open Access Journals (Sweden)

    Carla Viegas

    2016-08-01

    Full Text Available Objectives: Mycological contamination of occupational environments can be a result of fungal spores’ dispersion in the air and on surfaces. Therefore, it is very important to assess it in both types of the samples. In the present study we assessed fungal contamination in the air and in the surface samples to show relevance of surfaces sampling in complementing the results obtained in the air samples. Material and Methods: In total, 42 settings were assessed by the analysis of air and surfaces samples. The settings were divided into settings with a high fungal load (7 poultry farms and 7 pig farms, 3 cork industries, 3 waste management plants, 2 wastewater treatment plants and 1 horse stable and a low fungal load (10 hospital canteens, 8 college canteens and 1 maternity hospital. In addition to culture-based methods, molecular tools were also applied to detect fungal burden in the settings with a higher fungal load. Results: From the 218 sampling sites, 140 (64.2% presented different species in the examined surfaces when compared with the species identified in the air. A positive association in the high fungal load settings was found between the presence of different species in the air and surfaces. Wastewater treatment plants constituted the setting with the highest number of different species between the air and surface. Conclusions: We observed that surfaces sampling and application of molecular tools showed the same efficacy of species detection in high fungal load settings, corroborating the fact that surface sampling is crucial for a correct and complete analysis of occupational scenarios.

  2. Analysis of surfaces for characterization of fungal burden - Does it matter?

    Science.gov (United States)

    Viegas, Carla; Faria, Tiago; Meneses, Márcia; Carolino, Elisabete; Viegas, Susana; Gomes, Anita Quintal; Sabino, Raquel

    2016-01-01

    Mycological contamination of occupational environments can be a result of fungal spores' dispersion in the air and on surfaces. Therefore, it is very important to assess it in both types of the samples. In the present study we assessed fungal contamination in the air and in the surface samples to show relevance of surfaces sampling in complementing the results obtained in the air samples. In total, 42 settings were assessed by the analysis of air and surfaces samples. The settings were divided into settings with a high fungal load (7 poultry farms and 7 pig farms, 3 cork industries, 3 waste management plants, 2 wastewater treatment plants and 1 horse stable) and a low fungal load (10 hospital canteens, 8 college canteens and 1 maternity hospital). In addition to culture-based methods, molecular tools were also applied to detect fungal burden in the settings with a higher fungal load. From the 218 sampling sites, 140 (64.2%) presented different species in the examined surfaces when compared with the species identified in the air. A positive association in the high fungal load settings was found between the presence of different species in the air and surfaces. Wastewater treatment plants constituted the setting with the highest number of different species between the air and surface. We observed that surfaces sampling and application of molecular tools showed the same efficacy of species detection in high fungal load settings, corroborating the fact that surface sampling is crucial for a correct and complete analysis of occupational scenarios. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  3. Surface analysis of Al alloys with X-ray photoelectron and Auger electron spectroscopies

    International Nuclear Information System (INIS)

    Sakairi, Masatoshi; Suzuki, Keita; Sasaki, Ryo

    2015-01-01

    In this paper, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were applied to investigate passive films formed on aluminum alloy in 0.5 kmol m -3 H 3 BO 3 /0.05 kmol m -3 Na 2 B 4 O 7 with different metal cations. The metal cation is classified by metal cation hardness, X, which are calculated based on the concept of hard and soft acids and bases (HSAB) of the acid and base in Lewis's rule. From XPS analysis, the metal cations with X > 4 were incorporated in passive films. The area-selected surface analysis of AES was also introduced. (author)

  4. Chemical imaging and solid state analysis at compact surfaces using UV imaging

    DEFF Research Database (Denmark)

    Wu, Jian X.; Rehder, Sönke; van den Berg, Frans

    2014-01-01

    and excipients in a non-invasive way, as well as mapping the glibenclamide solid state form. An exploratory data analysis supported the critical evaluation of the mapping results and the selection of model parameters for the chemical mapping. The present study demonstrated that the multi-wavelength UV imaging......Fast non-destructive multi-wavelength UV imaging together with multivariate image analysis was utilized to visualize distribution of chemical components and their solid state form at compact surfaces. Amorphous and crystalline solid forms of the antidiabetic compound glibenclamide...

  5. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  6. A portable UV-fluorescence multispectral imaging system for the analysis of painted surfaces

    Science.gov (United States)

    Comelli, Daniela; Valentini, Gianluca; Nevin, Austin; Farina, Andrea; Toniolo, Lucia; Cubeddu, Rinaldo

    2008-08-01

    A portable fluorescence multispectral imaging system was developed and has been used for the analysis of artistic surfaces. The imaging apparatus exploits two UV lamps for fluorescence excitation and a liquid crystal tunable filter coupled to a low-noise charge coupled device as the image detector. The main features of the system are critically presented, outlining the assets, drawbacks, and practical considerations of portability. A multivariate statistical treatment of spectral data is further considered. Finally, the in situ analysis with the new apparatus of recently restored Renaissance wall paintings is presented.

  7. Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Antończak, Arkadiusz J., E-mail: arkadiusz.antonczak@pwr.edu.pl [Laser and Fiber Electronics Group, Faculty of Electrical Engineering, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Skowroński, Łukasz; Trzcinski, Marek [Institute of Mathematics and Physics, University of Technology and Life Sciences, Kaliskiego 7, 85-789 Bydgoszcz (Poland); Kinzhybalo, Vasyl V. [Wroclaw Research Centre EIT+, Stabłowicka 147, 54-066 Wrocław (Poland); Institute of Low Temperature and Structure Research, Okólna 2, 50-422 Wrocław (Poland); Łazarek, Łukasz K.; Abramski, Krzysztof M. [Laser and Fiber Electronics Group, Faculty of Electrical Engineering, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-01-15

    Highlights: • Chemical structure of the films induced by laser on titanium surface was analyzed. • It was shown that outer layer of this films consist of oxides doped with nitrogen. • The optical properties of the laser-induced oxynitride films were characterized. • We found that the films demonstrated significant absorption in the band of 300–580 nm. • The morphology of the layers as a function of the laser fluence was investigated. - Abstract: This paper presents the results of the analysis of the complex chemical structure of the layers made on titanium in the process of the heating of its surfaces in an atmospheric environment, by irradiating samples with a nanosecond-pulsed laser. The study was carried out for electroplated, high purity, polycrystalline titanium substrates using a Yb:glass fiber laser. All measurements were made for samples irradiated in a broad range of accumulated fluence, below the ablation threshold. It has been determined how the complex index of refraction of both the oxynitride layers and the substrate vary as a function of accumulated laser fluence. It was also shown that the top layer of the film produced on titanium, which is transparent, is not a pure TiO{sub 2} as had been supposed before. The XPS and XRD analyses confirmed the presence of nitrogen compounds and the existence of nonstoichiometric compounds. By sputtering of the sample's surface using an Ar{sup +} ion gun, the changes in the concentration of individual elements as a function of the layer's cross-section were determined. Lastly, an analysis of the surface morphology has also been carried out, explaining why the layers crack and exfoliate from their substrate.

  8. Hyperspectral Surface Analysis for Ripeness Estimation and Quick UV-C Surface Treatments for Preservation of Bananas

    Science.gov (United States)

    Zhao, W.; Yang, Zh.; Chen, Zh.; Liu, J.; Wang, W. Ch.; Zheng, W. Yu.

    2016-05-01

    This study aimed to determine the ripeness of bananas using hyperspectral surface analysis and how a rapid UV-C (ultraviolet-C light) surface treatment could reduce decay. The surface of the banana fruit and its stages of maturity were studied using a hyperspectral imaging technique in the visible and near infrared (370-1000 nm) regions. The vselected color ratios from these spectral images were used for classifying the whole banana into immature, ripe, half-ripe and overripe stages. By using a BP neural network, models based on the wavelengths were developed to predict quality attributes. The mean discrimination rate was 98.17%. The surface of the fresh bananas was treated with UV-C at dosages from 15-55 μW/cm2. The visual qualities with or without UV-C treatment were compared using the image, the chromatic aberration test, the firmness test and the area of black spot on the banana skin. The results showed that high dosages of UV-C damaged the banana skin, while low dosages were more efficient at delaying changes in the relative brightness of the skin. The maximum UV-C treatment dose for satisfactory banana preservation was between 21 and 24 μW/cm2. These results could help to improve the visual quality of bananas and to classify their ripeness more easily.

  9. Quantitative strain analysis of surfaces and interfaces using extremely asymmetric x-ray diffraction

    International Nuclear Information System (INIS)

    Akimoto, Koichi; Emoto, Takashi

    2010-01-01

    Strain can reduce carrier mobility and the reliability of electronic devices and affect the growth mode of thin films and the stability of nanometer-scale crystals. To control lattice strain, a technique for measuring the minute lattice strain at surfaces and interfaces is needed. Recently, an extremely asymmetric x-ray diffraction method has been developed for this purpose. By employing Darwin's dynamical x-ray diffraction theory, quantitative evaluation of strain at surfaces and interfaces becomes possible. In this paper, we review our quantitative strain analysis studies on native SiO 2 /Si interfaces, reconstructed Si surfaces, Ni/Si(111)-H interfaces, sputtered III-V compound semiconductor surfaces, high-k/Si interfaces, and Au ion-implanted Si. (topical review)

  10. Using Spatial Structure Analysis of Hyperspectral Imaging Data and Fourier Transformed Infrared Analysis to Determine Bioactivity of Surface Pesticide Treatment

    Directory of Open Access Journals (Sweden)

    Christian Nansen

    2010-03-01

    Full Text Available Many food products are subjected to quality control analyses for detection of surface residue/contaminants, and there is a trend of requiring more and more documentation and reporting by farmers regarding their use of pesticides. Recent outbreaks of food borne illnesses have been a major contributor to this trend. With a growing need for food safety measures and “smart applications” of insecticides, it is important to develop methods for rapid and accurate assessments of surface residues on food and feed items. As a model system, we investigated detection of a miticide applied to maize leaves and its miticidal bioactivity over time, and we compared two types of reflectance data: fourier transformed infrared (FTIR data and hyperspectral imaging (HI data. The miticide (bifenazate was applied at a commercial field rate to maize leaves in the field, with or without application of a surfactant, and with or without application of a simulated “rain event”. In addition, we collected FTIR and HI from untreated control leaves (total of five treatments. Maize leaf data were collected at seven time intervals from 0 to 48 hours after application. FTIR data were analyzed using conventional analysis of variance of miticide-specific vibration peaks. Two unique FTIR vibration peaks were associated with miticide application (1,700 cm−1 and 763 cm−1. The integrated intensities of these two peaks, miticide application, surfactant, rain event, time between miticide application, and rain event were used as explanatory variables in a linear multi-regression fit to spider mite mortality. The same linear multi-regression approach was applied to variogram parameters derived from HI data in five selected spectral bands (664, 683, 706, 740, and 747 nm. For each spectral band, we conducted a spatial structure analysis, and the three standard variogram parameters (“sill”, “range”, and “nugget” were examined as possible “indicators” of miticide

  11. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    Directory of Open Access Journals (Sweden)

    V. Shutthanandan

    2012-06-01

    Full Text Available Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power free electron lasers (FEL. Photocathode quantum efficiency degradation is due to residual gases in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include helium ion microscopy, Rutherford backscattering spectrometry (RBS, atomic force microscopy, and secondary ion mass spectrometry (SIMS. In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the continuous electron beam accelerator facility (CEBAF photoinjector and one unused, were also analyzed using transmission electron microscopy (TEM and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but show evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements, the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  12. Texture Analysis of Hydrophobic Polycarbonate and Polydimethylsiloxane Surfaces via Persistent Homology

    Directory of Open Access Journals (Sweden)

    Ali Nabi Duman

    2017-09-01

    Full Text Available Due to recent climate change-triggered, regular dust storms in the Middle East, dust mitigation has become the critical issue for solar energy harvesting devices. One of the methods to minimize and prevent dust adhesion and create self-cleaning abilities is to generate hydrophobic characteristics on surfaces. The purpose of this study is to explore the topological features of hydrophobic surfaces. We use non-standard techniques from topological data analysis to extract morphological features from the AFM images. Our method recovers most of the previous qualitative observations in a robust and quantitative way. Persistence diagrams, which is a summary of topological structures, witness quantitatively that the crystallized polycarbonate (PC surface possesses spherulites, voids, and fibrils, and the texture height and spherulite concentration increases with the increased immersion period. The approach also shows that the polydimethylsiloxane (PDMS exactly copied the structures at the PC surface but 80 to 90 percent of the nanofibrils were not copied at PDMS surface. We next extract a feature vector from each persistence diagram to show which experiments hold features with similar variance using principal component analysis (PCA. The K-means clustering algorithm is applied to the matrix of feature vectors to support the PCA result, grouping experiments with similar features.

  13. Determination of elastic mechanical characteristics of surface coatings from analysis of signals obtained by impulse excitation

    Science.gov (United States)

    Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.

    2018-01-01

    Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.

  14. A Novel Method for Surface Defect Detection of Photovoltaic Module Based on Independent Component Analysis

    Directory of Open Access Journals (Sweden)

    Xuewu Zhang

    2013-01-01

    Full Text Available This paper proposed a new method for surface defect detection of photovoltaic module based on independent component analysis (ICA reconstruction algorithm. Firstly, a faultless image is used as the training image. The demixing matrix and corresponding ICs are obtained by applying the ICA in the training image. Then we reorder the ICs according to the range values and reform the de-mixing matrix. Then the reformed de-mixing matrix is used to reconstruct the defect image. The resulting image can remove the background structures and enhance the local anomalies. Experimental results have shown that the proposed method can effectively detect the presence of defects in periodically patterned surfaces.

  15. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    Science.gov (United States)

    Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo

    2009-06-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.

  16. Headspace analysis gas-phase infrared spectroscopy: a study of xanthate decomposition on mineral surfaces

    Science.gov (United States)

    Vreugdenhil, Andrew J.; Brienne, Stephane H. R.; Markwell, Ross D.; Butler, Ian S.; Finch, James A.

    1997-03-01

    The O-ethyldithiocarbonate (ethyl xanthate, CH 3CH 2OCS -2) anion is a widely used reagent in mineral processing for the separation of sulphide minerals by froth flotation. Ethyl xanthate interacts with mineral powders to produce a hydrophobic layer on the mineral surface. A novel infrared technique, headspace analysis gas-phase infrared spectroscopy (HAGIS) has been used to study the in situ thermal decomposition products of ethyl xanthate on mineral surfaces. These products include CS 2, COS, CO 2, CH 4, SO 2, and higher molecular weight alkyl-containing species. Decomposition pathways have been proposed with some information determined from 2H- and 13C-isotope labelling experiments.

  17. ATSR sea surface temperature data in a global analysis with TOPEX/POSEIDON altimetry

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Knudsen, Thomas

    1996-01-01

    Along Track Scanning Radiometer (ATSR) data from the ERS 1 satellite mission are used in a global analysis of the surface temperature of the oceans. The data are the low resolution 0.5 degrees by 0.5 degrees average temperatures and cover about 24 months. At global scales a significant seasonal...... variability is found. On each of the hemispheres the surface temperatures reach their maximum after summer heating. The seasonal sea level variability, as observed from TOPEX/POSEIDON, reaches its maximum 1.1-1.4 months later....

  18. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  19. A thermal spike analysis of low energy ion activated surface processes

    International Nuclear Information System (INIS)

    Gilmore, G.M.; Haeri, A.; Sprague, J.A.

    1989-01-01

    This paper reports a thermal spike analysis utilized to predict the time evolution of energy propagation through a solid resulting from energetic particle impact. An analytical solution was developed that can predict the number of surface excitations such as desorption, diffusion or chemical reaction activated by an energetic particle. The analytical solution is limited to substrates at zero Kelvin and to materials with constant thermal diffusivities. These limitations were removed by developing a computer numerical integration of the propagation of the thermal spike through the solid and the subsequent activation of surface processes

  20. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  1. Analysis of Static and Dynamic Properties of Micromirror with the Application of Response Surface Method

    Directory of Open Access Journals (Sweden)

    A Martowicz

    2016-09-01

    Full Text Available The paper presents the results of an application of response surface method to aid the analysis of variation of static and dynamic properties of micromirror. The multiphysics approach was taken into account to elaborate finite element model of electrostatically actuated microdevice and coupled analyses were carried out to yield the results. Used procedure of metamodel fitting is described and its quality is discussed. Elaborated approximations were used to perform the sensitivity analysis as well as to study the propagation of variation introduced by uncertain and control parameters. The input parameters deal with geometry, material properties and control voltage. As studied output characteristics there were chosen the resultant static vertical displacement of reflecting surfaces and the resonance frequency related to the first normal mode of vibration.

  2. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  3. Global spectral graph wavelet signature for surface analysis of carpal bones

    Science.gov (United States)

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.

    2018-02-01

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  4. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor.

    Science.gov (United States)

    Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee

    2007-05-08

    A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.

  5. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    OpenAIRE

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This project, conducted in cooperation between the TNO Institute for Applied Scientific Research (IGG-TNO) and !he Winand Staring Centre for Integrated Land, Soil and Water Research (SC-DLO), is aimed at defin...

  6. Quantitative analysis of hydrogen and hydrogen isotopes at the solid surface

    International Nuclear Information System (INIS)

    Trocellier, P.

    2007-01-01

    Because of the importance of the effects bound to the hydrogen presence in materials it is particularly important to determine with accuracy the surface and volume distribution of hydrogen. Meanwhile the electronic structure of the hydrogen (one electron) do not allow to use many characterization techniques as the electrons spectroscopies or the X micro analysis. The author presents other possible techniques. (A.L.B.)

  7. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  8. Ambient mass spectrometry: From the planar to the non-planar surface analysis

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Cvačka, Josef

    2017-01-01

    Roč. 15, č. 1 (2017), s. 31 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] Institutional support: RVO:61388963 Keywords : ambient mass spectrometry * thin layer chromatography * non-planar surface analysis Subject RIV: CB - Analytical Chemistry, Separation

  9. A cost and operational effectiveness analysis of alternative anti-surface warfare platforms

    OpenAIRE

    Skinner, Walter Mark.

    1993-01-01

    Approved for public release; distribution is unlimited. A Cost and Operational Effectiveness Analysis (COEA) is performed for three alternative anti-surface warfare (ASUW) platforms that will conduct operations in multi-service regional scenarios. Estimated program costs, historical cost variances, and measures of operational effectiveness are determined for each COEA alternative, and service life extension effects are examined. The data is merged in a mixed-integer optimization model, MPA...

  10. Root surface area measurement of permanent dentition in Indian population – CBCT analysis

    Directory of Open Access Journals (Sweden)

    Kanika Lakhani

    2017-01-01

    Full Text Available The area of the root surface of human teeth has been investigated extensively in the dental literature. All previous attempts mainly rely on the use of physical methods to calculate surface area on extracted teeth or use virtual 3D Models for the same. The aim is to develop an algorithm using MATLAB software that estimates the dimensions of 3-D image produced with the help of CBCT so that the same can be utilized to calculate the root surface area of teeth among Indian population. Present research utilizes CBCT images of samples of extracted teeth mounted on a customized jpg. A descriptive chart for statistical analysis has been prepared to obtain average root surface area of each tooth type. The currently developed algorithm has been successfully applied to the CBCT images of complete sample of teeth to obtain their root surface area. The algorithm developed to calculate root surface area of the teeth holds wide spread application in the field of dentistry pursuing its high expediency in even various specializations of dentistry including orthodontics, prosthodontics, periodontology and implantalogy. It is concluded that it has now become a reality to accurately determine the surface area of the root of human teeth without extracting them using the CBCT radiographs of the patients.

