WorldWideScience

Sample records for surface active impurities

  1. Temperature-concentration oscillations of crystal-solution phase equilibria in the presence of trace impurities of surface-active agents

    Energy Technology Data Exchange (ETDEWEB)

    Kiryanova, E.V. [St. Petersburg State University, Crystallography Dept., 199034, University emb. 9, St. Petersburg (Russian Federation)

    2011-04-15

    Using the examples of aqueous salt solutions NaNO{sub 3}, KNO{sub 3}, RbNO{sub 3}, K{sub 2}SO{sub 4}, NaBr.2H{sub 2}O, KBr, and NH{sub 4}NO{sub 3}, it was experimentally proven that the new phenomena, i.e. temperature-concentration oscillations of crystal-solution phase equilibria detected previously in the range of 15-45 C remain in the presence of trace impurities (10{sup -4}-10{sup -3} wt. %) of ion-active organic matters. The signs of breaks transformation into pair oscillations of ''maximum-minimum'' type are established for the K{sub 2}SO{sub 4}, NaBr, KBr solutions. The efficiency of influence of trace impurities on phase equilibria sharply rises in the areas of the temperature-concentration oscillations (the saturation temperature ranges up to 10 K). The impurity efficiency is promoted by the presence of the amides in its content (as compared with the sulphates) and an increase in length of the hydrocarbon radical. The phenomenon is absent in case of an addition of ion-inactive compounds. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Dynamic and Impure Perovskite Structured Metal Oxide Surfaces

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Traulsen, Marie Lund

    2017-01-01

    on the electrode surfaces. An experimental test of the suggestion that the segregation might happen in the vacuum in the analysis equipment gave a negative result. Formation of particles containing significant amounts of S and Cr from segregation of the trace impurities in the acquired powders were observed...

  3. High-frequency EPR of surface impurities on nanodiamond

    Science.gov (United States)

    Peng, Zaili; Stepanov, Viktor; Takahashi, Susumu

    Diamond is a fascinating material, hosting nitrogen-vacancy (NV) defect centers with unique magnetic and optical properties. There have been many reports that suggest the existence of paramagnetic impurities near surface of various kinds of diamonds. Electron paramagnetic resonance (EPR) investigation of mechanically crushed nanodiamonds (NDs) as well as detonation NDs revealed g 2 like signals that are attributed to structural defects and dangling bonds near the diamond surface. In this presentation, we investigate paramagnetic impurities in various sizes of NDs using high-frequency (HF) continuous wave (cw) and pulsed EPR spectroscopy. Strong size dependence on the linewidth of HF cw EPR spectra reveals the existence of paramagnetic impurities in the vicinity of the diamond surface. We also study the size dependence of the spin-lattice and spin-spin relaxation times (T1 and T2) of single substitutional nitrogen defects in NDs Significant deviations from the temperature dependence of the phonon-assisted T1 process were observed in the ND samples, and were attributed to the contribution from the surface impurities. This work was supported by the Searle Scholars Program and the National Science Foundation (DMR-1508661 and CHE-1611134).

  4. Surface segregation of the metal impurity to the (1 0 0) surface of fcc ...

    Indian Academy of Sciences (India)

    The absolute value of the segregation energy 1 for a single impurity in the first atomic layer is much higher than that in the nether layers. Thus, whether the surface segregation will work or not is mainly determined by 1 which is in good relation to the differences in surface energy between the impurity and host crystals  ...

  5. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Netterfield, R.P.; Martin, P.J.; Leistner, A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  6. Surface segregation of the metal impurity to the (1 0 0) surface of fcc metals

    Science.gov (United States)

    Zhang, Jian-Min; Wang, Bo; Xu, Ke-Wei

    2007-10-01

    The surface segregation energies for a single metal impurity to the (100) surface of nine fcc metals (Cu, Ag, Au, Ni, Pd, Pt, Rh, Al and Ir) have been calculated using the MAEAM and molecular dynamics (MD) simulation. The results show that the effect of the surface is down to the fourth-layer and an oscillatory or monotonic damping (|E_1|>|E_2|>|E_3|>|E_4|) phenomenon in segregation energy has been obtained. The absolute value of the segregation energy E_1 for a single impurity in the first atomic layer is much higher than that in the nether layers. Thus, whether the surface segregation will work or not is mainly determined by E_1 which is in good relation to the differences in surface energy between the impurity and host crystals Δ Q=Q_{imp}-Q_{hos}. So we conclude that an impurity with lower surface energy will segregate to the surface of the host with higher surface energy.

