WorldWideScience

Sample records for surface air concentrations

  1. Isopleths of surface air concentration and surface air kerma rate due to a radioactive cloud released from a stack (3)

    International Nuclear Information System (INIS)

    Tachibana, Haruo; Kikuchi, Masamitsu; Sekita, Tsutomu; Yamaguchi, Takenori

    2004-06-01

    This report is a revised edition of 'Isopleths of Surface Air Concentration and Surface Air Absorbed Dose Rate due to a Radioactive Cloud Released from a Stack(II) '(JAERI-M 90-206) and based on the revised Nuclear Safety Guidelines reflected the ICRP1990 Recommendation. Characteristics of this report are the use of Air Karma Rate (Gy/h) instead of Air Absorbed Dose Rate (Gy/h), and the record of isopleths of surface air concentration and surface air karma rate on CD-ROM. These recorded data on CD-ROM can be printed out on paper and/or pasted on digital map by personal computer. (author)

  2. Concentration of 7Be in surface air at Suva, Fiji

    International Nuclear Information System (INIS)

    Garimella, S.; Koshy, K.

    1998-01-01

    A high-volume air sampler and a high-resolution gamma-ray spectrometer have been in use since August 1997 at the University of the South Pacific to measure the activity of 7 Be in surface air at Suva, the capital city of Fiji. Preliminary measurements during August - November 1997 indicate that the average concentration of 7 Be in surface air is approximately 4.0 mBq m -3 . Further measurements are in progress

  3. Concentration of 7Be in surface air at Suva, Fiji

    International Nuclear Information System (INIS)

    Garimella, S.; Koshy, K.

    1998-01-01

    A high-volume air sampler and a high-resolution gamma-ray spectrometer have been in use since August 1997 at the University of the South Pacific to measure the activity of 7 Be in surface air at Suva, the capital city of Fiji. Preliminary measurements during August-November 1997 indicate that the average concentration of 7 Be in surface air is approximately 4.0 mBq m -3 . Further measurements are in progress. (author). 4 refs., 1 fig

  4. Time lag between the tropopause height and the levels of 7Be concentration in near surface air

    Science.gov (United States)

    Ioannidou, A.; Vasileiadis, A.; Melas, D.

    2012-04-01

    The concentration of 7Be at near surface air has been determined over 2009, a year of a deep solar minimum, in the region of Thessaloniki, Greece at 40°62' N, 22°95'E. In geomagnetic latitudes over 40° N, the elevation of the tropopause during the warm summer months and the vertical exchange of air masses within the troposphere cause greater mixture of the air masses resulting in higher concentration levels for 7Be in surface air. The positive correlation between the monthly activity concentration of 7Be and the tropopause height (0.94, p rate of vertical transport within the troposphere, especially during warmer summer months, has as a result the descent to surface of air masses enriched in 7Be. However, the 7Be concentration levels in near surface air are not expected to respond immediately to the change of elevation of the tropopause. It was found that there's a time lag of ~ 3 days between the change in the daily surface concentrations of 7Be the change in the elevation of the tropopause.

  5. Experimental test of a novel multi-surface trough solar concentrator for air heating

    International Nuclear Information System (INIS)

    Zheng Hongfei; Tao Tao; Ma Ming; Kang Huifang; Su Yuehong

    2012-01-01

    Highlights: ► We made a prototype novel multi-surface trough solar concentrator for air heating. ► Circular and rectangular types of receiver were chosen for air heating in the test. ► The changes of instantaneous system efficiency with different air flow were obtained. ► The system has the advantage of high collection temperature, which can be over 140 °C. ► The average efficiency can exceed 45% at the outlet temperature of above 60 °C. - Abstract: This study presents the experimental test of a novel multi-surface trough solar concentrator for air heating. Three receivers of different air flow channels are individually combined with the solar concentrator. The air outlet temperature and solar irradiance were recorded for different air flow rates under the real weather condition and used to determine the collection efficiency and time constant of the air heater system. The characteristics of the solar air heater with different airflow channels are compared, and the variation of the daily efficiency with the normalized temperature change is also presented. The testing results indicates that the highest temperature of the air heater with a circular glass receiver can be over 140 °C. When the collection temperature is around 60 °C, the collection efficiency can be over 45%. For the rectangular receivers, the system also has a considerable daily efficiency at a larger air flow rate. The air heater based on the novel trough solar concentrator would be suitable for space heating and drying applications.

  6. Time lag between the tropopause height and the levels of 7Be concentration in near surface air

    Directory of Open Access Journals (Sweden)

    Melas D.

    2012-04-01

    Full Text Available The concentration of 7Be at near surface air has been determined over 2009, a year of a deep solar minimum, in the region of Thessaloniki, Greece at 40°62′ N, 22°95'E. In geomagnetic latitudes over 40° N, the elevation of the tropopause during the warm summer months and the vertical exchange of air masses within the troposphere cause greater mixture of the air masses resulting in higher concentration levels for 7Be in surface air. The positive correlation between the monthly activity concentration of 7Be and the tropopause height (0.94, p < 0.0001, and also between 7Be concentration and the temperature T (°C (R = 0.97, p < 0.001, confirm that the increased rate of vertical transport within the troposphere, especially during warmer summer months, has as a result the descent to surface of air masses enriched in 7Be. However, the 7Be concentration levels in near surface air are not expected to respond immediately to the change of elevation of the tropopause. It was found that there's a time lag of ~ 3 days between the change in the daily surface concentrations of 7Be the change in the elevation of the tropopause.

  7. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air

    International Nuclear Information System (INIS)

    Zhang Yuzhong; Deng Shuxing; Liu Yanan; Shen Guofeng; Li Xiqing; Cao Jun; Wang Xilong; Reid, Brian; Tao Shu

    2011-01-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH LMW4 ) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH LMW4 within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. - Research highlights: → Design, field test and calibration of the novel passive air sampler, PAS-V-I. → Vertical concentration gradients of PAH LMW4 within a thin layer close to soil. → Comparison of results between PAS-V-I measurement and fugacity approach. → Potential application of PAS-V-I and further modifications. - A novel passive sampling device was developed and tested for measuring vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

  8. Monitoring of 7Be in surface air of varying PM10 concentrations

    International Nuclear Information System (INIS)

    Chao, J.H.; Liu, C.C.; Cho, I.C.; Niu, H.

    2014-01-01

    In this study, beryllium-7 ( 7 Be) concentrations of surface air were monitored throughout a span of 23 years (1992–2012) in the Taiwanese cities Yilan, Taipei, Taichung, and Kaohsiung. During this period, particulate matter (PM) concentrations, in terms of PM 10 , were collected monthly from the nearest air-quality pollutant monitoring stations and compared against 7 Be concentrations. Seasonal monsoons influenced 7 Be concentrations in all cities, resulting in high winter and low summer concentrations. In addition, the meteorological conditions caused seasonal PM 10 variations, yielding distinct patterns among the cities. There was no correlation between 7 Be and PM 10 in the case cities. The average annual 7 Be concentrations varied little among the cities, ranging from 2.9 to 3.5 mBq/m 3 , while the PM 10 concentrations varied significantly from 38 μg/m 3 in Yilan to 92 μg/m 3 in Kaohsiung depending on the degree of air pollution and meteorological conditions. The correlation between the 7 Be concentration and gross-beta activities (A β ) in air implied that the 7 Be was mainly attached to crustal PM and its concentration varied little among the cities, regardless of the increase in anthropogenic PM in air-polluted areas. - Highlights: • Both 7 Be and PM 10 concentrations were monitored in four Taiwanese cities from 1992 to 2012. • Seasonal variations of 7 Be and PM 10 were explained based on on meteorological and pollution conditions. • The annual concentrations of 7 Be varied little among the four cities even in high PM environment. • 7 Be is believed to mainly attach to natural PM in the cities that exhibited varying PM 10 concentrations

  9. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

    Science.gov (United States)

    Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu

    2011-03-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Analysis of 210Pb and 210Po concentrations in surface air by an α spectrometric method

    International Nuclear Information System (INIS)

    Winkler, R.; Hoetzl, H.; Chatterjee, B.

    1981-01-01

    A method is presented for determining the concentrations of airborne 210 Pb and 210 Po. The method employs α spectrometry to measure the count rate of 210 Po present on an electrostatic filter sample at two post-sampling times. The individual air concentrations of 210 Po and 210 Pb can be calculated from equations given. Sensitivity of the procedure is about 0.2 fCi 210 Po per m 3 of air. The method was applied to the study of long-term variations and frequency distributions of 210 Po and 210 Pb concentrations in surface air at a nonpolluted location about 10 km outside of Munich, F.R.G., from 1976 through 1979. During this period the average concentration levels were found to be 14.2 fCi 210 Pb per m 3 of air and 0.77 fCi 210 Po per m 3 of air, respectively. (author)

  11. Investigation of the fluctuation range of activity concentrations of natural radionuclides in surface air

    International Nuclear Information System (INIS)

    Winkler, R.; Hoetzl, H.

    1985-01-01

    Daily and seasonal concentration fluctuations of short-lived Rn fission products observed and the seasonal and long-term concentration fluctuations of Pb-210, Po-210, Ra-226, Ra-228, K-40 and Be-7 are discussed; the frequency distributions of the concentration values are illustrated. For a period of several years, the following mean values of activity concentrations were found (μBq/m 3 ): Pb-210: 600 Ra-226: 1.3 K-40: 13, Po-210: 33 Ra-228: 0.5 Be-7: 3700. In accordance with the origin from the soil, there is a significant correlation between the respective activity concentration and air-borne dust concentration for Ra-226, Ra-228, and K-40. The investigation revealed a most significant correlation between the Pb-210 concentration and the stagnancy index, the latter being a measure for the degree of blending of the surface layer of air. The resuspension factors found for Ra-226 and Pb-210 are discussed. (orig./HP) [de

  12. Plutonium isotopes in the surface air in Japan

    International Nuclear Information System (INIS)

    Hirose, K.; Sugimura, Y.

    1990-01-01

    Plutonium isotope concentrations in the surface air at Tsukuba, Japan are reported during the period from 1981 to the end of 1986. The 239,240 Pu concentration in the surface air, which showed a marked seasonal variation with a spring maximum and fall minimum, decreased until the end of 1985 according to the stratospheric residence time of 1.15 years. In May 1986, elevated 239,240 Pu concentrations with high 238 Pu/ 239,240 Pu activity ratios were observed. The serial trend of plutonium concentration in the surface air is similar to the concentrations of the Chernobyl-released radionuclides. These findings suggest that a significant part of the plutonium in the surface air in May 1986 was due to the Chernobyl fallout. (author) 15 refs.; 2 figs.; 3 tabs

  13. EML Surface Air Sampling Program, 1990--1993 data

    International Nuclear Information System (INIS)

    Larsen, R.J.; Sanderson, C.G.; Kada, J.

    1995-11-01

    Measurements of the concentrations of specific atmospheric radionuclides in air filter samples collected for the Environmental Measurements Laboratory's Surface Air Sampling Program (SASP) during 1990--1993, with the exception of April 1993, indicate that anthropogenic radionuclides, in both hemispheres, were at or below the lower limits of detection for the sampling and analytical techniques that were used to collect and measure them. The occasional detection of 137 Cs in some air filter samples may have resulted from resuspension of previously deposited debris. Following the April 6, 1993 accident and release of radionuclides into the atmosphere at a reprocessing plant in the Tomsk-7 military nuclear complex located 16 km north of the Siberian city of Tomsk, Russia, weekly air filter samples from Barrow, Alaska; Thule, Greenland and Moosonee, Canada were selected for special analyses. The naturally occurring radioisotopes that the authors measure, 7 Be and 210 Pb, continue to be detected in most air filter samples. Variations in the annual mean concentrations of 7 Be at many of the sites appear to result primarily from changes in the atmospheric production rate of this cosmogenic radionuclide. Short-term variations in the concentrations of 7 Be and 210 Pb continued to be observed at many sites at which weekly air filter samples were analyzed. The monthly gross gamma-ray activity and the monthly mean surface air concentrations of 7 Be, 95 Zr, 137 Cs, 144 Ce, and 210 Pb measured at sampling sites in SASP during 1990--1993 are presented. The weekly mean surface air concentrations of 7 Be, 95 Zr, 137 Cs, 144 Ce, and 210 Pb for samples collected during 1990--1993 are given for 17 sites

  14. Relation between 222Rn concentration in outdoor air and lower atmosphere

    International Nuclear Information System (INIS)

    Kataoka, Toshio; Mori, Tadashige; Yunoki, Eiji; Michihiro, Kenshuh; Sugiyama, Hirokazu; Shimizu, Mitsuo; Tsukamoto, Osamu; Sahashi, Ken.

    1991-01-01

    Using the height of the surface-based inversion layer obtained by the acoustic sounder returns and the variation of the 222 Rn concentration in the outdoor air during the presence of the surface-based inversion layer, the exhalation rate of 222 Rn is estimated to be 0.020 Bq·m -2 ·s -1 , which is observed elsewhere on land. Furthermore, the exposure rate at 1 m above the air-ground interface due to the short-lived 222 Rn daughters in the outdoor air during the presence of the surface-based inversion layer can be estimated using the height of the surface-based inversion layer and the 222 Rn concentrations in the outdoor air at the ground level before and after the onset of the surface-based inversion layer. From these treatment, it is clearly demonstrated that the monostatic acoustic sounder is useful as a supplementary method for a weather survey which forms a part of monitoring around the nuclear facilities. (author)

  15. EML Surface Air Sampling Program, 1990--1993 data

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.J.; Sanderson, C.G.; Kada, J.

    1995-11-01

    Measurements of the concentrations of specific atmospheric radionuclides in air filter samples collected for the Environmental Measurements Laboratory`s Surface Air Sampling Program (SASP) during 1990--1993, with the exception of April 1993, indicate that anthropogenic radionuclides, in both hemispheres, were at or below the lower limits of detection for the sampling and analytical techniques that were used to collect and measure them. The occasional detection of {sup 137}Cs in some air filter samples may have resulted from resuspension of previously deposited debris. Following the April 6, 1993 accident and release of radionuclides into the atmosphere at a reprocessing plant in the Tomsk-7 military nuclear complex located 16 km north of the Siberian city of Tomsk, Russia, weekly air filter samples from Barrow, Alaska; Thule, Greenland and Moosonee, Canada were selected for special analyses. The naturally occurring radioisotopes that the authors measure, {sup 7}Be and {sup 210}Pb, continue to be detected in most air filter samples. Variations in the annual mean concentrations of {sup 7}Be at many of the sites appear to result primarily from changes in the atmospheric production rate of this cosmogenic radionuclide. Short-term variations in the concentrations of {sup 7}Be and {sup 210}Pb continued to be observed at many sites at which weekly air filter samples were analyzed. The monthly gross gamma-ray activity and the monthly mean surface air concentrations of {sup 7}Be, {sup 95}Zr, {sup 137}Cs, {sup 144}Ce, and {sup 210}Pb measured at sampling sites in SASP during 1990--1993 are presented. The weekly mean surface air concentrations of {sup 7}Be, {sup 95}Zr, {sup 137}Cs, {sup 144}Ce, and {sup 210}Pb for samples collected during 1990--1993 are given for 17 sites.

  16. Tritiated water vapor in the surface air at Tokyo

    International Nuclear Information System (INIS)

    Inoue, Hisayuki; Katsuragi, Yukio; Shigehara, Koji

    1984-01-01

    Tritium concentration in water vapor in the air near the surface and in the precipitation at Tokyo was measured during the period from 9 August to 20 November in 1974. From August to the middle of October, tritium mixing ratios in the surface air had relatively higher values except those in air masses which were associated with a typhoon. The mixing ratios of tritium in the air decreased abruptly at the middle of October, which indicates the decrease of tritium influx from aloft. These data exhibit the salient feature that variations in tritium concentration in TR are linear to the reciprocal of the content of water vapor during each period. Tritium concentrations in vapor and rain water collected simultaneously show nearly equal values. One of the reasons for the good correlation of tritium concentration between falling drops and ambient air is considered to be the result of the rapid isotopic exchange. (author)

  17. Reformulated and alternative fuels: modeled impacts on regional air quality with special emphasis on surface ozone concentration.

    Science.gov (United States)

    Schell, Benedikt; Ackermann, Ingmar J; Hass, Heinz

    2002-07-15

    The comprehensive European Air Pollution and Dispersion model system was used to estimate the impacts of the usage of reformulated and alternative fuels on regional air quality with special emphasis on surface ozone concentrations. A severe western European summer smog episode in July 1994 has been used as a reference, and the model predictions have been evaluated for this episode. A forecast simulation for the year 2005 (TREND) has been performed, including the future emission development based on the current legislation and technologies available. The results of the scenario TREND are used as a baseline for the other 2005 fuel scenarios, including fuel reformulation, fuel sulfur content, and compressed natural gas (CNG) as an alternative fuel. Compared to the year 1994, significant reductions in episode peak ozone concentrations and ozone grid hours are predicted for the TREND scenario. These reductions are even more pronounced within the investigated alternative and reformulated fuel scenarios. Especially, low sulfur fuels are appropriate for an immediate improvement in air quality, because they effect the emissions of the whole fleet. Furthermore, the simulation results indicate that the introduction of CNG vehicles would also enhance air quality with respect to ozone.

  18. Variations of surface ozone concentration across the Klang Valley, Malaysia

    Science.gov (United States)

    Latif, Mohd Talib; Huey, Lim Shun; Juneng, Liew

    2012-12-01

    Hourly air quality data covering the period 2004-2008 was obtained from the Air Quality Division, the Department of Environment (DOE) through long-term monitoring by Alam Sekitar Sdn. Bhd. (ASMA) were analysed to investigate the variations of surface ozone (O3) in the Klang Valley, Malaysia. A total of nine monitoring stations were selected for analysis in this study and the results show that there are distinct seasonal patterns in the surface O3 across the Klang Valley. A high surface O3 concentration is usually observed between January and April, while a low surface O3 concentration is found between June and August. Analysis of daily variations in surface O3 and the precursors - NO, NO2, CO, NMHC and UVb, indicate that the surface O3 photochemistry in this study area exhibits a positive response to the intensity and wavelength in UVb while being influenced by the concentration of NOx, particularly through tritration processes. Although results from our study suggested that NMHCs may influence the maximum O3 concentration, further investigation is required. Wind direction during different monsoons was found to influence the concentration of O3 around the Klang Valley. HYSPLIT back trajectories (-72 h) were used to indicate the air-mass transport patterns on days with high concentrations of surface O3 in the study area. Results show that 47% of the high O3 days was associated with the localized circulation. The remaining 32% and 22% were associated with mid-range and long-range transport across the South China Sea from the northeast.

  19. Causes of seasonal variations of Cs-134/137 activity concentrations in surface air

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1993-01-01

    In winter months maxima of Cs-134/137 activity concentrations in air are observed at several locations in Europe. To clarify this phenomenon, from October 1991 to November 1992 we performed a program for aerosol collection on a short-term scale based on collecting intervals of 48-72 hours. The local meteorological parameters were determined simultaneously. Statistical analysis of these observations reveiled a highly significant positive correlation between Cs-137 activity concentration and the so-called 'Stagnationsindex'. Based on this relationship the seasonal variations of Cs-134/137 concentrations in ground-level air can be explained by atmospheric inversion conditions frequently occurring during fall- and wintermonths. (orig.) [de

  20. Activity concentrations of /sup 226/Ra, /sup 228/Ra, /sup 210/Pb, /sup 40/K and /sup 7/Be and their temporal variations in surface air

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Winkler, R.

    1987-01-01

    Activity concentrations of the long-lived natural radionuclides /sup 226/Ra, /sup 228/Ra, /sup 210/Pb, /sup 40/K and of /sup 7/Be in surface air were measured twice monthly at a semi-rural location 10 km north of Munich (FRG) for at least three years. For the time interval 1983-1985, all values were found to be distributed log-normally, with geometric means (in ..mu..Bq m-./sup 3/) of 1.2 for /sup 226/Ra, 0.5 for /sup 228/Ra, 580 for /sup 210/Pb, 12 for /sup 40/K and 3500 for /sup 7/Be. Reflecting their common origin, the activity concentrations of /sup 226/Ra and /sup 40/K are correlated with surface air dust concentrations (geometric mean 59 ..mu..g m/sup -3/). Seasonal variations of /sup 210/Pb and /sup 7/Be air activity concentrations are established for the time interval 1978-1985.. The contribution of local soil activity to the air activity concentrations of these radionuclides and of natural uranium is discussed. Resuspension factors are found to be of the order of 10/sup -9/ m/sup -1/.

  1. Permissible annual depositions and radionuclide concentrations in air

    International Nuclear Information System (INIS)

    Belyaev, V.A.; Golovko, M.Yu.

    1993-01-01

    It is established that it necessary to take into account the other ways of radionuclide intake apart from the inhalation one when determining the standards for radionuclide contamination of the atmospheric air. Whereby it is proposed to standardize annual depositions rather than permissible concentration in the atmospheric air for the ways related to radionuclide releases on the ground surface, which is explained by ambiguity of their dry deposition rate from the air. Formulae and results of calculation of standard characteristics are presented. The permissible radionuclide depositions, related to the intake through food chains are calculated with account for diet diversity, agroclimatic and phenological parameters in different regions of the country

  2. Uncertainties of retrospective radon concentration measurements by multilayer surface trap detector

    International Nuclear Information System (INIS)

    Bastrikov, V.; Kruzhalov, A.; Zhukovsky, M.

    2006-01-01

    The detector for retrospective radon exposure measurements is developed. The detector consists of the multilayer package of solid-state nuclear track detectors LR-115 type. Nitrocellulose films works both as α-particle detector and as absorber decreasing the energy of α-particles. The uncertainties of implanted 210 Pb measurements by two- and three-layer detectors are assessed in dependence on surface 210 Po activity and gross background activity of the glass. The generalized compartment behavior model of radon decay products in the room atmosphere was developed and verified. It is shown that the most influencing parameters on the value of conversion coefficient from 210 Po surface activity to average radon concentration are aerosol particles concentration, deposition velocity of unattached 218 Po and air exchange rate. It is demonstrated that with the use of additional information on surface to volume room ratio, air exchange rate and aerosol particles concentration the systematic bias of conversion coefficient between surface activity of 210 Po and average radon concentration can be decreased up to 30 %. (N.C.)

  3. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  4. Air plasma processing of poly(methyl methacrylate) micro-beads: Surface characterisations

    International Nuclear Information System (INIS)

    Liu Chaozong; Cui Naiyi; Osbeck, Susan; Liang He

    2012-01-01

    Highlights: ► PMMA micro-beads were processed using a rotary air plasma reactor. ► Surface chemistry and surface texture of PMMA micro-beads were characterised. ► Surface wettability was evaluated using “floating” water contact angle method. ► Surface oxidation and texture changes induced by air plasma attributed to the improvement of surface wettability. - Abstract: This paper reports the surface processing of poly(methyl methacrylate) (PMMA) micro-beads by using a rotary air plasma reactor, and its effects on surface properties. The surface properties, including surface wettability, surface chemistry and textures of the PMMA beads, were characterised. It was observed that the air plasma processing can improve the surface wettability of the PMMA microbeads significantly. A 15 min plasma processing can reduce the surface water contact angle of PMMA beads to about 50° from its original value of 80.3°. This was accompanied by about 8% increase in surface oxygen concentration as confirmed by XPS analysis. The optical profilometry examination revealed the air plasma processing resulted in a rougher surface that has a “delicate” surface texture. It is concluded that the surface chemistry and texture, induced by air plasma processing, co-contributed to the surface wettability improvement of PMMA micro-beads.

  5. Method and device for measuring the smoke concentration in air

    International Nuclear Information System (INIS)

    Rennemo, B.

    1994-01-01

    The patent deals with a method and a device for measuring the smoke concentration in air. In a smoke chamber are located two electrodes, connected to a voltage source for forming a circuit in which a DC current flows. A radioactive radiation source to ionize the air molecules is located in the vicinity of the smoke chamber, so that the number of ionized air molecules which are formed is dependent upon the radiation intensity of the ion source and the concentration of smoke particles in the smoke chamber. The charging voltage will further imply that a cloud of high ion concentration is built up close to the surface of the electrodes. The ion cloud will be discharged capacitively upon a plurality of short voltages pulses applied to the electrodes to thereby result in current pulses substantially greater than the DC current flowing through the chamber. 8 figs

  6. System for measuring of air concentration in air-steam mixture during the transients

    International Nuclear Information System (INIS)

    Gorbenko, Gennady A.; Gakal, Pavlo G.; Epifanov, Konstantin S.; Osokin, Gennady V.; Smirnov, Sergey V.

    2006-01-01

    Description of system for air concentration measuring in air-steam mixture during the transients is represented. Air concentration measuring is based on discrete sampling method. The measuring system consists of sampler, transport pipeline, distributor and six measuring vessels. From the sampler air-steam mixture comes to distributor through transport pipeline and fills consecutively the measuring vessels. The true air concentration in place of measurement was defined based on measured air concentration in samples taken from measuring vessels. For this purpose, the mathematical model of transients in measuring system was developed. Air concentration transient in air-steam mixture in place of measurement was described in mathematical model by air concentration time-dependent function. The function parameters were defined based on air concentration measured in samples taken from measuring vessels. Estimated error of air concentration identification was about 10%. Measuring system was used in experiments on EREC BKV-213 test facility intended for testing of VVER-440/V-213 reactor barbotage-vacuum system

  7. Sources of present Chernobyl-derived caesium concentrations in surface air and deposition samples

    International Nuclear Information System (INIS)

    Hoetzl, H.; Rosner, G.; Winkler, R.; Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg

    1992-01-01

    The sources of Chernobyl-derived caesium concentrations in air and deposition samples collected from mid-1986 to end-1990 at Munich- Neuherberg, Germany, were investigated. Local resuspension has been found to be the main source. By comparison with deposition data from other locations it is estimated that within a range from 20 Bq m -2 to 60 kBq m -2 of initially deposited 137 Cs activity ∼2% is re-deposited by the process of local resuspension in Austria, Germany, Japan and United Kingdom, while significantly higher total resuspension is to be expected for Denmark and Finland. Stratospheric contribution to present concentrations is shown to be negligible. This is confirmed by cross correlation analysis between the time series of 137 Cs in air and precipitation before and after the Chernobyl accident and the respective time series of cosmogenic 7 Be, which is an indicator of stratospheric input. Seasonal variations of caesium concentrations with maxima in winter were observed. (author). 32 refs.; 5 figs.; 1 tab

  8. Manganese concentrations in the air of the Montreal (Canada) subway in relation to surface automobile traffic density

    Energy Technology Data Exchange (ETDEWEB)

    Boudia, Nacera; Gareau, Lise; Zayed, Joseph [GRIS Interdisciplinary Health Research Group, University of Montreal (Canada); Halley, Renee [Transport Montreal Society (Canada); Kennedy, Greg [Department of Engineering Physics, Ecole Polytechnique de Montreal, Montreal (Canada); Lambert, Jean [Department of Social and Preventive Medicine, Faculty of Medicine, University of Montreal (Canada)

    2006-07-31

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic derivative of manganese (Mn), used since 1976 in Canadian gasoline as an octane enhancer. Its combustion leads to the emission of Mn particles. Several studies carried out by our research group have established a correlation between atmospheric Mn concentrations and automobile traffic density, suggesting that MMT in gasoline could play a significant role. This study aims to measure Mn concentrations in the air of the underground subway in Montreal (Canada) and to examine the relation with nearby surface automobile traffic density and, by extension, with the use of MMT in gasoline. Three subway stations were chosen for their location in different microenvironments with different traffic densities. Respirable (MnR<5 {mu}m) and total Mn (MnT) were sampled over two weeks, 5 days/week, 12 h/day. For the station located in the lower traffic density area, relatively low levels of MnR and MnT were found, with averages of 0.018 and 0.032 {mu}g/m{sup 3}, respectively. These concentrations are within the range of the background levels in Montreal. For the other two stations, the average concentrations of MnR were twice as high and exceeded the US EPA reference concentration of 0.05 {mu}g/m{sup 3}. Although there may be several sources of Mn from different components of the subway structure and vehicles, no correlation was found between subway traffic and atmospheric Mn in the subway. Since the air in the underground subway is pumped directly from outside without filtration, our findings strongly suggest that the combustion of MMT in automobiles is an important factor. (author)

  9. Removal of PCB from indoor air and surface materials by introduction of additional sorbing materials

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Lyng, Nadja; Kolarik, Barbara

    2017-01-01

    Alleviation of indoor PCB contamination is extremely expensive because PCB from old primary sources has redistributed to most other surfaces over time. This study investigates the introduction of new removable sorbing materials as a method instantly lowering the concentration of PCB in indoor air...... and slowly decontaminating old surface materials. In three bedrooms of a contaminated apartment respectively new painted gypsum boards, sheets of flexible polyurethane foam and activated carbon fabric were introduced. The PCB concentrations in room air were monitored before the intervention and several times...... during the following 10 months. The PCB concentrations in the old surface materials as well as the new materials were also measured. An immediate reduction of PCB concentration in indoor air, a gradual increase of PCB in new material and as well a gradual reduction in old surface materials were...

  10. Improving the indoor air quality by using a surface emissions trap

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.

  11. Sources of present Chernobyl-derived caesium concentrations in surface air and deposition samples

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Rosner, G.; Winkler, R. (Gesellschaft fuer Strahlen-und Umweltforschung Munich, Neuherberg (Germany). Forschungszentrum fuer Umwelt und Gesundheit Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany). Inst. fuer Strahlenschutz)

    1992-06-01

    The sources of Chernobyl-derived caesium concentrations in air and deposition samples collected from mid-1986 to end-1990 at Munich- Neuherberg, Germany, were investigated. Local resuspension has been found to be the main source. By comparison with deposition data from other locations it is estimated that within a range from 20 Bq m[sup -2] to 60 kBq m[sup -2] of initially deposited [sup 137]Cs activity [approx]2% is re-deposited by the process of local resuspension in Austria, Germany, Japan and United Kingdom, while significantly higher total resuspension is to be expected for Denmark and Finland. Stratospheric contribution to present concentrations is shown to be negligible. This is confirmed by cross correlation analysis between the time series of [sup 137]Cs in air and precipitation before and after the Chernobyl accident and the respective time series of cosmogenic [sup 7]Be, which is an indicator of stratospheric input. Seasonal variations of caesium concentrations with maxima in winter were observed. (author). 32 refs.; 5 figs.; 1 tab.

  12. Effects of Northern Hemisphere Sea Surface Temperature Changes on the Global Air Quality

    Science.gov (United States)

    Yi, K.; Liu, J.

    2017-12-01

    The roles of regional sea surface temperature (SST) variability on modulating the climate system and consequently the air quality are investigated using the Community Earth System Model (CESM). Idealized, spatially uniform SST anomalies of +/- 1 °C are superimposed onto the North Pacific, North Atlantic, and North Indian Oceans individually. Ignoring the response of natural emissions, our simulations suggest large seasonal and regional variability of surface O3 and PM2.5 concentrations in response to SST anomalies, especially during boreal summers. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv while increases the anthropogenic PM2.5 concentrations from 0.5 to 3 µg m-3. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological transport in response to SST changes is the key process causing air pollutant perturbations in most cases. During boreal summers, the increase in tropical SST over different ocean basins enhances deep convection, which significantly increases the air temperature over the upper troposphere and trigger large-scale subsidence over nearby and remote regions. These processes tend to increase tropospheric stability and suppress rainfall at lower mid-latitudes. Consequently, it reduces the vertical transport of O3 to the surface while facilitating the accumulation of PM2.5 concentrations over most regions. In addition, this regional SST warming may also considerably suppress intercontinental transport of air pollution as confirmed with idealized CO-like tracers. Our findings indicate a robust linkage between basin-scale SST variability and regional air quality, which can help local air quality management.

  13. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model

    International Nuclear Information System (INIS)

    Barnes, M.J.; Brade, T.K.; MacKenzie, A.R.; Whyatt, J.D.; Carruthers, D.J.; Stocker, J.; Cai, X.; Hewitt, C.N.

    2014-01-01

    Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. -- Highlights: • Spatially variable roughness improved performance of an operational model. • Scenario modelling explored effect of reduced roughness on air pollution. • Reducing surface roughness can increase modelled ground-level pollution. • Damped vertical mixing outweighs increased horizontal advection in model study. • Result should hold for any model with a land-surface coupling based on roughness. -- Spatially varying roughness improves model simulations of urban air pollutant dispersion. Reducing roughness does not always decrease ground-level pollution concentrations

  14. MLSOIL and DFSOIL - computer codes to estimate effective ground surface concentrations for dose computations

    International Nuclear Information System (INIS)

    Sjoreen, A.L.; Kocher, D.C.; Killough, G.G.; Miller, C.W.

    1984-11-01

    This report is a user's manual for MLSOIL (Multiple Layer SOIL model) and DFSOIL (Dose Factors for MLSOIL) and a documentation of the computational methods used in those two computer codes. MLSOIL calculates an effective ground surface concentration to be used in computations of external doses. This effective ground surface concentration is equal to (the computed dose in air from the concentration in the soil layers)/(the dose factor for computing dose in air from a plane). MLSOIL implements a five compartment linear-transfer model to calculate the concentrations of radionuclides in the soil following deposition on the ground surface from the atmosphere. The model considers leaching through the soil as well as radioactive decay and buildup. The element-specific transfer coefficients used in this model are a function of the k/sub d/ and environmental parameters. DFSOIL calculates the dose in air per unit concentration at 1 m above the ground from each of the five soil layers used in MLSOIL and the dose per unit concentration from an infinite plane source. MLSOIL and DFSOIL have been written to be part of the Computerized Radiological Risk Investigation System (CRRIS) which is designed for assessments of the health effects of airborne releases of radionuclides. 31 references, 3 figures, 4 tables

  15. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  16. Impact of indoor surface material on perceived air quality.

    Science.gov (United States)

    Senitkova, I

    2014-03-01

    The material combination impact on perceived indoor air quality for various surface interior materials is presented in this paper. The chemical analysis and sensory assessments identifies health adverse of indoor air pollutants (TVOCs). In this study, emissions and odors from different common indoor surface materials were investigated in glass test chamber under standardized conditions. Chemical measurements (TVOC concentration) and sensory assessments (odor intensity, air acceptability) were done after building materials exposure to standardized conditions. The results of the chemical and sensory assessment of individual materials and their combinations are compared and discussed within the paper. The using possibility of individual material surface sorption ability was investigated. The knowledge of targeted sorption effects can be used in the interior design phase. The results demonstrate the various sorption abilities of various indoor materials as well as the various sorption abilities of the same indoor material in various combinations. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Methanethiol Concentrations and Sea-Air Fluxes in the Subarctic NE Pacific Ocean

    Science.gov (United States)

    Kiene, R. P.; Williams, T. E.; Esson, K.; Tortell, P. D.; Dacey, J. W. H.

    2017-12-01

    Exchange of volatile organic sulfur from the ocean to the atmosphere impacts the global sulfur cycle and the climate system and is thought to occur mainly via the gas dimethylsulfide (DMS). DMS is produced during degradation of the abundant phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) but bacteria can also convert dissolved DMSP into the sulfur gas methanethiol (MeSH). MeSH has been difficult to measure in seawater because of its high chemical and biological reactivity and, thus, information on MeSH concentrations, distribution and sea-air fluxes is limited. We measured MeSH in the northeast subarctic Pacific Ocean in July 2016, along transects with strong phytoplankton abundance gradients. Water samples obtained with Niskin bottles were analyzed for MeSH by purge-and-trap gas chromatography. Depth profiles showed that MeSH concentrations were high near the surface and declined with depth. Surface waters (5 m depth) had an average MeSH concentration of 0.75 nM with concentrations reaching up to 3nM. MeSH concentrations were correlated (r = 0.47) with microbial turnover of dissolved DMSP which ranged up to 236 nM per day. MeSH was also correlated with total DMSP (r = 0.93) and dissolved DMS (r = 0.63), supporting the conclusion that DMSP was a major precursor of MeSH. Surface water MeSH:DMS concentration ratios averaged 0.19 and ranged up to 0.50 indicating that MeSH was a significant fraction of the volatile sulfur pool in surface waters. Sea-air fluxes of MeSH averaged 15% of the combined DMS+MeSH flux, therefore MeSH contributed an important fraction of the sulfur emitted to the atmosphere from the subarctic NE Pacific Ocean.

  18. The surface activity of purified ocular mucin at the air-liquid interface and interactions with meibomian lipids.

    Science.gov (United States)

    Millar, Thomas J; Tragoulias, Sophia T; Anderton, Philip J; Ball, Malcolm S; Miano, Fausto; Dennis, Gary R; Mudgil, Poonam

    2006-01-01

    Ocular mucins are thought to contribute to the stability of the tear film by reducing surface tension. The purpose of this study was to compare the effect of different mucins and hyaluronic acid (HA) alone and mixed with meibomian lipids on the surface pressure at an air-liquid interface. A Langmuir trough and Wilhelmy balance were used to measure and compare the surface activity of bovine submaxillary gland mucin (BSM), purified BSM, purified bovine ocular mucin and HA, and mixtures of these with meibomian lipids, phosphatidylcholine, and phosphatidylglycerol. Their appearance at the surface of an air-buffer interface was examined using epifluorescence microscopy. Purified ocular mucin had no surface activity even at concentrations that were 100 times more than normally occur in tears. By contrast, commercial BSM caused changes to surface pressure that were concentration dependent. The surface pressure-area profiles showed surface activity with maximum surface pressures of 12.3-22.5 mN/m depending on the concentration. Purified BSM showed no surface activity at low concentrations, whereas higher concentrations reached a maximum surface pressure of 25 mN/m. HA showed no surface activity, at low or high concentrations. Epifluorescence showed that the mucins were located at the air-buffer interface and changed the appearance of lipid films. Purified bovine ocular mucin and HA have no surface activity. However, despite having no surface activity in their own right, ocular mucins are likely to be present at the surface of the tear film, where they cause an increase in surface pressure by causing a compression of the lipids (a reorganization of the lipids) and alter the viscoelastic properties at the surface.

  19. Evaluation of the salt deposition on the canister surface of concrete cask. Part 2. Measurement test of the salt concentration in air and salt deposition in the field

    International Nuclear Information System (INIS)

    Wataru, Masumi

    2012-01-01

    Concerning the storage facility of spent nuclear fuel using the concrete cask, there is an issue of stress corrosion cracking(SCC). The cooling air goes up along the canister surface in the concrete cask. To evaluate the initiation of SCC or rusting, it is important to verify the estimation method of the sea salt deposition on the metal canister surface transported by cooling air including sea salt particles. To measure the deposition rate, field tests were performed in Choushi test center. In the field test, it was found that the amount of sea salt deposition was very low because the density of the atmospheric sea salt concentration was very low compared with the laboratory test. Using relation between laboratory data and filed data, it is possible to evaluate the salt deposition rate on the canister surface. We also measured atmospheric sea salt concentration in Choushi test center to make the environment condition clear and compared the measurement data with the calculation data to verify the evaluation model. We are developing the automatic measuring device for atmospheric sea salt concentration. To check its performance, we are measuring atmospheric sea salt concentration in Yokosuka Area of CRIEPI and it was confirmed that the device works for one month automatically and fulfills its specifications. (author)

  20. Weekly variability of surface CO concentrations in Moscow

    Science.gov (United States)

    Sitnov, S. A.; Adiks, T. G.

    2014-03-01

    Based on observations of carbon monoxide (CO) concentrations at three Mosekomonitoring stations, we have analyzed the weekly cycle of CO in the surface air of Moscow in 2004-2007. At all stations the minimum long-term mean daily CO values are observed on Sunday. The weekly cycle of CO more clearly manifests itself at the center of Moscow and becomes less clear closer to the outskirts. We have analyzed the reproducibility of the weekly cycle of CO from one year to another, the seasonal dependence, its specific features at different times of day, and the changes in the diurnal cycle of CO during the week. The factors responsible for specific features of the evolution of surface CO concentrations at different observation stations have been analyzed. The empirical probability density functions of CO concentrations on weekdays and at week- end are presented. The regularity of the occurrence of the weekend effect in CO has been investigated and the possible reasons for breaks in weekly cycles have been analyzed. The Kruskal-Wallis test was used to study the statistical significance of intraweek differences in surface CO contents.

  1. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  2. Significant OH production under surface cleaning and air cleaning conditions: Impact on indoor air quality.

    Science.gov (United States)

    Carslaw, N; Fletcher, L; Heard, D; Ingham, T; Walker, H

    2017-11-01

    We report measurements of hydroxyl (OH) and hydroperoxy (HO 2 ) radicals made by laser-induced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available "air cleaning" device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5×10 5  molecule cm -3 ), whilst that of HO 2 was 1.3×10 7  molecule cm -3 . These concentrations increased to ~4×10 6 and 4×10 8  molecule cm -3 , respectively during desk cleaning. During operation of the air cleaning device, OH and HO 2 concentrations reached ~2×10 7 and ~6×10 8  molecule cm -3 respectively. The potential of these OH concentrations to initiate chemical processing is explored using a detailed chemical model for indoor air (the INDCM). The model can reproduce the measured OH and HO 2 concentrations to within 50% and often within a few % and demonstrates that the resulting secondary chemistry varies with the cleaning activity. Whilst terpene reaction products dominate the product composition following surface cleaning, those from aromatics and other VOCs are much more important during the use of the air cleaning device. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Retrieve Aerosol Concentration Based On Surface Model and Distribution of Concentration of PM2.5 ——A Case Study of Beijing

    Science.gov (United States)

    Cui, H.

    2017-12-01

    As China's economy continues to grow, urbanization continues to advance, along with growth in all areas to pollutant emissions in the air industry, air quality also continued to deteriorate. Aerosol concentrations as a measure of air quality of the most important part of are more and more people's attention. Traditional monitoring stations measuring aerosol concentration method is accurate, but time-consuming and can't be done simultaneously measure a large area, can only rely on data from several monitoring sites to predict the concentration of the panorama. Remote Sensing Technology retrieves aerosol concentrations being by virtue of their efficient, fast advantages gradually into sight. In this paper, by the method of surface model to start with the physical processes of atmospheric transport, innovative aerosol concentration coefficient proposed to replace the traditional aerosol concentrations, pushed to a set of retrieval of aerosol concentration coefficient method, enabling fast and efficient Get accurate air pollution target area. At the same paper also monitoring data for PM2.5 in Beijing were analyzed from different angles, from the perspective of the data summarized in Beijing PM2.5 concentration of time, space, geographical distribution and concentration of PM2.5 and explored the relationship between aerosol concentration coefficient and concentration of PM2.5.

  4. Quantification of air plasma chemistry for surface disinfection

    International Nuclear Information System (INIS)

    Pavlovich, Matthew J; Clark, Douglas S; Graves, David B

    2014-01-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O 3 ) and nitrogen oxides (NO and NO 2 , or NO x ) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NO x mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications. (paper)

  5. Quantification of air plasma chemistry for surface disinfection

    Science.gov (United States)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  6. Air pollutant concentrations near three Texas roadways, Part I: Ultrafine particles

    Science.gov (United States)

    Zhu, Yifang; Pudota, Jayanth; Collins, Donald; Allen, David; Clements, Andrea; DenBleyker, Allison; Fraser, Matt; Jia, Yuling; McDonald-Buller, Elena; Michel, Edward

    Vehicular emitted air pollutant concentrations were studied near three types of roadways in Austin, Texas: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway dominated by truck traffic. Air pollutants examined include carbon monoxide (CO), oxides of nitrogen (NO x), and carbonyl species in the gas-phase. In the particle phase, ultrafine particle (UFP) concentrations (diameter road were found to be the most important factors determining UFP concentrations near the roadways. Since wind directions were not consistent during the sampling periods, distances along wind trajectories from the roadway to the sampling points were used to study the decay characteristics of UFPs. Under perpendicular wind conditions, for all studied roadway types, particle number concentrations increased dramatically moving from the upwind side to the downwind side. The elevated particle number concentrations decay exponentially with increasing distances from the roadway with sharp concentration gradients observed within 100-150 m, similar to previously reported studies. A single exponential decay curve was found to fit the data collected from all three roadways very well under perpendicular wind conditions. No consistent pattern was observed for UFPs under parallel wind conditions. However, regardless of wind conditions, particle concentrations returned to background levels within a few hundred meters of the roadway. Within measured UFP size ranges, smaller particles (6-25 nm) decayed faster than larger ones (100-300 nm). Similar decay rates were observed among UFP number, surface, and volume.

  7. Statistics of surface divergence and their relation to air-water gas transfer velocity

    Science.gov (United States)

    Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.

    2012-05-01

    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.

  8. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    Science.gov (United States)

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of fresh air ventilation on indoor radon concentration

    International Nuclear Information System (INIS)

    Sun Hao; Wu Jianhua; Fu Shi

    2012-01-01

    The radon concentration of laboratory for radon simulation (LRS) was measured by the RAD7 radon monitor, and the effect of the different fresh air ventilations on indoor radon concentration was studied and analyzed. The indoor radon concentration of LRS can be accumulated up to 2000 Bq/m 3 and the average radon exhalation rate of the LRS is 14.5 Bq · m -2 . h -1 . Furthermore, when the fresh air enters into the LRS continuously, the indoor radon concentration decreases exponentially with the increase of time. The equilibrium radon concentration and equilibrium time of LRS decrease exponentially with the increase of the rate of fresh air ventilation. In addition, the indoor radon concentration increases by accumulation with the decrease of the rate of fresh air ventilation. (authors)

  10. Continual monitoring of radon decay products concentration in indoor and outdoor air

    International Nuclear Information System (INIS)

    Petruf, P.; Holy, K.; Stanys, T.

    1998-01-01

    The goal of this work was the development of the method and construction and testing of measurement device for continual monitoring of radon daughters concentrations in the indoor and outdoor environment with regard to make possible to determine very low activities in the outdoor air (below % Bq/m 3 ). In this method air sample is drawn through the appropriate filter material. Radon and thoron daughters both attached and unattached on aerosols particles are collected on the filter surface and then the filter activity is counted. The silicon surface barrier detector with the active area of 200 mm 2 in monitor was used. The Millipore AW19-type filter was chosen and sampling rate of 30 l/min for collecting of the air samples. The determination of the individual activity concentrations in three-count method is based on the solution of the simultaneous equations describing the number of atoms of measured nuclides on the filter during and after sampling. The monitor was tested in three different environments (the average values of the activity concentrations of radon and its decay products in Bq/m 3 are given): in the basement of the building: 61.4 ± 5.0 of 222 Rn, 29.5 ± 2.8 of 218 Po, 14.1 ± 1.8 of 214 Pb and 12.1 ± 1.6 of 214 Bi; in the room on the second floor of the same building:22.2 ± 7.9 of 222 Rn, 7.3 ± 2.8 of 218 Po, 4.6 ± 1.9 of 214 Pb and 2.6 ± 1.2 of 214 Bi ; in the outdoor air in front of the building: 4.1 ± 2.7 of 222 Rn, 2.3 ± 0.9 of 218 Po, 1.5 ± 0.8 of 214 Pb and 1.4 ± 0.6 of 214 Bi. The results show a good agreement with expectations of the activity concentrations in three different environments. The monitor enables to determine low activity concentrations in the outdoor with an acceptable precision during one hour counting. The monitor can be used for the research of the correlation between the atmospheric stability and activity concentrations of radon decay products

  11. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  12. Surface air concentration and deposition of lead-210 in French Guiana: two years of continuous monitoring

    International Nuclear Information System (INIS)

    Melieres, Marie-Antoinette; Pourchet, Michel; Richard, Sandrine

    2003-01-01

    To make up for the lack of data on 210 Pb aerosol deposition in tropical regions and to use this radionuclide as an aerosol tracer,a monitoring station was run for two years at Petit-Saut, French Guiana. Lead-210 concentration in air at ground level was monitored continuously together with atmospheric total deposition. The air concentration has a mean value of 0.23±0.02 mBq m -3 during both wet and dry seasons, and it is only weakly affected by the precipitation mechanism. This result was unexpected in a wet tropical region, with a high precipitation rate. In contrast, deposition clearly correlates with precipitation for low/moderate rainfall ( -2 y -1 . This provides a procedure fo estimating this mean flux at other sites in French Guiana

  13. The Assessment of Air Pollutant Concentrations and Air Quality Index in Shiraz during 2011-2013

    Directory of Open Access Journals (Sweden)

    Monireh Majlesi Nasr

    2016-06-01

    Full Text Available Background: Exposure to air pollutants can cause many problems, including the health effects in humans and animals. The aim of this study was to assay the air quality in the Shiraz city during 2011-2013. Methods: In this descriptive-analytical study, the air pollutant data during the study period were taken from Air Quality Co. for two main stations i.e. Darvazeh Kazeroun and Imam Hossein and then were analysed to determine air quality index. Results: The maximum (0.018 ppm and minimum (0.015 ppm annual concentration of SO2 were determined in 2011 and 2013, respectively. The maximum NO2 concentration was measured in summer 2011 with a value of 0.025 ppm. Regarding ozone, the highest average concentration was measured in the summer season of 2013 with the concentration of 0.068 ppm. In terms of air quality, the worst situation was experienced in 2011, which about 31 percent of the days have been marked as unhealthy, but during the last years of the study, the air quality get better. Conclusion: In general, the results of the study showed that SO2 concentration has been decreased during recent years due to strengthen of air pollution regulation but NO2 concentration was increased because the number of gas fuel automobile was also increased. With regard to air quality, it has an improving trend during the study period.

  14. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    Science.gov (United States)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-12-01

    Increases in surface ozone (O3) and fine particulate matter (≤ 2.5μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-hour daily maximum O3 in a year) have increased by 8±0.16 μg/m3 and 30±0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5 (O3) to change by +7.5±0.19 μg/m3 (+25±0.30 ppbv), +0.4±0.17 μg/m3 (+0.5±0.28 ppbv), and -0.02±0.01 μg/m3 (+4.3±0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air

  15. Traceable measurements of the activity concentration in air

    International Nuclear Information System (INIS)

    Paul, Annette; Honig, Anja; Forkel-Wirth, Doris; Mueller, Andre; Marcos, Alicia

    2002-01-01

    The nuclear reactions induced by high energetic protons in heavy targets such as UC 2 and ThC cause a particular, complex radiation protection task at facilities like ISOLDE: the measurement of a mixture of different isotopes of the radioactive noble gas radon and the radon progenies in air. The knowledge of their respective activity concentration is fundamental for exposure assessments. Due to the complex mixture of activity concentrations in air, its precise determination is quite difficult. Therefore, a new procedure for taking reference samples was developed and implemented for the traceable measurement of the activity concentration of radioactive ions (e.g., radon progenies) in air. This technique is combined by measuring α-particles with a multi-wire ionization chamber for the parallel on-line determination of the activity concentration of different radon isotopes

  16. Impact of regional ventilation changes on surface particulate matter concentrations in South Korea

    Science.gov (United States)

    Kim, H. C.; Stein, A. F.; Chai, T.; Ngan, F.; Kim, B. U.; Jin, C. S.; Hong, S. Y.; Park, R.; Son, S. W.; Bae, C.; Bae, M.; Song, C. K.; Kim, S.

    2017-12-01

    The recent increase in surface particulate matter (PM) concentrations in South Korea is intriguing due to its disagreement with current intensive emission reduction efforts. The long-term trend of surface PM concentrations in South Korea declined in the 2000s, but since 2012 its concentrations have tended to increase, resulting in frequent severe haze events in the region. This study demonstrates that the interannual variation of surface PM concentrations in South Korea is not only affected by changes in local or regional emission sources, but also closely linked with the interannual variations in regional ventilation. Using EPA Community Multiscale Air Quality modeling system, a 12-year (2004-2015) regional air quality simulation was conducted to assess the impact of the meteorological conditions under constant anthropogenic emissions. In addition, NOAA HYSPLIT dispersion model was utilized to estimate the strength of regional ventilation that dissipates local pollutions. Simulated PM concentrations show a strong negative correlation (i.e. R=-0.86) with regional wind speed, implying that reduced regional ventilation is likely associated with more stagnant conditions that cause severe pollutant episodes in South Korea. We conclude that the current PM concentration trend in South Korea is a combination of long-term decline by emission control efforts and short-term fluctuations in regional wind speed interannual variability. When the meteorology-driven variations are removed, PM concentrations in South Korea have declined continuously even after 2012, with -1.45±0.12, -1.41±0.16, and -1.09±0.16 mg/m3 per year in Seoul, the Seoul Metropolitan Area, and South Korea, respectively.