  11. MicroCT Analysis of Micro-Nano Titanium Implant Surface on the Osseointegration.

    Science.gov (United States)

    Ban, Jaesam; Kang, Seongsoo; Kim, Jihyun; Lee, Kwangmin; Hyunpil, Lim; Vang, Mongsook; Yang, Hongso; Oh, Gyejeong; Kim, Hyunseung; Hwang, Gabwoon; Jung, Yongho; Lee, Kyungku; Park, Sangwon; Yunl, Kwidug

    2015-01-01

    This study was to investigate the effects of micro-nano titanium implant surface on the osseointegration. A total of 36 screw-shaped implants were used. The implant surfaces were classified into 3 groups (n = 12): machined surface (M group), nanosurface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a 20 V for 10 min with 1 M H3PO4 and 1.5 wt% HF solutions. The implants were installed on the humerus on 6 beagles. After 4 and 12 weeks, the morphometric analysis with micro CT (skyscan 1172, SKYSCAN, Antwerpen, Belgium) was done. The data were statistically analyzed with two-way ANOVA. Bone mineral density and bone volume were significantly increased depending on time. RA group showed the highest bone mineral density and bone volume at 4 weeks and 12 weeks significantly. It indicated that nano-micro titanium implant surface showed faster and more mature osseointegration.

  12. Profilometric analysis of two composite resins' surface repolished after tooth brush abrasion with three polishing systems.

    Science.gov (United States)

    Uppal, Mudit; Ganesh, Arathi; Balagopal, Suresh; Kaur, Gurleen

    2013-07-01

    To evaluate the effect of three polishing protocols that could be implemented at recall on the surface roughness of two direct esthetic restorative materials. Specimens (n = 40) measuring 8 mm (length) × 5 mm (width) × 4 mm (height) were fabricated in an acrylic mold using two light-cured resin-based materials (microfilled composite and microhybrid composite). After photopolymerization, all specimens were finished and polished with one of three polishing protocols (Enhance, One Gloss, and Sof-Lex polishing systems). The average surface roughness of each treated specimen was determined using 3D optical profilometer. Next all specimens were brushed 60,000 times with nylon bristles at 7200 rpm using crosshead brushing device with equal parts of toothpaste and water used as abrasive medium. The surface roughness of each specimen was measured after brushing followed by repolishing with one of three polishing protocols, and then, the final surface roughness values were determined. The data were analyzed using one-way and two-factor analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD). Significant difference (P < 0.05) in surface roughness was observed. Simulated brushing following initial polishing procedure significantly roughened the surface of restorative material (P < 0.05). Polishing protocols can be used to restore a smooth surface on esthetic restorative materials following simulated tooth brushing.

  13. Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis.

    Science.gov (United States)

    Knapp, W; Strobl, H; Majdic, O

    1994-12-15

    New technology allows highly sensitive flow cytometric detection and quantitative analysis of intracellular antigens in normal and malignant hemopoietic cells. With this technology, the earliest stages of myeloid and lymphoid differentiation can easily and reliably be identified using antibodies directed against (pro-)myeloperoxidase/MPO, CD22 and CD3 antigens, respectively. Particularly for the analysis of undifferentiated acute myeloblastic leukemia (AML) cells, the immunological demonstration of intracellular MPO or its enzymatically inactive proforms is highly relevant, since other myeloid marker molecules such as CD33, CD13, or CDw65 are either not restricted to the granulomonocytic lineage or appear later in differentiation. By combining MPO staining with staining for lactoferrin (LF), undifferentiated cells can be distinguished from the granulomonocytic maturation compartment in bone marrow, since LF is selectively expressed from the myelocyte stage of differentiation onward. The list of informative intracellular antigens to be used in leukemia cell analysis will certainly expand in the near future. One candidate, intracellular CD68, has already been tested by us, and results are presented. Also dealt within this article are surface marker molecules not (as yet) widely used in leukemia cell analysis but with the potential to provide important additional information. Among them are the surface structures CD15, CD15s, CDw65, CD79a (MB-1), CD79b (B29), CD87 (uPA-R), and CD117 (c-kit).

  14. Fractal and multifractal analysis of LiF thin film surface

    International Nuclear Information System (INIS)

    Yadav, R.P.; Dwivedi, S.; Mittal, A.K.; Kumar, M.; Pandey, A.C.

    2012-01-01

    Highlights: ► Fractal and multifractal analysis of surface morphologies of the LiF thin films. ► Complexity and roughness of the LiF thin films increases as thickness increases. ► LiF thin films are multifractal in nature. ► Strength of the multifractality increases with thickness of the film. - Abstract: Fractal and multifractal analysis is performed on the atomic force microscopy (AFM) images of the surface morphologies of the LiF thin films of thickness 10 nm, 20 nm, and 40 nm, respectively. Autocorrelation function, height–height correlation function, and two-dimensional multifractal detrended fluctuation analysis (MFDFA) are used for characterizing the surface. It is found that the interface width, average roughness, lateral correlation length, and fractal dimension of the LiF thin film increase with the thickness of the film, whereas the roughness exponent decreases with thickness. Thus, the complexity and roughness of the LiF thin films increases as thickness increases. It is also demonstrated that the LiF thin films are multifractal in nature. Strength of the multifractality increases with thickness of the film.

  15. Optimum Design of a Helicopter Rotor for Low Vibration Using Aeroelastic Analysis and Response Surface Methods

    Science.gov (United States)

    Ganguli, R.

    2002-11-01

    An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.

  16. FRACTAL ANALYSIS OF PHYSICAL ADSORPTION ON SURFACES OF ACID ACTIVATED BENTONITES FROM SERBIA

    Directory of Open Access Journals (Sweden)

    Ljiljana Rožić

    2008-11-01

    Full Text Available Solid surfaces are neither ideally regular, that is, morphological and energeticcally homogeneous, nor are they fully irregular or fractal. Instead, real solid surfaces exhibit a limited degree of organization quantified by the fractal dimension, D. Fractal analysis was applied to investigate the effect of concentrations of HCl solutions on the structural and textural properties of chemically activated bentonite from southern Serbia. Acid treatment of bentonites is applied in order to remove impurities and various exchangeable cations from bentonite clay. Important physical changes in acid-activated smectite are the increase of the specific surface area and of the average pore volume, depending on acid strength, time and temperature of a treatment. On the basis of the sorption-structure analysis, the fractal dimension of the bentonite surfaces was determined by Mahnke and Mögel method. The fractal dimension evaluated by this method was 2.11 for the AB3 and 1.94 for the AB4.5 sample. The estimation of the values of the fractal dimension of activated bentonites was performed in the region of small pores, 0.5 nm < rp < 2 nm.

  17. Numerical analysis of high-speed liquid lithium free-surface flow

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Heinzel, Volker; Stieglitz, Robert

    2012-01-01

    Highlights: ► The free surface behavior of a high speed lithium jet is investigated by means of a CFD LES analysis. ► The study is aiming to validate adequate LES technique. ► The Osaka University experiments with liquid lithium jet have been simulated. ► Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. ► Calculation results show a good qualitative and a quantitative agreement with the experimental data. - Abstract: The free-surface stability of the target of the International Fusion Material Irradiation Facility (IFMIF) is one of the crucial issues, since the spatio-temporal behavior of the free-surface determines the neutron flux to be generated. This article investigates the relation between the evolution of a wall boundary layer in a convergent nozzle and the free surface shape of a high speed lithium jet by means of a CFD LES analysis using the Osaka University experiments. The study is aiming to validate adequate LES technique to analyze the individual flow phenomena observed. Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. First analyses of calculation results show that the simulation exhibits a good qualitative and a quantitative agreement with the experimental data, which allows in the future a more realistic prediction of the IFMIF target behavior.

  18. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    Science.gov (United States)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  19. Determination of nanoparticle surface coatings and nanoparticle purity using microscale thermogravimetric analysis.

    Science.gov (United States)

    Mansfield, Elisabeth; Tyner, Katherine M; Poling, Christopher M; Blacklock, Jenifer L

    2014-02-04

    The use of nanoparticles in some applications (i.e., nanomedical, nanofiltration, or nanoelectronic) requires small samples with well-known purities and composition. In addition, when nanoparticles are introduced into complex environments (e.g., biological fluids), the particles may become coated with matter, such as proteins or lipid layers. Many of today's analytical techniques are not able to address small-scale samples of nanoparticles to determine purity and the presence of surface coatings. Through the use of an elevated-temperature quartz crystal microbalance (QCM) method we call microscale thermogravimetric analysis, or μ-TGA, the nanoparticle purity, as well as the presence of any surface coatings of nanomaterials, can be measured. Microscale thermogravimetric analysis is used to determine the presence and amount of surface-bound ligand coverage on gold nanoparticles and confirm the presence of a poly(ethylene glycol) coating on SiO2 nanoparticles. Results are compared to traditional analytical techniques to demonstrate reproducibility and validity of μ-TGA for determining the presence of nanoparticle surface coatings. Carbon nanotube samples are also analyzed and compared to conventional TGA. The results demonstrate μ-TGA is a valid method for quantitative determination of the coatings on nanoparticles, and in some cases, can provide purity and compositional data of the nanoparticles themselves.

  20. Surface immobilized antibody orientation determined using ToF-SIMS and multivariate analysis.

    Science.gov (United States)

    Welch, Nicholas G; Madiona, Robert M T; Payten, Thomas B; Easton, Christopher D; Pontes-Braz, Luisa; Brack, Narelle; Scoble, Judith A; Muir, Benjamin W; Pigram, Paul J

    2017-06-01

    Antibody orientation at solid phase interfaces plays a critical role in the sensitive detection of biomolecules during immunoassays. Correctly oriented antibodies with solution-facing antigen binding regions have improved antigen capture as compared to their randomly oriented counterparts. Direct characterization of oriented proteins with surface analysis methods still remains a challenge however surface sensitive techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provide information-rich data that can be used to probe antibody orientation. Diethylene glycol dimethyl ether plasma polymers (DGpp) functionalized with chromium (DGpp+Cr) have improved immunoassay performance that is indicative of preferential antibody orientation. Herein, ToF-SIMS data from proteolytic fragments of anti-EGFR antibody bound to DGpp and DGpp+Cr are used to construct artificial neural network (ANN) and principal component analysis (PCA) models indicative of correctly oriented systems. Whole antibody samples (IgG) test against each of the models indicated preferential antibody orientation on DGpp+Cr. Cross-reference between ANN and PCA models yield 20 mass fragments associated with F(ab') 2 region representing correct orientation, and 23 mass fragments associated with the Fc region representing incorrect orientation. Mass fragments were then compared to amino acid fragments and amino acid composition in F(ab') 2 and Fc regions. A ratio of the sum of the ToF-SIMS ion intensities from the F(ab') 2 fragments to the Fc fragments demonstrated a 50% increase in intensity for IgG on DGpp+Cr as compared to DGpp. The systematic data analysis methodology employed herein offers a new approach for the investigation of antibody orientation applicable to a range of substrates. Controlled orientation of antibodies at solid phases is critical for maximizing antigen detection in biosensors and immunoassays. Surface-sensitive techniques (such as ToF-SIMS), capable of direct

  1. Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations.

    Science.gov (United States)

    Gross, Sherilyn A; Avens, Heather J; Banducci, Amber M; Sahmel, Jennifer; Panko, Julie M; Tvermoes, Brooke E

    2013-04-01

    Concerns have arisen among the public regarding the potentialfor drinking-water contamination from the migration of methane gas and hazardous chemicals associated with hydraulic fracturing and horizontal drilling. However, little attention has been paid to the potentialfor groundwater contamination resulting from surface spills from storage and production facilities at active well sites. We performed a search for publically available data regarding groundwater contamination from spills at ULS. drilling sites. The Colorado Oil and Gas Conservation Commission (COGCC) database was selected for further analysis because it was the most detailed. The majority ofspills were in Weld County, Colorado, which has the highest density of wells that used hydraulic fracturing for completion, many producing both methane gas and crude oil. We analyzed publically available data reported by operators to the COGCC regarding surface spills that impacted groundwater From July 2010 to July 2011, we noted 77 reported surface spills impacting the groundwater in Weld County, which resulted in surface spills associated with less than 0.5% of the active wells. The reported data included groundwater samples that were analyzed for benzene, toluene, ethylbenzene, andxylene (BTEX) components of crude oil. For groundwater samples taken both within the spill excavation area and on the first reported date of sampling, the BTEX measurements exceeded National Drinking Water maximum contaminant levels (MCLs) in 90, 30, 12, and 8% of the samples, respectively. However, actions taken to remediate the spills were effective at reducing BJTEX levels, with at least 84% of the spills reportedly achieving remediation as of May 2012. Our analysis demonstrates that surface spills are an important route of potential groundwater contamination from hydraulic fracturing activities and should be a focus of programs to protect groundwater While benzene can occur naturally in groundwater sources, spills and migration

  2. The transient response for different types of erodable surface thermocouples using finite element analysis

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein

    2007-01-01

    Full Text Available The transient response of erodable surface thermocouples has been numerically assessed by using a two dimensional finite element analysis. Four types of base metal erodable surface thermocouples have been examined in this study, included type-K (alumel-chromel, type-E (chromel-constantan, type-T (copper-constantan, and type-J (iron-constantan with 50 mm thick- ness for each. The practical importance of these types of thermocouples is to be used in internal combustion engine studies and aerodynamics experiments. The step heat flux was applied at the surface of the thermocouple model. The heat flux from the measurements of the surface temperature can be commonly identified by assuming that the heat transfer within these devices is one-dimensional. The surface temperature histories at different positions along the thermocouple are presented. The normalized surface temperature histories at the center of the thermocouple for different types at different response time are also depicted. The thermocouple response to different heat flux variations were considered by using a square heat flux with 2 ms width, a sinusoidal surface heat flux variation width 10 ms period and repeated heat flux variation with 2 ms width. The present results demonstrate that the two dimensional transient heat conduction effects have a significant influence on the surface temperature history measurements made with these devices. It was observed that the surface temperature history and the transient response for thermocouple type-E are higher than that for other types due to the thermal properties of this thermocouple. It was concluded that the thermal properties of the surrounding material do have an impact, but the properties of the thermocouple and the insulation materials also make an important contribution to the net response.

  3. Analysis of surface states in ZnO nanowire field effect transistors

    International Nuclear Information System (INIS)

    Shao, Ye; Yoon, Jongwon; Kim, Hyeongnam; Lee, Takhee; Lu, Wu

    2014-01-01

    Highlights: • The electron transport in ZnO nanowire FETs is space charged limited below a trap temperature. • Metallic contacts to ZnO nanowires exhibit non-linear behavior with a Schottky barrier height of ∼0.35 eV. • The surface state density is in the range of 1.04 × 10 10 –1.24 × 10 10 /cm 2 . • The trap activation energy is ∼0.26 eV. - Abstract: Nanowires (NWs) have attracted considerable interests for scaled electronic and optoelectronic device applications. However, NW based semiconductor devices normally suffer from surface states due to the existence of dangling bonds or surface reconstruction. Because of their large surface-to-volume ratio, surface states in NWs can easily affect the metallic contacts to NWs and electron transport in NW. Here, we present ZnO NW surface analysis by performing current–voltage characterization on ZnO NW Schottky barrier field effect transistors with different metal contacts (Ti, Al, Au) at both room temperature and cryogenic temperature. Our results show that three metal contacts are all Schottky contacts to ZnO NWs due to surface states. Our further study reveals: (a) the surface states related Schottky barrier height (SBH) can be extracted from a back to back Schottky diodes model and the SBH values are in the range of 0.34–0.37 eV for three metal contacts; (b) the trap activation energy determined from the Arrhenius plots of different Schottky metal contacts is in the range of 0.23–0.29 eV, which is oxygen vacancies related; and (c) based on the space-charge-limited model, the surface state density of ZnO NW is in the range of 1.04 × 10 10 –1.24 × 10 10 /cm 2

  4. Dynamics of Plasma-Surface Interactions using In-situ Ion Beam Analysis

    International Nuclear Information System (INIS)

    Whyte, D.G.

    2009-01-01

    The overall goal of this proposal was to develop an innovative experimental facility that would allow for the measurement of real-time response of a material surface to plasma bombardment by employing in-situ high-energy ion beam analysis. This facility was successfully developed and deployed at U. Wisconsin-Madison and was named DIONISOS (Dynamics of IONic Implantation and Sputtering on Surfaces). There were several major highlights to the DIONISOS research which we will briefly highlight below. The full technical details of the DIONISOS development, deployment and research results are contained in the Appendices which contain several peer-reviewed publications and a PhD thesis devoted to DIONISOS. The DIONISOS results on deuterium retention in molybdenum were chosen as an invited talk at the 2008 International Conference on Plasma-Surface Interactions in Toledo, Spain.

  5. Transmission-lattice based geometric phase analysis for evaluating the dynamic deformation of a liquid surface.

    Science.gov (United States)

    Shi, Wenxiong; Huang, Xianfu; Liu, Zhanwei

    2014-05-05

    Quantitatively measuring a dynamic liquid surface often presents a challenge due to high transparency, fluidity and specular reflection. Here, a novel Transmission-Lattice based Geometric Phase Analysis (TLGPA) method is introduced. In this method, a special lattice is placed underneath a liquid to be tested and, when viewed from above, the phase of the transmission-lattice image is modulated by the deformation of the liquid surface. Combining this with multi-directional Newton iteration algorithms, the dynamic deformation field of the liquid surface can be calculated from the phase variation of a series of transmission-lattice images captured at different moments. The developed method has the advantage of strong self-adaption ability to initial lattice rotational errors and this is discussed in detail. Dynamic 3D ripples formation and propagation was investigated and the results obtained demonstrated the feasibility of the method.

  6. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Directory of Open Access Journals (Sweden)

    Valentina eSpampinato

    2016-02-01

    Full Text Available In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS, Principal Component Analysis (PCA and X-ray Photoelectron Spectroscopy (XPS have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP.The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules.Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  7. Surface analysis of CdTe after various pre-contact treatments

    Energy Technology Data Exchange (ETDEWEB)

    Waters, D.M. [Univ. of California, Santa Cruz, CA (United States). Dept. of Physics; Niles, D.; Gessert, T.A.; Albin, D.; Rose, D.H.; Sheldon, P. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    The authors present surface analysis of close-spaced sublimated (CSS) CdTe after various pre-contact treatments. Methods include Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), and grazing-incidence x-ray diffraction (GI-XRD). XPS and GI-XRD analyses of the surface residue left by the solution-based CdCl{sub 2} treatment do not indicate the presence of a significant amount of CdCl{sub 2}. In addition, the solubility properties and relatively high thermal stability of the residue suggest the presence of the oxychloride Cd{sub 3}Cl{sub 2}O{sub 2} rather than CdCl{sub 2} as the major chlorine-containing component. Of the methods tested for their effectiveness in removing the residue, only HNO{sub 3} etches removed all detectable traces of chlorine from the surface.

  8. Strength and failure analysis of composite-to-composite adhesive bonds with different surface treatments

    Science.gov (United States)

    Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan

    2018-03-01

    Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.

  9. Postmortem near surface analysis of beryllium limiter tiles from ISX-B

    International Nuclear Information System (INIS)

    Zuhr, R.A.