  7. Steady-state organization of binary mixtures by active impurities

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Gilhøj, Henriette; Mouritsen, Ole G.

    1998-01-01

    The structural reorganization of a phase-separated binary mixture in the presence of an annealed dilution of active impurities is studied by computer-simulation techniques via a simple two-dimensional lattice-gas model. The impurities, each of which has two internal states with different affinity...

  8. Influence of impurities on the surface morphology of the TIBr crystal semiconductor

    International Nuclear Information System (INIS)

    Santos, Robinson A. dos; Silva, Julio B. Rodrigues da; Martins, Joao F.T.; Ferraz, Caue de M.; Costa, Fabio E. da; Mesquita, Carlos H. de; Hamada, Margarida M.; Gennari, Roseli F.

    2013-01-01

    The impurity effect in the surface morphology quality of TlBr crystals was evaluated, aiming a future application of these crystals as room temperature radiation semiconductor detectors. The crystals were purified and grown by the Repeated Bridgman technique. Systematic measurements were carried out for determining the stoichiometry, structure orientation, surface morphology and impurity of the crystal. A significant difference in the crystals impurity concentration was observed for almost all impurities, compared to those found in the raw material. The crystals wafer grown twice showed a surface roughness and grains which may be due to the presence of impurities on the surface, while those obtained with crystals grown three times presented a more uniform surface: even though, a smaller roughness was still observed. It was demonstrated that the impurities affect strongly the surface morphology quality of crystals. (author)

  9. Effect of impurities in the description of surface nanobubbles: Role of nonidealities in the surface layer

    NARCIS (Netherlands)

    Das, S.

    2011-01-01

    In a recent study [ S. Das, J. H. Snoeijer and D. Lohse Phys. Rev. E 82 056310 (2010)], we provided quantitative demonstration of the conjecture [ W. A. Ducker Langmuir 25 8907 (2009)] that the presence of impurities at the surface layer (or the air-water interface) of surface nanobubbles can

  10. Surface segregation of the metal impurity to the (1 0 0) surface of fcc ...

    Indian Academy of Sciences (India)

    The surface segregation energies for a single metal impurity to the (100) surface of nine fcc metals (Cu, Ag, Au, Ni, Pd, Pt, Rh, Al and Ir) have been calculated using the MAEAM and molecular dynamics .... function (termed as a cut-off potential) while the separated distance between atoms varies in the range r2e to rc [33]:.

  11. Effects of quenched impurities on surface diffusion, spreading, and ordering of O/W(110)

    DEFF Research Database (Denmark)

    Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.

    2002-01-01

    We study how quenched impurities affect the surface diffusion and ordering of strongly interacting adsorbate atoms on surfaces. To this end, we carry out Monte Carlo simulations for a lattice-gas model of O/W(110), including small concentrations of immobile impurities which block their adsorption...

  12. Impurity diffusion activation energies in Al from first principles

    NARCIS (Netherlands)

    Simonovic, D.; Sluiter, M.H.

    2009-01-01

    Activation energies for vacancy-mediated impurity diffusion in face-centered-cubic aluminum have been computed ab initio for all technologically important alloying elements, as well as for most of the lanthanides. The so-called five-frequency rate model is used to establish the limiting vacancy

  13. Impurities in Drug Products and Active Pharmaceutical Ingredients.

    Science.gov (United States)

    Kątny, M; Frankowski, M

    2017-05-04

    Analytical methods should be selective and fast. In modern times, scientists strive to meet the criteria of green chemistry, so they choose analytical procedures that are as short as possible and use the least toxic solvents. It is quite obvious that the products intended for human consumption should be characterized as completely as possible. The safety of a drug is dependent mainly on the impurities that it contains. High pressure liquid chromatography and ultra-high pressure liquid chromatography have been proposed as the main techniques for forced degradation and impurity profiling. The aim of this article was to characterize the relevant classification of drug impurities and to review the methods of impurities determination for atorvastatin (ATV) and duloxetine (DLX) (both in active pharmaceutical ingredients and in different dosage forms). These drugs have an impact on two systems of the human body: cardiac and nervous. Simple characteristics of ATV and DLX, their properties and specificity of action on the human body, are also included in this review. The analyzed pharmaceuticals-ATV (brand name Lipiron) and DLX (brand name Cymbalta)-were selected for this study based on annual rankings prepared by Information Medical Statistics.