  17. Traceable measurements of the activity concentration in air

    CERN Document Server

    Paul, A; Forkel-Wirth, Doris; Müller, A; Marcos, A

    2002-01-01

    The nuclear reactions induced by high energetic protons in heavy targets such as UC/sub 2/ and ThC cause a particular, complex radiation protection task at facilities like ISOLDE: the measurement of a mixture of different isotopes of the radioactive noble gas radon and the radon progenies in air. The knowledge of their respective activity concentration is fundamental for exposure assessments. Due to the complex mixture of activity concentrations in air, its precise determination is quite difficult. Therefore, a new procedure for taking reference samples was developed and implemented for the traceable measurement of the activity concentration of radioactive ions (e.g., radon progenies) in air. This technique is combined by measuring alpha -particles with a multi-wire ionization chamber for the parallel on-line determination of the activity concentration of different radon isotopes. (10 refs).

  18. Concentrations of selected contaminants in cabin air of airbus aircrafts.

    Science.gov (United States)

    Dechow, M; Sohn, H; Steinhanses, J

    1997-07-01

    The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.

  19. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  20. Effect of source and environmental factors on Rn-222 air concentration

    International Nuclear Information System (INIS)

    Mamoon, A.

    2005-01-01

    Rn-222(radon) air concentration depends on several factors. Some of the factors are source related and other factors are environmentally related. Because high levels of radon concentrations in air have potential health effects, it is important to study the impact of the various factors affecting radon air concentration. Laboratory scale investigations of the various factors affecting radon air concentration were carried out under controlled conditions that allow variation of the various variables

  1. Surface modification on a glass surface with a combination technique of sol–gel and air brushing processes

    KAUST Repository

    Tsai, Meng-Yu; Hsu, Chin-Chi; Chen, Ping-Hei; Lin, Chao-Sung; Chen, Alexander

    2011-01-01

    This study fabricated the large area and optically transparent superhydrophobic silica based films on glass surface with optimized hardness. A silane coupling agent, tetraethoxysilane (TEOS), effectively bonds silica particles onto the glass substrate. Desired surface roughness was obtained by adjusting nano silica particles concentration of the precursors prepared by the sol-gel process. Silica suspension was coated onto the glass substrate by the air brushing methods. This method can deposit a uniform, transparent coating on the glass substrate efficiently. Diluting the precursor by adding ethanol or a mixture of D.I. water and ethanol further improved the transmittance and superhydrophobicity efficiency. The results showed that as the silica particle concentration and the thickness of the coating were increased, the surface roughness was enhanced. Rougher surface displayed a higher superhydrophobicity and lower transmittance. Therefore, the concentration of silica particle, volume of coatings, and the ratio of ethanol and D.I. water are of great importance to deposit a transparent, superhydrophobic coating on glass. © 2011 Elsevier B.V. All rights reserved.

  2. Surface modification on a glass surface with a combination technique of sol–gel and air brushing processes

    KAUST Repository

    Tsai, Meng-Yu

    2011-08-01

    This study fabricated the large area and optically transparent superhydrophobic silica based films on glass surface with optimized hardness. A silane coupling agent, tetraethoxysilane (TEOS), effectively bonds silica particles onto the glass substrate. Desired surface roughness was obtained by adjusting nano silica particles concentration of the precursors prepared by the sol-gel process. Silica suspension was coated onto the glass substrate by the air brushing methods. This method can deposit a uniform, transparent coating on the glass substrate efficiently. Diluting the precursor by adding ethanol or a mixture of D.I. water and ethanol further improved the transmittance and superhydrophobicity efficiency. The results showed that as the silica particle concentration and the thickness of the coating were increased, the surface roughness was enhanced. Rougher surface displayed a higher superhydrophobicity and lower transmittance. Therefore, the concentration of silica particle, volume of coatings, and the ratio of ethanol and D.I. water are of great importance to deposit a transparent, superhydrophobic coating on glass. © 2011 Elsevier B.V. All rights reserved.

  3. Concentration of the 241Pu in air samples from Chernobyl at Belgrade site estimated by a 241Am in growth method

    International Nuclear Information System (INIS)

    Vukanac, I.; Novkovic, D.; Djurasevic, M.; Obradovic, Z.; Kandi, A.

    2006-01-01

    The surface air samples collected in the first half of May 1986 at Vinca- Belgrade site were prepared and measured at the end of the 1991 and beginning of the 1992. year. Activity concentrations of the 137 Cs immediately after the Chernobyl accident were determined by means of gamma spectrometry, while the air activity concentration of 238 Pu and 239,240 Pu were determined by alpha spectrometry, after the plutonium radiochemical separation. The 236 Pu was used as a tracer. The same samples were remeasured after 13 years, during the 2004. The surface air activity concentrations of 241 Pu were estimated by a 241 Am in-growth method. The built up activities of 236 Pu progenies were determined from the recorded spectra and also calculated using the Bateman equations. The 241 Am activity in the remeasured samples, obtained by complex spectral analysis was confirmed by gamma spectrometry. The 241 Pu activity concentration in measured air samples ranged from 240 μBq/m3 to 7800 μBq/m3. The average activity concentration ratio 241 Pu/ 239,240 Pu originated from Chernobyl accident was approximately 100. (authors)

  4. Surface air concentration and deposition of lead-210 in French Guiana: two years of continuous monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Melieres, Marie-Antoinette E-mail: melieres@glaciog.ujf-grenoble.fr; Pourchet, Michel; Richard, Sandrine

    2003-07-01

    To make up for the lack of data on {sup 210}Pb aerosol deposition in tropical regions and to use this radionuclide as an aerosol tracer,a monitoring station was run for two years at Petit-Saut, French Guiana. Lead-210 concentration in air at ground level was monitored continuously together with atmospheric total deposition. The air concentration has a mean value of 0.23{+-}0.02 mBq m{sup -3} during both wet and dry seasons, and it is only weakly affected by the precipitation mechanism. This result was unexpected in a wet tropical region, with a high precipitation rate. In contrast, deposition clearly correlates with precipitation for low/moderate rainfall (<15 cm per 15-day), while this correlation is masked by strong fluctuations at high rainfall. The estimated mean annual deposition over the last ten years is 163{+-}75 Bq m{sup -2} y{sup -1}. This provides a procedure fo estimating this mean flux at other sites in French Guiana.

  5. Relationship between indoor radon concentrations and air exchange rate

    International Nuclear Information System (INIS)

    Wang Jingshu; Liu Yuyu; Yao Xiaohua; Meng Jianfeng; Zhang Yongyi; Wang Xiaohe; Yu Xiufen.

    1995-01-01

    The indoor concentration of radon and the air exchange rate were simultaneously measured in four empty rooms, made of brick and cement, which were located in different floors of dwelling houses in Taiyuan, Shanxi, China. SF 6 tracer gas decay method was used to measure the air exchange rate. Indoor radon was collected with the dimembrane method. When the ventilation rate increased, the concentration of radon dropped rapidly. Regression analysis indicated that the indoor concentration of radon was equal to the outdoor level of radon when the air exchange rate was greater than 3-4. SF 6 decay method was an effective and convenient method for measuring the air exchange rate. There was no marked difference in measurements obtained in different locations of a room. (N.K.)

  6. Fractional kalman filter to estimate the concentration of air pollution

    Science.gov (United States)

    Vita Oktaviana, Yessy; Apriliani, Erna; Khusnul Arif, Didik

    2018-04-01

    Air pollution problem gives important effect in quality environment and quality of human’s life. Air pollution can be caused by nature sources or human activities. Pollutant for example Ozone, a harmful gas formed by NOx and volatile organic compounds (VOCs) emitted from various sources. The air pollution problem can be modeled by TAPM-CTM (The Air Pollution Model with Chemical Transport Model). The model shows concentration of pollutant in the air. Therefore, it is important to estimate concentration of air pollutant. Estimation method can be used for forecast pollutant concentration in future and keep stability of air quality. In this research, an algorithm is developed, based on Fractional Kalman Filter to solve the model of air pollution’s problem. The model will be discretized first and then it will be estimated by the method. The result shows that estimation of Fractional Kalman Filter has better accuracy than estimation of Kalman Filter. The accuracy was tested by applying RMSE (Root Mean Square Error).

  7. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean

    Science.gov (United States)

    Lana, A.; Bell, T. G.; Simó, R.; Vallina, S. M.; Ballabrera-Poy, J.; Kettle, A. J.; Dachs, J.; Bopp, L.; Saltzman, E. S.; Stefels, J.; Johnson, J. E.; Liss, P. S.

    2011-03-01

    The potentially significant role of the biogenic trace gas dimethylsulfide (DMS) in determining the Earth's radiation budget makes it necessary to accurately reproduce seawater DMS distribution and quantify its global flux across the sea/air interface. Following a threefold increase of data (from 15,000 to over 47,000) in the global surface ocean DMS database over the last decade, new global monthly climatologies of surface ocean DMS concentration and sea-to-air emission flux are presented as updates of those constructed 10 years ago. Interpolation/extrapolation techniques were applied to project the discrete concentration data onto a first guess field based on Longhurst's biogeographic provinces. Further objective analysis allowed us to obtain the final monthly maps. The new climatology projects DMS concentrations typically in the range of 1-7 nM, with higher levels occurring in the high latitudes, and with a general trend toward increasing concentration in summer. The increased size and distribution of the observations in the DMS database have produced in the new climatology substantially lower DMS concentrations in the polar latitudes and generally higher DMS concentrations in regions that were severely undersampled 10 years ago, such as the southern Indian Ocean. Using the new DMS concentration climatology in conjunction with state-of-the-art parameterizations for the sea/air gas transfer velocity and climatological wind fields, we estimate that 28.1 (17.6-34.4) Tg of sulfur are transferred from the oceans into the atmosphere annually in the form of DMS. This represents a global emission increase of 17% with respect to the equivalent calculation using the previous climatology. This new DMS climatology represents a valuable tool for atmospheric chemistry, climate, and Earth System models.

  8. Interaction Mechanisms between Air Bubble and Molybdenite Surface: Impact of Solution Salinity and Polymer Adsorption.

    Science.gov (United States)

    Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo

    2017-03-07

    The surface characteristics of molybdenite (MoS 2 ) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer

  9. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  10. The composition of pollutted air in Moscow based on surface observations

    Science.gov (United States)

    Pankratova, Natalia; Elansky, Nikolai; Skorokhod, Andrey

    2013-04-01

    Moscow is the one of the biggest world megacities. Population, industry, transport are strong sources of air pollution. This pollution influences on the air quality in the city and in the neighbor regions due to spreading by the wind. Here we present an analysis of variations of atmospheric compounds in Moscow since 2002 until the present in its dependence on different atmospheric characteristics, particularly cyclonic and anticyclonic conditions, heat waves and anthropogenic factors. The following variables are considered: NO2, NO, CO, CO2, O3, SO2, NMHC. The monitoring site is located at Moscow State University meteorological observatory on the South-West of Moscow. All observations are provided by A.M. Obukhov Institute of Atmospheric Physics RAS. Due to these continuous measurements, the typical (ore basic) level of pollution as well as the extreme cases have been studied. The temporal variability of the atmospheric compounds, and the chemical interaction of ozone and nitrogen oxides are investigated. High concentrations of nitrogen oxides are observed throughout the year. During some months the 90th NO2 percentile exceeds 60 ppb, NO - 80 ppb. Based on surface observations, we show that extremes of pollutant concentrations correspond with anticyclonic conditions and anthropogenic processes. These often increase the impact on the weather. These situations correspond with the anomalous cold winter in 2006 and heat wave in 2002. In these periods, concentrations of air pollutions exceed MAC, but the ozone concentration usually decreases due to interaction with NOx. Only two times, ozone concentration exceeded MAC - the heat waves 2002 and 2010. Also in the study we obtain the logarithmic dependence between ozone mix ratio and NO2/NO, which can be used for prediction of the surface ozone concentrations in Moscow: [O3] = 12.22Ln([NO2]/[NO]) + 15.3 However, this equation is not possible to use in smog conditions. From 29 July to 15 August Moscow was in a dense smoke

  11. Survey on radon concentration of civil air defense shelter in Hengyang

    International Nuclear Information System (INIS)

    Tang Quan; Ma Xiao

    2011-01-01

    In this paper, the radon concentration of civil air defense shelter was surveyed in Hengyang area, where there is higher background of radon concentration. If civil air defense shelter is not pressure-tight, the average radon concentration is about 55.9 -167.3 Bq/m 3 , lower than the intervened quantity: 200 Bq/m 3 , which is given by the international commission on radiological protection (ICRP). Maybe radon protection is not needed with the ventilation of civil air defense shelter like that. The radon concentration of airtight civil air defense shelter change along with the season, which is lower in spring and higher in autumn. The results can be a reference for using civil air defense shelter during the time of peace or war. (authors)

  12. Measurement of radon concentration in air employing Lucas chamber

    International Nuclear Information System (INIS)

    Machaj, B.

    1997-01-01

    The results of investigations aimed to determine the main features of radon concentration gauge in air, employing 0.17 L Lucas chamber, and air sample forced by an air pump are presented. For two hour sampling and measuring cycle time the dynamic error in the worst case (first read out) equals 5 % relative to the step jump of radon concentration. This is due to the increase of activity of the decay products in the chamber. It was observed that the short lived radon decay products (Po-218, Pb-214, Bi-214) are depositing on the walls of the chamber and they are not removed by flushing the chamber with air. (author)

  13. Measurement of the concentration of radon in the air

    International Nuclear Information System (INIS)

    Aten, J.B.Th.; Bierhuizen, H.W.J.; Hoek, L.P. van; Ros, D.; Weber, J.

    1975-01-01

    A simple transportable air monitoring apparatus was developed for controlling the radon contamination of air in laboratory rooms. It is not highly accurate but is sufficient to register the order of magnitude of the radon concentration. Air is pumped through a filter for one or two hours and an alpha decay curve of the dust on the filter is determined. Scintillation counting forty minutes after sampling indicates the radon activity. The calibration method of measuring the equilibrium of daughter product concentrations is discussed extensively

  14. Variability of air ion concentrations in urban Paris

    Science.gov (United States)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of

  15. Measurement of radon progeny concentrations in air by alpha-particle spectrometey

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1975-07-01

    A technique is presented for measuring air concentrations of the short-lived progeny of radon-222 by the use of alpha spectrometry. In this technique, the concentration of RaA, RaB, and RaC are calculated from one integral count of the RaA and two integral counts of the RaC' alpha-particle activity collected on a filter with an air sampling device. The influence of air sampling and counting intervals of time on the accuracy of the calculated concentrations is discussed in the report. A computer program is presented for use with this technique. It is written in the BASIC language. The program will calculate the air concentrations of RaA, RaB, and RaC, and will estimate the accuracy in these calculated concentrations. (U.S.)

  16. Comparison of observed and predicted Kr-85 air concentrations

    International Nuclear Information System (INIS)

    Yildiran, M.; Miller, C.W.

    1984-01-01

    A computer code, ANEMOS has been written to estimate concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operation Sources. This code uses a modified Gaussian plume equation. Output from ANEMOS includes annual-average air concentrations and ground deposition rates of dispersed radionuclides and daughters. To use the environmental transport model properly, some estimate of the models predictive accuracy must be obtained. To validate the ANEMOS model, one year of weekly average Kr-85 concentrations observed at 13 stations located 28 to 144 km distant from continuous point source at the Savannah River Plant have been used. There was a general tendency for the model to underpredict the observed air concentrations slightly. Pearson's correlation between pairs of logarithms of observed and predicted annual-average values was r=0.84. The monthly results tend to show more scatter than do either the seasonal or the annual comparisons. (orig.)

  17. Measurements of the spatial distribution of tritium in air above a chronically contaminated surface

    International Nuclear Information System (INIS)

    Workman, W.J.G.; Davis, P.A.; Wood, M.J.; Barry, P.J.

    1993-01-01

    Tritium in air (HTO) concentrations were measured over a 13 month period above a surface that is chronically contaminated by tritium-bearing groundwater from a waste management area. The measurements were made using passive diffusion samplers, which were sited at six locations (about 100 m apart) at 0.15, 0.9, and 1.8 m above ground level. The diffusion samplers were compact, sampled at a known rate, and required no external power source. They are ideal for remote locations and require a minimum of effort to collect and analyze the data. HTO-in-air concentration peaked in the summer at 500-1500 Bq.m -3 and decreased in the winter to 1-120 Bq.m -3 . In general, concentration decreased with height above ground level, implying that HTO is being lost from the surface to the atmosphere. The flux of tritium to the atmosphere must, therefore, be taken into account to estimate the tritium mass balance for a contaminated area. (Author) 3 figs., 5 tabs., 10 refs

  18. Polycyclic aromatic hydrocarbons in ambient air, surface soil and wheat grain near a large steel-smelting manufacturer in northern China.

    Science.gov (United States)

    Liu, Weijian; Wang, Yilong; Chen, Yuanchen; Tao, Shu; Liu, Wenxin

    2017-07-01

    The total concentrations and component profiles of polycyclic aromatic hydrocarbons (PAHs) in ambient air, surface soil and wheat grain collected from wheat fields near a large steel-smelting manufacturer in Northern China were determined. Based on the specific isomeric ratios of paired species in ambient air, principle component analysis and multivariate linear regression, the main emission source of local PAHs was identified as a mixture of industrial and domestic coal combustion, biomass burning and traffic exhaust. The total organic carbon (TOC) fraction was considerably correlated with the total and individual PAH concentrations in surface soil. The total concentrations of PAHs in wheat grain were relatively low, with dominant low molecular weight constituents, and the compositional profile was more similar to that in ambient air than in topsoil. Combined with more significant results from partial correlation and linear regression models, the contribution from air PAHs to grain PAHs may be greater than that from soil PAHs. Copyright © 2016. Published by Elsevier B.V.

  19. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Energy Technology Data Exchange (ETDEWEB)

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  20. Comparison of observed and predicted Kr-85 air concentrations

    International Nuclear Information System (INIS)

    Yildiran, M.; Miller, C.W.

    1984-01-01

    A computer code, ANEMOS has been written to estimate concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operation Sources. This code uses a modified Gaussian plum equation. Output from ANEMOS includes annual-average air concentrations and ground deposition rates of dispersed radionuclides and daughters. To use the environmental transport model properly, some estimate of the models predictive accuracy must be obtained. To validate the ANEMOS model, one year of weekly average Kr-85 concentrations observed at 13 stations located 28 to 144 km distant from continuous point source at the Savannah River Plant (SRP), Aiken, South Carolina, have been used. There was a general tendency for the model to underpredict the observed air concentrations slightly. Pearsons's correlation between pairs of logarithms of observed and predicted annual-average values was r = 0.84. The monthly results tend to show more scatter than do either the seasonal or the annual comparisons. 18 references, 3 figures, 3 tables

  1. The Los Angeles TEAM Study: personal exposures, indoor-outdoor air concentrations, and breath concentrations of 25 volatile organic compounds.

    Science.gov (United States)

    Wallace, L; Nelson, W; Ziegenfus, R; Pellizzari, E; Michael, L; Whitmore, R; Zelon, H; Hartwell, T; Perritt, R; Westerdahl, D

    1991-04-01

    The U.S. Environmental Protection Agency and the California Air Resources Board studied the exposures of 51 residents of Los Angeles, California, to 25 volatile organic chemicals (VOCs) in air and drinking water in 1987. A major goal of the study was to measure personal, indoor, and outdoor air concentrations, and breath concentrations of VOCs in persons living in households that had previously been measured in 1984. Other goals were to confirm the marked day-night and seasonal differences observed in 1984; to determine room-to-room variability within homes; to determine source emission rates by measuring air exchange rates in each home; and to extend the coverage of chemicals by employing additional sampling and analysis methods. A total of 51 homes were visited in February of 1987, and 43 of these were revisited in July of 1987. The results confirmed previous TEAM Study findings of higher personal and indoor air concentrations than outdoor concentrations of all prevalent chemicals (except carbon tetrachloride); higher personal, indoor, and outdoor air concentrations in winter than in summer; and (in winter only) higher outdoor concentrations at night than in the daytime. New findings included the following: (1) room-to-room variability of 12-hour average concentrations was very small, indicating that a single monitor may be adequate for estimating indoor concentrations over this time span; (2) "whole-house" source emission rates were relatively constant during both seasons, with higher rates for odorous chemicals such as p-dichlorobenzene and limonene (often used in room air fresheners) than for other classes of chemicals; (3) breath concentrations measured during morning and evening were similar for most participants, suggesting the suitability of breath measurements for estimating exposure in the home; (4) limited data obtained on two additional chemicals-toluene and methylene chloride-indicated that both were prevalent at fairly high concentrations and that

  2. YOGYAKARTA AIR BORNE QUALITY BASED ON THE LEAD PARTICULATE CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zaenal Abidin

    2010-06-01

    Full Text Available Analysis of Yogyakarta air quality based on concentration of lead particulate using Fast Neutron Activation Analysis (FNAA method has been done. The sample was taken 3 times in 16 strategic locations of Yogyakarta city using Hi-Vol air sampler that equipped with cellulose filter TFA 2133. The sample irradiated for 30 min with 14 MeV fast neutron and then counted using gamma spectroscopy (AccuSpec. The result indicated that concentration of Pb-208 along Diponegoro street up to Janti street respectively are minimally (0.689 - 0.775 mg/m3, and maximally:  (1.598 - 1.785 mg/m3. According to DIY governor decree No. 153/2002 about the limited toxicity ambient on Yogyakarta area it is concentration that Pb. The concentration of Pb-208 are still below the permitted value of 2 mg/m3, but in certain areas, the Pb concentration is almost equal to upper limit of permitted concentration of Pb.   Keywords: air borne, neutron generator, FNAA

  3. Transport processes associated with the initial elevated concentrations of Chernobyl radioactivity in surface air in the United States

    International Nuclear Information System (INIS)

    Larsen, R.J.; Haagenson, P.L.; Reiss, N.M.

    1989-01-01

    Elevated concentrations of radioactivity from the Chernobyl accident were encountered in the surface air over the United States along the east coast and in the north-west on 9 and 10 May 1986. The nearly simultaneous arrival of radioactive debris at widely separated locations resulted from different paths being taken by the debris released at different times during the course of the accident. Debris released during the explosion at the Chernobyl reactor was transported across the Arctic, within the lower troposphere, and zonally across Asia and the North Pacific Ocean, within the mid-troposphere. This debris descended into the planetary boundary layer along the east coast of the US. The descent was associated with a quasi-stationary cyclone located over the western North Atlantic Ocean. Debris that had a different composition of radioactivity was released from the damaged reactor during the week immediately following the initial explosion. This debris was then transported zonally across Asia and the North Pacific Ocean within the planetary boundary layer and lower troposphere and was swept into the north-western US. (author)

  4. Simulation of trace metals and PAH atmospheric pollution over Greater Paris: Concentrations and deposition on urban surfaces

    Science.gov (United States)

    Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B.

    2017-10-01

    Urban areas can be subject not only to poor air quality, but also to contamination of other environmental media by air pollutants. Here, we address the potential transfer of selected air pollutants (two metals and three PAH) to urban surfaces. To that end, we simulate meteorology and air pollution from Europe to a Paris suburban neighborhood, using a four-level one-way nesting approach. The meteorological and air quality simulations use urban canopy sub-models in order to better represent the effect of the urban morphology on the air flow, atmospheric dispersion, and deposition of air pollutants to urban surfaces. This modeling approach allows us to distinguish air pollutant deposition among various urban surfaces (roofs, roads, and walls). Meteorological model performance is satisfactory, showing improved results compared to earlier simulations, although precipitation amounts are underestimated. Concentration simulation results are also satisfactory for both metals, with a fractional bias Paris region. The model simulation results suggest that both wet and dry deposition processes need to be considered when estimating the transfer of air pollutants to other environmental media. Dry deposition fluxes to various urban surfaces are mostly uniform for PAH, which are entirely present in fine particles. However, there is significantly less wall deposition compared to deposition to roofs and roads for trace metals, due to their coarse fraction. Meteorology, particle size distribution, and urban morphology are all important factors affecting air pollutant deposition. Future work should focus on the collection of data suitable to evaluate the performance of atmospheric models for both wet and dry deposition with fine spatial resolution.

  5. COMPLEX OF NUMERICAL MODELS FOR COMPUTATION OF AIR ION CONCENTRATION IN PREMISES

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-04-01

    Full Text Available Purpose. The article highlights the question about creation the complex numerical models in order to calculate the ions concentration fields in premises of various purpose and in work areas. Developed complex should take into account the main physical factors influencing the formation of the concentration field of ions, that is, aerodynamics of air jets in the room, presence of furniture, equipment, placement of ventilation holes, ventilation mode, location of ionization sources, transfer of ions under the electric field effect, other factors, determining the intensity and shape of the field of concentration of ions. In addition, complex of numerical models has to ensure conducting of the express calculation of the ions concentration in the premises, allowing quick sorting of possible variants and enabling «enlarged» evaluation of air ions concentration in the premises. Methodology. The complex numerical models to calculate air ion regime in the premises is developed. CFD numerical model is based on the use of aerodynamics, electrostatics and mass transfer equations, and takes into account the effect of air flows caused by the ventilation operation, diffusion, electric field effects, as well as the interaction of different polarities ions with each other and with the dust particles. The proposed balance model for computation of air ion regime indoors allows operative calculating the ions concentration field considering pulsed operation of the ionizer. Findings. The calculated data are received, on the basis of which one can estimate the ions concentration anywhere in the premises with artificial air ionization. An example of calculating the negative ions concentration on the basis of the CFD numerical model in the premises with reengineering transformations is given. On the basis of the developed balance model the air ions concentration in the room volume was calculated. Originality. Results of the air ion regime computation in premise, which

  6. Geostatistical integration and uncertainty in pollutant concentration surface under preferential sampling

    Directory of Open Access Journals (Sweden)

    Laura Grisotto

    2016-04-01

    Full Text Available In this paper the focus is on environmental statistics, with the aim of estimating the concentration surface and related uncertainty of an air pollutant. We used air quality data recorded by a network of monitoring stations within a Bayesian framework to overcome difficulties in accounting for prediction uncertainty and to integrate information provided by deterministic models based on emissions meteorology and chemico-physical characteristics of the atmosphere. Several authors have proposed such integration, but all the proposed approaches rely on representativeness and completeness of existing air pollution monitoring networks. We considered the situation in which the spatial process of interest and the sampling locations are not independent. This is known in the literature as the preferential sampling problem, which if ignored in the analysis, can bias geostatistical inferences. We developed a Bayesian geostatistical model to account for preferential sampling with the main interest in statistical integration and uncertainty. We used PM10 data arising from the air quality network of the Environmental Protection Agency of Lombardy Region (Italy and numerical outputs from the deterministic model. We specified an inhomogeneous Poisson process for the sampling locations intensities and a shared spatial random component model for the dependence between the spatial location of monitors and the pollution surface. We found greater predicted standard deviation differences in areas not properly covered by the air quality network. In conclusion, in this context inferences on prediction uncertainty may be misleading when geostatistical modelling does not take into account preferential sampling.

  7. OPERATIONAL LIMITATIONS FOR DEMOLITION OF A HIGHLY ALPHA CONTAMINATED BUILDING MODLES VERSUS MEASURED AIR & SURFACE ACTIVITY CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    LLOYD, E.R.

    2006-11-02

    The demolition of a facility historically used for processing and handling transuranic materials is considered. Residual alpha emitting radionuclide contamination poses an exposure hazard if released to the local environment during the demolition. The process of planning for the demolition of this highly alpha contaminated building, 232-Z, included a predemolition modeling analysis of potential exposures. Estimated emission rates were used as input to an air dispersion model to estimate frequencies of occurrence of peak air and surface exposures. Postdemolition modeling was also conducted, based on the actual demolition schedule and conditions. The modeling results indicated that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. During the demolition of 232-Z, airborne radiation and surface contamination were monitored. The resultant non-detect monitoring results indicate a significant level of conservatism in the modeled results. This comparison supports the use of more realistic assumption in the estimating emission rates. The resultant reduction in modeled levels of potential exposures has significant implications in terms of the projected costs of demolition of such structures.

  8. A statistical evaluation of asbestos air concentrations

    International Nuclear Information System (INIS)

    Lange, J.H.

    1999-01-01

    Both area and personal air samples collected during an asbestos abatement project were matched and statistically analysed. Among the many parameters studied were fibre concentrations and their variability. Mean values for area and personal samples were 0.005 and 0.024 f cm - - 3 of air, respectively. Summary values for area and personal samples suggest that exposures are low with no single exposure value exceeding the current OSHA TWA value of 0.1 f cm -3 of air. Within- and between-worker analysis suggests that these data are homogeneous. Comparison of within- and between-worker values suggests that the exposure source and variability for abatement are more related to the process than individual practices. This supports the importance of control measures for abatement. Study results also suggest that area and personal samples are not statistically related, that is, there is no association observed for these two sampling methods when data are analysed by correlation or regression analysis. Personal samples were statistically higher in concentration than area samples. Area sampling cannot be used as a surrogate exposure for asbestos abatement workers. (author)

  9. Develop generic equations to determine radon daughters concentrations in air

    International Nuclear Information System (INIS)

    Shweikani, R.; Jerby, B.

    2011-06-01

    Measurements of radon daughter concentrations in air are very important to determine the human dose from background radiation. Therefore, many studies tried to find measurements methods depending on many specific parameters such as measurement time, air pumping period and sample volume. In this study a general equations to determine radon daughter's concentrations in air was found using direct samples. The Equations results were closed to the results obtained from other well known methods. Many measurements with different places and various conditions were performed; the results showed that the new equations are able to be used with an error less than 10%, The relative error can be reduced by increasing the pumping rate or measuring high concentration cases.(author)

  10. Concentrations of chromium, manganese, and lead in air and in avian eggs

    International Nuclear Information System (INIS)

    Hui, C.A.

    2002-01-01

    Embryo exposure was not directly related to tropospheric levels of chromium, manganese or lead. - The expansion of urbanization introduces air pollution to wildlife areas. Some metal contaminants occurring in concentrations too small to have any measurable impact on adult birds may seriously affect embryos that are more sensitive to contaminants than the adult. Chromium, manganese, and lead are toxic and can be passed from the hen to the egg. This study relates the concentrations of these metals in eggs to their concentrations in air in three cities. Rock dove eggs were sampled and air pollution records were examined in the California cities of Riverside, Los Angeles, and San Francisco. The eggs from San Francisco did not differ from those of Los Angeles in lead concentration but the air did differ. The eggs collected in Los Angeles in 1998 had concentrations of chromium greater than in those from Riverside and from Los Angeles 1999 but the air had concentrations of chromium that did not differ among those three collections. Concentrations of manganese did not differ among the eggs but did differ among the air samples of the three cities. Exposures of embryos to chromium and manganese in this study were not at levels warranting concern. Although the concentration at which lead in eggs impairs avian health is not established, the highest concentrations found in this study exceed estimated safe concentrations. There is no indication that embryo exposure is directly related to atmospheric levels of these metals in the cities of this study

  11. Concentration ratio of radon progeny in air

    International Nuclear Information System (INIS)

    Kobayashi, Tsuneo

    2000-01-01

    Investigations have been made on the concentration ratio of radon progeny in air. Data have been acquired intermittently since 1988 using alpha spectroscopic method around the author's office that is located in the northeastern part of Japan. Clarifying the behavior of radon progeny is an issue of wide importance to radiation protection, predicting earthquakes, etc. Let Rabc=ECRn(RaA)/{ECRn(RaB) + ECRn(RaC)}; the concentration ratio, Rabc, is relevant to the stability of the air. Statistical and time series analyses indicated several interesting results. To examine the log-normal distribution, Lilliefors test was made for logarithm of outdoor data every one year. Rabc passed the test 6 times for 9 years, while Radon progeny passed 8 times. Outdoor data indicated that the value of Rabc was lower in the morning, in other world, the air was more stable in the morning than in the afternoon. To see the seasonal variation, one-way layout analysis was made for four groups of data, i.e., spring (March to May), summer (June to August), autumn (September to November), and winter (December to February). Rabc indicated significantly higher level in spring and winter, in other word, air was stable in summer and autumn. Time series analysis was made for various variables; power spectra were estimated with autoregressive model that is equivalent to maximum entropy method. Power spectrum for Rabc was most similar to that of wind speed. One-year period, that is always remarkable for radon progeny, was not significant for Rabc. Three- to nine-day periods were often seen for Rabc, radon progeny, wind speed, and atmospheric pressure. These several-day periods are probably attributed to the passage of air masses. Twenty-day to thirty-day peak may be attributed to meteorological phenomena corresponding to the rotation period of the sun. Temperature indicated no significant periodicity except overwhelming one-year period. Wind speed is well known to affect the radon progeny concentration

  12. Estimation of air quality by air pollution indices

    International Nuclear Information System (INIS)

    Liblik, Valdo; Kundel, Helmut

    1999-01-01

    A novel system for estimating the quality of atmospheric air in the over-ground air layer with the help of air pollution indices was developed. The method is based on a comparison of measured or calculated maximum short-term concentrations and average annual concentrations of pollutants with maximum permissible concentrations (with regard to human beings and vegetation). Special air quality estimation scales for residential areas and natural systems are presented. On the basis of the concentration of the substance under study zones of very high, high, rather high, moderate, low and very low air pollution were distinguished in the over-ground layer of the atmosphere. These are projected to land surface for landscape zonation. The application of the system of indices is demonstrated in the analysis of air quality for the towns of Kohtla-Jarve, Johvi and Kivioli (in 1997-1998). A comparative analysis of the air pollution zones distinguished on the basis of emissions and data from bio monitoring yielded satisfactory results. The system of air pollution indices developed enables to process the results of air monitoring in case of pollution fields of complicated composition so that the result for estimating the quality of ambient air in a residential area is easily understood by inhabitants and interpretable with the help of a special scale; analyse temporal changes in the quality of the air in towns, villages and other residential areas and use the results as basis for developing measures for reducing the pollution of ambient air; carry out zonation of large territories on the basis of air pollution levels (spatial air pollution zones are projected on the ground surface) and estimate air quality in places where air monitoring is lacking to forecast the possible effect of air pollution on natural systems (author)

  13. The concentration of fission products and other radionuclides in the surface air between 1971 and 1973

    International Nuclear Information System (INIS)

    Kolb, W.

    1974-01-01

    The aerosols collected with high-efficiency portable dust samplers in Brunswick and Tromsoe are analyzed in a Ge(Li) spectrometer. The mean monthly activity concentrations are given for a number of cosmogenic and induced radionuclides from nuclear weapons tests as well as for some cosmogenic and natural radionuclides. The annual curve exhibits marked seasonal variations with a pronounced peak - caused by an influx from the stratospheric reservoir - in late spring for all radionuclides studied except for 35 S, 210 Pb and 226 Ra. This peak decreases continuously from 1971 - 1973 for the fission products and induced radionuclides which for the most part had been produced in Chinese nuclear weapons tests. In contrast to 7 Be and 22 Na, the behaviour of 35 S suggests that it is partly anthropogenic in origin. The activity concentration of 226 Ra in air has been measured directly for the first time. The findings are discussed and finally compared with the maximum permissible concentration for the population. (orig./AK) [de

  14. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

    Science.gov (United States)

    Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

    2017-12-01

    Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

  15. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    Science.gov (United States)

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  16. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  17. The surface emissions trap: a new approach in indoor air purification.

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2012-11-01

    A new device for stopping or reducing potentially irritating or harmful emissions from surfaces indoors is described. The device is a surface emissions trap prototype and consists of an adsorbent sheet with a semipermeable barrier surrounded by two thin nonwoven layers. The trap may be applied directly at the source of the emissions e.g. at moisture-affected floors and walls, surfaces contaminated by chemical spills etc. This results in an immediate stop or reduction of the emitting pollutants. The trap has a very low water vapor resistance thus allowing drying of wet surfaces. In laboratory experiments typically 98% reduction of air concentrations of volatile organic compounds and a virtually total reduction of mold particle-associated mycotoxins was observed. The surface emissions trap may represent a convenient and efficient way of restoring indoor environments polluted by microbial and other moisture-associated emissions. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. A statistical evaluation of asbestos air concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Lange, J.H. [Envirosafe Training and Consultants, Pittsburgh, PA (United States)

    1999-07-01

    Both area and personal air samples collected during an asbestos abatement project were matched and statistically analysed. Among the many parameters studied were fibre concentrations and their variability. Mean values for area and personal samples were 0.005 and 0.024 f cm{sup -}-{sup 3} of air, respectively. Summary values for area and personal samples suggest that exposures are low with no single exposure value exceeding the current OSHA TWA value of 0.1 f cm{sup -3} of air. Within- and between-worker analysis suggests that these data are homogeneous. Comparison of within- and between-worker values suggests that the exposure source and variability for abatement are more related to the process than individual practices. This supports the importance of control measures for abatement. Study results also suggest that area and personal samples are not statistically related, that is, there is no association observed for these two sampling methods when data are analysed by correlation or regression analysis. Personal samples were statistically higher in concentration than area samples. Area sampling cannot be used as a surrogate exposure for asbestos abatement workers. (author)

  19. Radon concentration, absorbed dose rate in air and concentration of natural radionuclides in soil in the Osaka district of Japan

    International Nuclear Information System (INIS)

    Megumi, K.; Matsunami, T.; Ishiyama, T.; Abe, M.; Kimura, S.; Yamazaki, K.; Tsujimoto, T.

    1992-01-01

    Radon concentrations in outdoor air at 18 sites in the Osaka district, in the central part of Japan's main island, were measured with electrostatic integrating radon monitors which were developed by Y Ikebe et al of the Osaka survey centre as part of a nationwide survey of radon indoors and outdoors in Japan conducted by the National Institute of Radiological Science. The mean radon concentration in outdoor air during 2-month periods was measured over a period of a year and a half. In addition, the absorbed dose rate in air and the concentration of natural radionuclides in soil were measured at 40 sites in Osaka Prefecture which is located in the central part of the Osaka district using thermoluminescence dosemeters and with gamma ray spectrometry, respectively. Radon concentration in outdoor air showed a seasonal pattern, reaching its maximum during the winter and its minimum during the summer, but this variation was not significant at the coastal sites. It was concluded that this variation is correlated with a seasonal wind which blows from the continental interior to the ocean in winter and in the opposite direction in summer, as well as with geographical factors. Radon concentration in outdoor air in the Osaka district ranged from 0.6 to 17.9 Bq.m -3 and mean annual radon concentration in outdoor air at the 18 sites ranged from 2.7 to 6.9 Bq.m -3 . It was discovered that radon concentration in outdoor air decreased with wind speed in both winter and summer. The absorbed dose rate in air ranged from 66 to 114 nGy.h -1 , and the concentration of 226 Ra in soil ranged from 20 to 60 Bq.kg -1 respectively. (author)

  20. Measurements of radon activity concentrations in air at Niska spa

    International Nuclear Information System (INIS)

    Adrovic, F.; Vuckovic, B.; Ninkovic, M.

    2004-01-01

    Radon activity concentrations in air were measured in the recreational-tourist center of Niska Banja. Alpha Guard PQ 2000/ MC50 instrumentation (Genitron instruments, Frankfurt) was used. The observed indoor radon concentrations in the air of the Radon Hotel pool lay within the range of 0.980-1.908 kBq/m 3 and were directly dependent on the exhalation of radon from thermomineral waters. Radon concentrations were also measured outdoors, at locations for capping thermomineral water, as well as at locations for draining used water from the Radon Hotel pool. Outdoor radon concentrations as high as over 500 Bq/m 3 were observed. Gamma dose rates were measured in parallel and found to lie within the range of 72-420 nSv/h. The gamma doses correlated well with the observed radon levels. The largest gamma dose rates in air were measured in the pool of Radon Hotel and at the site where this thermomineral water is being capped

  1. Radionuclides and trace metals in surface air. Appendix C

    International Nuclear Information System (INIS)

    Feely, H.W.; Toonkel, L.E.; Larsen, R.J.

    1981-01-01

    Since January 1963, the Environmental Measurements Laboratory (EML), formerly the Health and Safety Laboratory (HASL), has been conducting the Surface Air Sampling Program. This study is a direct outgrowth of a program initiated by the US Naval Research Laboratory (NRL) in 1957 and continued through 1962. The primary objective of this program is to study the spatial and temporal distribution of specific natural and man-made radioisotopes, and of trace metals in the surface air. Other special studies of surface air contamination have been performed during the course of the program

  2. Low concentrations of persistent organic pollutants (POPs) in air at Cape Verde.

    Science.gov (United States)

    Nøst, Therese Haugdahl; Halse, Anne Karine; Schlabach, Martin; Bäcklund, Are; Eckhardt, Sabine; Breivik, Knut

    2018-01-15

    Ambient air is a core medium for monitoring of persistent organic pollutants (POPs) under the Stockholm Convention and is used in studies of global transports of POPs and their atmospheric sources and source regions. Still, data based on active air sampling remain scarce in many regions. The primary objectives of this study were to (i) monitor concentrations of selected POPs in air outside West Africa, and (ii) to evaluate potential atmospheric processes and source regions affecting measured concentrations. For this purpose, an active high-volume air sampler was installed on the Cape Verde Atmospheric Observatory at Cape Verde outside the coast of West Africa. Sampling commenced in May 2012 and 43 samples (24h sampling) were collected until June 2013. The samples were analyzed for selected polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB) and chlordanes. The concentrations of these POPs at Cape Verde were generally low and comparable to remote sites in the Arctic for several compounds. Seasonal trends varied between compounds and concentrations exhibited strong temperature dependence for chlordanes. Our results indicate net volatilization from the Atlantic Ocean north of Cape Verde as sources of these POPs. Air mass back trajectories demonstrated that air masses measured at Cape Verde were generally transported from the Atlantic Ocean or the North African continent. Overall, the low concentrations in air at Cape Verde were likely explained by absence of major emissions in areas from which the air masses originated combined with depletion during long-range atmospheric transport due to enhanced degradation under tropical conditions (high temperatures and concentrations of hydroxyl radicals). Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Methods for estimating on-site ambient air concentrations at disposal sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1987-01-01

    Currently, Gaussian type dispersion modeling and point source approximation are combined to estimate the ambient air concentrations of pollutants dispersed downwind of an areawide emission source, using the approach of virtual point source approximation. This Gaussian dispersion modeling becomes less accurate as the receptor comes closer to the source, and becomes inapplicable for the estimation of on-site ambient air concentrations at disposal sites. Partial differential equations are solved with appropriate boundary conditions for use in estimating the on-site concentrations in the ambient air impacted by emissions from an area source such as land disposal sites. Two variations of solution techniques are presented, and their predictions are compared

  4. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  5. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  6. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

    Directory of Open Access Journals (Sweden)

    Y. Fang

    2013-02-01

    Full Text Available Increases in surface ozone (O3 and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5 are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860 to present (2000 and the global present-day (2000 premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4 concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year have increased by 8 ± 0.16 μg m−3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS, climate (CLIM and CH4 concentrations (TCH4. EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O3 to change by +7.5 ± 0.19 μg m−3 (+25 ± 0.30 ppbv, +0.4 ± 0.17 μg m−3 (+0.5 ± 0.28 ppbv, and 0.04 ± 0.24 μg m−3 (+4.3 ± 0.33 ppbv, respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2–1.8 million cardiopulmonary mortalities and 95 (95% CI, 44–144 thousand lung cancer

  7. The effect of environmental parameters to dust concentration in air-conditioned space

    Science.gov (United States)

    Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.

    2017-08-01

    Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.

  8. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada

    Science.gov (United States)

    Shoeib, Mahiba; Ahrens, Lutz; Jantunen, Liisa; Harner, Tom

    2014-12-01

    Concentrations of organobromine (BFRs), organochlorine (CFRs) and organophosphate esters flame retardants and plasticizers (PFRs) in air were monitored for over one year at an urban site in Toronto, Canada during 2010-2011. The mean value for polybrominated diphenyl ethers (BDEs) (gas + particle phase) was 38 pg/m3 with BDE-47 and BDE-99 as the dominant congeners. The mean concentrations in air for ∑non-BDE (BFRs and CFRs), was 9.6 pg/m3 - about four times lower than the BDEs. The brominated FRs: TBP-AE, BTBPE, EH-TBB, BEH-TEBP and the chlorinated syn- and anti-DP were detected frequently, ranging from 87% to 96%. Highest concentrations in air among all flame retardant classes were observed for the Σ-PFRs. The yearly mean concentration in air for ΣPFRs was 2643 pg/m3 with detection frequency higher than 80%. Except for TBP-AE and b- DBE-DBCH, non-BDEs (BFRs, CFRs and PFRs) were mainly associated with the particle phase. BDE concentrations in air were positively correlated with temperature indicating that volatilization from local sources was an important factor controlling levels in air. This correlation did not hold for most BFRs, CFRs and PFRs which were mainly on particles. For these compounds, air concentrations in Toronto are likely related to emissions from point sources and advective inputs. This study highlights the importance of urban air monitoring for FRs. Urban air can be considered a sentinel for detecting changes in the use and application of FRs in commercial products.

  9. Intercomparison of different instruments for measuring radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, Michikuni; Iida, Takao

    1990-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap method, a flow-type ionization chamber (pulse-counting method), a two-filter method, an electrostatic collection method and a passive integration radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq·m -3 (in outdoor air) to 110 Bq·m -3 (in indoor air). The results obtained by these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling method was about 52% of radon concentration. (author)

  10. Intercomparison of different instruments that measure radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, M.; Iida, T.; Ikebe, Y.

    1987-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap technique, a flow-type ionization chamber (pulse-counting technique), a two-filter method, an electrostatic collection method and a passive integrating radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq/m/sup 3/ (in outdoor air) to 110 Bq/m/sup 3/ (in indoor air). The results obtained from these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling technique was about 52% of radon concentrations

  11. Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Adyati Pradini Yudison

    2015-07-01

    Full Text Available People living near busy roads are potentially exposed to traffic-induced air pollutants. The pollutants may intrude into the indoor environment, causing health risks to the occupants. Prediction of pollutant exposure therefore is of great importance for impact assessment and policy making related to environmentally sustainable transport. This study involved the selection of spatial interpolation methods that can be used for prediction of indoor air quality based on outdoor pollutant mapping without indoor measurement data. The research was undertaken in the densely populated area of Karees, Bandung, Indonesia. The air pollutant NO2 was monitored in this area as a preliminary study. Nitrogen dioxide concentrations were measured by passive diffusion tube. Outdoor NO2 concentrations were measured at 94 locations, consisting of 30 roadside and 64 outdoor locations. Residential indoor NO2 concentrations were measured at 64 locations. To obtain a spatially continuous air quality map, the spatial interpolation methods of inverse distance weighting (IDW and Kriging were applied. Selection of interpolation method was done based on the smallest root mean square error (RMSE and standard deviation (SD. The most appropriate interpolation method for outdoor NO2 concentration mapping was Kriging with an SD value of 5.45 µg/m3 and an RMSE value of 5.45 µg/m3, while for indoor NO2 concentration mapping the IDW was best fitted with an RMSE value of 5.92 µg/m3 and an SD value of 5.92 µg/m3.

  12. Development of a model for radon concentration in indoor air

    International Nuclear Information System (INIS)

    Jelle, Bjørn Petter

    2012-01-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities. - Highlights: ► Model development for calculation of radon concentration in indoor air. ► Radon model accounting for various important parameters. ► Characteristic case studies depicted in 2D and 3D graphical plots. ► May be utilized for examining radon preventive measures.

  13. Correlation of Air Quality Data to Ultrafine Particles (UFP Concentration and Size Distribution in Ambient Air

    Directory of Open Access Journals (Sweden)

    Werner Hofmann

    2010-07-01

    Full Text Available This study monitored ultrafine particles (UFP concurrent with environmental air quality data, investigating whether already existing instrumentation used by environmental authorities can provide reference values for estimating UFP concentrations. Of particular interest was the relation of UFP to PM10 (particulate matter and nitrogen oxides (NOx, NO2 in ambient air. Existing PM measurement methods alone did not correspond exactly enough with the actual particle number, but we observed a link between NOx and NO2 to UFP concentration. The combined data could act as proxy-indicator for authorities in estimating particle number concentrations, but cannot replace UFP monitoring.

  14. Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences

    Directory of Open Access Journals (Sweden)

    Mireille Guay

    2010-08-01

    Full Text Available Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants’ activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants’ activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants.

  15. Radiometers for radon concentration in air

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Pienkos, J.P.

    2002-01-01

    Constant grow of science and technology stimulates development of new improved measuring tools. New measuring demand arise also in radon concentration measurements. Varying rock stress and rock cracks influencing radon emanation encouraged research aimed at use of this phenomenon to predict crumps of mine formation among others based on variation of radon emanation. A measuring set was developed in the Institute of Nuclear Chemistry and Technology enabling long term monitoring of radon concentration in mine bore-hole. The set consists probe and probe controller. Detection threshold of the probe is 230 Bq/m 3 . The set can operate in the environment with methane explosion hazard. A radiometer employing Lucas cell as radiation detector for radon concentration in air was also developed its detection threshold is approx. 10 Bq/m 3 . Replaceable Lucas cell of the radiometer allows for measurement of high as well as low radon concentration in short time interval. (author)

  16. Estimating daily surface NO2 concentrations from satellite data - a case study over Hong Kong using land use regression models

    Science.gov (United States)

    Anand, Jasdeep S.; Monks, Paul S.

    2017-07-01

    Land use regression (LUR) models have been used in epidemiology to determine the fine-scale spatial variation in air pollutants such as nitrogen dioxide (NO2) in cities and larger regions. However, they are often limited in their temporal resolution, which may potentially be rectified by employing the synoptic coverage provided by satellite measurements. In this work a mixed-effects LUR model is developed to model daily surface NO2 concentrations over the Hong Kong SAR during the period 2005-2015. In situ measurements from the Hong Kong Air Quality Monitoring Network, along with tropospheric vertical column density (VCD) data from the OMI, GOME-2A, and SCIAMACHY satellite instruments were combined with fine-scale land use parameters to provide the spatiotemporal information necessary to predict daily surface concentrations. Cross-validation with the in situ data shows that the mixed-effects LUR model using OMI data has a high predictive power (adj. R2 = 0. 84), especially when compared with surface concentrations derived using the MACC-II reanalysis model dataset (adj. R2 = 0. 11). Time series analysis shows no statistically significant trend in NO2 concentrations during 2005-2015, despite a reported decline in NOx emissions. This study demonstrates the utility in combining satellite data with LUR models to derive daily maps of ambient surface NO2 for use in exposure studies.

  17. Measurement of 222Rn in soil concentrations in interstitial air

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Carretero, J.; Liger, E.

    1996-01-01

    Measurements of 222 Rn soil concentrations were made by inserting stainless-steel sampling tubes into the soil. The samples of the soil interstitial air were taken in to pre-evacuated 1 L glass flasks. The glass flasks are cylindrical and coated with a film of ZnS(Ag). 222 Rn was measured by counting the alpha particles emitted by 222 Rn and its daughter products, 218 Po and 214 Bi, when they reached radioactive equilibrium. Measurements of 222 Rn gas concentrations in the soil air interstices by the method at different depths were used to calculate the diffusion coefficient of the 222 Rn in the soil air. This study has been carried out for diverse soils. (Author)

  18. Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression

    Science.gov (United States)

    Anand, J.; Monks, P.

    2016-12-01

    Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.

  19. Devices and Methods for Collection and Concentration of Air and Surface Samples for Improved Detection of Microbes onboard ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Protecting the International Space Station (ISS) crew from microbial contaminants is of great importance. Bacterial and fungal contamination of air, surfaces and...

  20. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  1. Metal concentration in urban park soils of Sao Paulo 2. Buenos AiresPark

    International Nuclear Information System (INIS)

    Gumiero, Felipe C.; Figueiredo, Ana Maria G.; Camargo, Sonia P.; Pavese, Arthur; Sigolo, Joel B.