    1985-11-01

    Beryllium is a promising material for plasma-side components in magnetic confinement fusion devices and is being considered for possible use in the Joint European Torus (JET). In order to test beryllium as a limiter material, a collaborative JET/ISX-B experiment was carried out in which the ISX-B tokamak was operated for more than 4000 discharges with a beryllium limiter. At the end of the test period the limiter was removed and the composition of the near-surface region of selected tiles was analyzed as a function of position by Rutherford backscattering. The amount of deuterium retained near the surface was measured by nuclear reaction analysis. Chromium, iron, and nickel were the dominant metallic impurities in the surface with a combined concentration on the order of 10 16 cm -2 . Oxygen surface coverages were generally in the mid-10 16 cm -2 range. A consistent trend in the impurity data was that heavily damaged or melted areas generally incorporated more impurities. The amounts of deuterium trapped in the tiles ranged from 1 to 5 x 10 17 cm -2 over all of the surfaces exposed to the plasma. No deuterium was detectable on surfaces (the protected sides) not directly exposed to the plasma

  10. Analysis of fracture surface of CFRP material by three-dimensional reconstruction methods

    International Nuclear Information System (INIS)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.

    2009-01-01

    Fracture surfaces of CFRP (carbon Fiber Reinforced Polymer) materials, used in the nuclear fuel cycle, presents an elevated roughness, mainly due to the fracture mode known as pulling out, that displays pieces of carbon fibers after debonding between fiber and matrix. The fractographic analysis, by bi-dimensional images is deficient for not considering the so important vertical resolution as much as the horizontal resolution. In this case, the knowledge of this heights distribution that occurs during the breaking, can lead to the calculation of the involved energies in the process that would allows a better agreement on the fracture mechanisms of the composite material. An important solution for the material characterization, whose surface presents a high roughness due to the variation in height, is to reconstruct three-dimensionally these fracture surfaces. In this work, the 3D reconstruction was done by two different methods: the variable focus reconstruction, through a stack of images obtained by optical microscopy (OM) and the parallax reconstruction, carried through with images acquired by scanning electron microscopy (SEM). The results of both methods present an elevation map of the reconstructed image that determine the height of the surface pixel by pixel,. The results obtained by the methods of reconstruction for the CFRP surfaces, have been compared with others materials such as aluminum and copper that present a ductile type fracture surface, with lower roughness. (author)

  11. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    Directory of Open Access Journals (Sweden)

    Kelly de Jesus

    2015-01-01

    Full Text Available This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.. Root Mean Square (RMS error with homography of control and validations points was lower than without it for surface and underwater cameras (P≤0.03. With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P≥0.47. Without homography, RMS error of control points was greater for underwater than surface cameras (P≤0.04 and the opposite was observed for validation points (P≤0.04. It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy.

  12. Multiscale analysis of replication technique efficiency for 3D roughness characterization of manufactured surfaces

    Science.gov (United States)

    Jolivet, S.; Mezghani, S.; El Mansori, M.

    2016-09-01

    The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.

  13. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis.

    Science.gov (United States)

    Mueller, R F; Characklis, W G; Jones, W L; Sears, J T

    1992-05-01

    The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.

  14. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  15. An Integrated Transcriptome-Wide Analysis of Cave and Surface Dwelling Astyanax mexicanus

    Science.gov (United States)

    Gross, Joshua B.; Furterer, Allison; Carlson, Brian M.; Stahl, Bethany A.

    2013-01-01

    Numerous organisms around the globe have successfully adapted to subterranean environments. A powerful system in which to study cave adaptation is the freshwater characin fish, Astyanax mexicanus. Prior studies in this system have established a genetic basis for the evolution of numerous regressive traits, most notably vision and pigmentation reduction. However, identification of the precise genetic alterations that underlie these morphological changes has been delayed by limited genetic and genomic resources. To address this, we performed a transcriptome analysis of cave and surface dwelling Astyanax morphs using Roche/454 pyrosequencing technology. Through this approach, we obtained 576,197 Pachón cavefish-specific reads and 438,978 surface fish-specific reads. Using this dataset, we assembled transcriptomes of cave and surface fish separately, as well as an integrated transcriptome that combined 1,499,568 reads from both morphotypes. The integrated assembly was the most successful approach, yielding 22,596 high quality contiguous sequences comprising a total transcriptome length of 21,363,556 bp. Sequence identities were obtained through exhaustive blast searches, revealing an adult transcriptome represented by highly diverse Gene Ontology (GO) terms. Our dataset facilitated rapid identification of sequence polymorphisms between morphotypes. These data, along with positional information collected from the Danio rerio genome, revealed several syntenic regions between Astyanax and Danio. We demonstrated the utility of this positional information through a QTL analysis of albinism in a surface x Pachón cave F2 pedigree, using 65 polymorphic markers identified from our integrated assembly. We also adapted our dataset for an RNA-seq study, revealing many genes responsible for visual system maintenance in surface fish, whose expression was not detected in adult Pachón cavefish. Conversely, several metabolism-related genes expressed in cavefish were not detected in

  16. Investigation of surface properties and adhesion mechanisms in the combination of different layers, with the aid of surface analysis methods

    International Nuclear Information System (INIS)

    Olschewski, T.

    1991-01-01

    The aim of the investigations was to characterize the surface properties of organic coating materials and inorganic substrates, which are relevant in the context of microstructure technique developments and to obtain information on the adhesion mechanisms present. Two systems were examined which play an important part in micro-technique, i.e.: for the LIGA process and in the development of micro-sensors based on Chem FET's for chemical analysis. For these systems, i.e.: PMMA/TiO 2 and PVC adipate/Si 3 N 4 , adhesion mechanisms were expected, which occur particularly frequently in adhesive combination of polymers with inorganic substrates, i.e.: the mechanical gearing between polymer molecules and substrate structures and a chemical interaction between the boundary layers of the organic top coating and the inorganic substrate. (orig./DG) [de

  17. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Keturakis, Christopher J. [Operando Molecular Spectroscopy and Catalysis Research Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Notis, Ben [Brandeis University, Waltham, MA 02453 (United States); Blenheim, Alex [Department of Mechanical Engineering, Pennsylvania State University, College Park, PA 16802 (United States); Miller, Alfred C.; Pafchek, Rob [Zettlemoyer Center for Surface Studies, Lehigh University, Bethlehem, PA 18015 (United States); Notis, Michael R., E-mail: mrn1@lehigh.edu [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Wachs, Israel E., E-mail: iew0@lehigh.edu [Operando Molecular Spectroscopy and Catalysis Research Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States)

    2016-07-15

    Highlights: • Five ancient silver alloy coins (225 BCE–244 CE) were analyzed using surface characterization techniques. • Both destructive and non-destructive surface characterization methods were developed. • Alloying with copper, even in small amounts, leads to the formation of an outer Cu{sub 2}O corrosion layer. - Abstract: Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE–244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1–3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300–1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu{sub 2}O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu{sub 2}O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu{sub 2}O layer. Depth profiling revealed the presence of K, Na, Cl, and

  18. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    International Nuclear Information System (INIS)

    Keturakis, Christopher J.; Notis, Ben; Blenheim, Alex; Miller, Alfred C.; Pafchek, Rob; Notis, Michael R.; Wachs, Israel E.

    2016-01-01

    Highlights: • Five ancient silver alloy coins (225 BCE–244 CE) were analyzed using surface characterization techniques. • Both destructive and non-destructive surface characterization methods were developed. • Alloying with copper, even in small amounts, leads to the formation of an outer Cu 2 O corrosion layer. - Abstract: Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE–244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1–3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300–1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu 2 O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu 2 O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu 2 O layer. Depth profiling revealed the presence of K, Na, Cl, and S as key

  19. Preliminary analysis of surface mining options for Naval Oil Shale Reserve 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-20

    The study was undertaken to determine the economic viability of surface mining to exploit the reserves. It is based on resource information already developed for NOSR 1 and conceptual designs of mining systems compatible with this resource. Environmental considerations as they relate to surface mining have been addressed qualitatively. The conclusions on economic viability were based primarily on mining costs projected from other industries using surface mining. An analysis of surface mining for the NOSR 1 resource was performed based on its particular overburden thickness, oil shale thickness, oil shale grade, and topography. This evaluation considered reclamation of the surface as part of its design and cost estimate. The capital costs for mining 25 GPT and 30 GPT shale and the operating costs for mining 25 GPT, 30 GPT, and 35 GPT shale are presented. The relationship between operating cost and stripping ratio, and the break-even stripping ratio (BESR) for surface mining to be competitive with room-and-pillar mining, are shown. Identification of potential environmental impacts shows that environmental control procedures for surface mining are more difficult to implement than those for underground mining. The following three areas are of prime concern: maintenance of air quality standards by disruption, movement, and placement of large quantities of overburden; disruption or cutting of aquifers during the mining process which affect area water supplies; and potential mineral leaching from spent shales into the aquifers. Although it is an operational benefit to place spent shale in the open pit, leaching of the spent shales and contamination of the water is detrimental. It is therefore concluded that surface mining on NOSR 1 currently is neither economically desirable nor environmentally safe. Stringent mitigation measures would have to be implemented to overcome some of the potential environmental hazards.

  20. Analysis of personal care products on model skin surfaces using DESI and PADI ambient mass spectrometry.

    Science.gov (United States)

    Salter, Tara L; Green, Felicia M; Faruqui, Nilofar; Gilmore, Ian S

    2011-08-21

    Two ambient ionisation techniques, desorption electrospray ionisation (DESI) and plasma assisted desorption ionisation (PADI), have been used to analyse personal care products (PCPs) on fixed fibroblast cell surfaces. The similarities and differences between the two techniques for this type of analysis have been explored in various ways. Here, we show the results of DESI and PADI analysis of individual PCP ingredients as well as the analysis of these as complex creams on model skin surfaces, with minimal sample preparation. Typically, organosiloxanes and small molecules were detected from the creams. A study of the morphological damage of the fibroblast cells by the two ionisation techniques showed that for a less than 10% reduction in cell number, acquisition times should be limited to 5 s for PADI, which gives good signal levels; with DESI, the morphological damage was negligible. The operating parameters for the plasma source were optimised, and it was also found that the parameters could be modified to vary the relative intensity of different ions in the mass spectrum.

  1. Rapid thyroid dysfunction screening based on serum surface-enhanced Raman scattering and multivariate statistical analysis

    Science.gov (United States)

    Tian, Dayong; Lü, Guodong; Zhai, Zhengang; Du, Guoli; Mo, Jiaqing; Lü, Xiaoyi

    2018-01-01

    In this paper, serum surface-enhanced Raman scattering and multivariate statistical analysis are used to investigate a rapid screening technique for thyroid function diseases. At present, the detection of thyroid function has become increasingly important, and it is urgently necessary to develop a rapid and portable method for the detection of thyroid function. Our experimental results show that, by using the Silmeco-based enhanced Raman signal, the signal strength greatly increases and the characteristic peak appears obviously. It is also observed that the Raman spectra of normal and anomalous thyroid function human serum are significantly different. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was used to diagnose thyroid dysfunction, and the diagnostic accuracy was 87.4%. The use of serum surface-enhanced Raman scattering technology combined with PCA-LDA shows good diagnostic performance for the rapid detection of thyroid function. By means of Raman technology, it is expected that a portable device for the rapid detection of thyroid function will be developed.

  2. Enamel surface topography analysis for diet discrimination. A methodology to enhance and select discriminative parameters

    Science.gov (United States)

    Francisco, Arthur; Blondel, Cécile; Brunetière, Noël; Ramdarshan, Anusha; Merceron, Gildas

    2018-03-01

    Tooth wear and, more specifically, dental microwear texture is a dietary proxy that has been used for years in vertebrate paleoecology and ecology. DMTA, dental microwear texture analysis, relies on a few parameters related to the surface complexity, anisotropy and heterogeneity of the enamel facets at the micrometric scale. Working with few but physically meaningful parameters helps in comparing published results and in defining levels for classification purposes. Other dental microwear approaches are based on ISO parameters and coupled with statistical tests to find the more relevant ones. The present study roughly utilizes most of the aforementioned parameters in their more or less modified form. But more than parameters, we here propose a new approach: instead of a single parameter characterizing the whole surface, we sample the surface and thus generate 9 derived parameters in order to broaden the parameter set. The identification of the most discriminative parameters is performed with an automated procedure which is an extended and refined version of the workflows encountered in some studies. The procedure in its initial form includes the most common tools, like the ANOVA and the correlation analysis, along with the required mathematical tests. The discrimination results show that a simplified form of the procedure is able to more efficiently identify the desired number of discriminative parameters. Also highlighted are some trends like the relevance of working with both height and spatial parameters, as well as the potential benefits of dimensionless surfaces. On a set of 45 surfaces issued from 45 specimens of three modern ruminants with differences in feeding preferences (grazing, leaf-browsing and fruit-eating), it is clearly shown that the level of wear discrimination is improved with the new methodology compared to the other ones.

  3. Surface Water Quality Assessment and Prioritize the Factors Pollute This Water Using Topsis Fuzzy Hierarchical Analysis

    Directory of Open Access Journals (Sweden)

    Mehdi Komasi

    2017-03-01

    Full Text Available Background & Objective: Nowadays, according to growth of industry and increasing population, water resources are seriousely shortened. This lack of water resources will require special management to be considered in industry and agriculture. Among the various sources of water, surface waters are more susceptible to infection. The most important of these sources of pollution are industrial pollution, detergent, pesticides, radioactive materials, heat and salt concentration.  Materials & methods: In this article, at first the importance of each pollutant will be evaluated base on the effects and its results and then quality evaluation of surface water will be studied. In order to assess the relative importance of these pollutants primarily using TOPSIS software, prioritize these factors as one of the hierarchical analysis and then is modeled with decision tree method using Weka software, the importance of each factor is evaluated and if it does not meet the minimal importance of the decision tree will be removed. Results: The results obtained from the Topsis fuzzy analysis indicate that surface water and groundwater are exposed to pollution about 74% and 26% respectively among the six pollutants examined in this study. In addition, results obtaned from the hierarchical tree in software Weka has shown that the heat factor, soluble salts and industrial pollutants give impac factor or purity about 0.1338, 0.0523 and 1.2694 respectively. Conclusion: Surface water is at greater risk of being polluted compared with groundwater. The heat factor and low concentration of dissolved salts have the low impact and industrial pollutants are considered as the most influential factors in surface water pollution.

  4. Calcification of Hydrophilic Acrylic Intraocular Lenses With a Hydrophobic Surface: Laboratory Analysis of 6 Cases.

    Science.gov (United States)

    Gartaganis, Sotirios P; Prahs, Philipp; Lazari, Eftichia D; Gartaganis, Panos S; Helbig, Horst; Koutsoukos, Petros G

    2016-08-01

    To investigate the nature and characteristic features of deposits causing opacification of intraocular lenses (IOLs) based on the examination of clinical findings using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) analysis. Retrospective, observational case series. This is a multicenter study of 6 hydrophilic acrylic IOLs (Lentis LS-502-1; Oculentis GmbH, Berlin, Germany) with a hydrophobic surface that were explanted from 5 patients because of opacification. Three patients had an uncomplicated phacoemulsification. One patient underwent combined phacoemulsification and pars plana vitrectomy for retinal detachment and later silicone oil endotamponade owing to redetachment. The last patient had a pars plana vitrectomy and silicone oil instillation combined with phacoemulsification for tractive retinal detachment and diabetic retinopathy. The explanted lenses were submitted to our laboratory and were examined by SEM and EDX in order to identify the morphologic features and the composition of the deposits. SEM and EDX analyses confirmed the presence of calcific deposits in the interior of the opacified hydrophilic IOLs, with a pattern showing the formation of lumps on the surface. The lumps were due to subsurface formation of calcium phosphate crystalline deposits. The crystallite clusters seemed to diffuse from the IOL interior to the surface. We demonstrated the calcification pattern of the hydrophilic IOL (Lentis LS-502-1) with a hydrophobic surface. Although hydrophilic acrylic lenses have a hydrophobic surface, the development of calcification is a possible threat initiating from the hydrophilic subsurface of the IOLs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Making the most of CZ seismics: Improving shallow critical zone characterization using surface-wave analysis

    Science.gov (United States)

    Pasquet, S.; Wang, W.; Holbrook, W. S.; Bodet, L.; Carr, B.; Flinchum, B. A.

    2017-12-01

    Estimating porosity and saturation in the shallow subsurface over large lateral scales is vitally important for understanding the development and evolution of the Critical Zone (CZ). Because elastic properties (P- and S-wave velocities) are particularly sensitive to porosity and saturation, seismic methods (in combination with petrophysical models) are effective tools for mapping CZ architecture and processes. While many studies employ P-wave refraction methods, fewer use the surface waves that are typically also recorded in those same surveys. Here we show the value of exploiting surface waves to extract supplementary shear-wave velocity (Vs) information in the CZ. We use a new, user-friendly, open-source MATLAB-based package (SWIP) to invert surface-wave data and estimate lateral variations of Vs in the CZ. Results from synthetics show that this approach enables the resolution of physical property variations in the upper 10-15 m below the surface with lateral scales of about 5 m - a vast improvement compared to P-wave tomography alone. A field example at a Yellowstone hydrothermal system also demonstrates the benefits of including Vs in the petrophysical models to estimate not only porosity but also saturation, thus highlighting subsurface gas pathways. In light of these results, we strongly suggest that surface-wave analysis should become a standard approach in CZ seismic surveys.

  6. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  7. Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation.

    Science.gov (United States)

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M I; David, Robert; Winklbauer, Rudolf; Neumann, A Wilhelm

    2009-02-18

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion.

  8. AFM Surface Roughness and Topography Analysis of Lithium Disilicate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    M. Pantić

    2015-12-01

    Full Text Available The aim of this study is presenting AFM analysis of surface roughness of Lithium disilicate glass ceramic (IPS e.max CAD under different finishing procedure (techniques: polishing, glazing and grinding. Lithium disilicate glass ceramics is all-ceramic dental system which is characterized by high aesthetic quality and it can be freely said that properties of material provide all prosthetic requirements: function, biocompatibility and aesthetic. Experimental tests of surface roughness were investigated on 4 samples with dimensions: 18 mm length, 14 mm width and 12 mm height. Contact surfaces of three samples were treated with different finishing procedure (polishing, glazing and grinding, and the contact surface of the raw material is investigated as a fourth sample. Experimental measurements were done using the Atomic Force Microscopy (AFM of NT-MDT manufacturers, in the contact mode. All obtained results of different prepared samples are presented in the form of specific roughness parameters (Rа, Rz, Rmax, Rq and 3D surface topography.

  9. Mitigating the surface urban heat island: Mechanism study and sensitivity analysis

    Science.gov (United States)

    Meng, Chunlei

    2017-08-01

    In a surface urban heat island (SUHI), the urban land surface temperature (LST) is usually higher than the temperature of the surrounding rural areas due to human activities and surface characteristics. Because a SUHI has many adverse impacts on urban environment and human health, SUHI mitigation strategies are very important. This paper investigates the mechanism of a SUHI based on the basic physical laws that control the formation of a SUHI; five mitigation strategies are proposed, namely: sprinkling and watering; paving a pervious surface; reducing the anthropogenic heat (AH) release; using a "white roof"; increasing the fractional vegetation cover or leaf area index (LAI). To quantify the effect of these mitigation strategies, 26 sets of experiments are designed and implemented by running the integrated urban land model (IUM). The results of the sensitivity analysis indicate that sprinkling and watering is an effective measure for mitigating a SUHI for an entire day. Decreasing the AH release is also useful for both night- and daytime SUHI mitigation; however, the cooling extent is proportional to the diurnal cycle of AH. Increasing the albedo can reduce the LST in the daytime, especially when the solar radiation is significant; the cooling extent is approximately proportional to the diurnal cycle of the net radiation. Increasing the pervious surface percentage can mitigate the SUHI especially in the daytime. Increasing the fractional vegetation cover can mitigate the SUHI in the daytime but may aggravate the SUHI at night.