  14. Study of the surface-enhanced Raman spectroscopy of residual impurities in hydroxylamine-reduced silver colloid and the effects of anions on the colloid activity.

    Science.gov (United States)

    Dong, Xiao; Gu, Huaimin; Liu, Fangfang

    2012-03-01

    The paper investigated the residual ions in hydroxylamine-reduced silver colloid (HRSC) and the relationship between the condition of HRSC and the enhanced mechanisms of this colloid. We also detected the SERS of MB and studied the effects of anions on the Raman signal. In the case of HRSC, the bands of residual ions diminish while the bands of Ag-anions increase gradually with increasing the concentrations of Cl(-) and NO(3)(-). It means the affinity of residual ions on the silver surface is weaker than that of Cl(-) and NO(3)(-) and the residual ions are replaced gradually by the added Cl(-) or NO(3)(-). The Raman signal of residual ions can be detected by treatment with anions that do not bind strongly to the silver surface, such as SO(4)(2-). The most intense band of Ag-anions bonds can be also observed when adding weakly binding anions to the colloid. However, the anions which make up the Ag-anions bonds are residual Cl(-) and the effect of weakly binding anions is only to aggregate the silver particles. Residual Cl(-) can be replaced by I(-) which has the highest affinity. From the detection of methylene blue (MB), the effects of anions on the enhancement of Raman signal are discussed in detail, and these findings could make the conditions suitable for detecting analytes in high efficiency. This study will have a profound implication to SERS users about their interpretation of SERS spectra when obtaining these anomalous bands. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Impurity diffusion, point defect engineering, and surface/interface passivation in germanium

    KAUST Repository

    Chroneos, Alexander I.

    2012-01-26

    In recent years germanium has been emerging as a mainstream material that could have important applications in the microelectronics industry. The principle aim of this study is to review investigations of the diffusion of technologically important p- and n-type dopants as well as surface and interface passivation issues in germanium. The diffusion of impurities in germanium is interrelated to the formation of clusters whenever possible, and possibilities for point defect engineering are discussed in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires

    Science.gov (United States)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong

    2018-04-01

    The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.

  17. Determination of impurities in beryl by neutron activation analysis

    International Nuclear Information System (INIS)

    Swain, K.K.; Dalvi, Aditi A.; Ajith, Nicy

    2015-01-01

    Beryl is a chemically complex and highly compositionally variable gem-forming mineral found in a variety of locations worldwide. Pure beryl is colorless, but the presence of impurities imparts colors such as green, blue, yellow, red, and white. It is one of the most important gem minerals and the gems are named by their color. The impurities in beryl can be determined using various analytical techniques. Neutron activation analysis (NAA) is a sensitive technique for multielement analysis of geological samples. Four beryl samples, collected from Nayakund Mehandi Block, Parseoni, Maharashtra, were received from Geological Survey of India (GSI), Pune. Powdered samples (50-100 mg) along with comparators (IAEA Soil-7) were packed in aluminum foils, sealed in an aluminum container and irradiated for 7 days in tray rod facility of Dhruva reactor, BARC, Mumbai. After irradiation, samples were brought to laboratory. Samples were opened, transferred into polyethylene packets and weighed. Gamma activity measurements were carried out using 45% HPGe detector coupled to 8 k multi channel analyzer. For the determination of manganese, which produces relatively shorter lived activation product ( 56 Mn: T 1/2 = 2.56 h), samples were sealed in polyethylene pouches and irradiated in graphite reflector position of Critical facility reactor, BARC, Mumbai. Relative method of NAA was used for concentration calculations. IAEA reference material (RM), SL -1 (lake sediment) was analyzed for quality control. Percentage errors on the measured concentrations of the elements are within ± 8% with respect to the recommended/information values

  18. Impurity recycling and retention on Au and C surfaces exposed to the scrape-off layer of the TCA tokamak

    International Nuclear Information System (INIS)

    Gimzewski, J.K.; Veprek, S.; Hofmann, F.; Hollenstein, C.; Lister, J.B.; Pochelon, A.; Groner, P.