    2007-01-01

    As part of a project which aims metal concentration assessment in urban park soils of Sao Paulo, in the present paper the concentration of the elements As, Ba, Cr, Co, Cu, Pb, Sb and Zn were determined in surface soil samples (0-5 cm and 0-20 cm) from Buenos Aires park of Sao Paulo. This park is located in central region of the city, and is surrounded by avenues and streets, with different traffic volumes. Instrumental Neutron Activation Analysis (INAA) and X-ray Fluorescence (FRX) were used for metal analysis. Preliminary results showed concentration levels of the analyzed elements higher than the values considered as reference values for soils in Sao Paulo, according to the Environmental Protection Agency of the State of Sao Paulo (CETESB). These results suggest that these elements have anthropogenic origin and indicate a potential risk for soil quality. (author)

  2. Concentration of Radon Progeny in Air by Alpha Spectrometry Measurement

    International Nuclear Information System (INIS)

    Acena, M. L.; Crespo, M. T.

    1989-01-01

    The concentration of radon progeny in air has been determined by alpha spectrometry measurement of 214 Po and 318 Po. A known volume of air was passed through a filter, then the alpha activity was directly measured on this filter. (Author) 15 refs

  3. Skating on a Film of Air: Drops Impacting on a Surface

    Science.gov (United States)

    Kolinski, John M.; Rubinstein, Shmuel M.; Mandre, Shreyas; Brenner, Michael P.; Weitz, David A.; Mahadevan, L.

    2012-02-01

    The commonly accepted description of drops impacting on a surface typically ignores the essential role of the air that is trapped between the impacting drop and the surface. Here we describe a new imaging modality that is sensitive to the behavior right at the surface. We show that a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the drop spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate on the air film laterally outward at surprisingly high velocities, consistent with theoretical predictions. Eventually this thin film of air breaks down as the fluid wets the surface via a spinodal-like mechanism. Our results show that the dynamics of impacting drops are much more complex than previously thought, with a rich array of unexpected phenomena that require rethinking classic paradigms.

  4. Effect of environmental dust particles on laser textured yttria-stabilized zirconia surface in humid air ambient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.

    2018-05-01

    Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.

  5. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    Science.gov (United States)

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  6. Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air).

    Science.gov (United States)

    Ren, Yi; Yuan, Yue; Lai, Bo; Zhou, Yuexi; Wang, Juling

    2016-01-25

    To decompose or transform the toxic and refractory reverse osmosis (RO) concentrate and improve the biodegradability, 1stFe/Cu/air-Fenton-2ndFe/Cu/air were developed to treat RO concentrate obtained from an amino acid production plant in northern China. First, their operating conditions were optimized thoroughly. Furthermore, 5 control experiments were setup to confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and synergistic reaction between Fe/Cu/air and Fenton. The results suggest that the developed method could obtain high COD removal (65.1%) and BOD5/COD ratio (0.26) due to the synergistic reaction between Fe/Cu/air and Fenton. Under the optimal conditions, the influent and effluent of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and 5 control experiments were analyzed by using UV, FTIR, EEM and LC, which confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air. Therefore, the developed method in this study is a promising process for treatment of RO concentrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Indoor air radon concentration in schools in Prizren, Kosovo

    International Nuclear Information System (INIS)

    Bahtijari, M.; Stegnar, P.; Shemsidini, Z.; Kobal, I.; Vaupotic, J.

    2006-01-01

    Indoor air radon ( 222 Rn) concentrations were measured in spring and winter in 30 rooms of 9 elementary schools and 19 rooms of 6 high schools in Prizren, Kosovo, using alpha scintillation cells. Only in three rooms of elementary schools and four rooms of high schools did winter concentrations exceed 400 Bq m -3 . (authors)

  8. Air sampling by pumping through a filter: effects of air flow rate, concentration, and decay of airborne substances

    OpenAIRE

    Šoštarić, Marko; Petrinec, Branko; Babić, Dinko

    2016-01-01

    This paper tackles the issue of interpreting the number of airborne particles adsorbed on a filter through which a certain volume of sampled air has been pumped. This number is equal to the product of the pumped volume and particle concentration in air, but only if the concentration is constant over time and if there is no substance decomposition on the filter during sampling. If this is not the case, one must take into account the inconstancy of the concentration and the decay law for a give...

  9. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    Science.gov (United States)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  10. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    International Nuclear Information System (INIS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-01-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SA REF ) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SA PSD ) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SA INV1 ) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SA INV2 ) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SA PSD was 0.7–1.8 times higher and SA INV1 and SA INV2 were 2.2–8 times higher than SA REF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SA REF . However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SA REF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SA PSD ) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  11. A database on tritium behavior in the chronic HT release experiment. 1. Meteorological data and tritium concentrations in air and soil

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Yokoyama, Sumi; Kinouchi, Nobuyuki; Murata, Mikio; Amano, Hikaru; Ando, Mariko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukutani, Satoshi

    1999-03-01

    This report comprises a database that can be used to develop and validate tritium models to assess doses to the general public due to HT continuously released from fusion facilities into the atmosphere. The data was collected in the 1994 chronic HT release experiment carried out at the Chalk River Laboratories in Canada. The data set include meteorological conditions such as solar radiation, net solar radiation, wind speed, air temperature and humidity, soil temperature and soil heat flux; soil conditions such as bulk density, water content and free pore volume fraction; HT and HTO concentrations in air, HTO concentrations in soil moisture and HTO deposition to water surface. Evapo-transpiration rates and turbulent diffusivity are estimated and tabulated. The report also contains experimental methods to observe meteorological conditions and take air and soil samples. (author)

  12. Effect of solar activity on the concentration of Be-7 in air and precipitation

    International Nuclear Information System (INIS)

    Hoetzl, H.; Rosner, G.; Winkler, R.

    1993-01-01

    The time course of the activity concentration of the cosmogenic Be-7, measured in surface air and deposition since 1971, reflects a cyclic pattern of two frequency components. The well-known seasonal period with maxima in early summer is superimposed by a long-term period of about 11 years, which is obviously related to the effect of solar activity. By means of time series analysis using Fast-Fourier-Transformation and crosscorrelation, respectively, this relationship could be confirmed on a statistical basis for a period of two sun spot cycles (1971-1992). (orig.) [de

  13. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.

    Science.gov (United States)

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2011-07-01

    Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Influence of source type and air exchange on variations of indoor radon concentration

    International Nuclear Information System (INIS)

    Arvela, H.; Winqvist, K.

    1986-04-01

    The model relates radon concentration to source strength and its variations, air exchange rate and meteorological factors. Two types of sources have been studied. The pressure difference dependent source is made up of radon transported with soil pore air and driven by pressure difference due to the stack effect. The constant source is made up of radon transported by diffusion from building materials or from soil. The air exchange rate depends exponentially on indoor-outdoor temperature difference and linearly on wind speed. These two inputs have been summed in quadrature. In a house with a constant source radon concentration decreases when the air exchange rate increases due to the increasing temperature difference, whereas the pressure difference dependent source causes an increasing concentration. This is due to the fact that the effect of the source strength increase is stronger than the decreasing effect of air exchange on concentration. The winter-summer concentration ratio depends on the combination of the two types of source. A pure pressure dependent source leads to the winter-summer ratio of 2-3.5 (winter -5 deg C, summer +15 deg C, wind speed 3 m/s). A strong contribution of a constant source is needed to cause a summer concentration higher than the winter concentration. The model is in agreement with the winter-summer concentration ratios measured. This ratio increases with the increasing winter concentration. The measured ratio was near 1.0 for houses with winter concentration of 200 Bq m''3 or less and near 2.0 with concentration of 1000 Bq m''3. In a house with a constant source, the diurnal maximum occurs in the afternoon, while in houses with a pressure difference dependent source the time of maximum is early in the morning

  15. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    Matthias J. Mayser

    2014-06-01

    Full Text Available Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes.

  16. Spatial Gradients in Trace Metal Concentrations in the Surface Microlayer of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Antonio eTovar-Sanchez

    2014-12-01

    Full Text Available The relationship between dust deposition and surface water metal concentrations is poorly understood. Dissolution, solubility, and partitioning reactions of trace metals from dust particles are governed by complex chemical, biological, and physical processes occurring in the surface ocean. Despite that, the role of the sea surface microlayer (SML, a thin, but fundamental component modulating the air-sea exchange of materials has not been properly evaluated. Our study revealed that the SML of the Mediterranean Sea is enriched with bioactive trace metals (i.e., Cd, Co, Cu and Fe, ranging from 8 (for Cd to 1000 (for Fe times higher than the dissolved metal pool in the underlying water column. The highest enrichments were spatially correlated with the atmospheric deposition of mineral particles. Our mass balance results suggest that the SML in the Mediterranean Sea contains about 2 tonnes of Fe. However, we did not detect any trends between the concentrations of metals in SML with the subsurface water concentrations and biomass distributions. These findings suggest that future studies are needed to quantify the rate of metal exchange between the SML and the bioavailable pool and that the SML should be considered to better understand the effect of atmospheric inputs on the biogeochemistry of trace metals in the ocean.

  17. Reduced European emissions of S and N - Effects on air concentrations, deposition and soil water chemistry in Swedish forests

    Energy Technology Data Exchange (ETDEWEB)

    Pihl Karlsson, Gunilla, E-mail: gunilla.pihl.karlsson@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden); Akselsson, Cecilia, E-mail: cecilia.akselsson@nateko.lu.se [Department of Earth and Ecosystem Sciences, Lund University, Soelvegatan 12, SE-223 62 Lund (Sweden); Hellsten, Sofie, E-mail: sofie.hellsten@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden); Karlsson, Per Erik, E-mail: pererik.karlsson@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden)

    2011-12-15

    Changes in sulphur and nitrogen pollution in Swedish forests have been assessed in relation to European emission reductions, based on measurements in the Swedish Throughfall Monitoring Network. Measurements were analysed over 20 years with a focus on the 12-year period 1996 to 2008. Air concentrations of SO{sub 2} and NO{sub 2}, have decreased. The SO{sub 4}-deposition has decreased in parallel with the European emission reductions. Soil water SO{sub 4}-concentrations have decreased at most sites but the pH, ANC and inorganic Al-concentrations indicated acidification recovery only at some of the sites. No changes in the bulk deposition of inorganic nitrogen could be demonstrated. Elevated NO{sub 3}-concentrations in the soil water occurred at irregular occasions at some southern sites. Despite considerable air pollution emission reductions in Europe, acidification recovery in Swedish forests soils is slow. Nitrogen deposition to Swedish forests continues at elevated levels that may lead to leaching of nitrate to surface waters. - Highlights: > S deposition to Swedish forests has decreased in parallel with European emissions. > Soil water pH, ANC and inorganic Al-concentrations indicated a slow recovery. > The bulk deposition of inorganic nitrogen over Sweden has not decreased. > Continued N deposition to Swedish forests may cause leaching of N to surface waters. - Reduced European emissions have led to decreased acidic deposition and a slow recovery of soil water but nitrogen deposition remains the same in Swedish forests.

  18. Factors influencing indoor concentrations of radon and daughter products

    International Nuclear Information System (INIS)

    Wang Hengde

    1985-01-01

    The correlation between indoor concentrations of 222 Rn and its daughters and some influencing factors is discussed and expressions of concentrations are derived with relation to radon exhalation rate from indoor surfaces, air exchange rate and daughter deposition velocities on indoor surfaces. Experimental methods for determining radon exhalation rate, air exchange rate and daughter deposition velocities are also mentioned

  19. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H [on leave from NTT Laboratories (Japan); Mueller, S; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  20. A climatology of 7Be in surface air in European Union

    International Nuclear Information System (INIS)

    Hernández-Ceballos, M.A.; Cinelli, G.; Marín Ferrer, M.; Tollefsen, T.; De Felice, L.; Nweke, E.; Tognoli, P.V.; Vanzo, S.; De Cort, M.

    2015-01-01

    This study presents a European-wide analysis of the spatial and temporal distribution of the cosmogenic isotope 7 Be in surface air. This is the first time that a long term database of 34 sampling sites that regularly provide data to the Radioactivity Environmental Monitoring (REM) network, managed by the Joint Research Centre (JRC) in Ispra, is used. While temporal coverage varies between stations, some of them have delivered data more or less continuously from 1984 to 2011. The station locations were considerably heterogeneous, both in terms of latitude and altitude, a range which should ensure a high degree of representativeness of the results. The mean values of 7 Be activity concentration presented a spatial distribution value ranging from 2.0 to 5.4 mBq/m 3 over the European Union. The results of the ANOVA analysis of all 7 Be data available indicated that its temporal and spatial distributions were mainly explained by the location and characteristic of the sampling sites rather than its temporal distribution (yearly, seasonal and monthly). Higher 7 Be concentrations were registered at the middle, compared to high-latitude, regions. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. In addition, the total and yearly analyses of the data indicated a dynamic range of 7 Be activity for each solar cycle and phase (maximum or minimum), different impact on stations having been observed according to their location. Finally, the results indicated a significant seasonal and monthly variation for 7 Be activity concentration across the European Union, with maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached. The knowledge of the horizontal and vertical distribution of this natural radionuclide in the atmosphere is a key parameter for modelling studies of atmospheric processes, which are important phenomena to be taken into account in

  1. Ozone and nitrogen oxides in surface air in Russia: TROICA experiments.

    Science.gov (United States)

    Pankratova, N.; Elansky, N.; Belikov, I.; Shumskiy, R.

    2009-04-01

    The results of measurements of surface ozone and nitrogen oxides concentrations over the continental regions of Russia are discussed. The measurements were done during 10 TROICA experiments (Transcontinental Observations Into the Chemistry of the Atmosphere). The TROICA experiment started in 1995. By the present moment ten expeditions along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km) are carried out. We separate data sets into unpolluted and polluted areas to study temporal and spatial features. Moreover we analyzed cities (more then 100 cities). About 50% of all data corresponds to unpolluted conditions. The data collected are used in an analysis of the physical and chemical processes occurring over continental Russia. In this work the estimations of seasonal and daily ozone and NOx distribution were made. The seasonal distribution of ozone for TROICA experiments concentration considerably differs from ozone distribution at Mace Head (Ireland) and Hohenpeissenberg (Germany) stations and well agrees with the ozone distribution at Zotino (Russia, East Siberia). The same concerns also a daily variability. The ozone concentration gradient is presented. Ozone concentration gradually increases in the eastward direction. Its result of the air transport from polluted regions of Europe and ozone depletions, oxidations of CH4 in Siberia, forest fires in Siberia and around Baikal Lake, regional transport of burning products from Northern China. Significant factor of ozone increasing is stratospheric-tropospheric exchange. It appears in TROICA-3 experiment. During several hours ozone concentration was more then 60 ppbv. The areas of photochemical ozone generation in polluted air are also detected. We estimate anthropogenic and natural factors, which are responsible for sharp ozone concentration increasing. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic

  2. Historical occupational trichloroethylene air concentrations based on inspection measurements from Shanghai, China.

    Science.gov (United States)

    Friesen, Melissa C; Locke, Sarah J; Chen, Yu-Cheng; Coble, Joseph B; Stewart, Patricia A; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China's growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5-10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150-190 mg m(-3)). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11 mg m(-3) in 'other metal products/repair' industries to 390 mg m(-3) in 'ships/aircrafts' industries. TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  3. Aqueous reactive species induced by a PCB surface micro-discharge air plasma device: a quantitative study

    Science.gov (United States)

    Chen, Chen; Li, Fanying; Chen, Hai-Lan; Kong, Michael G.

    2017-11-01

    This paper presents a quantitative investigation on aqueous reactive species induced by air plasma generated from a printed circuit board surface micro-discharge (SMD) device. Under the conditions amenable for proliferation of mammalian cells, concentrations of ten types of reactive oxygen and nitrogen species (RONS) in phosphate buffering solution (PBS) are measured by chemical fluorescent assays and electron spin resonance spectroscopy (ESR). Results show that concentrations of several detected RNS (NO2- , NO3- , peroxynitrites, and NO2\\centerdot ) are higher than those of ROS (H2O2, O2\\centerdot - , and 1O2) in the air plasma treated solution. Concentrations of NO3- can reach 150 times of H2O2 with 60 s plasma treatment. For short-lived species, the air plasma generates more copious peroxynitrite than other RONS including NO2\\centerdot , O2\\centerdot - , 1O2, and N{{O}\\centerdot } in PBS. In addition, the existence of reaction between H2O2 and NO2- /HNO2 to produce peroxynitrite is verified by the chemical scavenger experiments. The reaction relations between detected RONS are also discussed.

  4. Mass concentrations of BTEX inside air environment of buses in Changsha, China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaokai; Zhang, Guoqiang; Zhang, Quan [College of Civil Engineering, Hunan University, Changsha 410082, Hunan (China); Chen, Hong [College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan (China)

    2011-02-15

    In order to estimate the mass concentrations of benzene (B), toluene (T), ethylbenzene (E) and xylenes (X) inside air environment of buses and to analyze the influencing factors of the BTEX pollution levels, 22 public buses were investigated in Changsha, China. The interior air was collected through activated charcoal adsorption tubes and then the air samples were analyzed with thermally desorbed gas chromatograph. The mass concentrations ranged from 21.3 to 106.4 {mu}g/m{sup 3} for benzene, from 53.5 to 266.0 {mu}g/m{sup 3} for toluene, from 19.6 to 95.9 {mu}g/m{sup 3} for ethylbenzene and from 46.9 to 234.8 {mu}g/m{sup 3} for xylenes. Their mean values were 68.7, 179.7, 62.5 and 151.8 {mu}g/m{sup 3}, respectively. The rates of buses tested where the interior concentrations exceeded the limit levels of Chinese Indoor Air Quality Standard were 45.5% for toluene and 13.6% for xylenes. The BTEX levels increased when in-car temperature or relative humidity rose, and decreased when car age or travel distance increased. The BTEX concentrations were higher in leather trims buses than in non-leather trims ones, in air-conditioned buses than in non-air-conditioned ones, and in high-grade buses than in low-grade ones. According to the analysis of multiple linear regression equation, car age and in-car temperature were two most important factors influencing the BTEX pollution levels in the cabins of public buses. (author)

  5. Land Surface Process and Air Quality Research and Applications at MSFC

    Science.gov (United States)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  6. Seasonal variations of 222Rn concentrations in the air of a tunnel located in Nagano City

    International Nuclear Information System (INIS)

    Muramatsu, H.; Tashiro, Y.; Hasegawa, N.; Misawa, C.; Minami, M.

    2000-01-01

    The survey of 222 Rn concentrations in the air of tunnels constructed during World War II at Nagano City has been performed using a solid-state nuclear track detector technique. Concentrations of several thousands Bq m -3 were observed at inner most areas of the tunnel. A seasonal variation was clearly observed; in summer, several times higher concentrations than in winter were observed, which may be due to a stack effect induced by the temperature difference between the tunnel air and the outside air in each season. The concentrations of radon in the tunnel air decrease exponentially towards the openings of the tunnel, which indicates that the radon concentration in the tunnel is basically governed by diffusion and mixing of radon gas with air. (author)

  7. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Li, Shuang-Fei; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel evacuated tube solar high temperature air heater is designed. • The solar air heater system consists of 30 linked collecting units. • Every unit consisted of a evacuated tube, a simplified CPC and concentric tube. • The flow air is heated over temperature of 200 °C. - Abstract: A set of evacuated tube solar high temperature air heaters with simplified CPC (compound parabolic concentrator) and concentric tube heat exchanger is designed to provide flow air with a temperature of 150–230 °C for industrial production. The solar air heater system consists of 30 linked collecting units. Each unit includes a simplified CPC and an all-glass evacuated tube absorber with a concentric copper tube heat exchanger installed inside. A stainless steel mesh layer with high thermal conductivity is filled between the evacuated tube and the concentric copper tube. Air passes through each collecting unit, and its temperature increases progressively. An experimental investigation of the thermal performance of the air heater is performed, and the experimental results demonstrate the presented high-temperature solar air heater has excellent collecting performance and large output power, even in the winter. The measured thermal efficiency corresponding to the air temperature of 70 °C reaches 0.52. With the increase of air temperature, thermal efficiency reaches 0.35 at an air temperature of 150 °C, and 0.21 at an air temperature of 220 °C.

  8. Thickened boundary layer theory for air film drag reduction on a van body surface

    Science.gov (United States)

    Xie, Xiaopeng; Cao, Lifeng; Huang, Heng

    2018-05-01

    To elucidate drag reduction mechanism on a van body surface under air film condition, a thickened boundary layer theory was proposed and a frictional resistance calculation model of the van body surface was established. The frictional resistance on the van body surface was calculated with different parameters of air film thickness. In addition, the frictional resistance of the van body surface under the air film condition was analyzed by computational fluid dynamics (CFD) simulation and different air film states that influenced the friction resistance on the van body surface were discussed. As supported by the CFD simulation results, the thickened boundary layer theory may provide reference for practical application of air film drag reduction on a van body surface.

  9. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review.

    Science.gov (United States)

    Ip, Y K; Chew, S F; Wilson, J M; Randall, D J

    2004-10-01

    In the tropics, air-breathing fishes can be exposed to environmental ammonia when stranded in puddles of water during the dry season, during a stay inside a burrow, or after agricultural fertilization. At low concentrations of environmental ammonia, NH(3) excretion is impeded, as in aerial exposure, leading to the accumulation of endogenous ammonia. At high concentrations of environmental ammonia, which results in a reversed NH(3) partial pressure gradient (DeltaP(NH3)), there is retention of endogenous ammonia and uptake of exogenous ammonia. In this review, several tropical air-breathing fishes (giant mudskipper, African catfish, oriental weatherloach, swamp eel, four-eyed sleeper, abehaze and slender African lungfish), which can tolerate high environmental ammonia exposure, are used as examples to demonstrate how eight different adaptations can be involved in defence against ammonia toxicity. Four of these adaptations deal with ammonia toxicity at branchial and/or epithelial surfaces: (1) active excretion of NH(4)(+); (2) lowering of environmental pH; (3) low NH(3) permeability of epithelial surfaces; and (4) volatilization of NH(3), while another four adaptations ameliorate ammonia toxicity at the cellular and subcellular levels: (5) high tolerance of ammonia at the cellular and subcellular levels; (6) reduction in ammonia production; (7) glutamine synthesis; and (8) urea synthesis. The responses of tropical air-breathing fishes to high environmental ammonia are determined apparently by behavioural adaptations and the nature of their natural environments.

  10. The effect of ventilation on the indoor air concentration of PCB

    DEFF Research Database (Denmark)

    Lyng, Nadja; Gunnarsen, Lars Bo; Andersen, Helle Vibeke

    2015-01-01

    The impact of increased ventilation on polychlorinated biphenyl (PCB) air concentration by installation of mechanical balanced ventilation units was studied. The intervention was carried out in three PCB-contaminated rooms; one classroom in an elementary school and two small bedrooms...... in an apartment in a residential building. In the classroom, the air exchange rate (ACH) was raised from 0.2 (without mechanical ventilation) to 5.5 /h during the intervention. In the two bedrooms, the highest ACH was 6.6 /h and 0.5 /h without mechanical ventilation. The corresponding concentration decrease...

  11. Temperature and concentration transients in the aluminum-air battery

    Science.gov (United States)

    Homsy, R. V.

    1981-08-01

    Coupled conservation equations of heat and mass transfer are solved that predict temperature and concentration of the electrolyte of an aluminum-air battery system upon start-up and shutdown. Results of laboratory studies investigating the crystallization kinetics and solubility of the caustic-aluminate electrolyte system are used in the predictions. Temperature and concentration start-up transients are short, while during standby conditions, temperature increases to maximum and decreases slowly.

  12. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  13. Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations

    Directory of Open Access Journals (Sweden)

    G. Prabhakar

    2017-12-01

    Full Text Available This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3−(p concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality study at one of the most polluted cities in the United States – Fresno, CA – in the San Joaquin Valley (SJV and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3−(p concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3−(p aloft in the residual layer (RL can play in determining daytime surface-level NO3−(p concentrations. Further, they indicate that nocturnal production of NO3−(p in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3−(p, despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3−(p concentrations. Entrainment of clean free-tropospheric (FT air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3−(p and limits buildup during pollution episodes. The influence of dry deposition of HNO

  14. Man-made radioactivity of surface air and precipitation Munich-Neuherberg 1970-1975

    International Nuclear Information System (INIS)

    Hoetzl, H.; Rosner, G.; Winkler, R.

    1976-07-01

    The activity concentration of a number of artificial radionuclides and of Be 7 in surface air and the deposition of these nuclides to the ground by the precipitation is measured since 1970 resp. 1971 at Neuherberg near Munich. Air dust filters are compressed to give a pellet and precipitation is evaporated to a small volume before γ-spectrometry using a Ge(Li)-detector. After ashing of the samples Pusup(238, 239, 240) and Fe 55 are separated radiochemically and measured by alpha respectively X-ray spectrometry. The results, presented as monthly mean resp. sum values, are discussed and compared with results published by other authors (HASL, UKAEA, PTB, DWD a.o.). The contribution of artificial radioactivity to the radiation exposure from fallout nuclides during the years 1970 to 1975 was very low. Their concentration levels led to values of the annual intake, which are far beyond the admissible values according to the new Radiation Protection Ordinance of the FRG. With regard to the intake by inhalation Pu 239 is the most important of all observed nuclides, whereas in the case of ingestion Sr 90 is the critical nuclide. At this time the level of the activity concentration is mainly represented by the residual radioactivity from nuclear bomb tests. A continuous control is necessary because of the growth of nuclear power production and the increasing use of radionuclides. (orig.) [de

  15. Relationships between Atmospheric Transport Regimes and PCB Concentrations in the Air at Zeppelin, Spitsbergen.

    Science.gov (United States)

    Ubl, Sandy; Scheringer, Martin; Hungerbühler, Konrad

    2017-09-05

    Polychlorinated biphenyls (PCBs) are persistent hazardous chemicals that are still detected in the atmosphere and other environmental media, although their production has been banned for several decades. At the long-term monitoring site, Zeppelin at Spitsbergen, different PCB congeners have been continuously measured for more than a decade. However, it is not clear what factors determine the seasonal and interannual variability of different (lighter versus heavier) PCB congeners. To investigate the influence of atmospheric transport patterns on PCB-28 and PCB-101 concentrations at Zeppelin, we applied the Lagrangian Particle Dispersion Model FLEXPART and calculated "footprints" that indicate the potential source regions of air arriving at Zeppelin. By means of a cluster analysis, we assigned groups of similar footprints to different transport regimes and analyzed the PCB concentrations according to the transport regimes. The concentrations of both PCB congeners are affected by the different transport regimes. For PCB-101, the origin of air masses from the European continent is primarily related to high concentrations; elevated PCB-101 concentrations in winter can be explained by the high frequency of this transport regime in winter, whereas PCB-101 concentrations are low when air is arriving from the oceans. For PCB-28, in contrast, concentrations are high during summer when air is mainly arriving from the oceans but low when air is arriving from the continents. The most likely explanation of this finding is that local emissions of PCB-28 mask the effect of long-range transport and determine the concentrations measured at Zeppelin.

  16. Correlation between meteorological conditions and the concentration of radionuclides in the ground layer of atmospheric air

    International Nuclear Information System (INIS)

    Krajny, E.; Osrodka, L.; Wojtylak, M.; Michalik, B.; Skowronek, J.

    2001-01-01

    The main goal of this work was to find correlation between the concentrations of radionuclides in outdoor air and the meteorological conditions like: atmospheric pressure, wind velocity and amount of precipitation. Because the sampling period of radionuclides concentrations in air was relatively long (7 days), the average levels of meteorological parameters have been calculated within the same time. Data of radionuclide concentrations and meteorological data have been analyzed in order to find statistical correlation. The regression analysis and one of AI methods, known as neural network, were applied. In general, analysis of the gathered data does not show any strong correlation between the meteorological conditions and the concentrations of the radionuclides in air. A slightly stronger correlation we found for radionuclides with relatively short half-lives. The only positive correlation has been found between the 7 Be concentration and air temperature (at the significance level α = 0.05). In our opinion, the lack of correlation was caused by a too long sampling time in measurements of radionuclides in outdoor air (a whole week). Results of analysis received by means of the artificial neuron network are better. We were able to find certain groups of meteorological conditions, related with the corresponding concentrations of particular radionuclides in air. Preliminary measurements of radon progeny concentration support the thesis that the link between changes of meteorological parameters and concentrations of radionuclides in ambient air must exist. (author)

  17. Seasonal fluctuations of the uranium and thorium contents in aerosols in surface air

    International Nuclear Information System (INIS)

    Kolb, W.

    1985-01-01

    An estimate in the UNSCEAR report the only source considered for the uranium and thorium contents is ground dust. A significant portion of the aerosols, however, comes from chimneys. Aerosol samples taken monthly in Brunswick, Berlin, Skibotn (Northern Norway) were, therefore, scrutinized alpha-spectrometrically for U-238, U-234, Th-230, and Th-232. The activity concentration in surface air of Northern Norway is only about 30 nBq/cm 3 . In Brunswick and Berlin, the concentration was higher by a factor of one to two due to the higher specific activity of the mineral aerosols. Significant differences of the isotope ratios allow conclusions as to the origin of the aerosols. The activity concentrations measured and their seasonal fluctuations must be taken into account in the evaluation of environment monitoring of nuclear fuel factories. (orig./HP) [de

  18. Air/surface exchange processes of mercury and their linkage to atmospheric pools

    International Nuclear Information System (INIS)

    Bahlmann, Enno; Ebinghaus, Ralf

    2001-01-01

    The atmospheric mercury cycle is strongly linked to the terrestrial, aquatic and biologic cycle of mercury via air/surface exchange processes. In order to quantify mercury fluxes from and to the atmosphere to predict local and regional source contributions the methods for flux measurements as well as the physicochemical factors controlling air/surface exchange processes must be assessed. We will describe methods for the determination of mercury and mercury species in ambient air which are basic for investigation of air/surface exchange processes. Further on we will describe approaches for studying the physicochemical factors controlling this processes by using a new laboratory flux measurement system. (author)

  19. Influence of atmospheric rainfall to γ radiation Kerma rate in surface air

    International Nuclear Information System (INIS)

    Xu Zhe; Wan Jun; Yu Rongsheng

    2009-01-01

    Objective: To investigate the influence rule of the atmospheric Rainfall to the γ radiation Kerma rate in surface air in order to revise the result of its measurement during rainfall. Methods: The influence factors of rainfall to the measurement of the γ radiation Kerma rate in air were analyzed and then the differential equation of the correlation factors was established theoretically, and by resolving the equation, the mathematical model Was obtained. The model was discussed through several practical examples. Results: The mathematical model was coincided with the tendency of curve about the measured data on the influence rule of rainfall to the γ radiation Kerma rate in surface air. Conclusion: By using the theoretical formula in this article which is established to explain the relationship between the rainfall and the γ radiation Kerma rate in surface air, the influence of rainfall to the γ radiation Kerma rate in surface air could be correctly revised. (authors)

  20. Summer concentrations of NMHCs in ambient air of the Arctic and Antarctic

    Energy Technology Data Exchange (ETDEWEB)

    Hellen, H.; Paatero, J.; Hakola, H.; Virkkula, A. [Finnish Meteorological Inst., Helsinki (Finland); Leck, C. [Stockholm Univ. (Sweden). Dept. of Meteorology

    2012-11-01

    Summer concentrations of C{sub 2}-C{sub 6} non-methane hydrocarbons (NMHCs) were measured in Antarctica and in the Arctic in 2008. The results show that NMHC concentrations are on average five times higher in the Arctic than in Antarctica. In Antarctica, there were few concentration peaks, but during most of the remaining time concentrations were below or close to the detection limits. Over the Arctic pack ice area north of 80 deg, concentrations of most of the measured NMHCs were always above the detection limits. No differences based on air-mass origin were detected in Antarctica, but samples collected over the central Arctic Ocean showed higher concentrations in air masses being advected from the Kara Sea and the western-central Arctic Ocean. The relatively higher NMHC-to-ethyne molar ratios calculated for samples collected over the central Arctic Ocean suggest additional alkane sources in the region. (orig.)

  1. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  2. Concentrations, Trends, and Air-Water Exchange of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011.

    Science.gov (United States)

    Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47.

  3. Thermal behaviour of solar air heater with compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, Rene

    2008-01-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%

  4. Measurement of underground contamination of non-aqueous phase liquids (NAPLs) on the basis of the radon concentration in ground level air

    International Nuclear Information System (INIS)

    Schubert, M.

    2001-01-01

    It was investigated whether measurements of radon concentrations in ground level air are a suitable method of detecting sub-surface soil contamination with non-aqueous phase liquids (NAPLs). The working postulation was that, due to the very high solubility of radon in NAPLs, and the resulting accumulation of radon in NAPLs, radon exhalation to the ground level air in the proximity of such NAPL contamination should be locally reduced, thus indicating contamination of sub-surface soils with NAPLs. The research work reported was to verify the working theory by way of experiments, and to finally develop a reliable detection method for NAPL contaminations. The investigations comprised theoretical studies, laboratory experiments, experiments in defined soil columns, and extensive field studies [de

  5. Incorporation monitoring by measurements of activity concentrations in air

    International Nuclear Information System (INIS)

    Breukelmann, G.; Dalheimer, A.; Dilger, H.; Henrichs, K.

    1997-01-01

    The incorporation monitoring of workers handling actinides is in many cases not possible by individual methods: The sensitivity of bioassay of methods (in vivo, in vitro) is not sufficient to detect amounts as required by the low annual limits of intake. Similar difficulties may occur with the use of radionuclides with very short physical half-lives. In these cases, the measuring of activity concentrations in the air is the only way to monitor the workers and to meet legal requirements. The essential problem connected with this approach is to make sure, that the air sample analyzed represents the average air inhaled actually. Correspondingly, the new system regulating the incorporation monitoring in Germany requires additional measures to ensure this representatively. (author)

  6. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality

    Science.gov (United States)

    Taylan, Osman

    2017-02-01

    High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.

  7. Surface deposition of radon decay products with and without enhanced air motion

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Maher, E.F.; Hinds, W.C.; First, M.W.

    1983-01-01

    The effectiveness of fan-induced air motion in reducing airborne activity of short-lived radon decay products was evaluated in a 78-m 3 chamber. Observed reductions were as high as 50% for RaA ( 218 Po), 79% for RaB ( 214 Pb), and 86% for RaC ( 214 Bi). Activity Measurements of these nuclides on chamber and fan surfaces, along with airborne activity, were used to calculate material balances. Greater than about 90% of deposited activity was found on chamber surfaces, although areal activity density was higher on fan surfaces. Deposition velocity and diffusional boundary thickness were also determined. When no fans were used, boundary layer thickness was estimated to be 25 times the recoil distance of a RaB atom and, with fans, about 4 times the recoil distance, suggesting that recoiling of RaB atoms probably do not play a significant role in the relationship between surface and airborne activity. The results of this study have relevance for all habitable spaces having excessive radon concentration

  8. Measurement of concentration and size distribution of radon decay products in homes using air cleaners

    International Nuclear Information System (INIS)

    Montassier, N.; Hopke, P.K.; Shi, Y.; McCallum, B.

    1992-01-01

    By removing particles, air cleaners can also eliminate radon decay products. However, by removing the particles, the open-quotes unattachedclose quotes fraction of the radon progeny is increased leading to a higher dose per unit exposure. Thus, both the concentration and size distributions of the radon decay products are needed to evaluate air cleaners. Three types of room air cleaners, NO-RAD Radon Removal System, Electronic Air Cleaner and PUREFLOW Air Treatment System were tested in a single family home in Arnprior, Ontario (Canada). Semi-continuous measurements of radon gas concentration and radon decay product activity weighted size distribution were performed in the kitchen/dining room under real living conditions. The effects of air cleaners on both the concentration and size distribution of the radon decay products were measured, and their impact on the dose of radiation given to the lung tissue were examined

  9. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    Science.gov (United States)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.

    2018-01-01

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was

  10. Effect of air gap on uniformity of large-scale surface-wave plasma

    International Nuclear Information System (INIS)

    Lan Chaohui; Hu Xiwei; Jiang Zhonghe; Liu Minghai

    2009-01-01

    The effect of air gap on the uniformity of large-scale surface-wave plasma (SWP) in a rectangular chamber device is studied by using three-dimensional numerical analyses based on the finite difference time-domain (FDTD) approximation to Maxwell's equations and plasma fluid model. The spatial distributions of surface wave excited by slot-antenna array and the plasma parameters such as electron density and temperature are presented. For different air gap thicknesses, the results show that the existence of air gap would severely weaken the excitations of the surface wave and thereby the SWP. Thus the air gap should be eliminated completely in the design of the SWP source, which is opposite to the former research results. (authors)

  11. The time series variations of tritium concentration in precipitation and its relationships to the rainfall-inducing air mass

    International Nuclear Information System (INIS)

    Shimada, Jun

    1978-01-01

    The author measured the tritium concentration in precipitation of Tokyo for every ten-day period from August 1972 to May 1974. Judging from the daily synoptic weather chart, the rainfall-inducing air masses in Japan were classified into five types; polar maritime air mass (Pm), polar continental air mass (Pc), tropical maritime air mass (Tm), tropical continental air mass (Tc), and equatorial maritime air mass (Em). And the precipitation for every ten-day period sampled for tritium measurement were classified into these five types. Based on this classification, it is confirmed that there exist clear difference in the tritium concentration between the rainfall from the continental air mass and ones from the maritime air mass. It is characteristic that the tritium concentration in rainfall induced by equatorial maritime air mass such as typhoon in summer and early fall season is very low whereas the tritium concentration in rainfall and snowfall induced directly by the polar continental air mass in late winter season is very high. The regional difference of the tritium concentration in intermonthly precipitation could considerably be explained by this synoptic meteological classification of rainfall-inducing air mass. In spite of these regional difference of tritium concentration in precipitation, use of the tritium concentration of Tokyo as a representative value of Japan may be allowed because of the similarities of the changing pattern and annual mean tritium concentration. The time series variations of tritium concentration in precipitation of Tokyo from August 1972 to December 1977, Tsukuba from December 1976 to April 1978, and Nagaoka from April 1977 to March 1978 are listed. (author)

  12. Dislocation behavior of surface-oxygen-concentration controlled Si wafers

    International Nuclear Information System (INIS)

    Asazu, Hirotada; Takeuchi, Shotaro; Sannai, Hiroya; Sudo, Haruo; Araki, Koji; Nakamura, Yoshiaki; Izunome, Koji; Sakai, Akira

    2014-01-01

    We have investigated dislocation behavior in the surface area of surface-oxygen-concentration controlled Si wafers treated by a high temperature rapid thermal oxidation (HT-RTO). The HT-RTO process allows us to precisely control the interstitial oxygen concentration ([O i ]) in the surface area of the Si wafers. Sizes of rosette patterns, generated by nano-indentation and subsequent thermal annealing at 900 °C for 1 h, were measured for the Si wafers with various [O i ]. It was found that the rosette size decreases in proportion to the − 0.25 power of [O i ] in the surface area of the Si wafers, which were higher than [O i ] of 1 × 10 17 atoms/cm 3 . On the other hand, [O i ] of lower than 1 × 10 17 atoms/cm 3 did not affect the rosette size very much. These experimental results demonstrate the ability of the HT-RTO process to suppress the dislocation movements in the surface area of the Si wafer. - Highlights: • Surface-oxygen-concentration controlled Si wafers have been made. • The oxygen concentration was controlled by high temperature rapid thermal oxidation. • Dislocation behavior in the surface area of the Si wafers has been investigated. • Rosette size decreased with increasing of interstitial oxygen atoms. • The interstitial oxygen atoms have a pinning effect of dislocations at the surface

  13. Meteorological factors influencing on the radon concentrations in indoor and outdoor airs

    International Nuclear Information System (INIS)

    Kojima, Hiroshi

    1989-01-01

    Factors influencing radon concentrations in indoor and outdoor airs are discussed. A balance between source and loss is required in determining the radon concentration. Source refers to as the outdoor and indoor exhalation rate from the ground and the building materials. Loss is caused by turbulent diffusion outdoors and ventilation indoors. A significant factor influencing the exhalation rate of indoor and outdoor radon may be the change in atmospheric pressure. A drop of pressure feeds the high concentration air under the ground or building materials into the open air, and contributes to the increased exhalation rate. The exhalation rate of radon closely depends on the moisture content of the ground or building materials. Up to a certain level of moisture, the radon exhalation increases with increasing moisture content because the emanation power increases by a recoil effect of a fluid present in the internal pores of the materials. Beyond a certain level of moisture, the exhalation decreases rapidly because the pores are filled with water. Radon exhalated from the ground is spread out by turbulent diffusion. The turbulent diffusion may be related to wind velocity and the lapse rate of temperature. There is a remakable difference between indoor and outdoor radon concentrations. The ventilation rate of the house exerted a great effect upon the indoor radon concentration. The ventilation rate is influenced by meteorological factors together with human activities. Of such factors, wind velocity and temperature gradient between indoor and outdoor airs may be the most significant. The correlation coefficients between RaA or radon and some meteorological factors were calculated on the data from the long term measurements on radon and its decay products in and out of a house under normal living conditions. The changes in atmospheric pressure and wind velocity are found to be a significant factor in the variation of concentration of these nuclides. (N.K.)

  14. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions

    Science.gov (United States)

    Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru

    2018-02-01

    A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.

  15. Modeling air concentration over macro roughness conditions by Artificial Intelligence techniques

    Science.gov (United States)

    Roshni, T.; Pagliara, S.

    2018-05-01

    Aeration is improved in rivers by the turbulence created in the flow over macro and intermediate roughness conditions. Macro and intermediate roughness flow conditions are generated by flows over block ramps or rock chutes. The measurements are taken in uniform flow region. Efficacy of soft computing methods in modeling hydraulic parameters are not common so far. In this study, modeling efficiencies of MPMR model and FFNN model are found for estimating the air concentration over block ramps under macro roughness conditions. The experimental data are used for training and testing phases. Potential capability of MPMR and FFNN model in estimating air concentration are proved through this study.

  16. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    Science.gov (United States)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  17. A study on air pollution concentration at Desa parkcity construction site

    African Journals Online (AJOL)

    This study assesses the effect of construction workers exposure towards the air pollution to the correlation between meteorological factor with the particulate matter and other gases concentration at a construction site in DesaParkcity. The concentration of PM was collected by using low volume sampler meanwhile CO, CO2, ...

  18. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  19. Electronic design of air dust concentration gauge

    International Nuclear Information System (INIS)

    Machaj, B.; Strzalkowski, J.; Krawczynska, B.

    1993-01-01

    A new version of isotope dust concentration gauge for monitoring airborne dust pollution of air employs a ready made personal computer as the control and processing unit in the gauge instead of specialized electronics. That solution of the gauge reduces the needed specialized electronics to a simple computer interface coupling the computer to the measuring head. This also reduced electronics of the measuring head itself, i.e. GM detector circuit, power supplies and electronic circuits to switch on/off driving motors. The functioning and operation of the gauge is controlled by the computer program that can be easily modified if needed. The computer program for the gauge enables automatic measurements of dust concentration. Up to fifty measuring cycles can be easily programmed for a day. The results of measurements are presented in the form of data collection, diagram of dust concentration distribution during one day, diagram of dust distribution during 30 successive days or diagram of average dust concentration distribution during a day which may be computed by combining data of the selected number of measurements. Recalibration of the gauge and checking up of the gauge are also carried out under the program control. (author). 6 refs, 9 figs

  20. Symmetric scaling properties in global surface air temperature anomalies

    Science.gov (United States)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  1. Carbapenem-Resistant Acinetobacter baumannii: Concomitant Contamination of Air and Environmental Surfaces.

    Science.gov (United States)

    Shimose, Luis A; Masuda, Eriko; Sfeir, Maroun; Berbel Caban, Ana; Bueno, Maria X; dePascale, Dennise; Spychala, Caressa N; Cleary, Timothy; Namias, Nicholas; Kett, Daniel H; Doi, Yohei; Munoz-Price, L Silvia

    2016-07-01

    OBJECTIVE To concomitantly determine the differential degrees of air and environmental contamination by Acinetobacter baumannii based on anatomic source of colonization and type of ICU layout (single-occupancy vs open layout). DESIGN Longitudinal prospective surveillance study of air and environmental surfaces in patient rooms. SETTING A 1,500-bed public teaching hospital in Miami, Florida. PATIENTS Consecutive A. baumannii-colonized patients admitted to our ICUs between October 2013 and February 2014. METHODS Air and environmental surfaces of the rooms of A. baumannii-colonized patients were sampled daily for up to 10 days. Pulsed-field gel electrophoresis (PFGE) was used to type and match the matching air, environmental, and clinical A. baumannii isolates. RESULTS A total of 25 A. baumannii-colonized patients were identified during the study period; 17 were colonized in the respiratory tract and 8 were colonized in the rectum. In rooms with rectally colonized patients, 38.3% of air samples were positive for A. baumannii; in rooms of patients with respiratory colonization, 13.1% of air samples were positive (P=.0001). In rooms with rectally colonized patients, 15.5% of environmental samples were positive for A. baumannii; in rooms of patients with respiratory colonization, 9.5% of environmental samples were positive (P=.02). The rates of air contamination in the open-layout and single-occupancy ICUs were 17.9% and 21.8%, respectively (P=.5). Environmental surfaces were positive in 9.5% of instances in open-layout ICUs versus 13.4% in single-occupancy ICUs (P=.09). CONCLUSIONS Air and environmental surface contaminations were significantly greater among rectally colonized patients; however, ICU layout did not influence the rate of contamination. Infect Control Hosp Epidemiol 2016;37:777-781.

  2. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    OpenAIRE

    Zhang, Jiangshe; Ding, Weifu

    2017-01-01

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The e...

  3. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  4. Effects of the Deregulation on the Concentration of the Brazilian Air Transportation Industry

    Science.gov (United States)

    Guterres, Marcelo Xavier; Muller, Carlos

    2003-01-01

    This paper addresses the effects of the deregulation of the Brazilian air transportation industry in terms of the concentration of the market. We will show some metrics that are commonly used to study the concentration of the industry. This paper uses the Herfindhal- Hirschman Index. This index tends to zero in the competitive scenario, with a large number of small firms, and to one in case of a monopolistic scenario. The paper analyses the dynamics of the concentration of the Brazilian domestic air transportation market, in order to evaluate the effects of deregulation. We conclude that the Brazilian market presents oligopoly characteristics and aspects in its current structure that maintain the market concentrated in spite of the Deregulation measures adopted by the aeronautical authority. Keywords: Herfindhal-Hirschman Index, concentration, Deregulation

  5. CONCENTRATION OF HARMFUL SUBSTANCES REDUCING IN SURFACE LAYER OF ATMOSPHERE AT RHEOSTAT LOCOMOTIVE TESTS

    Directory of Open Access Journals (Sweden)

    E. A. Bondar

    2010-06-01

    Full Text Available It is shown that at present an acceptable way of reducing the concentration of harmful substances in the surface layer of the atmosphere at rheostat tests of locomotives is their dispersion in a large volume of air. Channels, installed above an exhaust pipe of diesel locomotive with a break at the gas flow, work as ejectors. We have solved jointly the equation of aerodynamic characteristics of the ejector device and the equation of diffusion of gases; as a result the calculated dependence for determining the necessary height of ejector device has been obtained.

  6. Methane flux across the air-water interface - Air velocity effects

    Science.gov (United States)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  7. Concentration and saturation effects of tethered polymer chains on adsorbing surfaces

    Science.gov (United States)

    Descas, Radu; Sommer, Jens-Uwe; Blumen, Alexander

    2006-12-01

    We consider end-grafted chains at an adsorbing surface under good solvent conditions using Monte Carlo simulations and scaling arguments. Grafting of chains allows us to fix the surface concentration and to study a wide range of surface concentrations from the undersaturated state of the surface up to the brushlike regime. The average extension of single chains in the direction parallel and perpendicular to the surface is analyzed using scaling arguments for the two-dimensional semidilute surface state according to Bouchaud and Daoud [J. Phys. (Paris) 48, 1991 (1987)]. We find good agreement with the scaling predictions for the scaling in the direction parallel to the surface and for surface concentrations much below the saturation concentration (dense packing of adsorption blobs). Increasing the grafting density we study the saturation effects and the oversaturation of the adsorption layer. In order to account for the effect of excluded volume on the adsorption free energy we introduce a new scaling variable related with the saturation concentration of the adsorption layer (saturation scaling). We show that the decrease of the single chain order parameter (the fraction of adsorbed monomers on the surface) with increasing concentration, being constant in the ideal semidilute surface state, is properly described by saturation scaling only. Furthermore, the simulation results for the chains' extension from higher surface concentrations up to the oversaturated state support the new scaling approach. The oversaturated state can be understood using a geometrical model which assumes a brushlike layer on top of a saturated adsorption layer. We provide evidence that adsorbed polymer layers are very sensitive to saturation effects, which start to influence the semidilute surface scaling even much below the saturation threshold.

  8. Tritium concentration in ambient air around Kaiga Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Srinivas S Kamath

    2018-01-01

    Full Text Available Tritium (3H is one of the important long-lived radioisotopes in the gaseous effluent from nuclear power plants. In this article, we present the results of 3H monitoring in ambient air samples around the Kaiga Nuclear Power Plant, on the West Coast of India. Air samples were collected by moisture condensation method and the 3H concentration was determined by liquid scintillation spectrometry. The 3H concentration in the 2.3–15 km zone of the power plant varied in the range of <0.04–6.64 Bq m−3 with a median of 0.67 Bq m−3. The samples collected from the 2.3–5 km zone of the power plant exhibit marginally higher concentration when compared to the 5–10 km and 10–15 km zones, which is as expected. The values observed in the present study for Kaiga region are similar to those reported from other nuclear power plants, both within India and other parts of the world.

  9. Radon-222 exhalation and its variation in soil air

    International Nuclear Information System (INIS)

    Mochizuki, S.; Sekikawa, T.

    1980-01-01

    A new method has been designed and developed for measuring the concentration of radon in soil air without disturbing the natural condition of the soil. By this method, radon concentrations in the soil air at various points down to a depth of 1 m below the ground are obtained from the concentrations of radium A ( 218 Po) measured in the same air. The radium A concentration is measured by spectrometry of alpha particles from radioactive ions in the soil air. The basic experiments and preliminary observations made in the soil air below the ground confirmed the usefulness of the newly constructed apparatus for measuring the radon concentration in the soil air. Our preliminary observations showed that the radon concentration in the soil air near the surface of the earth varied remarkably before heavy thunderstorms

  10. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  11. 131I concentrations in air, milk and antelope thyroids in southeastern Idaho

    International Nuclear Information System (INIS)

    Markham, O.D.; Halford, D.K.; Bihl, D.E.

    1980-01-01

    Iodine-131 concentrations were determined in air, milk, and antelope (Antilocapra americana) thyroids from southeastern Idaho during 1972-77. Samples were collected in the vicinity of the Idaho National Engineering Laboratory Site which has 17 operating nuclear reactors, a fuel reprocessing plant, and a nuclear waste management facility. Samples were also collected from control areas. During the study, fallout occurred from five People's Republic of China above-ground nuclear weapon detonations. All 131 I detected in air and milk samples was attributed to fallout from the Chinese nuclear tests. 131 I was detected in low-volume air samples following only one of the five detonations while 131 I was detected in milk following four of the detonations. 131 I occurred in antelope thyroids during all five of the fallout periods and following at least one atmospheric release from facilities at the Idaho National Engineering Laboratory Site. Thyroids were the most sensitive indicators of 131 I in the environment followed by milk and then air. Maximum concentrations in thyroids, milk, and air were 400, 20 and 4 times higher respectively than their respective detection limits. (author)

  12. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation

    International Nuclear Information System (INIS)

    Li, Xiang; Peng, Ling; Yao, Xiaojing; Cui, Shaolong; Hu, Yuan; You, Chengzeng; Chi, Tianhe

    2017-01-01

    Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM 2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13–24 h prediction tasks (MAPE = 31.47%). - Highlights: • Regional air pollutant concentration shows an obvious spatiotemporal correlation. • Our prediction model presents superior performance. • Climate data and metadata can significantly

  13. Exposition by inhalation to the formaldehyde in the air. Source, measures and concentrations; Exposition par inhalation au formaldehyde dans l'air. Source, mesures et concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I

    2004-12-15

    This document presents the main techniques today available to characterize the formaldehyde concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  14. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  15. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  16. Surface modification of bone char for removal of formaldehyde from air

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Abbas, E-mail: rezaee@modares.ac.ir [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rangkooy, Hosseinali [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Occupational Health Department, Faculty of Health, Jondishapor Medical Sciences University, Ahvaz (Iran, Islamic Republic of); Jonidi-Jafari, Ahmad; Khavanin, Ali [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2013-12-01

    The aim of this study was to evaluate the adsorption performance of bone char (BC) modified with acetic acid for formaldehyde removal from polluted air. The porous structure, surface characteristics and functional groups involved in formaldehyde adsorption were determined using the Brunauer–Emmett–Teller (BET) method, scanning electron microscope (SEM) equipped with energy dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that the modified BC has a higher specific surface area than the original BC. The maximum surface area of the modified BC was 118.58 m{sup 2}/g. The FTIR spectrum of modified BC indicated that the hydroxyl and carboxyl groups on the BC surface played a significant role in the adsorption of formaldehyde by modified BC. The breakthrough, equilibrium time and adsorption capacity of modified BC were greater than the original BC. Moreover, the results showed that at initial concentrations of 20, 50, 100 and 200 mg/L, the equilibrium times for BC and modified BC were 85, 75, 65 and 45 min and 95, 85, 70 and 50 min, respectively. It seems that the formaldehyde adsorption capacity of modified BC depends on both physical and chemical properties. These results showed that modified BC can be used as an efficient adsorbent for formaldehyde removal.

