WorldWideScience

Sample records for surface alloyed fe-cr

  1. Growth of Hierarchically Structured High-Surface Area Alumina on FeCrAl Alloy Wires

    Directory of Open Access Journals (Sweden)

    Chandni Rallan

    2013-01-01

    Full Text Available The formation of metastable alumina phases due to the oxidation of commercial FeCrAl alloy wires (0.5 mm thickness at various temperatures and time periods has been examined. Samples were isothermally oxidised in air using a thermogravimetric analyzer (TGA. The morphology of the oxidised samples was analyzed using an Electronic Scanning Electron Microscope (ESEM and X-ray on the surface analysis was done using an Energy Dispersive X-Ray (EDX analyzer. The technique of X-Ray Diffraction (XRD was used to characterize the phase of the oxide growth. The entire study showed that it was possible to grow high-surface area gamma alumina on the FeCrAl alloy wire surfaces when isothermally oxidised above 800°C over several hours.

  2. Surface Characterization for High Purity Fe-Cr Alloys

    OpenAIRE

    Iwai, H.; Oiwa, R.; Takaki, S.; Abiko, K.

    1995-01-01

    Fe-50mass%Cr was prepared in a cold crucible furnace with induction heating, then refined by floating-zone melting (FZM). The chemistries on the surface before and after FZM were compared by XPS measurement. C and O were observed on top surfaces both before and after as a hydrocarbon, carbonyl group and carboxyl group which are adsorbed chemical components. The other impurities were observed on the surface in both cases ; however, the number and level of impurities on the surface after FZM we...

  3. Fe-Cr-Ni system alloys

    International Nuclear Information System (INIS)

    Levin, F.L.

    1986-01-01

    Phase diagram of Fe-Cr-Ni system, which is the basic one for production of corrosion resistant alloys, is considered. Data on corrosion resistance of such alloys are correlated depending on a number of factors: quality and composition of modifying elements, corrosion medium, temperature, alloy structure, mechanical and thermal treatment. Grades of Fe-Ni-Cr alloys are presented, and fields of their application are pointed out

  4. Plasma spraying of Fe-Cr-Al alloy powder

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Leitner, J.; Kolman, Blahoslav Jan; Písačka, Jan; Schneeweiss, Oldřich

    2008-01-01

    Roč. 46, č. 1 (2008), s. 17-25 ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : Fe-Cr-Al alloy powder * plasma spraying * oxidation * vaporization * composition changes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007

  5. Solubility of sulfur in Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Bogolyubskij, S.D.; Petrova, E.F.; Rogov, A.I.; Shvartsman, L.A.

    1979-01-01

    The solubility of 35 S was determined in Fe-Cr-Ni alloys in the range of temperatures between 910 and 1050 deg C by the method of radiometric analysis. It was found that the solubility of sulfur increases with the concentration of chromium in alloys with 20% Ni

  6. Effect of Si Content on Oxide Formation on Surface of Molten Fe-Cr-C Alloy Bath During Oxygen Top Blowing

    Science.gov (United States)

    Mihara, Ryosuke; Gao, Xu; Kim, Sun-joong; Ueda, Shigeru; Shibata, Hiroyuki; Seok, Min Oh; Kitamura, Shin-ya

    2018-02-01

    Using a direct observation experimental method, the oxide formation behavior on the surface of Fe-Cr-5 mass pct C-Si alloy baths during decarburization by a top-blown Ar-O2 mixture was studied. The effects of the initial Si and Cr content of the alloy, temperature, and oxygen feed ratio on oxide formation were investigated. The results showed that, for alloys without Si, oxide particles, unstable oxide films, and stable oxide films formed sequentially. The presence of Si in the alloy changed the formation behavior of stable oxide film, and increased the crucial C content when stable oxide film started to form. Increasing the temperature, decreasing the initial Cr content, and increasing the ratio of the diluting gas decreased the critical C content at which a stable oxide film started to form. In addition, the P CO and a_{{{Cr}2 {O}3 }} values at which oxides started to form were estimated using Hilty's equation and the equilibrium relation to understand the formation conditions and the role of each parameter in oxide formation.

  7. TSEE from Fe-Cr alloy system and its application to the estimation of gasoline deterioration

    International Nuclear Information System (INIS)

    Shimada, H.; Nakajima, K.

    1983-01-01

    The exoelectron glow curves for oxide surface on Fe-Cr alloy were measured as a function of Cr content. It was seen that with increasing Cr content the total counts of thermally stimulated exoelectron emission (TSEE), threshold temperature for measuring the glow curve (starting temperature of the glow curve) and the activation energy clearly indicate a good coincidence with the oxidation process of the surface. The interaction of Fe-Cr alloy with gasoline was examined by applying the test for the oxidation induced period (ASTM D525). The induction period became minimum at about 4%Cr, and the deposit of gasoline gum was maximum at its composition. The results were compared with that of TSEE, and it was found that the catalytic effect of Fe-Cr alloy on the deterioration of gasoline is explained from the starting temperature of the glow curves. (author)

  8. Nanoindentation of Electropolished FeCrAl Alloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.

  9. The effect of gas composition and contaminants on the lifetime of surface-treated FeCrAlRE alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tatlock, G.J.; Al-Badairy, H. [Materials Science and Engineering, Department of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH (United Kingdom); Fordham, R. [European Commission, Joint Research Centre, Institute for Energy, Postbus 2, 1755ZG Petten (Netherlands); Bachorczyk-Nagy, R.

    2005-12-01

    The degradation of a variety of alumina-forming Fe20Cr5Al based alloys has been investigated at temperatures ranging from 1100 C to 1300 C for up to 4000 h (100 h/cycle) in different oxidising environments such as laboratory air, air + 10 vol% H{sub 2}O, air + 60 vol% H{sub 2}O and simulated automotive exhaust gas. Seven model alloys with controlled levels of impurities such as P, S and C and carefully controlled levels of additional elements (Y, Zr, Ti, Hf, Si, La, etc.) and two different commercial alloys (Aluchrom YHfAl and Kanthal APMT) were chosen for this study. The investigation showed that the model alloys containing La, Y + Si and Y with added C, and the commercial alloy APMT usually had the lowest initial oxidation growth rates, whereas model alloys containing Y plus Zr, and the commercial alloy YHfAl had the higher oxidation rates regardless of the different oxidising environments. Scale spallation was more prevalent in the case of alloys with low oxide growth rates but changing the levels of water vapour in the oxidising atmospheres had only a minor influence on the degree of spallation or the oxide morphology. The scales formed on the alloys containing La, Y + Si and high C spalled in an adhesive manner (at the scale/metal interface), whereas scales formed on alloys containing Y plus Hf, Zr or Ti cracked and spalled in a cohesive manner (within the scale). Inhomogeneities in the distribution of the alloying additions led to greater changes in the oxide morphologies than any difference in oxidising atmosphere, but the crystallographic textures of all the oxides were similar. This pilot study enabled us to rank the alloys according to their resistance to spallation and also to determine the influence of minor elements when added as tightly controlled single or multiple element additions. Some of these alloys were then used as mechanically weak PVD coatings on a strong (APMT) substrate, and further oxidation experiments confirmed that the coatings then

  10. Amorphization of C-implanted Fe(Cr) alloys

    International Nuclear Information System (INIS)

    Knapp, J.A.; Follstaedt, D.M.; Sorensen, N.R.; Pope, L.E.

    1991-01-01

    The amorphous phase formed by implanting C into Fe alloyed with Cr, which is a prototype for the amorphous phase formed by implanting C into stainless steels, is compared to that formed by implanting C and Ti into Fe and steels. The composition range of the phase has been examined; higher Cr and C concentrations are required than needed with Ti and C. The friction and wear benefits obtained by implanting stainless steels with C only do not persist for the long durations and high wear loads found with Ti and C. However, the amorphous Fe-Cr-C alloys exhibit good aqueous corrosion resistance. (orig.)

  11. Literature review report on atomistic modeling tools for FeCrAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martinez, Enrique [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    This reports summarizes the literature review results on atomistic tools, particularly interatomic potentials used in molecular dynamics simulations, for FeCrAl ternary alloys. FeCrAl has recently been identified as a possible cladding concept for accident tolerant fuels for its superior corrosion resistance. Along with several other concepts, an initial evaluation and recommendation are desired for FeCrAl before it’s used in realistic fuels. For this purpose, sufficient understanding on the in-reactor behavior of FeCrAl needs to be grained in a relatively short timeframe, and multiscale modeling and simulations have been selected as an efficient measure to supplement experiments and in-reactor testing for better understanding on FeCrAl. For the limited knowledge on FeCrAl alloys, the multiscale modeling approach relies on atomistic simulations to obtain the missing material parameters and properties. As a first step, atomistic tools have to be identified and this is the purpose of the present report. It was noticed during the literature survey that no interatomic potentials currently available for FeCrAl. Here, we summarize the interatomic potentials available for FeCr alloys for possible molecular dynamics studies using FeCr as surrogate materials. Other atomistic methods such as lattice kinetic Monte Carlo are also included in this report. A couple of research topics at the atomic scale are suggested based on the literature survey.

  12. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  13. Effect of сopper сoating on fibers made of aluminum alloy, titanium, and FeCrAl alloy on surface morphology and activity in CO oxidation

    Science.gov (United States)

    Lukiyanchuk, I. V.; Rudnev, V. S.; Serov, M. M.; Krit, B. L.; Lukiyanchuk, G. D.; Nedozorov, P. M.

    2018-04-01

    The catalytic activity of both copper fibers and copper-coated fibers of a diameter of 50-100 μm made of aluminum alloy, technical grade titanium, and FeCrAl alloy in CO oxidation has been estimated. Metal fibers have been fabricated by the method of pendant drop melt extraction (PDME). The fibers copper plating was carried out by chemical and electrochemical methods. The composition and structure of samples and coatings before and after catalytic tests have been characterized by the methods of scanning electron microscopy, energy-dispersive analysis, and X-ray fluorescence analysis. It has been shown that the catalytic activity of copper-coated fibers made of FeCrAl alloy in the reaction of CO oxidation is not inferior to that of copper fibers.

  14. Correlative Microscopy of Alpha Prime Precipitation in Neutron-Irradiated Fe-Cr-Al Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-01

    Fe-Cr-Al alloys are currently being considered for accident tolerant light water reactor fuel cladding applications due to their superior high temperature oxidation and corrosion resistance compared to Zr-based alloys. This work represents the current state-of-the-art on both techniques for analysis of α' precipitate microstructures and the processes and mechanisms governing its formation in neutron-irradiated Fe-Cr-Al alloys.

  15. Influence of a niobium coating on sulfidation resistance of FeCr and FeCrY alloys

    International Nuclear Information System (INIS)

    Geribola, Gulherme Altomari

    2014-01-01

    Niobium and niobium based alloys are currently used in many industrial applications because they offer excellent resistance to degradation in various corrosive environments. These media include gaseous atmospheres at high temperatures such as those found in existing coal gasifying plants in power plants for energy generation. These atmospheres are complex gas mixtures that contain sulfur and oxygen, among other compounds. Sulphides are thermodynamically less stable, have lower melting points and often have larger deviations from stoichiometry compared to the corresponding oxides. Although there are studies regarding the use of refractory metals in high temperature sulphidizing atmospheres, the use of niobium compounds has not been adequately evaluated and there is very little studies available in the literature about its use as a protective coating. The aim of this study was to evaluate the effect of a niobium film, deposited by magnetron sputtering on the isothermal sulphidation behavior of Fe-20Cr and Fe-20Cr-1Y alloys. The sulphidation tests were carried out at 500, 600 and 700 deg C for 2h in H 2 /2% H2S atmosphere. The sulphidation resistance was determined by mass gain per unit area. The sulphidation behavior of the coated and uncoated alloys was similar at 500 deg C, and none of the alloys scaled. At 700 deg C FeCr alloy scaled in the form of a fine powder, while the reaction product formed on the alloy FeCrY scaled in the form of plates. The effect of niobium became pronounced at 700 deg C. The reaction product layer formed on the coated alloy was thinner and more plastic than that formed on the uncoated alloy. The mass gain per unit area of the coated alloys decreased significantly and they did not scaled. (author)

  16. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the development of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.

  17. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, Ronald O. [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atoms and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not

  18. Stress Corrosion Cracking Sensitivity of High Purity Fe-Cr Alloys in High Temperature Water

    OpenAIRE

    Takaku, H.; Kato, S.; Tani, J.; Abiko, K.

    1995-01-01

    Stress Corrosion Cracking (SCC) sensitivities of high purity Fe-Cr alloys were investigated in simulated Boiling Water Reactor (BWR) and primary Pressurized Water Reactor (PWR) cooling waters, by constant extension rate tests (CERT) at a strain rate of 4x10-7s-1. No high purity Fe-Cr alloy showed any SCC sensitivity in either simulated BWR and PWR primary water environment.

  19. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Zachary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  20. Influence of a niobium coating on sulfidation resistance of FeCr and FeCrY alloys; Influencia de um revestimento de niobio sobre a resistencia a sulfetacao das ligas FeCr e FeCrY

    Energy Technology Data Exchange (ETDEWEB)

    Geribola, Gulherme Altomari

    2014-07-01

    Niobium and niobium based alloys are currently used in many industrial applications because they offer excellent resistance to degradation in various corrosive environments. These media include gaseous atmospheres at high temperatures such as those found in existing coal gasifying plants in power plants for energy generation. These atmospheres are complex gas mixtures that contain sulfur and oxygen, among other compounds. Sulphides are thermodynamically less stable, have lower melting points and often have larger deviations from stoichiometry compared to the corresponding oxides. Although there are studies regarding the use of refractory metals in high temperature sulphidizing atmospheres, the use of niobium compounds has not been adequately evaluated and there is very little studies available in the literature about its use as a protective coating. The aim of this study was to evaluate the effect of a niobium film, deposited by magnetron sputtering on the isothermal sulphidation behavior of Fe-20Cr and Fe-20Cr-1Y alloys. The sulphidation tests were carried out at 500, 600 and 700 deg C for 2h in H{sub 2}/2% H2S atmosphere. The sulphidation resistance was determined by mass gain per unit area. The sulphidation behavior of the coated and uncoated alloys was similar at 500 deg C, and none of the alloys scaled. At 700 deg C FeCr alloy scaled in the form of a fine powder, while the reaction product formed on the alloy FeCrY scaled in the form of plates. The effect of niobium became pronounced at 700 deg C. The reaction product layer formed on the coated alloy was thinner and more plastic than that formed on the uncoated alloy. The mass gain per unit area of the coated alloys decreased significantly and they did not scaled. (author)

  1. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  2. Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028

    Science.gov (United States)

    Zhang, LiNa; Szpunar, Jerzy A.; Dong, JianXin; Ojo, Olanrewaju A.; Wang, Xu

    2018-03-01

    The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.

  3. Magnetic properties of point defect interaction with impurity atoms in Fe-Cr alloys

    Science.gov (United States)

    Nguyen-Manh, D.; Lavrentiev, M. Yu.; Dudarev, S. L.

    2009-04-01

    An integrated ab initio and statistical Monte Carlo investigation has been recently carried out to model the thermodynamic and kinetic properties of Fe-Cr alloys. We found that the conventional Fe-Cr phase diagram is not adequate at low temperature region where the magnetic contribution to the free energy plays an important role in the prediction of an ordered Fe 15Cr phase and its negative enthalpy of formation. The origin of the anomalous thermodynamic and magnetic properties of Fe-Cr alloys can be understood using a tight-binding Stoner model combined with the charge neutrality condition. We investigate the environmental dependence of magnetic moment distributions for various self-interstitial atom dumbbells configurations using spin density maps found using density functional theory calculations. The mixed dumbbell Fe-Cr and Fe-Mn binding energies are found to be positive due to magnetic interactions. Finally, we discuss the relationship between the migration energy of vacancy in Fe-Cr alloys and magnetism at the saddle point configuration.

  4. Database on Performance of Neutron Irradiated FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States); Littrell, Ken [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerance of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.

  5. Versatile Oxide Films Protect FeCrAl Alloys Under Normal Operation and Accident Conditions in Light Water Power Reactors

    Science.gov (United States)

    Rebak, Raul B.

    2018-02-01

    The US has currently a fleet of 99 nuclear power light water reactors which generate approximately 20% of the electricity consumed in the country. Near 90% of the reactors are at least 30 years old. There are incentives to make the existing reactors safer by using accident tolerant fuels (ATF). Compared to the standard UO2-zirconium-based system, ATF need to tolerate loss of active cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. Ferritic iron-chromium-aluminum (FeCrAl) alloys have been identified as an alternative to replace current zirconium alloys. They contain Fe (base) + 10-22 Cr + 4-6 Al and may contain smaller amounts of other elements such as molybdenum and traces of others. FeCrAl alloys offer outstanding resistance to attack by superheated steam by developing an alumina oxide on the surface in case of a loss of coolant accident like at Fukushima. FeCrAl alloys also perform well under normal operation conditions both in boiling water reactors and pressurized water reactors because they are protected by a thin oxide rich in chromium. Under normal operation condition, the key element is Cr and under accident conditions it is Al.

  6. Interplay between magnetism and energetics in Fe-Cr alloys from a predictive noncollinear magnetic tight-binding model

    DEFF Research Database (Denmark)

    Soulairol, R.; Barreteau, Cyrille; Fu, Chu-Chun

    2016-01-01

    Magnetism is a key driving force controlling several thermodynamic and kinetic properties of Fe-Cr systems. We present a tight-binding model for Fe-Cr, where magnetism is treated beyond the usual collinear approximation. A major advantage of this model consists in a rather simple fitting procedure....... In particular, no specific property of the binary system is explicitly required in the fitting database. The present model is proved to be accurate and highly transferable for electronic, magnetic, and energetic properties of a large variety of structural and chemical environments: surfaces, interfaces......, embedded clusters, and the whole compositional range of the binary alloy. The occurrence of noncollinear magnetic configurations caused by magnetic frustrations is successfully predicted. The present tight-binding approach can apply to other binary magnetic transition-metal alloys. It is expected...

  7. Fe-Cr alloys behavior after helium implantation

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, V., E-mail: vladimir.slugen@stuba.sk [Department of Nuclear Physics and Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Krsjak, V. [Institute for Energy, JRC Petten, Westerduinweg 3, NL-1755 LE Petten (Netherlands); Egger, W. [Institut fuer Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 855 77 Neubiberg (Germany); Petriska, M.; Sojak, Stanislav; Veternikova, Jana [Department of Nuclear Physics and Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2011-02-15

    The paper discusses our recent experiments focused on the chromium influence on the microstructural changes of iron based alloys under radiation treatment. Our experimental method - the positron annihilation lifetime spectroscopy (PALS) enables an observation of size and density changes of the vacancy type defects in the material microstructure. These defects have been created by implantation of charged particles (He{sup 2+}). The cascade collisions in the crystal lattice and following Frenkel pair creation have been considered as possible approximation of the neutron flux damage up to 100 DPA in the region up to 1 {mu}m from the surface.

  8. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    Science.gov (United States)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Yamamoto, Yukinori; Howard, Richard H.

    2017-11-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and aluminum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3-0.8 displacements per atom (dpa) at temperatures of 335-355 °C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a / 2 〈 111 〉 or a 〈 100 〉 Burgers vectors. Weak composition dependencies were observed and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.

  9. Hafnium influence on the microstructure of FeCrAl alloys

    Science.gov (United States)

    Geanta, V.; Voiculescu, I.; Stanciu, E.-M.

    2016-06-01

    Due to their special properties at high temperatures, FeCrAl alloys micro-alloyed with Zr can be regarded as potential materials for use at nuclear power plants, generation 4R. These materials are resistant to oxidation at high temperatures, to corrosion, erosion and to the penetrating radiations in liquid metal environments. Also, these are able to form continuously, by the self-generation process of an oxide coating with high adhesive strength. The protective oxide layers must be textured and regenerable, with a good mechanical strength, so that crack and peeling can not appear. To improve the mechanical and chemical characteristics of the oxide layer, we introduced limited quantities of Zr, Ti, Y, Hf, Ce in the range of 1-3%wt in the FeCrAl alloy. These elements, with very high affinity to the oxygen, are capable to stabilize the alumina structure and to improve the oxide adherence to the metallic substrate. FeCrAl alloys microalloyed with Hf were prepared using VAR (Vacuum Arc Remelting) unit, under high argon purity atmosphere. Three different experimental alloys have been prepared using the same metallic matrix of Fe-14Cr-5Al, by adding of 0.5%wt Hf, 1.0%wt Hf and respectively 1.5%wt Hf. The microhardness values for the experimental alloys have been in the range 154 ... 157 HV0.2. EDAX analyses have been performed to determine chemical composition on the oxide layer and in the bulk of sample and SEM analyze has been done to determine the microstructural features. The results have shown the capacity of FeCrAl alloy to form oxide layers, with different texture and rich in elements such as Al and Hf.

  10. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  11. Interatomic Potential to Simulate Radiation Damage in Fe-Cr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bonny, G.; Pasianot, R.; Terentyev, D.; Malerba, L.

    2011-03-15

    The report presents an Fe-Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe-Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.

  12. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    International Nuclear Information System (INIS)

    Jin, Y.; O'Connell, A.; Kharel, P.; Lukashev, P.; Staten, B.; Tutic, I.; Valloppilly, S.; Herran, J.; Mitrakumar, M.; Bhusal, B.; Huh, Y.; Yang, K.; Skomski, R.; Sellmyer, D. J.

    2016-01-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L2 1 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (T C ) significantly above room temperature. The measured T C for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μ B /f.u. and 2.78 μ B /f.u., respectively, which are close to the theoretically predicted value of 3 μ B /f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  13. The role of Zr and Nb in oxidation/sulfidation behavior of Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. (Argonne National Lab., IL (USA)); Baxter, D.J. (Argonne National Lab., IL (USA) INCO Alloy Ltd., Hereford, England (UK))

    1990-11-01

    05Structural Fe-Cr-Ni alloys may undergo rapid degradation at elevated temperatures unless protective surface oxide scales are formed and maintained. The ability of alloys to resist rapid degradation strongly depends on their Cr content and the chemistry of the exposure environment. Normally, 20 wt % Cr is required for service at temperatures up to 1000{degree}C; the presence of sulfur, however, inhibits formation of a protective surface oxide scale. The oxidation and sulfidation behavior of Fe-Cr-Ni alloys is examined over a wide temperature range (650 to 1000{degree}C), with particular emphasis on the effects of alloy Cr content and the radiation of reactive elements such as Nb and Zr. Both Nb and Zr are shown to promote protective oxidation behavior on the 12 wt % Cr alloy in oxidizing environments and to suppress sulfidation in mixed oxygen/sulfur environments. Additions of Nb and Zr at 3 wt % level resulted in stabilization of Cr{sub 2}O{sub 3} scale and led to a barrier layer of Nb- or Zr-rich oxide at the scale/metal interface, which acted to minimize the transport of base metal cations across the scale. Oxide scales were preformed in sulfur-free environments and subsequently exposed to oxygen/sulfur mixed-gas atmospheres. Preformed scales were found to delay the onset of breakaway corrosion. Corrosions test results obtained under isothermal and thermal cycling conditions are presented. 58 refs., 55 figs., 8 tabs.

  14. Correlative Microscopy of alpha' Precipitation in Neutron-Irradiated Fe-Cr-Al Alloys

    Science.gov (United States)

    Briggs, Samuel A.

    Fe-Cr-Al alloys are currently being considered for accident tolerant light water reactor fuel cladding applications due to their superior high temperature oxidation and corrosion resistance compared to Zr-based alloys. However, precipitation of the Cr-rich alpha' phase during exposure to LWR operational environments can result in application-limiting hardening and embrittlement. To study this effect, four Fe-Cr-Al model alloys with compositions between 10-18 at.% Cr and 5.8-9.3 at.% Al have been neutron-irradiated in the High Flux Isotope Reactor at a target temperature of 320°C to nominal damage doses of up to 7 dpa in order to emulate typical LWR exposure conditions. A correlative microscopy approach involving atom probe tomography, small-angle neutron scattering, and scanning transmission electron microscopy coupled with energy dispersive x-ray spectroscopy was employed to study the resulting precipitate microstructure. This approach necessitated the development of various analysis techniques to allow for cross-comparison between experimental techniques, including a novel method for correcting for trajectory aberration artifacts in atom probe data sets through phase density comparison. Successful correlation of results from these techniques allows for the individual limitations of each to be overcome and enables the detailed microstructural information gleaned from highly localized atom probe tomography analyses to be extrapolated to bulk alloy behavior. Precipitation response was found to increase with Cr content, while Al additions appeared to partially destabilized the alpha' phase, resulting in precipitate compositions with reduced Cr content compared to binary Fe-Cr systems. Observed precipitate evolution with radiation dose indicates a diffusion-limited coarsening mechanism that is similar to what is observed in the thermally aged system. This work represents the current state-of-the-art on both techniques for analysis of alpha' precipitate

  15. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys; Influencia da composicao quimica na textura cristalografica de ligas Fe-Cr-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Moura, L.B.; Guimaraes, R.F. [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara, Fortaleza, CE (Brazil). Dept. da Industria; Abreu, H.F.G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2010-07-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  16. Postirradiation deformation behavior in ferritic Fe-Cr alloys

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Gelles, D.S.; Gardner, P.L.

    1992-06-01

    It has been demonstrated that fast-neutron irradiation produces significant hardening in simple Fe-(3-18)Cr binary alloys irradiated to about 35 dpa in the temperature range 365 to 420 degrees C, whereas irradiation at 574 degrees C produces hardening only for 15% or more chromium. The irradiation-induced changes in tensile properties are discussed in terms of changes in the power law work-hardening exponent. The work-hardening exponent of the lower chromium alloys decreased significantly after low-temperature irradiation (≤ 420 degrees C) but increased after irradiation at 574 degrees C. The higher chromium alloys failed either in cleavage or in a mixed ductile/brittle fashion. Deformation microstructures are presented to support the tensile behavior

  17. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Moura, L.B.; Guimaraes, R.F.

    2010-01-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  18. Fe-Cr alloys studied by positron annihilation lifetime technique after helium implantation

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, Vladimir; Krsjak, Vladimir; Petriska, Martin; Sojak, Stanislav [Slovak Univ. of Technology, Bratislava (Slovakia). Dept. of Nuclear Physics and Technology; Egger, Werner [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Inst. fuer Angewandte Physik und Messtechnik

    2009-07-01

    The present work demonstrates that conventional positron annihilation lifetime spectroscopy can provide valuable information about the microstructure of helium implanted Fe-Cr alloys. At the same time the connection between results from this technique and the PLEPS lifetime measurements has been studied. Positron lifetime experiments show that chromium plays an important role in the formation of the microstructure under radiation treatment. In particular, higher chromium content in FeCr alloys leads to a higher density of uniformly distributed small defects. Depth profiles of defects, obtained with PLEPS, in the helium implanted region reflect the helium implantation profiles and show the creation of small vacancy clusters and large voids. These defects cannot be observed by any other technique in a non-destructive way. (orig.)

  19. Ion implantation induced defects in Fe-Cr alloys studied by conventional positron annihilation lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krsjak, V [Joint Research Centre, Institute for Energy, European Commission, PO Box 2, 1755 ZG Petten (Netherlands); Sojak, S; Slugen, V; Petriska, M, E-mail: vladimir.krsjak@ec.europa.eu [Department of Nuclear Physics and Technology, FEI, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2011-01-10

    The influence of chromium on the radiation damage resistance of the iron based alloys has been studied using conventional positron annihilation lifetime spectroscopy (PALS). Experimental data evaluation has been supported by the former theoretical calculation of positron lifetimes in the studied materials and well-defined types of defects. For this purpose, density functional theory (DFT) computation method has been applied. The spectrum of used {sup 22}Na positron source was decomposed into discrete fractions to better calculate efficiency of near surface layers study. For the experimental simulation of a-radiation and obtaining of defined cascade collisions in the materials, helium implantation was used. Different level of the implanted dose (6.24x10{sup 17} - 3.12x10{sup 18} cm{sup -2}) corresponds to local damage up to 90 DPA acquired in thin <1 {mu}m region. Experimental measurement has been performed using the PALS technique on the four different Fe-Cr binary alloys (2.36; 4.62; 8.39; 11.62 wt% of Cr). The results showed that chromium has a significant effect on the size and density of the implanted defects and specific Cr content should prevent the vacancy clusters formation.

  20. Effect of thermal cycling on the microstructure of a directionally solidified Fe, Cr, Al-TaC eutectic alloy

    Science.gov (United States)

    Harf, F. H.; Tewari, S. N.

    1977-01-01

    Cylindrical bars (1.2 cm diameter) of Fe-13.6Cr-3.7Al-9TaC (wt %) eutectic alloy were directionally solidified in a modified Bridgman type furnace at 1 cm/h. The alloy microstructure consisted of aligned TaC fibers imbedded in a bcc Fe-Cr-Al matrix. Specimens of the alloy were thermally cycled from 1100 to 425 C in a burner rig. The effects of 1800 thermal cycles on the microstructure was examined by scanning electron microscopy, revealing a zig-zag shape of TaC fibers aligned parallel to the growth direction. The mechanism of carbide solution and reprecipitation on the (111) easy growth planes, suggested previously to account for the development of irregular serrations in Co-Cr-Ni matrix alloys, is believed to be responsible for these zig-zag surfaces.

  1. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    Science.gov (United States)

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  2. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    Science.gov (United States)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  3. Radiation damage in Fe-Cr alloys: Atomistic studies

    International Nuclear Information System (INIS)

    Terentyev, Dmitry; Malerba, Lorenzo; Bonny, Giovanni; Castin, Nicolas

    2009-01-01

    High-Cr ferritic-martensitic steels are the most promising candidate structural materials for future advanced fission reactors, as well as for fusion systems, due to their better thermomechanical properties and higher radiation resistance as compared to austenitic steels. The performance of these steels, especially under irradiation, appears to be largely determined by the Cr content. For instance, the current choice of steel compositions around ∼9 wt% Cr is mainly based on the observation of a local minimum in the ductile-brittle transition temperature shift at this composition. On the other hand, reduced void swelling is observed between 3 and 12 wt% Cr. The origin of these and other Cr-dependent effects remained unexplained for a long time, thereby calling for a physical modelling effort addressing these questions. In this presentation, an overview is given on the effort made in recent years to construct a whole modelling framework, from ab initio to dislocations, to provide explanations to the above-mentioned issues. Ab initio calculations combined to the development of the interatomic potentials capable of grasping key features of Cr atoms embedded in perfect and defected Fe matrix, were required. Primary damage, defect migration, Cr mass transport, phase separation, Cr-defect segregation and dislocation-defect interactions could then be studied using fully atomistic approaches. Our research shows that many of the effects of Cr content on the behaviour of these alloys under irradiation can be attributed to the only recently highlighted high solubility of Cr in Fe (∼10 wt%), below which, in addition, Cr atoms tend to order. The presentation will clarify how this aspect, combined with the high affinity between Cr atoms and self-interstitials defects, influences and partly explain both microstructure evolution and mechanical behaviour of high-Cr steels under irradiation. (author)

  4. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  5. Transient oxidation of Al-deposited Fe-Cr-Al alloy foil

    International Nuclear Information System (INIS)

    Andoh, A.

    1997-01-01

    The oxide phases formed on an Al-deposited Fe-Cr-Al alloy foil and an Fe-Cr-Al alloy foil of the same levels of Al and (La+Ce) contents, and their oxidation kinetics have been studied in air at 1173 and 1373 K using TGA, XRD and SEM. Al deposition promotes the growth of metastable aluminas (θ-Al 2 O 3 , γ-Al 2 O 3 ). Scales consisting of θ-Al 2 O 3 and a small amount of α-Al 2 O 3 develop on the Al-deposited foil at 1173 K and exhibit the whisker-type morphology. In the early stage of oxidation at 1373 K, thick scales consisting of θ-Al 2 O 3 and α-Al 2 O 3 grow rapidly on the Al-deposited foil. The transformation from θ-Al 2 O 3 to α-Al 2 O 3 is very fast, and the scales result in only α-Al 2 O 3 . In contrast, α-Al 2 O 3 scales containing a minor amount of FeAl 2 O 4 develop on the alloy foil. The growth rate of α-Al 2 O 3 scales on the Al-deposited foil is smaller than that on the alloy foil and very close to that on NiAl at 1373 K. (orig.)

  6. Molecular dynamics study on threshold displacement energies in Fe-Cr alloys

    Science.gov (United States)

    Fu, Jiawei; Ding, Wenyi; Zheng, Mingjie; Mao, Xiaodong

    2018-03-01

    The threshold displacement energies (Ed) of Fe and Cr atoms in Fe-Cr alloys with Cr contents ranging from 0% to 21% have been obtained with molecular dynamics (MD) method. The values of Ed have been calculated along the three high-symmetry crystallographic directions [0 0 1], [0 1 1] and [1 1 1], a slightly 2° tilt from these directions, and a high-index crystallographic directions [1 3 5]. The results showed that [0 1 1] crystallographic direction had the highest Ed among the three high-symmetry directions in each Cr content alloy. Fe-9Cr had higher weighted average Ed than the other Cr content alloys for both Fe and Cr PKA due to its statistically high Ed along the [0 1 1] crystallographic direction up to 44.3 eV. And the statistical analysis on the primary damage configuration demonstrated that 〈1 1 0〉Fe-Fe dumbbells were the dominant defect structures after relaxation. These data can enrich the database of Ed in Fe-Cr alloys and have potential applications in guiding the optimization design of radiation-resistant RAFM steels.

  7. Grain boundary segregation in FeCrNi model alloys; Korngrenzensegregation in FeCrNi-Modellegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, B.; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Muraleedharan, P. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy

    1998-12-31

    P and S segregate at the grain boundaries and thus increase susceptibility to intergranular corrosion at those sites. This could be proven by means of nitric acid-chromate tests and potentiostatic etching tests. There is a direct connection between loss in mass, mean depth of intergranular corrosion attacks, dissolution current density, and level of segregation-induced concentration of P and S at the grain boundaries. The segregation effect at these sites was found to be most evident in specimens of the examined Fe-Cr-Ni steel which had been heat-treated for 1000 hours at 550 C. However, segregation occurs also in materials that received a heat treatment of 400 C/5000 hours, while intergranular corrosion is observed only after heat treatment of 500 C/1000 hours. Apart from segregation of P, formation of Cr-rich phosphides is observed, which leads to depletion of Cr at the precipitates. (orig./CB) [Deutsch] P und S segregieren an die KG und erhoehen dort die IK-Anfaelligkeit. Dies konnte mit Hilfe von Salpetersaeure-Chromat- und Potentiostatischem Aetztest nachgewiesen werden. Es besteht ein direkter Zusammenhang zwischen Masseverlust, mittlerer IK-Angriffstiefe, Aufloesungsstromdichte und Hoehe der segregationsbedingten Anreicherungen von P und S an den KG. Der KG-Segregationseffekt am untersuchten Fe-Cr-Ni-Stahl ist im Waermebehandlungszustand 550 C/1000 h am deutlichsten ausgepraegt. Aber auch bereits bei 400 C/5000 h findet Segregation statt. IKSpRK tritt nur im Waermebehandlungszustand 550 C/1000 h auf. Neben der P-Segregation wird die Bildung Cr-reicher Phosphide beobachtet, die zur Abreicherung von Cr an den Ausscheidungen fuehrt. (orig.)

  8. Study of the oxidation of Fe-Cr alloys at high temperatures; Estudo da oxidacao de ligas Fe-Cr a altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, J.F.; Sabioni, A.C.S. [Universidade Federal de Ouro Preto (LDM/DF/UFOP), MG (Brazil). Dept. de Fisica. Lab. de Difusao em Materiais; Trindade, V.B. [Universidade Federal de Ouro Preto (DEMM/UFOP), MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais; Ji, V. [Laboratoire d' Etude des Materiaux Hors-Equilibre (LEMHE), Orsay (France)

    2010-07-01

    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1{mu}g. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10{sup -9}g{sup 2}.cm{sup -4}.s{sup -1}, for the alloy Fe-1.5% Cr, to 1.18 x 10-14g{sup 2}.cm{sup -4}.s{sup -1} for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  9. Shear Punch Testing on ATR Irradiated MA956 FeCrAl Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Quintana, Matthew Estevan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Tobias J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    The shear punch testing of irradiated and control MA956 (FeCrAl) Alloy from the NSUF-ATR-UCSB irradiation is presented. This is the first data taken on a new shear punch fixture design to test three 1.5mm punches from each 8mm x 0.5mm Disc Multipurpose Coupon (DMC). Samples were irradiated to 6.1dpa at a temperature of 315°C and 6.2 dpa at 400°C.

  10. Application of the Positron Annihilation Spectroscopy for Chromium Effect Investigation in Binary Fe-Cr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sojak, S.; Krsjak, V.; Slugen, V.; Stancek, S.; Petriska, M.; Vitazek, K.; Stacho, M. [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2008-07-01

    Positron annihilation spectroscopy (PAS) is one of the non-destructive techniques applied with advantage for evaluation of the radiation treated materials microstructure. In this work, the PAS was used for study of different Fe-Cr alloys implanted by ions of helium. Investigation was focused on the chromium effect and the radiation defects resistance. In particular, the vacancy type defects (mono-vacancies, vacancy clusters) have been studied. The results show that the specific content of chromium has important influence on the size and distribution of induced defects. (authors)

  11. Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy

    Science.gov (United States)

    Wang, Changshuai; Su, Haijun; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang

    2017-09-01

    Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy, considered as boiler and turbine materials in 700 °C advanced ultra-supercritical coal-fired power plants, have been investigated by differential thermal analysis and directional solidification quenching technique. Results reveal that P decreases the solidus temperature, but only has negligible influence on liquidus temperature. After P was added, the solidification sequence has no apparent change, but the width of the mushy zone increases and dendritic structures become coarser. Moreover, P increases the amount and changes the morphology of MC carbide. Energy-dispersive spectroscopy analysis reveals that P has obvious influence on the segregation behavior of the constitute elements with equilibrium partition coefficients (ki) far away from unity, whereas has negligible effect on the constituent elements with ki close to unity and has more influence on the final stage of solidification than at early stage. The distribution profiles reveal that P atoms pile up ahead of the solid/liquid (S/L) interface and strongly segregate to the interdendritic liquid region. The influence of P on solidification characteristics and segregation behavior of Ni-Fe-Cr-based alloy could be attributed to the accumulation of P ahead of the S/L interface during solidification.

  12. Phase transformations of mechanically alloyed Fe-Cr-P-C powders

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, N. [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba, Algerie (Algeria); Alleg, S. [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba, Algerie (Algeria); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense - UMR 6087, Universite du Maine, Faculte des Sciences 72085, Le Mans Cedex 9 (France)]. E-mail: greneche@univ-lemans.fr

    2005-05-03

    Fe{sub 77}Cr{sub 4}P{sub 8}C{sub 11} alloy was prepared by mechanical alloying (MA) of elemental Fe, Cr, P and C (graphite) powders in a planetary ball mill type Fritsch P7 under argon atmosphere. Morphological changes, microstructural and structural evolutions during ball milling were followed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and {sup 57}Fe Moessbauer spectrometry (MS) as a function of the milling time. The crystallite size refinement against the milling time is accompanied by an increase of the atomic level strain. After 6 h of milling, the dissolution of phosphorous into the {alpha}-Fe matrix is evidenced by the formation of a small amount ({approx}4%) of the paramagnetic Fe{sub 2}P phase as revealed by Moessbauer spectrometry. The complete mixing of all the elemental powders at the atomic level is achieved at 12 h of milling and results, after 24 h, in an amorphous matrix where nanocrystalline phosphides and carbides with nearly equal crystallite sizes are embedded. Further milling time up to 190 h gives rise to the formation of both the orthorhombic and the hexagonal (FeCr){sub 7}C{sub 3} carbide as well as the superparamagnetic {epsilon}'-Fe{sub 2.2}C carbide through the recrystallisation of the amorphous phase.

  13. Irradiation effect on the precipitation in Fe-Cr model alloys with around 15% of chromium

    International Nuclear Information System (INIS)

    Jaquet, Virginie

    2000-01-01

    The ferritic-martensitic steels containing around 12% of chromium are considered for nuclear applications. But, under working reactor conditions, they can become brittle because of the precipitation of a new chromium rich phase called α'. To answer this question, we study this phase separation in Fe-Cr (10 to 25%) model alloys under irradiation at 300 C with a weak flux of electron and under thermal annealing at 500 C. When the precipitation of the α' phase occurs, the alloys become harder. We measured the hardening by Vickers testings. The precipitates are detected by small-angle neutron scattering. Analysis of the intensities with a hard sphere model gives the mean precipitate size and density. These parameters obtained that way can explain the hardening. Under irradiation at 300 C, the growth kinetic is very slow - the precipitates remain very small with a typical radius of 7-8 Angstroms - and the density of precipitates rises up 10 19 per cm 3 . On the other hand, when the alloys are annealed at 500 C, the precipitates grow with a coarsening kinetic. Assuming that the only effect of irradiation is to enhance the diffusion, we calculate the precipitation kinetic with the cluster dynamic model. It is able to reproduce the thermal precipitation at 500 C but not the precipitation at 300 C. An other mechanism, induced by a coupling between fluxes of point defects and solute atoms, is clearly relevant under irradiation. The precipitation kinetic observed in the alloys irradiated at 300 C could relate to this mechanism: the negative coupling of fluxes in Fe-Cr alloys could slow down the precipitate growth. (author) [fr

  14. The Analysis of the General Performance and Mechanical Behavior of Unirradiated FeCrAl Alloys Before and After Welding

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-03

    The present report summarizes and discusses the preliminary results for the in-depth characterization of the modern, nuclear-grade FeCrAl alloys currently under development. The alloys were designed for enhanced radiation tolerance and weldability, and the research is currently being pursued by the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Last year, seven candidate FeCrAl alloys with well-controlled chemistry and microstructures were designed and produced; welding was performed under well-controlled conditions. The structure and general performance of unirradiated alloys were assessed using standardized and advanced microstructural characterization techniques and mechanical testing. The primary objective is to identify the best candidate alloy, or at a minimum to identify the contributing factors that increase the weldability and radiation tolerance of FeCrAl alloys, therefore enabling future generations of FeCrAl alloys to deliver better performance parameters. This report is structured so as to describe these critical assessments of the weldability; radiation tolerance will be reported on in later reports from this program.

  15. Reduction of Chromite in Liquid Fe-Cr-C-Si Alloys

    Science.gov (United States)

    Demir, Orhan; Eric, R. Hurman

    1994-08-01

    The kinetics and the mechanism of the reduction of chromite in Fe-Cr-C-Si alloys were studied in the temperature range of 1534 °C to 1702 °C under an inert argon atmosphere. The rotating cylinder technique was used. The melt consisted of 10 and 20 wt Pct chromium, the carbon content varied from 2.8 wt Pct to saturation, and the silicon content varied from 0 to 2 wt Pct. The rotational speed of the chromite cylinder ranged from 100 to 1000 rpm. The initial chromium to iron ratios of the melts varied between 0.11 and 0.26. In Fe-C melts, the effect of rotational speed on the reduction of chromite was very limited. Carbon saturation (5.4 wt Pct) of the alloy caused the reduction to increase 1.5 times over the reduction observed in the unsaturated (4.87 wt Pct) alloy at a given rotational speed. The addition of chromium to the carbon-saturated Fe-C alloy increased the reduction rate. The addition of silicon to the liquid phase increased the reduction rate drastically. The reduction of chromite in Fe-Cr-C melts is hindered because of the formation of, approximately, a 1.5-mm-thick M7C3-type carbide layer around the chromite cylinders. This carbide layer did not form when silicon was present in the melt. It was found that the reduction rate is controlled by the liquid-state mass transfer of oxygen. The calculated apparent activation energies for diffusion were 102.9 and 92.9 kJ/mol of oxygen in the Si-O and C-O systems, respectively.

  16. Effects of alloying elements on toughness of Fe-Cr-Al stainless steels. Fe-Cr-Al kei stainless ko no jinsei ni oyobosu gokin genso no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, K.; Osaki, K.; Kawa, Y. (Nisshin Steel Co. Ltd., Tokyo (Japan))

    1990-06-29

    Fe-Cr-Al stainless steels are widely used as heat resistant materials or electric heating materials, but their toughness is low. The cause of decreasing the toughness is impure elements in them. This paper shows the results of the investigation on the effects of alloying elements on the toughness of Fe-Cr-Al stainless steels. The toughness was improved by decreasing the C content to less than 100 ppm. Deterioration of toughness was mainly by thin-film type precipitates of M {sub 23} C {sub 6} at the grain boundaries, as well as by block type precipitates of AIN inside the grains. The toughness of steels containing about 100ppm C was deteriorated by the addition of Ti and Nb. The authors consider that this may be due to the fact of Ti and Nb precipitation inside the grains. An improvement in toughness while decreasing the C content was achieved by lowering the amounts of precipitates at the grain boundaries. 28 refs., 13 figs., 1 tab.

  17. Model many-body Stoner Hamiltonian for binary FeCr alloys

    Science.gov (United States)

    Nguyen-Manh, D.; Dudarev, S. L.

    2009-09-01

    We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.

  18. Thermal aging modeling and validation on the Mo containing Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Busby, Jeremy T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    Thermodynamics of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical knowledge to understand thermal aging effect on the phase stability of Mo-containing austenitic steels, which subsequently facilitates alloy design/improvement and degradation mitigation of these materials for reactor applications. Among the intermetallic phases, Chi (χ), Laves, and Sigma (σ) are often of concern because of their tendency to cause embrittlement of the materials. The focus of this study is thermal stability of the Chi and Laves phases as they were less studied compared to the Sigma phase. Coupled with thermodynamic modeling, thermal stability of intermetallic phases in Mo containing Fe-Cr-Ni alloys was investigated at 1000, 850 and 700 C for different annealing times. The morphologies, compositions and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Three key findings resulted from this study. First, the Chi phase is stable at high temperature, and with decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. Thirdly, in situ transformation from Chi phase to Laves phase was directly observed, which increased the local strain field, generated dislocations in the intermetallic phases, and altered the precipitate phase orientation relationship with the austenitic matrix. The thermodynamic models that were developed and validated were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  19. Magneto-mechanical damping in plasma sprayed Fe-Cr-X alloys

    International Nuclear Information System (INIS)

    Karimi, A.; Giauque, P.H.; Martin, J.L.