    1986-01-01

    In addition to impurity trapping, surfaces exposed to the boundary layer of a tokamak and other fusion devices are subjected to erosion phenomena. On local surface regions which do not experience unipolar arcing, these processes are due to the energetic fluxes of impurity and plasma particles which induce sputtering. Data are presented on collection probe experiments in the TCA tokamak which demonstrate that this erosion behavior may be evaluated from a knowledge of the shot dependence of the areal concentrations and impact energies of the trapped particles within the surface. Furthermore, a semiempirical parameter, which we call the ''impurity recycling factor'' (k), can be used to describe impurity retention and sputtering behavior for local plasma-surface interactions. Data on impurity retention and reemission are presented with respect to the impurity recycling factor as a function of the distance from the plasma edge

  19. Surface impurity removal from DIII-D graphite tiles by boron carbide grit blasting

    International Nuclear Information System (INIS)

    Lee, R.L.; Hollerbach, M.A.; Holtrop, K.L.; Kellman, A.G.; Taylor, P.L.; West, W.P.

    1993-11-01

    During the latter half of 1992, the DIII-D tokamak at General Atomics (GA) underwent several modifications of its interior. One of the major tasks involved the removal of accumulated metallic impurities from the surface of the graphite tiles used to line the plasma facing surfaces inside of the tokamak. Approximately 1500 graphite tiles and 100 boron nitride tiles from the tokamak were cleaned to remove the metallic impurities. The cleaning process consisted of several steps: the removed graphite tiles were permanently marked, surface blasted using boron carbide (B 4 C) grit media (approximately 37 μm. diam.), ultrasonically cleaned in ethanol to remove loose dust, and outgassed at 1000 degrees C. Tests were done using, graphite samples and different grit blaster settings to determine the optimum propellant and abrasive media pressures to remove a graphite layer approximately 40-50 μm deep and yet produce a reasonably smooth finish. EDX measurements revealed that the blasting technique reduced the surface Ni, Cr, and Fe impurity levels to those of virgin graphite. In addition to the surface impurity removal, tritium monitoring was performed throughout the cleaning process. A bubbler system was set up to monitor the tritium level in the exhaust gas from the grit blaster unit. Surface wipes were also performed on over 10% of the tiles. Typical surface tritium concentrations of the tiles were reduced from about 500 dpm/100 cm 2 to less than 80 dpm/100 cm 2 following the cleaning. This tile conditioning, and the installation of additional graphite tiles to cover a high fraction of the metallic plasma facing surfaces, has substantially reduced metallic impurities in the plasma discharges which has allowed rapid recovery from a seven-month machine opening and regimes of enhanced plasma energy confinement to be more readily obtained. Safety issues concerning blaster operator exposure to carcinogenic metals and radioactive tritium will also be addressed

  20. Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities.

    Science.gov (United States)

    Ryan, Jonathan C; Hubbard, Alun; Stibal, Marek; Irvine-Fynn, Tristram D; Cook, Joseph; Smith, Laurence C; Cameron, Karen; Box, Jason

    2018-03-14

    Albedo-a primary control on surface melt-varies considerably across the Greenland Ice Sheet yet the specific surface types that comprise its dark zone remain unquantified. Here we use UAV imagery to attribute seven distinct surface types to observed albedo along a 25 km transect dissecting the western, ablating sector of the ice sheet. Our results demonstrate that distributed surface impurities-an admixture of dust, black carbon and pigmented algae-explain 73% of the observed spatial variability in albedo and are responsible for the dark zone itself. Crevassing and supraglacial water also drive albedo reduction but due to their limited extent, explain just 12 and 15% of the observed variability respectively. Cryoconite, concentrated in large holes or fluvial deposits, is the darkest surface type but accounts for <1% of the area and has minimal impact. We propose that the ongoing emergence and dispersal of distributed impurities, amplified by enhanced ablation and biological activity, will drive future expansion of Greenland's dark zone.

  1. Electrostatic potential variation on the flux surface and its impact on impurity transport

    Science.gov (United States)

    García-Regaña, J. M.; Beidler, C. D.; Kleiber, R.; Helander, P.; Mollén, A.; Alonso, J. A.; Landreman, M.; Maaßberg, H.; Smith, H. M.; Turkin, Y.; Velasco, J. L.