  10. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    International Nuclear Information System (INIS)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C.

    2016-01-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  11. Identification of soil erosion land surfaces by Landsat data analysis and processing

    International Nuclear Information System (INIS)

    Lo Curzio, S.

    2009-01-01

    In this paper, we outline the typical relationship between the spectral reflectance of aileron's on newly-formed land surfaces and the geo morphological features of the land surfaces at issue. These latter represent the products of superficial erosional processes due to the action of the gravity and/or water; thus, such land surfaces are highly representative of the strong soil degradation occurring in a wide area located on the boundary between Molise and Puglia regions (Southern Italy). The results of this study have been reported on thematic maps; on such maps, the detected erosional land surfaces have been mapped on the basis of their typical spectral signature. The study has been performed using Landsat satellite imagery data which have been then validated by means of field survey data. The satellite data have been processed using remote sensing techniques, such as: false colour composite, contrast stretching, principal component analysis and decorrelation stretching. The study has permitted to produce, in a relatively short time and at low expense, a map of the eroded land surfaces. Such a result represents a first and fundamental step in evaluating and monitoring the erosional processes in the study area [it

  12. Applications of surface analysis in the environmental sciences: dehalogenation of chlorocarbons with zero-valent iron and iron-containing mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Molly M.; Carlson, Daniel L.; Vikesland, Peter J.; Kohn, Tamar; Grenier, Adam C.; Langley, Laura A.; Roberts, A. Lynn; Fairbrother, D. Howard

    2003-10-31

    Halogenated organic compounds are common pollutants in groundwater. Consequently, there is widespread interest in understanding the reactions of these compounds in the environment and developing remediation strategies. One area of ongoing research involves the reductive dechlorination of organohalides with zero-valent metals or metal sulfide minerals. These processes have been studied almost exclusively from the perspective of the aqueous phase. In this paper we illustrate the utility of surface analysis techniques, including electron spectroscopies, vibrational spectroscopies, and atomic force microscopy in elucidating the roles played by the surface. A dual analysis approach to the study of reductive dechlorination, combining traditional solution phase analysis with surface analytical techniques, also is demonstrated using a liquid cell coupled to an ultrahigh vacuum surface analysis chamber.

  13. Trajectory resolved analysis of LEIS energy spectra: Neutralization and surface structure

    International Nuclear Information System (INIS)

    Beikler, Robert; Taglauer, Edmund

    2001-01-01

    For a quantitative evaluation of low-energy ion scattering (LEIS) data with respect to surface composition and structure a detailed analysis of the energy spectra is required. This includes the identification of multiple scattering processes and the determination of ion survival probabilities. We analyzed scattered ion energy spectra by using the computer code MARLOWE for which we developed a new analysis routine that allows to record energy distributions in dependence of the number of projectile-target atom collisions, in dependence of the distance of closest approach, or in dependence of the scattering crystalline layer. This procedure also permits the determination of ion survival probabilities by applying simple collision-dependent neutralization models. Experimental energy spectra for various projectile (He + , Ne + , Na + ) and target (transition metals, oxides) combinations are well reproduced and quantitative results for ion survival probabilities are obtained. These are largely in agreement with results obtained for bimetallic crystal surfaces obtained in a different way. Such MARLOWE calculations are also useful for the identification of structure relevant processes. This is shown exemplarily for the reconstructed Au(1 1 0) surface including a possibility to determine the (1x2)→(1x1) transition temperature

  14. Spatial-temporal analysis of building surface temperatures in Hung Hom

    Science.gov (United States)

    Zeng, Ying; Shen, Yueqian

    2015-12-01

    This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.

  15. Determination of Oxygen in Zircaloy Surfaces by Means of Charged Particle Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, J; Brune, D

    1973-01-15

    Oxygen in zircaloy surfaces has been determined by means of charged particle activation analysis employing the following two reactions I. 16O (d, n) 17F ->(beta+decay) 17O Q = - 1.63 MeV; II. 16O (d, pgamma) 17O Q = + 1.05 MeV. The detection limits for oxygen in such surfaces has been investigated by measuring the promptly emitted 0.87 MeV gamma rays (reaction II) and also the 511 keV annihilation radiation which arises from beta-decay of 17F (reaction I). The correlation between the detection limit for oxygen in zircaloy, the particle energy and the surface thickness analyzed has been evaluated. At a deuteron energy of 3 MeV a detection limit of 0.7 x 10-7 g/cm2 was obtained from the measurement of the prompt gamma radiation arising from the second of these reactions. The analysis carried out by means of this technique is characterized by a high rapidity

  16. Surface Roughness Analysis in the Hard Milling of JIS SKD61 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Huu-That Nguyen

    2016-06-01

    Full Text Available Hard machining is an efficient solution that can be used to replace the grinding operation in the mold and die manufacturing industry. In this study, an attempt is made to analyze the effect of process parameters on workpiece surface roughness (Ra in the hard milling of JIS (Japanese Industrial Standard SKD61 steel, based on a combination of the Taguchi method and response surface methodology (RSM. The cutting parameters are selected based on the structural dynamic analysis of the machine tool. A set of experiments is designed according to the Taguchi technique. The average Ra is measured by a Mitutoyo Surftest SJ-400, and then analysis of variance (ANOVA is performed to determine the influences of cutting parameters on the given Ra. Quadratic mathematical modeling is introduced for prediction of the Ra during the hard milling process. The predicted values are in reasonable agreement with the observation of experiments. In an effort to obtain the minimizing Ra, a single objective optimization is employed based on the desirability function. The result shows that the percentage error between measured and predicted values of Ra is 3.2%, which is found to be insignificant. Eventually, the milled surface roughness under the optimized machining conditions is 0.122 µm. This finding shows that grinding may be replaced by finish hard milling in the mold and die manufacturing field.

  17. Infinitesimal-area 2D radiative analysis using parametric surface representation, through NURBS

    Energy Technology Data Exchange (ETDEWEB)

    Daun, K J; Hollands, K G.T.

    1999-07-01

    The use of form factors in the treatment of radiant enclosures requires that the radiosity and surface properties be treated as uniform over finite areas. This restriction can be relaxed by applying an infinitesimal-area analysis, where the radiant exchange is taken to be between infinitesimal areas, rather than finite areas. This paper presents a generic infinitesimal-area formulation that can be applied to two-dimensional enclosure problems. (Previous infinitesimal-area analyses have largely been restricted to specific, one-dimensional problems.) Specifically, the paper shows how the analytical expression for the kernel of the integral equation can be obtained without human intervention, once the enclosure surface has been defined parametrically. This can be accomplished by using a computer algebra package or by using NURBS algorithms, which are the industry standard for the geometrical representations used in CAD-CAM codes. Once the kernel has been obtained by this formalism, the 2D integral equation can be set up and solved numerically. The result is a single general-purpose infinitesimal-area analysis code that can proceed from surface specification to solution. The authors have implemented this 2D code and tested it on 1D problems, whose solutions have been given in the literature, obtaining agreement commensurate with the accuracy of the published solutions.

  18. Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range.

    Science.gov (United States)

    DiPippo, William; Lee, Bong Jae; Park, Keunhan

    2010-08-30

    This paper reports the design analysis of a microfabricatable mid-infrared (mid-IR) surface plasmon resonance (SPR) sensor platform. The proposed platform has periodic heavily doped profiles implanted into intrinsic silicon and a thin gold layer deposited on top, making a physically flat grating SPR coupler. A rigorous coupled-wave analysis was conducted to prove the design feasibility, characterize the sensor's performance, and determine geometric parameters of the heavily doped profiles. Finite element analysis (FEA) was also employed to compute the electromagnetic field distributions at the plasmon resonance. Obtained results reveal that the proposed structure can excite the SPR on the normal incidence of mid-IR light, resulting in a large probing depth that will facilitate the study of larger analytes. Furthermore, the whole structure can be microfabricated with well-established batch protocols, providing tunability in the SPR excitation wavelength for specific biosensing needs with a low manufacturing cost. When the SPR sensor is to be used in a Fourier-transform infrared (FTIR) spectroscopy platform, its detection sensitivity and limit of detection are estimated to be 3022 nm/RIU and ~70 pg/mm(2), respectively, at a sample layer thickness of 100 nm. The design analysis performed in the present study will allow the fabrication of a tunable, disposable mid-IR SPR sensor that combines advantages of conventional prism and metallic grating SPR sensors.

  19. SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series

    Science.gov (United States)

    Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory

    2018-03-07

    This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.

  20. Spatial aspects of surface water quality in the Jakara Basin, Nigeria using chemometric analysis.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin

    2012-01-01

    Multivariate statistical techniques such as hierarchical Agglomerated cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA), and factor analysis (FA) were applied to identify the spatial variation and pollution sources of Jakara River, Kano, Nigeria. Thirty surface water samples were collected: 23 along Getsi River and 7 along the main channel of River Jakara. Twenty-three water quality parameters, namely pH, temperature, turbidity, electrical conductivity (EC), dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), Faecal coliform, total solids (TS), nitrates (NO(3)(-)), phosphates (PO(4)(3-)), cobalt (Co), iron (Fe), nickel (Ni), manganese (Mn), copper (Cu), sodium (Na), potassium (K), mercury (Hg), chromium (Cr), cadmium (Cd), lead (Pb), magnesium (Mg), and calcium(Ca) were analysed. HACA grouped the sampling points into three clusters based on the similarities of river water quality characteristics: industrial, domestic, and agricultural water pollution sources. Forward and backward DA effectively discriminated 5 and 15 water quality variables, respectively, each assigned with 100% correctness from the original 23 variables. PCA and FA were used to investigate the origin of each water quality parameter due to various land use activities, 7 principal components were obtained with 77.5% total variance, and in addition PCA identified 3 latent pollution sources to support HACA. From this study, one can conclude that the application of multivariate techniques derives meaningful information from water quality data.

  1. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-25

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-01

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.

  3. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    Science.gov (United States)

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within

  4. Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors

    Science.gov (United States)

    Coleman, Michael J.

    One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice

  5. Measuring Usewear on Black Gloss Pottery from Rome through 3D Surface Analysis

    Directory of Open Access Journals (Sweden)

    Laura M. Banducci

    2018-05-01

    Full Text Available Still image of 3D model of a representative vessel (Capitoline Museums catalog ID AntCom8626. (Image credit: © Damien Vurpillot/Rachel Opitz. CC BY-NC This project involves the high-resolution 3D laser scanning of a cache of Italian black gloss pottery from the Capitoline Museums in Rome. Our aim is to examine in detail the minute traces of production and use of these vessels and to produce a digital record of their form. We have experimented with several scanning devices in order to determine the optimal methods for capturing abrasions on pottery and are developing digital methods for surface analysis. The purpose of the analysis is to consider how black gloss vessels from ritual contexts (tomb and sanctuary deposits may have been used before they were deposited and to refine our understanding of vessel production methods.

  6. Characteristics of Speed Line Cutter and Fringe Analysis of Workpiece Surface

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2014-02-01

    Full Text Available Easy to operate, speed line cutter has a high machining cost performance, so is very popular among the majority of users. The precision of guide rails, screws and nuts used in most of the machines is not high, and the machine control cannot compensate for the screw pitch error, clearance during the transmission and machining error due to electrode wear. Furthermore, control signal may also be lost in control process. The development of speed line cutter focuses on the quality and machining stability of CNC speed line cutter. This article makes an analysis about the impact of machine’s inherent characteristics on machining workpiece surface, and concludes that analysis shall be made on the irregular fringe, therefore to heighten the machining precision.

  7. Shrinkage Analysis on Thick Plate Part using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Isafiq M.

    2016-01-01

    Full Text Available The work reported herein is about an analysis on the quality (shrinkage on a thick plate part using Response Surface Methodology (RSM. Previous researches showed that the most influential factor affecting the shrinkage on moulded parts are mould and melt temperature. Autodesk Moldflow Insight software was used for the analysis, while specifications of Nessei NEX 1000 injection moulding machine and P20 mould material were incorporated in this study on top of Acrylonitrile Butadiene Styrene (ABS as a moulded thermoplastic material. Mould temperature, melt temperature, packing pressure and packing time were selected as variable parameters. The results show that the shrinkage have improved 42.48% and 14.41% in parallel and normal directions respectively after the optimisation process.

  8. Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia ur; Shabib, Ishraq [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2016-10-01

    In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility. - Highlights: • Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy. • The cyclic polarization tests revealed noticeable improvement towards the positive potentials for both Tip coatings. • CpTi-Hap and Ti6Al4V-Hap both demonstrate similar corrosion rate. • High cytotoxicity was observed for Mp when compared with Tip and Hap after 21 days of immersion. • Both Tip and Hap coatings promoted the osteoblast cell adhesion and exhibited stellar morphology.

  9. An improved method for Multipath Hemispherical Map (MHM) based on Trend Surface Analysis

    Science.gov (United States)

    Wang, Zhiren; Chen, Wen; Dong, Danan; Yu, Chao

    2017-04-01

    Among various approaches developed for detecting the multipath effect in high-accuracy GNSS positioning, Only MHM (Multipath Hemispherical Map) and SF (Sidereal Filtering) can be implemented to real-time GNSS data processing. SF is based on the time repeatability of satellites which just suitable for static environment, while the spatiotemporal repeatability-based MHM is applicable not only for static environment but also for dynamic carriers with static multipath environment such as ships and airplanes, and utilizes much smaller number of parameters than ASF. However, the MHM method also has certain defects. Since the MHM take the mean of residuals from the grid as the filter value, it is more suitable when the multipath regime is medium to low frequency. Now existing research data indicate that the newly advanced Sidereal Filtering (ASF) method perform better with high frequency multipath reduction than MHM by contrast. To solve the above problem and improve MHM's performance on high frequency multipath, we combined binary trend surface analysis method with original MHM model to effectively analyze particular spatial distribution and variation trends of multipath effect. We computed trend surfaces of the residuals within a grid by least-square procedures, and chose the best results through the moderate successive test. The enhanced MHM grid was constructed from a set of coefficients of the fitted equation instead of mean value. According to the analysis of the actual observation, the improved MHM model shows positive effect on high frequency multipath reduction, and significantly reduced the root mean square (RMS) value of the carrier residuals. Keywords: Trend Surface Analysis; Multipath Hemispherical Map; high frequency multipath effect

  10. Analysis and 3D inspection system of drill holes in aeronautical surfaces

    Science.gov (United States)

    Rubio, R.; Granero, L.; Sanz, M.; García, J.; Micó, V.

    2017-06-01

    In aerospace industry, the structure of the aircraft is assembled using small parts or a combination of them that are made with different materials, such as for instance aluminium, titanium, composites or even 3D printed parts. The union between these small parts is a critical point for the integrity of the aircraft. The quality of this union will decide the fatigue of adjacent components and therefore the useful life of them. For the union process the most extended method is the rivets, mainly because their low cost and easy manufacturing. For this purpose it is necessary to made drill holes in the aeronautical surface to insert the rivets. In this contribution, we present the preliminary results of a 3D inspection system [1] for drill holes analysis in aeronautical surfaces. The system, based in optical triangulation, was developed by the Group of Optoelectronic Image Processing from the University of Valencia in the framework of the Airbus Defence and Space (AD&S), MINERVA project (Manufacturing industrial - means emerging from validated automation). The capabilities of the system permits to generate a point cloud with 3D information and GD&T (geometrical dimensions and tolerances) characteristics of the drill hole. For the inner surface defects detection, the system can generate an inner image of the drill hole with a scaled axis to obtain the defect position. In addition, we present the analysis performed for the drills in the wing station of the A-400 M. In this analysis the system was tested for diameters in the range of [10 - 15.96] mm, and for Carbon Fibre.

  11. Acid Aging Effects on Surfaces of PTFE Gaskets Investigated by Thermal Analysis

    Directory of Open Access Journals (Sweden)

    C. Fragassa

    2016-12-01

    Full Text Available This paper investigates the effect of a prolonged acid attack on the surface of PTFE by Thermogravimetric Analysis (TGA and Differential Scanning Calorimetry (DSC. PTFE is very non-reactive, partly because of the strength of carbon–fluorine bonds and for its high crystallinity, and, as a consequence, it is often used in containers and pipework with reactive and corrosive chemicals. The PTFE under analysis is commercialized by two alternative producers in form of Teflon tapes. These tapes are adopted, as gaskets, in process plants where tires moulds are cleaned by acid solutions inside a multistage ultrasonic process. In this case, PTFE shows, in a relatively short operation time, inexplicably phenomena of surface degradation, which could be related, in general terms, to an acid attack. But, even considering the combined effect of ultrasonic waves, temperature, humidity and acid attack, the PTFE properties of resistance nominally exclude the risk of the extreme erosion phenomena as observed. The present experimental research aim at investigating this contradiction. A possible explanation could be related to the presence in the cleaning solution of unexpected fluorides, able to produce fluorinating agents and, thus, degrade carbon-fluorine bonds. Considering more the 300 chemical elements a tire compound consists in, it is really complex to preserve the original chemical composition of the cleaning solution. In this research PTFE samples have been treated with different mixtures of acids with the aim at investigating the different aging effects. The thermal analysis has permitted the experimental characterization of PTFE surface properties after acid attack, providing evidence of the degradation phenomena. In particular, the different acid treatments adopted for accelerating the aging of gaskets have highlighted the different behaviour of the PTFE matrix, but also differences between manufacturers.

  12. Stress intensity evaluation for surface crack with use of boundary element method and influence function method and the surface crack extension analysis

    International Nuclear Information System (INIS)

    Yuuki, R.; Ejima, K.

    1991-01-01

    In this study, three-dimensional boundary element elastostatic analysis is carried out on various surface crack problems. The present BEM uses a Mindlin's solution as well as a Kelvin's solution as a fundamental solution. So we can obtain accurate solutions for a surface crack just before or after a penetration. The obtained solutions for various shapes of surface cracks are stored as the data base, based on the influence function method. We develop the surface crack extension analysis system using the stress intensity factor data base and also the fatigue crack growth law. Our system seems to be useful especially for the analysis of the surface crack just before or after the penetration and also under the residual stresses

  13. Accuracy Analysis of a Robotic Radionuclide Inspection and Mapping System for Surface Contamination

    International Nuclear Information System (INIS)

    Mauer, Georg F.; Kawa, Chris

    2008-01-01

    The mapping of localized regions of radionuclide contamination in a building can be a time consuming and costly task. Humans moving hand-held radiation detectors over the target areas are subject to fatigue. A contamination map based on manual surveys can contain significant operator-induced inaccuracies. A Fanuc M16i light industrial robot has been configured for installation on a mobile aerial work platform, such as a tall forklift. When positioned in front of a wall or floor surface, the robot can map the radiation levels over a surface area of up to 3 m by 3 m. The robot's end effector is a commercial alpha-beta radiation sensor, augmented with range and collision avoidance sensors to ensure operational safety as well as to maintain a constant gap between surface and radiation sensors. The accuracy and repeatability of the robotically conducted contamination surveys is directly influenced by the sensors and other hardware employed. This paper presents an in-depth analysis of various non-contact sensors for gap measurement, and the means to compensate for predicted systematic errors that arise during the area survey scans. The range sensor should maintain a constant gap between the radiation counter and the surface being inspected. The inspection robot scans the wall surface horizontally, moving down at predefined vertical intervals after each scan in a meandering pattern. A number of non-contact range sensors can be employed for the measurement of the gap between the robot end effector and the wall. The nominal gap width was specified as 10 mm, with variations during a single scan not to exceed ± 2 mm. Unfinished masonry or concrete walls typically exhibit irregularities, such as holes, gaps, or indentations in mortar joints. These irregularities can be sufficiently large to indicate a change of the wall contour. The responses of different sensor types to the wall irregularities vary, depending on their underlying principles of operation. We explored

  14. Possibility of whole-surface analysis of a silicon wafer with ordinary straight TXRF

    International Nuclear Information System (INIS)

    Mori, Y.; Uemura, K.; Iizuka, Y.