    1995-01-01

    The damping capacity of ferromagnetic Fe-Cr based alloys related to the mobility of magnetic domains has been investigated using free and forced vibration techniques. The materials tested were coatings of 2-3 mm thickness deposited using vacuum plasma spraying and cast alloys prepared in a high frequency furnace under argon atmosphere. Three laboratory devices including torsion pendulum, resonant bar and cantilever were used to cover a wide range of frequencies and amplitudes varying between f = 1Hz to 10kHz, and ε 10 -6 to 10 -3 . The damping capacity of the plasma sprayed coatings was found to be comparable to the cast alloys, in spite of drastically different microstructures. The appropriate heat treatments improved damping capacity of both coatings and cast alloys by several times. The variation of the loss factor as function of vibration amplitude showed a maximum, but versus frequency exhibited slightly monotonous character. The magnetic domains were observed using the magneto-optical Kerr effect and their modification under heat treatments was associated with different values of the damping capacities. The coatings showed a higher 0.2% offset stress (600-650 Mpa) as compared to cast alloys with only 350-400 Mpa. (orig.)

  20. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-03-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  1. Evaluation on the Effect of Composition on Radiation Hardening and Embrittlement in Model FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Littrell, Kenneth C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scattering (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre-existing dislocation

  2. Effect of High Pressure and Temperature on Structural, Thermodynamic and Thermoelectric Properties of Quaternary CoFeCrAl Alloy

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-03-01

    Employing first-principles based on density functional theory we have investigated the structural, magneto-electronic, thermoelectric and thermodynamic properties of quaternary Heusler alloy CoFeCrAl. Electronic band structure displays that CoFeCrAl is an indirect band gap semiconductor in spin-down state with the band gap value of 0.65 eV. Elastic constants reveal CoFeCrAl is a mechanically stable structure having a Debye temperature of 648 K along with a high melting temperature (2130 K). The thermoelectric properties in the temperature range 50-800 K have been calculated. CoFeCrAl possesses a high Seebeck coefficient of - 46 μV/K at room temperature along with the huge power factor of ˜ 4.8 (1012 μW cm-1 K-2 s-1) which maximizes the figure-of-merit up to ˜ 0.75 at 800 K temperature and suggesting CoFeCrAl as potential thermoelectric material. The effect of high pressure and high temperature on the thermal expansion, Grüneisen parameter and heat capacity were also studied by using the quasi-harmonic Debye model.

  3. Corrosion behavior of high purity Fe-Cr-Ni alloys in trans-passive condition

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Jyoji; Kako, Kenji

    1998-01-01

    The corrosion behavior of high-purity (99.99%) Fe-Cr-Ni alloys was investigated in 13 N nitric acid with/without Ce 4+ ions to clarify the effect of impurities on the trans-passive corrosion of stainless steel. The following results were obtained. (1) Almost no intergranular corrosion was observed in the high-purity alloys, although the corrosion rate of the matrix region was nearly the same as that of a commercial stainless steel with the same Cr and Ni content. (2) Due to the improved intergranular corrosion resistance, the effect of the purification became significant in the corrosion condition with the grain-separation being predominant. (3) The high-purity alloys showed higher susceptivility to intergranular corrosion with aging treatment between 873 K and 1073 K. Although the sulfuric acid/copper sulfate test suggested the formation of Cr-depleted zones, a grain boundary micro-analysis using a FETEM with an EDX did not reveal any change in Cr content or impurity segregain along the grain boundaries. The mechanism of corrosion enhancement resulting from the aging treatment remains nuclear. (author)

  4. Effects of composition and heat treatments on the strength and ductility of Fe-Cr-Co alloys

    International Nuclear Information System (INIS)

    Kubarych, K.G.

    1980-06-01

    The relationship between the microstructure and mechanical properties of spinodally decomposed Fe-Cr-Co ductile permanent magnet alloys was investigated using transmission electron microscopy, electron diffraction, tensile testing, and Charpy impact testing. Isothermal aging and step aging of four alloys (Fe-28 wt % Cr-15 wt % Co, Fe-23 wt % Cr-15-wt % Co-5 wt % V, Fe-23 wt % Cr-15 wt % Co-3 wt % V-2 wt % Ti, and Fe-31 wt % Cr-23 % Co) resulted in decomposition into two phases, an Fe-Co rich (α 1 ) phase and a Cr rich (α 2 ) phase. The microstructural features of the decomposition products were consistent with those expected from a spinodal reaction and agree with the reported work on the Fe-Cr-Co system. An Fe-23 wt % Cr-15 wt % Co-5 wt % V alloy was found to have, among the four alloys, the best combinations of strength and ductility

  5. Radiation-Induced α' Phase Formation on Dislocation Loops in Fe-Cr Alloys During Electron Irradiation

    OpenAIRE

    Wakai, E.; Hishinuma, A.; Kato, Y.; Yano, H.; Takaki, S.; Abiko, K.

    1995-01-01

    Radiation-induced precipitates on dislocation loops in low and high purity Fe-9, -18 and -50 % Cr alloys were examined under electron irradiation in a high voltage electron microscope operated at 1 MV. Two types of dislocation loops on {100} planes with a Burgers vectors and on {111} planes with a /2 are formed in high purity Fe-Cr alloys. However, only a type loops are formed in low purity alloys, i.e. where carbon concentration is greater than about 60 wt.ppm. The growth rate of the loops...

  6. The observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence

    Science.gov (United States)

    Silalahi, Marzuki; Purwanto, Setyo; Mujamilah; Dimyati, Arbi

    2018-03-01

    About the observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence. This paper reported about the observation of the resistivity change in the ultrasonic pre-treated Fe-Cr ODS sinter alloy under the influence of magnetic field at the Center for Science and Technology of Advanced Material, Nuclear Energy Agency of Indonesia. Fe-Cr ODS alloy were sinthesized by vacuum sintering of Fe- and Cr-powder dispersed Y2O3. However, before sintering the powder mixture was subjected to the irradiation process by ultrasonic for 50 hours at 20 kHz and then isostatic pressed up to 50.91 MPa to form a coin of 10 mm in diameter. LCR meassurement revealed the decreasing of resistivity about 3 times by increasing of applied magnetic field from 0 to 70 mT. In addition, VSM meassurement was performed on both as powder material and as sintered sample. The results showed increasing the magnetization with increasing magnetic field and the curve exhibits almost exact symmetry S-form with small hysterese indicating fast changing magnetization and demagnetization capability without energy loss. This opens strong speculations about the existence of magnetoresistant property of the material which is important for many application in field of sensors or electro magnetic valves.

  7. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    Science.gov (United States)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  8. Irradiation effects on Cr de-mixing in FeCr alloys

    International Nuclear Information System (INIS)

    Tissot, Olivier

    2016-01-01

    Owing to their good thermal properties and excellent swelling resistance, Ferritic-Martensitic (F-M) alloys and ODS steels are potential candidates as structural material and for cladding of future reactors (GEN IV). However, alloys containing more than 10 at.% Cr, which are corrosion resistant, are prone to embrittlement due mainly to α' precipitation. Study of FeCr alloys, model alloys of F-M and ODS steels, is a key point in the understanding of mechanism which are involved by irradiation. The main objective of this study is to identify and quantify the irradiation effects on Cr de-mixing. In a first approach, study of the α - α' decomposition under thermal ageing have been carried out with APT, SANS, and MS. This experiments allow to establish a referent kinetics. an agreement between SANS and APT measurements have been found. Electrons irradiations have been realized between 250 C and 400 C at different doses. α' precipitation have been observed since the first dose (0.012 dpa). The comparison of results with neutron data have shown the efficacy of electron irradiation in α' precipitation. It have also allowed us to determine equilibrium composition of the miscibility gap at 300 C. Ions irradiation with different damage rates (10 -3 and 10 -5 dpa.s -1 ) have been conducted to understand the absence of α' phase reported in literature under this irradiation type. For the first time, APT characterization have revealed α' after ions irradiation at low damage rate. The in depth analyses have shown that injected interstitials strongly reduce α' precipitation. In fact, these interstitials lead to the formation of dislocations loops or could recombine with vacancies and thus reduce the number of vacancy available for diffusion. At higher damage rate (10 -3 dpa.s -1 ), no precipitation have been observed. It has been shown that it could be explain by ballistic dissolution of α' nucleus which are in formation. (author

  9. Influence of the chemical composition and the fabrication process on the behaviour of high temperature oxidation of Fe-Cr-Al alloys

    International Nuclear Information System (INIS)

    Clemendot, F.; Arnoldi, F.; Cerede, J.B.; Dionnet, B.; Nardou, F.; Duysen, J.C. van

    1993-01-01

    The oxidation behaviour of four industrial Fe-Cr-Al alloys was studied. Two of them were Fe-Cr-Al alloys fabricated either by melting or by powder metallurgy. The two other ones were Fe-Cr-Al-Y alloys either produced by melting or by mechanical alloying. On these alloys, we determined oxidation kinetics and observed the morphology of the oxide layer after isothermal and cyclic exposures from 1000 C up to 1300 C. The beneficial effect of yttrium on the adherence of oxide layers was confirmed. The powder metallurgy fabrication route does not improve the oxidation resistance of yttrium-free alloys. On the other hand, the association of the powder metallurgy and the addition of yttrium allow the manufacturing of alloys which present an excellent behaviour to high temperature oxidation. (orig.)

  10. A Study of nuclear of interest martensitic steels and FeCr ODS alloys using small angle neutron scattering

    International Nuclear Information System (INIS)

    Mathon, Marie-Helene; De Carlan, Yann; Zhong, Shengyi; Klosek, Vincent; Ji, Vincent; Henry, Jean; Olier, Patrick

    2011-01-01

    Small Angle Neutron Scattering (SANS) technique allows to characterize at a nano-scale the microstructure of the ferritic martensitic steels and ODS FeCr alloys which are candidates for the internal structures of future nuclear reactors. Firstly, the microstructure evolution induced by neutron irradiation at high dose in conventional and Reduced Activation Fe9%Cr martensitic steels is presented. Then, a SANS study of Oxide Dispersion Strengthened (ODS) alloys is also presented. The main objective is to control the nano-size oxide particles at the various stages of the fabrication process. (authors)

  11. Study of the microstructure and of microhardness variation of a Ni-Fe-Cr austenitic alloy by niobium

    International Nuclear Information System (INIS)

    Carvalho e Camargo, M.U. de; Lucki, G.

    1979-01-01

    The mechanisms of hardening and corrosion resistance increase in Ni-Fe-Cr austenitic stainless steels by Nb additions are of interest to nuclear technology Niobium additions to a 321 type stainless steel were made in order to study the microhardness, electrical resistivity and metallography. Experimental measurements results are shown. The effect of Nb additions as a micro-alloying element and the thermal and mechanical processes (cold working in particular) in the microstructure and microhardness properties of the 11% Ni - 70%Fe - 17% Cr austenitic alloys were studied. (Author) [pt

  12. Phase-Field simulation of phase decomposition in Fe-Cr-Co alloy under an external magnetic field

    Science.gov (United States)

    Koyama, Toshiyuki; Onodera, Hidehiro

    2004-07-01

    Phase decomposition during isothermal aging of a Fe-Cr-Co ternary alloy under an external magnetic field is simulated based on the phase-field method. In this simulation, since the Gibbs energy available from the thermodynamic CALPHAD database of the equilibrium phase diagram is employed as a chemical free energy, the present calculation provides the quantitative microstructure changes directly linked to the phase diagram. The simulated microstructure evolution demonstrates that the lamella like microstructure elongated along the external magnetic field is evolved with the progress of aging. The morphological and temporal developments of the simulated microstructures are in good agreement with experimental results that have been obtained for this alloy system.

  13. Preliminary Results on FeCrAl Alloys in the As-received and Welded State Designed to Have Enhanced Weldability and Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    The present report summarizes and discusses the recent results on developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability. The alloys used for these investigations are modern FeCrAl alloys based on a Fe-13Cr-5Al-2Mo-0.2Si-0.05Y alloy (in wt.%, designated C35M). Development efforts have focused on assessing the influence of chemistry and microstructure on the fabricability and performance of these newly developed alloys. Specific focus was made to assess the weldability, thermal stability, and radiation tolerance.

  14. Report on fundamental modeling of irradiation-induced swelling and creep in FeCrAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kohnert, Aaron A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dasgupta, Dwaipayan [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-23

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, the material response must be demonstrated to provide suitable radiation stability, in order to ensure that there will not be significant dimensional changes (e.g., swelling), as well as quantifying the radiation hardening and radiation creep behavior. In this report, we describe the use of cluster dynamics modeling to evaluate the defect physics and damage accumulation behavior of FeCrAl alloys subjected to neutron irradiation, with a particular focus on irradiation-induced swelling and defect fluxes to dislocations that are required to model irradiation creep behavior.

  15. Production and characterization of stainless steel based Fe-Cr-Ni-Mn-Si(-Co) shape memory alloys

    International Nuclear Information System (INIS)

    Otubo, J.

    1995-01-01

    It is well known that the Fe based alloys can exhibit shape memory effect due to the γ to ε martensitic transformation. The effect may not be as striking as observed in the NiTi alloy but it might become attractive from the practical point of view. In this work, two compositions of Fe-Cr-Ni-Mn-Si(-Co) stainless steel based shape memory alloy, prepared by the VIM technique, will be presented. The results are good with shape recovery of 95% for a pre-strain of 4% after some training cycles. In terms of workability the alloys produced are worse than the usual AISI304. However, adjusting the thermo-mechanical processing, it is perfectly possible to produce wire as thin as 1,20mm in dia. or down. (orig.)

  16. Two-body, dry abrasive wear of Fe/Cr/C experimental alloys - relationship between microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Kwok, C.K.S.

    1982-01-01

    A systematic study of abrasive wear resistance of Fe/Cr/Mn based alloys has been carried out using a two body pin-on-disc wear machine. Abrasives used were silicon carbide, alumina and quartz. The objective of this study was to evaluate the abrasive wear resistance and to investigate the relationships between microstructure, mechanical properties, and abrasive wear resistance for these experimental alloys. Several commercial alloys were also tested to provide a basis for comparison. The goal of this study was to develop information so as to improve wear resistance of these experimental alloys by means of thermal treatments. Grain-refinement by double heat treatment was carried out in this research

  17. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  18. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    International Nuclear Information System (INIS)

    Yilmaz, S. Osman; Teker, Tanju

    2016-01-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M 7 C 3 were produced by powder metallurgical routes via solid state reaction of Ni, Al and M 7 C 3 particulates by mechanical alloying processes. Ni, Al and M 7 C 3 powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M 7 C 3 particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M 7 C 3 and sintering temperature.

  19. Influence of Preoxidation on High-Temperature Corrosion of a FeCrAl Alloy Under Conditions Relevant to Biomass Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2018-01-01

    Preoxidation of a commercial FeCrAl alloy (Kanthal APM) was evaluated as a surface modification approach to reduce alkali chloride-induced corrosion during biomass firing in power plants. Samples of the alloy preoxidized at 900 °C in O2 or O2 + 10 vol% H2O, and at 1100 °C in O2, were coated...... with KCl and exposed at 560 °C to a gas mixture comprising of 12 vol% CO2, 6 vol% O2, 3 vol% H2O, 400 ppmv HCl and 60 ppmv SO2. The oxide formed at 1100 °C showed no reactivity with the corrosive species. By contrast, all samples preoxidized at 900 °C suffered severe attack, resulting in formation of Fe......-, Cr- and Al-containing corrosion products in a heterogeneous morphology, similar to non-preoxidized samples. The observed differences with respect to the degree of corrosion attack on the preoxidized samples are discussed in terms of the composition and thickness of the different types of Al2O3 layers...

  20. A defect density-based constitutive crystal plasticity framework for modeling the plastic deformation of Fe-Cr-Al cladding alloys subsequent to irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Laboratory; Wen, Wei [Los Alamos National Laboratory; Martinez Saez, Enrique [Los Alamos National Laboratory; Tome, Carlos [Los Alamos National Laboratory

    2016-02-05

    It is essential to understand the deformation behavior of these Fe-Cr-Al alloys, in order to be able to develop models for predicting their mechanical response under varied loading conditions. Interaction of dislocations with the radiation-induced defects governs the crystallographic deformation mechanisms. A crystal plasticity framework is employed to model these mechanisms in Fe-Cr-Al alloys. This work builds on a previously developed defect density-based crystal plasticity model for bcc metals and alloys, with necessary modifications made to account for the defect substructure observed in Fe-Cr-Al alloys. The model is implemented in a Visco-Plastic Self Consistent (VPSC) framework, to predict the mechanical behavior under quasi-static loading.

  1. Friction and sliding wear behavior of induction melted FeCrB metamorphic alloy coating

    International Nuclear Information System (INIS)

    Hu, Ge; Meng, Huimin; Liu, Junyou

    2014-01-01

    Induction melted FeCrB metamorphic coatings deposited onto Q235 steel were produced using ultrasonic frequency inductive cladding (UFIC) technique. The measurements of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS), transmission electron microscopy (TEM), microhardness tester and ball-on-disc wear tester were used to determine the microstructure, microhardness and dry-sliding wear resistance coupled with wear mechanism of clad coatings. The experimental results show that C+ clad coating consists of austenite γ-Fe, interdentritic lamellar eutectics γ-Fe/(Cr,Fe) 2 B and borides (Cr,Fe) 2 B as the reinforcing phase whilst the phases of ferrite α-Fe, borides Cr 1.65 Fe 0.35 B 0.96 and eutectics α-Fe/Cr 1.65 Fe 0.35 B 0.96 are identified in M clad coating. The average microhardness of the C+ and M clad coating is more than 3-times than that of the substrate. The wear resistance of the C+ and M clad coating improves 5.18, 6.08 times compared with that of the substrate at applied load of 20 N, respectively, which contributes to the occurrence of the crystalline–amorphous phase transition by friction treatment and uniformly distributed borides embedded in the ductile solid solution matrix.

  2. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the AlCoFeCr

  3. Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe-Cr alloys: the role of Cr segregation.

    Science.gov (United States)

    Terentyev, D; Bakaev, A

    2013-07-03

    The understanding of radiation-induced strengthening in ferritic FeCr-based steels remains an essential issue in the assessment of materials for fusion and fission reactors. Both early and recent experimental works on Fe-Cr alloys reveal Cr segregation on radiation-induced nanostructural features (mainly dislocation loops), whose impact on the modification of the mechanical response of the material might be key for explaining quantitatively the radiation-induced strengthening in these alloys. In this work, we use molecular dynamics to study systematically the interaction of dislocations with 1/2 and loops in all possible orientations, both enriched by Cr atoms and undecorated, for different temperatures, loop sizes and dislocation velocities. The configurations of the enriched loops have been obtained using a non-rigid lattice Monte Carlo method. The study reveals that Cr segregation influences the interaction mechanisms with both 1/2 and loops. The overall effect of Cr enrichment is to penalize the mobility of intrinsically glissile 1/2 loops, modifying the reaction mechanisms as a result. The following three most important effects associated with Cr enrichment have been revealed: (i) absence of dynamic drag; (ii) suppression of complete absorption; (iii) enhanced strength of small dislocation loops (2 nm and smaller). Overall the effect of the Cr enrichment is therefore to increase the unpinning stress, so experimentally 'invisible' nanostructural features may also contribute to radiation-induced strengthening. The reasons for the modification of the mechanisms are explained and the impact of the loading conditions is discussed.

  4. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, following Extended Aging at 300-600C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wood, Elizabeth Sooby [Univ. of Texas, San Antonio, TX (United States)

    2017-09-19

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21wt.%Cr-5wt.%Al-3wt.%Mo (Kanthal APMT). Aging treatments were performed for 100-1000 hours in stagnant air at 300, 400, 500, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

  5. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some σ phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs

  6. Final report on in-reactor uniaxial tensile deformation of pure iron and Fe-Cr alloy

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Huang, X.; Tähtinen, S.

    Traditionally, the effect of irradiation on mechanical properties of metals and alloys is determined using post-irradiation tests carried out on pre-irradiated specimens and in the absence of irradiation environment. The results of these tests may not be representative of deformation behaviour...... during these tests are presented in the form of stress-displacement dose and the conventional stress-strain curves. For comparison, the results of post-irradiation tests and tests carried out on unirradiated specimens are also presented. Results of microstructural investigations on the unirradiated...... and deformed, irradiated and undeformed, post-irradiation deformed and the in-reactor deformed specimens are also described. During the in-reactor tests the specimens of both Fe-Cr alloy and pure iron deform in a homogeneous manner and do not exhibit the phenomenon of yield drop. An increase in the pre...

  7. The effect of small 4th element alloying additions on the calculated phase stability in the Fe-Cr-Ni system

    International Nuclear Information System (INIS)

    Watkin, J.S.

    1979-01-01

    Recent studies into the void swelling of Fe-Cr-Ni alloys have revealed that the magnitude of swelling depends upon alloy constitution and this together with the fact that minor element additions also play a major role in swelling necessitate a detailed knowledge of the influence of small 4th element additions on phase stability. In this paper the effects of additions of Nb, Ti, Al, Mo, Co and C to the Fe-Cr-Ni ternary are assessed by calculation. They confirm the ferritising tendencies of Nb, Ti and Al and the strong austenitising effect of C. Confirmation is also found for the scaling factors in the equivalent Ni and Cr equations in common usage and the paper presents Fe-Cr-Ni ternary sections at 400, 550 and 700 0 C modified for 1 at.% addition of each of the above elements. (orig.) [de

  8. Preliminary Analysis of the General Performance and Mechanical Behavior of Irradiated FeCrAl Base Alloys and Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000°C). Furthermore, these alloys have the potential to have prolonged survival under loss-of-coolant accident (LOCA) conditions compared to the more traditional cladding materials that are either Zr-based alloys or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility of mitigating welding-induced cracking via alloying and precise structure control of the weldments; in the frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing parameters. Also, a brief discussion of the irradiation at the High Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in detail focusing on the irradiation temperature. Limited fractography results are also presented and analyzed. The discussion highlights the limitations of the testing within a hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development and Analysis (LAMDA) laboratory and prepared for

  9. Effect of Zr Addition on Microstructure and Corrosion Properties of AlFeCrCoCuZrx High-entropy Alloys

    Directory of Open Access Journals (Sweden)

    XIE Hong-bo

    2016-06-01

    Full Text Available The microstructure, hardness and the corrosion resistance in 3.5% NaCl solution of the as-cast AlFeCrCoCuZrx(x=0, 0.5, 1 high-entropy alloys were investigated. The results show that typically cast dendrite structure is formed in the alloys. With the increase of Zr addition, phases in the dendrite region change from single BCC structure to two phases, while phase in the interdendrite region is Cu-rich FCC structure and kept unchanged. The hardness of the alloys increases with the increase of Zr addition and hardness AlFeCrCoCuZr alloy reaches the maximum of HV 698. The corrosion resistance of these alloys in 3.5% NaCl solution is better than that of 304L stainless steel, however as the Zr content increases, the corrosion resistance of alloys is degenerated.

  10. Effects of composite scale on high temperature oxidation resistance of Fe-Cr-Ni heat resistant alloy

    Directory of Open Access Journals (Sweden)

    Wang Haitao

    2009-05-01

    Full Text Available Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain method, the oxidation resistances of the test alloys were determined at 1,200 ìC for 500 hours. According to the oxidation weight gains, the oxidation kinetic curves were plotted and the functions were regressed by the least squares method. The results show that the oxidation kinetic curves follow the power function of y = axb (a>0, 0FeCr2O4, with compact structure and tiny grains, shows complete oxidation resistance at 1,200 ìC. When the composite scale lacks メ-Al2O3 or SiO2, it becomes weak in oxidation resistance with a loose structure. By the criterion of standard Gibbs formation free energy, the model of the nucleation and growth of the composite scale is established. The forming of the composite scale is the result of the competition of being oxidized and reduced between aluminum, silicon and the matrix metal elements of iron, chromium and nickel. The protection of the composite scale is analyzed essentially by electrical conductivity and strength properties.

  11. Second Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-30

    The present report summarizes and discusses the current results and on-going activity towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program.

  12. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  13. Estimation of the solubility limit of Cr in Fe at 300 oC from small-angle neutron scattering in neutron-irradiated Fe-Cr alloys

    International Nuclear Information System (INIS)

    Bergner, F.; Ulbricht, A.; Heintze, C.

    2009-01-01

    The solubility limit of Cr in Fe (α-Fe-Cr) at low temperatures is a matter of debate. We report a direct estimation of the solubility limit at 300 o C from small-angle neutron scattering (SANS) data obtained for neutron-irradiated Fe-Cr alloys. The SANS results indicate that the equilibrium concentration of α' was reached via irradiation-enhanced diffusion. The solubility limit was estimated using an iterative approach based on the SANS invariant and the lever rule of phase equilibrium.

  14. Cl K-edge XANES spectra of atmospheric rust on Fe, Fe-Cr and Fe-Ni alloys exposed to saline environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2004-01-01

    Cl K-edge XANES measurements of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys in chloride pollution have been performed using synchrotron radiation in order to clarify roles of anticorrosive alloying elements and of Cl in the corrosion resistance of weathering steel. The spectra of binary alloys show a shoulder structure near the absorption edge. The intensity of the shoulder peak depends on the kind and amount of the alloying element, whereas the energy position is invariant. This indicates that Cl is not combined directly with alloying elements in the rust. (author)

  15. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    Rieth, M.; Materna-Morris, E.; Dudarev, S.L.; Boutard, J.-L.; Keppler, H.; Mayor, J.

    2009-01-01

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  16. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensile specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.

  17. Influence of irradiation with energy-rich particles on the hardness of the Fe-Cr alloy

    International Nuclear Information System (INIS)

    Heintze, Cornelia

    2013-01-01

    Ferritic/martensitic and oxide dispersion strengthened ferritic/martensitic steels are candidate structural materials for components exposed to high neutron fluxes in future nuclear applications like fusion and generation IV fission reactors. The ductilebrittle transition and its shift to higher temperatures which is predominantly caused by irradiation hardening are main concerns for these materials. In the present work, the irradiation behaviour of binary Fe-Cr model alloys, which represent a simplified model for ferritic/martensitic steels, is studied. To this end irradiation with iron ions is used in order to simulate the neutron-induced damage. Due to the limited penetration depth characterization methods suitable for thin layers have to be applied. In the present case, nanohardness testing and transmission electron microscopy (TEM) are employed. The results, including the irradiation-induced hardness change of the layer as a function of chromium content, fluence and irradiation temperature and, for selected cases, quantitative TEM analyses, were exploited to identify irradiation-induced dislocation loops as one source of irradiation hardening. Additional results of small-angle neutron scattering experiments on neutron-irradiated specimens of the same alloys show that nm-scaled α'-phase precipitates also significantly contribute to the irradiation-induced hardness increase. An Orowan model is used to estimate the obstacle strengths posed to dislocation glide by these lattice defects. The topic is stepwise extended to more complex situations with respect to the irradiation conditions and the materials. Considering simultaneous and sequential irradiations with iron- and helium-ions it is shown that the effect of helium on irradiation hardening depends on the chronological order of the irradiations and that the simultaneous introduction of helium in fusion-relevant concentrations amplifies irradiation hardening based on a synergistic effect. There is no

  18. In situ X-ray diffraction contribution to the high temperature oxidation study of FeCrAl alloys

    Science.gov (United States)

    Cueff, R.; Buscail, H.; Caudron, E.; Issartel, C.; Perrier, S.; Riffard, F.

    2002-07-01

    The oxidation behaviour of two commercial FeCrAl alloys, Kanthal Al and Kanthal AF (containing alloying additions of yttrium), has been investigated during isothermal exposures in air at 1173 IC After a first initial transient stage, a diffusionnal process appears to predominantly control the oxidation kinetics of both alloys. During the transient stage, relatively important mass gains have been registered, and the presence of yttrium does not seem to have a significant effect on the oxidation rate. On the contrary, the reactive element markedly influences the parabolic oxidation rate and the composition of the oxide scale. In situ X-ray diffraction shows that yttrium promotes the transformation of transition alumina into α-Al2O3, thereby leading to the formation of a more protective oxide scale. L'étude de l'oxydation isotherme de deux alliages commerciaux FeCrAl, le Kanthal Al et le Kanthal AF (contenant de l'yttrium en tant qu'élément d'alliage) a été effectuée sous air à 1173 K. Après une étape initiale transitoire de quelques heures, la cinétique d'oxydation des deux alliages est contrôlée par un processus de diffusion dans la couche d'oxyde. Le régime transitoire est essentiellement marqué par des prises de masse importantes, l'apport d'yttrium ne modifie pas de façon significative la vitesse d'oxydation. La présence de l'élément actif affecte par contre la cinétique d'oxydation parabolique ainsi que la composition de la couche d'oxyde. La diffraction des rayons X in situ montre que l'yttrium favorise la transformation des alumines de transition en alumine α et améliore ainsi le caractère protecteur de la couche d'oxyde formée.

  19. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe-Cr model alloys

    Science.gov (United States)

    Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.

    2014-05-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe-Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α‧-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.

  20. Ab initio and Atomic kinetic Monte Carlo modelling of segregation in concentrated FeCrNi alloys

    Science.gov (United States)

    Piochaud, J. B.; Becquart, C. S.; Domain, C.

    2014-06-01

    Internal structure of pressurised water reactors are made of austenitic materials. Under irradiation, the microstructure of these concentrated alloys evolves and solute segregation on grain boundaries or irradiation defects such as dislocation loops are observed to take place. In order to model and predict the microstructure evolution, a multiscale modelling approach needs to be developed, which starts at the atomic scale. Atomic Kinetic Monte Carlo (AKMC) modelling is the method we chose to provide an insight on defect mediated diffusion under irradiation. In that approach, we model the concentrated commercial steel as a FeCrNi alloy (γ-Fe70Cr20Ni10). As no reliable empirical potential exists at the moment to reproduce faithfully the phase diagram and the interactions of the elements and point defects, we have adjusted a pair interaction model on large amount of DFT calculations. The point defect properties in the Fe70Cr20Ni10, and more precisely, how their formation energy depends on the local environment will be presented and some AKMC results on thermal non equilibrium segregation and radiation induce segregation will be presented. The effect of Si on the segregation will also be discussed.

  1. Ab initio and atomic kinetic Monte Carlo modelling of segregation in concentrated FeCrNi alloys

    International Nuclear Information System (INIS)

    Piochaud, J.B.; Becquart, C.S.; Domain, C.

    2013-01-01

    Internal structure of pressurised water reactors are made of austenitic materials. Under irradiation, the microstructure of these concentrated alloys evolves and solute segregation on grain boundaries or irradiation defects such as dislocation loops are observed to take place. In order to model and predict the microstructure evolution, a multi-scale modelling approach needs to be developed, which starts at the atomic scale. Atomic Kinetic Monte Carlo (AKMC) modelling is the method we chose to provide an insight on defect mediated diffusion under irradiation. In that approach, we model the concentrated commercial steel as a FeCrNi alloy (γ-Fe 70 Cr 20 Ni 10 ). As no reliable empirical potential exists at the moment to reproduce faithfully the phase diagram and the interactions of the elements and point defects, we have adjusted a pair interaction model on large amount of DFT (Density Functional Theory) calculations. The point defect properties in the Fe 70 Cr 20 Ni 10 , and more precisely, how their formation energy depends on the local environment will be presented and some AKMC results on thermal non equilibrium segregation (TNES) and radiation induce segregation will be presented. The effect of Si on the segregation will also be discussed. Preliminary results show that it is the solute- grain boundaries interactions which drive TNES

  2. The use of nitrogen to improve the corrosion resistance of FeCrNiMo alloys for the chemical process industries

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, J.R.; Deverell, H.E.

    1987-06-01

    The addition of 0.1 to 0.25 wt% nitrogen to austenitic alloys has been shown to enhance resistance to localized corrosion in oxidizing chloride and reducing acid solutions. Further tests of FeCrNiMo alloys assess the effects of nitrogen additions on: mechanical properties, chloride and caustic stress corrosion cracking resistance, passivation characteristics, and general corrosion rates in various acid, alkali, and salt solutions pertinent to the chemical process industries. The precipitation of chromium-rich secondary phases was retarded by solid solution additions of 0.1 to 0.25 wt% nitrogen. The corrosion resistance of FeCrNiMoN alloys in the welded condition was improved by using shield-gas mixtures of argon and 2.5 to 5.0 wt% nitrogen.

  3. On the role of elastic energy in formation of high-coercivity state in Fe-Cr-Co and Fe-Ni-Co-Al-Cu-(Ti) alloys

    International Nuclear Information System (INIS)

    Kolchin, A.E.; Livshits, B.G.

    1983-01-01

    Temperature dependences of elastic moduli were determined in 20-680 deg C range for monocrystals of alloys of Fe-Cr-Co and Fe-Ni-Co-Al-Cu-(Ti) systems. Contributions of the structural component of elastic anisotropy energy (relative difference of lattice periods of two phases) and its crystallographic component were determined. On the basis of temperature dependences of elasticity moduli, obtained for model alloys, close with respect to composition to high- and low-magnetic phases in investigated alloys, it was established that high-magnetic phase (Fe-Co) is more elastic-antisotropic, than low-magnetic one (Fe-Cr or NiAl). The efffect of thermomagnetic treatment and successive tempering on processes of phase formation was considered

  4. D-shell of iron atom of the amorphous FeCr15B15 alloy effective charge change during the crystallization

    Science.gov (United States)

    Khmelevsky, Nikolay O.; Funtikov, Yuriy V.; Aksenenko, Anatoliy Yu.; Ilyukhina, Olga V.; Metel, Alexander S.

    2018-03-01

    An amorphous metal alloy of the FeCrB system was studied during the crystallization by thermal annealing. Such an alloy is a perspective candidate for the role of an intermediate layer in multilayer covering for cutting tools. By the using of the thermoelectric voltage measurement, positron annihilation spectroscopy, and X-ray photoelectron spectroscopy, the conjoint research was performed for the study of the conduction and d-electron band state in the amorphous metallic alloy FeCr15B15, which intersects each other by the energy. The results of all the studies agree with each other and indicate the change in the effective charge of the d-shell by 1 electron during crystallization.

  5. Corrosion of high purity Fe-Cr-Ni alloys in 13 N boiling nitric acid

    International Nuclear Information System (INIS)

    Ohta, Joji; Mayuzumi, Masami; Kusanagi, Hideo; Takaku, Hiroshi

    1998-01-01

    Corrosion in boiling nitric acid was investigated for high purity Fe-18%Cr-12%Ni alloys and type 304L stainless steels (SS). Owing to very low impurity concentration, the solution treated high purity alloys show almost no intergranular corrosion while the type 304L SS show severe intergranular corrosion. Both in the high purity alloys and type 304L SS, aging treatments ranging from 873 K to 1073 K for 1 h enhance intergranular corrosion. During the aging treatments, impurities should be segregated to the grain boundaries. The corrosion behaviors were discussed from a standpoint of impurity segregation to grain boundaries. This study is of importance for purex reprocessing of spent fuels

  6. About oxide dispersion particles chemical compatibility with areas coherent dissipation/sub-grains of bcc-alloys in Fe - (Cr, V, Mo, W systems

    Directory of Open Access Journals (Sweden)

    Udovsky A.

    2016-01-01

    Full Text Available A concept of partial magnetic moments (PMM of the iron atoms located in the first ч four coordination spheres (1÷4 CS for bcc lattice have been introduced based on analysis of results obtained by quantum-mechanical calculations (QMC for volume dependence of the average magnetic moment ferromagnetic (FM Fe. The values of these moments have been calculated for pure bcc Fe and bcc - Fe-Cr alloys. This concept has been used to formulate a three sub-lattice model for binary FM alloys of the Fe-M systems (M is an alloying paramagnetic element. Physical reason for sign change dependence of the short-range order and mixing enthalpy obtained by QMCs for Fe-(Cr, V bcc phases has been found. Using this model it has been predicted that static displacements of Fe - atoms in alloy matrix increase with increasing the of CS number and result in reducing of the area of coherent dissipation (ACD size with growth of the dimension factor (DF in the Fe-(Cr, V, Mo, W systems in agreement with the X-ray experiments. It has been shown theoretically that anisotropy of spin- density in bcc lattice Fe and DF in binary Fe - (Cr, V, Mo, W systems is main factor for origins of segregations on small angle boundaries of ACD and sub-grains boundaries To prevent the coagulation of both ACD and sub-grains, and to increase the strength of alloys, it is advisable to add oxide dispersion particles into ferrite steel taking into account their chemical compatibility and coherent interfacing with the crystalline lattice of a ferrite matrix. Application of phase diagrams for binary and ternary the Fe-(Y, Zr-O systems to verify chemical compatibility of oxide dispersion particles with ferrite matrix have been discussed

  7. Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys

    International Nuclear Information System (INIS)

    Castro, V. de; Leguey, T.; Munoz, A.; Monge, M.A.; Pareja, R.; Marquis, E.A.; Lozano-Perez, S.; Jenkins, M.L.

    2009-01-01

    Two Fe-12 wt% Cr alloys, one containing 0.4 wt% Y 2 O 3 and the other Y 2 O 3 -free, have been produced by mechanical alloying followed by hot isostatic pressing. These oxide dispersion strengthened and reference alloys were characterized both in the as-HIPed state and after tempering by transmission electron microscopy and atom-probe tomography. The as-HIPed alloys exhibited the characteristic microstructure of lath martensite and contained a high density of dislocations. Small voids with sizes 3 C and M 23 C 6 carbides (M = Cr, Fe) probably as a result of C ingress during milling. After tempering at 1023 K for 4 h the microstructures had partially recovered. In the recovered regions, martensite laths were replaced by equiaxed grains in which M 23 C 6 carbides decorated the grain boundaries. In the ODS alloy nanoparticles containing Y were commonly observed within grains, although they were also present at grain boundaries and adjacent to large carbides.

  8. Chemical and structural effects of phosphorus on the corrosion behavior of ion beam mixed Fe-Cr-P alloys

    International Nuclear Information System (INIS)

    Demaree, J.D.; Was, G.S.; Sorensen, N.R.

    1992-01-01

    An experimental program was conducted to determine the mechanisms by which phosphorus affects the corrosion and passivation behavior of Fe-Cr-P alloys. To identify separately the effects of structure and chemistry on the corrosion behavior, thin films of Fe-10Cr-xP (0≤x≤35 at.%) were prepared by ion beam mixing. Films with a phosphorus content greater than approximately 20at.% were found to be entirely amorphous. Devitrification of the amorphous phase was accomplished by heating the samples to 450degC in an inert environment. Standard polarization tests of the sulfuric acid (with and without Cl - ) indicated that the films containing phosphorus were more corrosion resistant than Fe-10Cr, at both active and passive potentials. There was a monotonic relationship between the amount of phosphorus in the alloy and the corrosion resistance, with the open-circuit corrosion rate of Fe-10Cr-35P nearly four orders of magnitude lower than that of Fe-10Cr. Devitrification of the alloys had no significant effect on the corrosion rate, indicating that the primary effect of phosphorus is chemical in nature, and not structural. The passive oxides were depth-profiled using X-ray photoelectron spectroscopy, which indicated that phosphorus was a primary constituent, as phosphate. The presence of phosphate in the passive oxides reduced the overall corrosion rate directly, by suppressing anodic dissolution. The presence of phosphorus did enhance chromium enrichment in the oxide, but that was not thought to be the primary mechanism by which phosphorus increased the corrosion resistance. (orig.)

  9. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rastabi, Reza Amini; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-15

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe{sub 55}Cr{sub 25}Co{sub 20} magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5. - Highlights: • Milled samples consist of single phase α-solid solution. • Saturation of magnetization of Fe{sub 65}Cr{sub 15}Co{sub 20} reached to 172 emu/g. • Fe{sub 65}Cr{sub 15}Co{sub 20} alloy is the suitable composition fabricated by SPS.

  10. Modification of local order in the austenic alloys Fe-Cr-Ni subject to tensile strain-induced plastic deformation

    International Nuclear Information System (INIS)

    Aidi, B.; Bertrand, C.; Viltange, M.; Dimitrov, O.

    1993-01-01

    The influence of plastic deformation, by extension at room temperature, on electrical resistivity has been determined in four austenitic Fe-Cr-Ni alloys with 16 wt% Cr and 20, 25, 45 or 75 wt% Ni, in two different states of local order. Two experimental methods have been used (4.2 K resistance measurements before and after deformation, continuous resistance measurements during room-temperature extension tests); the possibilities of the second method and the corrections to be applied are particulary discussed. Resistivity is found to slightly increase at the beginning of deformation (e<0.05), then to strongly decrease. The amplitude of the observed effects increases with the nickel content, and with the initial degree of local order. In the high deformation range (e=0.15), the resistivity decrease varies linearly with the initial contribution of local order to electrical resistivity. These effects are attributed to a destruction of the local order existing in the solid solutions, by the glide of dislocations during plastic deformation. (orig.)

  11. Microstructure characterization of rapidly solidified Al-Fe-Cr-Ce alloy by positron annihilation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Čízek, J.; Procházka, I.; Drahokoupil, Jan; Novák, P.

    2011-01-01

    Roč. 509, č. 7 (2011), s. 3211-3218 ISSN 0925-8388 Institutional research plan: CEZ:AV0Z10100520 Keywords : metals and alloy s * nanostructured materials * rapid solidification * positron spectroscopies * transmission electron microscopy * x-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.289, year: 2011

  12. Fatigue properties and microstructure of quasicrystalline AlFeCrTi alloy

    Czech Academy of Sciences Publication Activity Database

    Chlupová, Alice; Chlup, Zdeněk; Kruml, Tomáš

    2016-01-01

    Roč. 91, OCT (2016), s. 251-256 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Aluminium alloy * Quasicrystals * Fatigue * Fractography Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  13. Crystallization processes in an amorphous Co-Fe-Cr-Si-B alloy under isothermal annealing

    Science.gov (United States)

    Fedorets, A. N.; Pustovalov, E. V.; Plotnikov, V. S.; Modin, E. B.; Kraynova, G. S.; Frolov, A. M.; Tkachev, V. V.; Tsesarskaya, A. K.

    2017-09-01

    Research present the crystallization processes investigation of the amorphous Co67Fe3Cr3Si15B12 alloy. In-situ experiments on heating in a transmission electron microscope (TEM) column were carried out. Critical temperatures influencing material structure are determined. The onset temperature of material crystallization was determined.

  14. A physics-based crystallographic modeling framework for describing the thermal creep behavior of Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    This Report addresses the Milestone M2MS-16LA0501032 of NEAMS Program (“Develop hardening model for FeCrAl cladding), with a deadline of 09/30/2016. Here we report a constitutive law for thermal creep of FeCrAl. This Report adds to and complements the one for Milestone M3MS-16LA0501034 (“Interface hardening models with MOOSE-BISON”), where we presented a hardening law for irradiated FeCrAl. The last component of our polycrystal-based constitutive behavior, namely, an irradiation creep model for FeCrAl, will be developed as part of the FY17 Milestones, and the three regimes will be coupled and interfaced with MOOSE-BISON.

  15. Invar and Elinvar type amorphous Fe-Cr-B alloys with high corrosion resistance

    Science.gov (United States)

    Kikuci, M.; Fukamichi, K.; Masumoto, T.

    1987-01-01

    Amorphous (Fe(1-x)Cr(x))85B15 alloys (x = 0 to 0.15) were prepared from the melts by rapid quenching using a single roller techinque, and their Invar and Elinvar characteristics and corrosion resistance were investigated. With an increase in chromium content the Curie temperature and the saturation magnetic moment per iron atom decreased monotonically, while the crystallization temperature incresed gradually. The thermal expansion coefficient alpha around room temperature became slightly larger with increasing chromium content. Nevertheless, these amorphous alloys exhibited excellent Invar characteristics below the Curie temperature. The value of Young's modulus increased remarkably in a relatively low magnetic field and then saturated at a field of about 80 kA/m, showing a large delta E effect. Its value as well as a longitudinal linear magnetostriction became smaller with an increase in chromium content. The temperature coefficient of Young's modulus changed from postive to negative, and the temperature range showing the Elinvar characteristics became narrower with chromium content. The temperature coefficient of delay time determined from the values of alpha and e was very small. The corrosion resistance of these alloys was extremely improved by chromium addition.

  16. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  17. The influence of combined addition of phosphorus and titanium on void swelling of austenitic Fe-Cr-Ni alloys at 646-700 K

    International Nuclear Information System (INIS)

    Watanabe, H.; Muroga, T.; Yoshida, N.

    1994-01-01

    The influence of combined addition of phosphorus and titanium on void swelling of model Fe-Cr-Ni austenitic alloys at 646 to 700 K under fast neutron irradiation has been investigated, in comparison with that of a complex austenitic alloy (JPCA-2). In the model alloys, void swelling decreased with increasing phosphorus content. Void average size and density of JPCA-2 were comparable to those of the 0.024P alloy. The fact that these two alloys have the same phosphorus level suggests the void swelling of the model alloys would be strongly suppressed by increasing the phosphorus concentration and/or coaddition of phosphorus and titanium. The present study demonstrated that the phosphorus level is the strongest determinant of void swelling of both model and complex austenitic alloys. ((orig.))

  18. Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-04-15

    We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.

  19. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    Science.gov (United States)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  20. MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy

    International Nuclear Information System (INIS)

    Tikhonchev, M.; Svetukhin, V.; Gaganidze, E.

    2013-01-01

    The paper reports simulation of cascades in Fe–9 at.%Cr binary alloy containing chromium-rich clusters. The simulation is performed by the molecular dynamics method at the initial temperature of 300 K and primary knock-on atom energy of 15 and 20 keV. Spherical clusters containing 95 at.% of Cr with diameter of 1–5 nm have been considered. The properties of cascade evolution in the presence of chromium-rich cluster are studied. It is shown that these clusters tend to dissolve in collision cascades. However, clusters with diameter of ⩾3 nm exhibit only slight modifications and can be considered stable. Parameters of small (1–2 nm) clusters can change significantly and, in some cases, a 1 nm cluster can be totally dissolved

  1. MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonchev, M., E-mail: tikhonchev@sv.ulsu.ru [Ulyanovsk State University, Research Institute of Technology, 42 Leo Tolstoy St., 432970 Ulyanovsk (Russian Federation); Svetukhin, V. [Ulyanovsk State University, Research Institute of Technology, 42 Leo Tolstoy St., 432970 Ulyanovsk (Russian Federation); Gaganidze, E. [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany)

    2013-11-15

    The paper reports simulation of cascades in Fe–9 at.%Cr binary alloy containing chromium-rich clusters. The simulation is performed by the molecular dynamics method at the initial temperature of 300 K and primary knock-on atom energy of 15 and 20 keV. Spherical clusters containing 95 at.% of Cr with diameter of 1–5 nm have been considered. The properties of cascade evolution in the presence of chromium-rich cluster are studied. It is shown that these clusters tend to dissolve in collision cascades. However, clusters with diameter of ⩾3 nm exhibit only slight modifications and can be considered stable. Parameters of small (1–2 nm) clusters can change significantly and, in some cases, a 1 nm cluster can be totally dissolved.