    2017-05-01

    The impurity transport in magnetically confined plasmas under some conditions finds neither quantitatively nor qualitatively a satisfactory theory-based explanation. This compromises the successful realization of thermo-nuclear fusion for energy production since impurity accumulation is known to be one of the causes that limits the plasma performance through radiative losses and plasma dilution. Under stellarator reactor-relevant conditions, accumulation is supported by the negative (inwards pointing) radial electric field which must arise to satisfy the ambipolarity constraint on the neoclassical particle fluxes. The high charge number of the impurities makes their transport particularly sensitive to the presence of electric fields and, consequently, the electrostatic potential variation on the flux surface, {Φ1} , which conventional neoclassical theory usually neglects, may contribute to the theoretical interpretation of experimental results not yet fully understood, e.g. Ida et al (2009 Phys. Plasmas 16 056111) and Yoshinuma et al (2009 Nucl. Fusion 49 062002). In the present work we have considered different stellarator configurations and assessed the impact that {Φ1} has on the radial particle transport of selected impurities. The results for LHD show that {Φ1} can strongly modify this transport, resulting in large deviations of the level of inward impurity flux predicted by the standard neoclassical theory in most cases. In Wendelstein 7-X, on the contrary, {Φ1} is significantly smaller and, for the parameters considered, its effect only appreciable for impurities with high charge number. Finally, in TJ-II the potential variation leads to appreciable changes of the impurity radial flux, although not to the extent its large amplitude might lead one to think. The dependence on the chosen parameters and open questions for future developments are discussed.

  2. Voltammetric determination of metal impurities on semiconductor surface

    International Nuclear Information System (INIS)

    Knyazeva, E.P.; Mokrousov, G.M.; Volkova, V.N.

    1995-01-01

    A modification of voltamperometric method used for analysis of semiconductor surfaces which make it possible to exclude a contact between surface and background solution. This technique is based on solubility of elemental metal forms in low melting electroconductor systems (e.g., in mercury. The voltampere characteristics of amalgams formed are then studied. The suggested method is simple, rapid, and makes it possible to perform a nondestructive qualitative analysis of the sample surface area measuring about 10 -3 cm -2 and more. 4 refs.; 2 figs

  3. Surface and impurity studies in ORMAK and ISX

    Energy Technology Data Exchange (ETDEWEB)

    Colchin, R.J.; Clausing, R.E.; Emerson, L.C.; Heatherly, L.; Isler, R.C.

    1977-02-01

    The ORMAK vacuum liner is constructed of stainless steel overcoated with a thin platinum diffusion barrier and a final layer of gold. Gold was selected as the vacuum surface because it is chemically inert to the adsorption of common gases. However, gold surfaces do adsorb hydrocarbons, and carbon (along with oxygen) was the principal plasma contaminant during the first two years of ORMAK operation. Upon switching discharge-cleaning gases from hydrogen to oxygen, carbon levels dropped until carbon is no longer a significant contaminant; residual hydrocarbons can now be controlled either by hydrogen or by oxygen discharge cleaning. The principal measured plasma contaminant in ORMAK is now oxygen. Samples taken from the ORMAK liner and analyzed by Auger electron spectroscopy reveal the presence of iron and oxygen. There is evidence from a SXAPS (Soft X-ray Appearance Potential Spectroscopy) probe of iron and chromium diffusion from the stainless steel through the gold surface in spite of the platinum diffusion barrier. The iron and chromium provide surface oxidation sites, and SXAPS analysis shows that these metals exist as oxides.

  4. Influence of impurities and ion surface alloying on the corrosion resistance of E110 alloy

    International Nuclear Information System (INIS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Novikov, V. V.; Markelov, V. A.; Pimenov, Yu. V.

    2013-01-01

    The corrosion resistance of zirconium alloys depends on their structural-phase state, the type of core coolant and operating factors. The formation of a protective oxide film on the zirconium alloys is sensitive to the content of impurity atoms present in the charge base of alloys and accumulating in them in the manufacture of products. The impurity composition of the initial zirconium is determined by the method of its manufacture and generally remains unchanged in the products, deter-mining their properties, including their corrosion resistance. An increased content of impurities (C, N, Al, Mo, Fe) both individually and in their combination negatively affects the corrosion resistance of zirconium and its alloys. One of the potentially effective methods to increase the protective properties of oxide films on zirconium alloys is a surface alloying using the regime of mixing the atoms of a film, preliminarily coated on the surface, and the atoms of a target. This method makes it possible to form a given structural-phase state in the thin surface layer with unique physicochemical properties and thus to in-crease the corrosion resistance and wear resistance of fuel claddings. In this context, the object of investigation was samples of cladding tubes from alloy E110 with various content of impurity elements (nitrogen, aluminum, and carbon) with the aim to reduce the negative influence of impurities on the corrosion resistance by changing the structural-phase state of the surface layer of fuel claddings and fuel assembly components with alloying in the regime of ion mixing of atoms

  5. Metal impurity fluxes and plasma-surface interactions in EXTRAP T2R

    Science.gov (United States)

    Bergsåker, H.; Menmuir, S.; Rachlew, E.; Brunsell, P. R.; Frassinetti, L.; Drake, J. R.