  17. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    Science.gov (United States)

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

  18. Maps on large-scale air quality concentrations in the Netherlands. Report on 2008

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Blom, W.F.; Van Dam, J.D.; Elzenga, H.E.; Geilenkirchen, G.P.; Hammingh, P.; Hoen, A.; Jimmink, B.A.; Koelemeijer, R.B.A.; Matthijsen, J.; Peek, C.J.; Schilderman, C.B.W.; Van der Sluis, O.C.; De Vries, W.J.

    2008-01-01

    Decrease expected in the number of locations exceeding the air quality limit values In the Netherlands, the number of locations were the European limit values for particulate matter and nitrogen dioxide will be exceeded is expected to decrease by 70-90%, in the period up to 2011, respectively 2015. The limit value for particulate matter from 2011 onwards, and for nitrogen dioxide from 2015 onwards, is expected to be exceeded at a small number of locations in the Netherlands, based on standing and proposed Dutch and European policies. These locations are situated mainly in the Randstad, Netherlands, in the vicinity of motorway around the large cities and in the busiest streets in large cities. Whether the limit values will actually be exceeded depends also on local policies and meteorological fluctuations. This estimate is based on large-scale concentration maps (called GCN maps) of air quality components and on additional local contributions. The concentration maps provide the best possible estimate of large-scale air quality. The degree of uncertainty about the local concentrations of particulate matter and nitrogen dioxide is estimated to be approximately 20%. This report presents the methods used to produce the GCN maps and the included emissions. It also shows the differences with respect to the maps of 2007. These maps are used by local, provincial and other authorities. MNP emphasises to keep the uncertainties in the concentrations in mind when using these maps for planning, or when comparing concentrations with limit values. This also applies to the selecting of local measures to improve the air quality. The concentration maps are available online, at http://www.mnp.nl/gcn.html [nl

  19. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  20. Estimation of radionuclide concentration of 238U, 226Ra, 232Th in air in Wuhan city

    International Nuclear Information System (INIS)

    Shi Jinhua; Chen Changhua

    1989-01-01

    The concentrations of 238 U, 226 Ra and 232 Th in air in Wuhan area were estimated by assuming that they originate from resuspended particles of soil and investigating the dust content in air and the concentrations of these radionuclides in soil. 60 soil samples were collected from April to October, 1984, and 7346 air dust samples during 1981-1985. The estimated mean air concentrations of 238 U, 226 Ra and 232 Th were 24.0 x 10 -9 , 18.9 x 10 -9 and 28.7 x 10 -9 , Bq/L, respectively. Their highest values were observed of 30.4 x 10 -9 , 23.9 x 10 -9 and 36.2 x 10 -9 Bq/L in 1983. Seasonal change of the concentrations was clear as shown in the data of 1984 and 1985, which was related to the meterological conditions. Among the 6 districts of Wuhan city, the highest concentration was in Qingshan and the lowest in Wuchang

  1. Variations of caesium isotope concentrations in air and fallout at Dalat, South Vietnam, 1986-1991

    International Nuclear Information System (INIS)

    Pham Zuy Hien; Nguyen Thanh Binh; Truong Y.; Vuong Thu Bac; Nguyen Trong Ngo.

    1993-01-01

    Monthly records of Cs-137 and Cs-134 concentrations in air and fallout at Dalat for the period 1986-1991 are presented and discussed. The concentration variations exhibit distinct maxima during December-January, when dry fallout dominated. These peaks are explained by the intrusion of more radioactive cold air masses from temperate northern latitudes during the development of large-scale anticyclones frequently observed in the most active winter monsoon period. High dry fallout velocities (about 10 cm/s) determined from this data clearly demonstrate one of the most relevant characteristics of cold air masses: behind the cold front, vertical air motion is descending

  2. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran

    Science.gov (United States)

    Hazrati, Sadegh; Rostami, Roohollah; Farjaminezhad, Manoochehr; Fazlzadeh, Mehdi

    2016-05-01

    BTEX concentrations in indoor and outdoor air of 50 homes were studied in Ardabil city and their influencing parameters including; heating system, using gas stove and samovar, tobacco smoking, the floors in which the monitored homes were located, and kitchen plan were considered in the study. Risk assessment analysis was carried out with the obtained concentrations based on EPA IRIS reference doses. BTEX compounds were sampled by charcoal tubes and the samples were analyzed by a GC-FID. Concentrations of benzene (15.18 μg/m3 vs. 8.65 μg/m3), toluene (69.70 μg/m3 vs. 40.56 μg/m3), ethylbenzene (12.07 μg/m3 vs. 4.92 μg/m3) and xylene (48.08 μg/m3 vs. 7.44 μg/m3) in indoor air were significantly (p < 0.05) higher than the levels quantified for outdoor air. The obtained concentrations of benzene were considerably higher than the recommended value of 5 μg/m3 established by Iran environmental protection organization. Among the BTEX compounds, benzene (HQ = 0.51) and xylene (HQ = 0.47) had notable hazard quotient and were the main pollutants responsible for high hazard index in the monitored homes (HI = 1.003). The results showed considerably high cancer risk for lifetime exposure to the indoor (125 × 10-6) and outdoor (71 × 10-6) benzene. Indoor benzene concentrations in homes were significantly influenced by type of heating system, story, and natural gas appliances.

  3. Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow

    Science.gov (United States)

    Fu, Xuewu; Feng, Xinbin; Zhang, Gan; Xu, Weihai; Li, Xiangdong; Yao, Hen; Liang, Peng; Li, Jun; Sommar, Jonas; Yin, Runsheng; Liu, Na

    2010-03-01

    Using R/V Shiyan 3 as a sampling platform, measurements of gaseous elemental mercury (GEM), surface seawater total mercury (THg), methyl mercury (MeHg), and dissolved gaseous mercury (DGM) were carried out above and in the South China Sea (SCS). Measurements were collected for 2 weeks (10 to 28 August 2007) during an oceanographic expedition, which circumnavigated the northern SCS from Guangzhou (Canton), Hainan Inland, the Philippines, and back to Guangzhou. GEM concentrations over the northern SCS ranged from 1.04 to 6.75 ng m-3 (mean: 2.62 ng m-3, median: 2.24 ng m-3). The spatial distribution of GEM was characterized by elevated concentrations near the coastal sites adjacent to mainland China and lower concentrations at stations in the open sea. Trajectory analysis revealed that high concentrations of GEM were generally related to air masses from south China and the Indochina peninsula, while lower concentrations of GEM were related to air masses from the open sea area, reflecting great Hg emissions from south China and Indochina peninsula. The mean concentrations of THg, MeHg, and DGM in surface seawater were 1.2 ± 0.3 ng L-1, 0.12 ± 0.05 ng L-1, and 36.5 ± 14.9 pg L-1, respectively. In general, THg and MeHg levels in the northern SCS were higher compared to results reported from most other oceans/seas. Elevated THg levels in the study area were likely attributed to significant Hg delivery from surrounding areas of the SCS primarily via atmospheric deposition and riverine input, whereas other sources like in situ production by various biotic and abiotic processes may be important for MeHg. Average sea/air flux of Hg in the study area was estimated using a gas exchange method (4.5 ± 3.4 ng m-2 h-1). This value was comparable to those from other coastal areas and generally higher than those from open sea environments, which may be attributed to the reemission of Hg previously transported to this area.

  4. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong.

    Science.gov (United States)

    Zhang, Jiangshe; Ding, Weifu

    2017-01-24

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R 2 increased and root mean square error values decreased respectively.

  5. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    Directory of Open Access Journals (Sweden)

    Jiangshe Zhang

    2017-01-01

    Full Text Available With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R 2 increased and root mean square error values decreased respectively.

  6. The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores

    International Nuclear Information System (INIS)

    Grinn-Gofron, Agnieszka; Strzelczak, Agnieszka; Wolski, Tomasz

    2011-01-01

    Fungal spores are an important component of bioaerosol and also considered to act as indicator of the level of atmospheric bio-pollution. Therefore, better understanding of these phenomena demands a detailed survey of airborne particles. The objective of this study was to examine the dependence of two the most important allergenic taxa of airborne fungi - Alternaria and Cladosporium - on meteorological parameters and air pollutant concentrations during three consecutive years (2006-2008). This study is also an attempt to create artificial neural network (ANN) forecasting models useful in the prediction of aeroallergen abundance. There were statistically significant relationships between spore concentration and environmental parameters as well as pollutants, confirmed by the Spearman's correlation rank analysis and high performance of the ANN models obtained. The concentrations of Cladosporium and Alternaria spores can be predicted with quite good accuracy from meteorological conditions and air pollution recorded three days earlier. - ANN models predict airspore contents from weather conditions and air pollutant.

  7. Air ion concentrations in various urban outdoor environments

    Science.gov (United States)

    Ling, Xuan; Jayaratne, Rohan; Morawska, Lidia

    2010-06-01

    Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm -3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm -3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.

  8. Assessment of air quality benefits from national air pollution control policies in China. Part II: Evaluation of air quality predictions and air quality benefits assessment

    Science.gov (United States)

    Wang, Litao; Jang, Carey; Zhang, Yang; Wang, Kai; Zhang, Qiang; Streets, David; Fu, Joshua; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming; Lam, Yun-Fat; Lin, Jerry; Meskhidze, Nicholas; Voorhees, Scott; Evarts, Dale; Phillips, Sharon

    2010-09-01

    Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM 2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO 2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality. The air quality improvement that would result from the targeted sulfur dioxide (SO 2) and nitrogen oxides (NO x) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO 2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30-60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM 2.5 can also decline by 3-15 μg m -3 (4-25%) due to the lower SO 2 and sulfate concentrations. If similar controls are implemented for NO x emissions, NO x concentrations are estimated to decrease by 30-60% as compared with the 2010 BAU scenario. The annual mean PM 2.5 concentrations will also decline by 2-14 μg m -3 (3-12%). In addition, the number of ozone (O 3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O 3 concentrations in the summer reduced by 8-30 ppb.

  9. Maps on large-scale air quality concentrations in the Netherlands

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Beck, J.P.; Blom, W.F.; Van Dam, J.D.; Elzenga, H.E.; Geilenkirchen, G.P.; Hoen, A.; Jimmink, B.A.; Matthijsen, J.; Peek, C.J.; Van Velze, K.; Visser, H.; De Vries, W.J.

    2007-01-01

    Every year MNP produces maps showing large-scale concentrations of several air quality components in the Netherlands for which there are European regulations. The concentration maps are based on a combination of model calculations and measurements. These maps (called GCN maps) show the large-scale contribution of these components in air in the Netherlands for both past and future years. Local, provincial and other authorities use these maps for reporting exceedances in the framework of the EU Air Quality Directive and for planning. The report gives the underlying assumptions applied to the GCN-maps in this 2007 report. The Dutch Ministry of Housing, Spatial Planning and the Environment (VROM) is legally responsible for selecting the scenario to be used in the GCN maps. The Ministry has chosen to base the current maps of nitrogen dioxide, particulate matter (PM10) and sulphur dioxide for 2010 up to 2020 on standing and proposed Dutch and European policies. That means that the Netherlands and other European countries will meet their National Emissions Ceilings (NEC) by 2010 and the emissions according to the ambitions of the Thematic Strategy on Air Pollution of the European Commission up to 2020, as assumed in the calculations. The large-scale concentrations of NO2 and PM10, presented by the GCN maps, are in 2006 and for the 2010-2020 period, below the European limit value of yearly averaged 40 μg m 3 everywhere in the Netherlands. The large-scale concentration exceeds the European limit value for the daily average of PM10 of maximally 35 days above 50 μg m 3 in some locations in 2006. This applies close to the harbours of Amsterdam and Rotterdam and is associated with storage and handling of dry bulk material. The large-scale concentration of PM10 is below the European limit value for the daily average everywhere in 2010-2020. Several changes have been implemented, in addition to the changes in the GCN maps of last year (report March 2006). New insights into

  10. Determination of the air attenuation and electronic loss for the free air concentric cylinders ionization chamber

    International Nuclear Information System (INIS)

    Oliveira, Hebert Pinto Silveira de

    2010-01-01

    Along the latest years, the LNMRI has been proceeding a continuous research work with a concentric cylinders type free air ionizing chamber (VICTOREEN, model 481), aiming to establish it as a new national standard, and, as a consequence, replace the worldwide accepted secondary standard, calibrated by PTB. Taking into account that the absolute determination of kerma in air with a free air ionizing chamber implies the acquirement of a number of correction factors. The main objective of the present work comprises the determination of the two factors, specifically, electronic loss (k e ) and air attenuation (k a ). The correction factors were obtained through mammography qualities reference spectrum, using Monte Carlo simulation method. The Penelope code was used in the simulation procedures. Simulations took place in two stages, the acquirement of specters related to the qualities of interest (mammography) with the x ray tube (Pantak, model HF160 e Panalytical, model XRF window), and the free-air ionization chamber. The data were compared to those related to the BIPM chamber, to electronic loss were not detected. The comparison between air attenuation factors was obtained data bellow 0.13%. (author)

  11. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China

    Science.gov (United States)

    Chen, Jie; Wu, Zhijun; Augustin-Bauditz, Stefanie; Grawe, Sarah; Hartmann, Markus; Pei, Xiangyu; Liu, Zirui; Ji, Dongsheng; Wex, Heike

    2018-03-01

    Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.

  12. Evaluation of methods for monitoring air concentrations of hydrogen sulfide

    Directory of Open Access Journals (Sweden)

    Katarzyna Janoszka

    2013-06-01

    Full Text Available The development of different branches of industry and a growing fossil fuels mining results in a considerable emission of by-products. Major air pollutants are: CO, CO₂, SO₂, SO₃, H₂S, nitrogen oxides, as well as compounds of an organic origin. The main aspects of this paper is to review and evaluate methods used for monitoring of hydrogen sulfide in the air. Different instrumental techniques were discussed, electrochemical, chromatographic and spectrophotometric (wet and dry, to select the method most suitable for monitoring low levels of hydrogen sulfide, close to its odor threshold. Based on the literature review the method for H₂S determination in the air, involving absorption in aqueous zinc acetate and reaction with N,N-dimethylo-p-phenylodiamine and FeCl₃, has been selected and preliminary verified. The adopted method allows for routine measurements of low concentration of hydrogen sulfide, close to its odor threshold in workplaces and ambient air. Med Pr 2013;64(3:449–454

  13. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    Science.gov (United States)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  14. Variations of Rn-222 concentration in the Bratislava air

    International Nuclear Information System (INIS)

    Holy, K.; Bohm, R.; Polaskova, A.

    1996-01-01

    222 Rn is produced by alpha decay of 222 Ra in roil. A small fraction of totally produced 222 Rn escapes from coil particles into soil air. Then 222 Rn is transported predominantly by molecular diffusion into outdoor atmosphere. The radon concentration in the outdoor atmosphere is not stable. It varies irregularly depending on meteorological conditions. However there were found out regular daily and remand variations of 222 Rn concentration in outdoor atmosphere. These variations were measured in numerous works and results are summarized f.e. in work of Gesell. A simple model described the annual variations of 222 Rn concentration war published by Minato. A mathematical analysis of daily course of 222 Rn concentration in outdoor atmosphere was realized by Garzon et al. Some results of our study of 222 Rn variations in outdoor atmosphere of Bratislava are shown in this report. (author)

  15. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.

    Science.gov (United States)

    Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.

    2000-12-01

    The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air

  16. Volatile Organic Compounds (VOCs) in the Ambient Air Of Concentration Unit of Sar-Cheshmeh Copper Complex

    International Nuclear Information System (INIS)

    Faghihi-Zrandi, A.; Akhgar, M. R.

    2016-01-01

    Air pollutants including gases, vapors and particles, are emitted from different sources. Volatile organic compounds are the most important pollutants in the ambient air of industries. The present study was carried out to identify and measurement of volatile organic compounds in concentration unit of Sar-Cheshmeh Copper Complex. In this study, sampling of the volatile organic compounds was done by using activated charcoal tube. To identify and measure these compounds gas chromatography/mass spectroscopy were used. Thirteen volatile organic compounds were identified in the ambient air of concentration unit. Among these compounds, the mean value and maximum concentration of isopropyl alcohol and nonane were 255, 640 μg/m3 and 1577, 14400 μg/m3, respectively. By using SPSS software and independent sample t- test, showed that there were no significant difference between mean value concentration of isopropyl alcohol and nonane in the ambient air and TLV values of these compounds (isopropyl alcohol; 200 ppm and nonane; 200 ppm) (P >0.05).

  17. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    Science.gov (United States)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  18. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-03-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.

  19. High radon concentrations in the indoor air in public waterworks. - A report from visits to the waterworks in Ludvika, Fredriksberg, Kolbaeck and Aendesta

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2000-09-01

    High radon concentrations in the indoor air in buildings used for water treatment are not uncommon. When raw water is processed in the waterworks, and the process is made in an open system, radon may escape from the water to the premises. The radon concentration of the raw water does not need to be high to give a radon escape of 2,0-50 Bq/l, which may lead to indoor air radon concentrations in the premises of 10,000 Bq/m3 to more than 50,000 Bq/m3. The waterworks are workplaces for the staff. However, it is not uncommon that other groups of employees have their jobs in the same buildings. Persons that spend long times in waterworks with high radon concentrations in the air may receive radiation doses as high as 20 mSv/a or more, which is the annual average upper limit in a consecutive five-year period for radiation workers. Waters that contain enough radon to release so much radon that it may cause high radon concentrations in the premises are groundwaters from aquifers in the bedrock and in the soil and surface waters, that has been infiltrated through deposits of sand and gravel. Surface waters that have not been infiltrated have very low radon concentrations < 1 Bq/l). This report accounts for experiences from Ludvika, Fredriksberg, Kolbaeck and Aendesta waterworks and results of radon and gamma radiation measurements in these waterworks. The report represents a part of the SSI project Inventory of industries in which radiation from natural radioactive elements is of concern. The aim of this project is to collect information on exposure to natural radiation at workplaces, and is a part in the implementation of the EU Council Directive (96119 Euratom) on Basic Safety Standards (BSS) for the protection of the health of workers and the general public against dangers arising from ionizing radiation

  20. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  1. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  2. Characteristics of radon and its progeny concentrations in air-conditioned office buildings in Tokyo

    International Nuclear Information System (INIS)

    Tokonami, S.; Furukawa, M.; Shicchi, Y.; Sanada, T.; Yamada, Y.

    2003-01-01

    A series of measurements were carried out to understand the characteristics of radon and its progeny in air-conditioned office buildings. Long-term measurements of radon were made with etched track detectors. Continuous measurements of radon and its progeny concentrations were also conducted in some buildings to study their temporal variations. The results show that radon and its progeny concentrations routinely varied along with working activities. They are generally low while people are working, due to air conditioning, whereas they rise steadily after the air conditioning stops. When considering action levels not only in homes but also workplaces, attention should be paid to annual doses from the viewpoint of radiation protection. The annual dose is generally estimated with a long-term measurement of radon concentration using a passive device such as an etched track detector. Since its reading corresponds to a long-term average concentration regardless of working hours, the annual dose will be overestimated. When comparing a real dose after considering the working hours, they differ by a factor of more than 2. (author)

  3. Concentration of Radon Progeny in Air by Alpha Spectrometry Measurement; Medida de los descendientes del radon en aire por Espectrometria Alfa

    Energy Technology Data Exchange (ETDEWEB)

    Acena, M L; Crespo, M T

    1989-07-01

    The concentration of radon progeny in air has been determined by alpha spectrometry measurement of 214 Po and 318 Po. A known volume of air was passed through a filter, then the alpha activity was directly measured on this filter. (Author) 15 refs.

  4. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or...... reconstruction from oxidation in air, Contact bonding opens the way to novel applications of reconstructed semiconductor surfaces, by preserving their atomic structure intact outside of a UHV chamber. (C) 1997 American Institute of Physics.......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  5. The contribution to surface dose form air scatter in mega voltage photon beams

    International Nuclear Information System (INIS)

    Carolan, M.G.; Butson, M.; Metcalfe, P.

    1996-01-01

    Full text: The minimisation of surface dose is an important requirement in radiotherapy in order to avoid undesirable skin reactions. For this reason significant effort has been expended to avoid and understand photon and electron scatter in the heads of linear accelerators which may contribute to surface dose. In this study we have examined the contribution to surface dose which arises due to scatter in the air above the patient. Experimental investigations of air contributions are difficult to design and execute. Therefore we have used Monte Carlo calculations to determine the effect that the presence of air has on surface dose. Methods: The Los Alamos Monte Carlo Neutron and Photon transport code, MCNP4A which incorporates the ETRAN electron transport code from the Integrated TIGER Series of codes was used for our simulations. The geometry used in the model was a 30 cm cube of water. The dose was tallied in cylindrical elements of 7 cm diameter along the axis of the photon beam. For the first millimetre along the beam axis in the phantom, the dose was determined at 0.1 mm increments in 0.1 mm thick volumes. For depths between 1.0 mm and 15.0 mm the dose was determined every 1 mm in 1 mm cylindrical volumes. This yields a depth dose profile with fine spatial resolution near the phantom surface. Dose was also tallied at depths of 5.0, 10.0, 15.0 and 20.0 cm. The simulations were done assuming a 6 MV photon source with a diameter of 1.5 cm, a gaussian intensity profile and a photon energy spectrum based on Mohan et al. (Med. Phys. 12 (1985) 592). No accelerator head geometry was modelled. The field size was defined by virtual collimators which were simply thin regions of zero photon importance and therefore do not contribute to photon or electron scatter. All simulations were run for sufficient particle histories (∼2x10 7 - 5x10 7 source photons) to give statistical uncertainties of ≤ 10% and in most cases ≤ 5%. Fields of size 10, 15, 20 and 25 cm were used

  6. Ventilation filters as sources of air pollution – Processes occurring on surfaces of used filters

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Halás, Oto; Clausen, Geo

    2004-01-01

    Ozone concentrations were monitored upstream and downstream of used filter samples following 24hours of ventilation with ozone- filtered air. The ozone concentration in the air upstream of the filters was maintained at ~75 ppb while the concentration downstream of the filters was initially betwee...

  7. Concentration and movement of neonicotinoids as particulate matter downwind during agricultural practices using air samplers in southwestern Ontario, Canada.

    Science.gov (United States)

    Forero, Luis Gabriel; Limay-Rios, Victor; Xue, Yingen; Schaafsma, Arthur

    2017-12-01

    Atmospheric emissions of neonicotinoid seed treatment insecticides as particulate matter in field crops occur mainly for two reasons: 1) due to abraded dust of treated seed generated during planting using vacuum planters, and 2) as a result of disturbances (tillage or wind events) in the surface of parental soils which release wind erodible soil-bound residues. In the present study, concentration and movement of neonicotinoids as particulate matter were quantified under real conditions using passive and active air samplers. Average neonicotinoid concentrations in Total Suspended Particulate (TSP) using passive samplers were 0.48 ng/cm 2 , trace, trace (LOD 0.80 and 0.04 ng/cm 2 for clothianidin and thiamethoxam, respectively), and using active samplers 16.22, 1.91 and 0.61 ng/m 3 during planting, tillage and wind events, respectively. There was a difference between events on total neonicotinoid concentration collected in particulate matter using either passive or active sampling. Distance of sampling from the source field during planting of treated seed had an effect on total neonicotinoid air concentration. However, during tillage distance did not present an effect on measured concentrations. Using hypothetical scenarios, values of contact exposure for a honey bee were estimated to be in the range from 1.1% to 36.4% of the reference contact LD 50 value of clothianidin of 44 ng/bee. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Air quality more extensive monitoring of particulates pollution but concentrations must be reduced by 2005

    International Nuclear Information System (INIS)

    Ba, M.; Colosio, J.

    2000-09-01

    Most epidemiological data point to a link between the concentrations of particles measured in the ambient air and the effects of air pollution on human health. Particulates emitted by road traffic and industry are among the most harmful; they carry serious risks. The particulate monitoring network and legislation on the issue are constantly changing. In France, the number of monitoring stations has more than doubled in recent years. EC Directive 1999/30/EC of 22 April 1999 sets limit values for concentrations of particulates in ambient air to be complied with at certain given dates. In France, while the concentrations measured in urban areas with over 100 000 inhabitants are below the limit values set by the Directive for today, they are significantly higher than those to be complied with by 1 January 2005. (author)

  9. Radionuclide concentration in ground-level air from 1986 to 1987 in North Germany and North Norway

    International Nuclear Information System (INIS)

    Kolb, W.

    1988-03-01

    The activity concentration of various fission products and some other radionuclides (e.g. Be-7, Na-22, K-40 and Pb-210) contained in surface air were determined by γ-spectroscopy. The mean monthly acitvity concentrations of up to 30 radionuclides measured in 1986 and 1987 in Brunswick, Berlin and Skibotn (North Norway) are tabulated. The Chernobyl accident of April 26, 1986, resulted in 1986 in an annual mean Cs-137 activity concentration of 2.4 mBq/m 3 in Brunswick, 8.8 mBq/m 3 in Berlin and 0.3 mBq/m 3 at Skibotn. In 1987 the Cs-137 concentrations were just about 1% of these values. Occasionally fresh fission products from other sources were detected as e.g. I-131 in March 1987 (very likely released from a reactor site in Ukraine) and in August 1987 (released from an underground nuclear test on Novaja Zemlya together with other short-lived fission products). The effective dose equivalent due to inhalation of fission products is estimated for all three sites and compared with the Pb-210 inhalation dose. (orig./HP) [de

  10. Surface kinetics for catalytic combustion of hydrogen-air mixtures on platinum at atmospheric pressure in stagnation flows

    Science.gov (United States)

    Ikeda, H.; Sato, J.; Williams, F. A.

    1995-03-01

    Experimental studies of the combustion of premixed hydrogen-air mixtures impinging on the surface of a heated platinum plate at normal atmospheric pressure were performed and employed to draw inferences concerning surface reaction mechanisms and rate parameters applicable under practical conditions of catalytic combustion. Plate and gas temperatures were measured by thermocouples, and concentration profiles of major stable species in the gas were measured by gas-chromatographic analyses of samples withdrawn by quartz probes. In addition, ignition and extinction phenomena were recorded and interpreted with the aid of a heat balance at the surface and a previous flow-field analysis of the stagnation-point boundary layer. From the experimental and theoretical results, conclusions were drawn concerning the surface chemical-kinetic mechanisms and values of the elementary rate parameters that are consistent with the observations. In particular, the activation energy for the surface oxidation step H + OH → H 2O is found to be appreciably less at these high surface coverages than in the low-coverage limit.

  11. High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke

    International Nuclear Information System (INIS)

    Böhlandt, Antje; Schierl, Rudolf; Diemer, Juergen; Koch, Christoph; Bolte, Gabriele; Kiranoglu, Mandy; Fromme, Hermann; Nowak, Dennis

    2012-01-01

    Background: Environmental tobacco smoke (ETS) is one of the most important sources for indoor air pollution and a substantial threat to human health, but data on the concentrations of the trace metals cerium (Ce) and lanthanum (La) in context with ETS exposure are scarce. Therefore the aim of our study was to quantify Ce and La concentrations in indoor air with high ETS load. Methods: In two subsequent investigations Ce, La and cadmium (Cd) in 3 smokers' (11 samples) and 7 non-smokers' (28 samples) households as well as in 28 hospitality venues in Southern Germany were analysed. Active sampling of indoor air was conducted continuously for seven days in every season in the smokers' and non-smokers' residences, and for 4 h during the main visiting hours in the hospitality venues (restaurants, pubs, and discotheques). Results: In terms of residences median levels of Cd were 0.1 ng/m 3 for non-smokers' and 0.8 ng/m 3 for smokers' households. Median concentrations of Ce were 0.4 ng/m 3 and 9.6 ng/m 3 , and median concentrations of La were 0.2 ng/m 3 and 5.9 ng/m 3 for non-smokers' and for smokers' households, respectively. In the different types of hospitality venues median levels ranged from 2.6 to 9.7 ng/m 3 for Cd, from 18.5 to 50.0 ng/m 3 for Ce and from 10.6 to 23.0 ng/m 3 for La with highest median levels in discotheques. Conclusions: The high concentrations of Ce and La found in ETS enriched indoor air of smokers' households and hospitality venues are an important finding as Ce and La are associated with adverse health effects and data on this issue are scarce. Further research on their toxicological, human and public health consequences is urgently required. - Highlights: ► We quantified cer, lanthanum and cadmium concentrations in indoor air. ► Cer and lanthanum concentrations were high in tobacco smoke enriched locations. ► Both elements can be considered as good markers for indoor air quality.

  12. Thermal behaviour of a solar air heater with a compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, R.

    2005-11-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)

  13. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    -7, 10-5, and 10-5 respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10-5, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.

  14. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...... algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control...

  15. Short-term Rn-222 concentration changes in underground spaces with limited air exchange

    Science.gov (United States)

    Fijałkowska-Lichwa, Lidia; Przylibski, Tadeusz A.

    2010-05-01

    Authors conducted research on radon concentration in two underground structures located in the vicinity of Kletno (Sudety Mts., SW Poland), which are accessible for visitors. One of these structures is Niedźwiedzia (Bear) Cave, and the second one is the part of former uranium mine - Fluorite Adit. Both selected underground structures are characterized by almost constant temperature, changing within the range from +5 to +7° C and also constant relative humidity, close to 100%. Both these parameters testify that air exchange with the atmosphere is very limited. Air exchange is limited particularly in Niedźwiedzia Cave, which microclimate is protected i.e. by applying of locks at the entrance and exit of tourist route. The measurements were conducted between 16.05.2008. and 15.11.2009., by the use of a new Polish equipment - SRDN-3 devices with semiconductor detector. SRDN-3 device records every hour radon concentration as well as atmospheric parameters - relative humidity and temperature. At the same time authors conducted measurements of basic parameters in the open atmosphere close to Niedźwiedzia Cave. Obtained results of atmospheric parameters measurements may be used for both underground structures; because they are located within the distance of about 1 km. Atmospheric parameters were measured by the use of automatic weather station VantagePro2. On the base of conducted research authors corroborate, that the differences of radon concentration in both underground structures reach three orders of magnitude during a year. In Niedźwiedzia Cave these values are in the range from below 88 Bq/m3 (detection limit of the SRDN-3 device) up to 12 kBq/m3. Related values in Fluorite Adit are between < 88 Bq/m3 and 35 kBq/m3. It was observed also the different course of daily radon concentration changes in both structures. Additionally, authors registered that daily course of radon concentration changes differs due to season of the year. Such changes are observed in

  16. Indoor air-assessment: Indoor concentrations of environmental carcinogens

    International Nuclear Information System (INIS)

    Gold, K.W.; Naugle, D.F.; Berry, M.A.

    1991-01-01

    In the report, indoor concentration data are presented for the following general categories of air pollutants: radon-222, environmental tobacco smoke (ETS), asbestos, gas phase organic compounds, formaldehyde, polycyclic aromatic hydrocarbons (PAH), pesticides, and inorganic compounds. These pollutants are either known or suspect carcinogens (i.e., radon-222, asbestos) or more complex mixtures or classes of compounds which contain known or suspect carcinogens. Concentration data for individual carcinogenic compounds in complex mixtures are usually far from complete. The data presented for complex mixtures often include compounds which are not carcinogenic or for which data are insufficient to evaluate carcinogenicity. Their inclusion is justified, however, by the possibility that further work may show them to be carcinogens, cocarcinogens, initiators or promotors, or that they may be employed as markers (e.g., nicotine, acrolein) for the estimation of exposure to complex mixtures

  17. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.

    Science.gov (United States)

    Li, Xiang; Peng, Ling; Yao, Xiaojing; Cui, Shaolong; Hu, Yuan; You, Chengzeng; Chi, Tianhe

    2017-12-01

    Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM 2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13-24 h prediction tasks (MAPE = 31.47%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Air, hand wipe, and surface wipe sampling for Bisphenol A (BPA) among workers in industries that manufacture and use BPA in the United States.

    Science.gov (United States)

    Hines, Cynthia J; Jackson, Matthew V; Christianson, Annette L; Clark, John C; Arnold, James E; Pretty, Jack R; Deddens, James A

    2017-11-01

    For decades, bisphenol A (BPA) has been used in making polycarbonate, epoxy, and phenolic resins and certain investment casting waxes, yet published exposure data are lacking for U.S. manufacturing workers. In 2013-2014, BPA air and hand exposures were quantified for 78 workers at six U.S. companies making BPA or BPA-based products. Exposure measures included an inhalable-fraction personal air sample on each of two consecutive work days (n = 146), pre- and end-shift hand wipe samples on the second day (n = 74 each), and surface wipe samples (n = 88). Potential determinants of BPA air and end-shift hand exposures (after natural log transformation) were assessed in univariate and multiple regression mixed models. The geometric mean (GM) BPA air concentration was 4.0 µg/m 3 (maximum 920 µg/m 3 ). The end-shift GM BPA hand level (26 µg/sample) was 10-times higher than the pre-shift level (2.6 µg/sample). BPA air and hand exposures differed significantly by industry and job. BPA air concentrations and end-shift hand levels were highest in the BPA-filled wax manufacturing/reclaim industry (GM Air = 48 µg/m 3 , GM Hand-End = 130 µg/sample) and in the job of working with molten BPA-filled wax (GM Air = 43 µg/m 3 , GM Hand-End = 180 µg/sample), and lowest in the phenolic resins industry (GM Air = 0.85 µg/m 3 , GM Hand-End = 0.43 µg/sample) and in the job of flaking phenolic resins (GM AIR = 0.62 µg/m 3 , GM Hand-End = 0.38 µg/sample). Determinants of increased BPA air concentration were industry, handling BPA containers, spilling BPA, and spending ≥50% of the shift in production areas; increasing age was associated with lower air concentrations. BPA hand exposure determinants were influenced by high values for two workers; for all other workers, tasks involving contact with BPA-containing materials and spending ≥50% of the shift in production areas were associated with increased BPA hand levels. Surface wipe BPA levels were significantly lower in

  19. Influence of air-powder polishing on bond strength and surface-free energy of universal adhesive systems.

    Science.gov (United States)

    Tamura, Yukie; Takamizawa, Toshiki; Shimamura, Yutaka; Akiba, Shunsuke; Yabuki, Chiaki; Imai, Arisa; Tsujimoto, Akimasa; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2017-11-29

    The influences of air-powder polishing with glycine or sodium bicarbonate powders on shear bond strengths (SBS) and surface-free energies of universal adhesives were examined. Scotchbond Universal Adhesive (SU, 3M ESPE), G-Premio Bond (GP, GC), Adhese Universal (AU, Ivoclar Vivadent), and All-Bond Universal (AB, Bisco) were used in this study. Bovine dentin surfaces were air polished with glycine or sodium bicarbonate powders prior to the bonding procedure, and resin pastes were bonded to the dentin surface using universal adhesives. SBSs were determined after 24-h storage in distilled water at 37°C. Surface-free energy was then determined by measuring contact angles using three test liquids on dentin surfaces. Significantly lower SBSs were observed for dentin that was air-powder polished and surface-free energies were concomitantly lowered. This study indicated that air-powder polishing influences SBSs and surface-free energies. However, glycine powder produced smaller changes in these surface parameters than sodium bicarbonate.

  20. Maps on large-scale air quality concentrations in the Netherlands. Report on 2009

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Blom, W.F.; Diederen, H.S.M.A.; Geilenkirchen, G.P.; Jimmink, B.A.; Koekoek, A.F.; Koelemeijer, R.B.A.; Matthijsen, J.; Peek, C.J.; Van Rijn, F.J.A.; Van Schijndel, M.W.; Van der Sluis, O.C.; De Vries, W.J.

    2009-06-01

    In the Netherlands, the number of locations where the European limit values for particulate matter and nitrogen dioxide concentrations could be exceeded is lower than was estimated last year. The limit value for particulate matter, from 2011 onwards, is possibly be exceeded at only a few locations in the Netherlands, based on standing and proposed national and European policies. These locations are situated mainly in the Randstad area in the Netherlands, in the vicinity of motorways around the large cities, and close to stables in agricultural areas. The limit value for nitrogen dioxide, from 2015 onwards, is possibly to be exceeded along 100 kilometres of roads in cities and along 50 kilometres of motorways. Whether the limit values will actually be exceeded depends also on local policies and meteorological fluctuations. This estimate was based on large-scale concentration maps (called GCN maps) of air quality components, and on additional local contributions. The concentration maps provided the best possible estimate of large-scale air quality. The degree of uncertainty in local concentrations of particulate matter and nitrogen dioxide was estimated to be approximately 15 to 20%. This report presents the methods and emissions used for producing the GCN maps. It also shows the differences with respect to the maps of 2008. These maps are used by local, provincial and other authorities to define additional local measures. PBL would like to emphasise that uncertainties in the concentrations must be kept in mind when using these maps for planning, or when comparing concentrations with limit values. This also applies to the selecting of local measures to improve the air quality. The concentration maps are available online, at http://www. pbl.nl/gcn [nl

  1. Maps on large-scale air quality concentrations in the Netherlands. Report on 2010

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Diederen, H.S.M.A.; Drissen, E; Geilenkirchen, G.P.; Jimmink, B.A.; Koekoek, A.F.; Koelemeijer, R.B.A.; Matthijsen, J.; Peek, C.J.; Van Rijn, F.J.A.; De Vries, W.J.

    2010-06-01

    In the Netherlands, the number of locations for which the European limit values for nitrogen dioxide concentrations could be exceeded is larger than was estimated last year. The limit value, from 2015 onwards, might be exceeded along 100 to 150 kilometres of city roads and along about 100 kilometres of motorways, based on standing and proposed national and European policies, not taking local policies into account. The exceedances occur mainly in the Randstad area, along motorways around the large cities, and in streets within these cities. The number of locations is about twice as large as was estimated last year, as a result of new measurements of emissions from heavy-duty vehicles, and meeting the limit value in time may require additional national and local policies. The new estimates were based on large-scale concentration maps (called GCN maps) of air quality components, and on additional local contributions. The concentration maps provided the best possible estimate of large-scale air quality. The degree of uncertainty in local concentrations of particulate matter and nitrogen dioxide was estimated at approximately 15 to 20 per cent. This report presents the methods and emissions used for producing the GCN maps. It also shows the differences with the maps produced in 2009. These maps are used by local, provincial and other authorities to define additional local measures. The PBL would like to emphasise that uncertainties in the concentrations must be kept in mind when using these maps for planning, or when comparing concentrations with limit values. This also applies to the selecting of local measures to improve the air quality. The concentration maps are available online, at http://www.pbl.nl/gcn. Keywords: GCN; particulate matter; PM10; nitrogen dioxide; limit value. [nl

  2. Impact of the 2008 Global Recession on Air Quality over the United States: Implications for Surface Ozone Levels from Changes in NOx Emissions

    Science.gov (United States)

    Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka

    2016-01-01

    Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.

  3. Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada.

    Science.gov (United States)

    Bari, Md Aynul; Kindzierski, Warren B

    2017-04-01

    With concern about levels of air pollutants in recent years in the Capital Region of Alberta, an investigation of ambient concentrations, sources and potential human health risk of hazardous air pollutants (HAPs) or air toxics was undertaken in the City of Edmonton over a 5-year period (2009-2013). Mean concentrations of individual HAPs in ambient air including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and trace metals ranged from 0.04 to 1.73 μg/m 3 , 0.01-0.54 ng/m 3 , and 0.05-3.58 ng/m 3 , respectively. Concentrations of benzene, naphthalene, benzo(a)pyrene (BaP), arsenic, manganese and nickel were far below respective annual Alberta Ambient Air Quality Objectives. Carcinogenic and non-carcinogenic risk of air toxics were also compared with risk levels recommended by regulatory agencies. Positive matrix factorization identified six air toxics sources with traffic as the dominant contributor to total HAPs (4.33 μg/m 3 , 42%), followed by background/secondary organic aerosol (SOA) (1.92 μg/m 3 , 25%), fossil fuel combustion (0.92 μg/m 3 , 11%). On high particulate air pollution event days, local traffic was identified as the major contributor to total HAPs compared to background/SOA and fossil fuel combustion. Carcinogenic risk values of traffic, background/SOA and metals industry emissions were above the USEPA acceptable level (1 × 10 -6 ), but below a tolerable risk (1 × 10 -4 ) and Alberta benchmark (1 × 10 -5 ). These findings offer useful preliminary information about current ambient air toxics levels, dominant sources and their potential risk to public health; and this information can support policy makers in the development of appropriate control strategies if required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA.

    Science.gov (United States)

    Gray, John E; Theodorakos, Peter M; Fey, David L; Krabbenhoft, David P

    2015-02-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8-11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03-0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9-14 ng/L) were generally higher than those found in springs and wells (0.05-3.1 ng/L), baseline streams (1.1-9.7 ng/L), and sources of drinking water (0.63-9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690-82,000 ng/m(3)) were highly elevated compared to soil gas collected from baseline sites (1.2-77 ng/m(3)). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9-64 ng/m(3)) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the

  5. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    Science.gov (United States)

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  6. Spatial distribution of ground-level urban background O3 concentrations in the Metropolitan Area of Buenos Aires, Argentina

    International Nuclear Information System (INIS)

    Pineda Rojas, Andrea L.; Venegas, Laura E.

    2013-01-01

    In this work, a recently developed urban-scale atmospheric dispersion model (DAUMOD-GRS) is applied to evaluate the ground-level ozone (O 3 ) concentrations resulting from anthropogenic area sources of NO x and VOC in the Metropolitan Area of Buenos Aires (MABA). The statistical comparison of model results with observations (including new available data from seventeen sites) shows a good model performance. Estimated summer highest diurnal O 3 1-h concentrations in the MABA vary between 15 ppb in the most urbanised area and 53 ppb in the suburbs. All values are below the air quality standard. Several runs are performed to evaluate the impact of possible future emission reductions on O 3 concentrations. Under all hypothetical scenarios, the maximum diurnal O 3 1-h concentration obtained for the area is slightly reduced (up to 4%). However, maximum diurnal O 3 concentrations could increase at some less urbanised areas of MABA depending on the relative reductions of the emissions of NO x and VOC. -- Highlights: ► A recently developed air quality model reproduces well observed O 3 levels in MABA. ► Modelled summer maximum diurnal O 3 concentrations vary in the area between 15 and 53 ppb. ► All hourly values are below the air quality standard (120 ppb). ► Possible future emission reductions would have small impact on the highest level. -- The distribution of summer maximum diurnal ground-level O 3 concentrations in the Metropolitan Area of Buenos Aires is evaluated applying a recently developed simple urban air quality model

  7. Correlation and uncertainties evaluation in backscattering of entrance surface air kerma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, G.J.; Sousa, C.H.S.; Peixoto, J.G.P., E-mail: gt@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The air kerma measurement is important to verify the applied doses in radiodiagnostic. The literature determines some methods to measure the entrance surface air kerma or entrance surface dose but some of this methods may increase the measurement with the backscattering. Were done setups of measurements to do correlations between them. The expanded uncertainty exceeded 5% for measurements with backscattering, reaching 8.36%, while in situations where the backscattering was avoided, the uncertainty was 3.43%. (author)

  8. Measurement of radon concentration in air employing Lucas chamber; Pomiar koncentracji radonu za pomoca komory Lucasa

    Energy Technology Data Exchange (ETDEWEB)

    Machaj, B.

    1997-12-31

    The results of investigations aimed to determine the main features of radon concentration gauge in air, employing 0.17 L Lucas chamber, and air sample forced by an air pump are presented. For two hour sampling and measuring cycle time the dynamic error in the worst case (first read out) equals 5 % relative to the step jump of radon concentration. This is due to the increase of activity of the decay products in the chamber. It was observed that the short lived radon decay products (Po-218, Pb-214, Bi-214) are depositing on the walls of the chamber and they are not removed by flushing the chamber with air. (author). 4 refs, 19 figs, 2 tabs.

  9. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    Science.gov (United States)

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-12-01

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Measurement of exhalation rate of radon and radon concentration in air using open vial method

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi.

    1991-01-01

    It was recognized that more than half of total exposure dose on human subject is caused by radon and its decay products which originate from naturally occurring radioactive substances (1988 UNSCEAR). Since then the exhalation of radon from the ground surface has received increasing attention. The authors have developed a new method for the determination of radon in natural water using toluene extraction of radon and applying a liquid scintillation counter of an integral counting technique which is able to get the absolute counting of radon. During these studies, the authors found out that when a counting vial containing of Liquid scintillator (LS)-toluene solution, without a lid, is exposed to the atmosphere for a while, dissolution of radon clearly occurs due to high solubility of radon into toluene layer. To extend this finding for the determination of radon in the atmosphere, the authors devised a new method to actively collect the atmosphere containing radon in a glass bottle by discharging a definite amount of water in it, which is named as open-vial dynamic method. The radon concentration can be easily calculated after the necessary corrections such as the partition coefficient and others. Applying proposed method to measure the radon exhalation rate from the ground surface and radon concentration in air of the dwelling environment, radioactive mineral spring zone and various geological formation such as granitic or sedimentary rocks. (author)

  11. Effect of spring water on the radon concentration in the air at Masutomi spa in Yamanashi Prefecture, Japan

    International Nuclear Information System (INIS)

    Inagaki, Masayo; Koga, Taeko; Morishima, Hiroshige; Kimura, Shojiro; Ohta, Masatoshi

    2012-01-01

    The concentrations of 222 Rn existing in air have been studied by using a convenient and highly sensitive Pico-rad detector system at Masutomi spa in Yamanashi Prefecture, Japan. The measurements in air were carried out indoors and outdoors during the winter of 2000 and the summers of 1999 and 2005. The concentrations of 222 Rn in spring water in this region were measured by the liquid scintillation method. The concentrations of natural radionuclides contained in soils surrounding spa areas were also examined by means of the γ-ray energy spectrometry technique using a Ge diode detector to investigate the correlation between the radionuclides contents and 222 Rn concentrations in air at each point of interest. The atmospheric 222 Rn concentrations in these areas were high, ranging from 5 Bq/m 3 to 2676 Bq/m 3 . The radon concentration at each hotel was high in the order of the bath room, the dressing room, the lobby, and the outdoor area near the hotel, with averages and standard deviations of the concentration of 441 ± 79 Bq/m 3 , 351 ± 283 Bq/m 3 , 121 ± 5 Bq/m 3 , and 23 ± 1 Bq/m 3 , respectively. The source of 222 Rn in the air in the bath room is more likely to be the spring water than the soil. The spring water plays carries the radon to the atmosphere. Our measurements indicated that the 222 Rn concentration in the air was affected by the 222 Rn concentration in spring water rather than that in soil. (author)

  12. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    Science.gov (United States)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  13. ARIMA representation for daily solar irradiance and surface air temperature time series

    Science.gov (United States)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  14. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    Science.gov (United States)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  15. Microbial air quality and bacterial surface contamination in ambulances during patient services.

    Science.gov (United States)

    Luksamijarulkul, Pipat; Pipitsangjan, Sirikun

    2015-03-01

    We sought to assess microbial air quality and bacterial surface contamination on medical instruments and the surrounding areas among 30 ambulance runs during service. We performed a cross-sectional study of 106 air samples collected from 30 ambulances before patient services and 212 air samples collected during patient services to assess the bacterial and fungal counts at the two time points. Additionally, 226 surface swab samples were collected from medical instrument surfaces and the surrounding areas before and after ambulance runs. Groups or genus of isolated bacteria and fungi were preliminarily identified by Gram's stain and lactophenol cotton blue. Data were analyzed using descriptive statistics, t-test, and Pearson's correlation coefficient with a p-value of less than 0.050 considered significant. The mean and standard deviation of bacterial and fungal counts at the start of ambulance runs were 318±485cfu/m(3) and 522±581cfu/m(3), respectively. Bacterial counts during patient services were 468±607cfu/m(3) and fungal counts were 656±612cfu/m(3). Mean bacterial and fungal counts during patient services were significantly higher than those at the start of ambulance runs, p=0.005 and p=0.030, respectively. For surface contamination, the overall bacterial counts before and after patient services were 0.8±0.7cfu/cm(2) and 1.3±1.1cfu/cm(2), respectively (pair samples and bacterial counts on medical instruments and allocated areas. This study revealed high microbial contamination (bacterial and fungal) in ambulance air during services and higher bacterial contamination on medical instrument surfaces and allocated areas after ambulance services compared to the start of ambulance runs. Additionally, bacterial and fungal counts in ambulance air showed a significantly positive correlation with the bacterial surface contamination on medical instruments and allocated areas. Further studies should be conducted to determine the optimal intervention to reduce

  16. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  17. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    Science.gov (United States)

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  18. Spatial Investigation of Columnar AOD and Near-Surface PM2.5 Concentrations During the 2013 American and Yosemite Rim Fires

    Science.gov (United States)

    Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.; Moosmuller, H.; Liming, A.; Echevarria, B.

    2014-12-01

    The study of aerosol pollution transport and optical properties in the western U.S. is a challenge due to the complex terrain, bright surfaces, presence of anthropogenic and biogenic emissions, secondary organic aerosol formation, and smoke from wild fires. In addition, the complex terrain influences transport phenomena by recirculating mountain air from California to Nevada, where air pollution from the Sierra Nevada Mountains (SNM) is mixed with urban air from the Central Valley in California. Previous studies in Reno hypothesize that elevated aerosol concentrations aloft, above the convective boundary layer height, make air quality monitoring in Reno challenging with MODIS products. Here, we analyze data from August 2013 as a case study for wildfire smoke plumes in California and Nevada. During this time period, northern California was impacted by large wild fires known as the American and Yosemite Rim fires. Thousands of acres burned, generating large quantities of aerosol pollutants that were transported downwind. The aim of the present work is to investigate the fire plume behavior and transport phenomena using ground level PM2.5 concentrations from routine monitoring networks and aerosol optical properties from AERONET, both at multiple locations in California and Nevada. In addition, the accuracy of MODIS (Collection 6) and VIIRS aerosol satellite products will be evaluated. The multispectral photoacoustic instruments and reciprocal nephelometers located in Reno support the estimation of approximated aerosol height. The objectives are to investigate the impact of the vertical distribution of PM concentrations on satellite aerosol optical depth (AOD) retrievals; assess the ability to estimate ground level PM2.5 mass concentrations for wildfire smoke plumes from satellite remote sensing; and investigate the influence of complex terrain on the transport of pollutants, convective boundary layer depth, and aerosol optical height.