  2. Corrosion Performance of Fe-Cr-Ni Alloys in Artificial Saliva and Mouthwash Solution

    Science.gov (United States)

    Porcayo-Calderon, J.; Casales-Diaz, M.; Salinas-Bravo, V. M.; Martinez-Gomez, L.

    2015-01-01

    Several austenitic stainless steels suitable for high temperature applications because of their high corrosion resistance and excellent mechanical properties were investigated as biomaterials for dental use. The steels were evaluated by electrochemical techniques such as potentiodynamic polarization curves, cyclic polarization curves, measurements of open circuit potential, and linear polarization resistance. The performance of steels was evaluated in two types of environments: artificial saliva and mouthwash solution at 37°C for 48 hours. In order to compare the behavior of steels, titanium a material commonly used in dental applications was also tested in the same conditions. Results show that tested steels have characteristics that may make them attractive as biomaterials for dental applications. Contents of Cr, Ni, and other minor alloying elements (Mo, Ti, and Nb) determine the performance of stainless steels. In artificial saliva steels show a corrosion rate of the same order of magnitude as titanium and in mouthwash have greater corrosion resistance than titanium. PMID:26064083

  3. Quasicrystalline and crystalline phases in Al65Cu20(Fe, Cr)15 alloys

    International Nuclear Information System (INIS)

    Liu, W.; Koester, U.; Mueller, F.; Rosenberg, M.

    1992-01-01

    Two types of icosahedral quasicrystals are observed in Al 65 Cu 20 Fe 15-x Cr x (0 ≤ x ≤ 15) alloys, the face-centred AlCuFe-type icosahedral phase with dissoluted Cr and the primitive AlCuCr-type icosahedral phase with dissoluted Fe. In the vicinity of Al 65 Cu 20 Fe 8 Cr 7 a stable decagonal phase (a=0.45 nm and c=1.23 nm) forms competitively with the icosahedral quasicrystals. All these three quasicrystalline phases can be regarded as Hume-Rothery phases stabilized by the energy band factor. The density is measured to be 4.57, 4.44, and 4.11 g/cm 3 for the icosahedral Al 65 Cu 20 Fe 15 , the decagonal Al 65 Cu 20 Fe 8 Cr 7 , and the icosahedral Al 65 Cu 20 Cr 15 alloys, respectively. Depending on the composition in the range between Al 65 Cu 20 Fe 8 Cr 7 and Al 65 Cu 20 Cr 15 , several crystalline phases are observed during the transormation of the AlCuCr-type icosahedral phase: the 1/1-3/2-type orthorhombic (o) and the 1/0-3/2-type tetragonal (t) approximants of the decagonal phase, a hexagonal (h) phase, as well as a long-range vacancy ordered τ 3 -phase derived from a CsCl-type structure with a=0.2923 nm. The structures of all the crystalline phases are closely related to those of the icosahedral (i) and decagonal (d) quasicrystals, which leads to a definite orientation relationship as follows: i5 parallel d10 parallel o[100] parallel t[100] parallel h[001] parallel τ 3 [110]. (orig.)

  4. First-principles study of high spin-polarization and thermoelectric efficiency of ferromagnetic CoFeCrAs quaternary Heusler alloy

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-03-01

    The ground state properties along with thermodynamic and thermoelectric properties of quaternary CoFeCrAs alloy within the ordered LiMgPdSn-type structure have been investigated by employing first-principles calculations. The alloy offers half-metallic ferromagnet character with an indirect band gap of 1.12 eV in the minority spin state with total spin magnetic moment of 4μB and follows Slater-Pauling relation. Effects on various properties of the material has been studied by the variation of the pressure and temperature. CoFeCrAs tenders large value of the Grüneisen parameter and small value for the thermal expansion coefficient. The materials present high Seebeck coefficient and huge power factor with the room temperature value of ∼-40 μV/K and 18 (1014 μWcm-1 K-2 s-1) respectively, which make CoFeCrAs promising candidate for efficient thermoelectric material.

  5. Microstructural Characterization of Y{sub 2}O{sub 3} ODS-Fe-Cr Model Alloy s

    Energy Technology Data Exchange (ETDEWEB)

    De Castro, V.; Jenkins, M.L. [Oxford Univ., Dept. of Materials (United Kingdom); Leguey, T.; Mufioz, A.; Pareja, R.; Monge, M.A. [Madrid Univ. Carlos 3, Dept. de Fisica (Spain)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic (RAFM) steels with Cr contents ranging between 9-12 wt% are promising candidates for use as structural materials in future fusion reactors. They are likely to be superior to austenitic steels because of their better thermal properties and higher swelling resistance. A major concern of these materials is their maximum service temperature, as this determines the overall efficiency of the reactor. It has been demonstrated that one way to increase this temperature is to homogeneously disperse hard nano-sized oxide particles, such as Y{sub 2}O{sub 3}, into the steel matrix. Oxide dispersion strengthened (ODS) steels produced by mechanical milling and hot isostatic pressing (HIP ) are considered as potential structural materials for fusion reactors. In Europe, efforts have been focused on the ODS-RAFM-9CrW steel EUROFER. These ODS steels show good tensile and creep properties, acceptable ductility, but poor impact properties. Microstructural characterization of real steels, especially of the structures of oxide/steel matrix interfaces which play an important role in the performance of the material, is a difficult task. In the present work we have fabricated and characterised a simpler model ODS system based on a Fe-Cr binary alloy, in the belief that this will help us better to understand complex ODS-RAFM steels. Two Fe-12wt% Cr batches, one containing 0.3 wt% Y{sub 2}O{sub 3} and the other Y{sub 2}O{sub 3} free have been produced by milling plus compaction by HIP. These materials are being characterized by X-ray diffraction, electron microscopy and atom probe field ion microscopy. Results will be compared with those obtained for ODS-EUROFER produced under the same conditions. (authors)

  6. Influence of irradiation with energy-rich particles on the hardness of the Fe-Cr alloy; Einfluss der Bestrahlung mit energiereichen Teilchen auf die Haerte von Fe-Cr-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Heintze, Cornelia

    2013-01-14

    Ferritic/martensitic and oxide dispersion strengthened ferritic/martensitic steels are candidate structural materials for components exposed to high neutron fluxes in future nuclear applications like fusion and generation IV fission reactors. The ductilebrittle transition and its shift to higher temperatures which is predominantly caused by irradiation hardening are main concerns for these materials. In the present work, the irradiation behaviour of binary Fe-Cr model alloys, which represent a simplified model for ferritic/martensitic steels, is studied. To this end irradiation with iron ions is used in order to simulate the neutron-induced damage. Due to the limited penetration depth characterization methods suitable for thin layers have to be applied. In the present case, nanohardness testing and transmission electron microscopy (TEM) are employed. The results, including the irradiation-induced hardness change of the layer as a function of chromium content, fluence and irradiation temperature and, for selected cases, quantitative TEM analyses, were exploited to identify irradiation-induced dislocation loops as one source of irradiation hardening. Additional results of small-angle neutron scattering experiments on neutron-irradiated specimens of the same alloys show that nm-scaled α'-phase precipitates also significantly contribute to the irradiation-induced hardness increase. An Orowan model is used to estimate the obstacle strengths posed to dislocation glide by these lattice defects. The topic is stepwise extended to more complex situations with respect to the irradiation conditions and the materials. Considering simultaneous and sequential irradiations with iron- and helium-ions it is shown that the effect of helium on irradiation hardening depends on the chronological order of the irradiations and that the simultaneous introduction of helium in fusion-relevant concentrations amplifies irradiation hardening based on a synergistic effect. There is no

  7. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

    2011-06-15

    strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.

  8. Formation of amorphous and nanocrystalline phases in high velocity oxy-fuel thermally sprayed a Fe-Cr-Si-B-Mn alloy

    International Nuclear Information System (INIS)

    Wu Yuping; Lin Pinghua; Xie Guozhi; Hu Junhua; Cao Ming

    2006-01-01

    High velocity oxy-fuel (HVOF) thermal spray was used to deposit a Fe-Cr-Si-B alloy coating onto stainless steel (1Cr18Ni9Ti) substrate. Microstructures of the powder and the coating were investigated by X-ray diffraction (XRD), scanning election microscopy (SEM), transmission election microscopy (TEM) and differential scanning calorimeter (DSC). The coating had layered morphologies due to the deposition and solidification of successive molten or half-molten splats. The microstructures of the coating consisted of a Fe-Cr-rich matrix and several kinds of borides. The Fe-Cr-rich matrix contained both amorphous phase and nanocrystalline grains with a size of 10-50 nm. The crystallization temperature of the amorphous phase was about 605 deg. C. The formation of the amorphous phase was attributed to the high cooling rates of molten droplets and the proper powder compositions by effective addition of Cr, Mn, Si and B. The nanocrystalline grains could result from crystallization in amorphous region or interface of the amorphous phase and borides by homogeneous and heterogeneous nucleation

  9. Effects of the sp element additions on the microstructure and mechanical properties of NiCoFeCr based high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Vida, Adam, E-mail: vida.adam@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Department of Matefrials Physics, Eötvös University Budapest, H-1117 Budapest, Pázmány P. sétány 1/A (Hungary); Varga, Lajos K. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Chinh, Nguyen Quang [Department of Matefrials Physics, Eötvös University Budapest, H-1117 Budapest, Pázmány P. sétány 1/A (Hungary); Molnar, David [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Department of Matefrials Physics, Eötvös University Budapest, H-1117 Budapest, Pázmány P. sétány 1/A (Hungary); Huang, Shuo [Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44 (Sweden); Vitos, Levente [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44 (Sweden)

    2016-07-04

    The effects of the sp (Al, Ga, Ge, Sn) element additions on the microstructure and mechanical properties of equimolar NiCoFeCr High Entropy Alloys (HEAs) are investigated. The results of X-ray diffraction measurements combined with scanning electron microscopy SEM investigations, as well as the results of nanoindentation test revealed that while the structure of the basic alloy is full FCC, the addition of sp elements has changed it to a multiphase containing both FCC and BCC components, but in different scales. Accordingly, the addition of sp elements strongly increases the strength of the basic state, especially in the case of alloys where the BCC phase is dominant in the microstructure. The physical properties as the Young’s- and shear moduli of the investigated HEAs were also determined using ultrasound methods. The correlation between these two moduli suggests a general relationship for metallic alloys.

  10. Investigation on fuel-cladding chemical interaction in metal fuel for FBR. Reaction of rare earth elements with Fe-Cr alloy

    International Nuclear Information System (INIS)

    Inagaki, Kenta; Ogata, Takanari

    2010-01-01

    Rare-earth fission product (FP) elements generated in the metal fuel interact with cladding alloy and result in the wastage of the cladding (Fuel-Cladding Chemical Interaction (FCCI)). To evaluate FCCI quantitatively, several influential factors must be considered. They are temperature, temperature gradient, time, composition of the cladding and the behavior of rare-earth FP. In this research, the temperature and time dependencies are investigated with tests in the simplified system. Fe-12wt%Cr was used as stimulant material of cladding and rare-earth alloy 13La -24Ce -12Pr -39Nd -12Sm (RE) as a rare-earth FP. A diffusion couple Fe-Cr/RE was made and annealed at 923K, 853K, 773K or 693K. The structures of reaction layers were analyzed with Electron Probe Micro Analyzer (EPMA) and the details of the structures were clarified. The width of the reaction layer in the Fe-Cr alloy grew in proportion to the square root of time. The reaction rate constants K=(square of the width of reaction layer / time) were evaluated. It was confirmed that the relation between K and the inverse of the temperature showed linearity above 773 K. (author)

  11. Microstructural study of He-implanted Fe-Cr alloys with the use of conventional lifetime technique and pulsed low energy positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Krsjak, Vladimir [Institute for Energy, Joint Research Centre of the European Commission, Petten (Netherlands); Slugen, Vladimir; Petriska, Martin; Sojak, Stanislav [Slovak University of Technology, FEI, Bratislava (Slovakia); Egger, Werner [Institut fuer Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Neubiberg (Germany)

    2009-11-15

    Experimental simulation of the radiation damage using He+ implantation has been performed in research of Fe-Cr model alloys. Different chromium content in the studied materials enables investigations of the effect of this element on the microstructure of radiation treated materials. The damaged region was investigated with the positron lifetime techniques with focus on the size and distribution of the defects. Our measurements show that not only pulsed low energy positron beam spectroscopy (PLEPS) but also conventional lifetime spectroscopy can study the behaviour of vacancy type defects induced by implantation of charged particles. Our results show that initial microstructure of low Cr alloys with significant presence of vacancy type defects is less resistant to creation of defect agglomeration in comparison with higher Cr alloys. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys

    Science.gov (United States)

    Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm; Zhang, Yanwen

    2018-01-01

    The role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably, the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding eg to t2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.

  13. Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, R., E-mail: r.koegler@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Anwand, W. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Richter, A. [Department of Engineering, Technical University of Applied Sciences Wildau, Bahnhofstrasse 1, 15745 Wildau (Germany); Butterling, M.; Ou, Xin; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Chen, C.-L. [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China)

    2012-08-15

    Open volume defects generated by ion implantation into oxide dispersion strengthened (ODS) alloy and the related hardness were investigated by positron annihilation spectroscopy and nanoindentation measurements, respectively. Synchronized dual beam implantation of Fe and He ions was performed at room temperature and at moderately enhanced temperature of 300 Degree-Sign C. For room temperature implantation a significant hardness increase after irradiation is observed which is more distinctive in heat treated than in as-received ODS alloy. There is also a difference between the simultaneous and sequential implantation mode as the hardening effect for the simultaneously implanted ODS alloy is stronger than for sequential implantation. The comparison of hardness profiles and of the corresponding open volume profiles shows a qualitative agreement between the open volume defects generated on the nanoscopic scale and the macroscopic hardness characteristics. Open volume defects are drastically reduced for performing the simultaneous dual beam irradiation at 300 Degree-Sign C which is a more realistic temperature under application aspects. Few remaining defects are clusters of 3-4 vacancies in connection with Y oxide nanoparticles. These defects completely disappear in a shallow layer at the surface. The results are in agreement with hardness measurements showing little hardness increase after irradiation at 300 Degree-Sign C. Suitable characteristics of ODS alloy for nuclear applications and the close correlation between He-related open volume defects and the hardness characteristics are verified.

  14. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    Science.gov (United States)

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  15. M3FT-16OR0203052-Test Design for FeCrAl Alloy Tube Irradiation in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-01

    This calculation summarizes thermal analyses of a flexible rabbit design for irradiating a variety of pressurized water reactor (PWR) cladding materials (stainless steel, iron-chromium aluminum [FeCrAl], Zircaloy, and Inconel) with variable dimensions at a temperature of 350 °C in the flux trap of the High Flux Isotope Reactor (HFIR). The design can accommodate standard cladding for outer diameters (ODs) of approximately 9.50 mm with thickness ranging from 0.30 mm to 0.70 mm. The length is generally between 10 and 50 mm. The specimens contain moly inserts with a variable OD that provides the heat flux necessary to achieve the design temperature with such a small fixed gas gap. The primary outer containment is an Al-6061 housing with a slightly enlarged inner diameter (ID) of 9.60 mm. The specimen temperature is controlled by determining a helium/argon gas mixture specific to the as-built specimen and housing. Variables that affect the required gas mixture are the cladding material (thermal expansion, density, heat generation rate), cladding OD, housing ID, and cladding ID. This calculation documents the analyses performed to determine required gas mixtures for a variety of scenarios.

  16. A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yundong [College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116 (China); Flesch, Rodolfo C.C. [Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Jin, Tao, E-mail: jintly@fzu.edu.cn [College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116 (China)

    2017-06-15

    Highlights: • The effects of blood vessels on temperature field distribution are investigated. • The critical thermal energy of hyperthermia is computed by the Finite Element Analysis. • A treatment method is proposed by using the MNPs with low Curie temperature. • The cooling effects due to the blood flow can be controlled. - Abstract: Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.

  17. A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels

    Science.gov (United States)

    Tang, Yundong; Flesch, Rodolfo C. C.; Jin, Tao

    2017-06-01

    Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.

  18. Development of Computational Tools for Modeling Thermal and Radiation Effects on Grain Boundary Segregation and Precipitation in Fe-Cr-Ni-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This work aims at developing computational tools for modeling thermal and radiation effects on solute segregation at grain boundaries (GBs) and precipitation. This report described two major efforts. One is the development of computational tools on integrated modeling of thermal equilibrium segregation (TES) and radiation-induced segregation (RIS), from which synergistic effects of thermal and radiation, pre-existing GB segregation have been taken into consideration. This integrated modeling was used in describing the Cr and Ni segregation in the Fe-Cr-Ni alloys. The other effort is thermodynamic modeling on the Fe-Cr-Ni-Mo system which includes the major alloying elements in the investigated alloys in the Advanced Radiation Resistant Materials (ARRM) program. Through thermodynamic calculation, we provide baseline thermodynamic stability of the hardening phase Ni2(Cr,Mo) in selected Ni-based super alloys, and contribute knowledge on mechanistic understanding on the formation of Ni2(Cr,Mo) in the irradiated materials. The major outcomes from this work are listed in the following: 1) Under the simultaneous thermal and irradiation conditions, radiation-induced segregation played a dominant role in the GB segregation. The pre-existing GB segregation only affects the subsequent radiation-induced segregation in the short time. For the same element, the segregation tendency of Cr and Ni due to TES is opposite to it from RIS. The opposite tendency can lead to the formation of W-shape profile. These findings are consistent with literature observation of the transitory W-shape profile. 2) While TES only affects the distance of one or two atomic layers from GBs, the RIS can affect a broader distance from GB. Therefore, the W-shape due to pre-existing GB segregation is much narrower than that due to composition gradient formed during the transient state. Considering the measurement resolution of Auger or STEM analysis, the segregation tendency due to RIS should play a dominant

  19. Microstructural characterization of Y{sub 2}O{sub 3} ODS-Fe-Cr model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)], E-mail: vanessa.decastro@materials.ox.ac.uk; Leguey, T.; Munoz, A.; Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Marquis, E.A.; Lozano-Perez, S.; Jenkins, M.L. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2009-04-30

    Two Fe-12 wt% Cr alloys, one containing 0.4 wt% Y{sub 2}O{sub 3} and the other Y{sub 2}O{sub 3}-free, have been produced by mechanical alloying followed by hot isostatic pressing. These oxide dispersion strengthened and reference alloys were characterized both in the as-HIPed state and after tempering by transmission electron microscopy and atom-probe tomography. The as-HIPed alloys exhibited the characteristic microstructure of lath martensite and contained a high density of dislocations. Small voids with sizes <10 nm were also observed. Both alloys also contained M{sub 3}C and M{sub 23}C{sub 6} carbides (M = Cr, Fe) probably as a result of C ingress during milling. After tempering at 1023 K for 4 h the microstructures had partially recovered. In the recovered regions, martensite laths were replaced by equiaxed grains in which M{sub 23}C{sub 6} carbides decorated the grain boundaries. In the ODS alloy nanoparticles containing Y were commonly observed within grains, although they were also present at grain boundaries and adjacent to large carbides.

  20. Neutron diffraction study of atomic ordering upon spinodal decomposition in magnetically hard Fe-Cr-Co alloys

    International Nuclear Information System (INIS)

    Vintajkin, E.Z.; Vintajkin, B.E.; Mikke, K.; Mil'charek, Ya.; Yankovska-Kiselinskaya, Ya.

    2000-01-01

    By means of neutron diffraction analysis using monocrystals one studied atomic ordering in the ferromagnetic phase formed in Fe-(24-32) at. % Cr-(14-24) at. % Co-(1.7-2.3) at. % Mo high-coercivity alloys under their decomposition during thermal treatment and its effect on the high-coercivity properties. Thermal treatment boiled down to hardening starting from 1250 Deg C, homogenization, thermomagnetic treatment and step-by-step tempering to be finished under 500 Deg C. The calculations of the component equilibrium concentrations in the phases under 500 Deg C and the measurements of the intensity of superstructure reflection demonstrated that the occurrence of the long-range order similar to B2 type occurred as concentration reached 23 at. % Co in the ferromagnetic phase at its average concentration constituting 16 at. % in the alloy [ru

  1. Microstructure and magnetic properties of Fe--Cr--15 wt % Co alloys with and without V, V + Ti additions

    International Nuclear Information System (INIS)

    Belli, Y.

    1978-06-01

    The relationship between microstructure and magnetic properties of Fe--28Cr--15Co, Fe--23Cr--15Co--5V and Fe--23Cr--15Co--3V--2Ti (wt.%) alloys have been investigated by transmission electron microscopy, and Lorentz microscopy. The heat treatments adopted for the present investigation are (1) isothermal aging, (2) thermomagnetic treatment (TMT) + step-aging, and (3) TMT + continuous cooling. The morphology of the microstructure is very much affected by the aging temperature. Thermomagnetic treatment is very effective in elongation of the Fe--Co rich (α 1 ) phase particles, and the elongation of the α 1 phase particles is independent of crystal orientation. Step-aging and continuous cooling produce optimum magnetic properties. During step-aging microstructural features remain essentially unchanged, and the composition difference of the two phases increases. Continuous cooling is an alternative way to produce optimum magnetic properties. Microstructural features are almost independent of the cooling rate, and then they must be developed mainly by the TMT. Lorentz microscopy results show that the domain walls tend to lie in the weakly ferromagnetic matrix phase and are pinned by Fe--Co rich (α 1 ) phase particles as pinning sites (as opposed to the supposed single domain hardening). This observation suggests that the magnetization mechanism is governed by domain wall pinning. Magnetic domains are narrower in optimally treated alloys, and elongated parallel to the applied field. The anisotropy induced during TMT increases during step-aging or continuous cooling. The three alloys produce similar magnetic properties. However, due to their more facilitated heat treatments the alloys containing V and V + Ti additions would be of more industrial interest

  2. Characterization of rust layer formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich environment by Cl and Fe K-edge XANES measurements

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    Chloride in atmosphere considerably reduces the corrosion resistance of conventional weathering steel containing a small amount of Cr. Ni is an effective anticorrosive element for improving the corrosion resistance of steel in a Cl-rich environment. In order to clarify the structure of the protective rust layer of weathering steel, Cl and Fe K-edge X-ray absorption near edge structure (XANES) spectra of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich atmosphere were measured. The Fe K-XANES measurements enable the characterization of mixture of iron oxides such as rust. The chemical composition of the rust was determined by performing pattern fitting of the measured spectra. All the rust is composed mainly of goethite, akaganeite, lepidocrocite and magnetite. Among these iron oxides, akaganeite in particular is the major component in the rust. Additionally, the amount of akaganeite in the rust of Fe-Ni alloy is much greater than that in rust of Fe-Cr alloy. Akaganeite is generally considered to facilitate the corrosion of steel, but our results indicate that akaganeite in the rust of Fe-Ni alloy is quantitatively different from that in rust of Fe-Cr alloy and does not facilitate the corrosion of steel. The shoulder peak observed in Cl K-XANES spectra reveals that the rust contains a chloride other than akaganeite. The energy of the shoulder peak does not correspond to that of any well-known chlorides. In the measured spectra, there is no proof that Cl, by combining with the alloying element, inhibits the alloying element from acting in corrosion resistance. The shoulder peak appears only when the content of the alloying element is lower than a certain value. This suggests that the generation of the unidentified chloride is related to the corrosion rate of steel. (author)

  3. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  4. Stacking faults in Zr(Fe, Cr)2 Laves structured secondary phase particle in Zircaloy-4 alloy.

    Science.gov (United States)

    Liu, Chengze; Li, Geping; Yuan, Fusen; Han, Fuzhou; Zhang, Yingdong; Gu, Hengfei

    2018-02-01

    Stacking faults (SFs) in secondary phase particles (SPPs), which generally crystallize in the Laves phase in Zircaloy-4 (Zr-4) alloy, have been frequently observed by researchers. However, few investigations on the nano-scale structure of SFs have been carried out. In the present study, an SF containing C14 structured SPP, which located at grain boundaries (GBs) in the α-Zr matrix, was chosen to be investigated, for its particular substructure as well as location, aiming to reveal the nature of the SFs in the SPPs in Zr-4 alloy. It was indicated that the SFs in the C14 structured SPP actually existed in the local C36 structured Laves phase, for their similarities in crystallography. The C14 → C36 phase transformation, which was driven by synchroshearing among the (0001) basal planes, was the formation mechanism of the SFs in the SPPs. By analyzing the strained regions near the SPP, a model for understanding the driving force of the synchroshear was proposed: the interaction between SPP and GB resulted in the Zener pinning effect, leading to the shearing parallel to the (0001) basal planes of the C14 structured SPP, and the synchroshear was therefore activated.

  5. New insights on the mechanisms controlling the nickel dependence of swelling in irradiated Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Hoyt, J.J.; Garner, F.A.

    1990-01-01

    In a previous report the interstitial and vacancy biases for an edge dislocation in a binary alloy were examined, assuming the existence of an equilibrium Cottrel atmosphere around the line defect. The Larche' and Cahn treatment of stress relaxation due to a solute atmosphere was employed with the Wolfer and Ashkin formulation for the bias of an edge dislocation to compute the bias as a function of nickel concentration in the Fe-Ni system. Using the minimum critical void radius concept, the concentration-dependent bias was shown to offer a plausible explanation for the minimum in swelling observed at intermediate nickel levels and the gradual increase in swelling at higher nickel levels. In this report, a more realistic description of the composition dependence of vacancy diffusion has also been included, an addition which improves the model substantially. 18 refs., 8 figs

  6. Thermal, magnetic, and structural properties of soft magnetic FeCrNbCuSiB alloy ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Quintero, D.L.; Pineda-Gomez, P.; Gomez, M.

    2006-01-01

    The thermal, magnetic and structural properties of amorphous magnetic Fe 73.5-x Cr x Nb 3 Cu 1 Si 13.5 B 9 alloy ribbons, with x=0, 2, 4, 6, 8, and 10, were studied by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), magneto-impedance measurements and X-ray diffraction (XRD). The ribbons exhibit ultrasoft magnetic behavior, especially giant magneto-impedance effect, GMI. A three-peak behavior was observed in GMI curves. Particular attention has been given to observation of crystallization kinetics via DSC and TGA. The primary crystallization T pcr , and Curie T c , temperatures were determined from DSC and TGA data, respectively. The effect of partial substitution of iron by Cr on the thermal and magnetic properties is discussed

  7. Thermal annealing behavior of nano-size metal-oxide particles synthesized by ion implantation in Fe-Cr alloy

    Science.gov (United States)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Descoins, M.; Mangelinck, D.; Dalle, F.; Arnal, B.; Delauche, L.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for the next generation nuclear reactors, as well as fusion facilities. The detailed understanding of the mechanisms involved in the precipitation of nano-oxides during ODS steel production would strongly contribute to the improvement of the mechanical properties and the optimization of manufacturing of ODS steels, with a potentially strong economic impact for their industrialization. A useful tool for the experimental study of nano-oxide precipitation is ion implantation, a technique that is widely used to synthesize precipitate nanostructures in well-controlled conditions. Earlier, we have demonstrated the feasibility of synthesizing aluminum-oxide particles in the high purity Fe-10Cr alloy by consecutive implantation with Al and O ions at room temperature. This paper describes the effects of high-temperature annealing after the ion implantation stage on the development of the aluminum based oxide nanoparticle system. Using transmission electron microscopy and atom probe tomography experiments, we demonstrate that post-implantation heat treatment induces the growth of the nano-sized oxides in the implanted region and nucleation of new oxide precipitates behind the implantation zone as a result of the diffusion driven broadening of implant profiles. A tentative scenario for the development of metal-oxide nano-particles at both ion implantation and heat treatment stages is suggested based on the experimental observations.

  8. Dry sliding wear of Al-Fe-Cr-Mn quasicrystalline phase former alloy obtained by spray forming; Estudo do comportamento ao desgaste de liga Al-Fe-Cr-Mn obtida por conformacao por spray

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, S.M.T.; Rios, C.T.; Botta Filho, W.J.; Bolfarini, C.; Kiminami, C.S. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Gargarella, P.; Mendes, M.A.B., E-mail: marcio.andreato@gmail.co [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    Samples from different regions of a spray formed billet of Al{sub 92}Fe{sub 3}Cr{sub 2}Mn{sub 3} quasicrystalline phase former alloy were analyzed and their wear behavior has been studied. The microstructures observed depend on the cooling rate imposed to the material. The border of the billet exhibits a very fine structure with presence of quasicrystalline phase and the base showed a fine structure but without presence of quasicrystalline phase. Dry sliding wear tests were made using three loads and samples of these two different regions. The wear surfaces were analyzed by scanning electron microscopy and X-ray diffraction. Similar wear behavior was observed in the border and the base samples at the same load. The wear mechanism verified is the adhesive and the applied load increases the formation of Al{sub 2}O{sub 3}. These particles can take off the surface and act as abrasive, which can explain the large increase in the wear rate for the samples loaded at 30N.(author)

  9. Influence of interfacial scattering and surface roughness on giant magnetoresistance in Fe/Cr trilayers using ab initio layer potentials

    International Nuclear Information System (INIS)

    Pereiro, M.; Botana, J.; Baldomir, D.; Warda, K.; Wojtczak, L.; Man'kovsky, S.V.; Iglesias, M.; Pardo, V.; Arias, J.E.

    2005-01-01

    Ab initio full-potential linearized augmented-plane-wave (FP-LAPW) method combined with the semiclassical Boltzmann formalism was employed to calculate the giant magnetoresistance ratio in the trilayers nFe/3Cr/nFe (1=< n=<8). The present results emphasize the very important role of the ferromagnetic layer as well as the interfacial scattering and surface roughness on the giant magnetoresistance effect

  10. Scanning electron microscopy and X-ray photoelectron studies of high temperature oxidation mechanism of a Fe-Cr-Al alloy

    International Nuclear Information System (INIS)

    Delaunay, F.; Berthier, C.; Lameille, J.M.

    2000-01-01

    adherence and uniformity of the protective alumina scale. However, these small islands, when located at the surface, offer oxygen a diffusion path towards the underlying alloy. Figure 5 confirms that titanium and magnesium, present in low concentrations in the alloy, can diffuse across the alumina scale to be oxidized at the surface. In conclusion, oxide scale initially mainly consists of thermodynamically stable α-Al 2 O 3 , and after longer exposure, titanium and magnesium diffuse towards the surface to form TiO 2 and MgAl 2 O 4 . The addition of yttrium improves the adhesion and uniformity of alumina scale. Little islands of yttrium, zirconium and titanium are present in the alloy, probably due to low solubility, and they may play a role in improving scale adherence by acting as anchoring points. (authors)

  11. Viability of thin wall tube forming of ATF FeCrAl

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  12. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD)

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C to a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.

  13. Effect of titanium or/and aluminium on 1 MeV electron swelling of low chromium Fe-Cr10-Ni20-25 type alloys

    International Nuclear Information System (INIS)

    Seran, J.L.

    1985-10-01

    Simulation swelling results with 1 MeV electrons at 500 0 C and 600 0 C on many low chromium steels hardened in solid solution or by γ' phase precipitation by titanium or/and aluminium additions. These new steels, for some chemical compositions, may have a resistance to swelling upper than the classical reference materials such as 316 Ti type materials. The alloys hardened by precipitation and then highly doped in titanium and/or aluminium do not seem very propositions because cavity germination is important at medium temperatures. In the contrary, the under-stabilized steels are also to rule-out because their swelling speed is prohibitive. Between these two extremes, 10-25 alloys hardened in solid solution by some tenth per cent of titanium could be the most interesting one, at least at temperatures higher than 500 0 C [fr

  14. Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sun, Zhiqian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-03

    There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process in a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental

  15. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  16. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

  17. Scanning electron microscopy and X-ray photoelectron studies of high temperature oxidation mechanism of a Fe-Cr-Al alloy; Etude par microscopie electronique a balayage et spectroscopie de photoelectrons des mecanismes d'oxydation a haute temperature d'un alliage Fe-Cr-Al

    Energy Technology Data Exchange (ETDEWEB)

    Delaunay, F.; Berthier, C.; Lameille, J.M. [CEA Saclay, Dept. d' Entreposage et de Stockage des Dechets (DCC/DPE/SPCP), 91 - Gif-sur-Yvette (France)

    2000-07-01

    5 show continuous, uniform and adherent scale, in good agreement with Mennicke and al, who also observed that yttrium in Fe{sub 20}Cr{sub 5}Al improves the adherence and uniformity of the protective alumina scale. However, these small islands, when located at the surface, offer oxygen a diffusion path towards the underlying alloy. Figure 5 confirms that titanium and magnesium, present in low concentrations in the alloy, can diffuse across the alumina scale to be oxidized at the surface. In conclusion, oxide scale initially mainly consists of thermodynamically stable {alpha}-Al{sub 2}O{sub 3}, and after longer exposure, titanium and magnesium diffuse towards the surface to form TiO{sub 2} and MgAl{sub 2}O{sub 4}. The addition of yttrium improves the adhesion and uniformity of alumina scale. Little islands of yttrium, zirconium and titanium are present in the alloy, probably due to low solubility, and they may play a role in improving scale adherence by acting as anchoring points. (authors)

  18. Influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers, Fe/Cr/Fe- and Fe/MgO/Fe multilayers; Untersuchung der Morphologie und magnetische Eigenschaften von ionenstrahl-gesputterten Eisen-Einzelschichten, Fe/Cr/Fe- und Fe/MgO/Fe-Schichtsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Steeb, Alexandra

    2007-04-05

    In this PhD Thesis, the influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers on GaAs is examined. To analyze the structure of the produced iron films, low energy electron diffraction and scanning tunneling microscopy is employed. The utilized methods to investigate the magnetic properties are Kerr- and SQUID-magnetometry and ferromagnetic resonance. It is demonstrated that on untreated as well as on presputtered and heated GaAs substrates the sputtered iron films grow epitaxially. The least surface roughness of 1 A exhibit iron films grown on untreated GaAs, while iron films on heated GaAs have the highest roughness of 30 A. The largest crystal anisotropy constant is found for the presputtered GaAs/Fe-System. For this preparation method, two monolayers of iron are determined to be magnetically dead layers. At a film thickness of 100 A, 83% of the value for saturation magnetization of bulk iron are achieved. The small observed FMR-linewidths confirm the good bulk properties of the ion beam sputtered iron. Furthermore, an antiferromagnetic interlayer exchange coupling in sputtered Fe/Cr/Fe-films was achieved. For a thickness of 12 to 17 A of the chrome interlayer, a coupling strength up to 0.2 mJ/m{sup 2} is found. To account for the small coupling strength, a strong intermixing at the interface is assumed. Finally, epitaxial Fe/MgO/Fe/FeMn multilayers are deposited on GaAs. After the structuring, it is possible to detect tunneling processes in the tunneling contacts with current-voltage measurements. The tunnel magneto resistance values of 2% are small, which can be explained by the absence of sharp, well-defined interfaces between the Fe/FeMn and the Fe/MgO interfaces. These results demonstrate, that analog to MBE the ion beam sputtering method realizes good magnetic bulk properties. However, interface sensitive phenomena are weakened because of a strong intermixing at the interfaces. (orig.)

  19. Interdiffusion behavior of U3Si2 with FeCrAl via diffusion couple studies

    Science.gov (United States)

    Hoggan, Rita E.; He, Lingfeng; Harp, Jason M.

    2018-04-01

    Uranium silicide (U3Si2) is a candidate to replace uranium oxide (UO2) as light water reactor (LWR) fuel because of its higher thermal conductivity and higher fissile density relative to the current standard, UO2. A class of Fe, Cr, Al alloys collectively known as FeCrAl alloys that have superior mechanical and oxidation resistance are being considered as an alternative to the standard Zirconium based LWR cladding. The interdiffusion behavior between FeCrAl and U3Si2 is investigated in this study. Commercially available FeCrAl, along with U3Si2 pellets were placed in diffusion couples. Individual tests were ran at temperatures ranging from 500 °C to 1000 °C for 30 h and 100 h. The interdiffusion was analyzed with an optical microscope, scanning electron microscope, and transmission electron microscope. Uniform and planar interdiffusion layers along the material interface were illustrated with backscatter electron micrographs and energy-dispersive X-ray spectroscopy. Electron diffraction was used to validate phases present in the system, including distinct U2Fe3Si/UFe2 and UFeSi layers at the material interface. U and Fe diffused far into the FeCrAl and U3Si2 matrix, respectively, in the higher temperature tests. No interaction was observed at 500 °C for 30 h.

  20. Parametric and experimentally informed BWR Severe Accident Analysis Utilizing FeCrAl - M3FT-17OR020205041

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Larry J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristics are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation rate

  1. Hardening of Fe-Cr-Mn steels cold plastic working

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop-Lyashko, V.I.; Nikoporets, N.M.

    1983-01-01

    The dependence is established between the level of proper-- ties obtained after cold plastic working and development of martensite transformations when loading in Fe-Cr-Mn steels containing 0.1-0.5% C, 13% Cr, 8-12% Mn, as well as in a number of complex alloyed steels. It is shown that the highest level of mechanical properties can be obtained after cold plastic working only in steels with definite austenite stability. Cold plastic working can both activize and stabilize austenite relatively to martensite formation during loading. The first thing is found when under the effect of preliminary cold working dislocation splitting takes place, as well as the formation of a small amount of E-phase and martensite. The second thing manifests itself when under the effect of cold working performed above Md (Md<20 deg C) cell dislocation structure is formed and dislocation pinning takes place

  2. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  3. Multiwall carbon nanotubes decorated with FeCr2O4, a new selective electrochemical sensor for amoxicillin determination

    International Nuclear Information System (INIS)

    Ensafi, Ali Asghar; Allafchian, Ali Reza; Rezaei, Behzad

    2012-01-01

    FeCr 2 O 4 nanoparticles were synthesized and then multiwall carbon nanotubes (MWCNTs) were decorated with FeCr 2 O 4 nanoparticles. The new nanoparticles were characterized with different techniques such as vibrating sample magnetometer, Fourier transform infrared spectroscopy, scanning surface microscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. The results of the study confirm that the particles are pure FeCr 2 O 4 –MWCNTs with a cubic structure. No diffraction peaks of other impurities such as FeO or Cr 2 O 3 were observed. The diffractive peaks of FeCr 2 O 4 –MWCNTs are broadened, implying that the crystalline size of FeCr 2 O 4 –MWCNTs particles is quite small. The mean particle size of FeCr 2 O 4 –MWCNTs calculated by Scherrer equation is about 25 nm, whereas the existence of particles with less than 30 nm size at FeCr 2 O 4 –MWCNTs is clearly reflected in 2D and 3D AFM images. The TEM image confirms that the spaghetti-like FeCr 2 O 4 –MWCNTs formed a porous structure. The synthesized FeCr 2 O 4 –MWCNTs nanoparticles could be used as a new electrocatalysis for voltammetric determination of amoxicillin (AMC). Under the optimized conditions at pH 7.5 and in differential pulse voltammetry, the oxidation peak current of AMC at the surface of the mediator has two linear dynamic ranges including 0.1–10.0 and 10.0–70.0 μmol L −1 . The detection limit of 0.05 μmol L −1 was achieved. The influence of potential interfering compounds on the selectivity was studied. Finally, the modified electrode showed good sensitivity, selectivity, and stability for the determination of AMC in real samples.

  4. Multiwall carbon nanotubes decorated with FeCr2O4, a new selective electrochemical sensor for amoxicillin determination

    Science.gov (United States)

    Ensafi, Ali Asghar; Allafchian, Ali Reza; Rezaei, Behzad

    2012-11-01

    FeCr2O4 nanoparticles were synthesized and then multiwall carbon nanotubes (MWCNTs) were decorated with FeCr2O4 nanoparticles. The new nanoparticles were characterized with different techniques such as vibrating sample magnetometer, Fourier transform infrared spectroscopy, scanning surface microscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. The results of the study confirm that the particles are pure FeCr2O4-MWCNTs with a cubic structure. No diffraction peaks of other impurities such as FeO or Cr2O3 were observed. The diffractive peaks of FeCr2O4-MWCNTs are broadened, implying that the crystalline size of FeCr2O4-MWCNTs particles is quite small. The mean particle size of FeCr2O4-MWCNTs calculated by Scherrer equation is about 25 nm, whereas the existence of particles with less than 30 nm size at FeCr2O4-MWCNTs is clearly reflected in 2D and 3D AFM images. The TEM image confirms that the spaghetti-like FeCr2O4-MWCNTs formed a porous structure. The synthesized FeCr2O4-MWCNTs nanoparticles could be used as a new electrocatalysis for voltammetric determination of amoxicillin (AMC). Under the optimized conditions at pH 7.5 and in differential pulse voltammetry, the oxidation peak current of AMC at the surface of the mediator has two linear dynamic ranges including 0.1-10.0 and 10.0-70.0 μmol L-1. The detection limit of 0.05 μmol L-1 was achieved. The influence of potential interfering compounds on the selectivity was studied. Finally, the modified electrode showed good sensitivity, selectivity, and stability for the determination of AMC in real samples.

  5. Determination of the Fe-Cr-Ni and Fe-Cr-Mo Phase Diagrams at Intermediate Temperatures using a Novel Dual-Anneal Diffusion-Multiple Approach

    Science.gov (United States)

    Cao, Siwei

    Phase diagrams at intermediate temperatures are critical both for alloy design and for improving the reliability of thermodynamic databases. There is a significant shortage of experimental data for phase diagrams at the intermediate temperatures which are defined as around half of the homologous melting point (in Kelvin). The goal of this study is to test a novel dual-anneal diffusion multiple (DADM) methodology for efficient determination of intermediate temperature phase diagrams using both the Fe-Cr-Ni and Fe-Cr-Mo systems as the test beds since both are very useful for steel development. Four Fe-Cr-Ni-Mo-Co diffusion multiples were made and annealed at 1200 °C for 500 hrs. One sample was used directly for evaluating the isothermal sections at 1200 ° C. The other samples (and cut slices) were used to perform a subsequent dual annealing at 900 °C (500 hrs), 800 °C (1000 hrs), 700 °C (1000 hrs), and 600 °C (4500 hrs), respectively. The second annealing induced phase precipitation from the supersaturated solid solutions that were created during the first 1200 °C annealing. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) were used to identify the phases and precipitation locations in order to obtain the compositions to construct the isothermal sections of both ternary systems at four different temperatures. The major results obtained from this study are isothermal sections of the Fe-Cr-Ni and Fe-Cr-Mo systems at 1200 °C, 900 °C, 800 °C, and 700 °C. For the Fe-Cr-Ni system, the results from DADMs agree with the majority of the literature results except for results at both 800 °C and 700 °C where the solubility of Cr in the fcc phase was found to be significantly higher than what was computed from thermodynamic calculations using the TCFE5 database. Overall, it seems that the Fe-Cr-Ni thermodynamic assessment only needs slight improvement to

  6. Boron solubility in Fe-Cr-B cast irons

    International Nuclear Information System (INIS)

    Guo Changqing; Kelly, P.M.

    2003-01-01

    Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 deg. C for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice

  7. Effects of compositional modifications on the sensitization behavior of Fe-Cr-Mn steels

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Tortorelli, P.F.; Bell, G.E.C.

    1992-01-01

    Fe-Cr-Mn steels may possibly be used in conjuction with aqueous blankets or coolants in a fusion device. Therefore, standard chemical immersion (modified Strauss) tests were conducted to characterize the effects of compositional modifications on the thermal sensitization behavior of these steels. A good correlation among weight losses, intergranular corrosion, and cracking was found. The most effective means of decreasing their susceptibility was through reduction of the carbon concentration of these steels to 0.1%, but the sensitization resistance of Fe-Cr-Mn-0.1 C compositions was still inferior to type 304L and other similar stainless steels. Alloying additions that form stable carbides did not have a very significant influence on the sensitization behavior. (orig.)

  8. Effects of particle size and forming pressure on pore properties of Fe-Cr-Al porous metal by pressureless sintering

    Science.gov (United States)

    Koo, Bon-Uk; Yi, Yujeong; Lee, Minjeong; Kim, Byoung-Kee

    2017-03-01

    With increased hydrogen consumption in ammonia production, refining and synthesis, fuel cells and vehicle industries, development of the material components related to hydrogen production is becoming an important factor in industry growth. Porous metals for fabrication of hydrogen are commonly known for their relative excellence in terms of large area, lightness, lower heat capacity, high toughness, and permeability. Fe-Cr-Al alloys not only have high corrosion resistance, heat resistance, and chemical stability but also ductility, excellent mechanical properties. In order to control powder size and sintering temperature effects of Fe-Cr-Al porous metal fabrication, Fe-Cr-Al powder was classified into 25-35 μm, 35-45 μm, 45-75 μm using an auto shaking sieve machine and then classified Fe-Cr-Al powders were pressed into disk shapes using a uniaxial press machine and CIP. The pelletized Fe-Cr-Al specimens were sintered at various temperatures in high vacuum. Properties such as pore size, porosity, and air permeability were evaluated using perm-porosimetry. Microstructure and phase changes were observed with SEM and XRD. Porosity and relative density were proportionated to increasing sintering temperature. With sufficient sintering at increasing temperatures, the pore size is expected to be gradually reduced. Porosity decreased with increasing sintering temperature and gradually increased necking of the powder.

  9. NEAMS-ATF M3 Milestone Report: Literature Review of Modeling of Radiation-Induced Swelling in Fe-Cr-Al Steels

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Biner, Suleyman Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Jiang, Chao [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.