    2000-01-01

    For the analysis of average metal concentration on a semiconductor surface, we customarily use the wet techniques (AAS, typically), that require skilled operators or expensive automated machines for sample pretreatment. The straight TXRF require no pretreatment, on the other hand. However, its detection area is too small (1-2 cm 2 ) to conduct a whole-surface analysis. In fact, it takes more than one day per one wafer (500 s/point x 100-300 points) for a complete mapping. Therefore it has been believed that the whole-surface analysis with straight TXRF is impracticable. It should be noted that the absolute lower limit of detection (LLD) of the straight TXRF is superior to AAS. As an example, the absolute LLD of TXRF for Fe is 0.2 pg (500 s integration), while that of AAS is l0 pg. The required integration time for TXRF to obtain the same LLD of AAS is calculated to be only 0.2 s. This means, in principle, that the whole-surface contamination can be measured in some ten seconds by accumulating 0.2 s mapping. But actually, the adjustment of glancing angle requires several ten seconds per one point, so the above mapping still takes several hours. That is why such a measurement has not been applied to daily analysis so far. However, the influence of glancing angle errors is expected to be reduced through the multi-point measurement. Figure 1 shows an accumulated spectrum of 20 s x 25 points mapping for an IAP wafer doped with Ni. In this measurement, glancing angles were not precisely controlled (the error of glancing angle is ±15 %). A spectrum of 500 s x 1 point measurement for the same wafer is shown in Figure 2. Figures 1 and 2 are almost identical. This suggests that the reduction of glancing angle errors actually works well through multi-points measurement. This method is expected to give better results by increasing the number of measuring points. The overall variation for the final measurement value obtained by multi-point measurement can be assessed by the

  15. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  16. Surface analysis of PEGylated nano-shields on nanoparticles installed by hydrophobic anchors

    DEFF Research Database (Denmark)

    Ebbesen, M F; Whitehead, Bradley Joseph; Gonzalez, Borja Ballarin

    2013-01-01

    and cellular interactions. Methods: Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared with a hydrophilic PEGylated "nano-shield" inserted at different levels by hydrophobic anchoring using either a phospholipid-PEG conjugate or the copolymer PLGA-block-PEG by an emulsification/diffusion method....... Surface and bulk analysis was performed including X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy (NMR) and zeta potential. Cellular uptake was investigated in RAW 264.7 macrophages by flow cytometry. Results: Sub-micron nanoparticles were formed and the combination of (NMR...

  17. Installation and Preliminary Test of the Ion Accelerator for the Surface Analysis at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Il; Ahn, Tae Sung; Seo, Dong Hyuk; Kwon, Hyeok Jung; Kim, Cho Rong; Park, Jun Kue; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An electrostatic tandem accelerator, which had been operating over 25 years at KIGAM (Korea Institute of Geoscience and Mineral Resources), is moved to KOMAC (Korea Multi-purpose Accelerator Complex) last year. For the purpose of supplying the qualified and quantified data from the irradiated species as part of the user service of KOMAC. The accelerator is a pelletron with tandem type. The ion accelerator for surface analysis was moved at KOMAC last year. The installation with alignment was done. The conditioning of high voltage was operated up to 1.7 MV. The beam transmission to PIXE beam line was achieved as 51%.

  18. Functional Analysis for an Integrated Capability of Arrival/Departure/Surface Management with Tactical Runway Management

    Science.gov (United States)

    Phojanamongkolkij, Nipa; Okuniek, Nikolai; Lohr, Gary W.; Schaper, Meilin; Christoffels, Lothar; Latorella, Kara A.

    2014-01-01

    The runway is a critical resource of any air transport system. It is used for arrivals, departures, and for taxiing aircraft and is universally acknowledged as a constraining factor to capacity for both surface and airspace operations. It follows that investigation of the effective use of runways, both in terms of selection and assignment as well as the timing and sequencing of the traffic is paramount to the efficient traffic flows. Both the German Aerospace Center (DLR) and NASA have developed concepts and tools to improve atomic aspects of coordinated arrival/departure/surface management operations and runway configuration management. In December 2012, NASA entered into a Collaborative Agreement with DLR. Four collaborative work areas were identified, one of which is called "Runway Management." As part of collaborative research in the "Runway Management" area, which is conducted with the DLR Institute of Flight Guidance, located in Braunschweig, the goal is to develop an integrated system comprised of the three DLR tools - arrival, departure, and surface management (collectively referred to as A/D/S-MAN) - and NASA's tactical runway configuration management (TRCM) tool. To achieve this goal, it is critical to prepare a concept of operations (ConOps) detailing how the NASA runway management and DLR arrival, departure, and surface management tools will function together to the benefit of each. To assist with the preparation of the ConOps, the integrated NASA and DLR tools are assessed through a functional analysis method described in this report. The report first provides the highlevel operational environments for air traffic management (ATM) in Germany and in the U.S., and the descriptions of the DLR's A/D/S-MAN and NASA's TRCM tools at the level of details necessary to compliment the purpose of the study. Functional analyses of each tool and a completed functional analysis of an integrated system design are presented next in the report. Future efforts to fully

  19. Warpage analysis on thin shell part using response surface methodology (RSM)

    Science.gov (United States)

    Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    The optimisation of moulding parameters appropriate to reduce warpage defects produce using Autodesk Moldflow Insight (AMI) 2012 software The product is injected by using Acrylonitrile-Butadiene-Styrene (ABS) materials. This analysis has processing parameter that varies in melting temperature, mould temperature, packing pressure and packing time. Design of Experiments (DOE) has been integrated to obtain a polynomial model using Response Surface Methodology (RSM). The Glowworm Swarm Optimisation (GSO) method is used to predict a best combination parameters to minimise warpage defect in order to produce high quality parts.

  20. Analysis of factors controlling soil phosphorus loss with surface runoff in Huihe National Nature Reserve by principal component and path analysis methods.

    Science.gov (United States)

    He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Bu, He; Wo, Qiang

    2018-01-01

    Phosphorus (P) loss with surface runoff accounts for the P input to and acceleration of eutrophication of the freshwater. Many studies have focused on factors affecting P loss with surface runoff from soils, but rarely on the relationship among these factors. In the present study, rainfall simulation on P loss with surface runoff was conducted in Huihe National Nature Reserve, in Hulunbeier grassland, China, and the relationships between P loss with surface runoff, soil properties, and rainfall conditions were examined. Principal component analysis and path analysis were used to analyze the direct and indirect effects on P loss with surface runoff. The results showed that P loss with surface runoff was closely correlated with soil electrical conductivity, soil pH, soil Olsen P, soil total nitrogen (TN), soil total phosphorus (TP), and soil organic carbon (SOC). The main driving factors which influenced P loss with surface runoff were soil TN, soil pH, soil Olsen P, and soil water content. Path analysis and determination coefficient analysis indicated that the standard multiple regression equation for P loss with surface runoff and each main factor was Y = 7.429 - 0.439 soil TN - 6.834 soil pH + 1.721 soil Olsen-P + 0.183 soil water content (r = 0.487, p runoff. The effect of physical and chemical properties of undisturbed soils on P loss with surface runoff was discussed, and the soil water content and soil Olsen P were strongly positive influences on the P loss with surface runoff.

  1. Trim cut machining and surface integrity analysis of Nimonic 80A alloy using wire cut EDM

    Directory of Open Access Journals (Sweden)

    Amitesh Goswami

    2017-02-01

    Full Text Available This present work deals with the features of trim cut wire EDM machining of Nimonic 80A in terms of machining parameters, to predict material removal rate (MRR, surface roughness (Ra, wire wear ratio (WWR and microstructure analysis. Trim cut is performed after rough cut to remove the rough layer deposited after machining due to melting and re-solidification of the eroded metal from workpiece as well as from wire electrode. Taguchi’s design of experiments methodology has been used for planning and designing the experiments. The relative significance of various factors has also been evaluated and analyzed using ANOVA. The results clearly indicate trim cut potential for high surface finish compared to rough cut machining.

  2. Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Zangrando Toneli

    2011-09-01

    Full Text Available Sub-pixel analysis is capable of generating continuous fields, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation.

  3. Preliminary analysis of surface radiation measurements recorded at the Nansen ice sheet (Antarctica)

    International Nuclear Information System (INIS)

    Bonafe', U.; Dalpane, E.; Georgiadis, T.; Pitacco, A.

    1996-01-01

    An experiment on radiation and surface energy balance was conducted during the 9. Italian expedition in Antarctica at the Nancen ice sheet, a glacier situated close to the Italian base at Terra Nova Bay, to correlate surface balances to the formation and development of katabatic winds. Measurements were taken by radiometers covering the whole spectra of solar and terrestrial emissions and by fast sensors of atmospheric wind velocity and humidity for the application of the eddy correlation technique. A preliminary analysis of the radiometric data collected in order to quantify the major components of radiative energy balance during the Antarctic summer in clear sky conditions is reported and discussed. The findings show the very low available energy (mean about 1 W/m 2 ), in terms of net radiation, for the physical processes such as sensible- and latent-heat fluxes. Long-wave radiation balance was applied to estimate the reliability of the Swinbank's parametrization, relative to general conditions of the atmosphere

  4. Quantitative analysis of rat Ig (sub)classes binding to cell surface antigens

    International Nuclear Information System (INIS)

    Nilsson, R.; Brodin, T.; Sjoegren, H.-O.

    1982-01-01

    An indirect 125 I-labeled protein A assay for detection of cell surface-bound rat immunoglobulins is presented. The assay is quantitative and rapid and detects as little as 1 ng of cell surface-bound Ig. It discriminates between antibodies belonging to different IgG subclasses, IgM and IgA. The authors describe the production and specificity control of the reagents used and show that the test can be used for quantitative analysis. A large number of sera from untreated rats are tested to evaluate the frequency of falsely positive responses and variation due to age, sex and strain of rat. With this test it is relatively easy to quantitate the binding of classes and subclasses of rat immunoglobulins in a small volume (6 μl) of untreated serum. (Auth.)

  5. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  6. Fringe projection application for surface variation analysis on helical shaped silicon breast

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Shahimin, M. M.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Breast carcinoma is rated as a second collective cause of cancer associated death among adult females. Detection of the disease at an early stage would enhance the chance for survival. Established detection methods such as mammography, ultrasound and MRI are classified as non invasive breast cancer detection modality, but however they are not entire non-invasive as physical contact still occurs to the breast. Thus requirement for a complete non invasive and non contact is evident. Therefore, in this work, a novel application of digital fringe projection for early detection of breast cancer based on breast surface analysis is reported. Phase shift fringe projection technique and pixel tracing method was utilized to analyze the breast surface change due to the incidence of breast lump. Results have shown that the digital fringe projection is capable in detecting the existence of 1 cm sized lump within the breast sample.

  7. GC/MS analysis of pesticides in the Ferrara area (Italy) surface water: a chemometric study.

    Science.gov (United States)

    Pasti, Luisa; Nava, Elisabetta; Morelli, Marco; Bignami, Silvia; Dondi, Francesco

    2007-01-01

    The development of a network to monitor surface waters is a critical element in the assessment, restoration and protection of water quality. In this study, concentrations of 42 pesticides--determined by GC-MS on samples from 11 points along the Ferrara area rivers--have been analyzed by chemometric tools. The data were collected over a three-year period (2002-2004). Principal component analysis of the detected pesticides was carried out in order to define the best spatial locations for the sampling points. The results obtained have been interpreted in view of agricultural land use. Time series data regarding pesticide contents in surface waters has been analyzed using the Autocorrelation function. This chemometric tool allows for seasonal trends and makes it possible to optimize sampling frequency in order to detect the effective maximum pesticide content.

  8. GC/MS Analysis of Pesticides in the Ferrara Area (Italy) Surface Water: A Chemometric Study

    International Nuclear Information System (INIS)

    Pasti, L.; Dondi, F.; Nava, E.; Morelli, M.; Bignami, S.

    2007-01-01

    The development of a network to monitor surface waters is a critical element in the assessment, restoration and protection of water quality. In this study, concentrations of 42 pesticides - determined by GC-MS on samples from 11 points along the Ferrara area rivers - have been analyzed by chemometric tools. The data were collected over a three-year period (2002-2004). Principal component analysis of the detected pesticides was carried out in order to define the best spatial locations for the sampling points. The results obtained have been interpreted in view of agricultural land use. Time series data regarding pesticide contents in surface waters has been analyzed using the Autocorrelation function. This chemometric tool allows for seasonal trends and makes it possible to optimize sampling frequency in order to detect the effective maximum pesticide content

  9. Surface erosion and tritium inventory analysis for CIT [Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Brooks, J.N.; Dylla, H.F.

    1990-09-01

    The expected buildup of co-deposited tritium on the CIT carbon divertor and first wall surfaces and operational methods of minimizing the inventory have been examined. The analysis uses impurity transport computer codes, and associated plasma and tritium retention models, to compute the thickness of redeposited sputtered carbon and the resulting co-deposited tritium inventory on the divertor plates and first wall. Predicted erosion/growth rates are dominated by the effect of gaps between carbon tiles. The overall results appear favorable, showing stable operation (finite self-sputtering) and acceptably low (∼25 Ci/pulse) co-deposited tritium rates, at high surface temperature (1700 degree C) design conditions. These results, however, are highly speculative due to serious model inadequacies at the high sputtering rates predicted. If stable operation is obtainable, the prospects appear good for adequate tritium inventory control via helium-oxygen glow discharge cleaning. 25 refs

  10. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    International Nuclear Information System (INIS)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran

    2007-11-01

    between measured and calculated surface water discharges, but the model generally underestimates the total runoff from the area. The model also overestimates the groundwater levels, and the modelled groundwater level amplitudes are too small in many boreholes. A number of likely or potential reasons for these deviations can be identified: The surface stream network description in the model is incomplete. This implies that too little overland water is drained from the area by the streams, which creates ponded areas in the model that do not exist in reality. These areas are characterized by large evaporation and infiltration, contributing to groundwater recharge and reducing transpiration from the groundwater table, in turn creating high and relatively stable groundwater levels compared to those measured at the site. In order to improve the agreement between measured and modelled surface water discharges, the evapotranspiration was reduced in the model; in effect, this implied a reduction of the potential evapotranspiration. This probably caused a larger groundwater recharge and less transpiration during summer, thereby reducing the variations in the modelled groundwater levels. If the MIKE 11 stream network is updated, the potential evapotranspiration could be increased again, such that the modelling of groundwater dynamics is improved. The bottom boundary condition and the hydraulic conductivity of the bedrock may have a large effect on model-calculated near-surface/surface water flows in Laxemar. A sensitivity analysis shows that lowering the hydraulic head at the bottom boundary (located at 150 metres below sea level) lowers the groundwater levels in the Quaternary deposits, but also implies smaller surface water discharges. Lowering the hydraulic conductivity of the bedrock would increase groundwater flows to Quaternary deposits in groundwater discharge areas, which raises groundwater levels and reduces fluctuation amplitudes. An alternative model approach, using a

  11. A Surface-based Analysis of Language Lateralization and Cortical Asymmetry

    Science.gov (United States)

    Greve, Douglas N.; Van der Haegen, Lise; Cai, Qing; Stufflebeam, Steven; Sabuncu, Mert R.; Fischl, Bruce; Bysbaert, Marc

    2013-01-01

    Among brain functions, language is one of the most lateralized. Cortical language areas are also some of the most asymmetrical in the brain. An open question is whether the asymmetry in function is linked to the asymmetry in anatomy. To address this question, we measured anatomical asymmetry in 34 participants shown with fMRI to have language dominance of the left hemisphere (LLD) and 21 participants shown to have atypical right hemisphere dominance (RLD). All participants were healthy and left-handed, and most (80%) were female. Gray matter (GM) volume asymmetry was measured using an automated surface-based technique in both ROIs and exploratory analyses. In the ROI analysis, a significant difference between LLD and RLD was found in the insula. No differences were found in planum temporale (PT), pars opercularis (POp), pars triangularis (PTr), or Heschl’s gyrus (HG). The PT, POp, insula, and HG were all significantly left lateralized in both LLD and RLD participants. Both the positive and negative ROI findings replicate a previous study using manually labeled ROIs in a different cohort [Keller, S. S., Roberts, N., Garcia-Finana, M., Mohammadi, S., Ringelstein, E. B., Knecht, S., et al. Can the language-dominant hemisphere be predicted by brain anatomy? Journal of Cognitive Neuroscience, 23, 2013–2029, 2011]. The exploratory analysis was accomplished using a new surface-based registration that aligns cortical folding patterns across both subject and hemisphere. A small but significant cluster was found in the superior temporal gyrus that overlapped with the PT. A cluster was also found in the ventral occipitotemporal cortex corresponding to the visual word recognition area. The surface-based analysis also makes it possible to disentangle the effects of GM volume, thickness, and surface area while removing the effects of curvature. For both the ROI and exploratory analyses, the difference between LLD and RLD volume laterality was most strongly driven by

  12. Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis

    International Nuclear Information System (INIS)

    Boaga, J; Vignoli, G; Cassiani, G

    2011-01-01

    Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the

  13. HYDROLOGIC AND FEATURE-BASED SURFACE ANALYSIS FOR TOOL MARK INVESTIGATION ON ARCHAEOLOGICAL FINDS

    Directory of Open Access Journals (Sweden)

    K. Kovács

    2012-07-01

    Full Text Available The improvement of detailed surface documentation methods provides unique tool mark-study opportunities in the field of archaeological researches. One of these data collection techniques is short-range laser scanning, which creates a digital copy of the object’s morphological characteristics from high-resolution datasets. The aim of our work was the accurate documentation of a Bronze Age sluice box from Mitterberg, Austria with a spatial resolution of 0.2 mm. Furthermore, the investigation of the entirely preserved tool marks on the surface of this archaeological find was also accomplished by these datasets. The methodology of this tool mark-study can be summarized in the following way: At first, a local hydrologic analysis has been applied to separate the various patterns of tools on the finds’ surface. As a result, the XYZ coordinates of the special points, which represent the edge lines of the sliding tool marks, were calculated by buffer operations in a GIS environment. During the second part of the workflow, these edge points were utilized to manually clip the triangle meshes of these patterns in reverse engineering software. Finally, circle features were generated and analysed to determine the different sections along these sliding tool marks. In conclusion, the movement of the hand tool could be reproduced by the spatial analysis of the created features, since the horizontal and vertical position of the defined circle centre points indicated the various phases of the movements. This research shows an exact workflow to determine the fine morphological structures on the surface of the archaeological find.