  19. Near-surface air temperature lapse rates in Xinjiang, northwestern China

    Science.gov (United States)

    Du, Mingxia; Zhang, Mingjun; Wang, Shengjie; Zhu, Xiaofan; Che, Yanjun

    2018-02-01

    Lapse rates of near-surface (2 m) air temperature are important parameters in hydrologic and climate simulations, especially for the mountainous areas without enough in-situ observations. In Xinjiang, northwestern China, the elevations range from higher than 7000 m to lower than sea level, but the existing long-term meteorological measurements are limited and distributed unevenly. To calculate lapse rates in Xinjiang, the daily data of near-surface air temperature ( T min, T ave, and T max) were measured by automatic weather stations from 2012 to 2014. All the in situ observation stations were gridded into a network of 1.5° (latitude) by 1.5° (longitude), and the spatial distribution and the daily, monthly, seasonal variations of lapse rates for T min, T ave, and T max in Xinjiang are analyzed. The Urumqi River Basin has been considered as a case to study the influence of elevation, aspect, and the wet and dry air conditions to the T min, T ave, and T max lapse rates. Results show that (1) the lapse rates for T min, T ave, and T max vary spatially during the observation period. The spatial diversity of T min lapse rates is larger than that of T ave, and that of T max is the smallest. For each season, T max lapse rates have more negative values than T ave lapse rates which are steeper than T min lapse rates. The weakest spatial diversity usually appears in July throughout a year. (2) The comparison for the three subregions (North, Middle, and South region) exhibits that lapse rates have similar day-to-day and month-to-month characteristics which present shallower values in winter months and steeper values in summer months. The T ave lapse rates in North region are shallower than those in Middle and South region, and the steepest T ave lapse rates of the three regions all appear in April. T min lapse rates are shallower than T max lapse rates. The maximum medians of T min and T max lapse rates for each grid in the three regions all appear in January, whereas the

  20. Seasonal Variations of Isotope Ratios and CO2 Concentrations in Firn Air

    OpenAIRE

    Weiler, Karin; Schwander, Jakob; Leuenberger, Markus; Blunier, Thomas; Mulvaney, Robert; Anderson, Philip S.; Salmon, Rhian; Sturges, William T.

    2009-01-01

    A first year-round firn air sampling carried out at the British Antarctic station Halley in 2003 shows isotope and CO2 changes owing to diffusive mixing driven by seasonal variations of surface temperature, and gas composition of the atmosphere. Seasonal firn temperatures are well reproduced from the atmospheric temperature history. Based on these profiles thermal diffusion is forced with thermal diffusion factors αT with respect to air. Application of the available literature data for αT (15...

  1. The ratio of long-lived to short-lived radon-222 progeny concentrations in ground-level air

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1996-01-01

    The ratio of 210 Pb air concentration to the short-lived radon ( 222 Rn) decay products concentration at ground level was investigated at a semi-rural location 10 km north of Munich, south Germany, for a period of 11 years (1982-1992). The average ratio from 132 monthly mean values has been found to be (7.5±2.2) x 10 -5 (arithmetic mean±S.D.). While the time series of the short-lived radon daughter concentration exhibit a distinct seasonal pattern with maxima mostly in October of each year, the course of 210 Pb air concentration is characterized by high values from October through February. Consequently, high ratios of 210 Pb to short-lived decay product concentration are often observed in the winter months of December-February. To study the influence of meteorological conditions on this behaviour, 210 Pb and 214 Pb concentrations were measured on a short-term basis with sampling intervals of 2-3 days from October 1991 to November 1992. The air concentrations obtained within those intervals were then correlated with actual meteorological parameters. On the base of this investigation the seasonal behaviour can essentially be explained by the more frequent inversion weather conditions in winter than in the summer months. At the same location, the average ratio of 210 Po to 210 Pb concentration in ground level air has been found to be 0.079 from 459 weakly mean values between 1976 and 1985. Hence, the corresponding average ratios of the short-lived radon daughters (EEC) to 210 Pb and 210 Po, were 1:7.5x10 -5 and 1:0.6 x 10 -5 , respectively

  2. Inclusion in the simulation of air pollutants recorded over the borders of test areas in Niedersachsen and forecasting of local ground level concentrations

    International Nuclear Information System (INIS)

    Mueller-Reissmann, K.F.; Schaffner, J.

    1991-08-01

    In 1987-1989 an emission-ground level concentration-model (conversion of emission into ground level concentration) was established for the pollutant sulphur dioxide (SO 2 ) by the ISP (Hannover) in cooperation with GEOS (Berlin) and was with emission data of the environs of Braunschweig for 1987 subjected to different trial runs. The pollution sources were devided into four groups: - Large Emitters (particularly power plants) - medium emitters (particularly industry) - space heating and small consumers - traffic. The pollution emitters of the first two groups were considered as point sources and the last two groups as surface sources, their emissions being evently distributed over squares of 1 km x 1 km, each surface unit of one km 2 being represented by 400 point sources in a distance of 50 m from each other. The conversion of emissions into ground level concentration is based on the Gaussian dispersion model on which also the dispersion calculation of the TA Luft (technical regulation about air pollution) is based. (orig./KW) [de

  3. A study of laser surface modification of polymers: A comparison in air and water

    DEFF Research Database (Denmark)

    Marla, Deepak; Andersen, Sebastian A.; Zhang, Yang

    2018-01-01

    Laser surface modification is a technique to modify polymer surfaces for various applications. In our earlier work [Physics Procedia, 83:211–217, 2016], we showed that when the laser surface modification process was carried out in water instead of air, the obtained surface characteristics were...... research. The observed images of laser modified surfaces suggest that a hemispherical hump is formed in the case of water at lower laser fluences that breakup with an increase in fluence. Such a behavior was not observed when the process was carried out in air. We explain this phenomenon by simulating...

  4. Evaluation of the salt deposition on the canister surface of concrete cask. Part 3. Long-term measurement of salt concentration in air and evaluation of the salt deposition

    International Nuclear Information System (INIS)

    Wataru, Masumi; Takeda, Hirofumi

    2015-01-01

    To realize the dry storage using concrete cask in Japan, it is important to develop the evaluation method of the SCC of the canister. One of the key issues is sea salt deposition on the canister surface during the storage period. If the amount of salt deposition exceeds the critical value, the SCC may occur. The amount of salt deposition depends on the ambient air condition. We developed the measurement device of salt in air to make clear the ambient condition. The device sucks the air including sea salt and the sea salt dissolves in water. We analyze the water including sea salt. This device works automatically for one or two months. In this study, the performance of this device was verified comparing the data obtained by the air sampler using filter pack. In Yokosuka area of CRIEPI, we measured the ambient air condition using this device for three years. Furthermore, we performed the salt deposition test using the small ducts in the same area. The ambient air including sea salt flows in the duct and the sea salt deposits on the test specimen put on the duct inner surface. We took out the specimen after certain time and measured the salt amount on the test specimen. Using these data, we obtained the relation between the salt deposition and the time on this ambient condition. The results of this study are useful to evaluate the SCC of the canister. (author)

  5. Local emission of primary air pollutants and its contribution to wet deposition and concentrations of aerosols and gases in ambient air in Japan

    Science.gov (United States)

    Aikawa, Masahide; Hiraki, Takatoshi; Tomoyose, Nobutaka; Ohizumi, Tsuyoshi; Noguchi, Izumi; Murano, Kentaro; Mukai, Hitoshi

    2013-11-01

    We studied wet deposition by precipitation and the concentrations of aerosols and gases in ambient air in relation to the primary air pollutants discharged from domestic areas. The concentrations of aerosols and gases were influenced by nearby emissions except for non-sea-salt SO, which is transported long distances. The area facing the Sea of Japan showed much larger wet deposition than other areas, although the domestic emissions of the primary air pollutants there were small and showed a peak in wet deposition from October to March, as distinct from April to September in other areas. We performed the correlation analyses between wet deposition of each component and the product of the concentrations of corresponding aerosols and gases in ambient air and the two-thirds power of the precipitation. From the results, following scavenging processes were suggested. • Sulfate and ammonium were scavenged in precipitation as particulate matter such as (NH4)2SO4 and NH4HSO4. • Nitrate was scavenged mainly in precipitation through gaseous HNO3. • Ammonium was complementarily scavenged in precipitation through aerosols such as (NH4)2SO4 and NH4HSO4 and through gaseous NH3.

  6. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  7. Air, water, and surface bacterial contamination in a university-hospital autopsy room.

    Science.gov (United States)

    Maujean, Géraldine; Malicier, Daniel; Fanton, Laurent

    2012-03-01

    Today, little is known about the bacteriological environment of the autopsy room and its potential interest for medico-legal practices. Seven hundred fifty microbiological samples were taken from surface (n = 660), air (n = 48), and water (n = 42) to evaluate it in a French University Forensic Department. Median bacterial counts were compared before and during autopsy for air samples, and before and after autopsy for surface samples, using Wilcoxon matched pairs signed ranks test. Bacterial identification relied on traditional phenotypic methods. Bacterial counts in the air were low before autopsy, increased significantly during procedure, and seemed more linked to the number of people in the room than to an important production of aerosol-containing bacteria. Despite cleaning, human fecal flora was omnipresent on surfaces, which revealed insufficient disinfection. Bacteriological sampling is an easy way to monitor cleaning practices in postmortem rooms, but chiefly a way to improve the reliability of medico-legal proofs of infectious deaths. © 2012 American Academy of Forensic Sciences.

  8. Optimization in the nuclear fuel cycle II: Concentration of alpha emitters in the air

    International Nuclear Information System (INIS)

    Pereira, W.S.; Silva, A.X.; Lopes, J.M.; Carmo, A.S.; Mello, C.R.; Fernandes, T.S.; Kelecom, A.

    2017-01-01

    Optimization is one of the bases of radioprotection and aims to move doses away from the dose limit that is the borderline of acceptable radiological risk. The work aims to use the monitoring of the concentration of alpha emitters in the air as a tool of the optimization process. We analyzed 27 sampling points of airborne alpha concentration in a nuclear fuel cycle facility. The monthly averages were considered statistically different, the highest in the month of February and the lowest in the month of August. All other months were found to have identical mean activity concentration values. Regarding the sampling points, the points with the highest averages were points 12, 15 and 9. These points were indicated for the beginning of the optimization process. Analysis of the production of the facility should be performed to verify possible correlations between production and concentration of alpha emitters in the air

  9. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    Science.gov (United States)

    Gong, J. C.; Zhu, T.; Hu, M.; Zhang, L. W.; Cheng, H.; Zhang, L.; Tong, J.; Zhang, J.

    2010-08-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions). In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5). These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  10. Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of The Netherlands

    International Nuclear Information System (INIS)

    Sparrius, Laurens B.

    2007-01-01

    Decreasing local ammonia air concentrations in a moderately polluted area in The Netherlands were accompanied by a rapid increase in nitrogen-sensitive species (acidophytes) and a decline of nitrogen-tolerant macrolichens (nitrophytes). This paper presents data on the relationship between nitrophyte abundance and species abundance for three ecological groups of epiphytic lichens: nitrophytes (positively correlated with ammonia), acidophytes (negatively correlated) and neutrophytes (which have an optimum at medium concentrations) and suggests ammonia dependent optimum curves for these groups. In this study neutrophytes were found to die-off massively at sites with a decrease of the ammonia air concentration over the period 1996-2003. - Lichens can be used to detect both increasing and decreasing ammonia air concentrations

  11. Air-spun PLA nanofibers modified with reductively sheddable hydrophilic surfaces for vascular tissue engineering: synthesis and surface modification.

    Science.gov (United States)

    Ko, Na Re; Sabbatier, Gad; Cunningham, Alexander; Laroche, Gaétan; Oh, Jung Kwon

    2014-02-01

    Polylactide (PLA) is a class of promising biomaterials that hold great promise for various biological and biomedical applications, particularly in the field of vascular tissue engineering where it can be used as a fibrous mesh to coat the inside of vascular prostheses. However, its hydrophobic surface providing nonspecific interactions and its limited ability to further modifications are challenges that need to be overcome. Here, the development of new air-spun PLA nanofibers modified with hydrophilic surfaces exhibiting reduction response is reported. Surface-initiated atom transfer radical polymerization allows for grafting pendant oligo(ethylene oxide)-containing polymethacrylate (POEOMA) from PLA air-spun fibers labeled with disulfide linkages. The resulting PLA-ss-POEOMA fibers exhibit enhanced thermal stability and improved surface properties, as well as thiol-responsive shedding of hydrophilic POEOMA by the cleavage of its disulfide linkages in response to reductive reactions, thus tuning the surface properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro

    International Nuclear Information System (INIS)

    Jia Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-01-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bq kg -1 for 238 U, 0.48-93.9 Bq kg -1 for 234 U and 0.02-12.2 Bq kg -1 for 235 U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, 236 U was detectable in some of the samples. The isotopic ratios of 234 U/ 238 U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 μBq m -3 for 238 U, 0.96-38.0 μBq m -3 for 234 U, and 0.05-1.83 μBq m -3 for 235 U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBq l -1 for 238 U, 0.27-28.1 mBq l -1 for 234 U, and 0.01-0.88 mBq l -1 for 235 U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of

  13. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro.

    Science.gov (United States)

    Jia, Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-09-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bqkg(-1) for (238)U, 0.48-93.9 Bqkg(-1) for (234)U and 0.02-12.2 Bqkg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, (236)U was detectable in some of the samples. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 microBqm(-3) for (238)U, 0.96-38.0 microBqm(-3) for (234)U, and 0.05-1.83 microBqm(-3) for (235)U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBql(-1) for (238)U, 0.27-28.1 mBql(-1) for (234)U, and 0.01-0.88 mBql(-1) for (235)U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated

  14. Analysis of the wind data and estimation of the resultant air concentration rates

    International Nuclear Information System (INIS)

    Hu, Shze Jer; Katagiri, Hiroshi; Kobayashi, Hideo

    1988-09-01

    Statistical analyses and comparisons of the meteorological wind data obtained by the propeller and supersonic anemometers for the year of 1987 in the Japan Atomic Energy Research Institute, Tokai, were performed. For wind speeds less than 1 m/s, the propeller readings are generally 0.5 m/s less than those of the supersonic readings. The resultant average air concentration and ground level γ exposure rates due to the radioactive releases for the normal operation of a nuclear plant are over-estimated when calculated using the propeller wind data. As supersonic anemometer can give accurate wind speed to as low as 0.01 m/s, it should be used to measure the low wind speed. The difference in the average air concentrations and γ exposure rates calculated using the two different sets of wind data, is due to the influence of low wind speeds at calm. If the number at calm is large, actual low wind speeds and wind directions should be used in the statistical analysis of atmospheric dispersion to give a more accurate and realistic estimation of the air concentrations and γ exposure rates due to the normal operation of a nuclear plant. (author). 4 refs, 3 figs, 9 tabs

  15. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings.

    Science.gov (United States)

    Beamer, P I; Sugeng, A J; Kelly, M D; Lothrop, N; Klimecki, W; Wilkinson, S T; Loh, M

    2014-05-01

    Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites.

  16. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM. Copyright © 2013 Elsevier Inc. All

  17. Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area

    Science.gov (United States)

    Schäfer, Klaus; Blumenstock, Thomas; Bonn, Boris; Gerwig, Holger; Hase, Frank; Münkel, Christoph; Nothard, Rainer; von Schneidemesser, Erika

    2015-10-01

    Mixing layer height (MLH) is a key parameter to determine the influence of meteorological parameters upon air pollutants such as trace gas species and particulate concentrations near the surface. Meteorology, and MLH as a key parameter, affect the budget of emission source strengths, deposition, and accumulation. However, greater possibilities for the application of MLH data have been identified in recent years. Here, the results of measurements in Berlin in 2014 are shown and discussed. The concentrations of NO, NO2, O3, CO, PM1, PM2.5, PM10 and about 70 volatile organic compounds (anthropogenic and biogenic of origin) as well as particle size distributions and contributions of SOA and soot species to PM were measured at the urban background station of the Berlin air quality network (BLUME) in Nansenstr./Framstr., Berlin-Neukölln. A Vaisala ceilometer CL51, which is a commercial mini-lidar system, was applied at that site to detect the layers of the lower atmosphere in real time. Special software for these ceilometers with MATLAB provided routine retrievals of MLH from vertical profiles of laser backscatter data. Five portable Bruker EM27/SUN FTIR spectrometers were set up around Berlin to detect column averaged abundances of CO2 and CH4 by solar absorption spectrometry. Correlation analyses were used to show the coupling of temporal variations of trace gas compounds and PM with MLH. Significant influences of MLH upon NO, NO2, PM10, PM2.5, PM1 and toluene (marker for traffic emissions) concentrations as well as particle number concentrations in the size modes 70 - 100 nm, 100 - 200 nm and 200 - 500 nm on the basis of averaged diurnal courses were found. Further, MLH was taken as important auxiliary information about the development of the boundary layer during each day of observations, which was required for the proper estimation of CO2 and CH4 source strengths from Berlin on the basis of atmospheric column density measurements.

  18. Characteristics of Winter Surface Air Temperature Anomalies in Moscow in 1970-2016 under Conditions of Reduced Sea Ice Area in the Barents Sea

    Science.gov (United States)

    Shukurov, K. A.; Semenov, V. A.

    2018-01-01

    On the basis of observational data on daily mean surface air temperature (SAT) and sea ice concentration (SIC) in the Barents Sea (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of air-particle motions has revealed the most probable paths of both cold and warm air invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm air invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.

  19. Mercury fluxes from air/surface interfaces in paddy field and dry land

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jinshan [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China); Wang Dingyong, E-mail: dywang@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)] [Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716 (China); Liu Xiao; Zhang Yutong [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)

    2011-02-15

    Research highlights: {yields} It was found that agricultural fields are important local atmospheric Hg sources in the region. {yields} The Hg emissions from dry cornfield were higher than those from the flooded rice paddy, higher mercury emissions in the warm season than the cold season, and during daytime than at night. {yields} Mercury evasion is strongly related to solar radiation which is important in the emission of Hg at both sites. - Abstract: In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex (registered) multifunctional Hg analyzer RA-915{sup +} (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 {+-} 22.8 ng m{sup -2} h{sup -1} in the warm season, 15.5 {+-} 18.8 ng m{sup -2} h{sup -1} in the cold season for dry land, and 23.8 {+-} 15.6 ng m{sup -2} h{sup -1} in the warm season, 6.3 {+-} 11.9 ng m{sup -2} h{sup -1} in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower

  20. Air concentration and ground deposition following radioactive airborne releases

    International Nuclear Information System (INIS)

    Brofferio, C.; Cagnetti, P.; Ferrara, V.

    1985-01-01

    The fundamental aim of this report is to provide the mathematical and physical operational basis for the evaluation of air concentration and ground deposition, following radioactive airborne releases from a nuclear power plant, both during normal operations and in accidental conditions. As far as accidental releases are concerned, the basical assumptions on meteorological and diffusive situation are considered from a safety point of view: namely those pessimistic but realistically representative situation are taken into account which lead to maximum air concentration and ground deposition values, even if characterized by low recurrence probability. Those elements are the inputs for many environmental transfer models of maximum consequence evaluations up to man. As far as routine releases are concerned, it is shown, together with the usual models based on long term averaged meteorological conditions, also models studied to estimate atmospheric diffusion and deposition in low wind situations and in fog conditions, being those latter very frequent in the Po valley. Finally, the main operations and modalities of collecting and elaborating meteorological data for for radioprotection evaluations are also shown. It is to be pointed out that the methods and the models developed and considered in this work are of a more general validity, and can be also used for applications concerning non-radioactive releases, as it is the case when dealing with conventional power plants

  1. Air mass origins by back trajectory analysis for evaluating atmospheric 210Pb concentrations at Rokkasho, Aomori, Japan

    International Nuclear Information System (INIS)

    Akata, N.; Kawabata, H.; Hasegawa, H.; Kondo, K.; Chikuchi, Y.; Hisamatsu, S.; Inaba, J.; Sato, T.

    2009-01-01

    Atmospheric concentrations of 210 Pb change with various factors such as meso-scale meteorological conditions. We have already reported the biweekly atmospheric 210 Pb concentrations in Rokkasho, Japan for 5 years and found that they had clear seasonal variations: low concentrations in summer and high values in winter to spring. To study the reasons for the seasonal variations, the origins of the air mass flowing to Rokkasho were analyzed by 3-D backward air mass trajectory analysis. Routes of the calculated trajectories were classified into four regions: northeastern and southeastern Asian Continent, sea and other regions. The atmospheric 210 Pb concentrations were well correlated with the frequency of the routes through the northeastern Asian Continent. A non-linear multiple regression analysis of the 210 Pb concentrations and the relative frequencies of the four routes showed good fitting of the predicted values to the observed ones, and indicated that the atmospheric 210 Pb concentrations in Rokkasho depended on the frequency of the air mass from the northeastern Asian Continent. (author)

  2. Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air

    International Nuclear Information System (INIS)

    Fang Zhi; Hao Lili; Yang Hao; Xie Xiangqian; Qiu Yuchang; Edmund, Kuffel

    2009-01-01

    In this paper, polytetrafluoroethylene (PTFE) films are modified using non-equilibrium plasma generated by homogeneous DBD in air at medium pressure, and the results are compared to those treated by using filamentary DBD in air at atmospheric pressure. The surface properties of PTFE films before and after the treatments are studied using contact angle and surface energy measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the plasma treatments modify the PTFE surface in both morphology and composition. The PTFE films modified in both treatments show a remarkable decrease in water contact and a remarkable increase in surface energy. XPS analysis reveals that oxygen-containing polar groups are introduced onto the PTFE surface, and SEM analysis shows that the surfaces of the films are etched after both the treatments. It is found that homogeneous DBD is more effective in PTFE surface modification than filamentary DBD as it can make the contact angle decline to a lower level by introducing more oxygen-containing groups, and the possible reason for this effect is discussed.

  3. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    Science.gov (United States)

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  4. Environmental survey to assess viral contamination of air and surfaces in hospital settings.

    Science.gov (United States)

    Carducci, A; Verani, M; Lombardi, R; Casini, B; Privitera, G

    2011-03-01

    The presence of pathogenic viruses in healthcare settings represents a serious risk for both staff and patients. Direct viral detection in the environment poses significant technical problems and the indirect indicators currently in use suffer from serious limitations. The aim of this study was to monitor surfaces and air in hospital settings to reveal the presence of hepatitis C virus, human adenovirus, norovirus, human rotavirus and torque teno virus by nucleic acid assays, in parallel with measurements of total bacterial count and haemoglobin presence. In total, 114 surface and 62 air samples were collected. Bacterial contamination was very low (air was 282 cfu/m(3). Overall, 19 (16.7%) surface samples tested positive for viral nucleic acids: one for norovirus, one for human adenovirus and 17 (14.9%) for torque teno virus (TTV). Only this latter virus was directly detected in 10 air samples (16.1%). Haemoglobin was found on two surfaces. No relationship was found between viral, biochemical or bacterial indicators. The data obtained confirm the difficulty of assessing viral contamination using bacterial indicators. The frequent detection of TTV suggests its possible use as an indicator for general viral contamination of the environment. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  5. The ratio of long-lived to short-lived radon-222 progeny concentrations in ground-level air

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Winkler, R. [Institut fuer Strahlenschutz, GSF-Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg Oberschleissheim (Germany)

    1996-02-09

    The ratio of {sup 210}Pb air concentration to the short-lived radon ({sup 222}Rn) decay products concentration at ground level was investigated at a semi-rural location 10 km north of Munich, south Germany, for a period of 11 years (1982-1992). The average ratio from 132 monthly mean values has been found to be (7.5{+-}2.2) x 10{sup -5} (arithmetic mean{+-}S.D.). While the time series of the short-lived radon daughter concentration exhibit a distinct seasonal pattern with maxima mostly in October of each year, the course of {sup 210}Pb air concentration is characterized by high values from October through February. Consequently, high ratios of {sup 210}Pb to short-lived decay product concentration are often observed in the winter months of December-February. To study the influence of meteorological conditions on this behaviour, {sup 210}Pb and {sup 214}Pb concentrations were measured on a short-term basis with sampling intervals of 2-3 days from October 1991 to November 1992. The air concentrations obtained within those intervals were then correlated with actual meteorological parameters. On the base of this investigation the seasonal behaviour can essentially be explained by the more frequent inversion weather conditions in winter than in the summer months. At the same location, the average ratio of {sup 210}Po to {sup 210}Pb concentration in ground level air has been found to be 0.079 from 459 weakly mean values between 1976 and 1985. Hence, the corresponding average ratios of the short-lived radon daughters (EEC) to {sup 210}Pb and {sup 210}Po, were 1:7.5x10{sup -5} and 1:0.6 x 10{sup -5}, respectively.

  6. Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke.

    Science.gov (United States)

    Ott, Wayne; Klepeis, Neil; Switzer, Paul

    2008-05-01

    The air change rates of motor vehicles are relevant to the sheltering effect from air pollutants entering from outside a vehicle and also to the interior concentrations from any sources inside its passenger compartment. We made more than 100 air change rate measurements on four motor vehicles under moving and stationary conditions; we also measured the carbon monoxide (CO) and fine particle (PM(2.5)) decay rates from 14 cigarettes smoked inside the vehicle. With the vehicle stationary and the fan off, the ventilation rate in air changes per hour (ACH) was less than 1 h(-1) with the windows closed and increased to 6.5 h(-1) with one window fully opened. The vehicle speed, window position, ventilation system, and air conditioner setting was found to affect the ACH. For closed windows and passive ventilation (fan off and no recirculation), the ACH was linearly related to the vehicle speed over the range from 15 to 72 mph (25 to 116 km h(-1)). With a vehicle moving, windows closed, and the ventilation system off (or the air conditioner set to AC Max), the ACH was less than 6.6 h(-1) for speeds ranging from 20 to 72 mph (32 to 116 km h(-1)). Opening a single window by 3'' (7.6 cm) increased the ACH by 8-16 times. For the 14 cigarettes smoked in vehicles, the deposition rate k and the air change rate a were correlated, following the equation k=1.3a (R(2)=82%; n=14). With recirculation on (or AC Max) and closed windows, the interior PM(2.5) concentration exceeded 2000 microg m(-3) momentarily for all cigarettes tested, regardless of speed. The concentration time series measured inside the vehicle followed the mathematical solutions of the indoor mass balance model, and the 24-h average personal exposure to PM(2.5) could exceed 35 microg m(-3) for just two cigarettes smoked inside the vehicle.

  7. Surface pKa of octanoic, nonanoic, and decanoic fatty acids at the air-water interface: applications to atmospheric aerosol chemistry.

    Science.gov (United States)

    Wellen, Bethany A; Lach, Evan A; Allen, Heather C

    2017-10-11

    There exists large uncertainty in the literature as to the pK a of medium-chain fatty acids at the air-water interface. Via surface tension titration, the surface-pK a values of octanoic (C 8 ), nonanoic (C 9 ), and decanoic (C 10 ) fatty acids are determined to be 4.9, 5.8, and 6.4, respectively. The surface-pK a determined with surface tension differs from the bulk value obtained during a standard acid-base titration. Near the surface-pK a of the C 8 and C 9 systems, surface tension minima are observed and are attributed to the formation of surface-active acid-soap complexes. The direction of the titration is shown to affect the surface-pK a of the C 9 system, as the value shifts to 5.2 with NaOH titrant due to a higher concentration of Na + ions at pH values close to the surface-pK a . As the reactivity and climate-relevant properties of sea spray aerosols (SSA) are partially dictated by the charge and surface activity of the organics at the aerosol-atmosphere interface, the results presented here on SSA-identified C 8 -C 10 fatty acids can be used to better predict the health and climate impact of particles with significant concentrations of medium-chain fatty acids.

  8. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration.

    Science.gov (United States)

    Campesi, María A; Luzi, Carlos D; Barreto, Guillermo F; Martínez, Osvaldo M

    2015-05-01

    Catalytic combustion is a well-developed process for the removal of volatile organic compounds (VOCs). In order to reduce both the amount of catalyst needed for incineration and the surface area of recuperative heat exchangers, an evaluation of the use of thermal swing adsorption as a previous step for VOC concentration is made. An air stream containing ethyl acetate and ethanol (employed as solvents in printing processes) has been taken as a case study. Based on the characteristics of the adsorption/desorption system and the properties of the stream to be treated, a monolithic rotor concentrator with activated carbon as adsorbent material is adopted. Once the temperature of the inlet desorption stream TD is chosen, the minimum possible desorption flow rate, WD,min, and the amount of adsorbent material can be properly defined according to the extent of the Mass Transfer Zone (MTZ) at the end of the adsorption stage. An approximate procedure to speed up the calculations needed for sizing the bed and predicting the operating variables is also presented. In the case studied here, the concentration of the VOC stream can reach 6 times that of the primary effluent when TD = 200 °C is chosen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Variation and balance of positive air ion concentrations in a boreal forest

    Directory of Open Access Journals (Sweden)

    U. Hõrrak

    2008-02-01

    Full Text Available Air ions are characterized on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. The air ions were discriminated as small ions (charged molecular aggregates of the diameter of less than 2.5 nm, intermediate ions (charged aerosol particles of the diameter of 2.5–8 nm, and large ions (charged aerosol particles of the diameter of 8–20 nm. Statistical characteristics of the ion concentrations and the parameters of ion balance in the atmosphere are presented separately for the nucleation event days and non-event days. In the steady state, the ionization rate is balanced with the loss of small ions, which is expressed as the product of the small ion concentration and the ion sink rate. The widely known sinks of small ions are the recombination with small ions of opposite polarity and attachment to aerosol particles. The dependence of small ion concentration on the concentration of aerosol particles was investigated applying a model of the bipolar diffusion charging of particles by small ions. When the periods of relative humidity above 95% and wind speed less than 0.6 m s−1 were excluded, then the small ion concentration and the theoretically calculated small ion sink rate were closely negatively correlated (correlation coefficient −87%. However, an extra ion loss term of the same magnitude as the ion loss onto aerosol particles is needed for a quantitative explanation of the observations. This term is presumably due to the small ion deposition on coniferous forest. The hygroscopic growth correction of the measured aerosol particle size distributions was also found to be necessary for the proper estimation of the ion sink rate. In the case of nucleation burst events, the concentration of small positive ions followed the general balance equation, no extra ion loss in addition to the deposition on coniferous forest was detected, and the

  10. Subsurface occurrence and potential source areas of chlorinated ethenes identified using concentrations and concentration ratios, Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Garcia, C. Amanda

    2005-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Air Force Aeronautical Systems Center, Environmental Management Directorate, conducted a study during 2003-05 to characterize the subsurface occurrence and identify potential source areas of the volatile organic compounds classified as chlorinated ethenes at U.S. Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base Carswell Field (NAS-JRB) at Fort Worth, Texas. The solubilized chlorinated ethenes detected in the alluvial aquifer originated as either released solvents (tetrachloroethene [PCE], trichloroethene [TCE], and trans-1,2-dichloroethene [trans-DCE]) or degradation products of the released solvents (TCE, cis-1,2-dichloroethene [cis-DCE], and trans-DCE). The combined influences of topographic- and bedrock-surface configurations result in a water table that generally slopes away from a ground-water divide approximately coincident with bedrock highs and the 1-mile-long aircraft assembly building at AFP4. Highest TCE concentrations (10,000 to 920,000 micrograms per liter) occur near Building 181, west of Building 12, and at landfill 3. Highest PCE concentrations (500 to 920 micrograms per liter) occur near Buildings 4 and 5. Highest cis-DCE concentrations (5,000 to 710,000 micrograms per liter) occur at landfill 3. Highest trans-DCE concentrations (1,000 to 1,700 micrograms per liter) occur just south of Building 181 and at landfill 3. Ratios of parent-compound to daughter-product concentrations that increase in relatively short distances (tens to 100s of feet) along downgradient ground-water flow paths can indicate a contributing source in the vicinity of the increase. Largest increases in ratio of PCE to TCE concentrations are three orders of magnitude from 0.01 to 2.7 and 7.1 between nearby wells in the northeastern part of NAS-JRB. In the northern part of NAS-JRB, the largest increases in TCE to total DCE concentration ratios relative to ratios at upgradient wells are from 17 to

  11. Air concentrations of Chernobyl fallout radionuclides in the area Debrecen (Hungary)

    International Nuclear Information System (INIS)

    Daroczy, S.; Dezsoe, Z.; Pazsit, A.; Buczko, Cs.M.; Somogyi, A.; Papp, Z.; Bolyos, A.; Nagy, J.; Raics, P.

    1991-01-01

    Measurements of aerosol activity from the Chernobyl reactor accident are reported. The concentrations of 14 radionuclides were obtained by gamma spectrometry for the period 30 April - 9 May, 1986. Gross beta measurements were also done through 11 August 1986 of which 137 Cs activity concentrations were derived. 90 Sr activity concentrations were also determined for selected aerosol samples using nondestructive procedure. The time course of contamination observed in Debrecen (Hungary) is discussed in terms of trajectory analysis. Isotopic ratios are also used to trace down routes of contamined air. In addition, such ratios are also used to characterize the status of the damaged reactor at different times. (author) 15 refs.; 2 figs

  12. Effect of soil surface management on radiocesium concentrations in apple orchard and fruit

    International Nuclear Information System (INIS)

    Kusaba, Shinnosuke; Matsuoka, Kaori; Abe, Kazuhiro

    2016-01-01

    We investigated the effect of soil surface management on radiocesium accumulation in an apple orchard in Fukushima Prefecture over 4 years after Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident in mid-March 2011. Different types of soil surface management such as clean cultivation, intertillage management, intertillage with bark compost application, sod culture, and zeolite application were employed. The radiocesium concentrations in soil were higher in the surface layer (0–5 cm) than in the other layers. The radiocesium concentration in the surface layer soil with sod culture in 2014 increased non-significantly compared with that observed in 2011. The radiocesium concentration in the mid-layer soil (5–15 cm) managed with intertillage was higher than that in soil managed using other types of management. The radiocesium amount in the organic matter on the soil surface was the highest in sod culture, and was significantly lower in the management with intertillage. The radiocesium concentration in fruit decreased exponentially during the 4 years in each types of soil surface management. The decrease in radiocesium concentration showed similar trends with each type of soil surface management, even if the concentration in each soil layer varied according to the management applied. Furthermore, intertillage with bark compost application did not affect the radiocesium concentration in fruit. These results suggest that the soil surface management type that affected the radiocesium distribution in the soil or the compost application with conventional practice did not affect its concentration in fruit of apple trees for at least 4 years since the nuclear power plant accident, at a radiocesium deposition level similar to that recorded in Fukushima City. (author)

  13. Holographic optical tweezers for object manipulations at an air-liquid surface.

    Science.gov (United States)

    Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2006-06-26

    We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a "clocked" traffic of micro beads, and size-selective guiding of beads along optical "conveyor belts".

  14. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  15. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunming, E-mail: zcm1229@126.com [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Sunvim Grp Co Ltd, Gaomi 261500 (China); Zhao, Meihua; Wang, Libing; Qu, Lijun [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Men, Yajing [Sunvim Grp Co Ltd, Gaomi 261500 (China)

    2017-04-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  16. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    International Nuclear Information System (INIS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-01-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  17. The Effect of Increasing Surface Albedo on Urban Climate and Air Quality: A Detailed Study for Sacramento, Houston, and Chicago

    Directory of Open Access Journals (Sweden)

    Zahra Jandaghian

    2018-03-01

    Full Text Available Increasing surface reflectivity in urban areas can decrease ambient temperature, resulting in reducing photochemical reaction rates, reducing cooling energy demands and thus improving air quality and human health. The weather research and forecasting model with chemistry (WRF-Chem is coupled with the multi-layer of the urban canopy model (ML-UCM to investigate the effects of surface modification on urban climate in a two-way nested approach over North America focusing on Sacramento, Houston, and Chicago during the 2011 heat wave period. This approach decreases the uncertainties associated with scale separation and grid resolution and equip us with an integrated simulation setup to capture the full impacts of meteorological and photochemical reactions. WRF-ChemV3.6.1 simulated the diurnal variation of air temperature reasonably well, overpredicted wind speed and dew point temperature, underpredicted relative humidity, overpredicted ozone and nitrogen dioxide concentrations, and underpredicted fine particular matters (PM2.5. The performance of PM2.5 is a combination of overprediction of particulate sulfate and underprediction of particulate nitrate and organic carbon. Increasing the surface albedo of roofs, walls, and pavements from 0.2 to 0.65, 0.60, and 0.45, respectively, resulted in a decrease in air temperature by 2.3 °C in urban areas and 0.7 °C in suburban areas; a slight increase in wind speed; an increase in relative humidity (3% and dew point temperature (0.3 °C; a decrease of PM2.5 and O3 concentrations by 2.7 µg/m3 and 6.3 ppb in urban areas and 1.4 µg/m3 and 2.5 ppb in suburban areas, respectively; minimal changes in PM2.5 subspecies; and a decrease of nitrogen dioxide (1 ppb in urban areas.

  18. Exposition by inhalation to the formaldehyde in the air. Source, measures and concentrations

    International Nuclear Information System (INIS)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I.

    2004-12-01

    This document presents the main techniques today available to characterize the formaldehyde concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  19. Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment

    Science.gov (United States)

    Castro, V. A.; Ott, C. M.; Pierson, D. L.

    2012-01-01

    The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can

  20. Derived limits for occupational exposure to uranium mine and mill dusts in the air and on surfaces

    International Nuclear Information System (INIS)

    Carter, M.W.

    1983-01-01

    Limits are derived for the concentration of uranium mine and mill dusts in the air based on ICRP30 and assumptions regarding the isotopic make up of the dusts. From these limits using a resuspension factor, limits for surface contamination are derived. Calculations are presented of the dose to the basal layer of the skin from mine and mill dusts on the skin. From these calculations limits for skin contamination are derived. A calculation of a limit based on direct ingestion is also presented. Exposure limits for the public are not considered

  1. Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus

    International Nuclear Information System (INIS)

    Tzortzis, Michalis; Tsertos, Haralabos

    2004-01-01

    A comprehensive study was conducted to determine thorium, uranium and potassium elemental concentrations in surface soils throughout the accessible area of Cyprus using high-resolution γ-ray spectrometry. A total of 115 soil samples was collected from all over the bedrock surface of the island based on the different lithological units of the study area. The soil samples were air-dried, sieved through a fine mesh, sealed in 1000-ml plastic Marinelli beakers, and measured in the laboratory in terms of their gamma radioactivity for a counting time of 18 h each. From the measured γ-ray spectra, elemental concentrations were determined for thorium (range from 2.5x10 -3 to 9.8 μg g -1 ), uranium (from 8.1x10 -4 to 3.2 μg g -1 ) and potassium (from 1.3x10 -4 to 1.9%). The arithmetic mean values (A.M.±S.D.) calculated from all samples are: (1.2±1.7) μg g -1 , (0.6±0.7) μg g -1 and (0.4±0.3)%, for thorium, uranium and potassium, respectively, which are by a factor of three-six lower than the world average values of 7.4 μg g -1 (Th), 2.8 μg g -1 (U) and 1.3% (K) derived from all data available worldwide. The best-fitting relation between the concentrations of Th and K versus U and also of K versus Th, is essentially of linear type with a correlation coefficient of 0.93, 0.84 and 0.90, respectively. The Th/U, K/U and K/Th ratios (slopes) extracted are equal to 2.0, 2.8x10 3 and 1.4x10 3 , respectively

  2. The influence of atmospheric circulation on the air pollution concentration and temperature inversion in Sosnowiec. Case study

    Directory of Open Access Journals (Sweden)

    Widawski Artur

    2015-06-01

    Full Text Available Sosnowiec is located in the Katowice Region, which is the most urbanized and industrialized region in Poland. Urban areas of such character favor enhancement of pollution concentration in the atmosphere and the consequent emergence of smog. Local meteorological and circulation conditions significantly influence not only on the air pollution level but also change air temperature considerably in their centers and immediate vicinities. The synoptic situation also plays the major role in dispersal and concentration of air pollutants and changes in temperature profile. One of the most important are the near-ground (100 m inversions of temperature revealed their highest values on clear winter days and sometimes stay still for the whole day and night. Air temperature inversions in Sosnowiec occur mainly during anticyclone stagnation (Ca-anticyclone centre and Ka-anticyclonic ridge and in anticyclones with air advection from the south and southwest (Sa and SWa which cause significantly increase of air pollution values. The detailed evaluation of the influence of circulation types on the appearance of a particular concentration of pollutants carried out in this work has confirmed the predominant influence of individual circulation types on the development of air pollution levels at the Katowice region. This paper presents research case study results of the thermal structure of the near-ground atmospheric layer (100 m and air pollution parameters (PM10, SO2, NO, NO2 changes in selected days of 2005 year according to regional synoptic circulation types. The changes in urban environment must be taken into account in analyses of multiyear trends of air temperature and air conditions on the regional and global scales.

  3. Air and surface contamination patterns of meticillin-resistant Staphylococcus aureus on eight acute hospital wards.

    Science.gov (United States)

    Creamer, E; Shore, A C; Deasy, E C; Galvin, S; Dolan, A; Walley, N; McHugh, S; Fitzgerald-Hughes, D; Sullivan, D J; Cunney, R; Coleman, D C; Humphreys, H

    2014-03-01

    Meticillin-resistant Staphylococcus aureus (MRSA) can be recovered from hospital air and from environmental surfaces. This poses a potential risk of transmission to patients. To investigate associations between MRSA isolates recovered from air and environmental surfaces with those from patients when undertaking extensive patient and environmental sampling. This was a prospective observational study of patients and their environment in eight wards of a 700-bed tertiary care hospital during 2010 and 2011. Sampling of patients, air and surfaces was carried out on all ward bays, with more extended environmental sampling in ward high-dependency bays and at particular times of the day. The genetic relatedness of isolates was determined by DNA microarray profiling and spa typing. MRSA was recovered from 30/706 (4.3%) patients and from 19/132 (14.4%) air samples. On 9/132 (6.8%) occasions both patient and air samples yielded MRSA. In 32 high-dependency bays, MRSA was recovered from 12/161 (7.4%) patients, 8/32 (25%) air samples, and 21/644 (3.3%) environmental surface samples. On 10/132 (7.6%) occasions, MRSA was isolated from air in the absence of MRSA-positive patients. Patient demographic data combined with spa typing and DNA microarray profiling revealed four likely transmission clusters, where patient and environmental isolates were deemed to be very closely related. Air sampling yielded MRSA on frequent occasions, especially in high-dependency bays. Environmental and air sampling combined with patient demographic data, spa typing and DNA microarray profiling indicated the presence of clusters that were not otherwise apparent. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Maximum permissible concentration of radon {sup 222}Rn in air; La concentration maximale admissible du radon 222 dans l'air

    Energy Technology Data Exchange (ETDEWEB)

    Hamard, J; Beau, P G; Ergas, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires, departement de la protection sanitaire, service d' hygiene atomique

    1968-09-01

    In order to verify the validity of the values proposed for the maximum permissible concentration of {sup 222}Rn in air, one can either approach the problem: - by epidemiological studies tending to determine the relation dose-effect both quantitatively and qualitatively; - or by choosing a lung model and clearance constants allowing a more accurate determination of the delivered dose and the localisation of the more severely irradiated portions of the bronchial tree. The radon MPC have been calculated using the model and the respiration constants set up by the I.C.R.P. Task Group on Lung dynamics. Two cases have been considered, i.e. when the radon daughter products behave as soluble materials and as insoluble ones. The values which have been found have been compared with those given up to now by several national and international bodies. (authors) [French] Deux voies d'approche peuvent etre empruntees pour verifier la validite des valeurs proposees pour la concentration maximale admissible du radon 222 dans l'air: - etudes epidemiologiques tendant a preciser qualitativement et quantitativement la relation dose-effet; - choix d'un modele pulmonaire et de constantes d'epuration permettant une determination plus precise de la dose delivree et la localisation des segments de l'arbre pulmonaire les plus irradies. Les auteurs ont utilise pour le calcul de la CMA du radon le modele et les constantes respiratoires proposees par le Task Group on Lungs dynamics de la C.I.P.R. On a pris en consideration le cas ou les descendants du radon se comportent comme des substances solubles et celui ou ils se comportent comme des substances insolubles. Les valeurs trouvees sont comparees a celles proposees jusqu'alors par divers organismes nationaux et internationaux. (auteurs)

  5. Clean Air Act Guidelines and Standards for Solvent Use and Surface Coating Industry

    Science.gov (United States)

    This page contains the stationary sources of air pollution for the solvent use and surface coating industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  6. Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory

    Science.gov (United States)

    Roadhouse, Emily A.

    The links between climate and permafrost are well known, but the precise nature of the relationship between air and ground temperatures remains poorly understood, particularly in complex mountain environments. Although previous studies indicate that elevation and potential incoming solar radiation (PISR) are the two leading factors contributing to the existence of permafrost at a given location, additional factors may also contribute significantly to the existence of mountain permafrost, including vegetation cover, snow accumulation and the degree to which individual mountain landscapes are prone to air temperature inversions. Current mountain permafrost models consider only elevation and aspect, and have not been able to deal with inversion effects in a systematic fashion. This thesis explores the relationship between air and ground surface temperatures and the presence of surface-based inversions at 27 sites within the Wolf Creek basin and surrounding area between 2001 and 2006, as a first step in developing an improved permafrost distribution TTOP model. The TTOP model describes the relationship between the mean annual air temperature and the temperature at the top of permafrost in terms of the surface and thermal offsets (Smith and Riseborough, 2002). Key components of this model are n-factors which relate air and ground climate by establishing the ratio between air and surface freezing (winter) and thawing (summer) degree-days, thus summarizing the surface energy balance on a seasonal basis. Here we examine (1) surface offsets and (2) freezing and thawing n-factor variability at a number of sites through altitudinal treeline in the southern Yukon. Thawing n-factors (nt) measured at individual sites remained relatively constant from one year to the next and may be related to land cover. During the winter, the insulating effect of a thick snow cover results in higher surface temperatures, while thin snow cover results in low surface temperatures more closely

  7. Satellite skill in detecting extreme episodes in near-surface air quality

    Science.gov (United States)

    Ruiz, D. J.; Prather, M. J.

    2017-12-01

    Ozone (O3) contributes to ambient air pollution, adversely affecting public health, agriculture, and ecosystems. Reliable, long-term, densely distributed surface networks are required to establish the scale, intensity and repeatability of major pollution events (designated here in a climatological sense as air quality extremes, AQX as defined in Schnell's work). Regrettably, such networks are only available for North America (NA) and Europe (EU), which does not include many populated regions where the deaths associated with air pollution exposure are alarmingly high. Directly measuring surface pollutants from space without lidar is extremely difficult. Mapping of daily pollution events requires cross-track nadir scanners and these have limited sensitivity to surface O3 levels. This work examines several years of coincident surface and OMI satellite measurements over NA-EU, in combination with a chemistry-transport model (CTM) hindcast of that period to understand how the large-scale AQX episodes may extend into the free troposphere and thus be more amenable to satellite mapping. We show how extreme NA-EU episodes are measured from OMI and then look for such patterns over other polluted regions of the globe. We gather individual high-quality O3 surface site measurements from these other regions, to check on our satellite detection. Our approach with global satellite detection would avoid issues associated with regional variations in seasonality, chemical regime, data product biases; and it does not require defining a separate absolute threshold for each data product (surface site and satellite). This also enables coherent linking of the extreme events into large-scale pollution episodes whose magnitude evolves over 100's of km for several days. Tools used here include the UC Irvine CTM, which shows that much of the O3 surface variability is lost at heights above 2 km, but AQX local events are readily seen in a 0-3 km column average. The OMI data are taken from X

  8. Estimation of surface-level PM2.5 concentration using aerosol optical thickness through aerosol type analysis method

    Science.gov (United States)

    Chen, Qi-Xiang; Yuan, Yuan; Huang, Xing; Jiang, Yan-Qiu; Tan, He-Ping

    2017-06-01

    Surface-level particulate matter is closely related to column aerosol optical thickness (AOT). Previous researches have successfully used column AOT and different meteorological parameters to estimate surface-level PM concentration. In this study, the performance of a selected linear model that estimates surface-level PM2.5 concentration was evaluated following the aerosol type analysis method (ATAM) for the first time. We utilized 443 daily average data for Xuzhou, Jiangsu province, collected using Aerosol Robotic Network (AERONET) during the period October 2013 to April 2016. Several parameters including atmospheric boundary layer height (BLH), relative humidity (RH), and effective radius of the aerosol size distribution (Ref) were used to assess the relationship between the column AOT and PM2.5 concentration. By including the BLH, ambient RH, and effective radius, the correlation (R2) increased from 0.084 to 0.250 at Xuzhou, and with the use of ATAM, the correlation increased further to 0.335. To compare the results, 450 daily average data for Beijing, pertaining to the same period, were utilized. The study found that model correlations improved by varying degrees in different seasons and at different sites following ATAM. The average urban industry (UI) aerosol ratios at Xuzhou and Beijing were 0.792 and 0.451, respectively, demonstrating poorer air conditions at Xuzhou. PM2.5 estimation at Xuzhou showed lower correlation (R2 = 0.335) compared to Beijing (R2 = 0.407), and the increase of R2 at Xuzhou and Beijing site following use of ATAM were 33.8% and 12.4%, respectively.

  9. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    Science.gov (United States)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  10. Mineralization of bacterial cell mass on a photocatalytic surface in air

    International Nuclear Information System (INIS)

    Jacoby, W.A.; Maness, P.C.; Wolfrum, E.J.; Blake, D.M.; Fennell, J.A.

    1998-01-01

    Whole cells deposited on a titanium dioxide-coated surface have been oxidized in air to carbon dioxide via photocatalysis. This paper provides the first evidence that the organic matter in whole cells can be completely oxidized. Three experimental techniques were employed to monitor this reaction: scanning electron microscopy, 14 C radioisotope labeling experiments establish that the carbon content of E. coli is oxidized to form carbon dioxide with substantial closure of the mass balance. The batch reactor experiments corroborate the mass balance and provide a preliminary indication of the rate of the oxidation reaction. These results provide evidence that a photocatalytic surface used for disinfection can also be self-cleaning in an air-solid system

  11. Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill.

    Science.gov (United States)

    Melnyk, A; Dettlaff, A; Kuklińska, K; Namieśnik, J; Wolska, L

    2015-10-15

    Due to a continuous demand of land for infrastructural and residential development there is a public concern about the condition of surface soil near municipal solid waste landfills. A total of 12 surface (0-20 cm) soil samples from a territory near a landfill were collected and the concentration of 16 PAHs and 7 PCB congeners were investigated in these samples. Limits of detection were in the range of 0.038-1.2 μg/kg for PAHs and 0.025-0.041 μg/kg for PCBs. The total concentration of ∑ PAHs ranged from 892 to 3514 μg/kg with a mean of 1974 μg/kg. The total concentration of ∑ PCBs ranged from 2.5 to 12 μg/kg with a mean of 4.5 μg/kg. Data analyses allowed to state that the PAHs in surface soils near a landfill were principally from pyrogenic sources. Due to air transport, PAHs forming at the landfill are transported outside the landfill. PCB origin is not connected with the landfill. Aroclor 1242 can be the source of PCBs in several samples. Copyright © 2015. Published by Elsevier B.V.

  12. Helium concentration in tungsten nano-tendril surface morphology using Elastic Recoil Detection

    International Nuclear Information System (INIS)

    Woller, K.B.; Whyte, D.G.; Wright, G.M.; Doerner, R.P.; De Temmerman, G.