    2015-12-01

    Fe-Cr-Al steels are proposed as accident-tolerant-fuel (ATF) cladding materials in light water reactors due to their excellent oxidation resistance at high temperatures. Currently, the understanding of their performance in reactor environment is still limited. In this review, firstly we reviewed the experimental studies of Fe-Cr-Al based alloys with particular focus on the radiation effects in these alloys. Although limited data are available in literature, several previous and recent experimental studies have shown that Fe-Cr-Al based alloys have very good void swelling resistance at low and moderate irradiation doses but the growth of dislocation loops is very active. Overall, the behavior of radiation damage evolution is similar to that in Fe-Cr ferritic/martensitic alloys. Secondly, we reviewed the rate theory-based modeling methods for modeling the coevolution of voids and dislocation loops in materials under irradiation such as Frenkel pair three-dimensional diffusion model (FP3DM) and cluster dynamics. Finally, we summarized and discussed our review and proposed our future plans for modeling radiation damage in Fe-Cr-Al based alloys.

  10. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  11. EIS Evaluation of Fe, Cr, and Ni in NaVO3 at 700°C

    Directory of Open Access Journals (Sweden)

    O. Sotelo-Mazón

    2014-01-01

    Full Text Available Due to the depletion of high-grade fuels and for economic reasons, use of residual fuel oil in energy generation systems is a common practice. Residual fuel oil contains sodium, vanadium, and sulphur as impurities, as well as NaCl contamination. Metallic dissolution caused by molten vanadates has been classically considered the main corrosion process involved in the degradation of alloys exposed to the combustion products of heavy fuel oils. Iron and nickel base alloys are the commercial alloys commonly used for the high temperature applications, for example, manufacture of components used in aggressive environments of gas turbines, steam boilers, and so forth. Therefore, because the main constituents of these materials are Fe, Cr, and Ni, where Cr is the element responsible for providing the corrosion resistance, in this study the electrochemical performance of Fe, Cr, and Ni in NaVO3 at 700°C in static air for 100 hours was evaluated.

  12. Effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels

    International Nuclear Information System (INIS)

    Kim, Jae Young; Park, Yong Soo; Kim, Young Sik

    1998-01-01

    This paper dealt with the effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels. The experimental alloys were made by vacuum induction melting and then hot rolled. The alloys were designed by controlling Cr eq /Ni eq ratio. Two alloys had austenitic phase and one alloy showed (austenite+ferrite) du-plex phase. High nitrogen addition in austenitic alloys stabilized the austenitic structure and then suppressed the formations of ferrite and α martensite, but martensite was formed in the case of large Cr eq /Ni eq ratio and low nitrogen addition. Pitting initiation site was grain boundary in austenitic alloys and was ferrite/austenite phase boundary in duplex alloy in the HCl solution. In sulfuric acids, austenitic alloys showed uniform corrosion, but ferrite phase was preferentially corroded in duplex alloy. The preferential dissolution seems to be related with the distribution of alloying elements between ferrite and austenite. Intergranular corrosion test showed that corrosion rate by immersion Huey test had a linear relation with degree of sensitization by EPR test

  13. Multi-scale modelling of radiation damage in Fe-Cr based on ab initio electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Paer

    2004-04-01

    The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature.

  14. Multi-scale modelling of radiation damage in Fe-Cr based on ab initio electronic structure calculations

    International Nuclear Information System (INIS)

    Olsson, Paer

    2004-04-01

    The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature

  15. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale FeCrAl Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wirth, B. D. [Univ. of Tennessee, Knoxville, TN (United States)

    2017-07-26

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced ac- cident tolerance when compared to traditional UO2 fuel zircaloy clad fuel rods. One of the potential replacement claddings are iron-chromium-alunimum (FeCrAl) alloys due to their increased oxidation resistance [1–4] and higher strength [1, 2]. While the oxidation characteristics of FeCrAl are a benefit for accident tolerance, the thermal neu- tron absorption cross section of FeCrAl is about ten times that of Zircaloy. This neutronic penalty necessitates thinner cladding. This allows for slightly larger pellets to give the same cold gap width in the rod. However, the slight increase in pellet diameter is not sufficient to compensate for the neutronic penalty and enriching the fuel beyond the current 5% limit appears to be necessary [5]. Current estimates indicate that this neutronic penalty will impose an increase in fuel cost of 15-35% [1, 2]. In addition to the neutronic disadvantage, it is anticipated that tritium release to the coolant will be larger because the permeability of hydrogen in FeCrAl is about 100 times higher than in Zircaloy [6]. Also, radiation-induced hardening and embrittlement of FeCrAl need to be fully characterized experimentally [7]. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022 [8] multiscale multiphysics modeling approaches have been used to provide insight into these the use of FeCrAl as a cladding material. The purpose of this letter report is to highlight the multiscale modeling effort for iron-chromium-alunimum (FeCrAl) cladding alloys as part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program through its Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The approach taken throughout the HIP is to

  16. Influence of the added oxide power on the magnetic property of the iron-chromium magnetic sintered alloy in alternating field; FeCr kei shoketsu jisei gokin no koryu jiki tokusei ni oyobosu sakabutsu funmatsu tenka no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Kanazawa, H. [Daido Institute of Technology, Nagoya (Japan); Kawamura, M.; Kono, T.; Kusaka, K. [Daido Steel Co., Nagoya (Japan)

    1994-07-15

    This paper describes effects of addition of mixed oxide powder on the magnetic properties of low carbon Fe-13Cr-0.8Si sintered alloy. The mixed powder composed of SiO2, CaO, and Al2O3 was added. It was found that the magnetic characteristics of specimens in direct magnetic field degraded with addition of oxide powder. However, they were improved with rising the sintering temperature. On the other hand, the amplitude relative permeability of specimens in alternating magnetic field was higher in the case of 0.1 to 0.2% addition of oxide powder than no addition one. The relative permeability showed a change of increase and then decrease with rising the sintering temperature. However, it was found that the proportion of the decrease in relative permeability at the higher sintering temperature was restrained by addition of the oxide powder. These phenomena were discussed in relation to sintered density, porosity, and electrical resistivity. 8 refs., 13 figs., 2 tabs.

  17. Phase diagrams for surface alloys

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Ruban, Andrei; Stoltze, Per

    1997-01-01

    We discuss surface alloy phases and their stability based on surface phase diagrams constructed from the surface energy as a function of the surface composition. We show that in the simplest cases of pseudomorphic overlayers there are four generic classes of systems, characterized by the sign...... is based on density-functional calculations using the coherent-potential approximation and on effective-medium theory. We give self-consistent density-functional results for the segregation energy and surface mixing energy for all combinations of the transition and noble metals. Finally we discuss...

  18. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  19. Magnetization and neutron diffraction studies on FeCrP

    Indian Academy of Sciences (India)

    physics pp. 199–205. Magnetization and neutron diffraction studies on FeCrP. SUDHISH KUMARa,†, ANJALI KRISHNAMURTHYb, BIPIN K SRIVASTAVAb, .... Neutron diffraction pattern at 300 K. Observed (calculated) pro- files are shown by dotted (solid) curves. The short vertical marks represent. Bragg reflections.

  20. Impact toughness of laser surface alloyed Aluminium

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-03-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and the impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  1. Magnetic properties of Fe-Cr-Mn-Si-based ferromagnetic shape memory ribbons

    International Nuclear Information System (INIS)

    Todaka, Takashi; Sonoda, Masashi; Enokizono, Masato

    2007-01-01

    This paper presents measured properties of Fe-Cr-Mn-Si-based ferromagnetic shape memory ribbons. The alloys are multi-functional materials, which have both the ferromagnetic and shape memory properties. To improve ferromagnetic function, we investigated to add rare earth elements, and showed that the ferromagnetic functions can be improved by adding up to 1 wt% rare earth elements. The additions worked to shift the Curie point upward and to increase the residual saturation magnetization even after heat treatment. In this paper, to improve ductility of the samples, we made clear the effect of Ni addition. The result shows that addition of Ni over 1.2 wt% improves ductility; however, the Curie temperature is slightly decreased and the region of a ferromagnetic austenitic phase becomes narrower with increasing Ni contents

  2. Sulfidation behavior of Fe20Cr alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    2001-01-01

    Alloys for use in high temperature environments rely on the formation of an oxide layer for their protection. Normally, these protective oxides are Cr 2 O 3 , Al 2 O 3 and, some times, SiO 2 . Many industrial gaseous environments contain sulfur. Sulfides, formed in the presence of sulfur are thermodynamically less stable, have lower melting points and deviate much more stoichiometrically, compared to the corresponding oxides. The mechanism of sulfidation of various metals is as yet not clear, in spite of the concerted efforts during the last decade. To help address this situation, the sulfidation behavior of Fe20Cr has been studied as a function of compositional modifications and surface state of the alloy. The alloys Fe20Cr, Fe20Cr0.7Y, Fe20Cr5Al and Fe20Cr5Al0.6Y were prepared and three sets of sulfidation tests were carried out. In the first set, the alloys were sulfidized at 700 deg C and 800 deg C for 10h. In the second set, the alloys were pre-oxidized at 1000 deg C and then sulfidized at 800 deg C for up to 45h. In the third set of tests, the initial stages of sulfidation of the alloys was studied. All the tests were carried out in a thermobalance, in flowing H 2 /2%H 2 S, and the sulfidation behavior determined as mass change per unit area. Scanning electron microscopy coupled to energy dispersive spectroscopy and X-ray diffraction analysis were used to characterize the reaction products. The addition of Y and Al increased sulfidation resistance of Fe20Cr. The addition of Y altered the species that diffused predominantly during sulfide growth. It changed from predominant cationic diffusion to predominant anionic diffusion. The addition of Al caused an even greater increase in sulfidation resistance of Fe20Cr, with the parabolic rate constant decreasing by three orders of magnitude. Y addition to the FeCrAl alloy did not cause any appreciable alteration in sulfidation resistance. Pre-oxidation of the FeCrAl and FeCrAlY alloys resulted in an extended

  3. Laser surface alloying on aluminum and its alloys: A review

    Science.gov (United States)

    Chi, Yiming; Gu, Guochao; Yu, Huijun; Chen, Chuanzhong

    2018-01-01

    Aluminum and its alloys have been widely used in aerospace, automotive and transportation industries owing to their excellent properties such as high specific strength, good ductility and light weight. Surface modification is of crucial importance to the surface properties of aluminum and its alloys since high coefficient of friction, wear characteristics and low hardness have limited their long term performance. Laser surface alloying is one of the most effective methods of producing proper microstructure by means of non-equilibrium solidification which results from rapid heating and cooling. In this paper, the influence of different processing parameters, such as laser power and scanning velocity is discussed. The developments of various material systems including ceramics, metals or alloys, and metal matrix composites (MMCs) are reviewed. The microstructure, hardness, wear properties and other behaviors of laser treated layer are analyzed. Besides, the existing problems during laser surface treatment and the corresponding solutions are elucidated and the future developments are predicted.

  4. Multiwall carbon nanotubes decorated with FeCr{sub 2}O{sub 4}, a new selective electrochemical sensor for amoxicillin determination

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali Asghar, E-mail: Ensafi@cc.iut.ac.ir; Allafchian, Ali Reza; Rezaei, Behzad [Isfahan University of Technology, Department of Chemistry (Iran, Islamic Republic of)

    2012-11-15

    FeCr{sub 2}O{sub 4} nanoparticles were synthesized and then multiwall carbon nanotubes (MWCNTs) were decorated with FeCr{sub 2}O{sub 4} nanoparticles. The new nanoparticles were characterized with different techniques such as vibrating sample magnetometer, Fourier transform infrared spectroscopy, scanning surface microscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. The results of the study confirm that the particles are pure FeCr{sub 2}O{sub 4}-MWCNTs with a cubic structure. No diffraction peaks of other impurities such as FeO or Cr{sub 2}O{sub 3} were observed. The diffractive peaks of FeCr{sub 2}O{sub 4}-MWCNTs are broadened, implying that the crystalline size of FeCr{sub 2}O{sub 4}-MWCNTs particles is quite small. The mean particle size of FeCr{sub 2}O{sub 4}-MWCNTs calculated by Scherrer equation is about 25 nm, whereas the existence of particles with less than 30 nm size at FeCr{sub 2}O{sub 4}-MWCNTs is clearly reflected in 2D and 3D AFM images. The TEM image confirms that the spaghetti-like FeCr{sub 2}O{sub 4}-MWCNTs formed a porous structure. The synthesized FeCr{sub 2}O{sub 4}-MWCNTs nanoparticles could be used as a new electrocatalysis for voltammetric determination of amoxicillin (AMC). Under the optimized conditions at pH 7.5 and in differential pulse voltammetry, the oxidation peak current of AMC at the surface of the mediator has two linear dynamic ranges including 0.1-10.0 and 10.0-70.0 {mu}mol L{sup -1}. The detection limit of 0.05 {mu}mol L{sup -1} was achieved. The influence of potential interfering compounds on the selectivity was studied. Finally, the modified electrode showed good sensitivity, selectivity, and stability for the determination of AMC in real samples.

  5. Effect of fibre laser marking on surface properties and corrosion resistance of a Fe-Ni-Cr alloy

    Science.gov (United States)

    Astarita, Antonello; Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla; Squillace, Antonino; Scherillo, Fabio

    2017-10-01

    Fiber laser techniques are increasing their use in many applications, including modification of material surface properties. In particular they are often used for materials' marking as a non-contact processing. In spite of this, the impact of the laser beam on the surface causes metallurgical and morphological changes. The developments during the laser-material interaction can also affect other surface properties, especially corrosion properties which are crucial in the case of Iron-Nickel alloys. Effect of laser marking on a Fe-Cr-Ni alloy using a Tm-fibre laser (IPG Photonics TRL1904; maximum power: 50W, wavelength: 1904 nm), is described in this paper. In order to evaluate the effect of the laser on corrosion properties a specific ageing test in salt spray has been performed. Moreover, superficial morphology analyses have been performed on samples before and after corrosion tests. Possibilities and limitations of laser marking on these alloys have been discussed, in particular from the point of view of the marked surface corrosion resistance preservation.

  6. Surface treatments for aluminium alloys

    Science.gov (United States)

    Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.

    2018-01-01

    Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.

  7. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  8. Hardness and Wear Resistance of TiC-Fe-Cr Locally Reinforcement Produced in Cast Steel

    Directory of Open Access Journals (Sweden)

    Olejnik E.

    2016-06-01

    Full Text Available In order to increase wear resistance cast steel casting the TiC-Fe-Cr type composite zones were fabricated. These zones were obtained by means of in situ synthesis of substrates of the reaction TiC with a moderator of a chemical composition of white cast iron with nickel of the Ni-Hard type 4. The synthesis was carried out directly in the mould cavity. The moderator was applied to control the reactive infiltration occurring during the TiC synthesis. The microstructure of composite zones was investigated by electron scanning microscopy, using the backscattered electron mode. The structure of composite zones was verified by the X-ray diffraction method. The hardness of composite zones, cast steel base alloy and the reference samples such as white chromium cast iron with 14 % Cr and 20 % Cr, manganese cast steel 18 % Mn was measured by Vickers test. The wear resistance of the composite zone and the reference samples examined by ball-on-disc wear test. Dimensionally stable composite zones were obtained containing submicron sizes TiC particles uniformly distributed in the matrix. The macro and microstructure of the composite zone ensured three times hardness increase in comparison to the cast steel base alloy and one and a half times increase in comparison to the white chromium cast iron 20 % Cr. Finally ball-on-disc wear rate of the composite zone was five times lower than chromium white cast iron containing 20 % Cr.

  9. Ion-induced surface modification of alloys

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1983-11-01

    In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induce fluxes of alloying elements leading to depth-dependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces. 42 references

  10. Fracture of Fe--Cr--Mn austenitic steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1979-01-01

    Tensile tests of Tenelon (U.S. Steel), a nitrogen-strengthened iron-base alloy containing 18% chromium and 15% manganese, demonsterated that cleavage fracture can occur in some austenitic steels and is promoted by the presence of hydrogen. Tensile failure of Tenelon at 78 0 K occurred with no detectable necking at low strain levels. The fracture surface contained cleavage facets that lay along coherent twin boundaries oriented transversely to the tensile axis. Charging gaseous hydrogen at 679 MPa pressure and 650 0 K had no significant effect on the mechanical behavior or fracture mode at 78 0 K, but raised the ductile-to-brittle transition temperature from less than 200 0 K to about 250 0 K

  11. Status of Wrought FeCrAl-UO2 Capsules Irradiated in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harp, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Core, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Candidate cladding materials for accident tolerant fuel applications require extensive testing and validation prior to commercial deployment within the nuclear power industry. One class of cladding materials, FeCrAl alloys, is currently undergoing such effort. Within these activities is a series of irradiation programs within the Advanced Test Reactor. These programs are developed to aid in commercial maturation and understand the fundamental mechanisms controlling the cladding performance during normal operation of a typical light water reactor. Three different irradiation programs are on-going; one designed as a simple proof-of-principle concept, the other to evaluate the susceptibility of FeCrAl to fuel-cladding chemical interaction, and the last to fully simulate the conditions of a pressurized water reactor experimentally. To date, nondestructive post-irradiation examination has been completed on the rodlet deemed FCA-L3 from the simple proof-of-concept irradiation program. Initial results show possible breach of the rodlet under irradiation but further studies are needed to conclusively determine whether breach has occurred and the underlying reasons for such a possible failure. Further work includes characterizing additional rodlets following irradiation.

  12. PRELIMINARY EVALUATION OF FeCrAl CLADDING AND U-Si FUEL FOR ACCIDENT TOLERANT FUEL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Hales, J. D.; Gamble, K. A.

    2015-09-01

    Since the accident at the Fukushima Daiichi Nuclear Power Station, enhancing the accident tolerance of light water reactors (LWRs) has become an important research topic. In particular, the community is actively developing enhanced fuels and cladding for LWRs to improve safety in the event of accidents in the reactor or spent fuel pools. Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system, can tolerate loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations and operational transients. This paper presents early work in developing thermal and mechanical models for two materials that may have promise: U-Si for fuel, and FeCrAl for cladding. These materials would not necessarily be used together in the same fuel system, but individually have promising characteristics. BISON, the finite element-based fuel performance code in development at Idaho National Laboratory, was used to compare results from normal operation conditions with Zr-4/UO2 behavior. In addition, sensitivity studies are presented for evaluating the relative importance of material parameters such as ductility and thermal conductivity in FeCrAl and U-Si in order to provide guidance on future experiments for these materials.

  13. Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl

    Science.gov (United States)

    2016-08-24

    AIP ADVANCES 6, 056304 (2016) Structural disorder and magnetism in the spin-gapless semiconductor CoFeCrAl Renu Choudhary,1,2 Parashu Kharel,3 Shah R... semiconductor CoFeCrAl into a half- metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of...INTRODUCTION Spin-gapless semiconductors (SGS) have recently attracted much attention as nanoelectronic materials with high carrier mobility and good

  14. Effect of low current density and low frequency on oxidation resistant and coating activity of coated FeCrAl substrate by γ-Al2O3 powder

    Science.gov (United States)

    Leman, A. M.; Feriyanto, Dafit; Zakaria, Supaat; Sebayang, D.; Rahman, Fakhrurrazi; Jajuli, Afiqah

    2017-09-01

    High oxidation resistant is the needed material properties for material that operates in high temperature such as catalytic converter material. FeCrAl alloy acts as metallic material and is used as substrate material that is coated by ceramic material i.e. γ-Al2O3. The main purpose of this research is to increase oxidation resistant of metallic material as it will help improve the life time of metallic catalytic converter. Ultrasonic technique (UB) and Nickel electroplating technique (EL) were used to achieve the objective. UB was carried out using various time of 1, 1.5, 2, 2.5 and 3 h, in low frequency of 35 kHz and ethanol as the electrolyte. Meanwhile, EL was conducted using various times of 15, 30, 45, 60 and 75 minutes, DC power supply was 1.28A and sulphamate type as the solution. The characterization and analysis were carried out using Scanning Electron Microscopy (SEM) and box furnace at various temperature of 1000, 1100 and 1200 °C. SEM analysis shows the surface morphology of treated and untreated samples. Untreated samples shows finer surface structure as compared to UB and EL samples. It was caused by γ-Al2O3 which was embedded during UB and EL process on the surface of FeCrAl substrate to develop protective oxide layer. The layer was used to protect the substrate from extreme environment condition and temperature operation. Oxidation resistant analysis shows that treated samples had lower mass change as compared to untreated samples. Lowest mass change of treated samples were located at UB 1.5 h and EL at 30 minute with 0.00475 g and 0.00243 g for temperature of 1000 °C, 0.00495 g and 000284 g for temperature of 1100 °C and 0.00519 g and 0.00304 g for temperature 1200 °C, Based on the overall results, it can be concluded that EL 30 minute samples was the appropriate parameter to coat FeCrAl by γ-Al2O3 to develop metallic catalytic converter that is high oxidation resistant in high temperature operation.

  15. Experimental and Thermodynamic Study of Selected in-Situ Composites from the Fe-Cr-Ni-Mo-C System

    Directory of Open Access Journals (Sweden)

    Wieczerzak K.

    2016-06-01

    Full Text Available The aim of the study was to synthesize and characterize the selected in-situ composites from the Fe-Cr-Ni-Mo-C system, additionally strengthened by intermetallic compounds. The project of the alloys was supported by thermodynamic simulations using Calculation of Phase Diagram approach via Thermo-Calc. Selected alloys were synthesized in an arc furnace in a high purity argon atmosphere using a suction casting unit. The studies involved a range of experimental techniques to characterize the alloys in the as-cast state, including optical emission spectrometry, light microscopy, scanning electron microscopy, electron microprobe analysis, X-ray diffraction and microhardness tests. These experimental studies were compared with the Thermo-Calc data and high resolution dilatometry. The results of investigations presented in this paper showed that there is a possibility to introduce intermetallic compounds, such as χ and σ, through modification of the chemical composition of the alloy with respect to Nieq and Creq. It was found that the place of intermetallic compounds precipitation strongly depends on matrix nature. Results presented in this paper may be successfully used to build a systematic knowledge about the group of alloys with a high volume fraction of complex carbides, and high physicochemical properties, additionally strengthened by intermetallic compounds.

  16. Neutron irradiation effects in Fe and Fe-Cr at 300 °C

    International Nuclear Information System (INIS)

    Chen, Wei-Ying; Miao, Yinbin; Gan, Jian; Okuniewski, Maria A.; Maloy, Stuart A.; Stubbins, James F.

    2016-01-01

    Fe and Fe-Cr (Cr = 10–16 at.%) specimens were neutron-irradiated at 300 °C to 0.01, 0.1 and 1 dpa. The TEM observations indicated that the Cr significantly reduced the mobility of dislocation loops and suppressed vacancy clustering, leading to distinct damage microstructures between Fe and Fe-Cr. Irradiation-induced dislocation loops in Fe were heterogeneously observed in the vicinity of grown-in dislocations, whereas the loop distribution observed in Fe-Cr is much more uniform. Voids were observed in the irradiated Fe samples, but not in irradiated Fe-Cr samples. Increasing Cr content in Fe-Cr results in a higher density, and a smaller size of irradiation-induced dislocation loops. Orowan mechanism was used to correlate the observed microstructure and hardening, which showed that the hardening in Fe-Cr can be attributed to the formation of dislocation loops and α′ precipitates. -- Graphical abstract: Addition of Cr in Fe suppressed the mobility of mobile 1/2<111> dislocation loops and increased the proportion of immobile <100> dislocation loops, leading to a transition of loop distribution from highly heterogeneous to uniform. Display Omitted

  17. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.

  18. Surface resonance on the NiFe(001) alloy surface

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Martin; Máca, František; Kudrnovský, Josef; Redinger, J.

    2006-01-01

    Roč. 56, č. 1 (2006), s. 69-74 ISSN 0011-4626. [Symposium on Surface Physics /10./. Praha, 11.07.2005-15.07.2005] R&D Projects: GA ČR(CZ) GA202/04/0583 Institutional research plan: CEZ:AV0Z10100520 Keywords : NiFe alloy * surface electronic structure * surface geometry * density functional calculation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.568, year: 2006

  19. Input Correlations for Irradiation Creep of FeCrAl and SiC Based on In-Pile Halden Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Karlsen, T. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-01

    Swelling and creep behavior of wrought FeCrAl alloys and CVD-SiC, two candidate accident tolerant fuel cladding materials, are being examined using in-pile tests at the Halden reactor. The outcome of these tests are material property correlations that are inputs into fuel performance analysis tools. The results are discussed and compared with what is available in literature from irradiation experiments in other reactors or out-of-pile tests. Specific recommendation on what correlations should be used for swelling, thermal, and irradiation creep for each material are provided in this document.

  20. Production of FR Tubing from Advanced ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ron [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewandowski, John [Case Western Reserve Univ., Cleveland, OH (United States)

    2016-10-25

    Significant research is underway to develop LWR nuclear fuels with improved accident tolerance. One of the leading candidate materials for cladding are the FeCrAl alloys. New alloys produced at ORNL called Gen I and Gen II FeCrAl alloys possess excellent oxidation resistance in steam up to 1400°C and in parallel methods are being developed to produce tubing from these alloys. Century tubing continues to produce excellent tubing from FeCrAl alloys. This memo reports receipt of ~21 feet of Gen I FeCrAl alloy tubing. This tubing will be used for future tests including burst testing, mechanical testing and irradiation testing.

  1. Development of thermally-sprayed Al-Cu-Fe-Cr quasicrystal coating

    Science.gov (United States)

    Setiamarga, Budi Hartono

    A class of quasicrystal alloys that has drawn a lot of attention is aluminum based quasicrystal alloys because they are hard, light weight, wear resistant, and have a non-stick property. Quasicrystalline materials in the form of coatings produced by thermal spray techniques have been developed to utilize their properties. The goal of this research has been to develop the knowledge necessary to produce good thermally sprayed Al-Cu-Fe-Cr quasicrystal coatings. Boron has been found to improve ductility, reduce porosity and increase hardness when added to other thermally sprayed powders, therefore, as part of this research, quasicrystal coatings containing boron will also be produced and evaluated. The first phase of this research utilized a fine QC-1 quasicrystal powder of Alsb{70.5}Cusb{10.1}Fesb{8.8}Crsb{10.6}. The addition of boron was done using mechanical mixing. The addition of boron in fused QC-1 powders shows that boron can reduce porosity and increase hardness. Due to difficulties with thermal spraying the fine QC-1 powder and evaporation of aluminum, a coarser QC-2 powder with similar composition to QC-1 powder was produced. QC-2 and boron modified QC-2 coatings have similar hardness and levels of porosity, around 11%, although boron modified QC-2 coatings proved to be more wear resistant than plain QC-2 coatings. Both coatings demonstrated a weak coating-substrate interface bonding. Laser heat treatment was used to reduce the porosity and strengthen the coating-substrate interface bonding. Laser treatment of QC-2 quasicrystal coatings resulted in harder and lower porosity coatings with better coating-substrate interface bonding. Unfortunately, hot-cracks in the coatings were also produced. Hot-cracks are undesireable because they decrease the coating's corrosion resistance. Thermal spraying using High Velocity Oxygen Fuel (HVOF) technique was done. It was used on QC-2 powder and QC-3 powder of composition Alsb{68.6}Cusb{10.8}Fesb{8.9}Crsb{9.7}Bsb{2.0}. This

  2. Short Communication: Conductivity as an indicator of surface water ...

    African Journals Online (AJOL)

    Various water- soluble species are present in FeCr waste materials and in process water. Considering the size of the South African FeCr industry and its global importance, it is essential to assess the extent of potential surface water pollution in the proximity of FeCr smelters by such watersoluble species. In this study water ...

  3. Modification of surface properties of copper-refractory metal alloys

    Science.gov (United States)

    Verhoeven, J.D.; Gibson, E.D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  4. HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

    Directory of Open Access Journals (Sweden)

    M. Mahmoudiniya

    2017-03-01

    Full Text Available Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile strength and toughness were higher than those of 316 steel at 25, 200,350 and 500°C. In contrast with 316 steel, the new FeCrMn steel did not show strain induced transformation and dynamic strain aging phenomena during tensile tests that represented higher austenite stability of new developed steel. Lower density and higher strength of the new steel caused higher specific strength in comparison with the 316 one that can be considered as an important advantage in structural applications but in less corrosive environment

  5. Influencia de la distribución de precipitados de Al (Mn, Fe, Cr en la reproducibilidad de la respuesta electroquímica de la aleación AA5083 en disolución de NaCl

    Directory of Open Access Journals (Sweden)

    Aballe, A.

    2002-04-01

    Full Text Available The corrosion behavior of alloy AA5083 in solutions of NaCl at 3.5% is controlled by the cathodic precipitates of Al(Mn, Fe, Cr present in the alloy. These precipitates are not distributed homogeneously on the surface of the alloy. Further, their presence influence the electrochemical response of the alloy. For these reasons, in order to guarantee the reproducibility of electrochemical tests on this alloy, it is necessary to determine the minimum surface area exposed to the medium, which represents the average behavior of the system. In the present study, a systematic analysis has been conducted of the degree of reproducibility of OCP and LP tests as a function of the area of surface exposed for the alloy AA5083 in solutions of NaCl at 3.5%. The results obtained from three sizes of area studied indicate that the minimum area available for exposure required to provide results of good reproducibility is 25.5 cm2.

    El comportamiento frente a la corrosión de la aleación AA5083 en disoluciones de NaCl al 3,5 % está controlado por los precipitados de Al(Mn, Fe, Cr presentes en la misma. Estos precipitados no se encuentran homogéneamente distribuidos en la superficie de la aleación, debido al tipo de proceso de conformado de la misma. Por otra parte, su presencia condiciona la respuesta electroquímica de la aleación. Por estas razones, para garantizar la reproducibilidad de los ensayos electroquímicos sobre esta aleación, es necesario que el área de la superficie expuesta al medio represente el comportamiento medio del sistema. En el presente trabajo se ha llevado a cabo un estudio sistemático del grado de reproducibilidad de ensayos OCP y LP en función del área de superficie expuesta para la aleación AA5083 en disolución de NaCl al 3,5 %. De acuerdo con los resultados obtenidos, se requiere disponer de un mínimo de 25,5 cm2 de exposición para garantizar la reproducibilidad de los resultados.

  6. First principles analysis of hydrogen chemisorption on Pd-Re alloyed overlayers and alloyed surfaces

    DEFF Research Database (Denmark)

    Pallassana, Venkataraman; Neurock, Matthew; Hansen, Lars Bruno

    2000-01-01

    Gradient corrected periodic density functional theory (DFT-GGA) slab calculations were used to examine the chemisorption of atomic hydrogen on various Pd-Re alloyed overlayers and uniformly alloyed surfaces. Adsorption was examined at 33% surface coverage, where atomic hydrogen preferred the thre...

  7. Surface control alloy substrates and methods of manufacture therefor

    Energy Technology Data Exchange (ETDEWEB)

    Fritzemeier, Leslie G. (Mendon, MA); Li, Qi (Marlborough, MA); Rupich, Martin W. (Framingham, MA); Thompson, Elliott D. (Coventry, RI); Siegal, Edward J. (Malden, MA); Thieme, Cornelis Leo Hans (Westborough, MA); Annavarapu, Suresh (Brookline, MA); Arendt, Paul N. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2004-05-04

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  8. Diode Laser Surface Alloying of Armor Steel with Tungsten Carbide

    OpenAIRE

    Janicki D.; Górka J.; Kwaśny W.; Gołombek K.; Kondracki M.; Żuk M.

    2017-01-01

    Metal matrix composite (MMC) surface layers reinforced by WC were fabricated on armor steel ARMOX 500T plates via a laser surface alloying process. The microstructure of the layers was assessed by scanning electron microscopy and X-ray diffraction.

  9. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  10. FP corrosion dependence on carbon and chromium content in Fe-Cr steel

    International Nuclear Information System (INIS)

    Sasaki, Koei; Tanigaki, Takanori; Fukumoto, Ken-ichi; Uno, Masayoshi

    2015-01-01

    In an attempt to investigate Cs or Cs-Te corrosion dependence on chromium or carbon content in Fe-Cr steel, cesium and Cs-Te corrosion test were performed to three specimens, Fe-9Cr-0C, Fe-9Cr-0.14C and Fe-13Cr-0.14C, for 100 hours at 973K in simulated high burn-up fuel pin environment. Cesium corrosion depth has no dependence on chromium or carbon content in Fe-Cr steel. Cs-Te corrosion was appeared in only Fe-13Cr-0.14C which has chromium carbides ranged along grain boundary. Appearance of the Cs-Te corrosion was determined by distribution or arrangement of chromium carbides which depends on chromium and carbon content. (author)

  11. Infiltrated SrTiO3:FeCr-based anodes for metalsupported SOFC

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Persson, Åsa Helen; Nielsen, Jimmi

    2012-01-01

    The concept of using highly electronically conducting backbones with subsequent infiltration of electrocatalytic active materials, has recently been used to develop an alternative SOFC design based on a ferritic stainless steel support. The metal-supported SOFC is comprised of porous and highly e...... changes occurring in the anode layer during testing. The results indicate that the STN component in the anode seems to have a positive effect on the corrosion stability of the FeCr-particles in the anode layer.......) and FeCr. Electrochemical characterization and post test SEM analysis have been used to get an insight into the possible degradation mechanisms of this novel electrode infiltrated with Gd-doped CeO2 and Ni. Accelerated oxidation/corrosion experiments have been conducted to evaluate the microstructural...

  12. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    International Nuclear Information System (INIS)

    George, Nathan; Worrall, Andrew

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  13. Ultrasonic Surface Treatment of Titanium Alloys. The Submicrocrystalline State

    Science.gov (United States)

    Klimenov, V. A.; Vlasov, V. A.; Borozna, V. Y.; Klopotov, A. A.

    2015-09-01

    The paper presents the results of the research on improvement of physical-and- mechanical properties of titanium alloys VT1-0 and VT6 by modification of surfaces using ultrasonic treatment, and a comprehensive study of the microstructure and mechanical properties of modified surface layers. It has been established that exposure to ultrasonic treatment leads to formation in the surface layer of a structure with an average size of elements 50 - 100 nm, depending on the brand of titanium alloy.

  14. Electrochemical and surface characterization of a nickel-titanium alloy

    NARCIS (Netherlands)

    Wever, Dirk; Veldhuizen, AG; de Vries, J; Busscher, HJ; Uges, DRA; van Horn, James

    1998-01-01

    For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel

  15. Thermal performance of Fe-Cr-Nb-B systems in magnetic hyperthermia

    Science.gov (United States)

    Astefanoaei, Iordana; Chiriac, Horia; Stancu, Alexandru

    2017-03-01

    In magnetic hyperthermia, the temperature control within the malignant tissues is an important step to increase the efficiency of the therapy. A temperature analysis is a good method to improve the heating process of the magnetic particles injected within tissues. This paper analyzes the thermal effects induced within malignant tissues by the magnetic systems like: magnetite and Fe-Cr-Nb-B when an external time-dependent magnetic field is applied. The heat generation by Néel and Brown relaxations was modeled using the thermal and magnetic properties of the Fe-Cr-Nb-B particles experimentally determined. A lognormal particle size distribution was considered for these magnetic systems with dimensions from 5 nm to 30 nm. After their injection at the center of the tumor, according to the solution of the transient convection-diffusion equation in a porous medium, the mass concentration of the particles within ferrofluid has a spatial and temporal distribution. The ferrofluid injection process was modeled using the Brinkman equations. The ferrofluid injection rate during the injection process influences significantly the spatial distribution of the particle concentration and temperature field within tumor. Higher values of the ferrofluid flow rate determine a strong convection of the particles to the tumor center. As a consequence, the temperature gradients within tumor are smaller. The performance in Magnetic Hyperthermia of Fe-Cr-Nb-B magnetic systems is discussed.

  16. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    Science.gov (United States)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  17. Ordering phenomena in FeCo-films and Fe/Cr-multilayers: an X-ray and neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, B.

    2001-07-01

    The following topics are covered: critical phenomena in thin films, critical adsorption, finite size scaling, FeCo Ising model, kinematical scattering theory for thin films, FeCo thin films, growth and characterisation of single crystal FeCo thin films, X-ray study of ordering in FeCo films, antiferromagnetic coupling in Fe/Cr multilayers, neutron scattering on Fe/Cr multilayers (WL)

  18. Laser Surface Engineering of Magnesium Alloys: A Review

    Science.gov (United States)

    Singh, Ashish; Harimkar, Sandip P.

    2012-06-01

    Magnesium (Mg) and its alloys are well known for their high specific strength and low density. However, widespread applications of Mg alloys in structural components are impeded by their insufficient wear and corrosion resistance. Various surface engineering approaches, including electrochemical processes (plating, conversion coatings, hydriding, and anodizing), gas-phase deposition (thermal spray, chemical vapor deposition, physical vapor deposition, diamond-like coatings, diffusion coatings, and ion implantation), and organic polymer coatings (painting and powder coating), have been used to improve the surface properties of Mg and its alloys. Recently, laser surface engineering approaches are attracting significant attention because of the wide range of possibilities in achieving the desired microstructural and compositional modifications through a range of laser-material interactions (surface melting, shock peening, and ablation). This article presents a review of various laser surface engineering approaches such as laser surface melting, laser surface alloying, laser surface cladding, laser composite surfacing, and laser shock peening used for surface modification of Mg alloys. The laser-material interactions, microstructural/compositional changes, and properties development (mostly corrosion and wear resistance) accompanied with each of these approaches are reviewed.

  19. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  20. A fundamental study on measurement of internal residual stress of sintered Fe-Cr/TiN composite material with neutron diffraction

    International Nuclear Information System (INIS)

    Takago, Shigeki; Sasaki, Toshihiko; Hirose, Yukio; Minakawa, Nobuaki; Morii, Yukio

    2001-01-01

    The Neutron diffraction technique was applied for the internal stress measurements of a composite material consisted of chromium alloy and titanium nitride manufactured by the powder metallurgy. The material has been developed for the valve seat insert of diesel engines in automobiles, because material has high wear-resistance and heat-resistance. In this study, the influence of the titanium nitride on the stresses in each phase was investigated. The Fe-Cr 200 diffraction peak occurs at 2θ=93.4 deg. and the TiN 311 diffraction peak at 2θ=109.5 deg are available. Neutron diffraction data obtained from both phases were compared to the Micromechanics model based on Eshelby's approach and the Mori-Tanaka theorem. It was found that experimental phase stress agrees well with the theoretical estimation. It has been shown that neutron diffraction method is suitable to determine the residual stress of composite materials. (author)

  1. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    The extensive demand of aluminium alloys in various industries such as in transportationis mainly due to the high strength to weight ratio, which could be translated into fuel economy and efficiency. Corrosion protection of aluminium alloys is an important aspect for all applications which includes...... to 12 present various experimental results in the form of appended papers. The chapters consist of the experimental results obtained by the use of steam-based process and its effect on microstructureand corrosion resistance of the alloy as a function of steam pressure, use of various chemicals...... the use of aluminium alloys in the painted form requiring a conversion coating to improve the adhesion. Chromate based conversion coating processes are extremely good for these purposes, however the carcinogenic and toxic nature of hexavalent chromium led to the search for more benign and eco...

  2. Mechanical properties and surface characteristics of three archwire alloys.

    Science.gov (United States)

    Krishnan, Vinod; Kumar, K Jyothindra

    2004-12-01

    Recent developments in material science have presented newer archwire materials as well as improvements in the properties of existing ones. Proper selection and understanding of the biomechanical requirement of each case requires proper characterization studies on archwire alloys. The present study characterizes and compares three orthodontic archwire alloys, stainless steel, beta titanium alloy (TMA), and a newly introduced titanium alloy (TiMolium), for the parameters (1) ultimate tensile strength (UTS), 0.02% offset yield strength (YS), and modulus of elasticity (E); (2) load deflection characteristics; (3) frictional properties; (4) surface characteristics and (5) elemental analysis for TiMolium. Seven specimens of each archwire alloy were used for evaluating each parameter. An instron universal testing machine was used for tensile testing, three-point bend testing, and evaluation of frictional characteristics. Scanning electron microscope was used for surface evaluation and X-ray fluorescence for elemental analysis of TiMolium wire specimens. Stainless steel was the strongest archwire alloy with high UTS, E, 0.02% offset YS, and less friction at the archwire-bracket interface. TMA wires exhibited better load deflection characteristics with less stiffness than the other two wires. The surface of TMA appeared rough and exhibited very high values for friction at the archwire-bracket interface. TiMolium appeared to be an alpha-beta titanium alloy composed of titanium, aluminum, and vanadium and intermediate in nature for all the parameters evaluated.

  3. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  4. Dependence of Fe/Cr superlattice magnetoresistance on orientation of external magnetic field

    International Nuclear Information System (INIS)

    Ustinov, V.V.; Romashev, L.N.; Minin, V.I.; Semerikov, A.V.; Del', A.R.

    1995-01-01

    The paper presents the results of investigations into giant magnetoresistance of [Fe/Cr] 30 /MgO superlattices obtained using molecular-beam epitaxy under various orientations of magnetic field relatively to the layers of superlattice and to the direction of current flow. Theory of orientation dependence of superlattice magnetoresistance enabling to describe satisfactorily behaviour of magnetoresistance at arbitrary direction of magnetic field on the ground of results of magnetoresistance measurements in magnetic field parallel and perpendicular to plane of layers, is elaborated. It is pointed out that it is possible to obtain field dependence of superlattice magnetization on the ground of measurement results. 9 refs., 6 figs

  5. Low-frequency response in antiferromagnetically coupled Fe/Cr multilayers

    International Nuclear Information System (INIS)

    Aliev, F.G.; Guerrero, R.; Martinez, J.L.; Moshchalkov, V.V.; Bruynseraede, Y.; Villar, R.

    2001-01-01

    We have studied the magnetic field dependences of the real (χ) and imaginary (χ') contributions to the low-frequency magnetic susceptibility in epitaxial antiferromagnetically coupled [Fe(Cr(1 0 0)] n (n=10-50) multilayers. For the magnetic field directed along (1 1 0), the magnetic susceptibility shows on orientation phase transition. For the magnetic field either along the easy or the hard axes we observe a strong enhancement of the χ'(H) (i.e. magnetic losses) at low magnetic fields (H<50 Oe), which we relate to AC field-induced domain wall movement. This response is strongly dependent on frequency and temperature

  6. Hardness and Wear Resistance of TiC-Fe-Cr Locally Reinforcement Produced in Cast Steel

    OpenAIRE

    Olejnik E.; Szymański Ł.; Kurtyka P.; Tokarski T.; Grabowska B.; Czapla P.

    2016-01-01

    In order to increase wear resistance cast steel casting the TiC-Fe-Cr type composite zones were fabricated. These zones were obtained by means of in situ synthesis of substrates of the reaction TiC with a moderator of a chemical composition of white cast iron with nickel of the Ni-Hard type 4. The synthesis was carried out directly in the mould cavity. The moderator was applied to control the reactive infiltration occurring during the TiC synthesis. The microstructure of composite zones was i...

  7. Short-range Ferromagnetism in Alloy Ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    DEFF Research Database (Denmark)

    Thanh, P. Q.; Hoa, N. Q.; Chau, N.

    2014-01-01

    the exponent values of beta = 0.369 +/- 0.005, gamma = 1.359 +/- 0.005 and delta = 4.7 +/- 0.1 for FCSNB-Ag, and beta = 0.376 +/- 0.002, gamma = 1.315 +/- 0.006 and delta = 4.5 +/- 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg...

  8. Influence of impurities and ion surface alloying on the corrosion resistance of E110 alloy

    International Nuclear Information System (INIS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Novikov, V. V.; Markelov, V. A.; Pimenov, Yu. V.

    2013-01-01

    The corrosion resistance of zirconium alloys depends on their structural-phase state, the type of core coolant and operating factors. The formation of a protective oxide film on the zirconium alloys is sensitive to the content of impurity atoms present in the charge base of alloys and accumulating in them in the manufacture of products. The impurity composition of the initial zirconium is determined by the method of its manufacture and generally remains unchanged in the products, deter-mining their properties, including their corrosion resistance. An increased content of impurities (C, N, Al, Mo, Fe) both individually and in their combination negatively affects the corrosion resistance of zirconium and its alloys. One of the potentially effective methods to increase the protective properties of oxide films on zirconium alloys is a surface alloying using the regime of mixing the atoms of a film, preliminarily coated on the surface, and the atoms of a target. This method makes it possible to form a given structural-phase state in the thin surface layer with unique physicochemical properties and thus to in-crease the corrosion resistance and wear resistance of fuel claddings. In this context, the object of investigation was samples of cladding tubes from alloy E110 with various content of impurity elements (nitrogen, aluminum, and carbon) with the aim to reduce the negative influence of impurities on the corrosion resistance by changing the structural-phase state of the surface layer of fuel claddings and fuel assembly components with alloying in the regime of ion mixing of atoms

  9. Formation and characterization of Al–Ti–Nb alloys by electron-beam surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Valkov, S., E-mail: stsvalkov@gmail.com [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Petrov, P. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Lazarova, R. [Institute of Metal Science, Equipment and Technologies with Hydro and Aerodynamics Center, Bulgarian Academy of Science, 67 Shipchenski Prohod blvd., 1574 Sofia (Bulgaria); Bezdushnyi, R. [Department of Solid State Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kliment Ohridsky”, 1164 Sofia (Bulgaria); Dechev, D. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)

    2016-12-15

    Highlights: • Al–Ti–Nb surface alloys have been successfully obtained by electron-beam surface alloying technology. • The alloys consist of (Ti,Nb)Al{sub 3} fractions, distributed in the biphasic structure of (Ti,Nb)Al{sub 3} particles dispersed in α-Al. • The alloying speed does not affect the lattice parameters of (Ti,Nb)Al{sub 3} and, does not form additional stresses, strains etc. • It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. • The measured hardness of (Ti,Nb)Al{sub 3} compound reaches 775 HV[kg/cm{sup 2}] which is much greater than the values of NbAl{sub 3}. - Abstract: The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V{sub 1} = 0.5 cm/s and V{sub 2} = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al{sub 3} fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al{sub 3} particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al{sub 3} lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a

  10. Design of a surface alloy catalyst for steam reforming

    DEFF Research Database (Denmark)

    Besenbacher, F.; Chorkendorff, Ib; Clausen, B.S.