  14. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    Science.gov (United States)

    Becker, Chaoyue; Posen, Sam; Groll, Nickolas; Cook, Russell; Schlepütz, Christian M.; Hall, Daniel Leslie; Liepe, Matthias; Pellin, Michael; Zasadzinski, John; Proslier, Thomas

    2015-02-01

    We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ˜2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  15. Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface

    International Nuclear Information System (INIS)

    Mukhopadhyay, Swati

    2011-01-01

    Highlights: ► Unsteady boundary layer flow and heat transfer over a non-isothermal stretching sheet in a magnetic field are studied. ► Fluid velocity and temperature decrease for increasing unsteadiness parameter. ► Fluid velocity decreases but temperature increases with the increasing values of the Hartman number. ► The sheet temperature in respect of distance and time has analogous effects on the heat transfer. - Abstract: An analysis is made for the unsteady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching surface having a variable and general form of surface temperature which removes the restrictions of the particular forms of prescribed surface temperature. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the unsteadiness parameter, magnetic parameter, the temperature exponent parameters. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. It is found that the fluid velocity and temperature decrease for increasing unsteadiness parameter. Fluid velocity decreases with the increasing values of the Hartman number resulting an increase in the temperature field in steady as well in unsteady case. It is observed that the variation of the sheet temperature in respect of distance and time has analogous effects both on the free surface temperature and on the heat transfer rate (Nusselt number) at the sheet.

  16. Analysis of Nb{sub 3}Sn surface layers for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Chaoyue [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Posen, Sam; Hall, Daniel Leslie [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Groll, Nickolas; Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Cook, Russell [Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Schlepütz, Christian M. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Liepe, Matthias [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Pellin, Michael [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zasadzinski, John [Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-02-23

    We present an analysis of Nb{sub 3}Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb{sub 3}Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T{sub c}) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb{sub 3}Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb{sub 3}Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T{sub c} regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb{sub 3}Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  17. Stochastic analysis of 1D and 2D surface topography of x-ray mirrors

    Science.gov (United States)

    Tyurina, Anastasia Y.; Tyurin, Yury N.; Yashchuk, Valeriy V.

    2017-08-01

    The design and evaluation of the expected performance of new optical systems requires sophisticated and reliable information about the surface topography for planned optical elements before they are fabricated. The problem is especially complex in the case of x-ray optics, particularly for the X-ray Surveyor under development and other missions. Modern x-ray source facilities are reliant upon the availability of optics with unprecedented quality (surface slope accuracy quality optics. The uniqueness of the optics and limited number of proficient vendors makes the fabrication extremely time consuming and expensive, mostly due to the limitations in accuracy and measurement rate of metrology used in fabrication. We discuss improvements in metrology efficiency via comprehensive statistical analysis of a compact volume of metrology data. The data is considered stochastic and a new statistical model called Invertible Time Invariant Linear Filter (InTILF) is developed now for 2D surface profiles to provide compact description of the 2D data additionally to 1D data treated so far. The model captures faint patterns in the data and serves as a quality metric and feedback to polishing processes, avoiding high resolution metrology measurements over the entire optical surface. The modeling, implemented in our Beatmark software, allows simulating metrology data for optics made by the same vendor and technology. The forecast data is vital for reliable specification for optical fabrication, to be exactly adequate for the required system performance.

  18. Micro-strain, dislocation density and surface chemical state analysis of multication thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jayaram, P., E-mail: jayarampnair@gmail.com [Department of Physics, MES Ponnani College Ponnani, Kerala (India); Pradyumnan, P.P. [Department of Physics, University of Calicut, Kerala 673 635 (India); Karazhanov, S.Zh. [Department for Solar Energy, Institute for Energy Technology, Kjeller (Norway)

    2016-11-15

    Multication complex metal oxide thin films are rapidly expanding the class of materials with many technologically important applications. Herein this work, the surface of the pulsed laser deposited thin films of Zn{sub 2}SnO{sub 4} and multinary compounds obtained by substitution/co-substitution of Sn{sup 4+} with In{sup 3+} and Ga{sup 3+} are studied by X-ray photoelectron emission spectroscopy (X-PES) method. Peaks corresponding to the elements of Zn, Sn, Ga, In and O on the film surface has been identified and contribution of the elements has been studied by the computer aided surface analysis (CASA) software. Binding energies, full-width at half maximum (FWHM), spin-orbit splitting energies, asymmetric peak-shape fitting parameters and quantification of elements in the films are discussed. Studies of structural properties of the films by x-ray diffraction (XRD) technique showed inverse spinel type lattice with preferential orientation. Micro-strain, dislocation density and crystallite sizes in the film surface have been estimated.

  19. Analysis of atomic force microscopy data for surface characterization using fuzzy logic

    International Nuclear Information System (INIS)

    Al-Mousa, Amjed; Niemann, Darrell L.; Niemann, Devin J.; Gunther, Norman G.; Rahman, Mahmud

    2011-01-01

    In this paper we present a methodology to characterize surface nanostructures of thin films. The methodology identifies and isolates nanostructures using Atomic Force Microscopy (AFM) data and extracts quantitative information, such as their size and shape. The fuzzy logic based methodology relies on a Fuzzy Inference Engine (FIE) to classify the data points as being top, bottom, uphill, or downhill. The resulting data sets are then further processed to extract quantitative information about the nanostructures. In the present work we introduce a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and present an omni-directional search technique to improve the structural recognition accuracy. In order to demonstrate the effectiveness of our approach we present a case study which uses our approach to quantitatively identify particle sizes of two specimens each with a unique gold nanoparticle size distribution. - Research Highlights: → A Fuzzy logic analysis technique capable of characterizing AFM images of thin films. → The technique is applicable to different surfaces regardless of their densities. → Fuzzy logic technique does not require manual adjustment of the algorithm parameters. → The technique can quantitatively capture differences between surfaces. → This technique yields more realistic structure boundaries compared to other methods.

  20. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    International Nuclear Information System (INIS)

    Becker, Chaoyue; Posen, Sam; Hall, Daniel Leslie; Groll, Nickolas; Proslier, Thomas; Cook, Russell; Schlepütz, Christian M.; Liepe, Matthias; Pellin, Michael; Zasadzinski, John

    2015-01-01

    We present an analysis of Nb 3 Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb 3 Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T c ) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb 3 Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb 3 Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T c regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb 3 Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators

  1. An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras

    Science.gov (United States)

    Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.

  2. An analysis of critical heat flux on the external surface of the reactor vessel lower head

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Baek, Won Pil; Chang, Soon Heung

    1999-01-01

    CHF (Critical heat flux) on the external surface of the reactor vessel lower head is major key in the evaluation on the feasibility of IVR-EVC (In-Vessel Retention through External Vessel Cooling) concept. To identify the CHF on the external surface, considerable works have been performed. Through the review on the previous works related to the CHF on the external surface, liquid subcooling, induced flow along the external surface, ICI (In-Core Instrument) nozzle and minimum gap are identified as major parameters. According to the present analysis, the effects of the ICI nozzle and minimum gap on CHF are pronounced at the upstream of test vessel: on the other hand, the induced flow considerably affects the CHF at downstream of test vessel. In addition, the subcooling effect is shown at all of test vessel, and decreases with the increase in the elevation of test vessel. In the real application of the IVR-EVC concept, vertical position is known as a limiting position, at which thermal margin is the minimum. So, it is very important to precisely predict the CHF at vertical position in a viewpoint of gaining more thermal margins. However, the effects of the liquid subcooling and induced flow do not seem to be adequately included in the CHF correlations suggested by previous works, especially at the downstream positions

  3. Elasto-dynamic analysis of spinning nanodisks via a surface energy-based model

    Science.gov (United States)

    Kiani, Keivan

    2016-07-01

    Using the surface elasticity theory of Gurtin and Murdoch, in-plane vibrations of annular nanodisks due to their rotary motion are explored. By the imposition of non-classical boundary conditions on the innermost and outermost surfaces and employing Hamilton’s principle, the unknown elasto-dynamic fields of the bulk zone are determined via the finite element method. The roles of both nanodisk geometry and surface effect on the natural frequencies are addressed. Subsequently, forced vibrations of spinning nanodisks with fixed-free and free-free boundary conditions are comprehensively examined. The obtained results show that the maximum dynamic elastic fields grow in a parabolic manner as the steady angular velocity increases. By increasing the outermost radius, the maximum dynamic elastic field is magnified and the influence of the surface effect on the results reduced. This work can be considered as a pivotal step towards optimal design and dynamic analysis of nanorotors with disk-like parts, which are one of the basic building blocks of the upcoming advanced nanotechnologies.

  4. Practical using of TXRF spectrometers with slitless collimators for the trace analysis of targets surfaces

    International Nuclear Information System (INIS)

    Egorov, V.K.; Zuev, A.P.; Kondratiev, O.S.; Egorov, E.V.

    2000-01-01

    TXRF spectrometer with the slitless collimator used for a formation of the x-ray excitating beam (TXRF-SC spectrometer) is a new variety of an instrument been destined for the trace analysis of surfaces by x-ray fluorescence method at the total reflection of the x-ray incident beam. Some theoretical concepts are introduced for a characterization of the x-ray optics been unique to the TXRF-SC spectrometer. The principle design of the TXRF-SC spectrometer used for the trace quantitative analysis of a surface are discussed. Spectra of a secondary x-ray radiation yield for typical targets been collected by using of the TXRF-SC spectrometer and calculation of surface trace elements concentrations are presented. The analytical and operating parameters of the TXRF-SC spectrometer and one characterized by standard optical scheme are compared. The slitless collimator of the x-ray radiation is formed by two quartz polished plates mated together. Lengths of the plates are not equal. The target is placed on the surface of the long quartz plate and produces the continuation of the initial slitless collimator. Target orientation problem vanishes but problem of the surface contact effect appears. The secondary x-ray radiation excitated in a surface of the target is led out across the hole in the long quartz plate. The radiation is registered by a standard Si (Li) semiconductor detector and is collected by a multi-channel analyzer. The fundamental difference of the x-ray optical scheme been unique to TXRF-SC spectrometer from the standard one is the excitation of a studied surface by a flared x-ray beam with angle ΔΘ = 2Θ c , where Θ c is the critical angle of the total reflection. The vital peculiarity of a x-ray slitless collimation is the absence of a radiation monochromatism in output of the collimator. The sensible divergence of the x-ray excitating beam and the availability in it of monochromatic and white radiation alike allow to get in the surface layer of target the

  5. High-precision drop shape analysis on inclining flat surfaces: introduction and comparison of this special method with commercial contact angle analysis.

    Science.gov (United States)

    Schmitt, Michael; Heib, Florian

    2013-10-07

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in

  6. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis

    International Nuclear Information System (INIS)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2015-01-01

    The wettability of graphitic carbon and silicon surfaces was numerically and theoretically investigated. A multi-response method has been developed for the analysis of conventional molecular dynamics (MD) simulations of droplets wettability. The contact angle and indicators of the quality of the computations are tracked as a function of the data sets analyzed over time. This method of analysis allows accurate calculations of the contact angle obtained from the MD simulations. Analytical models were also developed for the calculation of the work of adhesion using the mean-field theory, accounting for the interfacial entropy changes. A calibration method is proposed to provide better predictions of the respective contact angles under different solid-liquid interaction potentials. Estimations of the binding energy between a water monomer and graphite match those previously reported. In addition, a breakdown in the relationship between the binding energy and the contact angle was observed. The macroscopic contact angles obtained from the MD simulations were found to match those predicted by the mean-field model for graphite under different wettability conditions, as well as the contact angles of Si(100) and Si(111) surfaces. Finally, an assessment of the effect of the Lennard-Jones cutoff radius was conducted to provide guidelines for future comparisons between numerical simulations and analytical models of wettability

  7. Study of discharges produced by surface waves under medium and high pressure: application to chemical analysis

    International Nuclear Information System (INIS)

    Laye epouse Granier, Agnes

    1986-01-01

    This report deals with the study of microwave discharges produced in argon gas by surface waves in the 20-760 Torr pressure range. Application to chemical analysis by emission optical spectroscopy is also investigated. First of all we study the propagation of a surface wave in a bounded plasma in which the effective collision frequency for momentum transfer ν is higher than the excitation one. The axial electron density profile is determined from two diagnostic techniques, i.e., phase variations of the wave field and Stark broadening of H β line. Then we deduce the discharge characteristics ν, θ (maintaining power of an electron-ion pair) and E eff (effective electric field for discharge sustaining) from the electron density profile. Then an energy balance of the discharge is developed. It explains the change of operating conditions in the 20-50 Torr range. At low pressure the discharge is governed by ambipolar diffusion whereas at high pressure, the electrons are mainly lost by volume recombination of Ar 2 + . Finally, we report on chemical analysis experiment of gases (optimum sensibility in found near 100 Torr) and of metallic solutions sprayed by a graphite oven. Performances of such a design and ICP plasma torches are compared. (author) [fr

  8. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  9. Cost Effectiveness Analysis of the "Sea to SWOS" Training Initiative on the Surface Warfare Officer Qualification Process

    National Research Council Canada - National Science Library

    Gavino, Christopher

    2002-01-01

    ... (combat effectiveness) while the quantitative analysis shows additional costs to the Navy Personnel Command and savings in training costs for the Naval Education and Training Command and OPNAV N76, the Surface Warfare Resource Sponsor...

  10. Spectral force analysis using atomic force microscopy reveals the importance of surface heterogeneity in bacterial and colloid adhesion to engineered surfaces.

    Science.gov (United States)

    Ma, Huilian; Winslow, Charles J; Logan, Bruce E

    2008-04-01

    Coatings developed to reduce biofouling of engineered surfaces do not always perform as expected based on their native properties. One reason is that a relatively small number of highly adhesive sites, or the heterogeneity of the coated surface, may control the overall response of the system to initial bacterial deposition. It is shown here using an approach we call spectral force analysis (SFA), based on force volume imaging of the surface with atomic force microscopy, that the behavior of surfaces and coatings can be better understood relative to bacterial adhesion. The application of vapor deposited TiO(2) metal oxide increased bacterial and colloid adhesion, but coating the surface with silica oxide reduced adhesion in a manner consistent with SFA based on analysis of the "stickiest" sites. Application of a TiO(2)-based paint to a surface produced a relatively non-fouling surface. Addition of a hydrophilic layer coating to this surface should have decreased fouling. However, it was observed that this coating actually increased fouling. Using SFA it was shown that the reason for the increased adhesion of bacteria and particles to the hydrophilic layer was that the surface produced by this coating was highly heterogeneous, resulting in a small number of sites that created a stickier surface. These results show that while it is important to manufacture surfaces with coatings that are relatively non-adhesive to bacteria, it is also essential that these coatings have a highly uniform surface chemistry.

  11. An integrated study of surface roughness in EDM process using regression analysis and GSO algorithm

    Science.gov (United States)

    Zainal, Nurezayana; Zain, Azlan Mohd; Sharif, Safian; Nuzly Abdull Hamed, Haza; Mohamad Yusuf, Suhaila

    2017-09-01

    The aim of this study is to develop an integrated study of surface roughness (Ra) in the die-sinking electrical discharge machining (EDM) process of Ti-6AL-4V titanium alloy with positive polarity of copper-tungsten (Cu-W) electrode. Regression analysis and glowworm swarm optimization (GSO) algorithm were considered for modelling and optimization process. Pulse on time (A), pulse off time (B), peak current (C) and servo voltage (D) were selected as the machining parameters with various levels. The experiments have been conducted based on the two levels of full factorial design with an added center point design of experiments (DOE). Moreover, mathematical models with linear and 2 factor interaction (2FI) effects of the parameters chosen were developed. The validity test of the fit and the adequacy of the developed mathematical models have been carried out by using analysis of variance (ANOVA) and F-test. The statistical analysis showed that the 2FI model outperformed with the most minimal value of Ra compared to the linear model and experimental result.

  12. From LIDAR Scanning to 3d FEM Analysis for Complex Surface and Underground Excavations

    Science.gov (United States)

    Chun, K.; Kemeny, J.

    2017-12-01

    Light detection and ranging (LIDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease to use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of three-dimensional numerical model that can be used in FEM analysis. To date, however, straightforward techniques in reconstructing numerical model from the scanned data of underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating from LIDAR scanning to finite element numerical analysis, specifically converting LIDAR 3D point clouds of object containing complex surface geometry into finite element model. This methodology has been applied to the Kartchner Caverns in Arizona for the stability analysis. Numerical simulations were performed using the finite element code ABAQUS. The results indicate that the highlights of our technologies obtained from LIDAR is effective and provide reference for other similar engineering project in practice.

  13. Statistical analysis of surface roughness of machined graphite by means of CNC milling

    Directory of Open Access Journals (Sweden)

    Orquídea Sánchez López

    2016-09-01

    Full Text Available The aim of this research is to analyze the influence of cutting speed, feed rate and cutting depth on the surface finish of grade GSP-70 graphite specimens for use in electrical discharge machining (EDM for material removal by means of Computer Numerical Control (CNC milling with low-speed machining (LSM. A two-level factorial design for each of the three established factors was used for the statistical analysis. The analysis of variance (ANOVA indicates that cutting speed and feed rate are the two most significant factors with regard to the roughness obtained with grade GSP-70 graphite by means of CNC milling. A second order regression analysis was also conducted to estimate the roughness average (Ra in terms of the cutting speed, feed rate and cutting depth. Finally, the comparison between predicted roughness by means of a second order regression model and the roughness obtained by machined specimens considering the combinations of low and high levels of roughness is also presented.

  14. Analysis of the shrinkage at the thick plate part using response surface methodology

    Science.gov (United States)

    Hatta, N. M.; Azlan, M. Z.; Shayfull, Z.; Roselina, S.; Nasir, S. M.

    2017-09-01

    Injection moulding is well known for its manufacturing process especially in producing plastic products. To measure the final product quality, there are lots of precautions to be taken into such as parameters setting at the initial stage of the process. Sometimes, if these parameters were set up wrongly, defects may be occurred and one of the well-known defects in the injection moulding process is a shrinkage. To overcome this problem, a maximisation at the precaution stage by making an optimal adjustment on the parameter setting need to be done and this paper focuses on analysing the shrinkage by optimising the parameter at thick plate part with the help of Response Surface Methodology (RSM) and ANOVA analysis. From the previous study, the outstanding parameter gained from the optimisation method in minimising the shrinkage at the moulded part was packing pressure. Therefore, with the reference from the previous literature, packing pressure was selected as the parameter setting for this study with other three parameters which are melt temperature, cooling time and mould temperature. The analysis of the process was obtained from the simulation by Autodesk Moldflow Insight (AMI) software and the material used for moulded part was Acrylonitrile Butadiene Styrene (ABS). The analysis and result were obtained and it found that the shrinkage can be minimised and the significant parameters were found as packing pressure, mould temperature and melt temperature.

  15. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    W. Korres

    2010-05-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  16. Analysis of overdeepened valleys using the digital elevation model of the bedrock surface of Northern Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, P.