    2013-01-01

    Helium (He) concentrations in tungsten nano-tendrils (W fuzz) have been measured for the first time using Elastic Recoil Detection (ERD). Fuzzy and non-fuzzy W surfaces were analyzed in order to illuminate the role of He in the transition in surface morphologies. Samples grown in the PISCES-A and PILOT-PSI experiments allowed a survey of surface temperature ranging from T s = 470–2595 K and of He fluence on the order of Φ He ∼ 10 24 –10 27 ions/m 2 . He concentrations measured in the bulk of W fuzz layers are roughly uniform with bulk He concentration 1–4 at.% while samples with just He in the near surface peaked at 1–2 at.%. This confirms that the nano-tendrils are filled with high pressure He bubbles since the solubility of He in W is ∼10 −5 at.%. This indicates that the ∼1000 K temperature fuzz-growth threshold is determined by the response of the W, not the near-surface He concentration

  13. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  14. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  15. EXPERIMENTAL COMPARISON OF THE AEROSOL METHOD OF DISINFECTION OF AIR AND SURFACES CONTAMINATED BY M. TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    V. V. Kuzin

    2018-01-01

    Full Text Available The objective of the study: to analyze efficiency of an aerosol method of M. tuberculosis deactivation in the air and on surfaces versus the conventional methods of the disinfectants' application.Subjects and Methods. The article describes the evaluation of efficiency of the aerosol method of M. tuberculosis, H37Rv strain, deactivation on surfaces (tested objects made of linoleum and in the air using the disinfectant of Green Dez based on chlorine dioxide versus deactivation through wiping and irrigation.The efficiency of disinfectant was tested by the device of 099С А4224 manufactured by Glas-Col, USA, using the air sampler of PU-1B, Russia.The Mobile Hygienic Center (MNC, Russia, was used for application of the disinfectant, wiping and irrigation was done using the disperser of Avtomaks AO-2, Russia.The bacterial aerosol was generated in the Glass-Col chamber with the concentration 5 ± 2.5 × 102 CFU/cm3, by spraying the suspension of M. tuberculosis, H37Rv strain. After that, the disinfectant spray was supplied to the chamber, where linoleum objects were placed horizontally on a variety of surfaces. In order to evaluate efficiency of surface treatment by wiping, the test objects were wiped with a tissue, soaked with the solution of Green Dez, based on consumption of 100-150 ml/m2. In 15, 30 and 60 minutes, the samples of inactivated M. tuberculosis aerosol were collected using an aspirator, chambers with test objects were closed and placed in the vent hood. To monitor efficiency of disinfection of the test object surfaces, the rinse blanks were done by wiping the surface with a sterile gauze wad, soaked with 0.5% of sodium thiosulfate solution.The samples of deactivated aerosol and rinse blanks from the surfaces of test objects were put into Petri dishes with Middlebrook 7H11 medium. The cultures were incubated in the thermostat at the temperature of 37 ± 1° C for 10-21 days, and the number of colonies was counted.Sterile water was used

  16. Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria

    Science.gov (United States)

    Haas, D.; Habib, J.; Luxner, J.; Galler, H.; Zarfel, G.; Schlacher, R.; Friedl, H.; Reinthaler, F. F.

    2014-12-01

    Background concentrations of airborne fungi are indispensable criteria for an assessment of fungal concentrations indoors and in the ambient air. The goal of this study was to define the natural background values of culturable fungal spore concentrations as reference values for the assessment of moldy buildings. The concentrations of culturable fungi were determined outdoors as well as indoors in 185 dwellings without visible mold, obvious moisture problems or musty odor. Samples were collected using the MAS-100® microbiological air sampler. The study shows a characteristic seasonal influence on the background levels of Cladosporium, Penicillium and Aspergillus. Cladosporium sp. had a strong outdoor presence, whereas Aspergillus sp. and Penicillium sp. were typical indoor fungi. For the region of Styria, the median outdoor concentrations are between 100 and 940 cfu/m³ for culturable xerophilic fungi in the course of the year. Indoors, median background levels are between 180 and 420 cfu/m³ for xerophilic fungi. The I/O ratios of the airborne fungal spore concentrations were between 0.2 and 2.0. For the assessment of indoor and outdoor air samples the dominant genera Cladosporium, Penicillium and Aspergillus should receive special consideration.

  17. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    Science.gov (United States)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  18. The solar forcing on the 7Be-air concentration variability at ground level

    International Nuclear Information System (INIS)

    Talpos, Simona

    2004-01-01

    This paper analyses the correlation between the temporal and spatial variability of 7 Be-air concentration at ground level and the amount of precipitation. There were used the measured data from 26 stations distributed on North America, South America, Australia and Antarctica. The variability study was made using EOF and principal components analysis. The presented results show that the variability of 7 Be air concentration at ground level is simultaneously influenced by the solar cycle and some atmospheric processes like precipitation, turbulent transport, advection, etc. The solar forcing on the 7 Be variability at ground level was outlined for time-scales longer than 1 year and can be considered a global phenomenon. The atmospheric processes influence the 7 Be variability for scale shorter than one year and can be considered a local phenomenon. (author)

  19. Seasonal and temporal variations of criteria air pollutants and the influence of meteorological parameters on the concentration of pollutants in ambient air in lahore, pakistan

    International Nuclear Information System (INIS)

    Tabinda, A.B.; Munir, S.; Yasir, A.; Ilyas, A.

    2016-01-01

    Criteria air pollutants have their significance for causing health threats and damage to the environment. The study was conducted to assess the seasonal and temporal variations of criteria air pollutants and evaluating the correlations of criteria air pollutants with meteorological parameters in the city of Lahore, Pakistan for a period of one year from April 2010 to March 2011. The concentrations of criteria air pollutants were determined at fixed monitoring stations equipped with HORIBA analyzers. The annual average concentrations (μ/m/super 3/) of PM /sub 2.5/, O/sub 3/, SO/sub 2/, CO and NO/sub x/ (NO+NO/sub 2/) for this study period were 118.94±57.46, 46.0±24.2, 39.9±8.9, 1940±1300 and 130.9±81.0 (61.8±46.2+57.3±22.19), respectively. PM/sub 2.5/, SO/sub 2/, CO and NO/sub x/ had maximum concentrations during winter whereas O/sub 3/ had maximum concentration during summer. Minimum concentrations of PM/sub 2.5/, SO/sub 2/ and NO/sub x/ were found during monsoon as compared to other seasons due to rainfall which scavenged these pollutants. The O/sub 3/ showed positive correlation with temperature and solar radiation but negative correlation with wind speed. All other criteria air pollutants showed negative correlation with wind speed, temperature and solar radiation. A significant (P<0.01) correlation was found between NO/sub x/ and CO (r = 0.779) which showed that NO/sub x/ and CO arise from common source that could be the vehicular emission. PM/sub 2.5/ was significantly correlated (P<0.01) with NO/sub x/ (r = 0.524) and CO (r = 0.519), respectively. High traffic intensity and traffic jams were responsible for increased air pollutants level especially the PM/sub 2.5/, NO/sub x/ and CO. (author)

  20. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C.

    Directory of Open Access Journals (Sweden)

    Liam Payne

    Full Text Available Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study, a slowly releasable fraction (removed early at 600°C in this study, and an unreleasable fraction (removed later at 600°C in this study.

  1. Effects of air conditioning, dehumidification and natural ventilation on indoor concentrations of 222Rn and 220Rn

    International Nuclear Information System (INIS)

    Lee, Thomas K.C.; Yu, K.N.

    2000-01-01

    A bedroom was selected for detailed measurements on 220 Rn and 222 Rn concentrations and environmental parameters including CO 2 concentration, temperature and relative humidity. To simulate different sealing conditions, five conditions were artificially created in the sampling period of 25 consecutive days. It was concluded that natural ventilation is the most efficient way to lower the 222 Rn levels, while air conditioning is the next. Dehumidification provides only a marginal reduction of 222 Rn levels. The 220 Rn concentrations are not affected by natural ventilation, air conditioner or dehumidification, and were all around 10 Bq m -3 . There are no significant correlations between the 220 Rn and 222 Rn concentrations and environmental conditions such as CO 2 concentrations, temperature, relative humidity and pressure

  2. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations

    Science.gov (United States)

    Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.

    2018-03-01

    We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.

  3. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications. © 2013.

  4. Radionuclide concentrations in ground-level air from 1984 to mid 1986 in North Germany and North Norway; influence of the Chernobyl accident

    International Nuclear Information System (INIS)

    Kolb, W.

    1986-09-01

    The activity concentration of various fission products and some other radionuclides (e.g. Be-7, Na-22, K-40 and Pb-210) contained in surface air were determined by gamma-ray spectroscopy. The mean monthly activity concentrations of up to 30 radionuclides measured from 1984 to mid 1986 in Brunswick, Berlin and Skibotn (North Norway) are tabulated. Early in 1984 the ground level air at all three stations still contained some fission and activation products resulting from the latest nuclear test carried out at a high altitude by the People's Republic of China. By the end of 1984 only Cs-137 was still detectable with activity concentrations of less than 1 μBq/m 3 . The occasional appearance of some activation products in 1984 and 1985 is commented on and compared with similar findings of several Scandinavian institutes. Fresh fission products from the Chernobyl accident arrived in late April 1986 in Brunswick, Berlin and Skibotn. The mean Cs-137 concentration in May estimated for Brunswick was 28 mBq/m 3 (i.e. 15 times higher than the hitherto recorded maximum in June 1964). It had decreased by July 1986 down to 0.13 mBq/m 3 . The effective dose equivalent due to inhalation of fission products is estimated for all three sites and compared with the Pb-210 inhalation dose. (orig.) [de

  5. The deconvolution of sputter-etching surface concentration measurements to determine impurity depth profiles

    International Nuclear Information System (INIS)

    Carter, G.; Katardjiev, I.V.; Nobes, M.J.

    1989-01-01

    The quasi-linear partial differential continuity equations that describe the evolution of the depth profiles and surface concentrations of marker atoms in kinematically equivalent systems undergoing sputtering, ion collection and atomic mixing are solved using the method of characteristics. It is shown how atomic mixing probabilities can be deduced from measurements of ion collection depth profiles with increasing ion fluence, and how this information can be used to predict surface concentration evolution. Even with this information, however, it is shown that it is not possible to deconvolute directly the surface concentration measurements to provide initial depth profiles, except when only ion collection and sputtering from the surface layer alone occur. It is demonstrated further that optimal recovery of initial concentration depth profiles could be ensured if the concentration-measuring analytical probe preferentially sampled depths near and at the maximum depth of bombardment-induced perturbations. (author)

  6. Concentration and Size Distribution of Particulate Matter in a Broiler House Ambient Air

    Directory of Open Access Journals (Sweden)

    Ismael Rodrigues Amador

    2016-07-01

    Full Text Available Atmospheric particulate matter (PM is an important constituent of ambient air. The determination of its concentration and size distribution in different environments is essential because of its ability to penetrate deeply into animal and human respiratory tract. In this study, air sampling was performed in a broiler house to estimate the concentration and size distribution of PM emitted along with its activities. Low-vol impactor (< 10 mm, cyclones (< 2.5 e < 1.0 mm, and Sioutas cascade impactor (> 2.5; 1.0 – 2.5; 0.50 – 1.0; 0.25 – 0.50; < 0.25 mm connected with membrane pumps were used. PM10 showed high concentration (209 - 533 mg m-3. PM2.5 and PM1.0 initially showed relatively low concentration (20.8 and 16.0 mg m-3 respectively with significantly increasing levels (412.9 and 344.8 mg m-3 respectively during the samplings. It was also possible to observe the contribution of fine particles. This was evidenced by the high correlation between PM2.5 and PM1.0 and by the profile of particle distribution in the Sioutas sampler. PM concentration levels are considered excessively high, with great potential to affect animal and human health. DOI: http://dx.doi.org/10.17807/orbital.v8i3.847 

  7. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air

    DEFF Research Database (Denmark)

    Lyng, Nadja; Clausen, Per Axel; Lundsgaard, Claus

    2016-01-01

    tested on field data from a PCB remediation case in an apartment in another contaminated building complex where PCB concentrations and temperature were measured simultaneously and regularly throughout one year. The model fitted relatively well with the regression of measured PCB air concentrations, ln...

  8. Reference natural radionuclide concentrations in Australian soils and derived terrestrial air kerma rate.

    Science.gov (United States)

    Kleinschmidt, R

    2017-06-01

    Sediment from drainage catchment outlets has been shown to be a useful means of sampling large land masses for soil composition. Naturally occurring radioactive material concentrations (uranium, thorium and potassium-40) in soil have been collated and converted to activity concentrations using data collected from the National Geochemistry Survey of Australia. Average terrestrial air kerma rate data are derived using the elemental concentration data, and is tabulated for Australia and states for use as baseline reference information. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Mass and elemental concentrations of air bone particles at Kuala Lumpur site in 2000 to 2006

    International Nuclear Information System (INIS)

    Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2008-01-01

    Atmospheric Pollution due to air bone particle is a major concern to many cities in the Southeast Asian region, including Kuala Lumpur. Within the last six years air particulate samples have been collected from a site in Kuala Lumpur and measured for their PM10, PM2.5 and elemental concentrations. The results showed that the daily PM10 (<10μ diameter) concentrations were generally acceptable but the values occasionally very high, especially during the haze episodes. The PM10 annual average values were just below the national set standard and these values were mostly contributed by the fine particles (<2μ diameter) concentration. The annual average for PM2.5 (fine particle) concentrations over the past few years were considerably high where elemental carbon, sulfur and potassium were the main components. (Author)

  10. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties

    International Nuclear Information System (INIS)

    Pandiyaraj, Krishnasamy Navaneetha; Yoganand, Paramasivam; Selvarajan, Vengatasamy; Deshmukh, Rajendrasing R.; Balasubramanian, Suresh; Maruthamuthu, Sundaram

    2013-01-01

    The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.

  11. Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation

    Science.gov (United States)

    Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.

    1992-06-01

    Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation

  12. Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air-water interface.

    Science.gov (United States)

    Onaizi, Sagheer A

    2018-03-01

    The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.

  13. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  14. Surface-Air Mercury Fluxes Across Western North America: A Synthesis of Spatial Trends and Controlling Variables.

    Science.gov (United States)

    Eckley, C.; Tate, M.; Lin, C. J.; Gustin, M. S.; Dent, S.; Eagles-Smith, C.; Lutz, M.; Wickland, K.; Wang, B.; Gray, J.; Edwards, G. C.; Krabbenhoft, D. P.; Smith, D. B.

    2016-12-01

    Mercury (Hg) emission and deposition can occur to and from soils and are an important component of the global atmospheric Hg budget. This presentation focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  15. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Science.gov (United States)

    Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  16. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners.

    Science.gov (United States)

    Batterman, S; Du, L; Mentz, G; Mukherjee, B; Parker, E; Godwin, C; Chin, J-Y; O'Toole, A; Robins, T; Rowe, Z; Lewis, T

    2012-06-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84±27%, but dropped to 63±33% in subsequent seasons. In months when households were not visited, use averaged only 34±30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. Environmental tobacco smoke (ETS) increased particulate matter (PM) levels by about 14 μg/m3 and was often detected using ETS-specific tracers despite restrictions on smoking in the house as reported on questionnaires administered to caregivers. PM concentrations depended on season, filter usage, relative humidity, air exchange ratios, number of children, outdoor PM levels, sweeping/dusting, and presence of a central air conditioner (AC). Free-standing air filters can be an effective intervention that provides substantial reductions in PM concentrations if the filters are used. However, filter use was variable across the study population and declined over the study duration, and

  17. Evaluation Of Radioactivity Of Released Air During Postirradiation Examination At The RMI

    International Nuclear Information System (INIS)

    Prayitno, B.; Eko, Pudjadi

    1998-01-01

    Radioactivity evaluation of released air during post-irradiation examination at RMI has been done since january 1993 to december 1996. The released air radioactivity has been observed during post-irradiation examinations of irradiated fuels and structure materials in the hot cell. Analysis method employed has been by air sampling and measurement of the alpha and beta activities by using alpha beta aerosol LB 150 D model. Air release from RMI was sucked by using an air pump having 40 m3/hour capacity which is equipped with a 200 mm diameter filter paper. The filter paper is automatically counted by the detector of the instrument. The average of the daily maximum counting result in a month has been used as monthly data. It has been shown that there have been increase in the released air radioactivity caused by the post-irradiation examination activity. The data of the released air activity obtained have been used to calculate the radioactivity concentration and radioactivity on the soil surface based on Gauss Plumes. The calculation result have shown that the alpha and beta radioactivity concentration at stacks and on the soil surface are less then the set maximum permissible concentration (MPC)

  18. Radionuclide concentration in ground-level air in 1991 in North Germany

    International Nuclear Information System (INIS)

    Kolb, W.; Wershofen, H.

    1992-03-01

    The activity concentration of various fission products and some other radionuclides (e.g. Be-7, Na-22, K-40 and Pb-210) contained in ground-level air were determined by gamma-ray spectroscopy. Weekly and mean monthly activity concentrations measured in Brunswick and Berlin are tabulated. From 1990 to 1991 the Cs-137 concentration in Brunswick decreased only slightly. It was less than 0.1% of that in 1986 but due to resuspended soil dust still three times higher than in 1985. Occasionally, traces of activation products were detected such as Cr-51, Mn-54 or Co-60 in Januray and February in Brunswick and Berlin. The effective equivalent dose due to the inhalation of fission products is estimated to be less than 0.1% of the Pb-210 inhalation dose. (orig.) [de

  19. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007

    Directory of Open Access Journals (Sweden)

    T. Wang

    2009-08-01

    Full Text Available Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Three methods are used to derive the rate of change in ozone. A linear fit to the 14-year record shows that the ozone concentration increased by 0.58 ppbv/yr, whereas comparing means in years 1994–2000 and 2001–2007 gives an increase of 0.87 ppbv/yr for a 7-year period. The ozone changes in air masses from various source regions are also examined. Using local wind and carbon monoxide (CO data to filter out local influence, we find that ozone increased by 0.94 ppbv/yr from 1994–2000 to 2001–2007 in air masses from Eastern China, with similar changes in the other two continent-influenced air-mass groups, but no statistically significant change in the marine air. An examination of the nitrogen dioxide (NO2 column obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2 in China's three fastest developing coastal regions, whereas NO2 in other parts of Asia decreased during the same period, and no obvious trend over the main shipping routes in the South China Sea was indicated. Thus the observed increase in background ozone in Hong Kong is most likely due to the increased emissions of NO2 (and possibly volatile organic compounds (VOCs as well in the upwind coastal regions of mainland China. The CO data at Hok Tsui showed less definitive changes compared to the satellite NO2 column. The increase in background ozone likely made a strong contribution (81% to the rate of increase in "total ozone" at an urban site in Hong Kong

  20. Transport and fate of hexachlorocyclohexanes in the oceanic air and surface seawater

    Directory of Open Access Journals (Sweden)

    Z. Xie

    2011-09-01

    Full Text Available Hexachlorocyclohexanes (HCHs are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (α-, γ- and β-HCH in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. ΣHCHs concentrations (the sum of α-, γ- and β-HCH in the lower atmosphere ranged from 12 to 37 pg m−3 (mean: 27 ± 11 pg m−3 in the Northern Hemisphere (NH, and from 1.5 to 4.0 pg m−3 (mean: 2.8 ± 1.1 pg m−3 in the Southern Hemisphere (SH, respectively. Water concentrations were: α-HCH 0.33–47 pg l−1, γ-HCH 0.02–33 pg l−1 and β-HCH 0.11–9.5 pg l−1. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987–1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2–3 orders of magnitude. Air-water exchange gradients suggested net deposition for α-HCH (mean: 3800 pg m−2 day−1 and γ-HCH (mean: 2000 pg m−2 day−1, whereas β-HCH varied between equilibrium (volatilization: <0–12 pg m−2 day−1 and net deposition (range: 6–690 pg m−2 day−1. Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains and drive long-range transport from sources to deposition in the open oceans. Biological productivities may

  1. Factors determining the concentration and chemical composition of particulate matter in the air of selected service facilities

    Science.gov (United States)

    Rogula-Kopiec, Patrycja; Pastuszka, Józef; Mathews, Barbara; Widziewicz, Kamila

    2018-01-01

    The link between increased morbidity and mortality and increasing concentrations of particulate matter (PM) resulted in great attention being paid to the presence and physicochemical properties of PM in closed rooms, where people spends most of their time. The least recognized group of such indoor environments are small service facilities. The aim of this study was to identify factors which determine the concentration, chemical composition and sources of PM in the air of different service facilities: restaurant kitchen, printing office and beauty salon. The average PM concentration measured in the kitchen was 5-fold (PM4, particle fraction ≥ 4 μm) and 5.3-fold (TSP, total PM) greater than the average concentration of these PM fractions over the same period. During the same measurement period in the printing office and in the beauty salon, the mean PM concentration was 10- and 4-fold (PM4) and 8- and 3-fold (TSP) respectively greater than the mean concentration of these PM fractions in outdoor air. In both facilities the main source of PM macro-components, especially organic carbon, were chemicals, which are normally used in such places - solvents, varnishes, paints, etc. The influence of some metals inflow from the outdoor air into indoor environment of those facilities was also recognized.

  2. Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air

    Science.gov (United States)

    Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos

    2013-01-01

    The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis. PMID:24212104

  3. Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA

    Science.gov (United States)

    Goossens, Dirk

    2015-01-01

    Elevated concentrations of arsenic, up to 7058 μg g-1 in topsoil and bedrock, and more than 0.03 μg m-3 in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (≈ 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 μg m-3. The results of this study are important because the NDRA is visited by more than 300,000 people annually. PMID:25897667

  4. Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer

    Science.gov (United States)

    Masnadi, Naeem; Erinin, Martin; Duncan, James H.

    2017-11-01

    The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.

  5. Field measurements of perceived air quality and concentration of volatile organic compounds in four offices of the university building

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, M.

    2015-01-01

    Field measurements of perceived air quality were conducted in four refurbished offices at the Czech Technical University in Prague. The offices were refurbished as part of the research project Clear-up to serve as a field test facility. The present paper describes measurements conducted...... according to CEN Report CR 1752. The acceptability of the air quality was worst in unoccupied offices ventilated with minimum air change rate (0.4 h-1). Application of DCV decreased the CO2 concentration, but did not result in statistically significant improvement of perceived air quality....... to investigate the perceived air quality, sensory pollution load and concentration of Volatile Organic Compounds (VOCs) in the offices. As the refurbishment comprised also installation of demand controlled ventilation (DCV), its influence on the perceived air quality was also tested. Measurements comprised...

  6. Correlation between air flow rate and pollutant concentrations during two-stage oak log combustion in a 25 KW residential boiler

    Directory of Open Access Journals (Sweden)

    Juszczak Marek

    2016-09-01

    Full Text Available It can be expected that there is a considerable correlation between combustion air flow rate and the concentrations of carbon monoxide, hydrocarbons and nitrogen oxide in the flue gas. The influence of temperature and oxygen concentration in the combustion zone on the concentrations of carbon monoxide, hydrocarbons and nitrogen oxide in the flue gas, for high and low combustion air flow, was analysed. Oxygen concentration for which the concentration of carbon monoxide is the lowest was determined, as well as the mutual relation between carbon monoxide and nitrogen oxide concentration.

  7. The application of air pressure difference in reducing indoor radon concentration

    International Nuclear Information System (INIS)

    Leung, J.K.C.; Tso, M.Y.W.

    2000-01-01

    In densely populated tropical cities like Hong Kong, people usually live and work inside high-rise buildings. And because of the hot and humid climate, air conditioning systems are used throughout the year, particularly in commercial buildings. Previous territory-wide surveys have shown that over 10% of commercial buildings in Hong Kong have indoor radon concentrations above 200 Bq m -3 . Since the major source of indoor radon in high-rise buildings is the building materials, increasing ventilation and applying radon barriers on wall surfaces seem to be the only ways to reduce the indoor radon concentration. But it was noted that the ventilation rate the many commercial buildings are not efficient enough to remove the radon because of various reasons such as energy saving, lack of maintenance, etc. In this study, radon mitigation was achieved by reducing the rate of radon exhaled from the building materials. A special laboratory, which has the capability of simulating any meteorological conditions that could be faced by high-rise buildings in Hong Kong, was built. The reduction of radon exhalation rate by applying pressure difference and temperature difference across walls was studied in the laboratory. This paper summarizes the results and tactics for applying pressure difference in existing commercial buildings. A new technique of reducing radon exhalation rate in new buildings by depressurizing the interior of walls was also developed. Tunnels can be embedded in the concrete walls of new buildings during construction. By using simple vacuum pumps, radon exhalation rate from the walls can be reduced significantly by depressurizing the tunnels. The feasibility and applicability of the technique is presented in this paper. (author)

  8. Air quality improvements and health benefits from China’s clean air action since 2013

    Science.gov (United States)

    Zheng, Yixuan; Xue, Tao; Zhang, Qiang; Geng, Guannan; Tong, Dan; Li, Xin; He, Kebin

    2017-11-01

    Aggressive emission control measures were taken by the Chinese government after the promulgation of the ‘Air Pollution Prevention and Control Action Plan’ in 2013. Here we evaluated the air quality and health benefits associated with this stringent policy during 2013-2015 by using surface PM2.5 concentrations estimated from a three-stage data fusion model and cause-specific integrated exposure-response functions. The population-weighted annual mean PM2.5 concentrations decreased by 21.5% over China during 2013-2015, reducing from 60.5 in 2013 to 47.5 μg m-3 in 2015. Subsequently, the national PM2.5-attributable mortality decreased from 1.22 million (95% CI: 1.05, 1.37) in 2013 to 1.10 million (95% CI: 0.95, 1.25) in 2015, which is a 9.1% reduction. The limited health benefits compared to air quality improvements are mainly due to the supralinear responses of mortality to PM2.5 over the high concentration end of the concentration-response functions. Our study affirms the effectiveness of China’s recent air quality policy; however, due to the nonlinear responses of mortality to PM2.5 variations, current policies should remain in place and more stringent measures should be implemented to protect public health.

  9. [Particle numbers in classified sizes of roadside dust caused by studded tires in the air at different heights from the pavement surface].

    Science.gov (United States)

    Sato, T; Niioka, T; Kurasaki, M; Kojima, Y

    1996-07-01

    Increased use of motor vehicles has produced various risks to human health due to air pollution by noxious gases, heavy metals and roadside dust. Since the late 1970s, the wide spread use of studded tires for cars has caused pavement wear, resulting in not only economic losses, but also roadside air pollution in cold and snowy regions in Japan. The most serious environmental problem in Sapporo, a city with heavy snowfall, in the 1980s, was roadside dust derived from studded tires. The inhabitants suffered from this dust in the early winter and in the early spring when the streets were not covered with snow. To investigate the influence of such roadside dust upon human health, particle numbers in classified sizes of roadside dust were counted after the roadside dust in the air was collected with a device we constructed at 30, 60, 90, 120, 150, and 180 cm above the pavement surface. The results indicated that the concentration of roadside dust in the air did not greatly vary according to the height from the pavement surface. The results also suggested that xenogranuloma, reported in lungs of stray dogs, under roadside dust-pollution conditions such as those examined here, may occur in humans in the future.

  10. Decadal-scale teleconnection between South Atlantic SST and southeast Australia surface air temperature in austral summer

    Science.gov (United States)

    Xue, Jiaqing; Li, Jianping; Sun, Cheng; Zhao, Sen; Mao, Jiangyu; Dong, Di; Li, Yanjie; Feng, Juan

    2018-04-01

    Austral summer (December-February) surface air temperature over southeast Australia (SEA) is found to be remotely influenced by sea surface temperature (SST) in the South Atlantic at decadal time scales. In austral summer, warm SST anomalies in the southwest South Atlantic induce concurrent above-normal surface air temperature over SEA. This decadal-scale teleconnection occurs through the eastward propagating South Atlantic-Australia (SAA) wave train triggered by SST anomalies in the southwest South Atlantic. The excitation of the SAA wave train is verified by forcing experiments based on both linear barotropic and baroclinic models, propagation pathway and spatial scale of the observed SAA wave train are further explained by the Rossby wave ray tracing analysis in non-uniform basic flow. The SAA wave train forced by southwest South Atlantic warming is characterized by an anomalous anticyclone off the eastern coast of the Australia. Temperature diagnostic analyses based on the thermodynamic equation suggest anomalous northerly flows on western flank of this anticyclone can induce low-level warm advection anomaly over SEA, which thus lead to the warming of surface air temperature there. Finally, SST-forced atmospheric general circulation model ensemble experiments also demonstrate that SST forcing in the South Atlantic is associated with the SAA teleconnection wave train in austral summer, this wave train then modulate surface air temperature over SEA on decadal timescales. Hence, observations combined with numerical simulations consistently demonstrate the decadal-scale teleconnection between South Atlantic SST and summertime surface air temperature over SEA.

  11. Radon concentration as an indicator of the indoor air quality: development of an efficient measurement method

    International Nuclear Information System (INIS)

    Roessler, F.A.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Energy conservation regulation could lead to a reduction of the air exchange rate and also a degradation of the indoor air quality. Present methods for the estimating the indoor air quality can only be implemented with limitations. This paper presents a method that allows the estimation of the indoor air quality under normal conditions by using natural radon as an indicator. With mathematical models, the progression of the air exchange rate is estimated by using the radon concentration. Furthermore, the progression of individual air pollutants is estimated. Through series of experiments in a measurement chamber, the modelling could be verified. (author)

  12. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.; Nazaroff,William W.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.

  13. Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zurich, Switzerland.

    Science.gov (United States)

    Buser, Andreas M; Kierkegaard, Amelie; Bogdal, Christian; MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2013-07-02

    Tens of thousands of tonnes of cyclic volatile methylsiloxanes (cVMS) are used each year globally, which leads to high and continuous cVMS emissions to air. However, field measurements of cVMS in air and empirical information about emission rates to air are still limited. Here we present measurements of decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) in air for Zurich, Switzerland. The measurements were performed in January and February 2011 over a period of eight days and at two sites (city center and background) with a temporal resolution of 6-12 h. Concentrations of D5 and D6 are higher in the center of Zurich and range from 100 to 650 ng m(-3) and from 10 to 79 ng m(-3), respectively. These values are among the highest levels of D5 and D6 reported in the literature. In a second step, we used a multimedia environmental fate model parametrized for the region of Zurich to interpret the levels and time trends in the cVMS concentrations and to back-calculate the emission rates of D5 and D6 from the city of Zurich. The average emission rates obtained for D5 and D6 are 120 kg d(-1) and 14 kg d(-1), respectively, which corresponds to per-capita emissions of 310 mg capita(-1) d(-1) for D5 and 36 mg capita(-1) d(-1) for D6.

  14. Inter-comparison of interpolated background nitrogen dioxide concentrations across Greater Manchester, UK

    Science.gov (United States)

    Lindley, S. J.; Walsh, T.

    There are many modelling methods dedicated to the estimation of spatial patterns in pollutant concentrations, each with their distinctive advantages and disadvantages. The derivation of a surface of air quality values from monitoring data alone requires the conversion of point-based data from a limited number of monitoring stations to a continuous surface using interpolation. Since interpolation techniques involve the estimation of data at un-sampled points based on calculated relationships between data measured at a number of known sample points, they are subject to some uncertainty, both in terms of the values estimated and their spatial distribution. These uncertainties, which are incorporated into many empirical and semi-empirical mapping methodologies, could be recognised in any further usage of the data and also in the assessment of the extent of an exceedence of an air quality standard and the degree of exposure this may represent. There is a wide range of available interpolation techniques and the differences in the characteristics of these result in variations in the output surfaces estimated from the same set of input points. The work presented in this paper provides an examination of uncertainties through the application of a number of interpolation techniques available in standard GIS packages to a case study nitrogen dioxide data set for the Greater Manchester conurbation in northern England. The implications of the use of different techniques are discussed through application to hourly concentrations during an air quality episode and annual average concentrations in 2001. Patterns of concentrations demonstrate considerable differences in the estimated spatial pattern of maxima as the combined effects of chemical processes, topography and meteorology. In the case of air quality episodes, the considerable spatial variability of concentrations results in large uncertainties in the surfaces produced but these uncertainties vary widely from area to area

  15. Concentration of involatile salts at evaporating water surfaces

    International Nuclear Information System (INIS)

    Gardner, G.C.

    1988-02-01

    Safety cases for the PWR often need to know how much of the soluble salts in the water will evaporate with the steam during flashing and when the steam is discharged to the atmosphere. Some ideal evaporating systems to give guidance. Simple formulae are derived for the surface concentration relative to the bulk concentration. An analysis is also presented which derives a formula for the mass transfer process in the steam due to both diffusion and convection, which arises from the evaporation process. The convection process will usually dominate. (author)

  16. Lead concentrations and risk exposure assessment in surface soils ...

    African Journals Online (AJOL)

    Lead concentrations and risk exposure assessment in surface soils at residential lands previously used for auto-mechanic and auto-welding activities in Port Harcourt, Nigeria. ... Journal of Applied Sciences and Environmental Management.

  17. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Energy Technology Data Exchange (ETDEWEB)

    Eckley, Chris S., E-mail: eckley.chris@epa.gov [US Environmental Protection Agency, Region-10, Seattle, WA 98101 (United States); Tate, Mike T. [US Geological Survey, Middleton, WI 53562 (United States); Lin, Che-Jen [Center for Advances on Water and Air quality, Lamar University, Beaumont, TX 77710 (United States); Gustin, Mae [Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV 89557 (United States); Dent, Stephen [CDM Smith, Portland, OR 97205 (United States); Eagles-Smith, Collin [US Geological Survey, Corvallis, OR 97331 (United States); Lutz, Michelle A. [US Geological Survey, Middleton, WI 53562 (United States); Wickland, Kimberly P. [US Geological Survey Boulder, CO 80303 (United States); Wang, Bronwen [US Geological Survey, Anchorage, AK 99508 (United States); Gray, John E. [US Geological Survey, Denver, CO 80225 (United States); Edwards, Grant C. [Department of Environment and Geography, Macquarie University, North Ryde, NSW 2109 (Australia); Krabbenhoft, Dave P. [US Geological Survey, Middleton, WI 53562 (United States); Smith, David B. [US Geological Survey, Denver, CO 80225 (United States)

    2016-10-15

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  18. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    International Nuclear Information System (INIS)

    Eckley, Chris S.; Tate, Mike T.; Lin, Che-Jen; Gustin, Mae; Dent, Stephen; Eagles-Smith, Collin; Lutz, Michelle A.; Wickland, Kimberly P.; Wang, Bronwen; Gray, John E.; Edwards, Grant C.; Krabbenhoft, Dave P.; Smith, David B.

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  19. Multisite study of particle number concentrations in urban air.

    Science.gov (United States)

    Harrison, Roy M; Jones, Alan M

    2005-08-15

    Particle number concentration data are reported from a total of eight urban site locations in the United Kingdom. Of these, six are central urban background sites, while one is an urban street canyon (Marylebone Road) and another is influenced by both a motorway and a steelworks (Port Talbot). The concentrations are generally of a similar order to those reported in the literature, although higher than those in some of the other studies. Highest concentrations are at the Marylebone Road site and lowest are at the Port Talbot site. The central urban background locations lie somewhere between with concentrations typically around 20 000 cm(-3). A seasonal pattern affects all sites, with highest concentrations in the winter months and lowest concentrations in the summer. Data from all sites show a diurnal variation with a morning rush hour peak typical of an anthropogenic pollutant. When the dilution effects of windspeed are accounted for, the data show little directionality at the central urban background sites indicating the influence of sources from all directions as might be expected if the major source were road traffic. At the London Marylebone Road site there is high directionality driven by the air circulation in the street canyon, and at the Port Talbot site different diurnal patterns are seen for particle number count and PM10 influenced by emissions from road traffic (particle number count) and the steelworks (PM10) and local meteorological factors. Hourly particle number concentrations are generally only weakly correlated to NO(x) and PM10, with the former showing a slightly closer relationship. Correlations between daily average particle number count and PM10 were also weak. Episodes of high PM10 concentration in summer typically show low particle number concentrations consistent with transport of accumulation mode secondary aerosol, while winter episodes are frequently associated with high PM10 and particle number count arising from poor dispersion of

  20. ComPAQS: a compact concentric UV/visible spectrometer, providing a new tool for air quality monitoring from space

    Science.gov (United States)

    Leigh, Roland J.; Whyte, C.; Cutter, M. A.; Lobb, D. R.; Monks, P. S.

    2017-11-01

    Under the first phase of the Centre for Earth Observation Instrumentation (CEOI), a breadboard demonstrator of a novel UV/VIS spectrometer has been developed. Using designs from Surrey Satellite Technology Ltd (SSTL) the demonstrator has been constructed and tested at the University of Leicester's Space Research Centre. This spectrometer provides an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. Measurement of atmo spheric compounds with climate change or air quality implications is a key driver for the ground and space-based Earth Observation communities. Techniques using UV/VIS spectroscopy such as DOAS provide measurements of ozone profiles, aerosol optical depth, certain Volatile Organic Compounds, halogenated species, and key air quality parameters including tropospheric nitrogen dioxide. Compact instruments providing the necessary optical performance and spectral resolution are therefore a key enabling technology. The Compact Air Quality Spectrometer (CompAQS) features a concentric arrangement of a spherical meniscus lens, a concave spherical mirror and a suitable curved diffraction grating. This compact design provides efficiency and performance benefits over traditional concepts, improving the precision and spatial resolution available from space borne instruments with limited weight and size budgets. The breadboard spectrometer currently operating at the University of Leicester offers high throughput with a spectral range from 310 to 450 nm at 0.5nm(UV) to 1.0nm (visible) resolution, suitable for DOAS applications. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called `smile' - the curvature of the slit image formed at each

  1. Examination of the uncertainty in air concentration predictions using Hanford field data

    International Nuclear Information System (INIS)

    Miller, C.W.; Fields, D.E.; Cotter, S.J.

    1986-10-01

    The accuracy of an environmental transport model is best determined by comparing model predictions with environmental measurements made under conditions similar to those assumed by the model, a process commonly referred to as model validation. Over the past several years, we have done a variety of validation studies with the popular Gaussian plume atmospheric dispersion model using data from tests conducted on the Hanford reservation. Data for short-term releases of small particles for release heights of 2 m, 56 m, and 111 m have been used. Up to six different sets of atmospheric dispersion parameters and three different atmospheric stability class specification schemes have been examined. Overall, dispersion parameters based on measurements made near Juelich, West Germany, give the best comparisons between observed and predicted air concentrations. The commonly-used vertical temperature gradient method for determining atmospheric stability class consistently gives poor results. The accuracy of air concentration predictions improves when dry deposition processes are included in the model. Further validation studies using various Hanford data sets are planned

  2. Causes of seasonal variations of Cs-134/137 activity concentrations in surface air; Ursachen der jahreszeitlichen Schwankungen der Aktivitaetskonzentrationen von Cs-134/137 in der bodennahen Luft

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz; Winkler, R. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz

    1993-12-31

    In winter months maxima of Cs-134/137 activity concentrations in air are observed at several locations in Europe. To clarify this phenomenon, from October 1991 to November 1992 we performed a program for aerosol collection on a short-term scale based on collecting intervals of 48-72 hours. The local meteorological parameters were determined simultaneously. Statistical analysis of these observations reveiled a highly significant positive correlation between Cs-137 activity concentration and the so-called `Stagnationsindex`. Based on this relationship the seasonal variations of Cs-134/137 concentrations in ground-level air can be explained by atmospheric inversion conditions frequently occurring during fall- and wintermonths. (orig.) [Deutsch] Zur Klaerung der an verschiedenen Orten Europas in den Wintermonaten beobachteten Maxima der Cs-134/137-Aktivitaetskonzentrationen in der bodennahen Luft wurde von Oktober 1991 bis November 1992 ein Messgrogramm mit relativ kurzen Zeitintervallen fuer die Aerosolsammlung (48-72 Stunden) durchgefuehrt. Gleichzeitig wurden lokale meteorologische Parameter miterfasst. Die statistische Auswertung der Messergebnisse lieferte eine hochsignifikante positive Korrelation zwischen der Aktivitaetskonzentration von Cs-137 und dem sog. Stagnationsindex. Auf Grund dieses Zusammenhangs lassen sich die saisonalen Schwankungen der Cs-134/137-Luftkonzentrationen mit dem haeufigen Auftreten von austauscharmen Wetterlagen in den Herbst- und Wintermonaten erklaeren. (orig.)

  3. Radionuclide concentrations in ground level air and precipitation in South Germany from 1976 to 1982

    International Nuclear Information System (INIS)

    Hoetzl, H.; Rosner, G.; Winkler, R.

    1983-08-01

    The activity concentrations of fallout radionuclides from atmospheric nuclear test explosions and of Be-7 in ground level air and precipitation have been determined by the Institut fuer Strahlenschutz at Munich-Neuherberg since 1970. While methods and results from 1970 to 1975 have been published in a previous report, the present report describes the revised program which includes now the naturally occurring nuclides Pb-210 and Po-210, as well as H-3. Sampling methods, analytical techniques and measuring procedures are given. The results up to the end of 1982 are reported and seasonal and long-term variations of radionuclide concentrations as well as frequency distributions of the data are discussed. The data are compared with those of other stations. As a consequence of some recent atmospheric nuclear test explosions by the People's Republic of China also short-lived radionuclides have been detected in ground level air and precipitation. The radiation exposure due to the radioactivity in ground level air and precipitation is estimated. (orig.)

  4. Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface

    KAUST Repository

    Li, Erqiang

    2015-09-07

    When a drop impacts on a solid surface, its rapid deceleration is cushioned by a thin layer of air, which leads to the entrapment of a bubble under its centre. For large impact velocities the lubrication pressure in this air layer becomes large enough to compress the air. Herein we use high-speed interferometry, with 200 ns time-resolution, to directly observe the thickness evolution of the air layer during the entire bubble entrapment process. The initial disc radius and thickness shows excellent agreement with available theoretical models, based on adiabatic compression. For the largest impact velocities the air is compressed by as much as a factor of 14. Immediately following the contact, the air disc shows rapid vertical expansion. The radial speed of the surface minima just before contact, can reach 50 times the impact velocity of the drop.

  5. Numerical simulation of the double pits stress concentration in a curved casing inner surface

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2016-12-01

    Full Text Available Sour or sweet oil fields development is common in recent years. Casing and tubing are usually subjected to pitting corrosion because of exposure to the strong corrosion species, such as CO2, H2S, and saline water. When the corrosion pits formed in the casing inner surface, localized stress concentration will occur and the casing strength will be degraded. Thus, it is essential to evaluate the degree of stress concentration factor accurately. This article performed a numerical simulation on double pits stress concentration factor in a curved inner surface using the finite element software ABAQUS. The results show that the stress concentration factor of double pits mainly depends on the ratio of two pits distance to the pit radius (L/R. It should not be only assessed by the absolute distance between the two pits. When the two pits are close and tangent, the maximum stress concentration factor will appear on the inner tangential edges. Stress concentration increased by double pits in a curved casing inner surface is more serious than that in a flat surface. A correction factor of 1.9 was recommended in the curved inner surface double pits stress concentration factor predict model.

  6. The intraseasonal variability of winter semester surface air temperature in Antarctica

    Directory of Open Access Journals (Sweden)

    Lejiang Yu

    2011-02-01

    Full Text Available This study investigates systematically the intraseasonal variability of surface air temperature over Antarctica by applying empirical orthogonal function (EOF analysis to the National Centers for Environmental Prediction, US Department of Energy, Reanalysis 2 data set for the period of 1979 through 2007. The results reveal the existence of two major intraseasonal oscillations of surface temperature with periods of 26–30 days and 14 days during the Antarctic winter season in the region south of 60°S. The first EOF mode shows a nearly uniform spatial pattern in Antarctica and the Southern Ocean associated with the Antarctic Oscillation. The mode-1 intraseasonal variability of the surface temperature leads that of upper atmosphere by one day with the largest correlation at 300-hPa level geopotential heights. The intraseasonal variability of the mode-1 EOF is closely related to the variations of surface net longwave radiation the total cloud cover over Antarctica. The other major EOF modes reveal the existence of eastward propagating phases over the Southern Ocean and marginal region in Antarctica. The leading two propagating modes respond to Pacific–South American modes. Meridional winds induced by the wave train from the tropics have a direct influence on the surface air temperature over the Southern Ocean and the marginal region of the Antarctic continent.

  7. Evaluation of entrance surface air kerma in pediatric chest radiography

    International Nuclear Information System (INIS)

    Porto, L.; Lunelli, N.; Paschuk, S.; Oliveira, A.; Ferreira, J.L.; Schelin, H.; Miguel, C.; Denyak, V.; Kmiecik, C.; Tilly, J.; Khoury, H.

    2014-01-01

    The objective of this study was to evaluate the entrance surface air kerma in pediatric chest radiography. An evaluation of 301 radiographical examinations in anterior–posterior (AP) and posterior–anterior (PA) (166 examinations) and lateral (LAT) (135 examinations) projections was performed. The analyses were performed on patients grouped by age; the groups included ages 0–1 y, 1–5 y, 5–10 y, and 10–15 y. The entrance surface air kerma was determined with DoseCal software (Radiological Protection Center of Saint George's Hospital, London) and thermoluminescent dosimeters. Two different exposure techniques were compared. The doses received by patients who had undergone LAT examinations were 40% higher, on average, those in AP/PA examinations because of the difference in tube voltage. A large high-dose “tail” was observed for children up to 5 y old. An increase in tube potential and corresponding decrease in current lead to a significant dose reduction. The difference between the average dose values for different age ranges was not practically observed, implying that the exposure techniques are still not optimal. Exposure doses received using the higher tube voltage and lower current-time product correspond to the international diagnostic reference levels. - Highlights: • The entrance surface air kerma of chest X-ray examinations in pediatric patients was estimated. • The data were analyzed for patients aged up to 15 y, stratified by age. • The doses of LAT examinations were 40% higher than of AP/PA because of kV used. • An increase in kV with a decrease in mAs leads to significant dose reduction

  8. Experimental study of surface dielectric barrier discharge in air and its ozone production

    International Nuclear Information System (INIS)

    Pekárek, Stanislav

    2012-01-01

    For surface dielectric barrier discharge in air we studied the effects of frequency of the driving voltage on dissipated power, asymmetry of amplitudes of the discharge voltage, discharge UV emission, ozone production, ozone production of the discharge with TiO 2 and of the discharge in magnetic field. We found that for a particular voltage the dissipated power is higher for the frequency of the driving voltage of 26.3 kHz than for the frequency of 10.9 kHz; peak values of the positive half-periods of the discharge voltage are higher than peak values of the negative half-periods; intensity of the discharge UV emissions for wavelengths of 320-420 nm is for both frequencies a linear function of power; maximum ozone concentration for the frequency of the driving voltage of 26.3 kHz is obtained with smaller power than for the frequency of 10.9 kHz; placement of TiO 2 particles into the discharge chamber increases for both frequencies of the driving voltage maximum ozone concentration produced by the discharge and for the frequency of the driving voltage of 26.3 kHz increases ozone production yield. Finally, there is no observable effect of magnetic field on concentration of ozone produced by the discharge as well as on production yield. (paper)

  9. AGE AND STRAIN INFLUENCES ON LUNG RESPONSES TO CONCENTRATED AIR PARTICULATES (CAPS) IN RODENTS

    Science.gov (United States)

    Asthma, an inflammatory airways disease, is an urgent health problem. Recent epidemiologic studies have demonstrated positive associations between ambient air particulate matter concentrations and daily respiratory morbidity ? including exacerbations of asthma. Of note, elderly i...

  10. Influence of geometry of thermal manikins on concentration distribution and personal exposure

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, Jan

    2007-01-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface...... temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip...... at a distance of simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method...

  11. Analytical description of concentration dependence of surface tension in multicomponent systems

    Energy Technology Data Exchange (ETDEWEB)

    Dadashev, R; Kutuev, R [Complex Science Research Institute of the Science Academy of the Chechen Republic, 21 Staropromisl. shosse, Grozny 364096 (Russian Federation); Elimkhanov, D [Science Academy of the Chechen Republic (Russian Federation)], E-mail: edzhabrail@mail.ru

    2008-02-15

    From the basic fundamental thermodynamic expressions the equation of isotherms of the surface tension of a ternary system is received. Various assumptions concerning the concentration dependence of molar areas are usually made when the equation is derived. The dependence of the molar areas is calculated as an additive function of the structure of a volumetric phase or the structure of a surface layer. To define the concentration dependence of the molar areas we used a stricter thermodynamic expression offered by Butler. In the received equation the dependence of molar areas on the structure of the solution is taken into account. Therefore, the equation can be applied for the calculation of surface tension over a wide concentration range of the components. Unlike the known expressions, the equation includes the surface tension properties of lateral binary systems, which makes the accuracy of the calculated values considerably higher. Thus, among the advantages of the offered equation we can point out the mathematical simplicity of the received equation and the fact that the equation includes physical parameters the experimental definition of which does not present any special difficulties.

  12. Air formaldehyde and solvent concentrations during surface coating with acid-curing lacquers and paints in the woodworking and furniture industry.

    Science.gov (United States)

    Thorud, Syvert; Gjolstad, Merete; Ellingsen, Dag G; Molander, Paal

    2005-06-01

    An investigation of contemporary exposure to formaldehyde and organic solvents has been carried out during surface coating with acid-curing lacquers and paints in the Norwegian woodworking and furniture industry over a period of 3 years. The investigation covered 27 factories of different sizes and with different types of production, and totally 557 parallel formaldehyde and solvent samples were collected. The formaldehyde concentration (geometric mean) was 0.15 ppm (range 0.01-1.48 ppm) with about 10% of the samples exceeding the Norwegian occupational exposure limit of 0.5 ppm. The solvent concentration as additive effect (geometric mean) was 0.13 (range 0.0004-5.08) and about 5% of the samples exceeded the Norwegian occupational exposure limit. The most frequently occurring solvents from acid-curing lacquers were n-butyl acetate, ethanol, ethyl acetate and 1-butanol, which were found in 88-98% of the samples. Toluene, n-butyl acetate and 1-butanol were the only solvents with maximum concentrations exceeding their respective occupational exposure limits. Curtain painting machine operators were exposed to the highest concentrations of both formaldehyde (geometric mean 0.51 ppm, range 0.08-1.48 ppm) and organic solvents (additive effect, geometric mean 1.18, range 0.02-5.08). Other painting application work tasks such as automatic and manual spray-painting, manual painting and dip painting, showed on average considerably lower concentrations of both formaldehyde (geometric means 0.07-0.16 ppm) and organic solvents (additive effect, geometric mean 0.02-0.18). Non-painting work tasks also displayed moderate concentrations of formaldehyde (geometric means 0.11-0.17 ppm) and organic solvents (additive effect, geometric mean 0.04-0.07).

  13. Quantifying the impact of current and future concentrations of air pollutants on respiratory disease risk in England.

    Science.gov (United States)

    Pannullo, Francesca; Lee, Duncan; Neal, Lucy; Dalvi, Mohit; Agnew, Paul; O'Connor, Fiona M; Mukhopadhyay, Sabyasachi; Sahu, Sujit; Sarran, Christophe

    2017-03-27

    Estimating the long-term health impact of air pollution in a spatio-temporal ecological study requires representative concentrations of air pollutants to be constructed for each geographical unit and time period. Averaging concentrations in space and time is commonly carried out, but little is known about how robust the estimated health effects are to different aggregation functions. A second under researched question is what impact air pollution is likely to have in the future. We conducted a study for England between 2007 and 2011, investigating the relationship between respiratory hospital admissions and different pollutants: nitrogen dioxide (NO 2 ); ozone (O 3 ); particulate matter, the latter including particles with an aerodynamic diameter less than 2.5 micrometers (PM 2.5 ), and less than 10 micrometers (PM 10 ); and sulphur dioxide (SO 2 ). Bayesian Poisson regression models accounting for localised spatio-temporal autocorrelation were used to estimate the relative risks (RRs) of pollution on disease risk, and for each pollutant four representative concentrations were constructed using combinations of spatial and temporal averages and maximums. The estimated RRs were then used to make projections of the numbers of likely respiratory hospital admissions in the 2050s attributable to air pollution, based on emission projections from a number of Representative Concentration Pathways (RCP). NO 2 exhibited the largest association with respiratory hospital admissions out of the pollutants considered, with estimated increased risks of between 0.9 and 1.6% for a one standard deviation increase in concentrations. In the future the projected numbers of respiratory hospital admissions attributable to NO 2 in the 2050s are lower than present day rates under 3 Representative Concentration Pathways (RCPs): 2.6, 6.0, and 8.5, which is due to projected reductions in future NO 2 emissions and concentrations. NO 2 concentrations exhibit consistent substantial present

  14. The secondary electron yield of air exposed metal surfaces at the example of niobium

    CERN Document Server

    Scheuerlein, C; Taborelli, M

    2002-01-01

    The secondary electron yield (SEY) variation of atomically clean metal surfaces due to air exposures and during subsequent heat treatments is described with the example of a sputter-deposited Nb thin film. Corresponding variations of the surface chemical composition have been monitored using AES and SSIMS. On the basis of these results and of previously obtained SEY results on metals and metal oxides the origin of the SEY variations is discussed. The SEY increase, which is generally observed during long lasting air exposures of clean metals, is mainly caused by the adsorption of an airborne carbonaceous contamination layer. The estimated value of about 3 for the maximum SEY of this layer is higher than that of all pure metals. Only in some cases the air-formed oxide can contribute to the air exposure induced SEY increase while many oxides have a lower SEY than their parent metals. From the experimental data it can also be excluded that the SEY increase during air exposures is mainly due to an increased second...