    1998-01-01

    Detailed studies of elementary chemical processes on well-characterized single crystal surfaces have contributed substantially to the understanding of heterogeneous catalysis. insight into the structure of surface alloys combined with an understanding of the relation between the surface compositi...... and reactivity is shown to lead directly to new ideas for catalyst design, The feasibility of such an approach is illustrated by the synthesis, characterization, and tests of a high-surface area gold-nickel catalyst for steam reforming....

  11. Three body abrasion of laser surface alloyed aluminium AA1200

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-06-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4 kW Nd:YAG laser to improve the abrasion wear resistance. Aluminium surfaces reinforced with metal matrix composites and intermetallic phases were achieved. The phases present depended...

  12. Diode Laser Surface Alloying of Armor Steel with Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Janicki D.

    2017-06-01

    Full Text Available Metal matrix composite (MMC surface layers reinforced by WC were fabricated on armor steel ARMOX 500T plates via a laser surface alloying process. The microstructure of the layers was assessed by scanning electron microscopy and X-ray diffraction.

  13. Surface effect theory in binary alloys: surfaces with cut-off

    International Nuclear Information System (INIS)

    Kumar, V.; Silva, C.E.T.G. da; Moran-Lopez, J.L.

    1981-01-01

    A surface effect theory in binary alloys which ore ordered with surfaces with cut-off is presented. This theory is based in a model of pair interaction between first neighbours and includes long and short range effects. The (120) surface with sup(-) (110) monoatomic cut-off and terrace in the (110) planes of an alloy with body centered cubic structure is presented as example. Results for the concentrations in all the different surface sites are given. (L.C.) [pt

  14. Neutronic Analysis on Potential Accident Tolerant Fuel-Cladding Combination U3Si2-FeCrAl

    Directory of Open Access Journals (Sweden)

    Shengli Chen

    2017-01-01

    Full Text Available Neutronic performance is investigated for a potential accident tolerant fuel (ATF, which consists of U3Si2 fuel and FeCrAl cladding. In comparison with current UO2-Zr system, FeCrAl has a better oxidation resistance but a larger thermal neutron absorption cross section. U3Si2 has a higher thermal conductivity and a higher uranium density, which can compensate the reactivity suppressed by FeCrAl. Based on neutronic investigations, a possible U3Si2-FeCrAl fuel-cladding system is taken into consideration. Fundamental properties of the suggested fuel-cladding combination are investigated in a fuel assembly. These properties include moderator and fuel temperature coefficients, control rods worth, radial power distribution (in a fuel rod, and different void reactivity coefficients. The present work proves that the new combination has less reactivity variation during its service lifetime. Although, compared with the current system, it has a little larger deviation on power distribution and a little less negative temperature coefficient and void reactivity coefficient and its control rods worth is less important, variations of these parameters are less important during the service lifetime of fuel. Hence, U3Si2-FeCrAl system is a potential ATF candidate from a neutronic view.

  15. Irradiation induced surface segregation in concentrated alloys: a contribution

    International Nuclear Information System (INIS)

    Grandjean, Y.

    1996-01-01

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe 50 Ni 50 and Fe 49 Ni 50 Hf 1 alloys. (author)

  16. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion

    Science.gov (United States)

    Shibata, Hiroki; Ukai, Shigeharu; Oono, Naoko H.; Sakamoto, Kan; Hirai, Mutsumi

    2018-04-01

    FeCrAl-ODS ferritic steels with Ce-oxide dispersion instead of Y-oxide were produced for the accident tolerant fuel cladding of the light water reactor. Excess oxygen (Ex.O) was added to improve the mechanical property. The tensile strength at Ex.O = 0 is around 200 MPa at 700 °C, mainly owing to dispersed Ce2O3 particles in less than 10 nm size. The formation of the fine Ce2O3 particles is dominated by a coherent interface with ferritic matrix. With increasing Ex.O, an increased of number density of coarser Ce-Al type oxide particles over 10 nm size is responsible for the improvement of the tensile strength. Change of the type of oxide particle, CeO2, Ce2O3, CeAlO3, Al2O3, in FeCrAl-ODS steel was thermodynamically analyzed as a parameter of Ex.O.

  17. Characterization of TiC-FeCrMn Cermets Produced by Powder Metallurgy Method

    Directory of Open Access Journals (Sweden)

    Märt Kolnes

    2015-09-01

    Full Text Available TiC-NiMo cermets combine relatively low density with high hardness. Because nickel is known as a toxin and allergen and allergy to nickel is a phenomenon which has assumed growing importance in recent years there has been a flurry of activity to find alternatives to the nickel binder in cermets. It is also the global research and technical development trend in the powder metallurgy cermets industry. In present research TiC-based cermets with FeCrMn binder system were fabricated. Three different sintering conditions were used (vacuum sintering, sinter/HIP and sintering under low Ar pressure. Because of high vapor pressure of manganese different sintering conditions and technologies were investigated to depress the Mn-loss during sintering. Chemical composition of TiC-FeCrMn cermets after different sintering conditions were analyzed by energy-dispersive X-ray spectroscopy (EDS and mechanical properties – hardness and fracture toughness were evaluated on the samples. Results of research showed that Ni-free TiC-based CrMn-steels bonded cermets compare unfavorably with cermets bonded with CrNi austenitic steels in terms of fracture toughness and corrosion resistance. Noticeable Mn-loss during vacuum sintering can be avoided when sintering under low Ar gas pressure.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7364

  18. Composite Nafion 117-TMSP membrane for Fe-Cr redox flow battery applications

    Science.gov (United States)

    Haryadi, Gunawan, Y. B.; Mursid, S. P.; Harjogi, D.

    2016-04-01

    The modification of Nafion 117 - TMSP (trimethoxysylilprophanthiol) composite membrane has been conducted by in-situ sol-gel method followed by characterization of structural and properties of material using spectroscopic techniques. The performance of composite membrane has then been examined in the single stack module of Fe-Cr Redox Flow Battery. It was found that the introduction of silica from TMSP through sol-gel process within the Nafion 117 membrane produced composite membrane that has slightly higher proton conductivity values as compared to the pristine of Nafion 117 membrane observed by electrochemical impedance spectroscopy. The degree of swelling of water in the composite membrane demonstrated greatly reduced than a pristine Nafion 117 signifying low water cross over. The SEM-EDX measurements indicated that there was no phase separation occurred suggesting that silica nanoparticles are distributed homogeneously within the composite membrane. The composite membrane used as separator in the system of Fe-Cr Redox Flow Battery revealed no cross mixing (crossover) occurred between anolyte and catholyte in the system as observed from the total voltage measurements that closed to the theoretical value. The battery efficiency generally increased as the volume of the electrolytes enlarged.

  19. A study on the effects of aging treatment and W addition on the mechanical properties and sensitization behaviors of Fe-Cr-Mn stainless steels

    International Nuclear Information System (INIS)

    Jeoun, Y. T.; Zoo, W. H.; Kim, Y. S.; Park, Y. S.

    1999-01-01

    The characteristics of the mechanical properties and sensitization behaviors in Fe-Cr-Mn stainless steels by W addition and aging treatment were studied. Yield strength, tensile strength, elongation and impact energy were decreased, and hardness was slightly increased by aging treatment. W-containing alloys showed especially a larger degree of brittle characteristics due to the hard chi(χ) phase formed from the decomposition of ferrite. Carbides precipitated in grain boundary had a bad effect on impact energy rather than strength and hardness. Ni addition suppressed the formation of ferrite and resulted in the some improvement of mechanical properties. Anodic polarization tests showed that the corrosion resistance of aged alloys was decreased by the formation of carbides and secondary austenites. It was observed that W addition made no improvement of the pitting potential and passive current density of aged alloys in the HCl solution. But Ni and W decreased critical current density in the sulfuric acid and made easier formation of passive film, contributing to corrosion resistance. From the results of EPR (Electrochemical Potentiokinetic Reactivation), DOS (Degree of Sensitization) was increased with aging time and carbides and ferrite was preferentially attacked. It was observed that Ni delayed the sensitization. It can be concluded from the previous results that the selective dissolution of ferrite is due to the ferrite decomposition to chi (χ) phase and secondary austenites. In the secondary austenite Cr and W which are known to improve the corrosion resistance were depleted. Therefore, it seems that ferrite phase became sensitive to corrosion

  20. FeCrO Nanoparticles as Anode Catalyst for Ethane Proton Conducting Fuel Cell Reactors to Coproduce Ethylene and Electricity

    Directory of Open Access Journals (Sweden)

    Jian-Hui Li

    2011-01-01

    Full Text Available Ethylene and electrical power are cogenerated in fuel cell reactors with FeCr2O4 nanoparticles as anode catalyst, La0.7Sr0.3FeO3- (LSF as cathode material, and BaCe0.7Zr0.1Y0.2O3- (BCZY perovskite oxide as proton-conducting ceramic electrolyte. FeCr2O4, BCZY and LSF are synthesized by a sol-gel combustion method. The power density increases from 70 to 240 mW cm−2, and the ethylene yield increases from about 14.1% to 39.7% when the operating temperature of the proton-conducting fuel cell reactor increases from 650∘C to 750∘C. The FeCr2O4 anode catalyst exhibits better catalytic performance than nanosized Cr2O3 anode catalyst.

  1. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  2. TEY study of local atomic structure of interfaces in Fe/Cr multilayer prepared in situ at synchrotron BESSY II

    International Nuclear Information System (INIS)

    Kiryanov, S.A.; Sidorenko, A.F.; Babanov, Yu.A.; Romashev, L.N.; Milyaev, M.A.; Kuznetsov, V.L.; Ustinov, V.V.; Vyalikh, D.V.

    2005-01-01

    The investigation of interface in the Fe/Cr multilayer by total electron yield (TEY) is presented. Samples with different thickness of Fe on the top of Cr layer were prepared in situ. TEY measurements were performed using synchrotron radiation at Russian-German beamline (RGBL) (BESSY II). Partial pair correlation functions were determined as a result of the solution of the inverse ill-posed problem. Also, concentration distribution function of solid-state solutions in the interface was obtained using a new technique. The results obtained demonstrate the BCC solid-state solution with average concentration Fe 50 Cr 50 for interface Fe/Cr

  3. Microstructures of neutron-irradiated Fe-12Cr-XMn (X=15-30) ternary alloys

    International Nuclear Information System (INIS)

    Miyahara, K.; Hosoi, Y.; Garner, F.A.

    1992-01-01

    The objective of this effort is to determine the factors which control the stability of irradiated alloys proposed for reduced activation applications. The Fe-Cr-Mn alloy system is being studied as an alternative to the Fe-Cr-Ni system because of the need to reduce long-term radioactivation in fusion-power devices. In this study, four Fe-12Cr-XMn (X =15, 20, 25, 30 wt%) alloys were irradiated in the Fast Flux Test Facility to 20 dpa at 643K and 40 dpa at 679, 793, and 873K to investigate the influence of manganese content on void swelling and phase stability. The results confirm and expand the results of earlier studies that indicate that the Fe-Cr-Mn system is relatively unstable compared to that of the Fe-Cr-Ni system, with alpha and sigma phases forming as a consequence of thermal aging or high temperature irradiation

  4. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment ...

  5. Near-surface alloys for hydrogen fuel cell applications

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Mavrikakis, Manos

    2006-01-01

    Near-surface alloys (NSAs) possess a variety of unusual catalytic properties that could make them useful candidates for improved catalysts in a variety of chemical processes. It is known from previous work, for example, that some NSAs bind hydrogen very weakly while, at the same time, permitting ...

  6. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation ...

    Indian Academy of Sciences (India)

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under ...

  7. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available Aluminium is vastly used in industry due to its low cost, light weight and excellent workability, but lacks in wear resistance and hardness. Laser alloying is used to improve the surface properties such as hardness by modifying the composition...

  8. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation

    Indian Academy of Sciences (India)

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under ...

  9. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE present...

  10. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  11. LaNi0.6Co0 4O3-δ dip-coated on Fe-Cr mesh as a composite cathode contact material on intermediate solid oxide fuel cells

    Science.gov (United States)

    Morán-Ruiz, Aroa; Vidal, Karmele; Larrañaga, Aitor; Laguna-Bercero, Miguel Angel; Porras-Vázquez, Jose Manuel; Slater, Peter Raymond; Arriortua, María Isabel

    2014-12-01

    The feasibility of using Crofer22APU mesh dip coated with LaNi0.6Co0.4O3-δ (LNC) ceramic paste as a uniform contact layer on a Crofer22APU channeled interconnect was studied. The control of LNC dip coating thickness on Fe-Cr mesh was carried out by rheological measurements of the suspension. SEM cross-section of formed composite contact material showed good adherence between ceramic and metallic components. The measured area specific resistance (ASR) value at 800 °C was 0.46 ± 0.01 mΩ cm2, indicating low contact resistance itself. The long term stability of metallic/ceramic composite was also studied. The contact resistance, when composite contact material was adhered to channeled Crofer22APU interconnect, was 5.40 ± 0.01 mΩ cm2, which is a suitable value for the performance of IT-SOFC stack. The stability of the system after treating at 800 °C for 1000 h was characterized using X-ray Micro-Diffraction (XRMD), Scanning Electron Microscope equipped with an Energy Dispersive X-ray analyzer (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) techniques. The oxidation rate of the alloy and Fe3O4 phase formation were enhanced on the channels of the interconnect. Thus, the formation of CrO3 (g) and CrO2(OH)2 (g) species was accelerated on the composite surface under the channel. Through XRMD and XPS analysis the coexistence of two perovskite phases (initial LNC and Cr-perovskite) was observed.

  12. A novel non-Fermi-liquid state in the iron-pnictide FeCrAs

    Science.gov (United States)

    Wu, W.; McCollam, A.; Swainson, I.; Rourke, P. M. C.; Rancourt, D. G.; Julian, S. R.

    2009-01-01

    We report transport and thermodynamic properties of stoichiometric single crystals of the hexagonal iron-pnictide FeCrAs. The in-plane resistivity shows an unusual "non-metallic" dependence on temperature T, rising continuously with decreasing T from ~800 K to below 100 mK. The c-axis resistivity is similar, except for a sharp drop upon entry into an antiferromagnetic state at TN~125 K. Below 10 K the resistivity follows a non-Fermi-liquid power law, ρ(T)=ρ0-ATx with x<1, while the specific heat shows Fermi-liquid behaviour with a large Sommerfeld coefficient, γ~30 mJ/mol K2. The high-temperature properties are reminiscent of those of the parent compounds of the new layered iron-pnictide superconductors, however the T→0 K properties suggest a new class of non-Fermi liquid.

  13. Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-10-01

    Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.

  14. Characterization of electro-eroded surface of Ti alloys

    Czech Academy of Sciences Publication Activity Database

    Starý, V.; Peřina, Vratislav; Bačáková, Lucie; Jirka, Ivan; Vorlíček, Vladimír; Fencl, J.

    2008-01-01

    Roč. 100, - (2008), 012004-012004 E-ISSN 1742-6596 R&D Projects: GA ČR(CZ) GA101/06/0226; GA AV ČR(CZ) KAN101120701 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10480505; CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : Ti alloys * surface properties * bone implants Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  15. Sensitivity analysis of FeCrAl cladding and U3Si2 fuel under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle Allan Lawrence [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, Jason Dean [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    The purpose of this milestone report is to highlight the results of sensitivity analyses performed on two accident tol- erant fuel concepts: U3Si2 fuel and FeCrAl cladding. The BISON fuel performance code under development at Idaho National Laboratory was coupled to Sandia National Laboratories’ DAKOTA software to perform the sensitivity analyses. Both Loss of Coolant (LOCA) and Station blackout (SBO) scenarios were analyzed using main effects studies. The results indicate that for FeCrAl cladding the input parameters with greatest influence on the output metrics of interest (fuel centerline temperature and cladding hoop strain) during the LOCA were the isotropic swelling and fuel enrichment. For U3Si2 the important inputs were found to be the intergranular diffusion coefficient, specific heat, and fuel thermal conductivity. For the SBO scenario, Young’s modulus was found to be influential in FeCrAl in addition to the isotropic swelling and fuel enrichment. Contrarily to the LOCA case, the specific heat of U3Si2 was found to have no effect during the SBO. The intergranular diffusion coefficient and fuel thermal conductivity were still found to be of importance. The results of the sensitivity analyses have identified areas where further research is required including fission gas behavior in U3Si2 and irradiation swelling in FeCrAl. Moreover, the results highlight the need to perform the sensitivity analyses on full length fuel rods for SBO scenarios.

  16. Process control of laser surface alloying

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.; Olde Benneker, Jeroen

    1998-01-01

    In spite of the many advantages of laser surface treatment, such as high production rates and low induced thermal distortion, and its great potential for modifying the surface properties of a wide range of new and existing materials, industrial applications are still limited. This is not only

  17. Influence of surface roughness on the corrosion behaviour of magnesium alloy

    International Nuclear Information System (INIS)

    Walter, R.; Kannan, M. Bobby

    2011-01-01

    Research highlights: → Surface roughness of AZ91 magnesium alloy plays a critical role in the passivation behaviour of the alloy. → The passivation behaviour of the alloy influences the pitting tendency. → Increase in surface roughness of AZ91 magnesium alloy increases the pitting tendency of the alloy. -- Abstract: In this study, the influence of surface roughness on the passivation and pitting corrosion behaviour of AZ91 magnesium alloy in chloride-containing environment was examined using electrochemical techniques. Potentiodynamic polarisation and electrochemical impedance spectroscopy tests suggested that the passivation behaviour of the alloy was affected by increasing the surface roughness. Consequently, the corrosion current and the pitting tendency of the alloy also increased with increase in the surface roughness. Scanning electron micrographs of 24 h immersion test samples clearly revealed pitting corrosion in the highest surface roughness (Sa 430) alloy, whereas in the lowest surface roughness (Sa 80) alloy no evidence of pitting corrosion was observed. Interestingly, when the passivity of the alloy was disturbed by galvanostatically holding the sample at anodic current for 1 h, the alloy underwent high pitting corrosion irrespective of their surface roughness. Thus the study suggests that the surface roughness plays a critical role in the passivation behaviour of the alloy and hence the pitting tendency.

  18. KCl-induced high temperature corrosion of selected commercial alloys. Part II: alumina and silica-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie

    2016-01-01

    Laboratory testing on selected alumina and silica-forming alloys was performed to evaluate their performance against high temperature corrosion induced by potassium chloride (KCl). The alloys studied were FeCrAlY, Kanthal APM, Nimonic 80A, 214, 153MA and HR160. Exposure was conducted at 600 °C......-chromium-silicon-oxygen containing layer forms as the innermost corrosion product. The layer was uniformly distributed over the surface and appears to render some protection as this alloy exhibited the best performance among the investigated alloys. To reveal further aspects of the corrosion mechanism, Nimonic 80A was exposed...... for 168 h in flowing N2(g)+5%O2(g)+15%H2O(g) (vol.%) with samples covered under KCl powder. A KCl-free exposure was also performed for comparison.Corrosion morphology and products were studied with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD...

  19. Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys

    Directory of Open Access Journals (Sweden)

    Hans Jürgen Grabke

    2004-03-01

    Full Text Available The high temperature corrosion of steels and Ni-base alloys in oxidizing and chloridizing environments is of practical interest in relation to problems in waste incineration plants and power plants using Cl containing fuels. The behaviour of the most important alloying elements Fe, Cr, Ni, Mo, Mn, Si, Al upon corrosion in an oxidizing and chloridizing atmosphere was elucidated: the reactions and kinetics can be largely understood on the base of thermodynamic data, i.e. free energy of chloride formation, vapor pressure of the chlorides and oxygen pressure pO2 needed for the conversion chlorides -> oxides. The mechanism is described by 'active oxidation', comprising inward penetration of chlorine into the scale, formation of chlorides at the oxide/metal interface, evaporation of the chlorides and conversion of the evaporating chlorides into oxides, which occurs in more or less distance from the surface (depending on pO2. This process leads to loose, fragile, multilayered oxides which are unprotective (therefore: active oxidation. Fe and Cr are rapidly transferred into such scale, Ni and Mo are relatively resistant. In many cases, the grain boundaries of the materials are strongly attacked, this is due to a susceptibility of chromium carbides to chloridation. In contrast the carbides Mo2C, TiC and NbC are less attacked than the matrix. Alloys on the basis Fe-Cr-Si proved to be rather resistant, and the alloying elements Ni and Mo clearly retard the attack in an oxidizing and chloridizing environment.

  20. Influence of atomic ordering on sigma phase precipitation of the Fe{sub 50}Cr{sub 50} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Vélez, G.Y., E-mail: g.y.velezcastillo@gmail.com [Universidad del Valle, Departamento de Física, A.A. 25360 Cali (Colombia); Instituto de Física, Universidad Autónoma de San Luis Potosí, avenida Manuel Nava 6, zona universitaria, 78290 San Luis Potosí, SLP México (Mexico); Pérez Alcázar, G.A. [Universidad del Valle, Departamento de Física, A.A. 25360 Cali (Colombia)

    2015-09-25

    Highlights: • σ-FeCr phase can be delayed when α-FeCr phase is ordered. • The formation of σ phase is favored by concentration gradients of α phase. • We determine the iron occupation number of the five sites of σ-Fe{sub 50}Cr{sub 50}. - Abstract: In this work we report a study of the kinetic of the formation of the σ-Fe{sub 50}Cr{sub 50} alloy which is obtained by heat treatment of α-FeCr samples with different atomic ordering. Two α-FeCr alloys were obtained, one by mechanical alloying and the other by arc-melting. Both alloys were heated at 925 K for 170 h and then quenched into ice water. Before heat treatment both alloys exhibit α-FeCr disordered structure with greater ferromagnetic behavior in the alloy obtained by mechanical alloying due to its higher atomic disorder. The sigma phase precipitation is influenced by the atomic ordering of the bcc samples: in the alloy obtained by mechanical alloying, the bcc phase is completely transformed into the σ phase; in the alloy obtained by melted the α–σ transformation is partial.

  1. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  2. Inactivation of norovirus on dry copper alloy surfaces.

    Directory of Open Access Journals (Sweden)

    Sarah L Warnes

    Full Text Available Noroviruses (family Caliciviridae are the primary cause of viral gastroenteritis worldwide. The virus is highly infectious and touching contaminated surfaces can contribute to infection spread. Although the virus was identified over 40 years ago the lack of methods to assess infectivity has hampered the study of the human pathogen. Recently the murine virus, MNV-1, has successfully been used as a close surrogate. Copper alloys have previously been shown to be effective antimicrobial surfaces against a range of bacteria and fungi. We now report rapid inactivation of murine norovirus on alloys, containing over 60% copper, at room temperature but no reduction of infectivity on stainless steel dry surfaces in simulated wet fomite and dry touch contamination. The rate of inactivation was initially very rapid and proportional to copper content of alloy tested. Viral inactivation was not as rapid on brass as previously observed for bacteria but copper-nickel alloy was very effective. The use of chelators and quenchers of reactive oxygen species (ROS determined that Cu(II and especially Cu(I ions are still the primary effectors of toxicity but quenching superoxide and hydroxyl radicals did not confer protection. This suggests Fenton generation of ROS is not important for the inactivation mechanism. One of the targets of copper toxicity was the viral genome and a reduced copy number of the gene for a viral encoded protein, VPg (viral-protein-genome-linked, which is essential for infectivity, was observed following contact with copper and brass dry surfaces. The use of antimicrobial surfaces containing copper in high risk closed environments such as cruise ships and care facilities could help to reduce the spread of this highly infectious and costly pathogen.

  3. Inactivation of Norovirus on Dry Copper Alloy Surfaces

    Science.gov (United States)

    Warnes, Sarah L.; Keevil, C. William

    2013-01-01

    Noroviruses (family Caliciviridae) are the primary cause of viral gastroenteritis worldwide. The virus is highly infectious and touching contaminated surfaces can contribute to infection spread. Although the virus was identified over 40 years ago the lack of methods to assess infectivity has hampered the study of the human pathogen. Recently the murine virus, MNV-1, has successfully been used as a close surrogate. Copper alloys have previously been shown to be effective antimicrobial surfaces against a range of bacteria and fungi. We now report rapid inactivation of murine norovirus on alloys, containing over 60% copper, at room temperature but no reduction of infectivity on stainless steel dry surfaces in simulated wet fomite and dry touch contamination. The rate of inactivation was initially very rapid and proportional to copper content of alloy tested. Viral inactivation was not as rapid on brass as previously observed for bacteria but copper-nickel alloy was very effective. The use of chelators and quenchers of reactive oxygen species (ROS) determined that Cu(II) and especially Cu(I) ions are still the primary effectors of toxicity but quenching superoxide and hydroxyl radicals did not confer protection. This suggests Fenton generation of ROS is not important for the inactivation mechanism. One of the targets of copper toxicity was the viral genome and a reduced copy number of the gene for a viral encoded protein, VPg (viral-protein-genome-linked), which is essential for infectivity, was observed following contact with copper and brass dry surfaces. The use of antimicrobial surfaces containing copper in high risk closed environments such as cruise ships and care facilities could help to reduce the spread of this highly infectious and costly pathogen. PMID:24040380

  4. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    Science.gov (United States)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  5. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  6. Castable hot corrosion resistant alloy

    Science.gov (United States)

    Barrett, Charles A. (Inventor); Holt, William H. (Inventor)

    1988-01-01

    Some 10 wt percent nickel is added to an Fe-base alloy which has a ferrite microstructure to improve the high temperature castability and crack resistance while about 0.2 wt percent zirconium is added for improved high temperatur cyclic oxidation and corrosion resistance. The basic material is a high temperature FeCrAl heater alloy, and the addition provides a material suitable for burner rig nozzles.

  7. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  8. Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions

    International Nuclear Information System (INIS)

    Kurepin, V. A.; Kulik, D. A.; Hitpold, A.; Nicolet, M.

    2002-03-01

    In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO 2 by incremental additions of O 2 in H 2 O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni phase, maintaining

  9. The oxidation and corrosion of ODS alloys

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  10. A Comparison of High Damping Shape Memory Alloys with Cu-Mn-Based and Fe-Cr-Based Alloys.

    Science.gov (United States)

    1987-06-01

    and Houze , G.L., "Magnetic Properties and Domain Structure in Grain-Oriented 3% Si-Fe," IEEE Transactions on MaQnetics, Vol. MAG-10, No. 2, pp. 195-222...USN 4 803 Market Street Summerhill, Pennsylvania 15958 7. Mr. Robert Hardy, Code 2803 5 David W. Taylor Naval Ship R&D Center Annapolis, Maryland

  11. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  12. Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys.

    Science.gov (United States)

    Greeley, Jeff; Mavrikakis, Manos

    2005-03-03

    Periodic, self-consistent DFT-GGA calculations are used to study the thermochemical properties of both surface and subsurface atomic hydrogen on a variety of pure metals and near-surface alloys (NSAs). For surface hydrogen on pure metals, calculated site preferences, adsorption geometries, vibrational frequencies, and binding energies are reported and are found to be in good agreement with available experimental data. On NSAs, defined as alloys wherein a solute is present near the surface of a host metal in a composition different from the bulk composition, surface hydrogen generally binds more weakly than it binds to the pure-metal components composing the alloys. Some of the NSAs even possess the unusual property of binding hydrogen as weakly as the noble metals while, at the same time, dissociating H(2) much more easily. On both NSAs and pure metals, formation of surface hydrogen is generally exothermic with respect to H(2)(g). In contrast, formation of subsurface hydrogen is typically endothermic with respect to gas-phase H(2) (the only exception to this general statement is found for pure Pd). As with surface H, subsurface H typically binds more weakly to NSAs than to the corresponding pure-metal components of the alloys. The diffusion barrier for hydrogen from surface to subsurface sites, however, is usually lower on NSAs compared to the pure-metal components, suggesting that population of subsurface sites may occur more rapidly on NSAs.

  13. Growth of oxide particles in FeCrAl- oxide dispersion strengthened steels at high temperature

    Science.gov (United States)

    Oono, N. H.; Ukai, S.; Hayashi, S.; Ohtsuka, S.; Kaito, T.; Kimura, A.; Torimaru, T.; Sakamoto, K.

    2017-09-01

    The growth of oxide particles in FeCrAl- oxide dispersion strengthened steel (ODSS) considering an accident condition of the light-water reactor at above 1500 K was studied by using a high-temperature annealing. Oxide particles grew from 9 nm to more than 50 nm as maximum at 1623 K for 27 h, with decreasing their number density in two orders of magnitude. Most of the oxide particles in 15Cr-7Al were identified as YAM or YAP, while the oxide particles in 15Cr-7Al-0.4Zr were identified trigonal Y4Zr3O12. Zr addition to 15Cr-7Al ODSS accelerated the growth of the oxide particles, which is quite contrary to the effect of Zr addition during sintering as suggested in the literature. The kinetics of coarsening was characterized by an equation of Ostwald ripening. The diffusion activation energies obtained in the present materials were quite larger than the conventional diffusion activation energy of Y in alpha-iron. Gibbs free energy of oxides should be considered to discuss the coarsening.

  14. Antiferromagnetic interlayer coupling in Fe/V and Fe/Cr

    International Nuclear Information System (INIS)

    Vega, A.; Rubio, A.; Balbas, L.C.; Dorantes-Davila, J.; Bouarab, S.; Demangeat, C.; Mokrani, A.; Dreysse, H.

    1991-01-01

    Antiferromagnetic (AF) coupling between Fe and V atoms is observed experimentally at the Fe/V and Fe/Cr interfaces. In the self-consistent tight-binding derivation of the unrestricted approximation of the Hubbard Hamiltonian, we have investigated Fe 3 V n (n=1--5) superlattices and Fe 3 V n (n=1--5) films. In all cases one finds an AF coupling between Fe and V together with a decreasing oscillation of the induced magnetic moment on the V atoms when the distance from Fe increases. The distributions of local magnetic moments on Fe and Cr layers in Fe 3 Cr n (n=3--5) superlattices have been determined self-consistently. Both AF and ferromagnetic (F) coupling between Fe layers separated by Cr have been studied. In all cases one finds strong AF couplings between Fe and Cr nearest neighbors with an important increase of the Cr magnetic moment at the interface as compared to the Cr bulk value

  15. Antiferromagnetic interlayer coupling in Fe/V and Fe/Cr

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A.; Rubio, A.; Balbas, L.C. (Departamento de Fisica Teorica, Universidad de Valladolid, Spain (ES)); Dorantes-Davila, J. (Departamento de Fisica Teorica, CINVESTAN-IPN, Apdo. 14-740, Mexico, (Mexico)); Bouarab, S.; Demangeat, C. (IPCMS, Universite Louis Pasteur, 4 rue Blaise Pascal, 67070 Strasbourg, (France)); Mokrani, A.; Dreysse, H. (Laboratoire de Physique des Solides, BP 239, 54506 Vandoeuvre-les Nancy, (France))

    1991-04-15

    Antiferromagnetic (AF) coupling between Fe and V atoms is observed experimentally at the Fe/V and Fe/Cr interfaces. In the self-consistent tight-binding derivation of the unrestricted approximation of the Hubbard Hamiltonian, we have investigated Fe{sub 3}V{sub {ital n}} ({ital n}=1--5) superlattices and Fe{sub 3}V{sub {ital n}} ({ital n}=1--5) films. In all cases one finds an AF coupling between Fe and V together with a decreasing oscillation of the induced magnetic moment on the V atoms when the distance from Fe increases. The distributions of local magnetic moments on Fe and Cr layers in Fe{sub 3}Cr{sub {ital n}} ({ital n}=3--5) superlattices have been determined self-consistently. Both AF and ferromagnetic ({ital F}) coupling between Fe layers separated by Cr have been studied. In all cases one finds strong AF couplings between Fe and Cr nearest neighbors with an important increase of the Cr magnetic moment at the interface as compared to the Cr bulk value.

  16. Effect of Ovality in Inlet Pigtail Pipe Bends Under Combined Internal Pressure and In-Plane Bending for Ni-Fe-Cr B407 Material

    Directory of Open Access Journals (Sweden)

    Ramaswami P.

    2017-09-01

    Full Text Available The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h. By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.

  17. Estimation of the Temperature-Dependent Nitrogen Solubility in Stainless Fe-Cr-Mn-Ni-Si-C Steel Melts During Processing

    Science.gov (United States)

    Wendler, Marco; Hauser, Michael; Sandig, Eckhard Frank; Volkova, Olena

    2018-04-01

    The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.

  18. Microstructure and High Temperature Mechanical Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Metal Injection Molding Process

    Science.gov (United States)

    Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik

    2018-02-01

    This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.

  19. Microstructure and High Temperature Mechanical Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Metal Injection Molding Process

    Science.gov (United States)

    Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik

    2018-03-01

    This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.

  20. Status Report on Irradiation Capsules Designed to Evaluate FeCrAl-UO2 Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-24

    This status report provides the background and current status of a series of irradiation capsules that were designed and are being built to test the interactions between candidate FeCrAl cladding for enhanced accident tolerant applications and prototypical enriched commercial UO2 fuel in a neutron radiation environment. These capsules will test the degree, if any, of fuel cladding chemical interactions (FCCI) between FeCrAl and UO2. The capsules are to be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory to burn-ups of 10, 30, and 50 GWd/MT with a nominal target temperature at the interfaces between the pellets and clad of 350°C.

  1. Model castings with composite surface layer - application

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-10-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.

  2. Surface segregations in amorphous magnetically soft alloy under oxidation

    International Nuclear Information System (INIS)

    Bayankin, V.A.; Vasil'ev, V.Yu.; Volkova, I.B.; Skvortsova, N.G.; Smirnova, O.I.

    1997-01-01

    Using the Auger electron spectroscopy and electron reflecting diffraction the effects of high temperature annealing and electro-chemical treatment on chemical composition and atomic structure of amorphous magnetically soft alloy Co 57 Fe 5 Ni 10 Si 11 B 7 were investigated. It is shown the surface layers on the base of silicon carbide are formed during annealing while during electro-chemical treatment a cobalt borides are formed. Besides, during electro-chemical treatment the amorphous structure with different interatomic space are saved depending on time. At the time, mechanical properties of the alloy are not worse and it may be used for manufacturing of magnetodrives from amorphous magnetically soft materials [ru

  3. Water and oil wettability of anodized 6016 aluminum alloy surface

    Science.gov (United States)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA mechanisms of porous structures, was broken. Moreover, thicker oxide layers with narrow pores of about 29 nm diameter allowed to achieve WCA mechanical components or in water-oil separation process.

  4. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  5. The electronic structure of anodized and etched aluminum alloy surfaces

    Science.gov (United States)

    Mullins, W. M.; Averbach, B. L.

    1988-11-01

    Specimens of 6061 and 5052 aluminum alloys which had been anodized and etched by several commonly used procedures were examined by means of bias-reference X-ray photoelectron spectroscopy (XPS). The spectra were compared with those obtained from single crystals of pure aluminum oxides. The chemical shifts observed from the A12p surface oxide lines were interpreted as differences in the Fermi energy levels relative to those in the bulk oxide crystals, and the Fermi energy levels of the surface oxides were thus determined. Using an earlier experimental correlation obtained for values of the point of zero charge (pzc) with Fermi energy levels in aluminum oxide powders, a value of the pzc of the surface oxide was then determined. The surface exhibited the maximum alkalinity, pzc = 8.9, after a caustic etch, and the maximum acidity, pzc = 3.6, after a phosphoric acid anodizing treatment. The significance of these pzc values in the adhesive bonding of aluminum alloys is discussed.

  6. TEM observation on phase separation and interfaces of laser surface alloyed high-entropy alloy coating.

    Science.gov (United States)

    Cai, Zhaobing; Cui, Xiufang; Jin, Guo; Liu, Zhe; Li, Yang; Dong, Meiling

    2017-12-01

    Phase separation is a common phenomenon in traditional alloys. Under the condition of appropriate undercooling, the segregation phenomenon can be also found in blue-chip high-entropy alloys (HEAs). In this work, the phase separation behavior and interfacial investigation of laser surface alloyed HEA coating with high content Ti were studied principally by transmission electron microscopy. The results show that crystal structure and elementary composition on both sides of the interface of coating/substrate are quite different, and the interfaces between different phases are incoherent or semi-coherent boundarys, resolved by high resolution transmission electron microscopy. In the interface of (Co, Ni)Ti 2 phase/β-Ti phase, there is angle of 80° between BCC〈100〉 and FCC〈201〉. An interesting 'island' structure, that β-Ti phases are embraced by (Co, Ni)Ti 2 compounds in the BCC matrix, was observed definitely, which is attributed to the combined action of Ti segregation and inter-attraction of Ti and other elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Formation of Titanium Carbide in the Surface Layer of Cavityless-Cast Iron-Carbon Alloys

    Science.gov (United States)

    Ovcharenko, P. G.; Leshchev, A. Yu.; Makhneva, T. M.

    2018-01-01

    Special features of formation of titanium carbide in the surface layer of castings of iron-carbon alloys obtained with the use of investment patterns and "Ti - C" and "FeTi - C" alloying compositions are considered. The phase composition, the structure, and the hardness of the alloyed layers are determined.

  8. Effect of {gamma}-ray irradiation on the magnetic properties of NdFeB and Fe-Cr-Co permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.S. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: zhenl@hit.edu.cn; Li, G.A. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xu, C.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shao, W.Z. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2006-07-15

    The effect of {gamma}-ray irradiation on the magnetic properties of NdFeB and Fe-Cr-Co permanent magnets has been investigated. The magnetic flux loss of two kinds of magnets before and after irradiation was measured. Results show that the effect of {gamma}-ray irradiation on the magnetic properties of sintered NdFeB is not so obvious as that on Fe-Cr-Co magnet. Irradiation-induced damage from {gamma}-ray for the Fe-Cr-Co magnets was characterized for the first time. The decline of permanent magnetic properties of Fe-Cr-Co magnet induced by {gamma}-ray irradiation is reversible except for the maximum energy product (BH){sub max}. The difference of coercivity mechanism between these two kinds of permanent magnets is responsible for the different dependence of magnetic properties loss induced by {gamma}-ray irradiation.

  9. Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kurepin, V.A.; Kulik, D.A.; Hitpold, A.; Nicolet, M

    2002-03-01

    In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO{sub 2} by incremental additions of O{sub 2} in H{sub 2}O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni

  10. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Asahi, Kawashima; Koji, Hashimoto; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  11. Surface alloys as interfacial layers between quasicrystalline and periodic materials

    Science.gov (United States)

    Duguet, T.; Ledieu, J.; Dubois, J. M.; Fournée, V.

    2008-08-01

    Low adhesion with normal metals is an intrinsic property of many quasicrystalline surfaces. Although this property could be useful to develop low friction or non-stick coatings, it is also responsible for the poor adhesion of quasicrystalline coatings on metal substrates. Here we investigate the possibility of using complex metallic surface alloys as interface layers to enhance the adhesion between quasicrystals and simple metal substrates. We first review some examples where such complex phases are formed as an overlayer. Then we study the formation of such surface alloys in a controlled way by annealing a thin film deposited on a quasicrystalline substrate. We demonstrate that a coherent buffer layer consisting of the γ-Al4Cu9 approximant can be grown between pure Al and the i-Al-Cu-Fe quasicrystal. The interfacial relationships between the different layers are defined by [111]_{\\mathrm {Al}}\\parallel [110]_{\\mathrm {Al_4Cu_9}}\\parallel [5\\mathrm {f}]_{i\\mbox {-}\\mathrm {Al\\mbox {--}Cu \\mbox {--}Fe}} .

  12. Surface alloys as interfacial layers between quasicrystalline and periodic materials

    Energy Technology Data Exchange (ETDEWEB)

    Duguet, T; Ledieu, J; Dubois, J M; Fournee, V [Laboratoire de Science et Genie des Materiaux et de Metallurgie, UMR 7584 CNRS-Nancy Universite, Ecole des Mines de Nancy, Parc de Saurupt, F-54042 Nancy (France)], E-mail: fournee@lsg2m.org

    2008-08-06

    Low adhesion with normal metals is an intrinsic property of many quasicrystalline surfaces. Although this property could be useful to develop low friction or non-stick coatings, it is also responsible for the poor adhesion of quasicrystalline coatings on metal substrates. Here we investigate the possibility of using complex metallic surface alloys as interface layers to enhance the adhesion between quasicrystals and simple metal substrates. We first review some examples where such complex phases are formed as an overlayer. Then we study the formation of such surface alloys in a controlled way by annealing a thin film deposited on a quasicrystalline substrate. We demonstrate that a coherent buffer layer consisting of the {gamma}-Al{sub 4}Cu{sub 9} approximant can be grown between pure Al and the i-Al-Cu-Fe quasicrystal. The interfacial relationships between the different layers are defined by [111]{sub Al} parallel [110]{sub Al4Cu9} parallel [5f]{sub i-Al-}C{sub u-Fe}.

  13. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  14. Evolution of surface defects in platinum alloy wire under drawing

    Science.gov (United States)

    Loginov, Yu. N.; Pervukhin, A. E.; Babailov, N. A.

    2017-12-01

    The shape and chemical composition of particles polluting the surface of ultrafine wire made of the platinum Pt92.5Pd4Rh3.5 alloy has been revealed by electron microscopy and microspectral analysis. The phenomenon of the appearance of pores in the particles, which are elongated in the direction of drawing, has been discovered. The problem of calculating the stress-strain state is stated by the finite element method. After solving the problem, it is demonstrated that the appearance of additional defects is related to the proportion of stresses in the scheme of metal forming by drawing.

  15. Mössbauer studies of hyperfine fields in disordered Fe CrAl

    Indian Academy of Sciences (India)

    magnetic hyperfine field, the average hyperfine field follows the ´T Tcµ3 2 law. The paramagnetic part of the hyperfine field is explained in terms of the clustering of Cr ... These alloys offer excellent systems for studying magnetic interactions. Large volumes of studies have been devoted to Heusler alloys bearing the general ...

  16. Microstructural aspects of the oxidation of zirconium alloys

    International Nuclear Information System (INIS)

    Proff, Ch.

    2011-01-01

    This thesis is focused on the microstructural characterisation of precipitates in the oxide of binary zirconium alloys (1 wt.% Fe, Cr or Ni or 0.6 wt.% Nb) under different oxidation conditions at 415 C. The samples were oxidised in autoclave in air and steam and in an environmental scanning electron microscope in water vapour. The microstructural evolution of the precipitates during oxidation was characterised using electron microscopy. The findings from the analysis are the following: -Two types of oxidation behaviour are observed for precipitates. -Pilling Bedworth ratio of precipitates is higher than that of the zirconium matrix. -Formation of pure iron oxide crystals on the surface for iron bearing precipitates close to or at the surface. From these observations it is concluded that the precipitate oxidation behaviour can be correlated to precipitate composition and oxidation tendency of the elements in the precipitates. Iron exhibits clearly different behaviour. (author)

  17. Chromium depletion on the surface of nickel based alloys

    International Nuclear Information System (INIS)

    Dille, E.R.; McDonald, J.L.; Berry, P.

    1988-01-01

    Successful selection of corrosion resistant materials for flue gas desuflurization applications is tricky business at best. Most simulated, accelerated, concentrated corrosion tests try to rank materials to known corrosive condition. If you check the actual data, occasionally you find anomalies such as highly corrosion resistant materials performing below what was expected, while the rest of the group is performing normally. In the field the authors have observed similar results with few acceptable explanations. Recently the authors have found numerous cases of Ni/Cr/Mo alloys with a surface analysis below the ASTM specified range for the element chromium. These surface analysis have been done with a portable X-ray Fluorescent Instrument with the initial results confirmed by an independent laboratory

  18. Hydrogen adsorption on bimetallic PdAu(111) surface alloys

    DEFF Research Database (Denmark)

    Takehiro, Naoki; Liu, Ping; Bergbreiter, Andreas

    2014-01-01

    The adsorption of hydrogen on structurally well defined PdAu-Pd(111) monolayer surface alloys was investigated in a combined experimental and theoretical study, aiming at a quantitative understanding of the adsorption and desorption properties of individual PdAu nanostructures. Combining...... the structural information obtained by high resolution scanning tunneling microscopy (STM), in particular on the abundance of specific adsorption ensembles at different Pd surface concentrations, with information on the adsorption properties derived from temperature programmed desorption (TPD) spectroscopy...... and high resolution electron energy loss spectroscopy (HREELS) provides conclusions on the minimum ensemble size for dissociative adsorption of hydrogen and on the adsorption energies on different sites active for adsorption. Density functional theory (DFT) based calculations give detailed insight...

  19. A study of the formation of Cr-surface alloyed layer on structural alloy steel by Co2 laser

    International Nuclear Information System (INIS)

    Kim, T.H.; Han, W.S.

    1986-01-01

    In order to improve wear and erosion-resistances of a structural alloy steel (SNCM 8) during heat-cycling, chromium-alloyed layers were produced on the surface by irradiating Co 2 laser. Specimens were prepared either by electroplating of hard-chromium or coating of chromium powders on the steel followed by the laser treatment. Index values, which related the depth and the width of the alloyed layers to the scanning speed of laser, for both samples are experimentally measured. At a fixed scanning speed, while both samples resulted in a similar depth of the alloyed layers, the chromium powder coated specimen showed larger width of the alloyed layer than the chromium electroplated one. The hardness values of the alloyed layers in both samples were slightly lower than that of the martensitic region beneath the alloyed layers. But they are considerably higher than those of steel matrices. Regardless of the prior treatments before laser irradiation, distributions of chromium were fairly uniform throughout the alloyed layers. (Author)

  20. Electron work function and composition of gallium-indium alloy surface

    International Nuclear Information System (INIS)

    Egorova, E.M.

    1979-01-01

    The dependences of electron work functions on the composition for gallium-indium alloy obtained under different conditions are compared. An attempt is made to estimate a change in the alloy surface composition caused by a change in temperature and in the boundary phase nature. For the case under consideration it has been shown to be reasonable to compare the dependences of the electron work functions not on the alloy volumetric composition but on the composition of its surface

  1. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pitting susceptibility of chromium modified passive films of a B2-FeAl intermetallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frangini, S. [ENEA Casaccia (Italy). Settore Nuovi Materiali; Lascovich, J. [ENEA Casaccia (Italy). Settore Nuovi Materiali; De Cristofaro, N. [ENEA Casaccia (Italy). Settore Nuovi Materiali

    1995-11-01

    The effect of chromium on the pitting corrosion resistance of an iron aluminide B2-FeAl alloy (40 at/o Al) has been evaluated in chloride borate solutions. Chromium was permanently incorporated into the passive film of FeAl by repetitive oxidation-reduction cycles from alkaline chromate solution. Although the Cr-modified passive FeAl surface was found to have a pitting behaviour comparable to that of stainless Fe-Cr steels containing Cr in the range 12-24 at/o, the XPS analysis showed that Cr enrichment within the passive film of FeAl was not as high suggesting that the protective properties of the film would be due to a synergistic effect between Cr and Al. The use of the Kirchheim model allowed to predict the ternary alloy composition in equilibrium with the Cr-modified passive film one. (orig.)