    2010-11-15

    Based on surface and borehole information, together with pre-existing regional and local interpretations, a 7,150 square kilometre Raster Digital Elevation Model (DEM) of the bedrock surface of northern Switzerland was constructed using a 25 m cell size. This model represents a further important step in the understanding of Quaternary sediment distribution and is open to a broad field of application and analysis, including hydrogeological, geotechnical and geophysical studies as well as research in the field of Pleistocene landscape evolution. An analysis of the overdeepened valleys in the whole model area and, more specifically in the Reuss area, shows that, in most cases, overdeepening is restricted to the areas covered by the Last Glaciation Maximum (LGM). However, at various locations relatively narrow overdeepened valleys outreach the tongue basins and the LGM ice shield limits. Therefore, an earlier and further-reaching glacial event has probably contributed significantly to the overdeepening of these valleys. No significant overdeepening has been identified downstream of Boettstein (Aare) and Kaiserstuhl (Rhine), although the ice extended considerably further downstream, at least during the most extensive glaciation. Except for the bedrock between Brugg and Boettstein, no overdeepened valleys are found significantly north of the outcrop of Mesozoic limestone of the Folded and Tabular Jura. A detailed analysis of the Reuss area shows that the Lake and Suhre valleys are separated from the Emmen-Gisikon Reuss valley basin by a significant bedrock barrier. The individual bedrock valleys are divided into several sub-basins, indicating a multiphase evolution of the valleys. Some of the swells or barriers separating the sub-basins coincide with known late LGM retreat stages. In the Suhre valley, an old fluvial valley floor with restricted overdeepened sections is documented. (author)

  17. Fluid free surface effect on the vibration analysis of cylindrical shells

    International Nuclear Information System (INIS)

    Lakis, A.A.; Brusuc, G.; Toorani, M.

    2007-01-01

    The present study is to investigate the effect of free surface motion of the fluid on the dynamic behavior of the thin-walled cylindrical shells. This paper outlines a semi-analytical approach to dynamic analysis of the fluid-filled horizontal cylindrical shell taking into account the free surface motion effect. The aim of the method is to provide a general approach that can be used for both analysis and synthesis of fluid structure interaction problems in the horizontal cylindrical shells where the dynamic interaction of a flexible structure and incompressible and inviscid flow is in focus. The approach is very general and allows for dynamic analysis of both uniform and non-uniform cylindrical shell considering the fluid forces including the sloshing effect exerted on the structure. The hybrid method developed in this work is on the basis of a combination of the classical finite element approach and the thin shell theory to determine the specific displacement functions. Mass and stiffness matrices of the shell are determined by precise analytical integration. A potential function is considered to develop the dynamic pressure due to the fluid. The kinetic and potential energies are evaluated for a range of fluid height to find the influence of the fluid on the dynamic responses of the structure. The influence of the physical and geometrical parameters on the fluid-structure system has been considered in the numerical solutions. When these results are compared with corresponding results available in the literature, both theory and experiment, very good agreement is obtained. (authors)

  18. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    Science.gov (United States)

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  19. Analysis of moving surface structures at a laser-induced boiling front

    Energy Technology Data Exchange (ETDEWEB)

    Matti, R.S., E-mail: ramiz.matti@ltu.se [Luleå University of Technology, Department of Engineering Sciences and Mathematics, S-971 87 Luleå (Sweden); University of Mosul, College of Engineering, Department of Mechanical Engineering, Mosul (Iraq); Kaplan, A.F.H. [Luleå University of Technology, Department of Engineering Sciences and Mathematics, S-971 87 Luleå (Sweden)

    2014-10-30

    Highlights: • For laser-induced boiling, molten metal surfaces show a moving wave pattern. • Categorization of seven kinds of shapes enabled systematic pattern analysis. • Bright shapes changed or disappeared, giving evidence for pulsating waves. • Interpretation on the topology and on the basic laser–melt interaction was made. - Abstract: Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20–50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing.

  20. Method for the Collection, Gravimetric and Chemical Analysis of Nonvolatile Residue (NVR) on Surfaces

    Science.gov (United States)

    Gordon, Keith; Rutherford, Gugu; Aranda, Denisse

    2017-01-01

    Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International

  1. Analysis of moving surface structures at a laser-induced boiling front

    International Nuclear Information System (INIS)

    Matti, R.S.; Kaplan, A.F.H.

    2014-01-01

    Highlights: • For laser-induced boiling, molten metal surfaces show a moving wave pattern. • Categorization of seven kinds of shapes enabled systematic pattern analysis. • Bright shapes changed or disappeared, giving evidence for pulsating waves. • Interpretation on the topology and on the basic laser–melt interaction was made. - Abstract: Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20–50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing

  2. Chemometric Analysis of Selected Organic Contaminants in Surface Water of Langat River Basin

    International Nuclear Information System (INIS)

    Mohamad Rafaie Mohamed Zubir; Rozita Osman; Norashikin Saim

    2016-01-01

    Chemometric techniques namely hierarchical agglomerative cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA) were applied to the distribution of selected organic contaminants (polycyclic aromatic hydrocarbons (PAHs), sterols, pesticides (chloropyrifos), and phenol) to assess the potential of using these organic contaminants as chemical markers in Langat River Basin. Water samples were collected from February 2012 to January 2013 on a monthly basis for nine monitoring sites along Langat River Basin. HACA was able to classify the sampling sites into three clusters which can be correlated to the level of contamination (low, moderate and high contamination sites). DA was used to discriminate the sources of contamination using the selected organic contaminants and relate to the existing DOE local activities groupings. Forward and backward stepwise DA was able to discriminate two and five organic contaminants variables, respectively, from the original 13 selected variables. The five significant variables identified using backward stepwise DA were fluorene, pyrene, stigmastanol, stigmasterol and phenol. PCA and FA (varimax functionality) were used to identify the possible sources of each organic contaminant based on the inventory of local activities. Five principal components were obtained with 66.5 % of the total variation. Result from FA indicated that PAHs (pyrene, fluorene, acenaphthene, benzo[a]anthracene) originated from industrial activity and socio-economic activities; while sterols (coprostanol, stigmastanol and stigmasterol) were associated to domestic sewage and local socio-economic activities. The occurrence of chloropyrifos was correlated to agricultural activities, urban and domestic discharges. This study showed that the application of chemometrics on the distribution of selected organic contaminants was able to trace the sources of contamination in surface water. (author)

  3. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran (DHI Sverige AB, Lilla Bommen 1, SE-411 04 Goeteborg (Sweden))

    2007-11-15

    between measured and calculated surface water discharges, but the model generally underestimates the total runoff from the area. The model also overestimates the groundwater levels, and the modelled groundwater level amplitudes are too small in many boreholes. A number of likely or potential reasons for these deviations can be identified: The surface stream network description in the model is incomplete. This implies that too little overland water is drained from the area by the streams, which creates ponded areas in the model that do not exist in reality. These areas are characterized by large evaporation and infiltration, contributing to groundwater recharge and reducing transpiration from the groundwater table, in turn creating high and relatively stable groundwater levels compared to those measured at the site. In order to improve the agreement between measured and modelled surface water discharges, the evapotranspiration was reduced in the model; in effect, this implied a reduction of the potential evapotranspiration. This probably caused a larger groundwater recharge and less transpiration during summer, thereby reducing the variations in the modelled groundwater levels. If the MIKE 11 stream network is updated, the potential evapotranspiration could be increased again, such that the modelling of groundwater dynamics is improved. The bottom boundary condition and the hydraulic conductivity of the bedrock may have a large effect on model-calculated near-surface/surface water flows in Laxemar. A sensitivity analysis shows that lowering the hydraulic head at the bottom boundary (located at 150 metres below sea level) lowers the groundwater levels in the Quaternary deposits, but also implies smaller surface water discharges. Lowering the hydraulic conductivity of the bedrock would increase groundwater flows to Quaternary deposits in groundwater discharge areas, which raises groundwater levels and reduces fluctuation amplitudes. An alternative model approach, using a

  4. MD simulation: determination of the physical properties and surface vaporization analysis of beryllium armours

    International Nuclear Information System (INIS)

    Prinzio, M. Di; Aquaro, D.

    2006-01-01

    The erosion of the divertor and of the first wall determined on the base of the anticipated operating conditions, is a critical issue that could affect the performance and the operating schedule of the nuclear fusion reactor ITER. This paper deals with the analysis of beryllium thermal properties by means of MD simulations, in order to better predict thermal behaviour of beryllium armoured PFCs in fusion devices. The importance of this analysis is clearly connected to thermal response evaluation of PFCs to high heat flux exposure, during off-normal events and Edge Localized Modes. The ensuing strong over-heating, in fact, produces material ablation through vaporization of surface material layers and possible loss of melting material. The overall PFCs erosion has bearings on plasma contamination, due to eroded material transport, and components lifetime, due to armour thickness reduction. An important feature of beryllium is its high vapour pressure. During thermal transients the strong vaporization keeps surface temperature relatively low but eroded thickness results high as well. Small changes in beryllium vapour pressure produce not negligible differences in thermal analyses results. On the basis of available force fields, classical Molecular Dynamics simulations have been carried out in order to better understand surface vaporization in tokamak conditions and to evaluate the effect of beryllium oxides formation. This effect has been successfully modelled by MD simulation, carried out with Moldy code. Morse stretching and bending potential for Be-O bond simulation have been used, and partial charges method, accounting for molecular polarity, has been employed. Since during short thermal transients, such as ELMs, only a few microns of Be armour will be overheated and reach melting threshold, the effective thermal conductivity is very important in determining the temperature evolution of surface layers and the ensuing erosion. Thermal conductivity can be evaluated

  5. Digital map and situation surface: a team-oriented multidisplay workspace for network enabled situation analysis

    Science.gov (United States)

    Peinsipp-Byma, E.; Geisler, Jürgen; Bader, Thomas

    2009-05-01

    System concepts for network enabled image-based ISR (intelligence, surveillance, reconnaissance) is the major mission of Fraunhofer IITB's applied research in the area of defence and security solutions. For the TechDemo08 as part of the NATO CNAD POW Defence against terrorism Fraunhofer IITB advanced a new multi display concept to handle the shear amount and high complexity of ISR data acquired by networked, distributed surveillance systems with the objective to support the generation of a common situation picture. Amount and Complexity of ISR data demands an innovative man-machine interface concept for humans to deal with it. The IITB's concept is the Digital Map & Situation Surface. This concept offers to the user a coherent multi display environment combining a horizontal surface for the situation overview from the bird's eye view, an attached vertical display for collateral information and so-called foveatablets as personalized magic lenses in order to obtain high resolved and role-specific information about a focused areaof- interest and to interact with it. In the context of TechDemo08 the Digital Map & Situation Surface served as workspace for team-based situation visualization and analysis. Multiple sea- and landside surveillance components were connected to the system.

  6. The influences of mesh subdivision on nonlinear fracture analysis for surface cracked structures

    International Nuclear Information System (INIS)

    Shimakawa, T.

    1991-01-01

    The leak-before-break (LBB) concept can be expected to be applied not only to safety assessment, but also to the rationalization of nuclear power plants. The development of a method to evaluate fracture characteristics is required to establish this concept. The finite element method (FEM) is one of the most useful tools for this evaluation. However, the influence of various factors on the solution is not well understood and the reliability has not been fully verified. In this study, elastic-plastic 3D analyses are performed for two kinds of surface cracked structure, and the influence of mesh design is discussed. The first problem is surface crack growth in a carbon steel plate subjected to tension loading. A crack extension analysis is performed under a generation phase simulation using the crack release technique. Numerical instability of the J-integral solution is observed when the number of elements in the thickness direction of the ligament is reduced to three. The influence of mesh design in the ligament on the solution is discussed. The second problem is a circumferential part-through crack in a carbon steel pipe subjected to a bending moment. Two kinds of mesh design are employed, and a comparison between two sets of results shows that the number of elements on the crack surface also affects the solution as well as the number of elements in the ligament. (author)

  7. Disilicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis

    Directory of Open Access Journals (Sweden)

    Carlo Fornaini

    2018-01-01

    Full Text Available Lithium disilicate dental ceramic bonding, realized by using different resins, is strictly dependent on micro-mechanical retention and chemical adhesion. The aim of this in vitro study was to investigate the capability of a 1070 nm fiber laser for their surface treatment. Samples were irradiated by a pulsed fiber laser at 1070 nm with different parameters (peak power of 5, 7.5 and 10 kW, repetition rate (RR 20 kHz, speed of 10 and 50 mm/s, and total energy density from 1.3 to 27 kW/cm2 and the thermal elevation during the experiment was recorded by a fiber Bragg grating (FBG temperature sensor. Subsequently, the surface modifications were analyzed by optical microscope, scanning electron microscope (SEM, and energy dispersive X-ray spectroscopy (EDS. With a peak power of 5 kW, RR of 20 kHz, and speed of 50 mm/s, the microscopic observation of the irradiated surface showed increased roughness with small areas of melting and carbonization. EDS analysis revealed that, with these parameters, there are no evident differences between laser-processed samples and controls. Thermal elevation during laser irradiation ranged between 5 °C and 9 °C. A 1070 nm fiber laser can be considered as a good device to increase the adhesion of lithium disilicate ceramics when optimum parameters are considered.

  8. Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves

    Directory of Open Access Journals (Sweden)

    Leyre Echevarria Icaza

    2016-03-01

    Full Text Available The urban heat island effect is often associated with large metropolises. However, in the Netherlands even small cities will be affected by the phenomenon in the future (Hove et al., 2011, due to the dispersed or mosaic urbanisation patterns in particularly the southern part of the country: the province of North Brabant. This study analyses the average night time land surface temperature (LST of 21 North-Brabant urban areas through 22 satellite images retrieved by Modis 11A1 during the 2006 heat wave and uses Landsat 5 Thematic Mapper to map albedo and normalized difference temperature index (NDVI values. Albedo, NDVI and imperviousness are found to play the most relevant role in the increase of night-time LST. The surface cover cluster analysis of these three parameters reveals that the 12 “urban living environment” categories used in the region of North Brabant can actually be reduced to 7 categories, which simplifies the design guidelines to improve the surface thermal behaviour of the different neighbourhoods thus reducing the Urban Heat Island (UHI effect in existing medium size cities and future developments adjacent to those cities.

  9. Multichannel analysis of the surface waves of earth materials in some parts of Lagos State, Nigeria

    Directory of Open Access Journals (Sweden)

    Adegbola R.B.

    2016-09-01

    Full Text Available We present a method that utilizes multichannel analysis of surface waves (MASW, which was used to measure shear wave velocities, with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some local government areas in Lagos, Nigeria. MASW data were acquired using a 24-channel seismograph. The acquired data were processed and transformed into a two-dimensional (2-D structure reflective of the depth and surface wave velocity distribution within a depth of 0–15 m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/ borehole data that were acquired along the same profile. The comparison and correlation illustrate the accuracy and consistency of MASW-derived shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/ very low velocity data are reflective of organic clay/ peat materials and thus likely responsible for the failure, subsidence and weakening of structures within the study areas.

  10. SEM analysis of enamel surface treated by Er:YAG laser: influence of irradiation distance.

    Science.gov (United States)

    Souza-Gabriel, A E; Chinelatti, M A; Borsatto, M C; Pécora, J D; Palma-Dibb, R G; Corona, S A M

    2008-07-01

    Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Sixty human third molars were employed to obtain discs (approximately =1 mm thick) that were randomly assigned to six groups (n=10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Laser irradiation at 11 and 12 mm provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

  11. Lateral Trunk Surface as a new parameter to estimate live body weight by Visual Image Analysis

    Directory of Open Access Journals (Sweden)

    S. Terramoccia

    2010-02-01

    Full Text Available Live weight of 74 milking Mediterranean buffaloes (Bubalus bubalis L. have been estimated by Visual Image Analysis. The total surface of lateral profile, tested in previous researches with viable result, was substituted by the measurement of the Lateral Trunk Surface (LTrS. The measurements were recorded by a camera equipped by a laser distance recorder and data were elaborated by a specific software. This parameter, eliminating the surface of neck, head and legs, that are less easily measurable, simplified and accelerated the procedure. Correlation between LTrS and live weight was r = 0.90 (P < 0.01. A significant equation (P < 0.01 was obtained from the recorded data of a random sample of 38 buffaloes. When the validation of the equation was tested on the other 36 subjects, the estimated live weight had a mean of 691.74 kg ± 68.55. This was corresponding to a 1.08% overestimation of the real weight.

  12. Comparison of two intraoral scanners based on three-dimensional surface analysis

    Directory of Open Access Journals (Sweden)

    Kyung-Min Lee

    2018-02-01

    Full Text Available Abstract Background This in vivo study evaluated the difference of two well-known intraoral scanners used in dentistry, namely iTero (Align Technology and TRIOS (3Shape. Methods Thirty-two participants underwent intraoral scans with TRIOS and iTero scanners, as well as conventional alginate impressions. The scans obtained with the two intraoral scanners were compared with each other and were also compared with the corresponding model scans by means of three-dimensional surface analysis. The average differences between the two intraoral scans on the surfaces were evaluated by color-mapping. The average differences in the three-dimensional direction between each intraoral scans and its corresponding model scan were calculated at all points on the surfaces. Results The average differences between the two intraoral scanners were 0.057 mm at the maxilla and 0.069 mm at the mandible. Color histograms showed that local deviations between the two scanners occurred in the posterior area. As for difference in the three-dimensional direction, there was no statistically significant difference between two scanners. Conclusions Although there were some deviations in visible inspection, there was no statistical significance between the two intraoral scanners.

  13. Infrared surface analysis using a newly developed thin-sample preparation system.

    Science.gov (United States)

    Nagai, Naoto; Nishiyama, Itsuo; Kishima, Yoshio; Iida, Katsuhiko; Mori, Koichi

    2009-01-01

    We developed a new sampling system, the Nano Catcher, for measuring the surface chemical structure of polymers or industrial products and we evaluated the performance of the system. The system can directly pick up surface species whose depth is on the order of approximately 100 nm and can easily provide a sample for a Fourier transform infrared (FT-IR) system without the necessity of passing it over to a measurement plate. The FT-IR reflection data obtained from the Nano Catcher were compared with those obtained using the attenuated total reflection (ATR) method and sampling by hand. Chemical structural analysis of a depth region from a few tens of nanometers to a few hundred nanometers can be directly performed using this system. Such depths are beyond the scope of conventional X-ray photoelectron spectroscopy (XPS) and ATR methods. We can expect the use of the Nano Catcher system to lead to a great improvement in the detection of signals of surface species in these depth regions.