  15. Determinants of perceived air pollution annoyance and association between annoyance scores and air pollution (PM 2.5, NO 2) concentrations in the European EXPOLIS study

    Science.gov (United States)

    Rotko, Tuulia; Oglesby, Lucy; Künzli, Nino; Carrer, Paolo; Nieuwenhuijsen, Mark J.; Jantunen, Matti

    Apart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25-55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM 2.5 and NO 2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM 2.5 and NO 2. A high correlation was observed between the personal 48-h PM 2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM 2.5 and the personal work time PM 2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM 2.5) and 19% (NO 2) of the variation in perceived air pollution annoyance in traffic. Compared to

  16. Implications of alternative assumptions regarding future air pollution control in scenarios similar to the Representative Concentration Pathways

    NARCIS (Netherlands)

    Chuwah, C.; van Noije, T.; van Vuuren, D.P.; Hazeleger, W.; Strunk, A.; Deetman, S.; Beltran, A.M.; van Vliet, J.

    2013-01-01

    The uncertain, future development of emissions of short-lived trace gases and aerosols forms a key factor for future air quality and climate forcing. The Representative Concentration Pathways (RCPs) only explore part of this range as they all assume that worldwide ambitious air pollution control

  17. Air pollutant concentrations near three Texas roadways, part II: Chemical characterization and transformation of pollutants

    Science.gov (United States)

    Clements, Andrea L.; Jia, Yuling; Denbleyker, Allison; McDonald-Buller, Elena; Fraser, Matthew P.; Allen, David T.; Collins, Donald R.; Michel, Edward; Pudota, Jayanth; Sullivan, David; Zhu, Yifang

    Spatial gradients of vehicular emitted air pollutants were measured in the vicinity of three roadways in the Austin, Texas area: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway with significant truck traffic. A mobile monitoring platform was used to characterize the gradients of CO and NO x concentrations with increased distance from each roadway, while concentrations of carbonyls in the gas-phase and fine particulate matter mass and composition were measured at stationary sites upwind and at one (I-35 and FM-973) or two (SH-71) downwind sites. Regardless of roadway type or wind direction, concentrations of carbon monoxide (CO), nitric oxide (NO), and oxides of nitrogen (NO x) returned to background levels within a few hundred meters of the roadway. Under perpendicular wind conditions, CO, NO and NO x concentrations decreased exponentially with increasing distance perpendicular to the roadways. The decay rate for NO was more than a factor of two greater than for CO, and it comprised a larger fraction of NO x closer to the roadways than further downwind suggesting the potential significance of near roadway chemical processing as well as atmospheric dilution. Concentrations of most carbonyl species decreased with distance downwind of SH-71. However, concentrations of acetaldehyde and acrolein increased farther downwind of SH-71, suggesting chemical generation from the oxidation of primary vehicular emissions. The behavior of particle-bound organic species was complex and further investigation of the size-segregated chemical composition of particulate matter (PM) at increasing downwind distances from roadways is warranted. Fine particulate matter (PM 2.5) mass concentrations, polycyclic aromatic hydrocarbons (PAHs), hopanes, and elemental carbon (EC

  18. The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes.

    Science.gov (United States)

    Nicholas, R; Dunton, P; Tatham, A; Fielding, L

    2013-08-01

    The effects of gaseous ozone and open air factor (OAF) on environmental Listeria monocytogenes attached to three common food contact surfaces were investigated. Listeria monocytogenes on different food contact surfaces was treated with ozone and OAF. Microbiological counts, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed. Ozone at 10 ppm gave <1-log reduction when L. monocytogenes was attached to stainless steel, while 45 ppm gave a log reduction of 3.41. OAF gave better log reductions than 10 ppm ozone, but lower log reductions than 45 ppm. Significant differences were found between surfaces. Biofilm organisms were significantly more resistant than those surface attached on stainless steel. SEM and AFM demonstrated different membrane and cell surface modifications following ozone or OAF treatment. The strain used demonstrated higher resistance to ozone than previous studies. This may be due to the fact that it was isolated from a food manufacturing premises that used oxidizing disinfectants. OAF was more effective at reducing the levels of the organism than an ozone concentration of 10 ppm. Pathogen management strategies must account for resistance of environmental strains when validating cleaning and disinfection. OAF has shown potential for surface decontamination compared with ozone. SEM and AFM are valuable tools for determining mechanisms of action of antimicrobial agents. © 2013 The Society for Applied Microbiology.

  19. Methodology for estimating sodium aerosol concentrations during breeder reactor fires

    International Nuclear Information System (INIS)

    Fields, D.E.; Miller, C.W.

    1985-01-01

    We have devised and applied a methodology for estimating the concentration of aerosols released at building surfaces and monitored at other building surface points. We have used this methodology to make calculations that suggest, for one air-cooled breeder reactor design, cooling will not be compromised by severe liquid-metal fires

  20. Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology

    Science.gov (United States)

    Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.

    2013-12-01

    work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.

  1. Effectiveness of finish materials and room air-conditioner on the reduction of indoor radon concentration in Hong Kong

    International Nuclear Information System (INIS)

    Ma, A.K.; Man, C.K.; Ho, E.; Pang, S.W.

    1995-01-01

    Four different kinds of finish material were investigated: wallpaper, paint, plaster and tile. When applied to the bare concrete walls of uninhabited rooms in flats of a building under construction, all of them were found to reduce indoor radon concentration. The magnitude of reduction by these finish materials ranged from 20% to 80%. Wallpaper was found to provide the best protection against radon emission from bare concrete walls in a bedroom with a size of 19.3 m 3 . Wallpaper can reduce the indoor radon concentration about twice as much as paint (water-based) or plaster in this investigation. Tile was also found to be a good material against radon emission from concrete walls in a bathroom with a size of 6.3 m 3 . Indoor radon concentration was found to decrease with elevation from the ground level, and was affected strongly by mechanical ventilation. Another 30% to 50% reduction in indoor radon concentration in addition to finish material can be achieved by a room air-conditioner. It was also found that indoor radon concentrations were not affected by turning the fresh air shutter to the 'on' or 'off' position in the room air-conditioner. (author)

  2. INDOOR AIR QUALITY IN HOSPITALS - Verification of the physical parameters of comfort and the concentration of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Waldir Nagel Schirmer

    2010-10-01

    Full Text Available In hospitals, the presence of pollutants in the indoor air creates conditions that may prejudice the recovery of patients and affect the productivity of employees. Thus, these places need air conditioning well designed, to provide adequate ventilation rates to ensure the comfort of its occupants and the aseptic of environments. The present study focused on evaluating the indoor air quality (IAQ in a surgical center and an intensive care unit, by checking the physical parameters of comfort and the concentrations of carbon dioxide, following the procedure recommended by Resolution No. 09 of the National Sanitary Surveillance Agency (ANVISA and to propose an air conditioning system for each of the environments evaluated. The results showed that the IAQ in those environments may be improved, since some of the parameters showed values higher than those recommended by that resolution. High concentrations of CO2 obtained, for example, can be justified by the lack of renewal of air. It is suggested that the air conditioning systems must to be substituted for that allowed the renewal of the air at rates acceptable to the current legislation.

  3. Performance characteristics of solar air heater with surface mounted obstacles

    International Nuclear Information System (INIS)

    Bekele, Adisu; Mishra, Manish; Dutta, Sushanta

    2014-01-01

    Highlights: • Solar air heater with delta shaped obstacles have been studied. • Obstacle angle of incidence strongly affects the thermo-hydraulic performance. • Thermal performance of obstacle mounted collectors is superior to smooth collectors. • Thermo-hydraulic performance of the present SAH is higher than those in previous studies. - Abstract: The performance of conventional solar air heaters (SAHs) can be improved by providing obstacles on the heated wall (i.e. on the absorber plate). Experiments have been performed to collect heat transfer and flow-friction data from an air heater duct with delta-shaped obstacles mounted on the absorber surface and having an aspect ratio 6:1 resembling the conditions close to the solar air heaters. This study encompassed for the range of Reynolds number (Re) from 2100 to 30,000, relative obstacle height (e/H) from 0.25 to 0.75, relative obstacle longitudinal pitch (P l /e) from 3/2 to 11/2, relative obstacle transverse pitch (P t /b) from 1 to 7/3 and the angle of incidence (α) varied from 30° to 90°. The thermo-hydraulic performance characteristics of SAH have been compared with the previous published works and the optimum range of the geometries have been explored for the better performance of such air-heaters compared to the other designs of solar air heaters

  4. Efficiency of a concentric matrix track detector surface scanning

    International Nuclear Information System (INIS)

    Bek-Uzarov, Dj.; Nikezic, D.; Kostic, D.; Krstic, D.; Cuknic, O.

    1995-01-01

    Heavy particle ionizing radiation track counting on the surface of a solid state round surface detector is made using the microscope and scanning step by step by a round field of vision. The whole solid state detector surface could not be fully or completely covered by round fields of visions. Therefore detector surface could be divided on the two parts, the larger surface, being under fields of vision, really scanned and no scanned missed or omitted surface. The ratio between omitted and scanned surfaces is so called track scanning efficiency. The knowledge of really counted, or scanned surface is a important value for evaluating the real surface track density an exposed solid state track detector. In the paper a matrix of a concentric field of vision made around the first microscope field of vision placed in center of the round disc of the scanned track detector is proposed. In a such scanning matrix the real scanned surface could be easy calculated and by the microscope scanning made as well. By this way scanned surface is very precisely obtained as well. Precise knowledge of scanned and omitted surface allows to obtain more precise scanning efficiency factor as well as real surface track density, the main parameter in solid state track detection measurements. (author)

  5. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    Science.gov (United States)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  6. Reduction of the environmental concentration of air pollutants by proper geometrical orientation of industrial line sources

    International Nuclear Information System (INIS)

    Tadmor, J.

    1980-01-01

    An account is given of an Israeli study of two line sources, one composed of 10 and the other of 20 individual sources. The height of release ranged from 15.7 to 39.6 m, with a uniform rate of release of a gaseous pollutant of 1 Ci/s for each source. Average pollutant concentration was plotted as a function of the rotation angle of the line sources. Reduction of pollutant concentration by a particular rotation of the line sources attained values of up to 50%. At certain rotation angles of the line sources, the environmental concentration was lower even as compared with a single high source. Results also depended on atmospheric conditions. It is suggested that considering the increase in cost of augmenting the height of release as a means of reducing the air pollutant concentration, determination of the optimum geometric orientation of the line sources should be considered as an economical means of improving environmental air quality. (U.K.)

  7. Chemical concentrations, exposures, health risks by census tract from National Scale Air Toxics Assessment (NATA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical concentrations, exposures, health risks by census tract for the United States from National Scale Air Toxics Assessment (NATA). This dataset is associated...

  8. Measurement and modeling of diel variability of polybrominated diphenyl ethers and chlordanes in air.

    Science.gov (United States)

    Moeckel, Claudia; Macleod, Matthew; Hungerbühler, Konrad; Jones, Kevin C

    2008-05-01

    Short-term variability of concentrations of polybrominated diphenyl ethers (PBDEs) and chlordanes in air at a semirural site in England over a 5 day period is reported. Four-hour air samples were collected during a period dominated by a high pressure system that produced stable diel (24-h) patterns of meteorological conditions such as temperature and atmospheric boundary layer height. PBDE and chlordane concentrations showed clear diel variability with concentrations in the afternoon and evening being 1.9 - 2.7 times higher than in the early morning. The measurements are interpreted using a multimedia mass balance model parametrized with forcing functions representing local temperature, atmospheric boundary layer height, wind speed and hydroxyl radical concentrations. Model results indicate that reversible, temperature-controlled air-surface exchange is the primary driver of the diel concentration pattern observed for chlordanes and PBDE 28. For higher brominated PBDE congeners (47, 99 and 100), the effect of variable atmospheric mixing height in combination with irreversible deposition on aerosol particles is dominant and explains the diel patterns almost entirely. Higher concentrations of chlordanes and PBDEs in air observed at the end of the study period could be related to likely source areas using back trajectory analysis. This is the first study to clearly document diel variability in concentrations of PBDEs in air over a period of several days. Our model analysis indicates that high daytime and low nighttime concentrations of semivolatile organic chemicals can arise from different underlying driving processes, and are not necessarily evidence of reversible air-surface exchange on a 24-h time scale.

  9. High Concentrations of Organic Contaminants in Air from Ship Breaking Activities in Chittagong, Bangladesh.

    Science.gov (United States)

    Nøst, Therese H; Halse, Anne K; Randall, Scott; Borgen, Anders R; Schlabach, Martin; Paul, Alak; Rahman, Atiqur; Breivik, Knut

    2015-10-06

    The beaches on the coast of Chittagong in Bangladesh are one of the most intense ship breaking areas in the world. The aim of the study was to measure the concentrations of organic contaminants in the air in the city of Chittagong, including the surrounding ship breaking areas using passive air samplers (N = 25). The compounds detected in the highest amounts were the polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs), whereas dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs) were several orders of magnitude lower in comparison. PCBs, PAHs, and HCB were highest at sites near the ship breaking activities, whereas DDTs and SCCPs were higher in the urban areas. Ship breaking activities likely act as atmospheric emission sources of PCBs, PAHs, and HCB, thus adding to the international emphasis on responsible recycling of ships. Concentrations of PAHs, PCBs, DDTs, HCB, and SCCPs in ambient air in Chittagong are high in comparison to those found in similar studies performed in other parts of Asia. Estimated toxic equivalent quotients indicate elevated human health risks caused by inhalation of PAHs at most sites.

  10. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience

    Science.gov (United States)

    Stone, Wendy; Kroukamp, Otini; Korber, Darren R.; McKelvie, Jennifer; Wolfaardt, Gideon M.

    2016-01-01

    The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation. PMID:27746774

  11. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    Science.gov (United States)

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  12. Relevance of air conditioning for 222Radon concentration in shops of the Savona Province, Italy

    International Nuclear Information System (INIS)

    Panatto, Donatella; Ferrari, Paola; Lai, Piero; Gallelli, Giovanni

    2006-01-01

    Radon ( 222 Rn) concentration was evaluated in shops of the Savona Province, Italy, between summer 2002 and winter 2002-2003. The main characteristics of each shops were recorded through a questionnaire investigating the ventilation rate and factors related to 222 Rn precursors in the soil and the construction materials. The main variables that were related to radon concentration were the following: age of the building, level of the shop above ground, season of the year, wind exposure, active windows, and type of heating system. Shops equipped with individual air heating/conditioning systems exhibited radon concentrations that were three times higher than those of shops heated by centralized furnaces. Our data indicate that the level of pollution in the shops was of medium level, with an expected low impact on the salespersons' health. Only in wintertime, the action level of 200 Bq m -3 for the confined environment was reached in 10 shops equipped with individual air heating/conditioning systems

  13. Determination of Radon-222 and Thoron Concentration in Decorative Stone Warehouses Indoor Air and the Received Effective Dose by Staff

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2015-06-01

    Full Text Available Background: Radon is a colorless, odorless, and radioactive gas that can be emitted from decorative stones such as granite, marble, etc. Inhaling radon gas in a long period may cause for incidence of lung cancer among peoples. Material and Methods: In this cross-sectional descriptive study, Radon 222 and Thoron concentrations in background and indoor air were measured in four decorative stones warehouse using portable radon meter(RTM1688-2 model. Totally, 24 samples of 24- hours concentrations in indoor air and 24 samples of 4-hours concentrations of Radon 222 and thoron in the background air at three stages were measured. Then, received effective dose of Radon 222 and Thoron was calculated by UNSCEAR equations. Results: The mean radon concentrations for indoor and background air were 74±37 and 34±16 Bq/m3, respectively. The mean radon concentrations for indoor air in decorative stones warehouses for DSW1, DSW2, DSW3 and DSW4 were 72.50±34, 98.25±43, 34.42±18 and 88.92±51 Bq/m3, respectively. The received effective dose mean of Radon 222 and Thoron by the staff at 8 working hours was 0.53±0.18 and 0.05±0.03 mSv/y and in 16 working hours was 1.05±0.36 and 0.11±0.07 mSv/y, respectively. Generally, the mean received effective dose by staff from Radon at 8 and 16 working hours was 0.58±0.2  and 1.16±0.41 mSv/y, respectively. Conclusions: Radon concentration mean in indoor air and the received effective dose mean by staff was lower than the standards level. Decorative stone warehouses were the resources for accumulation of Radon gas that can be reduced by corrective actions.

  14. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    Science.gov (United States)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  15. A study on the environmental behavior of global air pollutants based on the continuous measurements of atmospheric radon concentrations

    International Nuclear Information System (INIS)

    Iida, Takao; Yamazawa, Hiromi

    2003-01-01

    Radon is a useful natural radioactive tracer of air transportation of atmospheric pollution, since radon is a noble gas and chemically inert. The atmospheric radon concentration is usually measured by a high-sensitivity electrostatic collection method or a two-filter method. The variations of radon concentrations observed over a solitary island and in the upper atmosphere are suitable for comparing with those of air pollutants. Some numerical simulation models were used to study the radon global transport in the atmosphere. In East Asia, atmospheric radon and air pollutants are transported with the air stream from the continent of China to the Northwestern Pacific Ocean. It is necessary to clarify the transport mechanism from both radon observations at various locations and numerical simulation. (author)

  16. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  17. Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wiswall, J.T.; Li, J.; Wooldridge, M.S.; Im, H.G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States)

    2011-01-15

    A stagnation flow reactor was used to study the effects of platinum on the lean flammability limits of atmospheric pressure premixed methane/air flames at moderate stagnation surface temperatures. Experimental and computational methods were used to quantify the equivalence ratio at the lean extinction limit ({phi}{sub ext}) and the corresponding stagnation surface temperature (T{sub s}). A range of flow rates (57-90 cm/s) and corresponding strain rates were considered. The results indicate that the gas-phase methane/air flames are sufficiently strong relative to the heterogeneous chemistry for T{sub s} conditions less than 750 K that the platinum does not affect {phi}{sub ext}. The computational results are in good agreement with the experimentally observed trends and further indicate that higher reactant flow rates (>139 cm/s) and levels of dilution (>{proportional_to}10% N{sub 2}) are required to weaken the gas-phase flame sufficiently for surface reaction to play a positive role on extending the lean flammability limits. (author)

  18. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ok Baek

    2015-08-01

    Full Text Available This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory

  19. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Mamede, Anne-Sophie, E-mail: anne-sophie.mamede@ensc-lille.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Nuns, Nicolas, E-mail: nicolas.nuns@univ-lille1.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Cristol, Anne-Lise, E-mail: anne-lise.cristol@ec-lille.fr [University Lille, CNRS, Centrale Lille, Arts et Métiers Paris Tech, FRE 3723 – LML – Laboratoire de Mécanique de Lille, F-59000 Lille (France); Cantrel, Laurent, E-mail: laurent.cantrel@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); Souvi, Sidi, E-mail: sidi.souvi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); and others

    2016-04-30

    Graphical abstract: - Highlights: • Mutitechnique characterisation of oxidised 304L. • Oxidation at high temperature under steam and air conditions of 304L stainless steel. • Chromium and manganese oxides formed in the outer layer. • Oxide profiles differ in air or steam atmosphere. - Abstract: In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8–12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe{sub 2}O{sub 3} oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  20. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  1. Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 2. Effect of different surfactants and theoretical model.

    Science.gov (United States)

    Fainerman, V B; Lotfi, M; Javadi, A; Aksenenko, E V; Tarasevich, Yu I; Bastani, D; Miller, R

    2014-11-04

    The influence of the addition of the nonionic surfactants dodecyl dimethyl phosphine oxide (C12DMPO), tetradecyl dimethyl phosphine oxide (C14DMPO), decyl alcohol (C10OH), and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the surface tension is studied. It is shown that a significant decrease of the water/air surface tension occurs for all the surfactants studied at very low concentrations (10(-5)-10(-3) mmol/L). All measurements were performed with the buoyant bubble profile method. The dynamics of the surface tension was simulated using the Fick and Ward-Tordai equations. The calculation results agree well with the experimental data, indicating that the equilibration times in the system studied do not exceed 30 000 s, while the time required to attain the equilibrium on a plane surface is by one order of magnitude higher. To achieve agreement between theory and experiment for the mixtures, a supposition was made about the influence of the concentration of nonionic surfactant on the adsorption activity of the protein. The adsorption isotherm equation of the protein was modified accordingly, and this corrected model agrees well with all experimental data.

  2. Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber

    NARCIS (Netherlands)

    Wit, PJ; vanderMei, HC; Busscher, HJ

    1997-01-01

    By allowing an air-bubble to pass through a parallel plate flow chamber with negatively charged, colloidal polystyrene particles adhering to the bottom collector plate of the chamber, the detachment of adhering particles stimulated by surface tension forces induced by the passage of a liquid-air

  3. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants.

    Science.gov (United States)

    Madsen, Anne Mette; Moslehi-Jenabian, Saloomeh; Islam, Md Zohorul; Frankel, Mika; Spilak, Michal; Frederiksen, Margit W

    2018-01-01

    The aim of this study was to obtain knowledge about concentrations of Staphylococcus aureus, MRSA (methicillin-resistant S. aureus), and other Staphylococcus species in indoor air in Greater Copenhagen and about factors affecting the concentrations. The effects of season, temperature, relative humidity, air change rate (ACR), other bacterial genera, area per occupant, and presence of S. aureus-positive occupants were studied. In samples from 67 living rooms, S. hominis, S. warneri, S. epidermidis, and S. capitis were found in 13-25%; S. saprophyticus, S. cohnii, and S. pasteuri in 5-10%; and S. lugdunensis, S. haemolyticus, S. caprae, S. equorum, S. kloosii, S. pettenkoferi, S. simulans, and S. xylosus in less than 3%. Staphylococcus aureus were found in two of 67 living rooms: spa type t034 (an MRSA) was recovered from a farmhouse, while spa type t509 was found in an urban home. Two species, S. equorum and S. kloosii, were found only in the farmhouse. Staphylococcus was significantly associated with season with lowest concentration and richness in winter. Genera composition was associated with ACR with smaller fractions of Staphylococcus at higher ACR, while richness was significantly and negatively associated with area per occupant. Concentration of Staphylococcus correlated positively with the total concentration of bacteria, but negatively with the total concentration of other bacteria. The concentration of Staphylococcus was not significantly associated with concentrations of the other abundant genera Bacillus, Kocuria, and Micrococcus. In offices with S. aureus-positive occupants, airborne S. aureus was not found. In conclusion, Staphylococcus species constitute a considerable proportion of the airborne bacteria in the studied homes and offices. However, both S. aureus and MRSA had very low prevalence during all seasons. Thus, transmission of S. aureus and MRSA through the air in living rooms in Copenhagen is expected to be limited. The negative associations

  4. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    Directory of Open Access Journals (Sweden)

    S. Aksoyoglu

    2016-02-01

    Full Text Available Emissions from the marine transport sector are one of the least-regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas and in EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx (Comprehensive Air Quality Model with Extensions with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5, and the dry and wet deposition of nitrogen and sulfur compounds in Europe. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %, the English Channel and the North Sea (30–35 %, while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %, where there were high NH3 land-based emissions. Our model results showed that not only are the atmospheric concentrations of pollutants affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships, especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas phase to the particle phase which then contributes to an increase in the wet deposition at coastal areas with higher precipitation. In the western Mediterranean region, on the other hand, model results show an increase in the deposition of oxidized nitrogen (mostly HNO3 due to the ship traffic. Dry deposition of SO2 seems to

  5. Sensitivity of the sea ice concentration over the Kara-Barents Sea in autumn to the winter temperature variability over East Asia

    Science.gov (United States)

    Cho, K. H.; Chang, E. C.

    2017-12-01

    In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.

  6. Influence of constructional energy-saving measures on the radon-concentration in the air in dwellings

    International Nuclear Information System (INIS)

    Grund, A.L.; Buermeyer, J.; Spizyn, A.; Zahradnik, I.; Grimm, V.; Grimm, G.; Gundlach, M.; Walpert, V.; Breckow, J.

    2015-01-01

    Due to energy-saving measures the air exchange in residential houses may be reduced. In order to determine time-dependent courses the indoor radon-concentrations were measured both, before and after renovation for several weeks. In addition, the most relevant climatic conditions or indoor climate factors, as e.g. the CO 2 -concentration, were measured. Verifying the renovation success, Blower-Door registered -Tests were performed, both as well before and after the renovation. Simultaneously the radon-concentration was measured. The results before and after renovation were compared with respect to seasonal parameters and the inhabitant's behavior. By investigation of the correlation coefficient the influencing parameters and the impact of the energy saving measures were analyzed. Based on the findings a model was developed to characterize the time-dependent course based on the influence quantities. The energy-saving measures at the building considerably influence the radon dynamics. Due to the denser building envelope, fresh air flows in case of underinflation caused by stack effect not only from the outside but even through the basement from the soil. Thus, by this path the radon-containing air can be transported into the dwelling's rooms as well. The influences of the users outweigh the influence of weather parameters, thus, the radonemission- rate was used for user-independent determination of the radon situation.

  7. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    the sea surface air temperature from satellite derived sea surface humidity in the Indian Ocean. Using the insitu data on surface met parameters collected on board O.R.V. Sagar Kanya in the Indian Ocean over a period of 15 years, the relationship between...

  8. Effect of air humidity on microstructure and phase composition of lithium deuteride corrosion products

    International Nuclear Information System (INIS)

    Liu, Xiaobo; Liu, Jiping

    2017-01-01

    Highlights: • Lithium deuteride samples are corroded by air with different relative humidity. • Show the structure and composition of fracture surface of corrosion particle. • The lithium carbonate formation is related to air humidity. • The lithium carbonate only exists in the surface of lithium hydroxide layer. • There is a concentration gradient of H 2 O across the lithium hydroxide layer. - Abstract: Lithium deuteride (LiD) was exposed to air for 600 min to determine the effect of air humidity on its microstructure and phase composition. XRD and XPS results revealed that LiOH and Li 2 CO 3 formed at relative humidity values of >30%, whereas only LiOH formed at values <20%. SEM and EDS images showed a clear LiOH layer; Li 2 CO 3 was confined to the surface of this layer. The schematic illustration revealed that the concentration gradient of H 2 O across the LiOH layer resulted in little Li 2 CO 3 formed in the layer. This work will contribute to increase understanding of LiD corrosion in air.

  9. Mathematical estimation of the level of microbial contamination on spacecraft surfaces by volumetric air sampling

    Science.gov (United States)

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.

  10. Correlation between δ18O in precipitation and surface air temperature on different time-scale in China

    International Nuclear Information System (INIS)

    Zhang Lin; Chen Zongyu; Nie Zhenlong; Liu Fuliang; Jia Yankun; Zhang Xiangyang

    2008-01-01

    The relation between isotopic compositions of precipitation and surface air temperature provides a unique tool for paleoclimate studies, among which the relation between long term changes in δ 18 O of precipitation and surface air temperature at different stations or in a given location seems to be the most appropriate to paleoclimatic reconstructions. Analysis was conducted on monthly and annual mean δ 18 O content of precipitation and surface air temperature at spatial and fixed locations by using the data of China (1985-2002) in Global Network of Isotopes in Precipitation (GNIP) Database. This study shows that there is a positive correlation between δ 18 O of precipitation and surface air temperature for stations located in north of 34 degree-36 degree N latitudes. The seasonal δ 18 O-temperature gradient derived from the monthly data of 12 stations in northern China is about 0.034% degree C -1 . The δ 18 O-temperature gradient, however, derived from the long term annual mean data of 13 stations, is about 0.052% degree C -1 , which is substantially larger than the seasonal gradient. (authors)

  11. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  12. The Concentration and Distribution of Depleted Uranium (DU) and Beryllium (Be) in Soil and Air on Illeginni Island at Kwajalein Atoll

    International Nuclear Information System (INIS)

    Robison, W L; Hamilton, T F; Martinelli, R E; Gouveia, F J; Lindman, T R; Yakuma, S C

    2006-01-01

    Re-entry vehicles on missiles launched at Vandenberg Air Force base in California re-enter at the Western Test Range, the Regan Test Site (RTS) at Kwajalein Atoll. An environmental Assessment (EA) was written at the beginning of the program to assess potential impact of Depleted Uranium (DU) and Beryllium (Be), the major RV materials of interest from a health and environmental perspective. The chemical and structural form of DU and Be in RVs is such that they are insoluble in soil water and sea water. Consequently, residual concentrations of DU and Be observed in soil on the island are not expected to be toxic to plant life because there is essentially no soil to plant uptake. Similarly, due to their insolubility in sea water there is no uptake of either element by marine biota including fish, mollusks, shellfish and sea mammals. No increase in either element has been observed in sea life around Illeginni Island where deposition of DU and Be has occurred. The critical terrestrial exposure pathway for U and Be is inhalation. Concentration of both elements in air over the test period (1989 to 2006) is lower by a factor of 10,000 than the most restrictive U.S. guideline for the general public. Uranium concentrations in air are also lower by factors of 10 to 100 than concentrations of U in air in the U.S. measured by the EPA (Keith et al., 1999). U and Be concentrations in air downwind of deposition areas on Illeginni Island are essentially indistinguishable from natural background concentrations of U in air at the atolls. Thus, there are no health related issues associated with people using the island

  13. Metal concentration at surface water using multivariate analysis and ...

    African Journals Online (AJOL)

    Metal concentration at surface water using multivariate analysis and human health risk assessment. F Azaman, H Juahir, K Yunus, A Azid, S.I. Khalit, A.D. Mustafa, M.A. Amran, C.N.C. Hasnam, M.Z.A.Z. Abidin, M.A.M. Yusri ...

  14. Role of oxygen concentration distribution and microstructure in luminescent properties of laser-irradiated silicon

    International Nuclear Information System (INIS)

    Zhu, Min; Li, Xiaohong; Li, Guoqiang; Xie, Changxin; Qiu, Rong; Li, Jiawen; Huang, Wenhao

    2015-01-01

    Graphical abstract: Photoluminescence (PL) of monocrystalline silicon irradiated by femtosecond laser pulses was studied. The visible blue luminescence is observed both from the deionized water and air. The position and shape of emission luminescence peaks in the visible range are same at 330 nm. The PL is confirmed to be not merely induced by the oxygen defects or quantum confinement effects, but is commonly decided by the concentration distribution of SiO x and the depth of the surface microstructure. The PL gets strongest only when depth of the surface microstructure is not deeper and the distribution of the shallow SiO x is more intensive. - Highlights: • Different morphologies and compositions of the surface microstructures are formed. • The SiO x concentration and surface microstructure depth commonly decide the PL. • The PL intensity can be controlled by changing the experimental conditions. - Abstract: We study the photoluminescence (PL) of monocrystalline silicon irradiated by femtosecond laser pulses in different environments (deionized water and air) and energy intensities. The fluorescence spectroscopy measurement results indicate that the visible blue luminescence is observed both from the silicon surfaces ablated in the deionized water and air. The more interesting phenomenon is that the position and shape of the emission luminescence peaks in the visible range are substantially the same at the same excitation wavelength 330 nm. Compared with the granular-like microstructure generated on the silicon surface in air, the smaller and stripe-like microstructure is formed in the deionized water as the field emission scanning electron microscope (FESEM) measures. The results of the energy dispersive spectroscopy (EDS) show that silicon and oxygen is the main elemental composition on laser-induced silicon surfaces, and the oxygen content on the sample surfaces formed in air is nearly four times more than that in the deionized water. The studies confirm

  15. Oxidation behavior of stainless steel 430 and 441 at 800 C in single (air/air) and dual atmosphere (air/hydrogen) exposures

    Energy Technology Data Exchange (ETDEWEB)

    Rufner, J.; Gannon, P.; White, P.; Deibert, M.; Teintze, S. [Chemical and Biological Engineering, Montana State University, 306 Cobleigh Hall, Bozeman, MT 59717-3920 (United States); Smith, R.; Chen, H. [Physics, Montana State University, 306 Cobleigh Hall, Bozeman, MT 59717-3920 (United States)

    2008-02-15

    Intermediate temperature ({proportional_to}800 {sup o}C) planar solid oxide fuel cells (SOFCs) allow the use of ferritic stainless steel (FSS) interconnects. SOFC FSS interconnects are used to stack individual cells into series, and are simultaneously exposed to air on the cathode side and fuel on the anode side, creating a 'dual atmosphere' exposure. The thermally grown oxide (TGO) layers on the air side of FSSs 430 and 441 were analyzed as a function of simulated dual atmosphere exposures (moist air/moist hydrogen) for up to 300 h. FSS 430 showed some changes in oxidation behavior, with a slight Fe concentration increase and localized Fe{sub 2}O{sub 3} nodule formation observed in the dual atmosphere TGO layer relative to its single atmosphere (air/air) counterpart. Significantly accelerated and anomalous oxidation was observed with FSS 441 subjected to dual atmosphere exposures compared with air/air exposures. The TGO layer formed on the 441 exposed to air/air was comprised of Mn-rich, Cr and Fe-containing isomorphic spinel surface crystallites, with a Cr{sub 2}O{sub 3} (eskolaite)-based bottom layer, having a total TGO layer thickness of <2{mu} m after 300 h. In contrast, the TGO layer formed on 441 during dual atmosphere exposure was much faster-growing (>6{mu} m in 20 h) and exhibited a continuous, porous Fe{sub 2}O{sub 3}-rich surface layer with a relatively thin (<2{mu} m) sublayer of similar composition to the TGO layer formed during the air/air exposure. Spontaneous TGO layer spallation was also observed for the air side of 441 exposed to dual atmosphere for >100h. The observed oxidation behavior and TGO layer evolution of 441 in both air/air and dual atmosphere are presented, with possible mechanisms and implications discussed. (author)

  16. Surface modification of thermoplastic poly(vinyl alcohol)/saponite nanocomposites via surface-initiated atom transfer radical polymerization enhanced by air dielectric discharges barrier plasma treatment

    International Nuclear Information System (INIS)

    Zhen Weijun; Lu Canhui

    2012-01-01

    To improve the water resistance of thermoplastic poly(vinyl alcohol)/saponite nanocomposites (TPVA), a simple two-step method was developed for the covalent immobilization of atom transfer radical polymerization (ATRP) initiators on the TPVA surfaces enhanced by air dielectric barrier discharges (DBD) plasma treatment, and hydrophobic poly(methyl methacrylate) (PMMA) brushes were then grafted onto the surface of TPVA via surface-initiated atom transfer radical polymerization (SI-ATRP). The chemical composition, morphology and hydrophobicity of the modified TPVA surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The water resistance of the surface-functionalized PMMA was evaluated by the contact angle and water adsorption method. It was shown that air DBD plasma treatment activated the TPVA surface and accelerated the immobilization of ATRP initiator on the TPVA surface. Compared with TPVA control, TPVA modified by SI-ATRP can be grafted well-defined and covalently tethered network PMMA brushes onto the surface and the hydrophobicity of TPVA were significantly enhanced.

  17. Longitudinal study of the contamination of air and of soil surfaces in the vicinity of pig barns by livestock-associated methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Schulz, Jochen; Friese, Anika; Klees, Sylvia; Tenhagen, Bernd A; Fetsch, Alexandra; Rösler, Uwe; Hartung, Jörg

    2012-08-01

    During 1 year, samples were taken on 4 days, one sample in each season, from pigs, the floor, and the air inside pig barns and from the ambient air and soil at different distances outside six commercial livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA)-positive pig barns in the north and east of Germany. LA-MRSA was isolated from animals, floor, and air samples in the barn, showing a range of airborne LA-MRSA between 6 and 3,619 CFU/m(3) (median, 151 CFU/m(3)). Downwind of the barns, LA-MRSA was detected in low concentrations (11 to 14 CFU/m(3)) at distances of 50 and 150 m; all upwind air samples were negative. In contrast, LA-MRSA was found on soil surfaces at distances of 50, 150, and 300 m downwind from all barns, but no statistical differences could be observed between the proportions of positive soil surface samples at the three different distances. Upwind of the barns, positive soil surface samples were found only sporadically. Significantly more positive LA-MRSA samples were found in summer than in the other seasons both in air and soil samples upwind and downwind of the pig barns. spa typing was used to confirm the identity of LA-MRSA types found inside and outside the barns. The results show that there is regular airborne LA-MRSA transmission and deposition, which are strongly influenced by wind direction and season, of up to at least 300 m around positive pig barns. The described boot sampling method seems suitable to characterize the contamination of the vicinity of LA-MRSA-positive pig barns by the airborne route.

  18. Reliability Evaluation for the Surface to Air Missile Weapon Based on Cloud Model

    Directory of Open Access Journals (Sweden)

    Deng Jianjun

    2015-01-01

    Full Text Available The fuzziness and randomness is integrated by using digital characteristics, such as Expected value, Entropy and Hyper entropy. The cloud model adapted to reliability evaluation is put forward based on the concept of the surface to air missile weapon. The cloud scale of the qualitative evaluation is constructed, and the quantitative variable and the qualitative variable in the system reliability evaluation are corresponded. The practical calculation result shows that it is more effective to analyze the reliability of the surface to air missile weapon by this way. The practical calculation result also reflects the model expressed by cloud theory is more consistent with the human thinking style of uncertainty.

  19. The maximum ground level concentration of air pollutant and the effect of plume rise on concentration estimates

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Azzam, A.

    1991-01-01

    The emission of an air pollutant from an elevated point source according to Gaussian plume model has been presented. An elementary theoretical treatment for both the highest possible ground-level concentration and the downwind distance at which this maximum occurs for different stability classes has been constructed. The effective height release modification was taken into consideration. An illustrative case study, namely, the emission from the research reactor in Inchas, has been studied. The results of these analytical treatments and of the derived semi-empirical formulae are discussed and presented in few illustrative diagrams

  20. Air pollution episodes in Stockholm regional background air due to sources in Europe and their effects on human population

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, C. [Swedish Meteorological and Hydrological Inst., Norrkoping (Sweden)], E-mail: camilla.andersson@smhi.se; Joensson, O. [Stockholm Univ. (Sweden). Dept. of Applied Environmental Science; Forsberg, B. [Umea Univ. (Sweden), Occupational and Environmental Medicine; Johansson, C. [Environmental and Health Administration, Stockholm (Sweden)

    2013-09-01

    Using air quality measurements, we categorized air pollution according to source sectors in a rural background environment in southern Sweden based on hourly air-mass backward trajectories during 1997-2010. Concentrations of fine (PM{sub 2.5}) and sum of fine and coarse particulate matter (PM{sub 10}), accumulation mode particle number, black carbon and surface ozone were 4.0, 3.9, 4.5, 6.8 and 1.3 times higher, respectively, in air masses from the southeast as compared with those in air masses from the cleanest sector in the northwest, consistent with air-mass transport over areas with relatively high emissions of primary particulate matter (PM) and secondary PM precursors. The highest ultrafine particle numbers were associated with clean air from the northwest. We estimate that almost 7.8% and 0.6% higher premature human mortality is caused by PM{sub 2.5} and ozone exposure, respectively, when air originates from the southeast as compared with that when air originates from the northwest. Reductions of emissions in eastern Europe would reduce the highest air pollution concentrations and associated health risks. However, since air masses from the southwest are more frequent, emissions in the western part of Europe are more important for annual mean premature mortality. (orig.)

  1. Linear concentrating collector as an air heater in the heating system of building in Polish climatic conditions

    Directory of Open Access Journals (Sweden)

    Nemś Magdalena

    2016-01-01

    Full Text Available The article presents the analysis of the performance of a concentrating collector in the heating system of a residential building. Air was used as the working fluid. The heating requirements of the building were determined for each day of the year. The amount of direct irradiation reaching the absorber’s surface on all the days of the year was determined with the use of hourly meteorological data for Wroclaw, shared by the Ministry of Infrastructure and Growth. It was assumed that the collector is equipped with a tracking system working in one axis. Calculations and comparisons were made for the amount of solar irradiation for three values of the receiver’s inclination angle: β1=60°, β2=90° and β3=30°. Statistical method was used in order to determine the optimum inclination of the mirror and the amount of flowing air. This method involves creating a plan of experiment with three levels of changeability for two input factors. In the last stage, the amount of heat obtained from the installation during all the days of the year was analysed. The gains were juxtaposed on the diagram with the building’s heat demand. The analysis has shown that the heat requirements can be met only partially.

  2. Anthropogenic Vanadium emissions to air and ambient air concentrations in North-West Europe

    Directory of Open Access Journals (Sweden)

    Visschedijk A. H. J.

    2013-04-01

    Full Text Available An inventory of Vanadium emissions for North-West Europe for the year 2005 was made based on an identification of the major sources. The inventory covers Belgium, Germany, Denmark, France, United Kingdom, Luxembourg, Netherlands and the OSPAR region of the North Sea. Vanadium emission were calculated bottom-up using energy use activity data and collected fuel and sector-specific emissions factors, taking into account various emission control measures. The NW European emissions were dominated by combustion of heavy fuel oil and petroleum cokes. Total emissions for 2005 amounted to 1569 tons/yr. The major sources are sea going ships (39%, petroleum refineries (35% and industry (19%. Emission is strongly concentrated at the densely populated cities with major sea ports. The location of sources at or near the major port cities was confirmed by observational data, as was the downward trend in emissions due to emission control, fuel switches in industry and fuel quality improvement. The results show the positive impact of lower sulphur fuels on other possible health relevant air pollutants such as particle bound Vanadium. The emission inventory can be expanded to the full European domain and can be used to for air quality modeling and particularly for the tracing of source contributions from certain types of fossil fuels (petroleum coke and residual fuel oil. Moreover, it will allow the monitoring of changes in fuel use over time.

  3. Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China.

    Science.gov (United States)

    Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia

    2011-07-01

    Forty passive air samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing-Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of air PAH concentrations was addressed. In addition, the air-soil gas exchange of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m³ and 114 ng/m³, respectively, with a median total PAH concentration of 349 ng/m³. Higher PAH concentrations were measured in winter than in other seasons. Air PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban-rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%-77% of the spatial variation in ambient air PAH concentrations. The annual median air-soil gas exchange flux of PAHs was 42.2 ng/m²/day from soil to air. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total exchange flux. Furthermore, the air-soil gas exchange fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to air because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from air to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the air-soil gas exchange of PAHs. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Control of respirable particles and radon progeny with portable air cleaners

    International Nuclear Information System (INIS)

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles and radon progeny. Following injection of cigarette smoke and radon in a room-size chamber, decay rates for particles and radon progeny concentrations were measured with and without air cleaner operation. Particle concentrations were obtained for total number concentration and for number concentration by particle size. In tests with no air cleaner the natural decay rate for cigarette smoke was observed to be 0.2 hr -1 . Air cleaning rates for particles were found to be negligible for several small panel-filters, a residential ion-generator, and a pair of mixing fans. The electrostatic precipitators and extended surface filters tested had significant particle removal rates, and a HEPA-type filter was the most efficient air cleaner. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in removing radon progeny. At low particle concentrations plateout of the unattached radon progeny is an important removal mechanism. Based on data from these tests, the plateout rate for unattached progeny was found to be 15 hr -1 . The unattached fraction and the overall removal rate due to deposition of attached and unattached nuclides have been estimated for each radon decay product as a function of particle concentration. While air cleaning can be effective in reducing total radon progeny, concentrations of unattached radon progeny can increase with increasing air cleaning. 39 references, 26 figures, 9 tables

  5. Indoor air quality in the Karns research houses: baseline measurements and impact of indoor environmental parameters on formaldehyde concentrations

    International Nuclear Information System (INIS)

    Matthews, T.G.; Fung, K.W.; Tromberg, B.J.; Hawthorne, A.R.

    1985-12-01

    Baseline indoor air quality measurements, a nine-month radon study, and an environmental parameters study examining the impact of indoor temperature (T) and relative humidity (RH) levels on formaldehyde (CH 2 O) concentrations have been performed in three unoccupied research homes located in Karns, Tennessee. Inter-house comparison measurements of (1) CH 2 O concentration, (2) CH 2 O emission rates from primary CH 2 O emission sources, (3) radon and radon daughter concentrations, and (4) air exchange rates indicate that the three homes are similar. The results of the nine-month radon study indicate indoor concentrations consistently below the EPA recommended level of 4 pCi/L. Evidence was found that crawl-space concentrations may be reduced using heat pump systems whose outdoor units circulate fresh air through the crawl-space. The modeled results of the environmental parameters study indicate approximate fourfold increases in CH 2 O concentrations from 0.07 to 0.27 ppM for seasonal T and RH conditions of 20 0 C, 30% RH and 29 0 C, 80% RH, respectively. Evaluation of these environmental parameters study data with steady-state CH 2 O concentration models developed from laboratory studies of the environmental dependence of CH 2 O emissions from particleboard underlayment indicate good correlations between the laboratory and field studies

  6. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    Science.gov (United States)

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization

  7. Measurement and prediction of indoor air quality using a breathing thermal manikin

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2007-01-01

    temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip...... at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method......The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface...

  8. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  9. Modeling green infrastructure land use changes on future air ...

    Science.gov (United States)

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro

  10. Study of surface atmospheric pressure glow discharge plasma based on ultrathin laminated electrodes in air

    Science.gov (United States)

    Zhao, Luxiang; Liu, Wenzheng; Li, Zhiyi; Ma, Chuanlong

    2018-05-01

    A method to generate large-area surface plasma in air by micro-discharge is proposed. Two ultrathin laminated electrode structures of non-insulating and insulating types were formed by using the nanoscale ITO conductive layer. The surface glow discharge in atmospheric air is realized in low discharge voltage by constructing the special electric field of two-dimensional unidirectional attenuation. In particular, the insulating electrode structure can avoid the loss of ITO electrodes so that the discharge stability can be increased, and the treated objects can be prevented from metal ion pollution caused by the electrode in the discharge. It has broad application prospects in the fields of aerodynamics and material surface treatment.

  11. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...

  12. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air......Silicon dioxides-water systems are abundant in nature and play fundamental roles in a diversity of novel science and engineering applications. Although extensive research has been devoted to study the nature of the interaction between silica and water a complete understanding of the system has...... perform extensive simulations of the water- air equilibrium and calibrate the water-air interaction to match the experimental solubility of N2 and O2 in water. For the silica-water system we calibrate the water-silica interaction to match the experimental contact angle of 27º. We subsequently study...

  13. Probabilistic reconstruction of internal exposure for nuclear power plant workers using air concentration measurements

    International Nuclear Information System (INIS)

    Linkov, I.; Burmistrov, D.

    2000-01-01

    Air surveys, whole-body counting, bioassays or combination of these measurements can be utilized for purposes or assessing internal doses to determine compliance with occupational dose equivalent limits. Air sampling with a little support provided by whole body counting and/or bioassays was often relied on in dose calculations. The utility of air sampling for internal dose reconstruction is addressed in this paper through the probabilistic analysis of environmental factors and their impact on dose estimates. In this paper we attempt to reconstruct an internal dose due to inhalation of beta + gamma emitting radionuclides for a contractual electrician, Mr. X. The data available for reconstruction of internal dose for Mr. X was found to be highly variable and uncertain. Uncertainty describes a lack of knowledge about a parameter, this lack of knowledge theoretically can be reduced, e.g., if more measurements were to be taken (for example, estimated activities for alpha-emitting radionuclides are uncertain due to the influence of naturally-occurring alpha-emitters). Variability describes the existence of different values that represent different environmental conditions (for example, the air concentrations of radionuclides may vary over time because of the different tasks performed by workers in the area). Variability can not be reduced by additional data collection because the varying values reflect the variable nature of the environment, not a lack of data. The high variability in measured air concentrations in the restricted areas of a LWR nuclear power plant where he worked do not allow adequate reconstruction of his individual internal dose using deterministic methods and therefore probabilistic methods are desirable. The guidance for probabilistic assessment developed by the United States Environmental Protection Agency as well as recommendations of the National Council of Radiation Protection provide an adequate framework for probabilistic reconstruction of

  14. A climatology of ⁷Be in surface air in European Union.

    Science.gov (United States)

    Hernández-Ceballos, M A; Cinelli, G; Ferrer, M Marín; Tollefsen, T; De Felice, L; Nweke, E; Tognoli, P V; Vanzo, S; De Cort, M

    2015-03-01

    This study presents a European-wide analysis of the spatial and temporal distribution of the cosmogenic isotope (7)Be in surface air. This is the first time that a long term database of 34 sampling sites that regularly provide data to the Radioactivity Environmental Monitoring (REM) network, managed by the Joint Research Centre (JRC) in Ispra, is used. While temporal coverage varies between stations, some of them have delivered data more or less continuously from 1984 to 2011. The station locations were considerably heterogeneous, both in terms of latitude and altitude, a range which should ensure a high degree of representativeness of the results. The mean values of (7)Be activity concentration presented a spatial distribution value ranging from 2.0 to 5.4 mBq/m(3) over the European Union. The results of the ANOVA analysis of all (7)Be data available indicated that its temporal and spatial distributions were mainly explained by the location and characteristic of the sampling sites rather than its temporal distribution (yearly, seasonal and monthly). Higher (7)Be concentrations were registered at the middle, compared to high-latitude, regions. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. In addition, the total and yearly analyses of the data indicated a dynamic range of (7)Be activity for each solar cycle and phase (maximum or minimum), different impact on stations having been observed according to their location. Finally, the results indicated a significant seasonal and monthly variation for (7)Be activity concentration across the European Union, with maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached. The knowledge of the horizontal and vertical distribution of this natural radionuclide in the atmosphere is a key parameter for modelling studies of atmospheric processes, which are important phenomena to be taken into

  15. Interaction between local and regional pollution during Escompte 2001: impact on surface ozone concentrations (IOP2a and 2b)

    Science.gov (United States)

    Cousin, F.; Tulet, P.; Rosset, R.

    2005-03-01

    Escompte, a European programme which took place in the Marseille region in June-July 2001, has been designed as an exhaustive database to be used for the development and validation of air pollution models. The air quality Mesoscale NonHydrostatic Chemistry model (Meso-NH-C) is used to simulate 2 days of an Intensive Observation Period (IOP) documented during the Escompte campaign, June 23 and 24, 2001. We first study the synoptic and local meteorological situation on June 23 and 24, using surface and aircraft measurements. Then, we focus on the pollution episode of June 24. This study emphasizes the deep impact of synoptic and local dynamics on observed ozone concentrations. It is shown that ozone levels are due both to regional and local factors, with highlights of the importance of ozone layering. More generally this confirms, even in an otherwise predominant local sea-breeze regime, the need to consider larger scale regional pollutant transport.

  16. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.

    Science.gov (United States)

    Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W

    2006-06-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter

  17. Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    McCollister, G M; Wilson, K R

    1975-04-01

    Two related time series models were developed to forecast concentrations of various air pollutants and tested on carbon monoxide and oxidant data for the Los Angeles basin. One model forecasts daily maximum concentrations of a particular pollutant using only past daily maximum values of that pollutant as input. The other model forecasts 1 hr average concentrations using only the past hourly average values. Both are significantly more accurate than persistence, i.e., forecasting for tomorrow what occurred today (or yesterday). Model forecasts for 1972 of the daily instantaneous maxima for total oxidant made using only past pollutant concentration data are more accurate than those made by the Los Angeles APCD using meteorological input as well as pollutant concentrations. Although none of these models forecast as accurately as might be desired for a health warning system, the relative success of simple time series models, even though based solely on pollutant concentration, suggests that models incorporating meteorological data and using either multi-dimensional times series or pattern recognition techniques should be tested.

  18. Evaluation of entrance surface air kerma in pediatric chest radiography

    Science.gov (United States)

    Porto, L.; Lunelli, N.; Paschuk, S.; Oliveira, A.; Ferreira, J. L.; Schelin, H.; Miguel, C.; Denyak, V.; Kmiecik, C.; Tilly, J.; Khoury, H.

    2014-11-01

    The objective of this study was to evaluate the entrance surface air kerma in pediatric chest radiography. An evaluation of 301 radiographical examinations in anterior-posterior (AP) and posterior-anterior (PA) (166 examinations) and lateral (LAT) (135 examinations) projections was performed. The analyses were performed on patients grouped by age; the groups included ages 0-1 y, 1-5 y, 5-10 y, and 10-15 y. The entrance surface air kerma was determined with DoseCal software (Radiological Protection Center of Saint George's Hospital, London) and thermoluminescent dosimeters. Two different exposure techniques were compared. The doses received by patients who had undergone LAT examinations were 40% higher, on average, those in AP/PA examinations because of the difference in tube voltage. A large high-dose “tail” was observed for children up to 5 y old. An increase in tube potential and corresponding decrease in current lead to a significant dose reduction. The difference between the average dose values for different age ranges was not practically observed, implying that the exposure techniques are still not optimal. Exposure doses received using the higher tube voltage and lower current-time product correspond to the international diagnostic reference levels.