  3. Reciprocating Sliding Behaviour of Solid Lubricant Coating over Modified Titanium Alloy Surfaces

    Science.gov (United States)

    Jothi Prakash, V. M.; Sathish, S.; Gopalakrishnan, T.; Venugopal, S.

    2017-03-01

    Tribological behaviour of contacting surfaces rigid sphere is using flat plate the with influence of normal and tangential loading (shear traction) is analysed using FEA model and surfaces being coated on flat plate by Titanium Alloy, Aluminium Alloy Molybdenum Di-sulphide. The finite element model facilitates to Evaluating the surface variables like contact stress distribution with the surface level and surface, contact pressure, shear stress and displacement. The finite element solution is validated through the hertz solution and on the successful verification.

  4. Microstructural Investigations of Al{sub 2}O{sub 3} Scale Formed on FeCrAl Steel during High Temperature Oxidation in SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Homa, M.; Zurek, Z. [Cracow University of Technology, Cracow (Poland); Morgiel, B.; Zieba, P.; Wojewoda, J. [Polish Academy of Sciences Reymonta, Cracow (Poland)

    2008-06-15

    The results of microstructure observations of the Al{sub 2}O{sub 3} scale formed on a Fe-Cr-Al steel during high temperature oxidation in the SO{sub 2} atmosphere are presented. Morphology of the scale has been studied by SEM and TEM techniques. Phase and chemical compositions have been studied by EDX and XRD techniques. The alumina oxide is a primary component of the scale. TEM observations showed that the scale was multilayer. The entire surface of the scale is covered with 'whiskers, which look like very thin platelets and have random orientation. The cross section of a sample shows, that the 'whiskers' are approximately 2 {mu}m high, however the compact scale layer on which they reside is 0.2 {mu}m thick. The scale layer was composed mainly of small equiaxial grains and a residual amount of small columnar grains. EDX analysis of the scale surface showed that the any sulfides were found in the formed outer and thin inner scale layer. A phase analysis of the scale formed revealed that it is composed mainly of the {theta}-Al{sub 2}O{sub 3} phase and a residual amount of {alpha}-Al{sub 2}O{sub 3}.

  5. Microstructural Investigations of Al2O3 Scale Formed on FeCrAl Steel during High Temperature Oxidation in SO2

    International Nuclear Information System (INIS)

    Homa, M.; Zurek, Z.; Morgiel, B.; Zieba, P.; Wojewoda, J.

    2008-01-01

    The results of microstructure observations of the Al 2 O 3 scale formed on a Fe-Cr-Al steel during high temperature oxidation in the SO 2 atmosphere are presented. Morphology of the scale has been studied by SEM and TEM techniques. Phase and chemical compositions have been studied by EDX and XRD techniques. The alumina oxide is a primary component of the scale. TEM observations showed that the scale was multilayer. The entire surface of the scale is covered with 'whiskers, which look like very thin platelets and have random orientation. The cross section of a sample shows, that the 'whiskers' are approximately 2 μm high, however the compact scale layer on which they reside is 0.2 μm thick. The scale layer was composed mainly of small equiaxial grains and a residual amount of small columnar grains. EDX analysis of the scale surface showed that the any sulfides were found in the formed outer and thin inner scale layer. A phase analysis of the scale formed revealed that it is composed mainly of the θ-Al 2 O 3 phase and a residual amount of α-Al 2 O 3

  6. Microstructure and phase identification in type 304 stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Park, J.

    1996-01-01

    Stainless steel-zirconium alloys have been developed at Argonne National Laboratory to contain radioactive metal isotopes isolated from spent nuclear fuel. This article discusses the various phases that are formed in as-cast alloys of type 304 stainless steel and zirconium that contain up to 92 wt pct Zr. Microstructural characterization was performed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), and crystal structure information was obtained by X-ray diffraction. Type 304SS-Zr alloys with 5 and 10 wt pct Zr have a three-phase microstructure--austenite, ferrite, and the Laves intermetallic, Zr(Fe,Cr,Ni) 2+x , whereas alloys with 15, 20, and 30 wt pct Zr contain only two phases--ferrite and Zr(Fe,Cr,Ni) 2+x . Alloys with 45 to 67 wt pct Zr contain a mixture of Zr(Fe,Cr,Ni) 2+x and Zr 2 (Ni,Fe), whereas alloys with 83 and 92 wt pct Zr contain three phases--α-Zr, Zr 2 (Ni,Fe), and Zr(Fe,Cr,Ni) 2+x . Fe 3 Zr-type and Zr 3 Fe-type phases were not observed in the type 304SS-Zr alloys. The changes in alloy microstructure with zirconium content have been correlated to the Fe-Zr binary phase diagram

  7. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.

    Science.gov (United States)

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-09-24

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti-6Al-4V, Ti-15Mo-5Zr-3Al and Ti-15Zr-4Nb-4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone.

  8. Research on depositing Ni45 alloy on titanium alloy surface by electrospark deposition

    Directory of Open Access Journals (Sweden)

    Su Guiqiao

    2008-11-01

    Full Text Available Taking Ni45 bar as electrode, a strengthened layer of thickness up to 50 μm was built up on BT20 titanium alloy matrix by means of electrospark deposition. Results of phase analysis by using of X-ray diffraction confirmed that the deposition layer was composed mostly of three phases, NiTi, NiTi2 and Ti. The surface microhardness of the deposition layer was up to 910 HV0.05, about 2.7 times as high as that of the matrix. The hardness at the cross-section of the entire deposition layer showed a gradient distribution. The effects of capacitance and deposition time on thickness of deposition layer were also studied, and results showed that with relatively low capacity and short deposition time the deposition layer without cracks can be obtained.

  9. Hydrogen solubility in austenite of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Zhirnova, V.V.; Mogutnov, B.M.; Tomilin, I.A.

    1981-01-01

    Hydrogen solubility in Fe-Ni-Cr alloys at 600-1000 deg C is determined. Hydrogen solubility in ternary alloys can not be predicted on the basis of the data on its solubility in binary Fe-Ni, Fe-Cr alloys. Chromium and nickel effect on hydrogen solubility in iron is insignificant in comparison with the effect of these elements on carbon or nitrogen solubility [ru

  10. Surface alloy formation by adsorption of holmium on Ag/Mo(112) bimetallic surfaces

    Science.gov (United States)

    Kołaczkiewicz, Jan; Oleksy, Czesław

    2018-03-01

    Work function change measurements, low energy electron diffraction (LEED) and density functional theory (DFT) are used to determine the structures formed on Ag/Mo(112) bimetallic surfaces upon deposition of 0.5 monolayer (ML) of holmium. As the bimetallic surfaces, we have chosen the Mo(112) substrate covered with 1 or 2 ML of Ag. Such surfaces have the same symmetry as the Mo(112) face but different electronic properties. LEED experiment indicates that the c(2 × 2) structure is formed on (1 ML Ag)/Mo(112) bimetallic surface upon deposition of 0.5 ML of Ho. DFT calculations show that a type of Ag-Ho surface alloy is formed, with Ho atoms 0.6 Å below the distorted layer of Ag. This is neither a substitutional nor a subsurface alloy. It is found that the adsorption structure formed on the (2 ML Ag)/Mo(112) bimetallic surface depends on the annealing temperature. After deposition of 0.5 ML of Ho at 300 K, the LEED pattern of p(2 × 2) symmetry is observed. Annealing of the overlayer at 640 K irreversibly changes the p(2 × 2) pattern into a pattern of c(2 × 2) type. The results of DFT computations show that the c(2 × 2) structure of the Ag-Ho surface alloy is energetically most favorable. In this structure, 0.5 ML of Ho is between the two monolayers of Ag, and the symmetry of the topmost layer is changed. The work function change calculated for the c(2 × 2) structure is in a good agreement with the measured value (0.22 eV). The results show that adsorption of Ho on the Ag/Mo(112) bimetallic surfaces is substantially different than on the clean Mo(112).

  11. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  12. Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2009-01-01

    for the ORR but, with few exceptions, they are found to be thermodynamically unstable in the acidic environments typical of low-temperature fuel cells. The results suggest that, absent other thermodynamic or kinetic mechanisms to stabilize the alloys, surface alloys are unlikely to serve as useful ORR......, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active...

  13. Pulsed E-beams to improve corrosion barriers for lead alloy cooled reactors. Overview and dedicated mechanical tests

    Energy Technology Data Exchange (ETDEWEB)

    Weisenburger, Alfons; Jianu, Adrian; Heinzel, Annette; DelGiacco, Mattia; Mueller, Georg [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Hochleistungsimpuls und Mikrowellentechnik

    2010-07-01

    Surface layers made of FeCrAl alloys on T91 steel have shown their capability as corrosion protection barriers in lead alloy. Pulsed E-beam treatment improves the density and more over the adherence of such layers. After the treatment of previous deposited coatings a surface graded material is achieved with a metallic bonded interface. Beside the superior corrosion protection based on thin slow growing alumina scales such barriers have shown in first low cycle fatigue and pressurized tube tests that the mechanical properties of the base materials are not deteriorated. In both tests lead alloy did not have any negative influence on the mechanical properties. Instead, creep to rupture tests in lead alloy result in a significant reduced creep to rupture strength of non-modified T91 test specimens. The negative influence of the lead alloy on the creep behaviour of non-modified T91 is stress dependent and the stress limit for 550 C was evaluated. The surface modified specimens tested at high stress levels instead had creep to rupture times similar to T91 (original state) tested in air. The thin oxide layers formed on the surface modified steel samples are less susceptible to crack formation and therefore to lead alloy enhanced creep. (orig.)

  14. Determination of chemical activities of Fe, Cr, Ni and Mn in stainless steel 316 by Knudsen effusion cell mass spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Kulkarni, S.G.; Subbanna, C.S.; Sood, D.D.

    1995-01-01

    Cold-worked austenitic stainless steel of the type AISI 316 is being used as the cladding and wrapper materials in fast reactor fuel pins. Knowledge of the thermodynamic activities of the steel constituents is necessary to predict the possibility of fuel-cladding, coolant-cladding or fission product-cladding chemical reactions. The thermodynamic activities of Fe, Cr, Ni and Mn for stainless steel 316 were determined by measuring their partial pressures in the temperature range 1293-2120 K, using Knudsen effusion cell mass spectrometry. High purity Ag was used as an internal calibrant. The chemical activities of Fe (a Fe ), Cr (a Cr ), Ni (a Ni ) and Mn (a Mn ) were evaluated using literature data for the vapour pressures of pure metals. log a Fe ±0.18=-1.586+2074/T (T=1293-1872 K)log a Cr ±0.30=-2.350+2612/T (T=1293-2120 K)log a Ni ±0.20=-2.140+1794/T (T=1468-1974 K)log a Mn ±0.23=-2.041-5478/T (T=1302-1894 K) ((orig.))

  15. Pre-equilibrium emission and nuclear level densities in neutron induced reactions on Fe, Cr and Ni isotopes

    International Nuclear Information System (INIS)

    Ivascu, M.; Avrigeanu, M.; Ivascu, I.; Avrigeanu, V.

    1989-01-01

    The experimentally well known (n,p), (n,α) and (n,2n) reaction excitation functions, from threshold to 20 MeV incident energy, and neutron, proton and alpha-particle emission spectra at 14.8 MeV from Fe, Cr and Ni isotopes are calculated in the frame of a generalized Geometry-Dependent-Hybrid pre-equilibrium emission model, including angular momentum and parity conservation and alpha-particle emission, and the Hauser-Feshbach statistical model. Use of a consistent statistical model parameter set enables the validation of the pre-equilibrium emission model. Moreover, an enhanced pre-equilibrium emission from higher spin composite system states, associated with higher incident orbital momenta, has been evidenced. Higher orbital momenta involved also in the emergent channels of this process are suggested by calculations of the residual nuclei level populations. Finally, the unitary account of the (n, p) and (n, 2n) reaction excitation functions for Fe, Cr and Ni isotopes has allowed the proper establishment of the limits of the transition excitation range between the two different nuclear level density models used at medium and higher excitation energies, respectively. (author). 83 refs, 15 figs

  16. Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation

    International Nuclear Information System (INIS)

    Payet, Mickaël; Marchetti, Loïc; Tabarant, Michel; Chevalier, Jean-Pierre

    2015-01-01

    Highlights: • The dissolution of Ni and Fe cations occurs during corrosion of Ni-based alloys in SCW. • The nature of the oxide layer depends locally on the alloy microstructure. • The corrosion mechanism changes when cold-work increases leading to internal oxidation. - Abstract: Ni–Fe–Cr alloys are expected to be a candidate material for the generation IV nuclear reactors that use supercritical water at temperatures up to 600 °C and pressures of 25 MPa. The corrosion resistance of Alloy 690 in these extreme conditions was studied considering the surface finish of the alloy. The oxide scale could suffer from dissolution or from internal oxidation. The presence of a work-hardened zone reveals the competition between the selective oxidation of chromium with respect to the oxidation of nickel and iron. Finally, corrosion mechanisms for Ni based alloys are proposed considering the effects of plastically deformed surfaces and the dissolution.

  17. Effect of microarc discharge surface treatment on the tensile properties of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Xue, Wenbin; Wang, Chao; Deng, Zhiwei; Chen, Ruyi; Zhang, Tonghe; Li, Yongliang

    2002-01-01

    A thick ceramic coating was prepared on Al-Cu-Mg alloy by microarc discharge in aqueous solution. The tensile properties of the alloy before and after microarc oxidation (MAO) surface treatment were tested, then the fractography and morphology of ceramic oxide coatings were investigated using scanning electron microscope (SEM). It is shown that the tensile properties of aluminum alloy have smaller change after the alloy has undergone microarc discharge treatment. For all specimens with different thickness coatings, the decreases of yield strength, tensile strength and elastic modulus are less than 5%, and the contraction of area rises while the elongation slightly decreases. After the coatings are polished, the tensile properties of the alloy are improved rather small. The surface of tensile specimens uniformly remains a large quantity of tiny fragments of alumina coatings. That implies that the ceramic coating has good adhesion with aluminum alloy substrate

  18. First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects

    Science.gov (United States)

    Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki

    2017-06-01

    The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.

  19. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); He, Xiang [Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Chen, Zhao-Xu, E-mail: zxchen@nju.edu.cn [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); Huang, Yu-Gai [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); JiangSu Second Normal University, Nanjing (China)

    2015-11-05

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys.

  20. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    International Nuclear Information System (INIS)

    Cheng, Feng; He, Xiang; Chen, Zhao-Xu; Huang, Yu-Gai

    2015-01-01

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys

  1. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    OpenAIRE

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surfac...

  2. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications

    International Nuclear Information System (INIS)

    Agarwal, Sankalp; Curtin, James; Duffy, Brendan; Jaiswal, Swarna

    2016-01-01

    Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications. - Highlights: • The Mg based alloys are promising candidates for orthopaedic applications. • The rapid corrosion of Mg can affect human cells, and causes infection and implant failure. • The various physiological factors and Mg alloying elements affect the corrosion and mechanical properties of implants. • The polymeric deposit coatings enhance the corrosion resistance and biocompatibility.

  3. Structure and characteristics of chromium steel coatings alloyed with boron carbide

    Science.gov (United States)

    Eremin, E. N.; Losev, A. S.; Borodikhin, S. A.; Matalasova, A. E.; Ponomarev, I. A.; Ivlev, K. E.

    2018-01-01

    This study explores the problems arising from the increase of wear resistance on the coatings of details of a wide range of applications, obtained by surfacing the Fe - Cr system with flux-cored wires. It has shown that insignificant wear resistance of such steel under conditions of metal friction against another metal is due to their relatively low hardness and the absence of strengthening phases. It also shows the effect of boron carbide on the structure and the characteristics of chromium steel obtained by the surfacing process. It was established that the use of high-chromium flux-cored wires alloyed with boron carbide aids the production of a deposited metal of a composite type, with a dispersed hardening based on chromium carboboride. The deposited metal with such structure has a high wear resistance and the hardness of 55 … 58 HRC and can be used for surfacing cladding the hardening, corrosion-resistant coatings.

  4. Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617

    International Nuclear Information System (INIS)

    Arabi Jeshvaghani, R.; Jaberzadeh, M.; Zohdi, H.; Shamanian, M.

    2014-01-01

    Highlights: • The Ni-base alloy was deposited on the surface of ductile iron by TIG welding process. • Microstructure of alloyed layer consisted of carbides embedded in Ni-rich dendrite. • Hardness and wear resistance of coated sample greatly improved. • The formation of oxide layer and delamination were dominant mechanisms of wear. - Abstract: In this research, microstructure and wear behavior of Ni-based alloy is discussed in detail. Using tungsten inert gas welding process, coating of nearly 1–2 mm thickness was deposited on ductile iron. Optical and scanning electron microscopy, as well as X-ray diffraction analysis and electron probe microanalysis were used to characterize the microstructure of the surface alloyed layer. Micro-hardness and wear resistance of the alloyed layer was also studied. Results showed that the microstructure of the alloyed layer consisted of M 23 C 6 carbides embedded in Ni-rich solid solution dendrites. The partial melted zone (PMZ) had eutectic ledeburit plus martensite microstructure, while the heat affected zone (HAZ) had only a martensite structure. It was also noticed that hardness and wear resistance of the alloyed layer was considerably higher than that of the substrate. Improvement of wear resistance is attributed to the solution strengthening effect of alloying elements and also the presence of hard carbides such as M 23 C 6 . Based on worn surface analysis, the dominant wear mechanisms of alloyed layer were found to be oxidation and delamination

  5. Alloying Au surface with Pd reduces the intrinsic activity in catalyzing CO oxidation

    KAUST Repository

    Qian, Kun

    2016-03-30

    © 2016. Various Au-Pd/SiO2 catalysts with a fixed Au loading but different Au:Pd molar ratios were prepared via deposition-precipitation method followed by H2 reduction. The structures were characterized and the catalytic activities in CO oxidation were evaluated. The formation of Au-Pd alloy particles was identified. The Au-Pd alloy particles exhibit enhanced dispersions on SiO2 than Au particles. Charge transfer from Pd to Au within Au-Pd alloy particles. Isolated Pd atoms dominate the surface of Au-Pd alloy particles with large Au:Pd molar ratios while contiguous Pd atoms dominate the surface of Au-Pd alloy particles with small Au:Pd molar ratios. Few synergetic effect of Au-Pd alloy occurs on catalyzing CO oxidation under employed reaction conditions. Alloying Au with Pd reduces the intrinsic activity in catalyzing CO oxidation, and contiguous Pd atoms on the Au-Pd alloy particles are capable of catalyzing CO oxidation while isolated Pd atoms are not. These results advance the fundamental understandings of Au-Pd alloy surfaces in catalyzing CO oxidation.

  6. Microstructures of alloyed and dispersed hard particles in the aluminium surface

    CSIR Research Space (South Africa)

    Pityana, S

    2010-03-01

    Full Text Available Laser surface alloying of A1200 aluminium alloy was carried out using a 4.4 kW Nd:YAG laser. Powder mixtures of SiC and TiC hard particles were injected into the laser generated melt pool on the aluminium substrate using a commercial powder feeder...

  7. Antisite-defect-induced surface segregation in ordered NiPt alloy

    DEFF Research Database (Denmark)

    Pourovskii, L.V.; Ruban, Andrei; Abrikosov, I.A.

    2003-01-01

    alloys corresponds to the (111) truncation of the bulk L1(0) ordered structure. However, the (111) surface of the nickel deficient Ni49Pt51 alloy is strongly enriched by Pt and should exhibit the pattern of the 2x2 structure. Such a drastic change in the segregation behavior is due to the presence...

  8. Surface preparation process of a uranium titanium alloy, in particular for chemical nickel plating

    International Nuclear Information System (INIS)

    Henri, A.; Lefevre, D.; Massicot, P.

    1987-01-01

    In this process the uranium alloy surface is attacked with a solution of lithium chloride and hydrochloric acid. Dissolved uranium can be recovered from the solution by an ion exchange resin. Treated alloy can be nickel plated by a chemical process [fr

  9. Mechanical properties of spark plasma sintered Fe-Cr compacts strengthened by nanodispersed yttria particles

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Peter [TU Dresden (Germany); Heintze, Cornelia [Forschungszentrum Dresden-Rossendorf (Germany). Institute of Safty Research; Bergner, Frank [Forschungszentrum Dresden-Rossendorf (Germany); Weissgaerber, Thomas [Frauenhofer Institute for Manufacturing and Advanced Materials (IFAM), Dresden (Germany). Branch Lab Powder Metallurgy and Composite Materials; Frauenhofer Institute for Manufacturing and Advanced Materials (IFAM), Dresden (Germany). Department of High Performance Sintered Materials

    2010-07-01

    Oxide dispersion strengthening of high-Cr steels is a well-recognized way to extend the application window including nuclear applications for this class of materials. The experimental investigation of model alloys of less complexity is important in order to separate individual influence factors and to understand the irradiation behaviour. The present work is devoted to the mechanical properties of ODS Fe-9wt%Cr alloys produced by means of spark plasma sintering. The range of material conditions covers contents of nanodispersed yttria of 0 (reference), 0.3 wt%, and 0.6 wt% as well as variations of the milling time. Results obtained for the density, elastic properties, hardness, tensile behaviour, and brittle-ductile transition are reported, and the effect of ODS content and PM process parameters is discussed. (orig.)

  10. Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component

    DEFF Research Database (Denmark)

    Andersson, Klas Jerker; Calle Vallejo, Federico; Rossmeisl, Jan

    2009-01-01

    Counterintuitive to expectations and all prior observations of adsorbate-induced surface segregation of the more reactive alloy component (the one forming the stronger bond with the adsorbate), we show that CO adsorption at elevated pressures and temperatures pulls the less reactive Cu to the sur......Counterintuitive to expectations and all prior observations of adsorbate-induced surface segregation of the more reactive alloy component (the one forming the stronger bond with the adsorbate), we show that CO adsorption at elevated pressures and temperatures pulls the less reactive Cu...... to the surface of a CuPt near-surface alloy. The Cu surface segregation is driven by the formation of a stable self-organized CO/CuPt surface alloy structure and is rationalized in terms of the radically stronger Pt−CO bond when Cu is present in the first surface layer of Pt. The results, which are expected...... to apply to a range of coinage (Cu, Ag)/Pt-group bimetallic surface alloys, open up new possibilities in selective and dynamical engineering of alloy surfaces for catalysis....

  11. Physical mechanism of surface roughening on the radial core-shell nanowire heterostructure with alloy shell

    Science.gov (United States)

    Cao, Yuanyuan; Diao, Dongfeng

    2017-05-01

    We proposed a quantitative thermodynamic theory to address the physical process of surface roughening during the epitaxial growth of core-shell NW with alloy layer. The surface roughening origins from the transformation of the Frank-van der Merwe (FM) mode to the Stranski-Krastanow (SK) mode. In addition to the radius of NW core, the composition and thickness of alloy shell could determine the growth behaviors due to their modulation to the strain. The established theoretical model not only explains the surface roughening caused by the alloy shell layer, but also provides a new way to control the growth of core-shell NW.

  12. Physical mechanism of surface roughening on the radial core-shell nanowire heterostructure with alloy shell

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cao

    2017-05-01

    Full Text Available We proposed a quantitative thermodynamic theory to address the physical process of surface roughening during the epitaxial growth of core-shell NW with alloy layer. The surface roughening origins from the transformation of the Frank-van der Merwe (FM mode to the Stranski-Krastanow (SK mode. In addition to the radius of NW core, the composition and thickness of alloy shell could determine the growth behaviors due to their modulation to the strain. The established theoretical model not only explains the surface roughening caused by the alloy shell layer, but also provides a new way to control the growth of core-shell NW.

  13. Surface characterization of alloy Ti-6Al-7Nb treated plasma

    International Nuclear Information System (INIS)

    Moura, J.K.L.; Macedo, H.R.A.; Brito, E.M.; Brandim, A.S.

    2014-01-01

    Plasma surface modifications are subject of numerous studies to improve the quality of a given material. Titanium and its alloys are widely used in biomedical applications and plasma treatment technique is increasingly used to improve the surface properties thereof. The research have a objective in the comparative analysis of the change in microstructure of Ti-6Al-7Nb alloys after treatment of plasma nitriding. The technical are: nitriding with cathode cage (NGC) and planar discharge. The characterization was obtained by MEV (Scanning Electronic Microscope) and hardness. The results was compared about the better surface modification that meets future prospects of the biocompatibility of the alloy.(author)

  14. Mössbauer studies of hyperfine fields in disordered Fe CrAl

    Indian Academy of Sciences (India)

    Iron-based transition metal alloys show a great sensitivity to environmental effects [5], for instance, the definite ... calculated theoretical value for a B2-type structure are given as ∆2θ in this table. Mössbauer spectra ... ple of Fe2CrAl, the iron atom should have only Cr atoms as nearest neighbors and there should have been ...

  15. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants

    Directory of Open Access Journals (Sweden)

    Rebak Raul B.

    2017-01-01

    Full Text Available After a tsunami caused plant black out at Fukushima, followed by hydrogen explosions, the US Department of Energy partnered with fuel vendors to study safer alternatives to the current UO2-zirconium alloy system. This accident tolerant fuel alternative should better tolerate loss of cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. General electric, Oak ridge national laboratory, and their partners are proposing to replace zirconium alloy cladding in current commercial light water power reactors with an iron-chromium-aluminum (FeCrAl cladding such as APMT or C26M. Extensive testing and evaluation is being conducted to determine the suitability of FeCrAl under normal operation conditions and under severe accident conditions. Results show that FeCrAl has excellent corrosion resistance under normal operation conditions and FeCrAl is several orders of magnitude more resistant than zirconium alloys to degradation by superheated steam under accident conditions, generating less heat of oxidation and lower amount of combustible hydrogen gas. Higher neutron absorption and tritium release effects can be minimized by design changes. The implementation of FeCrAl cladding is a near term solution to enhance the safety of the current fleet of commercial light water power reactors.

  16. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants

    Science.gov (United States)

    Rebak, Raul B.

    2017-12-01

    After a tsunami caused plant black out at Fukushima, followed by hydrogen explosions, the US Department of Energy partnered with fuel vendors to study safer alternatives to the current UO2-zirconium alloy system. This accident tolerant fuel alternative should better tolerate loss of cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. General electric, Oak ridge national laboratory, and their partners are proposing to replace zirconium alloy cladding in current commercial light water power reactors with an iron-chromium-aluminum (FeCrAl) cladding such as APMT or C26M. Extensive testing and evaluation is being conducted to determine the suitability of FeCrAl under normal operation conditions and under severe accident conditions. Results show that FeCrAl has excellent corrosion resistance under normal operation conditions and FeCrAl is several orders of magnitude more resistant than zirconium alloys to degradation by superheated steam under accident conditions, generating less heat of oxidation and lower amount of combustible hydrogen gas. Higher neutron absorption and tritium release effects can be minimized by design changes. The implementation of FeCrAl cladding is a near term solution to enhance the safety of the current fleet of commercial light water power reactors.

  17. Microstructural characterization of superaustenitic stainless steel surface alloys formed using laser treatment

    Science.gov (United States)

    Sridhar, K.; Deshmukh, M. B.; Khanna, A. S.; Gasser, A.

    2000-09-01

    Conventional stainless steels (SS’s) such as AISI type 304 SS are used in many industrial applications due to their excellent weldability and good mechanical properties. However, in contacts with chlorides, they suffer from localized corrosion. AISI type 304 SS was alloyed at the surface with chromium, nickel, and molybdenum using a CO2 laser carried under varying laser processing parameters. The objective is to create a surface alloy with composition and microstructure, suitable for marine environments. The surface alloys were characterized using optical microscopy and scanning electron microscopy (SEM) and revealed the presence of the austenitic phase. Analysis by SEM-energy dispersive analysis (EDAX) revealed good compositional homogeneity with molybdenum contents in the range of 3 to 15 wt.%. The dendrite arm spacing (DAS) measured at the surface and bottom of the surface alloy using an image analyzer was found to be in good correlation with calculated cooling rates.

  18. Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys

    DEFF Research Database (Denmark)

    Prokhodtseva, A.; Décamps, B.; Ramar, Amuthan

    2013-01-01

    providing 500keV Fe+ and 10keV He+ ions. Single Fe ion and dual Fe and He ion beam experiments were performed up to a dose of 1dpa and to a He content of up to 1000appm. Defects appear in the form of nanometric black dots with sizes between 1 and 5nm. Defocused images reveal a dense population of sub...... already at sub-microscopic sizes. It is concluded that the primary loop population is dominated by 1/2a0〈111〉 loops........ The presence of He changes a a0〈100〉 dominated defect population to a 1/2a0〈111〉 dominated one in all materials, and the more so in UHP Fe. It appears that Cr increases the number of visible defects relative to UHP Fe. The dependence with increasing Cr content is weak, however, showing only a slight decrease...

  19. In situ neutron diffraction study of alpha-gamma Fe-Cr-Ni alloys under tensile deformation

    Czech Academy of Sciences Publication Activity Database

    Harjo, S.; Tomota, Y.; Lukáš, Petr; Neov, Dimitar; Vrána, Miroslav; Mikula, Pavol; Ono, M.

    2001-01-01

    Roč. 49, č. 13 (2001), s. 2471-2479 ISSN 1359-6454 R&D Projects: GA ČR GV202/97/K038; GA AV ČR KSK1010104 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.658, year: 2001

  20. Hyperfine interactions studies in perovskite oxides of the type LaMO3 (M = Fe, Cr, Mn and Co)

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    2004-01-01

    ABO 3 -type perovskite oxides have ideal cubic structure and usually show distortions to the orthorhombic or rombohedric symmetry. The A and B siteshave 12-fold and 6-fold oxygen coordination, respectively. Distortions of thecubic structure give rise to new electric, structural and magnetic propertieswhich have great technological and scientific interests. Magnetic dipole and electric quadrupole hyperfine interaction measurements were obtained using 111 In -> 111 Cd , 181 Hf -> 181 Ta e 140 La -> 140 Ceradioactive nuclei substituting for the A or B sites via Perturbed Angulargamma-gamma Correlation technique (1-4) . LaMO 3 (M = Fe, Cr, Mn and Co)samples were prepared through the chemical route known as Sol-Gel techniqueand analyzed with x-ray diffraction. Both 111 In and 181 Hf nuclei wereintroduced in to the sample during the chemical procedure and the 140 Lawas obtained by irradiating with neutrons in the IPEN reactor the natural Lapresent in the samples. One of the aims of this work was the analysis of theElectric Field Gradient (EFG) in the A and B sites as function oftemperature, crystal structure or the electronic characteristic of thetransition metal in the B site. The temperature range of the measurements wasabout from 4 K to 1400 K. The experimental EFG showed to be dependent of thesite occupation and the nuclear probe used in the measurements. Spintransition phenomena were also observed in LaCoO 3 samples, which confirmed amodel used to interpret the spin properties in such compound.Crystallographic phase transition effects on the hyperfine parameters inperovskites where M = Fe, Cr and K4n were also analyzed. An additional aim ofthis work was to carry out measurements in the antiferromagnetic region ofthe systems with M = Fe, Cr and Mn using the three radioactive nuclei. Theresults for the magnetic interaction measurements showed a strong influenceof the substitutional sites in the supertransferred magnetic hyperfine fieldfor all the three probe nuclei

  1. Understanding the effect of steps, strain, poisons, and alloying: Methane activation on Ni surfaces

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    that variations in epsilon(d) can be used to quantitatively describe variations in the activation energy when the surface structure is changed, when the coverage of carbon is changed, when the surface is strained, when the surface is alloyed, and when the surface is poisoned by sulfur. The d-band center is...

  2. Plasma surface tantalum alloying on titanium and its corrosion behavior in sulfuric acid and hydrochloric acid

    Science.gov (United States)

    Wei, D. B.; Chen, X. H.; Zhang, P. Z.; Ding, F.; Li, F. K.; Yao, Z. J.

    2018-05-01

    An anti-corrosion Ti-Ta alloy coating was prepared on pure titanium surface by double glow plasma surface alloying technology. Electrochemical corrosion test was applied to test the anti-corrosion property of Ti-Ta alloy layer. The microstructure and the phase composition of Ti-Ta alloy coating were detected before and after corrosion process by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The results showed that the Ta-Ti alloy layer has a thickness of about 13-15 μm, which is very dense without obvious defects such as pores or cracks. The alloy layer is composed mainly of β-Ta and α-Ti. The Ta alloy layer improves the anti-corrosion property of pure titanium. A denser and more durable TiO2 formed on the surface Ta-Ti alloy layer after immersing in strong corrosive media may account for the excellent corrosion resistant.

  3. Influence of sulphur and phosphorus on the hot deformation of Fe-Cr 13% high purity steel

    International Nuclear Information System (INIS)

    Lahreche, M.; Bouzabata, B.; Kobylanski, A.

    1995-01-01

    A series of Fe-Cr13%-C high purity steels containing increasing volume fractions of Sulphur (30, 60 and 100ppm) and Phosphorus (30, 60 and 100ppm) were prepared in order to study their hot deformation properties by tensile tests at various strain rates (10 -1 s -1 to 10 -4 s -1 ) and at temperatures from 700 C to 1100 C. It is observed that the hot ductility is lowered at 1000 C with the addition of sulphur. However, this decrease is relatively small (about 30% for 100ppm of sulphur) and quite similar for all additions of sulphur. When phosphorus is added, the embrittlement is along the whole deformed specimen. The usual criteria of ductility by parameter Z do not seem to be sufficient to describe this embrittlement. (orig.)

  4. Properties of rapidly solidified Fe-Cr-Al ribbons for the use as automotive exhaust gas catalyst substrates

    International Nuclear Information System (INIS)

    Emmerich, K.

    1993-01-01

    Metallic honeycomb structures are used as catalyst substrates in automotive exhaust gas systems. This application requires an outstanding corrosion resistance at elevated temperatures of the substrate material. Technical improvements can be achieved by the use of rapid solidification technology for the production of the Fe-Cr-Al ribbons since the Al content can be substantially increased from about 5% Al in the conventionally rolled material to about 12% Al in the rapid solidified ribbon. As a result the lifetime of the ribbon in a higher-temperature corrosion environment is drastically increased. In addition the scale/metal adherance is improved. The impediment of recrystallization in the rapidly solidified ribbons prevents an embrittlement even in carbonizing atmospheres. (orig.)

  5. Connection between twinning and brittle fracture in Fe-Cr-Co-Mo crystals

    International Nuclear Information System (INIS)

    Kirillov, V.A.; Chumlyakov, Yu.I.; Korotaev, A.D.; Aparova, L.A.

    1989-01-01

    Plasticity dependence on crystal orientation, on deformation temperature and structure state of alloy is investigated in Fe-28 % Cr-10 % Co-2 % Mo (at. %) monocrystals. Isostructure decomposition results in increase of critical shearing stresses τ cr , in change of deformation mechanism from slipping into twinning and abrupt reduction of plasticity. Brittleness - ductility transition is detected in high-stable structure states τ cr >280 MPa. Explanation of plasticity abrupt reduction of high-stable crystals using estimation of change of deformation mechanism and of deforming stress high level is given

  6. Evaluation of WC-9Co-4Cr laser surface alloyed coatings on stainless steel

    CSIR Research Space (South Africa)

    Obadele, A

    2011-07-01

    Full Text Available and low affinity of tungsten for Carbon. Free Co and C in the meltpool formed intermetallic phases such as Co6W6C and M23C6 (M=Fe, Cr, W). A considerable increase in hardness value of the matrix 246 Hv0.1 compared to the coating 1331 Hv0.1 was achieved...

  7. Atomic structure of the SbCu surface alloy: A surface X-ray diffraction study

    DEFF Research Database (Denmark)

    Meunier, I.; Gay, J.M.; Lapena, L.

    1999-01-01

    The dissolution at 400 degrees C of an antimony layer deposited at room temperature on a Cu(111) substrate leads to a surface alloy with a p(root 3x root 3)R 30 degrees x 30 degrees superstructure and a Sb composition of 1/3.We present here a structural study of this Sb-Cu compound by surface X......-ray diffraction (SXRD). The best agreement is obtained for a Cu,Sb surface layer with Sb atoms substituting 1/3 of the Cu atoms, over an essentially unperturbed Cu(111) plane. The largest relaxation is undergone by the Sb atoms which rise by 0.32+0.02 Angstrom over the mean plane of its Cu neighbours....... No substantial in-plane relaxations were observed. (C) 1999 Elsevier Science B.V. All rights reserved....

  8. Superhydrophobic NiTi shape memory alloy surfaces fabricated by anodization and surface mechanical attrition treatment

    Science.gov (United States)

    Ou, Shih-Fu; Wang, Kuang-Kuo; Hsu, Yen-Chi

    2017-12-01

    This paper describes the fabrication of superhydrophobic NiTi shape memory alloy (SMA) surfaces using an environmentally friendly method based on an economical anodizing process. Perfluorooctyltriethoxysilane was used to reduce the surface energy of the anodized surfaces. The wettability, morphology, composition, and microstructure of the surfaces were investigated by scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy. The surface of the treated NiTi SMA exhibited superhydrophobicity, with a water contact angle of 150.6° and sliding angle of 8°. The anodic film on the NiTi SMA comprised of TiO2 and NiO, as well as traces of TiCl3. In addition, before the NiTi SMA was anodized, it underwent a surface mechanical attrition treatment to grain-refine its surface. This method efficiently enhanced the growth rate of the anodic oxide film, and improved the hydrophobic uniformity of the anodized NiTi-SMA-surface.

  9. On the interpretation of structures obtained when an alloy is quickly cooled at a temperature at which its equilibrium structure is either a one-phase or two-phase one. Application to δ-ferrite

    International Nuclear Information System (INIS)

    Arzalier, M.

    1971-01-01

    As the equilibrium diagram of an alloy does not allow to predict how its structure will evolve during a quick temperature change (for example during a thermal treatment like a quench), and as this prediction is however possible in the case of Fe-Cr and Fe-Mo alloys, this research aimed at studying whether these alloys are an exception or whether the same prediction could be possible for alloys exhibiting the same shape of equilibrium diagram (with a double austenitic loop). Ternary alloys (Fe-Cr-Ni, Fe-Cr-Co, Fe-Mo-Ni, Fe-Mo-Mn, Fe-Si-Ni) have been systematically studied. More precisely, the author experimentally studied the quench behaviour of the delta ferrite and of any phase. He discusses the specific structures obtained by quenching the delta ferrite

  10. Biocompatibility enhancement of rare earth magnesium alloy by laser surface processing

    Science.gov (United States)

    Nie, Shilin; Wang, Yuqing; Liu, Haifeng; Guan, Yingchun

    2018-01-01

    Although magnesium and magnesium alloys are considered biocompatible and biodegradable, insufficient biocompatibility in body fluid environment is still the major drawback of magnesium alloys for their successful applications as biodegradable orthopaedic implants. In this work, magnesium alloy surface with both enhanced corrosion resistance and better cell adhesion property was directly fabricated by laser surface processing. Laser surface melting was used to improve corrosion resistance of Mg-6Gd-0.6Ca alloy. After laser surface melting, laser surface texturing was utilized on melted surface for better cell adhesion property. The corrosion resistance of laser-treated and as-received samples were evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using scanning electron microscopy, optical microscopy and X-ray diffraction. This work investigated the effect of laser treatment on cell distribution across the surface of magnesium alloy substrates. Osteoblast was cultured on the laser-treated surface and as-received surface. Cell morphology was observed with a scanning electron microscopy, and cell viability was evaluated by optical density measurement.

  11. Laser surface alloying of 316L stainless steel : different hardening routes and related microstructures

    OpenAIRE

    Laroudie, F.; Tassin, C.; Pons, M.

    1994-01-01

    The goal of this study is to investigate different hardening routes for 316L stainless steel by laser surface alloying. We have investigated the incorporation of hard submicronic particles of Tic, the precipitation of titanium carbide from mixtures of Ti and SiC and the formation of iron-chromium carbides by carbon incorporation. For each hardening route we present the microstructure and the hardness of the processed surface alloys and the conditions leading to the best compromise between hig...

  12. Characterization and corrosion study of NiTi laser surface alloyed with Nb or Co

    Science.gov (United States)

    Ng, K. W.; Man, H. C.; Yue, T. M.

    2011-02-01

    The interest in NiTi alloys for medical applications has been steadily growing in recent years because of its biocompatibility, superelasticity and shape memory characteristics. However, the high Ni content in NiTi alloys is still a concern for its long-term applications in the human body. The release of Ni ion into the human body might cause serious problems, as Ni is capable of eliciting toxic and allergic responses. In view of this, surface modification to reduce the surface content of Ni and to improve the corrosion resistance, both of which would reduce Ni release, is an important step in the development of NiTi implants. In the present study, NiTi was surface alloyed with Nb or Co by laser processing. The fine dendritic structure characteristic of laser processing has been described in terms of rapid solidification. The amount of surface elemental Ni was reduced to 10% and 35% for the Nb-alloyed and Co-alloyed layer, respectively. The corrosion resistance in Hanks' solution (a simulated body fluid) was increased as evidenced by a reduced passive current density and a higher pitting potential for both the Nb- and Co-alloyed specimens. The composition and hardness profiles along the depth of the modified layer were correlated with the distribution of the dendrites. The microhardness of the alloyed layers was around 700-800 Hv, which was about four times that of the untreated NiTi specimens.

  13. Wear of carbide inserts with complex surface treatment when milling nickel alloy

    Science.gov (United States)

    Fedorov, Sergey; Swe, Min Htet; Kapitanov, Alexey; Egorov, Sergey

    2018-03-01

    One of the effective ways of strengthening hard alloys is the creating structure layers on their surface with the gradient distribution of physical and mechanical properties between the wear-resistant coating and the base material. The article discusses the influence of the near-surface layer which is modified by low-energy high-current electron-beam alloying and the upper anti-friction layer in a multi-component coating on the wear mechanism of the replaceable multifaceted plates in the dry milling of the difficult to machine nickel alloys.

  14. Microscopic observation of pattern attack by aggressive ions on finished surface of aluminium alloy sacrificial anode

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Nur Ubaidah Saidin; Azali Muhammad; Mohd Shaari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2010-01-01

    This paper presents the results of a microscopic observation on submerged finished surface of aluminium alloy sacrificial anode. Experimental tests were carried out on polished surface aluminium anode exposed to seawater containing aggressive ions in order to observe of pattern corrosion attack on corroding surface of anode. Results have shown, at least under the present testing condition, that surface of sacrificial anode were attack by an aggressive ion such as chloride along grain boundaries. In addition, results of microanalysis showed that the corrosion products on surface of aluminium alloy have Al, Zn and O element for all sample and within the pit was consists of Al, Zn, O and Cl element. (author)

  15. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  16. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  17. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications.

    Science.gov (United States)

    Agarwal, Sankalp; Curtin, James; Duffy, Brendan; Jaiswal, Swarna

    2016-11-01

    Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Microstructural evolution and mechanical properties of Ti–Zr beta titanium alloy after laser surface remelting

    International Nuclear Information System (INIS)

    Yao, Y.; Li, X.; Wang, Y.Y.; Zhao, W.; Li, G.; Liu, R.P.

    2014-01-01

    Highlights: • The surface mechanical properties of the alloy have been greatly improved. • Its grain size was decreased from 100 μm to 10 μm. • The metastable ω with the size of 20–50 nm was observed in the alloy after LSR. • The strengthening effect is mainly due to fine microstructure and strengthened phase. -- Abstract: The effects of laser surface remelting (LSR) on the microstructural evolution and surface mechanical properties of Ti–Zr beta titanium alloy were investigated. The surfaces of the Ti–Zr alloy was re-melted using a CO 2 laser. X-ray diffraction, Scanning electron microscope, Transmission electron microscope, nanoindentation, and microhardness analyses were performed to evaluate the microstructural and mechanical properties of the alloy. The results showed that the alloy microstructure in the remelting region was greatly refined and homogeneous compared with that in the base material because of the rapid remelting and resolidifying. Meanwhile, the metastable hexagonal ω phases with the size of 20–50 nm was found and uniformly distributed throughout the β matrix after LSR. Phase transformation and microstructural refinement were the major microstructural changes in the alloys after LSR. The microhardness and elastic modulus in the remelted region clearly increased by 92.9% and 21.78%, respectively, compared with those in the region without laser processing. The strengthening effect of LSR on the mechanical properties of the Ti–Zr alloy was also addressed. Our results indicated that LSR was an effective method of improving the surface mechanical properties of alloys

  19. Wear Behavior and Self Tribofilm Formation of Infiltration-Type TiC/FeCrWMoV Metal Ceramics Under Dry Sliding Conditions

    DEFF Research Database (Denmark)

    Wang, Yanjun; Yang, Zhenyu; Han, Liying

    2015-01-01

    A new type high temperature self-lubrication TiC/FeCrWMoV metal ceramic was fabricated successfully by applying an innovating technology which molten solid lubricant (60Pb40Sn-15Ag-0.5RE) was infiltrated into metal ceramic preforms with an interpenetrating network using a vacuum high pressure...

  20. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling).

    Science.gov (United States)

    Agrawal, Amit; Hashmi, Syed W; Rao, Yogesh; Garg, Akanksha

    2015-07-01

    Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-valuetensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly.

  1. Electron spectroscopy studies of surface In-Ag alloy formation on the tungsten surface

    International Nuclear Information System (INIS)

    Bukaluk, A.; Trzcinski, M.; Okulewicz, K.