  14. Chemical state analysis of oxidation products on steel surface by conversion electron Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Nomura, Kiyoshi

    1978-01-01

    The polished NT-70H steel (Fe: 95.97%, C: 0.56%, diameter: 5 cm, thickness: 0.5 cm) was immersed in deionized water or in solutions containing (0.25 -- 0.5) M of chloride, sulfate and nitrate ions. The chemical states of oxidation products of iron on the surface were identified through the analysis of conversion electron Moessbauer spectra (CEMS). CEMS of the steel surface, which had been dipped in deionized water, revealed that γ-FeOOH was formed on the surface. The thickness of γ-FeOOH layer increased with the increase of the duration of dipping. Dissolved oxygen in the solution played an essential role in the oxidation of iron to γ-FeOOH. Oxidation product of iron dipped in the 0.5 M sodium chloride solution was identified as γ-FeOOH. Amorphous paramagnetic iron (III) compound tended to form in the presence of hydrogen peroxide or ammonium ions in the solutions. The increase of alkalinity of the solution up to pH 12 suppressed the oxidation rate and assisted the formation of green rust, which was confirmed by the appearance of the quadrupole splitting peaks of the green rust. In the 0.25 M sodium sulfate solution, oxidation of the steel surface proceeded slowly and the quadrupole splitting peaks of Fe(OH) 2 were seen in the CEMS. The peak intensity of Fe(OH) 2 gradually decreased and that of γ-FeOOH increased by the extension of immersion of steel in the solution. Magnetite (Fe 3 O 4 ) layer was developed beneath the γ-FeOOH layer, when steel was dipped in 0.5 M sodium nitrate solution. However, the peaks of Fe 3 O 4 were not seen on CEMS of steel surface immersed in 0.5 M ammonium nitrate solution. Thus, applying the feasibility of CEMS for the characterization of oxidated compounds of iron on the steel surface formed by the immersion in solutions, the oxidation mechanism of the steel surface was discussed based upon the results of chemical state analyses. (author)

  15. Tidal analysis of surface currents in the Porsanger fjord in northern Norway

    Science.gov (United States)

    Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata

    2016-04-01

    In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  16. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    International Nuclear Information System (INIS)

    Aneljung, Maria; Gustafsson, Lars-Goeran

    2007-04-01

    . Differences in the aquifer refilling process subsequent to dry periods, for example a too slow refill when the groundwater table rises after dry summers. This may be due to local deviations in the applied pF-curves in the unsaturated zone description. Differences in near-surface groundwater elevations. For example, the calculated groundwater level reaches the ground surface during the fall and spring at locations where the measured groundwater depth is just below the ground surface. This may be due to the presence of near-surface high-conductive layers. A sensitivity analysis has been made on calibration parameters. For parameters that have 'global' effects, such as the hydraulic conductivity in the saturated zone, the analysis was performed using the 'full' model. For parameters with more local effects, such as parameters influencing the evapotranspiration and the net recharge, the model was scaled down to a column model, representing two different type areas. The most important conclusions that can be drawn from the sensitivity analysis are the following: The results indicate that the horizontal hydraulic conductivity generally should be increased at topographic highs, and reduced at local depressions in the topography. The results indicate that no changes should be made to the vertical hydraulic conductivity at locations where the horizontal conductivity has been increased, and that the vertical conductivity generally should be decreased where the horizontal conductivity has been decreased. The vegetation parameters that have the largest influence on the total groundwater recharge are the root mass distribution and the crop coefficient. The unsaturated zone parameter that have the largest influence on the total groundwater recharge is the effective porosity given in the pF-curve. In addition, the shape of the pF-curve above the water content at field capacity is also of great importance. The general conclusion is that the surrounding conditions have large effects on water

  17. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Goeteborg (Sweden)

    2007-04-15

    . Differences in the aquifer refilling process subsequent to dry periods, for example a too slow refill when the groundwater table rises after dry summers. This may be due to local deviations in the applied pF-curves in the unsaturated zone description. Differences in near-surface groundwater elevations. For example, the calculated groundwater level reaches the ground surface during the fall and spring at locations where the measured groundwater depth is just below the ground surface. This may be due to the presence of near-surface high-conductive layers. A sensitivity analysis has been made on calibration parameters. For parameters that have 'global' effects, such as the hydraulic conductivity in the saturated zone, the analysis was performed using the 'full' model. For parameters with more local effects, such as parameters influencing the evapotranspiration and the net recharge, the model was scaled down to a column model, representing two different type areas. The most important conclusions that can be drawn from the sensitivity analysis are the following: The results indicate that the horizontal hydraulic conductivity generally should be increased at topographic highs, and reduced at local depressions in the topography. The results indicate that no changes should be made to the vertical hydraulic conductivity at locations where the horizontal conductivity has been increased, and that the vertical conductivity generally should be decreased where the horizontal conductivity has been decreased. The vegetation parameters that have the largest influence on the total groundwater recharge are the root mass distribution and the crop coefficient. The unsaturated zone parameter that have the largest influence on the total groundwater recharge is the effective porosity given in the pF-curve. In addition, the shape of the pF-curve above the water content at field capacity is also of great importance. The general conclusion is that the surrounding conditions have

  18. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  19. Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform

    Science.gov (United States)

    Poggi, V.; Fäh, D.; Giardini, D.

    2013-03-01

    A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.

  20. Analysis of hyper-baric biofilms on engineering surfaces formed in the Deep Sea

    Science.gov (United States)

    Meier, A.; Tsaloglou, N. M.; Connelly, D.; Keevil, B.; Mowlem, M.

    2012-04-01

    Long-term monitoring of the environment is essential to our understanding of global processes, such as global warming, and their impact. As biofilm formation occurs after only short deployment periods in the marine environment, it is a major problem in long-term operation of environmental sensors. This makes the development of anti-fouling strategies for in situ sensors critical to their function. The effects on sensors can range from measurement drift, which can be compensated, to blockage of channels and material degradation, rendering them inoperative. In general, the longer the deployment period the more severe the effects of the biofouling become. Until now, biofilm research has focused mainly on the eutrophic and euphotic zones of the oceans. Hyper-baric biofilms are poorly understood due to difficulties in experimental setup and the assumption that biofouling in these oligotrophic regions could be regarded as insignificant. Our study shows significant biofilm formation occurs in the deep sea. We deployed a variety of materials, typically used in engineering structures, on a 4500 metre deep mooring during a cruise to the Cayman Trough, for 10 days. The materials were clear plain glass, poly-methyl methacrylate (PMMA), Delrin™, and copper, a known antifouling agent. The biofilms were studied by fluorescence microscopy and molecular analysis. For microscopy the nucleic acid stain, SYTO©9, was used and surface coverage was quantified by using a custom MATLAB™ program. Further molecular analyses, including UV Vis spectrometric quantification of DNA, nucleic acid amplification using Polymerase Chain Reaction (PCR), and Denaturing Gradient Gel Electrophoresis (DGGE), were utilised for the analysis of the microbial community composition of these biofilms. Six 16S/18S universal primer sets representative for the three kingdoms, Archea, Bacteria, and Eukarya were used for the PCR and DGGE. Preliminary results from fluorescence microscopy showed that the biofilm

  1. Theoretical analysis of ridge gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2006-01-01

    Optical properties of ridge gratings for long-range surface plasmon polaritons (LRSPPs) are analyzed theoretically in a two-dimensional configuration via the Lippmann-Schwinger integral equation method. LRSPPs being supported by a thin planar gold film embedded in dielectric are considered...... to be scattered by an array of equidistant gold ridges on each side of the film designed for in-plane Bragg scattering of LRSPPs at the wavelength ~1550 nm. Out-of-plane scattering (OUPS), LRSPP transmission, reflection, and absorption are investigated with respect to the wavelength, the height of the ridges...... peak it is preferable to use longer gratings with smaller ridges compared to gratings with larger ridges, because the former result in a smaller OUPS from the grating facets than the latter. The theoretical analysis and its conclusions are supported with experimental results on the LRSPP reflection...

  2. Fourier emission infrared microspectrophotometer for surface analysis. I - Application to lubrication problems

    Science.gov (United States)

    Lauer, J. L.; King, V. W.

    1979-01-01

    A far-infrared interferometer was converted into an emission microspectrophotometer for surface analysis. To cover the mid-infrared as well as the far-infrared the Mylar beamsplitter was made replaceable by a germanium-coated salt plate, and the Moire fringe counting system used to locate the moveable Michelson mirror was improved to read 0.5 micron of mirror displacement. Digital electronics and a dedicated minicomputer were installed for data collection and processing. The most critical element for the recording of weak emission spectra from small areas was, however, a reflecting microscope objective and phase-locked signal detection with simultaneous referencing to a blackbody source. An application of the technique to lubrication problems is shown.

  3. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground

    Science.gov (United States)

    Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.

  4. Protocol for Microplastics Sampling on the Sea Surface and Sample Analysis

    Science.gov (United States)

    Kovač Viršek, Manca; Palatinus, Andreja; Koren, Špela; Peterlin, Monika; Horvat, Petra; Kržan, Andrej

    2016-01-01

    Microplastic pollution in the marine environment is a scientific topic that has received increasing attention over the last decade. The majority of scientific publications address microplastic pollution of the sea surface. The protocol below describes the methodology for sampling, sample preparation, separation and chemical identification of microplastic particles. A manta net fixed on an »A frame« attached to the side of the vessel was used for sampling. Microplastic particles caught in the cod end of the net were separated from samples by visual identification and use of stereomicroscopes. Particles were analyzed for their size using an image analysis program and for their chemical structure using ATR-FTIR and micro FTIR spectroscopy. The described protocol is in line with recommendations for microplastics monitoring published by the Marine Strategy Framework Directive (MSFD) Technical Subgroup on Marine Litter. This written protocol with video guide will support the work of researchers that deal with microplastics monitoring all over the world. PMID:28060297

  5. Ion optics of a new time-of-flight mass spectrometer for quantitative surface analysis

    International Nuclear Information System (INIS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Pellin, Michael J.

    2004-01-01

    A new time-of-flight instrument for quantitative surface analysis was developed and constructed at Argonne National Laboratory. It implements ion sputtering and laser desorption for probing analyzed samples and can operate in regimes of secondary neutral mass spectrometry with laser post-ionization and secondary ion mass spectrometry. The instrument incorporates two new ion optics developments: (1) 'push-pull' front end ion optics and (2) focusing and deflecting lens. Implementing these novel elements significantly enhance analytical capabilities of the instrument. Extensive three-dimensional computer simulations of the instrument were conducted in SIMION 3D (c) to perfect its ion optics. The operating principles of the new ion optical systems are described, and a scheme of the new instrument is outlined together with its operating modes

  6. A Software for the Analysis of Scripted Dialogs Based on Surface Markers

    Directory of Open Access Journals (Sweden)

    Sylvain Delisle

    2003-04-01

    Full Text Available Most information systems that deal with natural language texts do not tolerate much deviation from their idealized and simplified model of language. Spoken dialog is notoriously ungrammatical however. Because the MAREDI project focuses in particular on the automatic analysis of scripted dialogs, we needed to develop a robust capacity to analyze transcribed spoken language. This paper presents the main elements of our approach, which is based on exploiting surface markers as the best route to the semantics of the conversation modelled. We highlight the foundations of our particular conversational model and give an overview of the MAREDI system. The latter consists of three key modules, which are 1 a connectionist network to recognise speech acts, 2 a robust syntactic parser, and 3 a semantic analyzer. These three modules are fully implemented in Prolog and C++ and have been packaged into an integrated software.

  7. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    Science.gov (United States)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  8. Statistical analysis of global surface temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmidt, Torben; Johansen, Søren; Thejll, Peter

    2012-01-01

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to the lack of representation of ice-sheet dynamics in present-day physically-based climate models being unable to simulate observed sea level trends......, semi-empirical models have been applied as an alternative for projecting of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and land-ocean surface air...... temperature, capable of handling such peculiarities. We find a relationship between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s...

  9. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the expected...

  10. Alignment of Ion Accelerator for Surface Analysis using Theodolite and Laser Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae Sung; Seo, Dong Hyuk; Kim, Dae Il; Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The method of ion accelerator alignment is used two ways which are a theodolite and laser tracker. For the alignment and maintenance of the proton linear accelerator, the laser tracker is typically used at KOMAC. While the device for alignment by using laser tracker is not installed in all ion accelerator components, it was used in parallel in two methods. In this paper, alignment methods are introduced and the result and comparison of each alignment method are presented. The ion accelerator for surface analysis has aligned using theodolite and laser tracker. The two ways for alignment have advantage as well as weakness. But alignment using laser tracker is stronger than using theodolite. Because it is based on alignment and position data and it is more detailed. Also since the beam distribution is smaller than accelerator component that is direction of beam progress, main component (ex. Magnet, Chamber, Pelletron tank, etc.) alignment using laser tracker is enough to align the ion accelerator.

  11. [Analysis of the Muscle Fatigue Based on Band Spectrum Entropy of Multi-channel Surface Electromyography].

    Science.gov (United States)

    Liu, Jian; Zou, Renling; Zhang, Dongheng; Xu, Xiulin; Hu, Xiufang

    2016-06-01

    Exercise-induced muscle fatigue is a phenomenon that the maximum voluntary contraction force or power output of muscle is temporarily reduced due to muscular movement.If the fatigue is not treated properly,it will bring about a severe injury to the human body.With multi-channel collection of lower limb surface electromyography signals,this article analyzes the muscle fatigue by adoption of band spectrum entropy method which combined electromyographic signal spectral analysis and nonlinear dynamics.The experimental result indicated that with the increase of muscle fatigue,muscle signal spectrum began to move to low frequency,the energy concentrated,the system complexity came down,and the band spectrum entropy which reflected the complexity was also reduced.By monitoring the entropy,we can measure the degree of muscle fatigue,and provide an indicator to judge fatigue degree for the sports training and clinical rehabilitation training.

  12. P-wave and surface wave survey for permafrost analysis in alpine regions

    Science.gov (United States)

    Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.

    2012-04-01

    In various high mountain environments the estimate of mechanical properties of slope and sediments are relevant for the link of the geo-mechanical properties with the climate change effects. Two different locations were selected to perform seismic and georadar surveying, the Tsanteleina glacier (Gran Paradiso) and the Blue Lake in Val d'Ayas in the massif of Monterosa. The analysis of the seismic and GPR lines allowed to characterize the silty soil (top layer) and underlying bedrock. We applied seismic survey in time lapse mode to check the presence of "active" layer and estimate the mechanical properties of the moraines material and their sensitivity to the permafrost changes. Mechanical properties of sediments and moraines in glacial areas are related to the grain-size, the compaction of the material subjected to the past glacial activity, the presence of frozen materials and the reactivity of the permafrost to the climate changes. The test site of Tsanteleina has been equipped with sensors to monitor the temperature of soil and air and with time domain reflectometry to estimate the soil moisture and the frozen and thawing cycle of the uppermost material. Seismic reflections from the top of the permafrost layer are difficult to identify as they are embedded in the source-generated noise. Therefore we estimate seismic velocities from the analysis of traveltime refraction tomography and the analysis of surface wave. This approach provides information on compressional and shear waves using a single acquisition layout and a hammer acts as source. This reduces the acquisition time in complex logistical condition especially in winter period. The seismic survey was performed using 48 vertical geophones with 2 m spacing. The survey has been repeated in two different periods: summer 2011 and winter 2011. Common offset reflection lines with a 200 MHz GPR system (in summer) permitted to investigate the sediments and obtain information on the subsoil layering. The processing

  13. Variational analysis for simulating free-surface flows in a porous medium

    Directory of Open Access Journals (Sweden)

    Shabbir Ahmed

    2003-01-01

    is used to obtain a discrete form of equations for a two-dimensional domain. The matrix characteristics and the stability criteria have been investigated to develop a stable numerical algorithm for solving the governing equation. A computer programme has been written to solve a symmetric positive definite system obtained from the variational finite element analysis. The system of equations is solved using the conjugate gradient method. The solution generates time-varying hydraulic heads in the subsurface. The interfacing free surface between the unsaturated and saturated zones in the variably saturated domain is located, based on the computed hydraulic heads. Example problems are investigated. The finite element solutions are compared with the exact solutions for the example problems. The numerical characteristics of the finite element solution method are also investigated using the example problems.

  14. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  15. Extraction and Analysis of Gigantol from Dendrobium officinale with Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Siyan Zheng

    2018-04-01

    Full Text Available In order to optimize the extraction of gigantol from Dendrobium officinale, the influence of methanol concentration, ultrasonic temperature, and liquid ratio on extraction efficiency was analysed by the response surface analysis method. The results show that the extraction rate reached a maximum when the methanol concentration was 92.98%, the solid-liquid ratio was 27.2 mL/g, and the extraction temperature was 41.41 °C. The content of gigantol of Dendrobium officinale in leaves was significantly higher than that in stems, reaching 4.7942 μg/g. The content of gigantol in Dendrobium huoshanensis Fengdou was significantly higher than that of other species of Fengdou. This experiment has practical significance for improving the utilization rate of Dendrobium officinale, and provides a reference for the study of the pharmacological and biological activity of gigantol.

  16. Atomic-layer-resolved analysis of surface magnetism by diffraction spectroscopy

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2010-01-01

    X-ray absorption near edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) measurements by Auger-electron-yield detection are powerful analysis tools for the electronic and magnetic structures of surfaces, but all the information from atoms within the electron mean-free-path range is summed into the obtained spectrum. In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, diffraction spectroscopy, which is the combination of X-ray absorption spectroscopy and Auger electron diffraction (AED). From a series of measured thickness dependent AED patterns, we deduced a set of atomic-layer-specific AED patterns arithmetically. Based on these AED patterns, we succeeded in disentangling obtained XANES and XMCD spectra into those from different atomic layers.

  17. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Jeong, Sinyoung; Ko, Eunbyeol; Jeong, Dae Hong, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Department of Chemistry Education, Seoul National University, Seoul 151-742 (Korea, Republic of); Kang, Homan [Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Yoon-Sik, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Ho-Young, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of)

    2015-05-15

    Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.

  18. Image analysis from surface scanning with an absolute eddy current coil

    International Nuclear Information System (INIS)

    Attaoui, P.

    1994-01-01

    The aim of this work is to implement processing and analysis tools applied to eddy current imaging. These cartographies are issued from steam generator tubes testing using an absolute coil. The first is to eliminate the perturbations due to probe lift-off changes which generate low frequency oscillations on the image. The principle of the processing is to rebuild a complete surface of the noise using only the points around the defect area. The geometric origin of these perturbations led to a model based on sinusoidal functions. The method consists of gradually decomposing the image into a sum of basic sinusoidal surfaces. In order to take into account all kind of cartographies (especially rolling zone) some preprocessing must be applied. The results obtained with this 'cartography flattening'are satisfactory and the phase of analysis could begin with good condition of signal ratio. The second part of this work dealt with the choice and the perfection of image processing tools which would fit the most with the defect characterization. The aim of this characterization is to give the orientation and main size of the detected defect. A morphological skeleton representation has been chosen to illustrate the defect architecture and to allow sizing. A set of tools has been elaborated to obtain an (automatic) processing according to threshold. The results for single defect are satisfactory since the sizing error is around ± 25% and orientation is nearly always correctly given. The processing for area with several defects is more complex and new complementary research directions are proposed. (author)

  19. Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.

    Science.gov (United States)

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2018-02-10

    A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Surface chemistry analysis of lithium conditioned NSTX graphite tiles correlated to plasma performance

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.N., E-mail: chase.taylor@inl.gov [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Luitjohan, K.E. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Heim, B. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Kollar, L. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Skinner, C.H.; Kugel, H.W.; Kaita, R.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-12-15

    Lithium wall conditioning in NSTX has resulted in reduced divertor recycling, improved energy confinement, and reduced frequency of edge-localized modes (ELMs), up to the point of complete ELM suppression. NSTX tiles were removed from the vessel following the 2008 campaign and subsequently analyzed using X-ray photoelectron spectroscopy as well as nuclear reaction ion beam analysis. In this paper we relate surface chemistry to deuterium retention/recycling, develop methods for cleaning of passivated NSTX tiles, and explore a method to effectively extract bound deuterium from lithiated graphite. Li–O–D and Li–C–D complexes characteristic of deuterium retention that form during NSTX operations are revealed by sputter cleaning and heating. Heating to ∼850 °C desorbed all deuterium complexes observed in the O 1s and C 1s photoelectron energy ranges. Tile locations within approximately ±2.5 cm of the lower vertical/horizontal divertor corner appear to have unused Li-O bonds that are not saturated with deuterium, whereas locations immediately outboard of this region indicate high deuterium recycling. X-ray photo electron spectra of a specific NSTX tile with wide ranging lithium coverage indicate that a minimum lithium dose, 100–500 nm equivalent thickness, is required for effective deuterium retention. This threshold is suspected to be highly sensitive to surface morphology. The present analysis may explain why plasma discharges in NSTX continue to benefit from lithium coating thickness beyond the divertor deuterium ion implantation depth, which is nominally <10 nm.