    2008-03-01

    The EXTRAP T2R is a large aspect ratio Reversed Field Pinch device. The main focus of interest for the experiments is the active feedback control of resistive wall modes [1]. With feedback it has been possible to prolong plasma discharges in T2R from about 20 ms to nearly 100 ms. In a series of experiments in T2R, in H- and D- plasmas with and without feedback, quantitative spectroscopy and passive collector probes have been used to study the flux of metal impurities. Time resolved spectroscopic measurements of Cr and Mo lines showed large metal release towards discharge termination without feedback. Discharge integrated fluxes of Cr, Fe, Ni and Mo were also measured with collector probes at wall position. Reasonable quantitative agreement was found between the spectroscopic and collector probe measurements. The roles of sputtering, thermal evaporation and arcing in impurity production are evaluated based on the composition of the measured impurity flux.

  6. Intermodulation distortion and surface resistance in impurity-doped YBCO and MgB2

    International Nuclear Information System (INIS)

    Agassi, Y.D.; Oates, D.E.

    2014-01-01

    Highlights: • Calculations of impurity-doping effects on surface resistance and intermodulation distortion. • The calculations are compared with previously published measurements in YBCO and MgB 2 . • Excellent agreement between calculations and experiments are shown. • The effects of the symmetry of the energy gap are presented and discussed. - Abstract: Calculations of the microwave intermodulation distortion (IMD) and surface resistance of impurity-doped YBCO, MgB 2 and Nb are presented. These are qualitatively distinct superconductors due to their energy-gap symmetries, d-wave (ℓ = 2), i-wave (ℓ = 6) and s-wave (ℓ = 0), respectively. The calculations are compared with previously published IMD and surface-resistance measurements of impurity-doped YBCO and Nb. The agreement between the data and fitted calculations is excellent in all cases. In the absence of IMD and surface-resistance measurements for doped MgB 2 , we present representative predictions. The calculations are based on a Green’s-function approach that yields analytical expressions for the penetration depth and the nonlinear kernel in the constitutive relation. This penetration-depth expression reproduces the measured T 2 low-temperature variation for doped superconductors and the surface-resistance reduction over that of the pure material. Regarding the IMD in superconductors with a nodal energy gap, the effect of doping is to enhance its magnitude and suppress its low-temperature 1/T 2 divergence predicted by the nonlinear Meissner effect

  7. Poloidal density variation of impurities in a rotating tokamak plasma - flux surface coordinates and effect on transport coefficients

    International Nuclear Information System (INIS)

    Romanelli, M.

    1999-09-01

    The poloidal variation of impurity densities over magnetic surfaces brings about an enhancement of neoclassical transport coefficients, as shown by Romanelli and Ottaviani for impurities in the Pfirsch Schlueter regime and by Helander for particles in the banana-plateau regime, both in a large aspect ratio tokamak. The same effect will occur in a finite aspect ratio tokamak and therefore it is considered to be relevant for inclusion in transport codes for comparison with the experimental measurements of impurity transport. Here an expression for the impurity-density poloidal-variation generated by the fast toroidal rotation of the plasma column is presented in general coordinates. (author)

  8. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Skinner, B.; Chen, T.; Shklovskii, B. I.

    2013-01-01

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states

  9. Impurity effects on reduced-activation ferritic steels developed for fusion applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Cheng, E.T.; Grossbeck, M.L.; Bloom, E.E.

    2000-01-01

    Reduced-activation steels are being developed for fusion applications by restricting alloying elements that produce long-lived radioactive isotopes when irradiated in the fusion neutron environment. Another source of long-lived isotopes is the impurities in the steel. To examine this, three heats of reduced-activation martensitic steel were analyzed by inductively coupled plasma mass spectrometry for low-level impurities that compromise the reduced-activation characteristics: a 5-ton heat of modified F82H (F82H-Mod) for which an effort was made during production to reduce detrimental impurities, a 1-ton heat of JLF-1, and an 18-kg heat of ORNL 9Cr-2WVTa. Specimens from commercial heats of modified 9Cr-1Mo and Sandvik HT9 were also analyzed. The objective was to determine the difference in the impurity levels in the F82H-Mod and steels for which less effort was used to ensure purity. Silver, molybdenum, and niobium were found to be the tramp impurities of most importance. The F82H-Mod had the lowest levels, but in some cases the levels were not much different from the other heats. The impurity levels in the F82H-Mod produced with present technology did not achieve the low-activation limits for either shallow land burial or recycling. The results indicate the progress that has been made and what still must be done before the reduced-activation criteria can be achieved