    2008-01-01

    XPS and UPS investigations of ultrathin films of In/Ag and Ag/In, deposited onto the W(1 1 0) surface in the ultrahigh vacuum conditions have been performed. Indium and silver films were formed by 'in-situ' evaporation on W(1 1 0) substrate. XPS and UPS studies have been performed by means of SCIENTA ESCA200 instrument. The changes of In4d core-level and Ag4d valence band emissions with increasing Ag and In coverage were monitored to observe the energy shift and shape of the spin-orbit doublet of In4d and Ag4d lines in the Ag/In/W and In/Ag/W systems. UPS (HeI and HeII) measurements were supported by XPS AlK α measurements of In3d and W4p levels, as well as by investigations of Ag3d levels. XPS and UPS data allowed to evaluate the coverage and make conclusions concerning intermixing and surface alloying in the In/Ag/W and Ag/In/W systems. W(1 1 0) substrate can be cleaned after each deposition by thermal desorption and no alloying in the In/W and Ag/W systems is observed

  2. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    A simple scheme for the estimation of oxygen binding energies on transition metal surface alloys is presented. It is shown that a d-band center model of the alloy surfaces is a convenient and appropriate basis for this scheme; variations in chemical composition, strain effects, and ligand effects...... are all incorporated into the binding energy analysis through this parameter. With few exceptions, the agreement of the results from the simple model with full DFT calculations on hundreds of binary surface alloys is remarkable. The scheme should therefore provide a fast and effective method...... for the estimation of oxygen binding energies on a wide variety of transition metal alloys. (c) 2005 Elsevier B.V. All rights reserved....

  3. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone

    2012-01-01

    The adsorption dynamics of *OH and *O species at Pt(111) and Cu/Pt(111) near-surface alloy (NSA) surfaces in oxygen-free and O2-saturated 0.1M HClO4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(111) surface resulting in weaker bonding to adsorbates like *OH, *H or *...

  4. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    Mott Derrick

    2006-01-01

    Full Text Available AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  5. The surface nanostructures of titanium alloy regulate the proliferation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Min Lai

    2014-02-01

    Full Text Available To investigate the effect of surface nanostructures on the behaviors of human umbilical vein endothelial cells (HUVECs, surface nanostructured titanium alloy (Ti-3Zr2Sn-3Mo-25Nb, TLM was fabricated by surface mechanical attrition treatment (SMAT technique. Field emission scanning electron microscopy (FE-SEM, atomic force microscopy (AFM, transmission electron microscopy (TEM and X-ray diffraction (XRD were employed to characterize the surface nanostructures of the TLM, respectively. The results demonstrated that nano-crystalline structures with several tens of nanometers were formed on the surface of TLM substrates. The HUVECs grown onto the surface nanostructured TLM spread well and expressed more vinculin around the edges of cells. More importantly, HUVECs grown onto the surface nanostructured TLM displayed significantly higher (p < 0.01 or p < 0.05 cell adhesion and viabilities than those of native titanium alloy. HUVECs cultured on the surface nanostructured titanium alloy displayed significantly higher (p < 0.01 or p < 0.05 productions of nitric oxide (NO and prostacyclin (PGI2 than those of native titanium alloy, respectively. This study provides an alternative for the development of titanium alloy based vascular stents.

  6. Corrosion Behavior and Surface Modification of Mg-Zn Implant Alloys

    Science.gov (United States)

    Ghayad, I. M.; Maamoun, M. A.; Metwally, W. A.; El-Baradie, Z. M.; Abdel-Azim, A. N.

    2016-10-01

    In this study, Mg-Zn alloys (1-4 wt.% Zn) were fabricated with high-purity raw materials using a clean melting process (fluxless method) and a protective atmosphere of CO2 + 0.4 SF6. The as-cast microstructures of the investigated alloys were characterized by optical and scanning electron microscopes, EDS and XRD. Corrosion properties of the prepared alloys were examined in simulated body fluid by electrochemical techniques and immersion test (hydrogen evolution method). Surface modification of the prepared alloys was performed using micro-arc oxidation (MAO) treatment and hydroxyapatite (HA) coating. Microstructure observation revealed that Zn was completely dissolved in the α-Mg matrix up to 2 wt.%. Higher Zn content led to a reduction in the grain size and the development of a second phase (MgZn2). Corrosion testing results revealed that Mg-1,2,3 wt.% Zn have almost the same degradation rate, whereas Mg-4Zn has the highest degradation rate. HA coating on MAO-treated magnesium alloys formed a dense and compact layer on the alloy surface, which had largely improved surface properties and enhanced corrosion resistance of the prepared alloys.

  7. Surface and microstructural characterization of commercial breeder reactor candidate alloys exposed to 7000C sodium

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Brehm, W.F.

    1979-03-01

    Sodium compatibility screening tests were performed on several commercial austenitic alloys at 700 0 C for 2000 hours for applications as breeder reactor fuel cladding. The sodium-exposed surfaces were characterized by Optical Metallography, Scanning Electron Microscopy (SEM) and Electron Probe Micro Analysis (EPMA). Sodium exposure generally resulted in the depletion of Ni, Cr, Ti, Si, Mn and Nb, and enrichment of Fe and Mo at the surface. The average thickness of the depleted zone was 5 μm. The alloys can be divided into three groups based on corrosion rate, and each group has its own characteristic surface structure. Grain-orientation dependent striations were seen in alloys with low corrosion rates, while alloys with intermediate corrosion rates displayed micron-size nodes enriched with Fe and Mo. The high corrosion rate alloys exhibited scale-like formations on the surface with irregularly shaped holes. In addition, the data importantly point out that a ferrite layer will form at the sodium-exposed surface of these austenitic alloys after prolonged exposure

  8. Mechanical properties, fracture surface characterization, and microstructural analysis of six noble dental casting alloys.

    Science.gov (United States)

    Ucar, Yurdanur; Brantley, William A; Johnston, William M; Dasgupta, Tridib

    2011-06-01

    Because noble dental casting alloys for metal ceramic restorations have a wide range of mechanical properties, knowledge of these properties is needed for rational alloy selection in different clinical situations where cast metal restorations are indicated. The purpose of this study was to compare the mechanical properties and examine both the fracture and polished surfaces of 6 noble casting alloys that span many currently marketed systems. Five alloys were designed for metal ceramic restorations, and a sixth Type GPT has Type IV alloy for fixed prosthodontics (Maxigold KF) was included for comparison. Specimens (n=6) meeting dimensional requirements for ISO Standards 9693 and 8891 were loaded to failure in tension using a universal testing machine at a crosshead speed of 2 mm/min. Values of 0.1% and 0.2% yield strength, ultimate tensile strength, elastic modulus, and percentage elongation were obtained. Statistical comparisons of the alloy mechanical properties were made using 1-way ANOVA and the REGW multiple-range test (α=.05). Following fracture surface characterization using scanning electron microscopy (SEM), specimens were embedded in epoxy resin, polished, and again, examined with the SEM. When the multiple comparisons were considered, there were generally no significant differences in the elastic modulus, 0.1% and 0.2% offset yield strength, and ultimate tensile strength for the d.SIGN 91 (Au-Pd), d.SIGN 59 (Pd-Ag), Capricorn 15 (Pd-Ag-Au) and Maxigold KF (Au-Ag-Pd) alloys, except that the ultimate tensile strength was significantly lower (PAg-Pd alloys. Wide variation was found in percentage elongation, with the Pd-Ag and Pd-Ag-Au alloys having the highest values and the Au-Pd-Pt and Au-Ag-Pd alloys having the lowest values. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  9. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights for engi...... and bulk Pt contributions. The study provides direct evidence on how it is possible to monitor the surface structure under near operation conditions. © 2014 Elsevier B.V. All rights reserved.......Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights...... for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  10. Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.

  11. Crystal structure and lattice dynamics of Fe-Cr-Mn-Ni-N austenitic steels

    International Nuclear Information System (INIS)

    Beskrovni, A.; Jadrowski, E.; Danilkin, S.; Fuess, H.; Wieder, T.; Neova-Baeva, M.

    1999-01-01

    Complete text of publication follows. High nitrogen austenitic steels are of high strength, corrosion resistance and offer structural stability. The properties of these steels depend on the interstitial (N) and substitution (Cr, Ni, Mn) atom content. The present study investigates the effect of the Mn and Cr content on crystal structure and interatomic bonding. Nitrogen austenitic steels with composition Fe-19Cr-xMn-0.5N (x = 9/23 wt.%) and Fe-xCr-11Ni-0.5N (x=15/29 wt.%) were studied with X-Ray and neutron scattering methods. It was found that Mn and Cr expand FCC lattice in the both steels. However modification of the metal atom frequency spectrum, g(ε), is different. Mn additions cause the decrease of metal atom frequencies. The softening of the Me-Me interaction is an agreement with the theoretical model predictions based on volume changes. Modification of g(ε) caused by Cr atoms is more complicated. It was concluded that alloying with Cr alters the electronic states. The decrease of the width of the nitrogen localised vibrations with increasing Cr content was noted and is probably connected with stress-induced ordering. (author)

  12. Hot Ductility and High Temperature Microstructure of High Purity Iron Alloys

    OpenAIRE

    Abiko, K.

    1995-01-01

    The inherent properties of metals are affected by impurity elements, sometimes strongly. There are many brittle phenomena in iron and its alloys due to the harmful effect of trace impurities such as sulphur, phosphorus, hydrogen and so on. On the other hand, a large number of alloying elements also embrittle iron due to the transformation and precipitation of secondary phase. For example, the ductility of Fe-Cr alloy decreases with the increase in chromium content, although the strength and t...

  13. Shear Bond Strength of a Resin Cement to Different Alloys Subjected to Various Surface Treatments

    Directory of Open Access Journals (Sweden)

    Fariba Ezoji

    2016-08-01

    Full Text Available Objectives: Micromechanical retention of resin cements to alloys is an important factor affecting the longevity of metal base restorations. This study aimed to compare the bond strength and etching pattern of a newly introduced experimental etchant gel namely Nano Met Etch with those of conventional surface treatment techniques for nickel-chrome (Ni-Cr and high noble alloys. Materials and Methods: A total of 120 discs (8×10×15 mm were cast with Ni-Cr (n=20, high noble BegoStar (n=50 and gold coin alloys (n=50. Their Surfaces were ground with abrasive papers. Ni-Cr specimens received sandblasting and etching. High noble alloy specimens (begoStar and gold coin received sandblasting, sandblasting-alloy primer, etching, etch-alloy primer and alloy primer alone. Cylindrical specimens of Panavia were bonded to surfaces using Tygon tubes. Specimens were subjected to micro-shear bond strength testing after storing at 37°C for 24 hours.Results: In gold coin group, the highest bond strength was achieved after sandblasting (25.82±1.37MPa, P<0.001 and etching+alloy primer (26.60 ± 5.47 MPa, P<0.01. The lowest bond strength belonged to sandblasting+alloy primer (17.79±2.96MPa, P<0.01. In BegoStar group, the highest bond strength was obtained in the sandblasted group (38.40±3.29MPa, P<0.001 while the lowest bond strength was detected in the sandblast+ alloy primer group (15.38±2.92MPa, P<0.001. For the Ni-Cr alloy, bond strength in the etched group (20.79±2.01MPa was higher than that in the sandblasted group (18.25±1.82MPa (P<0.01.Conclusions: For the Ni-Cr alloy, etching was more efficient than sandblasting but for the high noble alloys, higher Au content increased the efficacy of etching.

  14. Effect of surface treatments on stress corrosion cracking susceptibility of nickel base alloys

    International Nuclear Information System (INIS)

    Iwanami, Masaru; Kaneda, Junya; Tamako, Hiroaki; Hato, Hisamitsu; Takamoto, Shinichi

    2009-01-01

    Effect of surface treatment on SCC susceptibility of Ni base alloys was investigated. Cracks were observed in all grinding specimens in a creviced bent beam (CBB) test. On the other hand, no cracks occurred in shot peening (SP), water jet peening (WJP) specimens. It was indicated that these surface treatments effectively reduced the SCC susceptibility of nickel-base alloys. As a result of a residual stress test, the surface of specimens with grinding had high tensile residual stress. However, SP and WJP improved surface residual stress to compressive stress. The depth of the compressive effect of WJP was almost the same as that of SP. However, the surface hardness of WJP specimens differed from that of SP and it was found that WJP had less impact on surface hardening. This difference was consistent with their surface microstructures. The surface of SP specimens had clearly the deformation region, but the surface of WJP specimens was localized. (author)

  15. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pfleging, Wilhelm [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Pl. 1, 76344 Egg.-Leopoldshafen (Germany); Kumari, Renu [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India); Besser, Heino [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Scharnweber, Tim [Karlsruhe Institute of Technology, IBG-1, P.O. Box 3640, 76021 Karlsruhe (Germany); Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India)

    2015-11-15

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti{sub 2}O{sub 3} phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  16. The influence of surface condition on the metal dusting behavior of cast and wrought chromia forming alloys

    NARCIS (Netherlands)

    Hermse, C.G.M.; Asteman, H.; Ijzerman, R.M.; Jakobi, D.

    2013-01-01

    The current work investigated the impact of surface condition on the metal dusting behavior of chromia forming alloys. Five commercial alloys were included in the study, wrought 800H, 353MA, and cast G4859, G4852 Micro, and ET45 Micro, these alloys have a chromium and nickel content in the range of

  17. A comparison of titanium alloy orthodontic wires for surface roughness using a confocal optical microscope

    OpenAIRE

    Hirokazu, Nakano; Akihide, Yoshida; Kazushi, Ogasawara; Akira, Sanjo; Shigeru, Tanaka; Takuya, Kamegai; Kazuro, Satoh; Hiroyuki, Miura; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University

    2001-01-01

    The purpose of this study was to clarify the surface roughness of 31 brands of titanium alloy orthodontic wires from 13 manufacturers using a confocal optical microscope. Cobalt-chrome and stainless steel wire were also examined as a reference of comparison. The following results were obtained ; (1) Mean Ra, as determined from the lengthway axis of titanium alloy wires, was 0.296μm, and that determined from the widthway axis was 0.440μm. The modulus of Ra was 0.368μm. (2) For titanium alloy o...

  18. Surface morphology study of Zr-based amorphous alloys after immersion in boiling nitric acid medium

    Science.gov (United States)

    Sharma, Poonam; Dhawan, Anil; Sharma, S. K.

    2016-05-01

    Weight loss studies have been performed to determine the corrosion resistance of amorphous Zr60Nb2Al10Ni8Cu20 and Zr59Nb3Al10Ni8Cu20 alloys in aqueous HNO3 media at boiling temperature. The FESEM micrographs has been obtained to know the surface morphology of specimens after immersion in 11.5M boiling aqueous HNO3 media. Zr59Nb3Al10Ni8Cu20 alloy shows better corrosion resistance in nitric acid media than Zr60Nb2Al10Ni8Cu20 alloy.

  19. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1986-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  20. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros

    2007-05-01

    To evaluate the surface and elemental alterations induced by electro discharge machining (EDM) on the surface of dental cast alloys used for the fabrication of implant retained meso- and super-structures. A completed cast model of an arch that received dental implants was used for the preparation of six wax patterns which were divided into three groups (Au, Co and Ti). The wax patterns of the Au and Co groups were invested with conventional phosphate-bonded silica-based investment material and the Ti group with magnesia-based investment material. The investment rings of the Au and Co groups were cast with an Au-Ag alloy (Stabilor G) and a Co-Cr base alloy (Okta C), respectively, while the investment rings of group Ti were cast with cp Ti (Biotan). One casting of each group was subjected to electro discharge machining (EDM); the other was conventionally ground and polished. The surface morphology and the elemental compositions of conventionally and EDM-finished surfaces were studied by SEM/X-ray EDS analysis. Six spectra were collected from each surface employing the area scan mode and the mean value of each element between conventionally and EDM-finished surfaces was statistically analyzed by t-test (a=0.05). Then the specimens of each group were cut perpendicular to their longitudinal axis and after metallographic grinding and polishing the cross-sections studied under the SEM. The EDM surfaces showed a significant increase in C due to the decomposition of the dielectric fluid during spark erosion. Moreover, a significant Cu uptake was noted on these surfaces from the decomposition of the Cu electrodes used for EDM. Cross-sectional analysis showed that all alloys developed a superficial zone (recast layer) varying from 2 microm for Au-Ag to 10 microm for Co-Cr alloy. The elemental composition of dental alloy surfaces is significantly altered after EDM treatment.

  1. Effects of Er:YAG laser treatments on surface roughness of base metal alloys.

    Science.gov (United States)

    Kunt, Göknil Ergün; Güler, Ahmet Umut; Ceylan, Gözlem; Duran, Ibrahim; Ozkan, Pelin; Kirtiloğlu, Tuğrul

    2012-01-01

    We investigated the effects of different Er:YAG laser treatments on the surface roughness of base metal alloys. A total of 36 specimens were prepared of two base metal alloys (Wiron 99, Bellabond plus). The surfaces of the specimens were standardized by gradual wet grinding with 320-, 600-, 800- and 1,000-grit silicon carbide paper for 10 s each on a grinding machine at 300 rpm. Specimens of each alloy were randomly divided into six groups (n = 6) comprising a control group (group C), a group sandblasted with Al(2)O(3) powder at 60 psi for 10 s through a nozzle at a distance of 10 mm (group S), and four Er:YAG laser (Fotona AT) treatment groups. The laser treatment groups were as follows: 500 mJ, 10 Hz, 100 μs (group 500MSP); 500 mJ, 10 Hz, 300 μs (group 500SP); 400 mJ, 10 Hz, 100 μs (group 400MSP); and 400 mJ, 10 Hz, 300 μs (group 400SP). Surface roughness measurements (Ra) were performed using a profilometer. The data were analysed by two-way ANOVA, and mean values were compared using Tukey's HSD test (α = 0.05). According to the two-way ANOVA results, the base metal alloys and interaction between base metal alloy and surface treatment were not statistically significant different (p > 0.05), the surface treatments were significantly different (p metal alloy groups, no significant differences were observed among the control, 400MSP, and 400SP groups (p = 0.912), and these groups demonstrated the lowest Ra values. The highest Ra value was observed in group S (p laser treatment at 400 and 500 mJ/10 Hz is not an alternative method for surface roughening of base metal alloys.

  2. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium--a comparison.

    Science.gov (United States)

    Herting, G; Wallinder, I Odnevall; Leygraf, C

    2008-09-01

    Metal release rates from stainless steel grade 316L were investigated in artificial lysosomal fluid (ALF), simulating a human inflammatory cell response. The main focus was placed on release rates of main alloying elements using graphite furnace atomic absorption spectroscopy, and changes in surface oxide composition by means of X-ray photoelectron spectroscopy. To emphasise that alloys and pure metals possess totally different intrinsic properties, comparative studies were performed on the pure alloying constituents: iron, nickel and chromium. Significant differences in release rates were observed due to the presence of a passive surface film on stainless steel. Iron and nickel were released at rates more than 300 times lower from the 316L alloy compared with the pure metals whereas the release rate of chromium was similar. Iron was preferentially released compared with nickel and chromium. Immersion in ALF resulted in the gradual enrichment of chromium in the surface film, a small increase of nickel, and the reduction of oxidized iron with decreasing release rates of alloy constituents as a result. As expected, released metals from stainless steel grade 316L were neither in proportion to the bulk alloy composition nor to the surface film composition.

  3. Surface hardness behaviour of Ti–Al–Mo alloys

    Indian Academy of Sciences (India)

    Wintec

    formation behaviour as well as its creep strength (Ger- mann et al 2005). The brittle characteristics of these alloys have made the preparation of samples for the .... from various regions of the sample are superimposed. indentation is a difficult exercise to attain in absence of availability of large specimen for bend and torsion ...

  4. Controlled reactions between chromia and coating on alloy surface

    DEFF Research Database (Denmark)

    Linderoth, Søren

    1996-01-01

    An electrically conducting Sr-doped lanthanum chromite (LSC) coating has been produced by reacting a coating of fine particles of La oxide and Sr oxide with chromia formed as an external scale on a metallic alloy. In addition to the formation of LSC the coating also resulted in much reduced...

  5. Surface hardness behaviour of Ti–Al–Mo alloys

    Indian Academy of Sciences (India)

    Wintec

    Keeping this in view, the present work has been undertaken. It has been argued in literature that indentation hardness measurement can permit us to ... will be discussed in the light of latest trend in indentation studies (Viadyanathan et al 2001; Zhang et al 2005). 2. Experimental. Alloys of four different compositions were ...

  6. Bond strength of resin cements to noble and base metal alloys with different surface treatments.

    Directory of Open Access Journals (Sweden)

    Farkhondeh Raeisosadat

    2014-10-01

    Full Text Available The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen.Cylinders of light cured Z 250 composite were cemented to "Degubond 4" (Au Pd and "Verabond" (Ni Cr alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05.When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021 and Verabond (P< 0.001. No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291 and Verabond (P=0.899. Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003. The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011. The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59. RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035.The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2.

  7. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  8. Ultrafine particles of Ni and FeCr studied by positron annihilation

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, N.J.; Sethi, S.A.

    1995-01-01

    Ultrafine particles of Ni and Fe80Cr20 have been produced by the gas condensation technique. After surface oxidation the paticles were heated in a reducing H2 atmosphere and positron lifetime and Doppler broadening measurements were carried out. Reduction of the oxide on the Ni powder takes place...

  9. Effect of finishing process on the surface quality of Co-Cr-Mo dental alloys

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka -Tatar

    2016-09-01

    Full Text Available Preparatory procedures for the material have a significant influence on the surface stereometry of the material. This study investigated the effect of the electropolishing process on the surface quality of metallic prosthetic constructions based on Co-Cr-Mo alloys. It has been found that the process of electropolishing prevents to excessive development of the surface of a material and consequently improves surface quality.

  10. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2007-01-01

    A simple procedure is introduced to use periodic Density Functional Theory calculations to estimate trends in the thermodynamics of surface alloy dissolution in acidic media. With this approach, the dissolution potentials for solute metal atoms embedded in the surface layer of various host metals...

  11. Effect of alloy type and surface conditioning on roughness and bond strength of metal brackets

    NARCIS (Netherlands)

    Nergiz, I.; Schmage, P.; Herrmann, W.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    The effect of 5 different surface conditioning methods on bonding of metal brackets to cast dental alloys was examined. The surface conditioning methods were fine (30-µm) or rough (125-µm) diamond bur, sandblasting (50-µm or 110-µm aluminum oxide [Al2O3]), and silica coating (30-µm silica). Fifty

  12. Lattice relations and solidification of the complex regular eutectic (Cr,Fe)-(Cr,Fe)23C6

    Science.gov (United States)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite

    2017-05-01

    The eutectic (Cr,Fe)-(Cr,Fe)23C6 showed a triaxial fishbone structure and could be categorized as a "complex regular structure". In this study, the lattice relations of the fishbone (Cr,Fe)23C6 were examined and the solidification process was observed using a transmission electron microscope and a confocal laser scanning microscope. For one of the three fish bones in a eutectic cell, parallel (Cr,Fe)23C6 lamellas at one side of the spine had the same lattice direction, as did those in the (Cr,Fe) phase. The lattices of neighboring (Cr,Fe)23C6 and (Cr,Fe) phases were not coherent. Lamellar (Cr,Fe)23C6 on opposite sides of a spine had different lattice directions, and their lattice boundary was in the spine. By using the confocal laser scanning microscope, the solidification of lamellar eutectic structure could be observed. At the low cooling rate of 5 o C·min-1, parallel lamellas would grow thick blocks instead of thin plates. To obtain a thin lamellar eutectic structure, the cooling rate should be higher, like the rate in welding.

  13. Behavior of U3Si2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions

    International Nuclear Information System (INIS)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso; Pizzocri, Davide; Pastore, Giovanni

    2016-01-01

    As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.

  14. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  15. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy.

    Science.gov (United States)

    Chembath, Manju; Balaraju, J N; Sujata, M

    2015-11-01

    The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in

  16. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    Science.gov (United States)

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

  17. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Qingqiang Chen

    2018-02-01

    Full Text Available In this study, the effects of cerium (Ce addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  18. The surface chemistry of 3-mercaptopropyltrimethoxysilane films deposited on magnesium alloy AZ91

    International Nuclear Information System (INIS)

    Scott, A.; Gray-Munro, J.E.

    2009-01-01

    Magnesium and its alloys have desirable physical and mechanical properties for a number of applications. Unfortunately, these materials are highly susceptible to corrosion, particularly in the presence of aqueous solutions. The purpose of this study is to develop a uniform, non-toxic surface treatment to enhance the corrosion resistance of magnesium alloys. This paper reports the influence of the coating bath parameters and alloy microstructure on the deposition of 3-mercaptopropyltrimethoxysilane (MPTS) coatings on magnesium alloy AZ91. The surface chemistry at the magnesium/MPTS interface has also been explored. The results indicate that the deposition of MPTS onto AZ91 was influenced by both the pH and MPTS concentration in the coating bath. Furthermore, scanning electron microscopy results showed that the MPTS film deposited uniformly on all phases of the magnesium alloy surface. X-ray photoelectron spectroscopy studies revealed that at the magnesium/MPTS interface, the molecules bond to the surface through the thiol group in an acid-base interaction with the Mg(OH) 2 layer, whereas in the bulk of the film, the molecules are randomly oriented.

  19. The surface chemistry of 3-mercaptopropyltrimethoxysilane films deposited on magnesium alloy AZ91

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A. [Dept. of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6 (Canada); Gray-Munro, J.E., E-mail: jgray@laurentian.c [Dept. of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6 (Canada)

    2009-10-30

    Magnesium and its alloys have desirable physical and mechanical properties for a number of applications. Unfortunately, these materials are highly susceptible to corrosion, particularly in the presence of aqueous solutions. The purpose of this study is to develop a uniform, non-toxic surface treatment to enhance the corrosion resistance of magnesium alloys. This paper reports the influence of the coating bath parameters and alloy microstructure on the deposition of 3-mercaptopropyltrimethoxysilane (MPTS) coatings on magnesium alloy AZ91. The surface chemistry at the magnesium/MPTS interface has also been explored. The results indicate that the deposition of MPTS onto AZ91 was influenced by both the pH and MPTS concentration in the coating bath. Furthermore, scanning electron microscopy results showed that the MPTS film deposited uniformly on all phases of the magnesium alloy surface. X-ray photoelectron spectroscopy studies revealed that at the magnesium/MPTS interface, the molecules bond to the surface through the thiol group in an acid-base interaction with the Mg(OH){sub 2} layer, whereas in the bulk of the film, the molecules are randomly oriented.

  20. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy.

    Science.gov (United States)

    Chen, Qingqiang; Zhao, Zhihao; Zhu, Qingfeng; Wang, Gaosong; Tao, Kai

    2018-02-06

    In this study, the effects of cerium (Ce) addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg 17 Al 12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg 17 Al 12 , while generating Al₄Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  1. Elemental segregation in titanium alloys induced by plasma-surface interaction

    International Nuclear Information System (INIS)

    Raveh, A.

    1990-07-01

    The microstructure and surface composition of nitrided titanium alloys (Ti-6Al-4V and Ti-8Al-1V-Mo) were investigated after plasma nitriding with nitrogen, hydrogen and argon. The composition of the plasma, near the surface of the sample (plasma layer) was examined by optical emission spectroscopy and mass spectrometry, while the composition of the surface of the alloy after the process, the structure and microstructure of the layers were studied by auger electron spectrometry, scanning auger microprobe, x-ray difraction, scanning electron microscope,transmission electron microscope and high resolution transmission electron microscope. It was observed that elemental segregation occurs in titanium alloys at the interface between compound layer and diffusion layer. Based on the present results, a mechanism for the formation of the nitrided layers in the plasma was suggested

  2. The influence of surface microchemistry in protective film formation on multi-phase magnesium alloys

    International Nuclear Information System (INIS)

    Gray-Munro, J.E.; Luan, B.; Huntington, L.

    2008-01-01

    The high strength:weight ratio of magnesium alloys makes them an ideal metal for automotive and aerospace applications where weight reduction is of significant concern. Unfortunately, magnesium alloys are highly susceptible to corrosion particularly in salt-spray conditions. This has limited their use in the automotive and aerospace industries, where exposure to harsh service conditions is unavoidable. The simplest way to avoid corrosion is to coat the magnesium-based substrate by a process such as electroless plating, which is a low-cost, non line of sight process. Magnesium is classified as a difficult to plate metal due to its high reactivity. This means that in the presence of air magnesium very quickly forms a passive oxide layer that must be removed prior to plating. Furthermore, high aluminium content alloys are especially difficult to plate due to the formation of intermetallic species at the grain boundaries, resulting in a non-uniform surface potential across the substrate and thereby further complicating the plating process. The objective of this study is to understand how the magnesium alloy microstructure influences the surface chemistry of the alloy during both pretreatment and immersion copper coating of the substrate. A combination of scanning electron microscopy, energy dispersive spectroscopy and scanning Auger microscopy has been used to study the surface chemistry at the various stages of the coating process. Our results indicate that the surface chemistry of the alloy is different on the aluminum rich β phase of the material compared to the magnesium matrix which leads to preferential deposition of the metal on the aluminum rich phase of the alloy

  3. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  4. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  5. Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing.

    Science.gov (United States)

    Lin, Hsin-Yi; Bowers, Bonnie; Wolan, John T; Cai, Zhuo; Bumgardner, Joel D

    2008-03-01

    A porcelain veneer is often fired on nickel-chromium casting alloys used in dental restorations for aesthetic purposes. The porcelain-fused-to-metal (PFM) process brings the temperature to over 950 degrees C and may change the alloy's corrosion properties. In this study, the metallurgical, surface, and corrosion properties of two Ni-Cr alloys were examined, before and after PFM firing. Two types of alloy were tested-a high Cr, Mo alloy without Be and a low Cr, Mo alloy with Be. Before the PFM firing, specimens from both alloys were examined for their microstructures, hardness, electrochemical corrosion properties, surface composition, and metal ion release. After the PFM firing, the same specimens were again examined for the same properties. Neither of the alloys showed any differences in their electrochemical corrosion properties after the PFM firing. However, both alloys exhibited new phases in their microstructure and significant changes in hardness after firing. In addition, there was a slight increase in CrO(x) on the surface of the Be-free alloy and increased Mo-Ni was observed on the surface of both alloys via X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). This might be one of the reasons why both alloys had increased Ni and Mo ion release after firing. The PFM firing process changed the alloys' hardness, microstructure, and surface composition. No significant changes in the alloys' corrosion behavior were observed, however, the significant increase in metal ion release over a month may need to be further investigated for its clinical effects.

  6. Catalytic Converter Developed By Washcoat Of γ-Alumina On Nickel Oxide (Nio Catalyst In FeCrAl Substrate For Exhaust Emission Control : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Automobile exhaust emission control is one of the trending issues in automobile research field. The existing catalytic converter using the noble metals of platinum (Pt, palladium (Pd and rhodium (Rd recently were in limited supply and higher in cost. There is a need for the automotive industry to produce ultra-low emitting vehicles at a reasonable cost. The objective of this study is to investigate the effectiveness of methods of fabrication of modified catalytic converter by approaching FeCrAl as a substrate which treated using ultrasonic bath technique to improve the exhaust emission control. The modified catalytic converter preparation will involve the ultrasonic bath process of FeCrAl foil which has fabricated as metallic monolith coated by γ-Al2O3 powder. Nickel as catalyst material will be prepared using electroplating process. The oxidation test will be conducted using a tube and automatic furnace in temperature of 1100°C for 100 hours. Mitsubishi 4G93 1800cc Petrol E.F.I with a multi -gas analyzer equipped with a hydraulic dynamometer will be used for emission measurements of HC, CO, and NOx in varying speed and load for both conditions with and without catalytic converter. The result will expect the γ-Al2O3 as the washcoat material that fully embedded to FeCrAl substrate with the combination of ultrasonic and electroplating technique will effectively convert the CO, NOx and HC to CO2, NO2 and H2O which means that catalytic converter is effective to improve exhaust emission control of diesel engine. The FeCrAl substrate as a metallic catalytic converter which coated by γ-Al2O3 using ultrasonic and nickelelectroplating technique may improve the exhaust emission control.

  7. Electrochemical Surface Treatment of a β-titanium Alloy to Realize an Antibacterial Property and Bioactivity

    OpenAIRE

    Yusuke Tsutsumi; Mitsuo Niinomi; Masaaki Nakai; Masaya Shimabukuro; Maki Ashida; Peng Chen; Hisashi Doi; Takao Hanawa

    2016-01-01

    In this study, micro-arc oxidation (MAO) was performed on a β-type titanium alloy, namely, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ), to improve not only its antibacterial property but also bioactivity in body fluids. The surface oxide layer formed on TNTZ by MAO treatment in a mixture of calcium glycerophosphate, calcium acetate, and silver nitrate was characterized using surface analyses. The resulting porous oxide layer was mainly composed of titanium oxide, and it also contained calcium, phosphorus...

  8. Study the formation of porous surface layer for a new biomedical titanium alloy

    Science.gov (United States)

    Talib Mohammed, Mohsin; Diwan, Abass Ali; Ali, Osamah Ihsan

    2018-03-01

    In the present work, chemical treatment using hydrogen peroxide (H2O2) oxidation and subsequent thermal treatment was applied to create a uniform porous layer over the surface of a new metastable β-Ti alloy. The results revealed that this oxidation treatment can create a stable ultrafine porous film over the oxidized surface. This promoted the electrochemical characteristics of H2O2-treated Ti-Zr-Nb (TZN) alloy system, presenting nobler corrosion behavior in simulated body fluid (SBF) comparing with untreated sample.

  9. Surface hardening alloy VT6 of electric explosion and by electron beam

    International Nuclear Information System (INIS)

    Ivanov, Yu. F.; Kobzareva, T. Yu.; Gromov, V. E.; Soskova, N. A.; Budovskikh, E. A.; Raikov, S. V.

    2014-01-01

    The aim is to study the phase composition, structure and properties of the surface layer of the VT6 titanium alloy, subjected to combined treatment, consisting of alloying by the plasma of an electric explosion of a graphite fiber with a charge of the SiC powder and subsequent exposure by a high-intense electron beam. As a result of such treatment, a multiphase surface layer with a submicron and nanosize structure forms with the microhardness manifold exceeding its value in the sample volume are presented

  10. The mechanism of the surface alloy layer creation for cast steel

    Directory of Open Access Journals (Sweden)

    A. Walasek

    2012-01-01

    Full Text Available The paper presents a detailed description of the process of creation of a surface alloy layer (using high-carbon ferrochromium on the cast steel casting. The mechanism of the surface alloy layer is based on the known theories [5,6]. The proposed course of formation of the layers has been extended to decarburization stage of steel. The research included proving the presence of carbon-lean zone. The experiment included the analysis of the distribution of elements and microhardness measurement.

  11. Portable Fiber Laser System and Method to Remove Pits and Cracks on Sensitized Surfaces of Aluminum Alloys

    Science.gov (United States)

    2015-08-01

    and Cracks on Sensitized Surfaces of Aluminum Alloys Prepared for DEPARTMENT OF THE NAVY Office of Naval Research For the period July 1, 2015...Cracks on Sensitized Surfaces of Aluminum Alloys 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...nanohardness, and elastic modulus of the 5052 Mg-Al alloy samples were experimentally investigated and analyzed. The phased objectives and specific

  12. Diffusion and Bonding Mechanism of Protective γ-Al2O3 on FeCrAl Foil for Metallic Three-Way Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Feriyanto Dafit

    2017-01-01

    Full Text Available High pollutant level contributed by mobile sources/land transportation that become main problems for the human health. Improving exhaust emission system by improving catalytic converter properties is one of the most effective way to produce healthy air in our environment. It is conducted by two methods i.e. ultrasonic during electroplating (UBDEL and electroplating process (EL which are not fully investigated yet as catalytic converter coating process. UBDEL is conducted using sulphamate types electrolyte solution, Frequency of 35 kHz, current of 1.28A, Voltage of 12 V, and various time of 15, 30, 45, 60 and 75 minutes. Meanwhile El method is conducted using parameters of current of 1.28A, Voltage of 12 V, stirrer speed of 60 rpm and various time of 15, 30, 45, 60 and 75 minutes. Fully γ-Al2O3 bonding to the FeCrAl substrate is shown by UBDEL 75 minutes samples proved by SEM images and Ra and Rq are 4.01 μm and 5.64 μm, respectively. Ni present on the FeCrAl substrate as other protective layer generated by Ni electroplating process that will improve thermal stability of FeCrAl at high temperature of 1000 °C. From the results, can summarized that UBDEL technique is promoted as an effective catalytic converter coating technique.

  13. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    Science.gov (United States)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-02-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  14. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    Science.gov (United States)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  15. Surface alloying of aluminum with molybdenum by high-current pulsed electron beam

    Science.gov (United States)

    Xia, Han; Zhang, Conglin; Lv, Peng; Cai, Jie; Jin, Yunxue; Guan, Qingfeng

    2018-02-01

    The surface alloying of pre-coated molybdenum (Mo) film on aluminum (Al) substrate by high-current pulsed electron beam (HCPEB) was investigated. The microstructure and phase analysis were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Mo particles were dissolved into Al matrix to form alloying layer, which was composed of Mo, Al and acicular or equiaxed Al5Mo phases after surface alloying. Meanwhile, various structure defects such as dislocation loops, high-density dislocations and dislocation walls were observed in the alloying surface. The corrosion resistance was tested by using potentiodynamic polarization curves and electrochemical impedance spectra (EIS). Electrochemical results indicate that all the alloying samples had better corrosion resistance in 3.5 wt% NaCl solution compared to initial sample. The excellent corrosion resistance is mainly attributed to the combined effect of the structure defects and the addition of Mo element to form a more stable passive film.

  16. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  17. A theoretical study of CH4 dissociation on pure and gold-alloyed Ni(111) surfaces

    DEFF Research Database (Denmark)

    Kratzer, P.; Hammer, Bjørk; Nørskov, Jens Kehlet

    1996-01-01

    to the surface is responsible for the highest real mode. Alloying the surface with gold also affects the reactivity of the Ni atoms on adjacent surface sites. The dissociation barrier is increased by 16 and 38 kJ/mol for a Ni atom with one or two gold neighbors, respectively. We attribute these changes...... to a shift in the local density of d states at the nickel atoms in the neighborhood of gold. (C) 1996 American Institute of Physics....

  18. Color change during the surface preparation stages of metal ceramic alloys.

    Science.gov (United States)

    Ozçelik, Tuncer Burak; Yilmaz, Burak; Ozcan, Isil; Wee, Alvin G

    2011-07-01

    Even though metal ceramic restorations (MCRs) are widely used by clinicians, the influence of the metal on the color of overlaying porcelain is unknown. The purpose of this study was to analyze the color alterations of different types of metal ceramic alloys during several stages of metal surface preparation and to determine the effect of those changes on the resulting color of opaque porcelain (OP). Seven different types of alloys (3 base metal, 3 noble, and 1 high noble) were used to prepare disk-shaped specimens (1 mm × 10 mm, n=3), followed by OP application (0.1 mm). L*a*b* values of specimens were recorded after different stages of metal surface preparation (ingot, after casting, after oxidation, and after the OP application) in addition to the shade tab of OP B1 (target shade). L*a*b* values of alloys were measured from the ingot structure to the OP application stage and statistically analyzed (Repeated measures ANOVA, and Bonferroni corrected paired t test, α=.05). L*a*b* values of OP applied groups and the OP shade tab (target shade) were analyzed (1-way ANOVA with Dunnett's multiple comparison test, α=.05). The color differences of the target shade both before and after OP application were calculated and statistically analyzed (1-way ANOVA, Ryan-Einot-Gabriel-Welsch Multiple Range Test, α=.05). The L* values of all alloys changed significantly after each stage except for 2 alloys (V-Deltaloy SF (N-VDSF)) and (Gnathos Plus (HN-GP)) after casting and airborne-particle abrasion (Palloys increased after casting. Changes in the a* coordinate were significant except for one of the base metal alloys (Palloys showed variation in direction after oxidation and OP application (Palloys showed variation in direction after each stage (Palloys were significantly different from that of the OP shade tab (Palloy-target shade)) of 2 OP-applied alloys (Cerapall 2 (N-CP2) and Ceradelta (N-CD)) were significantly different (Palloys. The achromatic color behavior of

  19. Computational modeling of alloys at the atomic scale: from ab initio and thermodynamics to radiation-induced heterogeneous precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Caro, A; Caro, M; Klaver, P; Sadigh, B; Lopasso, E M; Srivilliputhur, S G

    2007-02-02

    We describe the path we are following in the development of a computational approach to simulate radiation damage in FeCr ferritic steels. In these alloys magnetism introduces an anomaly in the heat of formation of the solid solution that has implications on the way excess Cr precipitates in the {alpha}{prime} phase in presence of heterogeneities. These complexities represent a challenge for atomistic (empirical) approaches that we address: (i) by proposing a modified many body potential, (ii) by using a thermodynamic package that determines free energy and phase diagrams, and (iii) by using a displacement Monte Carlo code in the transmutation ensemble that can deal with millions of atoms in parallel computational environments. This approach predicts that grain boundaries, dislocations and free surfaces are not preferential sites for precipitation of {alpha}{prime}.

  20. Comparative Studies on the Wear of ADI Alloy Cast Irons as Well as Selected Steels and Surface-Hardened Alloy Cast Steels in the Presence of Abrasive

    Directory of Open Access Journals (Sweden)

    Wieczorek A. N.

    2017-03-01

    Full Text Available The paper presents the results of wear tests obtained for 4 groups of materials: surface-hardened alloy steels and alloy cast steels for structural applications, hard-wearing surface-hardened alloy cast steels, and austempered alloy cast irons. The wear tests have been performed on a specially designed test rig that allows reproducing the real operating conditions of chain wheels, including the rolling and sliding form of contact between elements. The chain wheels subjected to tests were operated with the use of loose quartz abrasive. This study presents results of measurements of material parameters, micro-structure of a surface subject to wear, as well as the linear wear determined for the materials considered. Based on the results, the following was found: the best wear properties were obtained for surface-hardened alloy steels and wear surface; strengthening of the ADI surface took place - most probably as a result of transformation of austenite into martensite; the uniformity of the structure of the materials affects the surface wear process. The study also indicated a significant degree of graphite deformation in ADI characterized by the upper ausferritic structure and its oblique orientation in relation to the surface, which resulted in a facilitated degradation of the surface caused by the quartz abrasive.

  1. Oxidation characteristics of the electron beam surface-treated Alloy 617 in high temperature helium environments

    International Nuclear Information System (INIS)

    Lee, Ho Jung; Sah, Injin; Kim, Donghoon; Kim, Hyunmyung; Jang, Changheui

    2015-01-01

    The oxidation characteristics of the electron beam surface-treated Alloy 617, which has an Al-rich surface layer, were evaluated in high temperature helium environments. Isothermal oxidation tests were performed in helium (99.999% purity) and VHTR-helium (helium of prototypical VHTR chemistry containing impurities like CO, CO 2 , CH 4 , and H 2 ) environments at 900 °C for up to 1000 h. The surface-treated Alloy 617 showed an initial transient oxidation stage followed by the steady-state oxidation in all test environments. In addition, the steady-state oxidation kinetics of the surface-treated Alloy 617 was 2-order of magnitude lower than that of the as-received Alloy 617 in both helium environments as well as in air. The improvement in oxidation resistance was primarily due to the formation of the protective Al 2 O 3 layer on the surface. The weight gain was larger in the order of air, helium, and VHTR-helium, while the parabolic rate constants (k p ) at steady-state were similar for all test environments. In both helium environments, the oxide structure consisted of the outer transition Al 2 O 3 with a small amount of Cr 2 O 3 and inner columnar structured Al 2 O 3 without an internal oxide. In the VHTR-helium environment, where the impurities were added to helium, the initial transient oxidation increased but the steady state kinetics was not affected

  2. Theoretical investigation of bulk ordering and surface segregation in Ag-Pd and other isoelectornic alloys

    Science.gov (United States)

    Ruban, A. V.; Simak, S. I.; Korzhavyi, P. A.; Johansson, B.

    2007-02-01

    Bulk ordering in Ag-Pd and other isoelectronic alloys is investigated theoretically by a number of first-principles techniques. The electronic structure and total energy have been calculated by the Green’s function Korringa-Kohn-Rostocker and full-potential plane wave methods. The effective cluster interactions of the Ising-type Hamiltonian have been obtained by the screened generalized perturbation method. They reveal a complex concentration-dependent ordering behavior in these alloys due to band filling and Fermi surface effects. In particular we show that long-period superstructures are gradually stabilized by a great number of relatively weak long-range effective pair- and three-site interactions, which can be seen as “collective” effect. A similar complex concentration dependence is also found for surfaces of Ag-Pd alloys. The surface composition of the (111) and (100) surface of Ag75Pd25 , Ag50Pd50 , and Ag33Pd67 alloys have been then investigated by the surface Green’s function technique and the screened generalized perturbation method for the effective interactions of the Ising-type Hamiltonian and the grand canonical Monte Carlo method for statistical thermodynamic simulations at finite temperatures. We compare our results with experimental data and other theoretical calculations.

  3. Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zhu

    2017-01-01

    Full Text Available The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C.

  4. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  5. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    International Nuclear Information System (INIS)

    Dziadoń, Andrzej; Mola, Renata; Błaż, Ludwik

    2016-01-01

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, the following intermetallic phases formed: Al 3 Mg 2 , Mg 17 Al 12 and Mg 2 Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO 2 laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.

  6. Study on the surface constitute properties of high-speed end milling aluminum alloy

    Science.gov (United States)

    Huang, Xiaoming; Li, Hongwei; Yumeng, Ma

    2017-09-01

    The physical and mechanical properties of the metal surface will change after the metal cutting processing. The comprehensive study of the influence of machining parameters on surface constitute properties are necessary. A high-speed milling experiment by means of orthogonal method with four factors was conducted for aluminum alloy7050-T7451. The surface constitutive properties of the Al-Alloy surface were measured using SSM-B4000TM stress-strain microprobe system. Based on all the load-depth curves obtained, the characteristics parameters such as strain hardening exponent n and yield strength σy of the milling surface are calculated. The effect of cutting speed, feed rate, and width and depth of cut on n and σy was investigated using the ANOVA techniques. The affecting degree of milling parameters on n and σy was v>fz> ap < ae. The influence of milling parameters on n and σ y was described and discussed.

  7. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  8. Calculation of the vibration properties of the Pd/Au (111 ordered surface alloy in its stable domain

    Directory of Open Access Journals (Sweden)

    Tigrine R.