  19. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    Science.gov (United States)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  20. Multiscale modeling of multi-decadal trends in air pollutant concentrations and their radiative properties: the role of models in an integrated observing system

    Science.gov (United States)

    Mathur, R.; Xing, J.; Szykman, J.; Gan, C. M.; Hogrefe, C.; Pleim, J. E.

    2015-12-01

    Air Pollution simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions across varying space and time scales. Setting and attaining lower ambient air quality standards requires an improved understanding and quantification of source attribution amongst the multiple anthropogenic and natural sources, on time scales ranging from episodic to annual and spatial scales ranging from urban to continental. Changing emission patterns over the developing regions of the world are likely to exacerbate the impacts of long-range pollutant transport on background pollutant levels, which may then impact the attainment of local air quality standards. Thus, strategies for reduction of pollution levels of surface air over a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Additionally, as short-lived climate forcers, aerosols and ozone exert regionally heterogeneous radiative forcing and influence regional climate trends. EPA's coupled WRF-CMAQ modeling system is applied over a domain encompassing the northern hemisphere for the period spanning 1990-2010. This period has witnessed significant reductions in anthropogenic emissions in North America and Europe as a result of implementation of control measures and dramatic increases across Asia associated with economic and population growth, resulting in contrasting trends in air pollutant distributions and transport patterns across the northern hemisphere. Model results (trends in pollutant concentrations, optical and radiative characteristics) across the northern hemisphere are analyzed in conjunction with surface, aloft and remote sensing measurements to contrast the differing trends in air pollution and aerosol-radiation interactions in these regions over the past two decades. Given the future LEO (Trop

  1. Cold air plasma to decontaminate inanimate surfaces of the hospital environment.

    Science.gov (United States)

    Cahill, Orla J; Claro, Tânia; O'Connor, Niall; Cafolla, Anthony A; Stevens, Niall T; Daniels, Stephen; Humphreys, Hilary

    2014-03-01

    The hospital environment harbors bacteria that may cause health care-associated infections. Microorganisms, such as multiresistant bacteria, can spread around the patient's inanimate environment. Some recently introduced biodecontamination approaches in hospitals have significant limitations due to the toxic nature of the gases and the length of time required for aeration. This study evaluated the in vitro use of cold air plasma as an efficient alternative to traditional methods of biodecontamination of hospital surfaces. Cultures of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli, and Acinetobacter baumannii were applied to different materials similar to those found in the hospital environment. Artificially contaminated sections of marmoleum, mattress, polypropylene, powder-coated mild steel, and stainless steel were then exposed to a cold air pressure plasma single jet for 30 s, 60 s, and 90 s, operating at approximately 25 W and 12 liters/min flow rate. Direct plasma exposure successfully reduced the bacterial load by log 3 for MRSA, log 2.7 for VRE, log 2 for ESBL-producing E. coli, and log 1.7 for A. baumannii. The present report confirms the efficient antibacterial activity of a cold air plasma single-jet plume on nosocomial bacterially contaminated surfaces over a short period of time and highlights its potential for routine biodecontamination in the clinical environment.

  2. Analytical solutions to compartmental indoor air quality models with application to environmental tobacco smoke concentrations measured in a house.

    Science.gov (United States)

    Ott, Wayne R; Klepeis, Neil E; Switzer, Paul

    2003-08-01

    This paper derives the analytical solutions to multi-compartment indoor air quality models for predicting indoor air pollutant concentrations in the home and evaluates the solutions using experimental measurements in the rooms of a single-story residence. The model uses Laplace transform methods to solve the mass balance equations for two interconnected compartments, obtaining analytical solutions that can be applied without a computer. Environmental tobacco smoke (ETS) sources such as the cigarette typically emit pollutants for relatively short times (7-11 min) and are represented mathematically by a "rectangular" source emission time function, or approximated by a short-duration source called an "impulse" time function. Other time-varying indoor sources also can be represented by Laplace transforms. The two-compartment model is more complicated than the single-compartment model and has more parameters, including the cigarette or combustion source emission rate as a function of time, room volumes, compartmental air change rates, and interzonal air flow factors expressed as dimensionless ratios. This paper provides analytical solutions for the impulse, step (Heaviside), and rectangular source emission time functions. It evaluates the indoor model in an unoccupied two-bedroom home using cigars and cigarettes as sources with continuous measurements of carbon monoxide (CO), respirable suspended particles (RSP), and particulate polycyclic aromatic hydrocarbons (PPAH). Fine particle mass concentrations (RSP or PM3.5) are measured using real-time monitors. In our experiments, simultaneous measurements of concentrations at three heights in a bedroom confirm an important assumption of the model-spatial uniformity of mixing. The parameter values of the two-compartment model were obtained using a "grid search" optimization method, and the predicted solutions agreed well with the measured concentration time series in the rooms of the home. The door and window positions in

  3. Kinetics of catalyzed tritium oxidation in air at ambient temperature

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1980-01-01

    Tritium/air oxidation kinetic data are derived from measurements carried out with three catalysts. All experiments were carried out at room temperature - a regime that provides a severe test for catalyst effectiveness. Each catalyst consists of a high-surface-area substrate in pelletized form, onto which precious metal has been dispersed. The metal/substrate combinations investigated are: platinum/alumina, palladium/kaolin, and paladium/zeolite. Each of the dispersed-metal catalysts is extremely effective in promoting tritium oxidation in comparison with self-catalyzed atmospheric conversion; equivalent first-order rate constants are higher by roughly nine orders of magnitude. Electron-microprobe scans reveal that the dispersed metal is deposited near the outer surface of the catalyst, with metal concentration decreasing exponentially from the pellet surface. The platinum-based catalyst is more effective than the palladium catalysts on a surface-area basis by about a factor of three. Rate coefficients are determined from concentration decay following a spike injection of tritium into an air-filled enclosure processed by recirculation through an oxidation/adsorption system. The catalytic reaction is first-order in tritium concentration in the range 10 to 10 5 μCi/m 3 (4 ppt-40 ppB). Addition of hydrogen carrier gas is unnecessary. Catalytic activity for all three catalysts declines with time of exposure to air after activation, following a power-law decay with an exponent of -1/2. Reactivation with hot hydrogen gas effectively restores initial catalytic activity

  4. Radiative warming of the air observed near a bare-soil surface on calm clear nights

    International Nuclear Information System (INIS)

    Sang, N.; Kobayahsi, T.

    1999-01-01

    The radiative flux in the lowest three meters above a bare-soil surface was directly measured on calm nights with little cloud cover. Although divergence of upward radiative flux occurred above 1m, convergence was often observed between 0.2m and 1m all through the night. Almost the same results were obtained for the net flux except that the transitional height between divergence and convergence was some tens of centimeters, which means that radiative warming occurred just above the bare-soil surface during the night. This phenomenon can be explained by postulating that cold air is produced by conduction at the surface of small heat-insulated projections (HIPs) such as soil grains on the ground surface, while the ground releases the heat stored during the day by radiation through the pores between HIPs and warms the air immediately above the surface at night. This “HIP hypothesis” can also account for the so-called “raised minimum (RM)” phenomenon. (author)

  5. Determination of Fluorine in Fluoro-Organic Compounds in Low Concentrations in Air

    Science.gov (United States)

    1944-06-27

    Analysis of 2-Fluoroethanol in Air ..... SUMMARY BIBLIOGRAPHY 15 APPENDIX , 16 FIGURE 1 Apparatus PLATE 1 CDS Scrubber SECRET ) SECRET...liter, and 68$ at 1 - 2 mg. per liter. By using two scrubbers in series, 90$ of di-isopropyl fluorophosphate was recovered at a concentration of 1 to 2...chromic acid and detection of HP by etching of the glass container ; (5) scrub- bing the gas with ammonia and decomposing the fluoro-organic compound4

  6. Investigation of ammonia air-surface exchange processes in a ...

    Science.gov (United States)

    Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes

  7. Surface modification of platelet concentrate bags to reduce biofilm formation and transfusion sepsis.

    Science.gov (United States)

    Wilson-Nieuwenhuis, Joels S T; Dempsey-Hibbert, Nina; Liauw, Christopher M; Whitehead, Kathryn A

    2017-12-01

    Bacterial contamination of blood products poses a major risk in transfusion medicine, including transfusions involving platelet products. Although testing systems are in place for routine screening of platelet units, the formation of bacterial biofilms in such units may decrease the likelihood that bacteria will be detected. This work determined the surface properties of p-PVC platelet concentrate bags and investigated how these characteristics influenced biofilm formation. Serratia marcescens and Staphylococcus epidermidis, two species commonly implicated in platelet contamination, were used to study biofilm growth. The platelet concentrate bags were physically flattened to determine if reducing the surface roughness altered biofilm formation. The results demonstrated that the flattening process of the platelet bags affected the chemistry of the surface and reduced the surface hydrophobicity. Flattening of the surfaces resulted in a reduction in biofilm formation for both species after 5 days, with S. marcescens demonstrating a greater reduction. However, there was no significant difference between the smooth and flat surfaces following 7 days' incubation for S. marcescens and no significant differences between any of the surfaces following 7 days' incubation for S. epidermidis. The results suggest that flattening the p-PVC surfaces may limit potential biofilm formation for the current duration of platelet storage time of 5 days. It is hoped that this work will enhance the understanding of how surface properties influence the development of microbial biofilms in platelet concentrate bags in order to devise a solution to discourage biofilm formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Calculation of NO2 concentration in air from the point source Tepláreň Košice

    Directory of Open Access Journals (Sweden)

    Jozef Mačala

    2007-06-01

    Full Text Available The most threatened part of environment is air and its pollution increases rapidly. In the local rate, the weight of air pollution increases by reason of a more intensive influence on the human population. The problem is significant mostly in urban areas, places with the biggest concentration of peoples, industry and transport. The greatest producers of air pollution are various parts of industry, heat production and traffic. For a complex valuation, the influence of particular parts of industry is needed to know the sources of air pollution in the specific area. Only with a knowledge, it is possible to evaluate a spotted area in terms of air quality.

  9. Surface ignition behaviors of methane–air mixture in a gas oven burner

    International Nuclear Information System (INIS)

    Ryu, Jungwan; Kwon, Jongseo; Kim, Ryanggyun; Kim, Minseong; Kim, Youngsoo; Jeon, Chunghwan; Song, Juhun

    2014-01-01

    In a gas oven burner, commonly used as a residential appliance, a surface igniter is a critical component for creating a pilot flame near the surface that can propagate safely back to the nozzle of the burner. The igniter should meet critical operating requirements: a lower surface temperature needed to ignite a methane–air mixture and a stable/safe ignition sustained. Otherwise, such failure would result in an instantaneous peak in carbon monoxide emission and a safety hazard inside a closed oven. Several theoretical correlations have been used to predict ignition temperature as well as the critical ignition/extinction limit for a stagnation flow ignition. However, there have only been a few studies on ignition modes or relevant stability analysis, and therefore a more detailed examination of the transient ignition process is required. In this study, a high-speed flame visualization technique with temperature measurement was employed to reveal a surface ignition phenomenon and subsequent flame propagation of a cold combustible methane–air mixture in a gas oven burner. The operating parameters were the temperature–time history of the igniter surface, mixture velocity, and the distance of the igniter from the nozzle. The surface ignition temperatures were analyzed for such parameters under a safe ignition mode, while several abnormal modes leading to ignition failure were also recognized. - Highlights: •We revealed a surface ignition behavior of combustible mixture in gas oven burner. •We employed a flame visualization technique with temperature measurement. •We evaluated effects of parameters such as lifetime, mixture velocity and igniter distance. •We recognized several abnormal modes leading to ignition failure

  10. Observed Screen (Air) and GCM Surface/Screen Temperatures: Implications for Outgoing Longwave Fluxes at the Surface.

    Science.gov (United States)

    Garratt, J. R.

    1995-05-01

    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11-17 W m2 (20%-27%) on an annual ~1 is not only due to overestimates in annual incoming shortwave fluxes [of 9-18 W m2 (6%-9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m2 (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and 23 W m2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.

  11. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  12. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  13. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    Science.gov (United States)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  14. Laboratory test of source encapsulation for decreasing PCB concentrations

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Andersen, Helle Vibeke; Markowicz, Pawel

    2016-01-01

    This study investigates the effect of encapsulation of tertiary PCB sources with PERMASORB™ Adsorber Wallpaper and the surface emissions trap (cTrap) on indoor air concentration of PCBs and on the PCB content in the source. The 40 weeks long laboratory investigation shows reduction of the air...... concentration by approx. 90% for both wallpapers, a level comparable to source removal. The potential for extraction of PCBs from the contaminated materials stays unclear for both wallpapers. The cTrap has shown potential to accumulate PCBs, however the total content of PCB in investigated sources has...... apparently increased. The opposite was observed for the PERMASORB™, where the total PCB content in the sources has decreased, with however only small concentration of PCBs in the wallpaper measured at the end of the experiment....

  15. The measurement of thoron (220Rn) concentration in indoor air continuously using pylon model WLx

    International Nuclear Information System (INIS)

    Hasnel Sofyan

    2011-01-01

    The concentration of thoron ( 220 Rn) in particular location can be higher than radon ( 220 Rn), however, its presence is always neglected. This might be due to the difficulties in calibration and discrimination between radon and thoron. From biokinetic and dosimetric model, it has been known that the dominant contribution of thoron to the effective dose is in the lungs. UNSCEAR estimates the doses contribution of thoron and its progenies is between 5-10% of the annual dose received by the general public and the risk level is 4.4 times greater than radon and progenies. Therefore, it is necessary to study the thoron concentration in indoor air and workplaces. Radon-thoron concentration in indoor air can be determined by direct methods using Pylon Model WLx device and passive methods using Solid State Nuclear Track Detector (SSNTDs). In this research the measurement of thoron was carried out continuously using Pylon Model WLx equipment that is sensitive to radon for 24, 65, 72, 116 and 154 hours in different rooms. The measurement result showed that the mean value of thoron working level (WL) concentration obtained in room-1 was 2.53 ± 0.67 Bq/m 3 with maximum and minimum of thoron concentrations were 3.37 and 2.22 Bq/m 3 respectively. From the measurement in different locations, it was obtained that the largest and smallest average concentrations of thoron progenies were 0.83 ± 0.23 Bq/m 3 and 0.29 ± 0.64 Bq/m 3 , while the maximum and minimum concentration values were 7.80 Bq/m 3 and 0.01 Bq/m 3 respectively. Pylon Model WLx device is not enables to be used for longer and large scale survey area concurrently, so the SSNTDs which is sensitive to the emission of alpha particles and can measure cumulative thoron concentrations is required. (author)

  16. Distillation and Air Stripping Designs for the Lunar Surface

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support

  17. Aeromicrobiology/air quality

    Science.gov (United States)

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  18. Surface adsorption of oppositely charged C14TAB-PAMPS mixtures at the air/water interface and the impact on foam film stability.

    Science.gov (United States)

    Fauser, Heiko; von Klitzing, Regine; Campbell, Richard A

    2015-01-08

    We have studied the oppositely charged polyelectrolyte/surfactant mixture of poly(acrylamidomethylpropanesulfonate) sodium salt (PAMPS) and tetradecyl trimethylammonium bromide (C14TAB) using a combination of neutron reflectivity and ellipsometry measurements. The interfacial composition was determined using three different analysis methods involving the two techniques for the first time. The bulk surfactant concentration was fixed at a modest value while the bulk polyelectrolyte concentration was varied over a wide range. We reveal complex changes in the surface adsorption behavior. Mixtures with low bulk PAMPS concentrations result in the components interacting synergistically in charge neutral layers at the air/water interface. At the bulk composition where PAMPS and C14TAB are mixed in an equimolar charge ratio in the bulk, we observe a dramatic drop in the surfactant surface excess to leave a large excess of polyelectrolyte at the interface, which we infer to have loops in its interfacial structure. Further increase of the bulk PAMPS concentration leads to a more pronounced depletion of material from the surface. Mixtures containing a large excess of PAMPS in the bulk showed enhanced adsorption, which is attributed to the large increase in total ionic strength of the system and screening of the surfactant headgroup charges. The data are compared to our former results on PAMPS/C14TAB mixtures [Kristen et al. J. Phys. Chem. B, 2009, 23, 7986]. A peak in the surface tension is rationalized in terms of the changing surface adsorption and, unlike in more concentrated systems, is unrelated to bulk precipitation. Also, a comparison between the determined interfacial composition with zeta potential and foam film stability data shows that the highest film stability occurs when there is enhanced synergistic adsorption of both components at the interface due to charge screening when the total ionic strength of the system is highest. The additional contribution to the

  19. Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface

    KAUST Repository

    Li, Erqiang; Thoroddsen, Sigurdur T

    2015-01-01

    When a drop impacts on a solid surface, its rapid deceleration is cushioned by a thin layer of air, which leads to the entrapment of a bubble under its centre. For large impact velocities the lubrication pressure in this air layer becomes large

  20. Diurnal, weekly and seasonal air concentrations of PCDD and PCDF in an industrial area

    International Nuclear Information System (INIS)

    Benfenati, E.; Mariani, G.; Schiavon, G.; Lodi, M.; Fanelli, R.

    1994-01-01

    Air samples were collected in an industrial area close to Milan in July and in November, day and night for five days and have been analyzed for PCDD and PCDF. Average summer levels were generally lower than winter levels, and average concentrations were higher by night than by day in both months. (orig.)

  1. Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta region

    Science.gov (United States)

    Tong, Cheuk Hei Marcus; Yim, Steve Hung Lam; Rothenberg, Daniel; Wang, Chien; Lin, Chuan-Yao; Chen, Yongqin David; Lau, Ngar Cheung

    2018-05-01

    Air pollution is an increasingly concerning problem in many metropolitan areas due to its adverse public health and environmental impacts. Vertical atmospheric conditions have strong effects on vertical mixing of air pollutants, which directly affects surface air quality. The characteristics and magnitude of how vertical atmospheric conditions affect surface air quality, which are critical to future air quality projections, have not yet been fully understood. This study aims to enhance understanding of the annual and seasonal sensitivities of air pollution to both surface and vertical atmospheric conditions. Based on both surface and vertical meteorological characteristics provided by 1994-2003 monthly dynamic downscaling data from the Weather and Research Forecast Model, we develop generalized linear models (GLMs) to study the relationships between surface air pollutants (ozone, respirable suspended particulates, and sulfur dioxide) and atmospheric conditions in the Pearl River Delta (PRD) region. Applying Principal Component Regression (PCR) to address multi-collinearity, we study the contributions of various meteorological variables to pollutants' concentration levels based on the loading and model coefficient of major principal components. Our results show that relatively high pollutant concentration occurs under relatively low mid-level troposphere temperature gradients, low relative humidity, weak southerly wind (or strong northerly wind) and weak westerly wind (or strong easterly wind). Moreover, the correlations vary among pollutant species, seasons, and meteorological variables at various altitudes. In general, pollutant sensitivity to meteorological variables is found to be greater in winter than in other seasons, and the sensitivity of ozone to meteorology differs from that of the other two pollutants. Applying our GLMs to anomalous air pollution episodes, we find that meteorological variables up to mid troposphere (∼700 mb) play an important role in

  2. Heavy metal concentration of settled surface dust in residential building

    International Nuclear Information System (INIS)

    Nor Aimi abdul Wahab; Fairus Muhamad Darus; Norain Isa; Siti Mariam Sumari; Nur Fatihah Muhamad Hanafi

    2012-01-01

    The concentrations of heavy metals (Cu, Ni, Pb and Zn) in settled surface dust were collected from nine residential buildings in different areas in Seberang Prai Tengah District, Pulau Pinang. The samples of settled surface dust were collected in 1 m 2 area by using a polyethylene brush and placed in the dust pan by sweeping the living room floor most accessible to the occupants. Heavy metals concentrations were determined by using inductively coupled plasma optical emission spectrometer (ICP-OES) after digestion with nitric acid and sulphuric acid. The results show that the range of heavy metals observed in residential buildings at Seberang Prai Tengah were in the range of 2.20-14.00 mg/ kg, 1.50-32.70 mg/ kg, 1.50-76.80 mg/ kg and 14.60-54.40 mg/ kg for Cu, Ni, Pb and Zn respectively. The heavy metal concentration in the investigated areas followed the order: Pb > Zn > Ni > Cu. Statistical analysis indicates significant correlation between all the possible pairs of heavy metal. The results suggest a likely common source for the heavy metal contamination, which could be traced most probably to vehicular emissions, street dust and other related activities. (author)

  3. Case study of elevated layers of high sulfate concentration

    International Nuclear Information System (INIS)

    McNaughton, D.J.; Orgill, M.M.

    1979-01-01

    During studies in August 1976 that were part of the Multi-State Atmospheric Power Production Pollutant Study (MAP3S), Alkezweeny et al., (1977) noted that in the Milwaukee urban plume, layers of relatively high sulfate concentrations occurred at high altitudes with respect to the boundary layer. This paper represents a progress report on studies undertaken to investigate possible causes for a bimodel vertical profile of sulfate concentrations. Data presented by Alkezweeny et al., (1977) serve as a basis for this study. Data from August 23, 1976, and August 24, 1978, indicate concentrations relatively high in sulfate, at 1000 and 6000 ft, respectively, with lower concentrations at lower altitudes. Concentrations of trace metals also indicate no peaks in the vertical concentration profiles above the surface. Initial studies of the high, elevated sulfate concentrations have centered on the August 23 measurements taken over southeast Wisconsin using synoptic data from the national weather service, emissions data from the national emissions data bank system (EPA), air quality data from the national air surveillance network (EPA), and satellite photographs from the EROS Data Center

  4. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    Science.gov (United States)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more

  5. Dissolution of spherical cap CO2 bubbles attached to flat surfaces in air-saturated water

    Science.gov (United States)

    Peñas, Pablo; Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Bubbles attached to flat surfaces immersed in quiescent liquid environments often display a spherical cap (SC) shape. Their dissolution is a phenomenon commonly observed experimentally. Modelling these bubbles as fully spherical may lead to an inaccurate estimate of the bubble dissolution rate. We develop a theoretical model for the diffusion-driven dissolution or growth of such multi-component SC gas bubbles under constant pressure and temperature conditions. Provided the contact angle of the bubble with the surface is large, the concentration gradients in the liquid may be approximated as spherically symmetric. The area available for mass transfer depends on the instantaneous bubble contact angle, whose dynamics is computed from the adhesion hysteresis model [Hong et al., Langmuir, vol. 27, 6890-6896 (2011)]. Numerical simulations and experimental measurements on the dissolution of SC CO2 bubbles immersed in air-saturated water support the validity of our model. We verify that contact line pinning slows down the dissolution rate, and the fact that any bubble immersed in a saturated gas-liquid solution eventually attains a final equilibrium size. Funded by the Spanish Ministry of Economy and Competitiveness through Grant DPI2011-28356-C03-0.

  6. The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model

    Science.gov (United States)

    Fraser, Annemarie; Chan Miller, Christopher; Palmer, Paul I.; Deutscher, Nicholas M.; Jones, Nicholas B.; Griffith, David W. T.

    2011-10-01

    We investigate the Australian methane budget from 2005-2008 using the GEOS-Chem 3D chemistry transport model, focusing on the relative contribution of emissions from different sectors and the influence of long-range transport. To evaluate the model, we use in situ surface measurements of methane, methane dry air column average (XCH4) from ground-based Fourier transform spectrometers (FTSs), and train-borne surface concentration measurements from an in situ FTS along the north-south continental transect. We use gravity anomaly data from Gravity Recovery and Climate Experiment to describe the spatial and temporal distribution of wetland emissions and scale it to a prior emission estimate, which better describes observed atmospheric methane variability at tropical latitudes. The clean air sites of Cape Ferguson and Cape Grim are the least affected by local emissions, while Wollongong, located in the populated southeast with regional coal mining, samples the most locally polluted air masses (2.5% of the total air mass versus Asia, accounting for ˜25% of the change in surface concentration above background. At Cape Ferguson and Cape Grim, emissions from ruminant animals are the largest source of methane above background, at approximately 20% and 30%, respectively, of the surface concentration. At Wollongong, emissions from coal mining are the largest source above background representing 60% of the surface concentration. The train data provide an effective way of observing transitions between urban, desert, and tropical landscapes.

  7. Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment.

    Science.gov (United States)

    Banerjee, K K; Kumar, S; Bremmell, K E; Griesser, H J

    2010-11-01

    Established methods for cleaning and sterilising biomedical devices may achieve removal of bioburden only at the macroscopic level while leaving behind molecular levels of contamination (mainly proteinaceous). This is of particular concern if the residue might contain prions. We investigated at the molecular level the removal of model and real-life proteinaceous contamination from model and practical surfaces by air plasma (ionised air) treatment. The surface-sensitive technique of X-ray photoelectron spectroscopy (XPS) was used to assess the removal of proteinaceous contamination, with the nitrogen (N1s) photoelectron signal as its marker. Model proteinaceous contamination (bovine serum albumin) adsorbed on to a model surface (silicon wafer) and the residual proteinaceous contamination resulting from incubating surgical stainless steel (a practical biomaterial) in whole human blood exhibited strong N1s signals [16.8 and 18.5 atomic percent (at.%), respectively] after thorough washing. After 5min air plasma treatment, XPS detected no nitrogen on the sample surfaces, indicating complete removal of proteinaceous contamination, down to the estimated XPS detection limit 10ng/cm(2). Applying the same plasma treatment, the 7.7at.% nitrogen observed on a clinically cleaned dental bur was reduced to a level reflective of new, as-received burs. Contact angle measurements and atomic force microscopy also indicated complete molecular-level removal of the proteinaceous contamination upon air plasma treatment. This study demonstrates the effectiveness of air plasma treatment for removing proteinaceous contamination from both model and practical surfaces and offers a method for ensuring that no molecular residual contamination such as prions is transferred upon re-use of surgical and dental instruments. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  8. INDOOR AIR CONCENTRATION UNIT CONVERSIONS

    Science.gov (United States)

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which can migrate through subsurface soils and may enter the indoor air of overlying buil...

  9. Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia

    Directory of Open Access Journals (Sweden)

    G. C. Edwards

    2013-05-01

    Full Text Available This paper presents the first gaseous elemental mercury (GEM air-surface exchange measurements obtained over naturally enriched and background (−1 Hg terrestrial landscapes in Australia. Two pilot field studies were carried out during the Australian autumn and winter periods at a copper-gold-cobalt-arsenic-mercury mineral field near Pulganbar, NSW. GEM fluxes using a dynamic flux chamber approach were measured, along with controlling environmental parameters over three naturally enriched and three background substrates. The enriched sites results showed net emission to the atmosphere and a strong correlation between flux and substrate Hg concentration, with average fluxes ranging from 14 ± 1 ng m−2 h−1 to 113 ± 6 ng m−2 h−1. Measurements at background sites showed both emission and deposition. The average Hg flux from all background sites showed an overall net emission of 0.36 ± 0.06 ng m−2 h−1. Fluxes show strong relationships with temperature, radiation, and substrate parameters. A compensation point of 2.48, representative of bare soils was determined. For periods of deposition, dry deposition velocities ranged from 0.00025 cm s−1 to 0.0083 cm s−1 with an average of 0.0041 ± 0.00018 cm s−1, representing bare soil, nighttime conditions. Comparison of the Australian data to North American data suggests the need for Australian-specific mercury air-surface exchange data representative of Australia's unique climatic conditions, vegetation types, land use patterns and soils.

  10. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    Science.gov (United States)

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  11. Enriched-air fluidized bed gasification using bench and pilot scale reactors of dairy manure with sand bedding based on response surface methods

    International Nuclear Information System (INIS)

    Nam, Hyungseok; Maglinao, Amado L.; Capareda, Sergio C.; Rodriguez-Alejandro, David Aaron

    2016-01-01

    Enriched-air gasification was performed in fluidized bed reactors using the processed dairy manure which was mixed with sand bedding. The effects of temperature, modified equivalence ratio (ER_m), and oxygen concentration on the gas products were investigated based on the statistical models using a bench-scale reactor in order to obtain empirical correlations. Then, the empirical equations were applied to compare the produced gases from a pilot-scale fluidized bed gasifier. The empirical and actual H_2 and CH_4 compositions were within a 10% error, while the sum of produced CO and CO_2 gases showed similar composition within 3% error. The most influential factors for the syngas heating value were temperature followed by the oxygen concentration and ER (equivalence ratio). The composition of H_2 (2.1–11.5%) and CO (5.9–20.3%) rose with an increase in temperature and oxygen concentration. The variation of CO_2 (16.8–31.6%) was mainly affected by the degree of oxygen concentration in the gasifying agent. The ranges of the LHV (lower heating value), carbon conversion efficiency and cold gas efficiency were discussed. An economic review showed favorable indications for on-site dairy manure gasification process for electric power based on the depreciable payback period and the power production costs. - Highlights: • Sand mixed dairy manure obtained directly from a dairy farm was processed and used. • Response surface methodology was used to investigate the enriched-air gasification. • Syngas results from bench and pilot scale gasifiers were compared and reviewed. • A highest LVH of 8 MJ/Nm"3 was obtained from the enriched-air gasification. • The power production costs were determined to be $0.053/kWh

  12. Air pollution holiday effect in metropolitan Kaohsiung

    Science.gov (United States)

    Tan, P.; Chen, P. Y.

    2014-12-01

    Different from Taipei, the metropolitan Kaohsiung which is a coastal and industrial city has the major pollution sources from stationary sources such as coal-fired power plants, petrochemical facilities and steel plants, rather than mobile sources. This study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods, over the Kaohsiung metropolitan area. We documented evidence of a "holiday effect", where concentrations of NOx, CO, NMHC, SO2 and PM10 were significantly different between holidays and non-holidays, in the Kaohsiung metropolitan area from daily surface measurements of seven air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods of 1994-2010. Concentrations of the five pollutants were lower in the CNY than in the NCNY period, however, that of O3 was higher in the CNY than in the NCNY period and had no holiday effect. The exclusion of the bad air quality day (PSI > 100) and the Lantern Festival Day showed no significant effects on the holiday effects of air pollutants. Ship transportation data of Kaohsiung Harbor Bureau showed a statistically significant difference in the CNY and NCNY period. This difference was consistent with those found in air pollutant concentrations of some industrial and general stations in coastal areas, implying the possible impact of traffic activity on the air quality of coastal areas. Holiday effects of air pollutants over the Taipei metropolitan area by Tan et al. (2009) are also compared.

  13. Kinetic modelling of NO heterogeneous radiation-catalytic oxidation on the TiO2 surface in humid air under the electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Nichipor Henrietta

    2017-09-01

    Full Text Available Theoretical study of NOx removal from humid air by a hybrid system (catalyst combined with electron beam was carried out. The purpose of this work is to study the possibility to decrease energy consumption for NOx removal. The kinetics of radiation catalytic oxidation of NO on the catalyst TiO2 surface under electron beam irradiation was elaborated. Program Scilab 5.3.0 was used for numerical simulations. Influential parameters such as inlet NO concentration, dose, gas fl ow rate, water concentration and catalyst contents that can affect NOx removal efficiency were studied. The results of calculation show that the removal efficiency of NOx might be increased by 8-16% with the presence of a catalyst in the gas irradiated field.

  14. Slip length measurement of confined air flow on three smooth surfaces.

    Science.gov (United States)

    Pan, Yunlu; Bhushan, Bharat; Maali, Abdelhamid

    2013-04-02

    An experimental measurement of the slip length of air flow close to three different solid surfaces is presented. The substrate was driven by a nanopositioner moving toward an oscillating glass sphere glued to an atomic force microscopy (AFM) cantilever. A large separation distance was used to get more effective data. The slip length value was obtained by analyzing the amplitude and phase data of the cantilever. The measurements show that the slip length does not depend on the oscillation amplitude of the cantilever. Because of the small difference among the slip lengths of the three surfaces, a simplified analysis method was used. The results show that on glass, graphite, and mica surfaces the slip lengths are 98, 234, and 110 nm, respectively.

  15. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    Science.gov (United States)

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  16. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA

    Science.gov (United States)

    Gray, John E.; Theodorakos, Peter M.; Fey, David L.; Krabbenhoft, David P.

    2015-01-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8–11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03–0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9–14 ng/L) were generally higher than those found in springs and wells (0.05–3.1 ng/L), baseline streams (1.1–9.7 ng/L), and sources of drinking water (0.63–9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the ground surface.

  17. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  18. Estimating cancer risk from outdoor concentrations of hazardous air pollutants in 1990

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, T.J.; Caldwell, J.; Cogliano, V.J.; Axelrad, D.A.

    2000-03-01

    A public health concern regarding hazardous air pollutants (HAPs) is their potential to cause cancer. It has been difficult to assess potential cancer risks from HAPs, due primarily to lack of ambient concentration data for the general population. The Environmental Protection Agency's Cumulative Exposure Project modeled 1990 outdoor concentrations of HAPs across the United States, which were combined with inhalation unit risk estimates to estimate the potential increase in excess cancer risk for individual carcinogenic HAPs. These were summed3d to provide an estimate of cancer risk from multiple HAPs. The analysis estimates a median excess cancer risk of 18 lifetime cancer cases per 100,000 people for all HAP concentrations. About 75% of estimated cancer risk was attributable to exposure to polycyclic organic matter, 1,3-butadiene, formaldehyde, benzene, and chromium. Consideration of some specific uncertainties, including underestimation of ambient concentrations, combining upper 95% confidence bound potency estimates, and changes to potency estimates, found that cancer risk may be underestimated by 15% or overestimated by 40--50%. Other unanalyzed uncertainties could make these under- or overestimates larger. This analysis used 1990 estimates of concentrations and can be used to track progress toward reducing cancer risk to the general population.

  19. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  20. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  1. Critique of the use of deposition velocity in modeling indoor air quality

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Weschler, C.J.

    1993-01-01

    Among the potential fates of indoor air pollutants are a variety of physical and chemical interactions with indoor surfaces. In deterministic mathematical models of indoor air quality, these interactions are usually represented as a first-order loss process, with the loss rate coefficient given as the product of the surface-to-volume ratio of the room times a deposition velocity. In this paper, the validity of this representation of surface-loss mechanisms is critically evaluated. From a theoretical perspective, the idea of a deposition velocity is consistent with the following representation of an indoor air environment. Pollutants are well-mixed throughout a core region which is separated from room surfaces by boundary layers. Pollutants migrate through the boundary layers by a combination of diffusion (random motion resulting from collisions with surrounding gas molecules), advection (transport by net motion of the fluid), and, in some cases, other transport mechanisms. The rate of pollutant loss to a surface is governed by a combination of the rate of transport through the boundary layer and the rate of reaction at the surface. The deposition velocity expresses the pollutant flux density (mass or moles deposited per area per time) to the surface divided by the pollutant concentration in the core region. This concept has substantial value to the extent that the flux density is proportional to core concentration. Published results from experimental and modeling studies of fine particles, radon decay products, ozone, and nitrogen oxides are used as illustrations of both the strengths and weaknesses of deposition velocity as a parameter to indicate the rate of indoor air pollutant loss on surfaces. 66 refs., 5 tabs

  2. Prediction of indoor concentration of 0.5-4 µm particles of outdoor origin in an uninhabited apartment

    DEFF Research Database (Denmark)

    Schneider, T.; Jensen, K.A.; Clausen, P.A.

    2004-01-01

    Indoor and outdoor particle size distributions, indoor-outdoor pressure difference, indoor air-exchange rate, and meteorological conditions were measured at an uninhabited apartment located in a busy street in Copenhagen during 1-month long fall, winter and spring campaigns. Particle penetration...... was estimated from concentration rebound measurements following HEPA filtering of the indoor air by fitting a simple deterministic model. The model included measured air exchange rates and published surface deposition loss rates. This model was then used to predict indoor particle concentration. The model...

  3. Corroborating the Land Use Change as Primary Determinant of Air Quality Degradation in a Concentric City

    Directory of Open Access Journals (Sweden)

    Ariva Sugandi Permana

    2015-05-01

    Full Text Available Bandung City is characterized by concentric land use pattern as found in many naturally grown cities. It radiates from mixed commercial areas in the center to low density residential areas in the periphery. This pattern generates significant traffic volume towards city center. The gener-ated traffic releases emissions and degrades urban air quality since fossil fuel is predominantly used by vehicles in Bandung. In the absence of air polluting industries as well as construction and demolition activities, traffic load generated by land use changes is the only major contribu-tor to air quality degradation in the city. The land use change can therefore be seen as primary determinant of air pollution in Bandung. This study analyses land use changes and its impacts on traffic pattern and air quality. Multivariate correlation between traffic load and land use changes is employed as tool to substantiate the proposition. Relationships between the degree of chang-es in land use, as reflected in traffic loads, and the quantity of two principal air pollutants, namely SO2 and HC are also established to validate the argument. The result of analysis sub-stantiates the correlation between land use changes and air quality degradation.

  4. The air bubble entrapped under a drop impacting on a solid surface

    Science.gov (United States)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.; Ootsuka, N.; Hatsuki, Y.

    2005-12-01

    We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.

  5. Concentration of sunlight to solar-surface levels using non-imaging optics

    Science.gov (United States)

    Gleckman, Philip; O'Gallagher, Joseph; Winston, Roland

    1989-05-01

    An account is given of the design and operational principles of a solar concentrator that employs nonimaging optics to achieve a solar flux equal to 56,000 times that of ambient sunlight, yielding temperatures comparable to, and with further development of the device, exceeding those of the solar surface. In this scheme, a parabolic mirror primary concentrator is followed by a secondary concentrator, designed according to the edge-ray method, which is filled with a transparent oil. The device may be used in materials-processing, waste-disposal, and solar-pumped laser applications.

  6. A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation.

    Science.gov (United States)

    Pan, Xuelian; Zhuo, Shaojie; Zhong, Qirui; Chen, Yuanchen; Du, Wei; Cheng, Hefa; Wang, Xilong; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu

    2018-03-06

    A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.

  7. A simple method to determine Tr concentrations in the moisture of the exhaust air of nuclear facilities and in the ambient air

    International Nuclear Information System (INIS)

    Weber, H.W.; Schuettelkopf, H.

    1983-04-01

    In the course of nuclear power plant operation radioactive tritium is generated which is released to the environment as HTO via the exhaust air and the liquid effluents. Measurement and balancing of the tritium emissions are required in order to be able to evaluate the resulting radiation exposure of the population. For determination of the HTO emission the humidity of the measured air is absorbed at a rod shaped molecular sieve of 1/16'' mesh size. The desiccant is contacted with T-free water and the T activity concentration of the water is determined after 3 H/ 1 H isotope exchange. The rod shaped molecular sieves are suited for use under this method on account of their drying capacity largely independent of temperature and air humidity and the good handling capability. The detection limit is at 19 Bq HTO/m 3 air. The exhaust air from several 3 H-emitters of the Karlsruhe Nuclear Research Center was monitored by this method for its HTO content and the results were compared with the values measured at existing points of measurement. The good results have been the reason for the application of such collectors in the routine T-measurement performed within the framework of exhaust air monitoring on the site of the Karlsruhe Nuclear Research Center. (orig./HP) [de

  8. Measuring concentrations of selected air pollutants inside California vehicles. Final report

    International Nuclear Information System (INIS)

    Rodes, C.; Sheldon, L.; Whitaker, D.; Clayton, A.; Fitzgerald, K.

    1999-01-01

    This project measured 2-hour integrated concentrations of PM10, PM2.5, metals and a number of organic chemicals including benzene and MTBE inside vehicles on California roadways. Using continuous samplers, particle counts, black carbon, and CO were also measured. In addition to measuring in-vehicle levels, the investigators measured pollutant levels just outside the vehicle, at roadside stations, and ambient air monitoring stations. Different driving scenarios were designed to assess the effects of a number of factors on in-vehicle pollutant levels. These factors included roadway type, carpool lanes, traffic conditions, geographical locations, vehicle type, and vehicle ventilation conditions. The statewide average in-vehicle concentrations of benzene, MTBE, and formaldehyde ranged from 3--22 microg/m 3 , 3--90 microg/m 3 , and 0---22 microg/m 3 , respectively. The ranges of mean PM10 and PM2.5 in-vehicle levels in Sacramento were 20--40 microg/m 3 and 6--22 microg/m 3 , respectively. In general, pollutant levels inside or just outside the vehicles were higher than those measured at the roadside stations or the ambient air stations. In-vehicle pollutant levels were consistently higher in Los Angeles than Sacramento. Pollutant levels measured inside vehicles traveling in a carpool lane were much lower than those in the right-hand, slower lanes. Under the study conditions, factors such as vehicle type and ventilation and little effect on in-vehicle pollutant levels. Other factors, such as roadway type, freeway congestion level, and time-of-day had some influence on in-vehicle pollution levels

  9. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    OpenAIRE

    Santos, Roberta Machado; Voltolini, Tadeu Vinhas; Angelotti, Francislene; Aidar, Saulo de Tarso; Chaves, Agnaldo Rodrigues de Melo

    2014-01-01

    The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian) were compared. Cultivars were grown in growth chambers at three temperatures (day/night): 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × ...

  10. Monitoring total endotoxin and (1 --> 3)-beta-D-glucan at the air exhaust of concentrated animal feeding operations.

    Science.gov (United States)

    Yang, Xufei; Wang, Xinlei; Zhang, Yuanhui; Lee, Jongmin; Su, Jingwei; Gates, Richard S

    2013-10-01

    Mitigation of bioaerosol emissions from concentrated animal feeding operations (CAFOs) demands knowledge of bioaerosol concentrations feeding into an end-of-pipe air treatment process. The aim of this preliminary study was to measure total endotoxin and (1 --> 3)-beta-glucan concentrations at the air exhaust of 18 commercial CAFOs and to examine their variability with animal operation type (swine farrowing, swine gestation, swine weaning, swine finishing, manure belt laying hen, and tom turkey) and season (cold, mild, and hot). The measured airborne concentrations of total endotoxin ranged from 98 to 23,157 endotoxin units (EU)/m3, and the airborne concentrations of total (1 --> 3)-beta-D-glucan ranged from 2.4 to 537.9 ng/m3. Animal operation type in this study had a significant effect on airborne concentrations of total endotoxin and (1 --> 3)-beta-D-glucan but no significant effect on their concentrations in total suspended particulate (TSP). Both endotoxin and (1 --> 3)-beta-D-glucan attained their highest airborne concentrations in visited tom turkey buildings. Comparatively, season had no significant effect on airborne concentrations of total endotoxin or (1 --> 3)-beta-D-glucan. Endotoxin and (1 --> 3)-beta-glucan concentrations in TSP dust appeared to increase as the weather became warmer, and this seasonal effect was significant in swine buildings. Elevated indoor temperatures in the hot season were considered to facilitate the growth and propagation of bacteria and fungi, thus leading to higher biocomponent concentrations in TSP.

  11. Lead concentrations and risk exposure assessment in surface soils ...

    African Journals Online (AJOL)

    This study investigated lead concentrations in < 250 μm and < 75 μm of deposited dust and< 2000 μm, < 250 μm, and < 75 μm of surface soils at undeveloped residential lands leased to auto-mechanic artisans for a minimum of ten years and estimated exposure risk for children that will reside on the polluted lands after the ...

  12. Elemental concentrations in tropospheric and lower stratospheric air in a Northeastern region of Poland

    Science.gov (United States)

    Braziewicz, Janusz; Kownacka, Ludwika; Majewska, Urszula; Korman, Andrzej

    Element concentrations of K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Se, Br, Sr and Pb as well as the activity of natural radionuclides 210Pb and 226Ra in air were measured. The aerosol samples were collected during tropospheric and stratospheric aircraft flights over the Northeastern region of Poland, which is mostly an agricultural and wooded area. The air volumes were filtered using Petrianov filters at 1, 3, 6, 9, 12 and 15 km above the ground level by special equipment attached to a jet plane. Aircraft flights were provided from September 1997 to August 1998 in 5 separate sampling runs. The long sampling distances served as a good representation of mean aerosol composition and distribution. Concentrations of the same elements were also measured using stationary equipment near the ground level at the outskirts of Warsaw. The vertical profiles of element concentration were obtained and the elemental compositions for the tropospheric and stratospheric aerosols were compared with those from the near-ground level. Contribution of K, Ca, Ti and Fe, which are the main components of soil, in total mass of all detected ones was estimated. Relative concentrations of all measured elements, which show any differences in the composition of the aerosol were calculated. The results obtained confirm the fact that the stratospheric reservoir is observed in the bottom stratosphere. The XRF method based on molybdenum X-ray tube was used as an analytical tool in the determination of aerosols trace elements. The altitude distributions of radioactivity of 226Ra and 210Pb were determined using radiochemical methods.

  13. Semiconductor Sensors Application for Definition of Factor of Ozone Heterogeneous Destruction on Teflon Surface

    Directory of Open Access Journals (Sweden)

    Nataliya V. Finogenova

    2003-12-01

    Full Text Available In our paper we present the results of our research, which was carried out by means of semiconductor sensor techniques (SCS, which allowed evaluating heterogeneous death-rate of ozone (γ Teflon surface. When ozone concentration is near to Ambient Air Standard value, γ is assessed to be equal to 6,57*10-7. High technique response provide possibility to determine ozone contents in the air media and the percentage of ozone, decomposed on the communication surfaces and on the surfaces of installation in the low concentration range (1–100 ppb.

  14. Exposition by inhalation to the benzene, toluene, ethyl-benzene and xylenes (BTEX) in the air. Sources, measures and concentrations; Exposition par inhalation au benzene, toluene, ethylbenzene et xylenes (BTEX) dans l'air. Source, mesures et concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I

    2004-12-15

    This document presents the main techniques today available to characterize the benzene, toluene, ethyl-benzene and xylene (BTEX) concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  15. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  16. Air toxics concentrations, source identification, and health risks: An air pollution hot spot in southwest Memphis, TN

    Science.gov (United States)

    Jia, Chunrong; Foran, Jeffery

    2013-12-01

    Southwest Memphis is a residential region surrounded by fossil fuel burning, steel, refining, and food processing industries, and considerable mobile sources whose emissions may pose adverse health risks to local residents. This study characterizes cancer and non-cancer risks resulting from exposure to ambient air toxics in southwest Memphis. Air toxics samples were collected at a central location every 6 days from June 5, 2008 to January 8, 2010. Volatile organic compounds (VOCs) were collected in evacuated stainless-steel canisters and aldehydes by DNPH cartridges, and samples were analyzed for 73 target compounds. A total of 60 compounds were detected and 39 were found in over 86% of the samples. Mean concentrations of many compounds were higher than those measured in many industrial communities throughout the U.S. The cumulative cancer risk associated with exposure to 13 carcinogens found in southwest Memphis air was 2.3 × 10-4, four times higher than the national average of 5.0 × 10-5. Three risk drivers were identified: benzene, formaldehyde, and acrylonitrile, which contributed 43%, 19%, and 14% to the cumulative risk, respectively. This is the first field study to confirm acrylonitrile as a potential risk driver. Mobile, secondary, industrial, and background sources contributed 57%, 24%, 14%, and 5% of the risk, respectively. The results of this study indicate that southwest Memphis, a region of significant income, racial, and social disparities, is also a region under significant environmental stress compared with surrounding areas and communities.

  17. Surfaces and Air Bacteriology of Selected Wards at a Referral Hospital, Northwest Ethiopia: A Cross-Sectional Study.

    Science.gov (United States)

    Getachew, Hailu; Derbie, Awoke; Mekonnen, Daniel

    2018-01-01

    The hospital environment is a source of medically important pathogens that are mostly multidrug resistant (MDR) and posing a major therapeutic challenge. The aim of this study was to assess the surface and air bacteriology of selected wards at Felege Hiwot Referral Hospital (FHRH), Northwest Ethiopia. A cross-sectional study was carried out from 15th February to 30th April 2017. A total of 356 surface and air samples were collected from selected wards using 5% sheep blood agar (Oxoid, UK) and processed at FHRH microbiology laboratory following the standard bacteriological procedures. Pure isolates were tested against the recommended antibiotics using Kirby-Bauer disc diffusion methods, and the susceptibility profile was determined based on Clinical Laboratory Standards Institute (CLSI). Data were entered and analyzed using SPSS version 23 for Windows. Of the total 356 samples processed, 274 were from surfaces and 82 were from air. Among these, 141 (39.6%) showed bacterial growth, yielding a total of 190 isolates. Gram-positive isolates were predominant at 81.6% ( n =155), while the gram negatives were at 18.4% ( n =35). The main isolates were coagulase negative staphylococci ( CoNs ), 44%, followed by S. aureus , 37.4%, and Klebsiella species at 11.6%. The bacterial load on surfaces and air was found beyond the standard limits. Besides, the antimicrobial susceptibility profile of the isolates showed that about 75% of the identified isolates were found resistant for two and more antimicrobial agents tested. This study showed high degree of bacterial load that is beyond the standard limits on both surfaces and air samples of the hospital. Furthermore, some 75% of the isolates were found multidrug resistant. Therefore, it is important to evaluate and strengthen the infection prevention practice of the hospital. Moreover, stakeholders should also reinforce actions to decrease the pressure of antimicrobial resistance in the studied area.

  18. Distribution and congener profiles of short-chain chlorinated paraffins in indoor/outdoor glass window surface films and their film-air partitioning in Beijing, China.

    Science.gov (United States)

    Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin

    2016-02-01

    Short-chain chlorinated paraffins (SCCPs) are a group of n-alkanes with carbon chain length of 10-13. In this work, paired indoor/outdoor samples of organic films on window glass surfaces from urban buildings in Beijing, China, were collected to measure the concentrations and congener distributions of SCCPs. The total SCCP levels ranged from 337 ng/m(2) to 114 μg/m(2), with total organic carbon (TOC) normalized concentrations of 365 μg/m(2)-365 mg/m(2). Overall, the concentrations of SCCPs on the interior films were higher than the concentrations on the exterior films, suggesting an important indoor environmental exposure of SCCPs to the general public. A significant linear relationship was found between the SCCP concentrations and TOC, with a correlation coefficient of R = 0.34 (p film-air partitioning model suggests that the indoor gas-phase SCCPs are related to their corresponding window film levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Passive air sampling of organochlorine pesticides and polychlorinated biphenyls in the Yangtze River Delta, China: Concentrations, distributions, and cancer risk assessment

    International Nuclear Information System (INIS)

    Zhang, Lifei; Dong, Liang; Yang, Wenlong; Zhou, Li; Shi, Shuangxin; Zhang, Xiulan; Niu, Shan; Li, Lingling; Wu, Zhongxiang; Huang, Yeru

    2013-01-01

    The Yangtze River Delta (YRD) has been quickly industrialized and urbanized. Passive air sampling of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) was carried out in the YRD in 2010–2011 to investigate their spatiotemporal distributions and estimate the risk of cancer from their inhalation. Annual concentrations were 151, 168, 18.8, 110, 17.9, and 35.0 pg m −3 for HCB, ∑DDTs, ∑HCHs, ∑chlordane, mirex, and PCBs, respectively. The highest OCP and PCB concentrations were generally detected in the autumn and winter. The average concentrations of OCPs and PCBs for the different site groups followed the order urban ≈ urban–rural transition > rural. The lifetime excess cancer risks from the inhalation of OCPs and PCBs were −6 . The predicted cancer cases per lifetime associated with the inhalation of OCPs and PCBs are 12, 7, and 4 per ten thousand people for urban, urban–rural transition, and rural areas, respectively. Highlights: •Organochlorine pollutants were measured in the air in the Yangtze River Delta area. •Air PCB concentration declined in recent years comparing with previous results. •HCB and DDEs predominated, with the highest values in winter and autumn, respectively. •OCPs and PCBs followed the order: urban ≈ urban–rural transition > rural. -- A detailed study of organochlorine pesticides and polychlorinated biphenyls in air across the Yangtze River Delta area using passive air samplers

  20. An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests

    International Nuclear Information System (INIS)

    Ahn, Young Chull; Cho, Jae Min; Lee, Jae Keun; Lee, Hyun Uk; Ahn, Seung Phyo; Youn, Deok Hyun; Kang, Tae Wook; Ock, Ju Jo

    2003-01-01

    The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 g/m 3 ), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level