  10. Scattering Theory on Surface Majorana Fermions by an Impurity in ^{3}He-B.

    Science.gov (United States)

    Tsutsumi, Yasumasa

    2017-04-07

    We have formulated the scattering theory on Majorana fermions emerging in the surface bound state of the superfluid ^{3}He B phase (^{3}He-B) by an impurity. By applying the theory to the electron bubble, which is regarded as the impurity, trapped below a free surface of ^{3}He-B, the observed mobility of the electron bubble [J. Phys. Soc. Jpn. 82, 124607 (2013)JUPSAU0031-901510.7566/JPSJ.82.124607] is quantitatively reproduced. The mobility is suppressed in low temperatures from the expected value in the bulk ^{3}He-B by the contribution from the surface Majorana fermions. By contrast, the mobility does not depend on the trapped depth of the electron bubble in spite of the spatial variation of the wave function of the surface Majorana fermions. Our formulated theory demonstrates the depth-independent mobility by considering intermediate states in the scattering process. Therefore, we conclude that the experiment has succeeded in observing Majorana fermions in the surface bound state.

  11. Segregation of sp-impurities at grain boundaries and surfaces: comparison of fcc cobalt and nickel

    Science.gov (United States)

    Všianská, M.; Vémolová, H.; Šob, M.

    2017-12-01

    We perform systematic ab initio investigations of the segregation of 12 non-magnetic sp-impurities (Al, Si, P, S, Ga, Ge, As, Se, In, Sn, Sb and Te) at the Σ5(210) grain boundary (GB) and (210) free surface (FS) in fcc ferromagnetic cobalt and analyse their effect on structural, magnetic and mechanical properties; the results are compared with those obtained previously for nickel. It turns out that there is a slight enhancement of magnetization at the clean GB and FS with respect to bulk cobalt (4.7% and 17%, respectively). However, segregated sp-impurities sharply reduce this magnetization. As shown previously, in nickel most of the above impurities nearly destroy or substantially reduce the magnetic moments at the FS and, when segregated interstitially (i.e. Si, P, S, Ge, As, and Se), also at the GB, so that they provide atomically thin, magnetically dead layers, which may be very desirable in spintronics. The reduction of magnetic moments at the Σ5(210) GB in fcc ferromagnetic cobalt is, in absolute values, very similar to that in nickel. However, as the magnetic moment in bulk cobalt is higher, we do not observe magnetically dead layers here. Further, we find the preferred segregation sites at the Σ5(210) GB for the sp-impurities studied, and their segregation enthalpies and strengthening/embrittling energies with their decomposition into their chemical and mechanical components. It turns out that interstitially segregated Si is a GB cohesion enhancer, and interstitially segregated P, S, Ge, As, and Se and substitutionally segregated Al, Ga, In, Sn, Sb and Te are GB embrittlers in fcc cobalt. As there is essentially no experimental information on GB segregation in cobalt, most of the present results are theoretical predictions which may motivate future experimental work.

  12. The effects of acid pretreatment and surface stresses on the evolution of impurity clusters and graphene formation on Cu foil

    Science.gov (United States)

    Senyildiz, Dogukan; Ogurtani, Omer Tarik; Cambaz Buke, Goknur

    2017-12-01

    In this study, the effects of acid pretreatment together with the surface stresses are studied systematically to control the densities of Si and Ca based impurities on the surface and to understand their effects on the final graphene morphology formed on Cu foil via CVD. In order to investigate the surface coverage and morphology of graphene, in addition to scanning electron microscope (SEM) studies, graphene grown on Cu foils are oxidized in air to reveal the graphene domains under the optical microscope (OM). Graphene formation is also confirmed using Raman spectroscopy directly on the Cu foil. Our studies show that the coverage and the morphology of the final graphene are strongly affected by the acid pretreatment because it removes the surface oxide layer and surface Ca impurities inherently present on the copper foil. Furthermore, it is found that the surface elastic stresses have also direct influence on the sizes and distribution of the surface impurities which affect the final morphology of graphene.