    2012-06-01

    Full Text Available In the present paper, a calculation is presented for the vibration properties of the ordered surface alloy alloy Au(111 − (√3×√3R30° − Pd, which is a stable system in the temperature range of 500K to 600K. This surface alloy is formed by depositing Pd atoms onto the Au(111surface, and annealing at higher temperatures. The matching theory is applied to calculate the surface phonons and local vibration densities of states (LDOS for the clean Au (111 surface, and for the Au(111 − (√3×√3R30° − Pd surface alloy. Our theoretical results for the surface phonon branches of the clean Au (111 surface compare favorably with previous ab initio results and experimental data. In contrast, there are no previous results for the vibrational LDOS for the atomic Au site in a clean Au (111 surface, or results for the surface phonons and vibration spectra for the surface alloy. The surface phonons are calculated for the clean Au (111 surface and the ordered surface alloy along three directions of high symmetry, namely, ΓΜ¯, MML:MK¯ $overline {Gamma {m M}} ,{m{ }}overline {{m{MK}}} $ , and KΓ¯ $overline {KGamma } $ . The phonon branches are strongly modified from the Au (111 surface to the surface alloy. In particular a remarkable change takes place for the LDOS between the clean Au (111 surface and the surface alloy, which may find its origin in the charge transfer from Au atoms to Pd atoms.

  9. Surface finish effects on the high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1981-01-01

    Load control high-cycle fatigue tests at 427 and 649 0 C were conducted on Alloy 718 specimens given various surface finishes. The standard surface preparation for fatigue specimens involves a low-stress grind to minimize the residual surface stresses. A low-stress grind surface was used for generating baseline data; various other surfaces that could be considered feasible for large components fabricated in commercial shops were produced on test specimens, and the high-cycle fatigue strength of each was compared. Surface finishes produced by belt sanding, grit blasting, fine machining, and electropolishing were examined. Surface roughness measurements were taken on typical specimens with each surface finish, and residual stress profiles were measured on three of the surface types. Results show little or no difference in fatigue life for the various surfaces and indicate that residual stress profile and grain size are more important factors than surface roughness in determining high-cycle fatigue strength. 12 figures, 5 tables

  10. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  11. The structure and mechanical properties of AlMg5Si2Mn alloy after surface alloying by the use of fiber laser

    Science.gov (United States)

    Pakieła, Wojciech; Tanski, Tomasz; Pawlyta, Mirosława; Pakieła, Katarzyna; Brytan, Zbigniew; Sroka, Marek

    2018-03-01

    Laser surface treatment is successfully applied to increase hardness as well as corrosion and wear resistance in light alloys such as aluminum or magnesium. The laser surface remelting also can be used to repair superficial cracks, voids or porosity caused by the mechanical impact, metallurgical process as well as the corrosive environment on the surface of the aluminum alloy. The purpose of this paper was to investigate the influence of a fiber laser surface treatment on the structure and properties of the EN AC AlMg5Si2Mn alloy. The goal of this investigation was to increase the hardness and improve tribological properties of the aluminum alloy surface as a result of the conducted laser surface treatment. During laser processing, the top surface of the aluminum alloy was enriched with Cr and Ni particles. The grain size of the applied particles was approximately about 60-130 m. The Cr-Ni powder has been introduced in the molten pool using vacuum feeder at a constant rate of 4.5 g/min. For surface remelting we used square laser beam at a size 3 × 3 mm and with the power of 3.0 kW. The linear laser scan rate of the beam was set at 0.5 m/min. Argon was used to protect the liquid metal alloy during surface treatment. Application of the laser treatment on aluminum alloy has enabled to obtain much harder as well as better wear resistant material compared to the untreated EN AC AlMg5Si2Mn.

  12. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants.

    Science.gov (United States)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-10-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes-conversion and deposition coatings-while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches are

  13. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    International Nuclear Information System (INIS)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  14. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    Science.gov (United States)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  15. Surface morphology and chemical composition of TiTa-based surface alloy formed on TiNi by electron beam additive technologies

    Science.gov (United States)

    Gudimova, E. Yu.; Meisner, L. L.; Meisner, S. N.; Yakovlev, E. V.; Shabalina, O. I.

    2017-12-01

    This paper presents research results on the physiochemical and topographic surface properties of a NiTi alloy and their changes after different surface treatments: mechanical polishing, electron beam cleaning, and TiTa-based surface alloying. The possibility of using electron beam treatment for surface preparation with no additional methods is shown. Experiments demonstrate that the TiTa-based alloy surface formed by multiple magnetron deposition of TiTa film and subsequent pulsed electron beam melting of the film/substrate system is chemically and morphologically homogeneous.

  16. Surface Modification Technology of ODS Alloying Treatment by using Laser Heat Source

    International Nuclear Information System (INIS)

    Kim, H. G.; Kim, I. H.; Choi, B. K.; Park, J. Y.; Koo, Y. H.

    2012-01-01

    The ODS (Oxide Dispersion Strengthed) alloys can be applied as structural materials for components in the core of a nuclear power plants since these components must have a high mechanical strength at high temperature up to 700 .deg. C. This type of alloy was generally manufactured by mechanical alloying from its source metal and Y 2 O 3 powders. The mechanical alloyed powder is subjected to the HIP (Hot Isotatic Pressing) or hot extrusion: and this product is heat treated at target temperature and time. Thus, the Y 2 O 3 particles are dispersed in the metal matrix. These manufacturing process of ODS alloy is very complex and expensive. Also, it is necessary the special techniques to obtain the uniform dispersion and volume control of Y 2 O 3 particles. Another problem is the final product forming such as tube and sheet because the intermediated-product has a high mechanical strength due to the dispersion of Y 2 O 3 particles. The laser cladding techniques was applied on the surface cladding of ceramics and inter-metallic compounds on metal base and ceramic base components to increase corrosion and wear resistance. The laser heat source can be used to the alloying the metal and ceramic materials, because thermally melting of metal and ceramic is possible. So, we are applied on ODS alloy manufacturing by using the laser heat source. The main advantages and disadvantage of this technology can be resumed as follows: · It is possible to apply to the sheet and tube shape component, directly. · Metallurgical damage such as HAZ and severe grain growth is considerably reduced. · Good control of the alloying element of the treated zone · Highly reproducible homogeneous zone · The pores and cracks are suppressed in the treated zone · Oxidation can be prevented during the process. · Good control is possible for the irregular shaped components. · The bulk material alloying is limited by the power of laser source. So, this work is studied on the ODS alloy manufacturing

  17. Corrosion resistance and surface characterization of electrolyzed Ti-Ni alloy.

    Science.gov (United States)

    Fukushima, Osamu; Yoneyama, Takayuki; Doi, Hisashi; Hanawa, Takao

    2006-03-01

    Ti-Ni alloy has been increasingly applied to medical and dental devices, such as coronary stents and orthodontic wires. This alloy contains nickel, which is known to give rise to cytotoxicity, metal allergy, and carcinogenicity. Therefore, the purpose of this study was to improve the corrosion resistance of Ti-Ni alloy by electrolytic treatment, whereby investigation was carried out using different acidic electrolyte compositions. As a result, specimens electrolyzed with lactic acid, water, and glycerol were found to show higher corrosion potential and release lower amount of titanium and nickel ions than mechanical-polished specimens (pnickel concentration in the surface oxide layer of Ti-Ni alloy decreased, and the thickness of the surface oxide layer increased. Based on the results of this study, it was shown that electrolytic treatment with suitable electrolyte could improve the corrosion resistance of Ti-Ni alloy, which is effective to produce medical and dental devices that utilize shape memory effect or superelasticity with better biocompatibility.

  18. Laser alloying of Al with mixed Ti and Ni powders to improve surface properties

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2008-07-01

    Full Text Available Aluminium is used in industry for various applications due to its low cost, light weight and excellent workability, but lacks wear resistance and hardness. Laser alloying is used to improve surface properties such as hardness and wear resistance...

  19. Laser surface alloying of 316L stainless steel with Ru and Ni mixtures

    CSIR Research Space (South Africa)

    Lekala, MB

    2012-05-01

    Full Text Available The surfaces of AISI 316L stainless steel were laser alloyed with ruthenium powder and a mixture of ruthenium and nickel powders using a cw Nd:YAG laser set at fixed operating parameters. The microstructure, elemental composition, and corrosion...

  20. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers.

  1. Plasma transferred arc surface alloying of Cr-Ni-Mo powders on compacted graphite iron

    NARCIS (Netherlands)

    Feng, Jijun; Pan, Chunxu; Lu, Liulin; Huang, Qiwen; Cao, Huatang

    2016-01-01

    A Cr-Ni-Mo overlayer was deposited on the surface of compacted graphite iron (CGI) by the plasma transferred arc (PTA) alloying technique. The microstructure of Cr-Ni-Mo overlayer was characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive

  2. Improvement of hardness of aluminium AA1200 by laser surface alloying

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available Aluminium is vastly used in industry due to its low cost, light weight and excellent workability, but lacks in wear resistance and hardness. Laser alloying is used to improve the surface properties such as hardness by modifying the composition...

  3. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available In the present study, laser surface alloying of aluminium with WC + Co + NiCr (in the ratio of 70:15:15) has been conducted using a 5 kW continuous wave (CW) Nd:YAG laser (at a beam diameter of 0.003 m), with the output power ranging from 3 to 3.5 k...

  4. Atomic and electronic structure of V-Rh(110) near-surface alloy

    Czech Academy of Sciences Publication Activity Database

    Píš, I.; Stetsovych, V.; Mysliveček, J.; Kettner, M.; Vondráček, Martin; Dvořák, F.; Mazur, D.; Matolín, V.; Nehasil, V.

    2013-01-01

    Roč. 117, č. 24 (2013), s. 12679-12688 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : V−Rh(110) near-surface alloy * STM * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.835, year: 2013

  5. Near surface composition of some alloys by X-ray photoelectron ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 57, No. 4. — journal of. October 2001 physics pp. 809–820. Near surface composition of some alloys by .... pass energy was maintained at 20 eV for all the narrow scans. Prior to XPS measurements, specimens were cleaned by Ar· sputtering to remove the hydrocarbon contamination. Ion.

  6. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    Science.gov (United States)

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  7. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-03-01

    Full Text Available In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  8. Surface roughness optimization in machining of AZ31 magnesium alloy using ABC algorithm

    Directory of Open Access Journals (Sweden)

    Abhijith

    2018-01-01

    Full Text Available Magnesium alloys serve as excellent substitutes for materials traditionally used for engine block heads in automobiles and gear housings in aircraft industries. AZ31 is a magnesium alloy finds its applications in orthopedic implants and cardiovascular stents. Surface roughness is an important parameter in the present manufacturing sector. In this work optimization techniques namely firefly algorithm (FA, particle swarm optimization (PSO and artificial bee colony algorithm (ABC which are based on swarm intelligence techniques, have been implemented to optimize the machining parameters namely cutting speed, feed rate and depth of cut in order to achieve minimum surface roughness. The parameter Ra has been considered for evaluating the surface roughness. Comparing the performance of ABC algorithm with FA and PSO algorithm, which is a widely used optimization algorithm in machining studies, the results conclude that ABC produces better optimization when compared to FA and PSO for optimizing surface roughness of AZ 31.

  9. Surface development of a brazing alloy during heat treatment–a comparison between UHV and APXPS

    Science.gov (United States)

    Rullik, L.; Johansson, N.; Bertram, F.; Evertsson, J.; Stenqvist, T.; Lundgren, E.

    2018-01-01

    In an attempt to bridge the pressure gap, APXPS was used to follow the surface development of an aluminum brazing sheet during heating in an ambient oxygen-pressure mimicking the environment of an industrial brazing furnace. The studied aluminum alloy brazing sheet is a composite material consisting of two aluminum alloy standards whose surface is covered with a native aluminum oxide film. To emphasize the necessity of studies of this system in ambient sample environments it is compared to measurements in UHV. Changes in thickness and composition of the surface oxide were followed after heating to 300 °C, 400 °C, and 500 °C. The two sets presented in this paper show that the surface development strongly depends on the environment the sample is heated in.

  10. New corrosion resistant alloys on the base of titanium and high-chromium steels

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Chernova, G.P.

    1975-01-01

    It is shown that stability of titanium alloys, with α-structure (OT-4, AT3,AT6) and high-strength α+β or pure β-structure (BT-14; BT-15), in hydrochloric acid solutions may be significantly improved due to additional alloying by minor additions of Pd(0,2%) similar to pure titanium. Additions of 0,2% Pd also significantly improve acid resistance of alloys of the Fe-Cr system. The highest corrosion resistance has Fe,40%Cr,0,2%Pd alloy. This alloy is stable in 20-40%H 2 SO 4 and 1% HCl at 100 deg C

  11. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    International Nuclear Information System (INIS)

    Luo, Dian; Tang, Guangze; Ma, Xinxin; Gu, Le; Sun, Mingren; Wang, Liqin

    2015-01-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm 2 . Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm 2 ) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation

  12. U-Zr alloy: XPS and TEM study of surface passivation

    Science.gov (United States)

    Paukov, M.; Tkach, I.; Huber, F.; Gouder, T.; Cieslar, M.; Drozdenko, D.; Minarik, P.; Havela, L.

    2018-05-01

    Surface reactivity of Uranium metal is an important factor limiting its practical applications. Bcc alloys of U with various transition metals are much less reactive than pure Uranium. So as to specify the mechanism of surface protection, we have been studying the U-20 at.% Zr alloy by photoelectron spectroscopy and transmission electron microscopy. The surface was studied in as-obtained state, in various stages of surface cleaning, and during an isochronal annealing cycle. The analysis based on U-4f, Zr-3p, and O-1 s spectra shows that a Zr-rich phase segregates at the surface at temperatures exceeding 550 K, which provides a self-assembled coating. The comparison of oxygen exposure of the stoichiometric and coated surfaces shows that the coating is efficiently preventing the oxidation of uranium even at elevated temperatures. The coating can be associated with the UZr2+x phase. TEM study indicated that the coating is about 20 nm thick. For the clean state, the U-4f core-level lines of the bcc alloy are practically identical to those of α-U, revealing similar delocalization of the 5f electronic states.

  13. Theoretical study of the surface resistivity of (111) surfaces of NixPt1-x(111) alloys

    International Nuclear Information System (INIS)

    Rous, P. J.

    2001-01-01

    A layer-Korringa - Kohn - Rostoker calculation is used to study the compositional dependence of the surface resistivity of the (111) surface of Ni x Pt 1-x (111) alloys. The compositional disorder in the bulk and at the surface is described by the coherent potential approximation. If it is assumed that the atomic planes near the (111) surface Ni x Pt 1-x have the same composition as the bulk layers, then a weak Nordheim effect is observed in the compositional dependence of the surface resistivity. However, we show that surface segregation in Ni x Pt 1-x (111) causes an inverse Nordheim dependence in the actual surface resistivity as the bulk composition is varied. [copyright] 2001 American Institute of Physics

  14. Description Of Alloy Layer Formation On A Cast Steel Substrate

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2015-09-01

    Full Text Available A description of alloy layer formation on a steel substrate is presented. Two types of formation are considered: diffusion of carbon and chromium into the solid from the pad in the direction of the cast steel within the FeCrC (grains and diffusion in a layer of liquid chromium cast iron formed in a preceding step. The influence of silicon in the pad on the pad’s transformation into the liquid is also examined. Solidus and liquidus temperatures of high carbon ferrochromium are determined. The larger the content of Si is used in the experiment, the lower the solidus temperature of the FeCrC alloy is observed. This results from the higher intensity of the elements’ diffusion and faster formation of the liquid.

  15. Stress corrosion cracking of Ni-based alloys in PWR primary water. Component surface control

    International Nuclear Information System (INIS)

    Foucault, M.

    2004-01-01

    In the PWR plant primary circuit, FRAMATOME-ANP uses several nickel-base alloys or austenitic stainless steels for the manufacture of safety components. The experience feedback of the last twenty years allows us to point out the major role played by the surface state of the components in their life duration. In this paper, we present two examples of problems encountered and solved by a surface study and the definition and implementation of a process for the surface control of the repair components. Then, we propose some ideas about the present needs in terms of analysis methods to improve the surface knowledge and the control of the manufactured components. (author)

  16. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    International Nuclear Information System (INIS)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan

    2013-01-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO 3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH 3 (CH 2 ) 11 Si(OCH 3 ) 3 ). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  17. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  18. Studies of the mechanisms involved in the laser surface hardening process of aluminum base alloys

    International Nuclear Information System (INIS)

    Silva, Luciana Ventavele da

    2011-01-01

    The Al-Si alloys are widely used in industry to replace the steel and gray cast iron in high-tech sectors. The commercial importance of these alloys is mainly due to its low weight, excellent wear (abrasion) and corrosion resistance, high resistance at elevated temperatures, low coefficient of thermal expansion and lesser fuel consumption that provide considerable reduction of emission of pollutants. In this work, Al-Si alloy used in the automotive industry to manufacture pistons of internal combustion engines, was undergone to surface treatments using LASER remelting (Nd:YAG, λ = 1.06 μm, pulsed mode). The LASER enables various energy concentrations with accurate transfer to the material without physical contact. The intense energy transfer causes the occurrence of structural changes in the superficial layer of the material. Experiments with single pulses and trails were conducted under various conditions of LASER processing in order to analyze microstructural changes resulting from treatments and their effects on the hardness. For the characterization of hardened layer was utilized the following techniques: optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray mapping, Vickers microhardness and maximum roughness tests. The high cooling rate caused a change in the alloy structure due to the refinement of the primary eutectic silicon particles, resulting in increase of the mechanical properties (hardness) of the Al-Si alloy. (author)

  19. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.

    Science.gov (United States)

    Verissimo, Nathália C; Geilich, Benjamin M; Oliveira, Haroldo G; Caram, Rubens; Webster, Thomas J

    2015-12-01

    β-type Ti alloys containing Nb are exciting materials for numerous orthopedic and dental applications due to their exceptional mechanical properties. To improve their cytocompatibility properties (such as increasing bone growth and decreasing infection), the surfaces of such materials can be optimized by adding elements and/or nanotexturing through anodization. Because of the increasing prevalence of orthopedic implant infections, the objective of this in vitro study was to add Sn and create unique nanoscale surface features on β-type Ti alloys. Nanotubes and nanofeatures on Ti-35Nb and Ti-35Nb-4Sn alloys were created by anodization in a HF-based electrolyte and then heat treated in a furnace to promote amorphous structures and phases such as anatase, a mixture of anatase-rutile, and rutile. Samples were characterized by SEM, which indicated different morphologies dependent on the oxide content and method of modification. XPS experiments identified the oxide content which resulted in a phase transformation in the oxide layer formed onto Ti-35Nb and Ti-35Nb-4Sn alloys. Most importantly, regardless of the resulting nanostructures (nanotubes or nanofeatures) and crystalline phase, this study showed for the first time that adding Sn to β-type Ti alloys strongly decreased the adhesion of Staphylococcus aureus (S. aureus; a bacteria which commonly infects orthopedic implants leading to their failure). Thus, this study demonstrated that β-type Ti alloys with Nb and Sn have great promise to improve numerous orthopedic applications where infection may be a concern. © 2015 Wiley Periodicals, Inc.

  20. Surface Roughening Behavior of 6063 Aluminum Alloy during Bulging by Spun Tubes

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2017-03-01

    Full Text Available Severe surface roughening during the hydroforming of aluminum alloy parts can produce surface defects that severely restrict their application in the automobile and aerospace industry. To understand the relation between strain, grain size and surface roughness under biaxial stress conditions, hydro-bulging tests of aluminum alloy tubes were carried out, and the tubes with different grain sizes were prepared by a spinning and annealing process. The surface roughness was measured by a laser scanning confocal microscope to evaluate the surface roughening macroscopical behavior, and the corresponding microstructures were observed using electron back-scattered diffraction (EBSD to reveal the roughening microscopic behavior. The results obtained show that the surface roughness increased with both strain and grain size under biaxial stress. No surface defects were observed on the surface when the grain size was less than 105 μm if the strain was less than 18%, or when the grain size was between 130 and 175 μm if the strain was less than 15.88% and 7.15%, respectively. The surface roughening microscopic behavior was identified as an inhomogeneous grain size distribution, which became more pronounced with increasing grain size and resulted in greater local deformation. Concentrated grain orientation also results in severe inhomogeneous deformation during plastics deformation, and serious surface roughening.

  1. Characterization of AZ91 magnesium alloy and organosilane adsorption on its surface

    International Nuclear Information System (INIS)

    Kim, J.; Wong, K.C.; Wong, P.C.; Kulinich, S.A.; Metson, J.B.; Mitchell, K.A.R.

    2007-01-01

    Oxide formation on a clean AZ91-Mg alloy surface has been characterized by X-ray photoelectron spectroscopy (XPS), while the chemical composition of a mirror-polished sample was assessed by scanning Auger microscopy (SAM) and scanning electron microscopy (SEM) at different microstructural regions, referred to as the grain boundary, matrix and particle regions. XPS and SAM confirmed that Mg and Al are always present in the surface regions probed, whereas bulk characterization with energy dispersive X-ray (EDX) analysis was necessary to detect the additional alloying elements, Mn and Zn. Coating by 1% solutions of BTSE, γ-GPS and γ-APS at their natural pH values gave etching of the surface Mg oxide. Adsorption occurs on the different regions, but the attachment is weak, especially because of the fragile nature of the underlying substrate. However, increasing the concentration of BTSE to 4% formed a thicker and denser coating with better prospects for substrate protection

  2. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    Directory of Open Access Journals (Sweden)

    Agnieszka Witecka, Akiko Yamamoto, Henryk Dybiec and Wojciech Swieszkowski

    2012-01-01

    Full Text Available Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1, 3-aminopropyltriethoxysilane (S2, 3-isocyanatopyltriethoxysilane (S3, phenyltriethoxysilane (S4 and octadecyltriethoxysilane (S5. The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.

  3. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    Directory of Open Access Journals (Sweden)

    Nanbu H.

    2010-06-01

    Full Text Available In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  4. Mitigation of wear damage by laser surface alloying technique

    CSIR Research Space (South Africa)

    Adebiyi, ID

    2016-04-01

    Full Text Available Today's increasingly extreme and aggressive production environments require that machine components be made with materials having specific surface properties such as good wear resistance. Unfortunately, nature does not provide such materials...

  5. Laser Induced Reaction for Prebond Surface Preparation of Aluminum Alloys

    National Research Council Canada - National Science Library

    Rotel, M

    1994-01-01

    .... These adhesives are normally used in bonding and repairing processes for aerospace application. Surface treatment for bonding Al adherends with structural adhesives involve the sue of harsh chemicals such as acids bases and organic solvents...

  6. Angular distribution of sputtered atoms from Al-Sn alloy and surface topography

    International Nuclear Information System (INIS)

    Wang Zhenxia; Pan Jisheng; Zhang Jiping; Tao Zhenlan

    1992-01-01

    If an alloy is sputtered the angular distribution of the sputtered atoms can be different for each component. At high ion energies in the range of linear cascade theory, different energy distributions for components of different mass in the solid are predicted. Upon leaving the surface, i.e. overcoming the surface binding energy, these differences should show up in different angular distributions. Differences in the angular distribution are of much practical interest, for example, in thin-film deposition by sputtering and surface analysis by secondary-ion mass spectroscopy and Auger electron spectroscopy. Recently our experimental work has shown that for Fe-W alloy the surface microtopography becomes dominant and determines the shape of the angular distribution of the component. However, with the few experimental results available so far it is too early to draw any general conclusions for the angular distribution of the sputtered constituents. Thus, the aim of this work was to study further the influence of the surface topography on the shape of the angular distribution of sputtered atoms from an Al-Sn alloy. (Author)

  7. Tensile bond strength of composite luting cements to metal alloys after various surface treatments

    Directory of Open Access Journals (Sweden)

    Denizoglu Saip

    2009-01-01

    Full Text Available Aims: To evaluate the effects of two different surface treatments and bonding agents on tensile bond strength between a Co-Cr and a Ni-Cr cast alloy and two resin-luting cements. Materials and Methods: Two hundred and forty alloy samples were cast and subjected to surface treatments such as sandblasting, chemical etching, and sandblasting plus chemical etching. Panavia F and CandB cement were used as cementing mediums. The etching qualities were examined by a stereooptic microscope. Failure surfaces were examined throughout scanning electron microscopy. The data were evaluated using statistical methods, namely analysis of variance and multiple comparison test (Tukey HSD. Results: Significant differences were found in the bonding provided by the various cements (P < 0.001 and also type of surface treatments (P < 0.001. For all groups, sandblasted surfaces showed the highest bond strength values. There was no significant difference between the Cr-Co and the Cr-Ni alloys (P > 0.05. Conclusions: Panavia F showed higher tensile strength and the sandblasted samples possessed higher tensile strength.

  8. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Gary Wayne [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.

  9. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    International Nuclear Information System (INIS)

    Pinkerton, G.W.

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression

  10. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    Science.gov (United States)

    Kim, S. H.; Choi, S. G.; Choi, W. K.; Yang, B. Y.; Lee, E. S.

    2014-09-01

    In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis.

  11. Radiation-induced erosion of titanium alloy surface and hydrogen adsorption under H+ and He+ ion bombardment

    International Nuclear Information System (INIS)

    Guseva, M.I.; Vinogradova, N.K.; Lemke, N.G.; Mansurova, A.N.; Martynenko, Yu.V.; Smirnov, V.N.; Starshin, E.P.; Syshchikov, V.I.; Chelnokov, O.I.; Fefelov, P.A.

    1982-01-01

    Results of studying hydrogen absorption by titanium alloys (Ti-Al-V and Ti-Al-Zr) and the effect of helium ion- and hydrogen ion bombardment on the character and degree of alloy surface erosion are given. The published data on permeability, solubility and diffusion of hydrogen isotopes into metals are systematized in the Appendix. Results of studying tritium permeability and solubility in a number of scantily studied alloys, titanium alloys included, that can be promising construction materials for different thermonuclear reactor units are presented

  12. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    Science.gov (United States)

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  13. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application

    Directory of Open Access Journals (Sweden)

    Juliana P. L. Gonçalves

    2014-11-01

    Full Text Available Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an

  14. In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants.

    Science.gov (United States)

    Santander, Sonia; Alcaine, Clara; Lyahyai, Jaber; Pérez, Maria Angeles; Rodellar, Clementina; Doblaré, Manuel; Ochoa, Ignacio

    2014-01-01

    Interaction between cells and implant surface is crucial for clinical success. This interaction and the associated surface treatment are essential for achieving a fast osseointegration process. Several studies of different topographical or chemical surface modifications have been proposed previously in literature. The Biomimetic Advanced Surface (BAS) topography is a combination of a shot blasting and anodizing procedure. Macroroughness, microporosity of titanium oxide and Calcium/Phosphate ion deposition is obtained. Human mesenchymal stem cells (hMCSs) response in vitro to this treatment has been evaluated. The results obtained show an improved adhesion capacity and a higher proliferation rate when hMSCs are cultured on treated surfaces. This biomimetic modification of the titanium surface induces the expression of osteblastic differentiation markers (RUNX2 and Osteopontin) in the absence of any externally provided differentiation factor. As a main conclusion, our biomimetic surface modification could lead to a substantial improvement in osteoinduction in titanium alloy implants.

  15. Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Hryha, Eduard, E-mail: hryha@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden); Shvab, Ruslan [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden); Bram, Martin; Bitzer, Martin [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), D-52425 Jülich (Germany); Nyborg, Lars [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden)

    2016-12-01

    Highlights: • Powder particles of Ti, NiTi and Ti6Al4V are covered by homogeneous Ti-oxide layer. • Thickness of the Ti-oxide layer is in the range of 2.9 to 4.2 nm in as-atomized state. • Exposure to the air results in immediate oxide thickness increase of up to 30%. • Oxide thickness increase of only 15% during storage for 8 years. • High passivation of the Ti, NiTi and Ti6Al4V powder surface by Ti-oxide layer. - Abstract: High affinity of titanium to oxygen in combination with the high surface area of the powder results in tremendous powder reactivity and almost inevitable presence of passivation oxide film on the powder surface. Oxide film is formed during the short exposure of the powder to the environment at even a trace amount of oxygen. Hence, surface state of the powder determines its usefulness for powder metallurgy processing. Present study is focused on the evaluation of the surface oxide state of the Ti, NiTi and Ti6Al4V powders in as-atomized state and after storage under air or Ar for up to eight years. Powder surface oxide state was studied by X-ray photoelectron spectroscopy (XPS) and high resolution scanning electron microscopy (HR SEM). Results indicate that powder in as-atomized state is covered by homogeneous Ti-oxide layer with the thickness of ∼2.9 nm for Ti, ∼3.2 nm and ∼4.2 nm in case of Ti6Al4V and NiTi powders, respectively. Exposure to the air results in oxide growth of about 30% in case of Ti and only about 10% in case of NiTi and Ti6Al4V. After the storage under the dry air for two years oxide growth of only about 3-4% was detected in case of both, Ti and NiTi powders. NiTi powder, stored under the dry air for eight years, indicates oxide thickness of about 5.3 nm, which is about 30% thicker in comparison with the as-atomized powder. Oxide thickness increase of only ∼15% during the storage for eight years in comparison with the powder, shortly exposed to the air after manufacturing, was detected. Results indicate a

  16. The Influence of Laser Surface Remelting on the Microstructure of EN AC-48000 Cast Alloy

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2016-12-01

    Full Text Available Paper present a thermal analysis of laser heating and remelting of EN AC-48000 (EN AC-AlSi12CuNiMg cast alloy used mainly for casting pistons of internal combustion engines. Laser optics were arranged such that the impingement spot size on the material was a circular with beam radius rb changes from 7 to 1500 μm. The laser surface remelting was performed under argon flow. The resulting temperature distribution, cooling rate distribution, temperature gradients and the depth of remelting are related to the laser power density and scanning velocity. The formation of microstructure during solidification after laser surface remelting of tested alloy was explained. Laser treatment of alloy tests were perform by changing the three parameters: the power of the laser beam, radius and crystallization rate. The laser surface remelting needs the selection such selection of the parameters, which leads to a significant disintegration of the structure. This method is able to increase surface hardness, for example in layered castings used for pistons in automotive engines.

  17. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    International Nuclear Information System (INIS)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R.; Almeida, R. dos S.

    2014-01-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  18. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil); Almeida, R. dos S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2014-07-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  19. A Study on Surface Modification of Al7075-T6 Alloy against Fretting Fatigue Phenomenon

    Directory of Open Access Journals (Sweden)

    E. Mohseni

    2014-01-01

    Full Text Available Aircraft engines, fuselage, automobile parts, and energy saving strategies in general have promoted the interest and research in the field of lightweight materials, typically on alloys based on aluminum. Aluminum alloy itself does not have suitable wear resistance; therefore, it is necessary to enhance surface properties for practical applications, particularly when aluminum is in contact with other parts. Fretting fatigue phenomenon occurs when two surfaces are in contact with each other and one or both parts are subjected to cyclic load. Fretting drastically decreases the fatigue life of materials. Therefore, investigating the fretting fatigue life of materials is an important subject. Applying surface modification methods is anticipated to be a supreme solution to gradually decreasing fretting damage. In this paper, the authors would like to review methods employed so far to diminish the effect of fretting on the fatigue life of Al7075-T6 alloy. The methods include deep rolling, shot peening, laser shock peening, and thin film hard coatings. The surface coatings techniques are comprising physical vapor deposition (PVD, hard anodizing, ion-beam-enhanced deposition (IBED, and nitriding.

  20. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...

  1. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  2. Corrosion behaviour of laser surface melted magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Taltavull, C.; Torres, B.; Lopez, A.J.; Rodrigo, P.; Otero, E.; Atrens, A.; Rams, J.

    2014-01-01

    A high power diode laser (HPDL) was used to produce laser surface melting (LSM) treatments on the surface of the Mg alloy AZ91D. Different treatments with different microstructures were produced by varying the laser-beam power and laser-scanning speed. Corrosion evaluation, using hydrogen evolution and electrochemical measurements, led to a relationship between microstructure and corrosion. Most corrosion rates for LSM treated specimens were within the scatter of the as-received AZ91D, whereas some treatments gave higher corrosion rates and some of the samples had corrosion rates lower than the average of the corrosion rate for AZ91D. There were differences in corroded surface morphology. Nevertheless laser treatments introduced surface discontinuities, which masked the effect of the microstructure. Removing these surface defects decreased the corrosion rate for the laser-treated samples. - Highlights: • Corrosion behavior of AZ91D Mg alloys is intimately related with its microstructure. • Laser surface melting treatments allows surface modification of the microstructure. • Different laser parameters can achieve different microstructures. • Controlling laser parameters can produce different corrosion rates and morphologies. • Increase of surface roughness due to laser treatment is relevant to the corrosion rate

  3. Effect of surface roughness on ultrasonic echo amplitude in aluminium-copper alloy castings

    International Nuclear Information System (INIS)

    Ambardar, R.; Pathak, S.D.; Prabhakar, O.; Jayakumar, T.

    1996-01-01

    In the present investigation, the influence of test surface roughness on ultrasonic back-wall echo (BWE) amplitude in Al-4.5%Cu alloy cast specimens has been studied. The results indicate that as the value of surface roughness of the specimen increases, the value of relating BWE amplitude at a given probe frequency decreases. However, under the present set of experimental conditions, the decrease in BWE amplitude with the increase in surface roughness of the test specimen is found to be appreciable at 10 MHz probe frequency. (author)

  4. Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt.%Al alloy

    Directory of Open Access Journals (Sweden)

    Deng Zhenghua

    2013-03-01

    Full Text Available Magnesium alloys are well known for their excellent properties, but the potential issues with oxidation and burning during melting and casting largely limit its industrial applications. The addition of Ce in magnesium alloys can significantly raise ignition-proof performance and change the structure of the oxide film on the surface of the molten metal as well as the surface tension values. Surface tension is an important physical parameter of the metal melts, and it plays an important role in the formation of surface oxide film. In this present work, the ignition temperature and the surface tension of Mg-9wt.%Al alloy with different Ce concentrations were studied. Surface tensions was measured using the maximum bubble pressure method (MBPM. Ignition temperature was measured using NiCr-NiSi type thermocouples and was monitored and recorded via a WXT-604 desk recording device. The results show that the ignition point of Mg-9wt.%Al alloy can be effectively elevated by adding Ce. The ignition temperature reaches its highest point of 720 ℃ when the addition of Ce is 1wt.%. The surface tension of the molten Mg-9wt.%Al alloy decreases exponentially with the increase of Ce addition at the same temperature. Similarly, the experiment also shows that the surface tension of Mg-9wt.%Al alloy decreases exponentially with the increase of temperature.

  5. Surface effects on Sm valence in amorphous Sm alloys

    International Nuclear Information System (INIS)

    Krill, G.; Durand, J.; Berrada, A.; Hassanain, N.; Ravet, M.F.

    1980-01-01

    The results are presented of XPS and X-ray absorption measurements performed on amorphous Sm Au and La Sm Au compounds. The XPS Sm 3dsub(5/2) core level spectra in these compounds reveal that at the surface (5 to 7 A) the samarium ions present both the Sm 2+ (4f 6 ) and Sm 3+ (4f 5 ) configurations. When the concentration in samarium decreases it is shown that the Sm 2+ configuration is strongly enhanced at the surface whereas the X-ray absorption measurements indicate on the contrary that in the bulk only the Sm 3+ configuration is present. Comparison is made with similar findings in pure crystalline Sm and various crystalline rare earth compounds. (author)

  6. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-01-01

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  7. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  8. A New Phenomenon on the surface of FINEMET alloy

    Czech Academy of Sciences Publication Activity Database

    Životský, O.; Klimša, L.; Hendrych, A.; Jirásková, Yvonna; Buršík, Jiří

    2013-01-01

    Roč. 26, č. 4 (2013), s. 1349-1352 ISSN 1557-1939. [ICSM 2012 /3./. Istanbul, 29.04.2012-04.05.2012] R&D Projects: GA ČR(CZ) GAP108/11/1350 Keywords : Finemet * Quadratic magneto-optical Kerr effects * Nanocrystalline * Surface microstructure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2013

  9. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    DEFF Research Database (Denmark)

    Cecchetto, L; Ambat, Rajan; Davenport, A.J.

    2007-01-01

    AA5182 aluminium alloy cold rolled samples were coated by thin Wlms of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very eVective for corrosion protection of aluminium alloys in neutral environment. This study underlines...... the prominent role of surface cathodic intermetallic particles in pit initiation and coating break down in enhanced corrosion conditions and suggest that, beside the EB barrier properties, the enhanced corrosion resistance observed on the EB coated samples could partly arise from two other mains factors......: • a weak redox activity of the polymer which passivate the metal, • a proton involving self-healing process taking place at the polymer–metal interface, which contributes to delay local acidiWcation in Wrst steps of corrosion on EB coated aluminium surfaces....

  10. Morphological Analysis (SEM) of the Surface of a Non-Noble Dental Alloy Subjected to Electrocorrosion

    Science.gov (United States)

    Baciu, E. R.; Grădinaru, I.; Baciu, M.; Vasluianu, R. I.; Cimpoesu, R.; Baciu, C.; Bejinariu, C.

    2017-06-01

    Corrosion consists in the degradation of a material under the chemical or electrochemical action of the environment where it is placed. The investigations carried out aimed to show the structural modifications produced in Co-Cr-Mo alloy, Robur 400 (Eisenbacher Dental - Waren ED GmbH, Germany) subjected to electrocorrosion in Fusayama-Mayer artificial saliva. The specimens prepared by mechanical polishing were analysed structurally by using a scanning electron microscope. During the tests run we could notice a general corrosion of the surfaces of the specimens made from Robur alloy. Through 2D and 3D microscopy and qualitative determinations of the luminous variation we could notice the effects of electrocorrosion tests on the surface of the metal material.

  11. Near surface modification of aluminum alloy induced by laser shock processing

    Science.gov (United States)

    Saklakoglu, Nursen; Gencalp Irizalp, Simge; Akman, Erhan; Demir, Arif

    2014-12-01

    This paper investigates the influences of near surface modification induced in 6061-T6 aluminum alloy by laser shock processing (LSP). The present study evaluates LSP with a Q-switched Nd:YAG low power laser using water confinement medium and absorbent overlay on the workpiece. The near surface microstructural change of 6061-T6 alloy after LSP was studied. The residual stress variation throughout the depth of the workpiece was determined. The results showed an improvement of the material resistance to pit formation. This improvement may be attributed to compressive residual stress and work-hardening. The size and number of pits revealed by immersion in an NaOH-HCl solution decreased in comparison with the untreated material.

  12. Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

    Directory of Open Access Journals (Sweden)

    Hee-Keun Lee

    2015-07-01

    Full Text Available Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG hybrid (PMH welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

  13. The effect of irradiation and sputtering on the near-surface composition of dilute alloys

    International Nuclear Information System (INIS)

    Marwick, A.D.; Piller, R.C.

    1978-07-01

    A dilute nickel alloy has been irradiated with 75 keV Ni + ions at temperatures between -8.5 0 C and 550 0 C. Redistribution of solute atoms (Al, Mn, Ti, Cr) has been observed at all temperatures, and is ascribed to the action of point defect fluxes in inducing corresponding fluxes of solute atoms. The solute depth profiles were measured by simultaneous sputtering and SIMS. At temperatures above 350 0 C solute atoms migrate into a peak of concentration at 200 A depth, and are depleted at the surface. At lower temperatures, solute atoms migrate out of the damage region, and are enriched near the surface. The effects of these changes on the sputtering of the dilute components of the alloy are discussed. (author)

  14. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cecchetto, L. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, CNRS-UJF-INP-Grenoble (UMR 5631), ENSEEG, BP 75, 38402 St. Martin d' Heres (France); Ambat, R. [School of Engineering Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Davenport, A.J. [School of Engineering Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Delabouglise, D. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, CNRS-UJF-INP-Grenoble (UMR 5631), ENSEEG, BP 75, 38402 St. Martin d' Heres (France)]. E-mail: Didier.Delabouglise@lepmi.inpg.fr; Petit, J.-P. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, CNRS-UJF-INP-Grenoble (UMR 5631), ENSEEG, BP 75, 38402 St. Martin d' Heres (France); Neel, O. [Centre de Recherche de Voreppe, Pechiney, Parc economique Centr' Alp, 38340 Voreppe (France)

    2007-02-15

    AA5182 aluminium alloy cold rolled samples were coated by thin films of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very effective for corrosion protection of aluminium alloys in neutral environment. This study underlines the prominent role of surface cathodic intermetallic particles in pit initiation and coating break down in enhanced corrosion conditions and suggest that, beside the EB barrier properties, the enhanced corrosion resistance observed on the EB coated samples could partly arise from two other mains factors:- a weak redox activity of the polymer which passivate the metal, - a proton involving self-healing process taking place at the polymer-metal interface, which contributes to delay local acidification in first steps of corrosion on EB coated aluminium surfaces.

  15. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon

    International Nuclear Information System (INIS)

    Lenivtseva, O.G.; Bataev, I.A.; Golkovskii, M.G.; Bataev, A.A.; Samoilenko, V.V.; Plotnikova, N.V.

    2015-01-01

    Highlights: • Wear resistant coatings up to 2 mm thick were clad on titanium by an electron beam in air. • The microhardness of the alloys was increased from 2 to 8 GPa due to the formation of TiC particles. • Alloying of titanium increased the abrasive wear resistance of the alloy by a factor of 9.3. - Abstract: The structure and tribological properties of commercially pure titanium (cp-Ti) samples after non-vacuum electron beam surface alloying with carbon were studied. Two types of powders were used to introduce carbon in surface layer of cp-Ti: titanium carbide (TiC) and mixture of pure titanium and graphite (“Ti + C”). Single layer and multilayer coatings were studied. Application of electron beam for alloying provided cladding rate of 4.5 m 2 /h. The thickness of the clad coatings was 1.6–2.0 mm. The main phases received after “Ti + C” powder cladding were α-titanium, TiC, and retained graphite. In the samples obtained by cladding of TiC, graphite was not observed. A factor determining the microhardness and tribological properties of the cladded layer was the volume fraction of TiC. Maximum coating microhardness of 8 GPa was obtained by cladding of single layer of TiC powder or two layers of the “Ti + C” mixture. Two types of tests were carried out to evaluate the wear resistance of the samples. In friction tests against loose abrasive particles, the wear rate of the best samples was 9.3 times lower than that of cp-Ti. In wear tests using fixed abrasive particles, the relative wear resistance of the best samples was 2.3 times higher than that of cp-Ti.

  16. The influence of cooling techniques on cutting forces and surface roughness during cryogenic machining of titanium alloys

    Directory of Open Access Journals (Sweden)

    Wstawska Iwona

    2016-12-01

    Full Text Available Titanium alloys are one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance. On the other hand, they also present problems wherein titanium alloys are extremely difficult materials to machine. In addition, the cost associated with titanium machining is also high due to lower cutting velocities and shorter tool life. The main objective of this work is a comparison of different cooling techniques during cryogenic machining of titanium alloys. The analysis revealed that applied cooling technique has a significant influence on cutting force and surface roughness (Ra parameter values. Furthermore, in all cases observed a positive influence of cryogenic machining on selected aspects after turning and milling of titanium alloys. This work can be also the starting point to the further research, related to the analysis of cutting forces and surface roughness during cryogenic machining of titanium alloys.

  17. Magnetic order of FeMn alloy on the W(001) surface

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Martin; Kudrnovský, Josef; Máca, František

    2007-01-01

    Roč. 601, - (2007), s. 4261-4264 ISSN 0039-6028 R&D Projects: GA ČR GA202/04/0583; GA MŠk OC 150 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : manganese * iron * alloy * surface magnetism * density functional calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.855, year: 2007

  18. A ferromagnetic ground state for Mn-Co surface ordered alloy on Co(001) substrate

    International Nuclear Information System (INIS)

    M'Passi-Mabiala, B.; Meza-Aguilar, S.; Demangeat, C.

    2001-07-01

    Recent Low-energy electron diffraction experiments concerning submonolayer Mn coverage on Co/Cu(001) substrates displayed a well-defined Mn 0.5 Co 0.5 surface ordered alloy. Through the Magneto-optic Kerr effect and X-ray magnetic circular dichroism a ferromagnetic coupling between Mn and Co was obtained. Ab initio density functional theory within generalized gradient approximation is able to explain these results. (author)

  19. Study on the influence of helical milling parameters on surface roughness of titanium alloy

    Directory of Open Access Journals (Sweden)

    Chunhui JI

    2015-06-01

    Full Text Available As a new technology, helical milling has been widely used in hole-making of titanium alloy, and the surface roughness is an important indicator for evaluating the quality of titanium alloy hole. In this paper, the helical milling experiments are carried out to study the effect of machining parameters on the surface roughness with the model established in Matlab. It is proved that the model can well predict the influence of the helical milling parameters on surface roughness. With screw pitch increasing, the surface roughness of titanium hole firstly decreases and then increases in the range of 0.15~0.25 mm/rev. However, the surface roughness increases gradually at first and then decreases with the increasing of the feed per tooth in the range of 0.03~0.05 mm/tooth. Similarly, with the increasing of spindle speed, the surface roughness firstly increases, then decreases, and again gradually increases smoothly in the range of 2 500~3 500 r/min. The results in the work can provide experimental basis for optimizing cutting parameters and decreasing surface roughness in helical milling process.

  20. Study on the early surface films formed on Mg-Y molten alloy in different atmospheres

    Directory of Open Access Journals (Sweden)

    A.R. Mirak

    2015-09-01

    Full Text Available In the present study, the non-isothermal early stages of surface oxidation of liquid Mg-1%Y alloy during casting were studied under UPH argon, dry air, and air mixed with protective fluorine-bearing gases. The chemistry and morphology of the surface films were characterized by SEM and EDX analyses. The results indicate a layer of smooth and tightly coherent oxidation film composed of MgO and Y2O3 formed on the molten Mg-Y alloy surface with 40–60 nm thickness under dry air. A dendritic/cellular microstructure is clearly visible with Y-rich second phases gathered in surface of the melt and precipitated along the grain/cell boundaries under all gas conditions. Under fluorine-bearing gas mixtures, the surface film was a mixed oxide and fluoride and more even; a flat and folded morphology can be seen under SF6 with oxide as dominated phase and under 1, 1, 1, 2-tetra-fluoroethane, a smooth and compact surface film uniformly covering the inner surface of the bubble with equal oxide and fluoride thickness, which results in a film without any major defects. MgF2 phase appears to be the key characteristic of a good protective film.