  13. Electrochemical removal of segregated silicon dioxide impurities from yttria stabilized zirconia surfaces at elevated temperatures

    DEFF Research Database (Denmark)

    Andersen, Thomas; Hansen, Karin Vels; Mogensen, Mogens Bjerg

    2011-01-01

    Here we report on the electrochemical removal of segregated silicon dioxide impurities from Yttria Stabilized Zirconia (YSZ) surfaces at elevated temperatures studied under Ultra High Vacuum (UHV) conditions. YSZ single crystals were heated in vacuum by an applied 18kHz a.c. voltage using the ion....... This was demonstrated by silicon enrichment of a gold foil placed behind the YSZ crystal surface while annealed. The results suggest a fast way to clean YSZ for trace silicon dioxide impurities found in the bulk of the cleanest crystals commercially available....... conductivity of YSZ. The crystals were annealed in vacuum and atmospheres of water or oxygen from 10−5 mbar to 100mbar in the temperature range of 1100°C to 1275°C. The surface was after annealing analyzed by X-ray Photoelectron Spectroscopy (XPS) without exposing the crystal to atmosphere between annealing...... and XPS analysis. Silicon enrichment of the surface was only observed at oxygen and water vapor partial pressures above 25mbar and 10mbar, respectively. No silicon was observed on crystals annealed in vacuum and at oxygen and water vapor partial pressures below 10mbar. The YSZ seems to get partially...

  14. Impurity scattering and magnetic field influence on a nodal surface of a d-wave superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Aida

    2012-02-17

    In the present work the surface of d-wave superconductors is studied. In such superconductors zero-energy Andreev bound states (ABSs) may appear at the surface depending on the orientation of the d-wave with respect to the surface normal. Existence of these states influences the properties of the superconductor on the length scale of the coherence length, the spatial extension of the bound states. Surface roughness, surface disorder, or diffuse scattering as well as an external magnetic field at the surface may affect the bound states and consequently the surface properties. Based on Eilenberger equations we perform self-consistent calculations in three different cases: in the presence of impurities, in the presence of an external magnetic field, and a combination of these two cases. We focus on the influence of bulk impurity scattering in the Born approximation limit. We show that the impurity scattering around zero energy is significantly increased near the surface as compared to the bulk due to the presence of ABSs. This leads to a larger broadening of the ABSs than expected from the scattering rate in the bulk and consequently a decrease of the peak height of the local density of states at zero energy. Due to the anomalous Meissner current flowing at the nodal surface, the magnetic field initially increases before the normal Meissner screening sets in and eventually screens out the magnetic field exponentially. The field increase is stronger at low temperatures and leads to an increase in the modulus of the vector potential towards low temperatures. The result is a nonmonotonous temperature dependence of the vector potential at the surface. Since the vector potential is proportional to the superfluid velocity, the size of the peak splitting in the local density of states is directly influenced by such a behavior of the vector potential. We observe that the splitting is large both for low temperatures and close to the critical temperature. As a result also the

  15. The effect of impurities on the surface melt of a glacier in the Suntar Khayata Mountain Range, Russian Siberia

    Directory of Open Access Journals (Sweden)

    Nozomu eTakeuchi

    2015-12-01

    Full Text Available We investigated characteristics of impurities and their impact on the ablation of Glacier No.31 in the Suntar-Khayata Mountain Range in Russian Siberia during summer 2014. Positive degree-day factors (PDDFs obtained from 20 stake measurements distributed across the glacier’s ablation area varied from 3.00 to 8.55 mm w.e. K-1 day-1. The surface reflectivity measured with a spectrometer as a proxy for albedo, ranged from 0.09 to 0.62, and was negatively correlated with the PDDF, suggesting that glacier ablation is controlled by surface albedo on the studied glacier. Mass of total insoluble impurities on the ice surface varied from 0.1 to 45.2 g m-2 and was not correlated with surface reflectivity, suggesting that albedo is not directly conditioned by the mass of the impurities. Microscopy of impurities revealed that they comprised mineral particles, cryoconite granules, and ice algal cells filled with dark-reddish pigments (Ancylonema nordenskioldii. There was a significant negative correlation between surface reflectivity and algal biomass or organic matter, suggesting that the ice algae and their products are the most effective constituents in defining glacier surface albedo. Our results suggest that the melting of ice surface was enhanced by the growth of ice algae, which increased the melting rate 1.6 - 2.6 times greater than that of the impurity free bare-ice.

  16. Impurities and evaluation of induced activity of SiCf/SiC composites

    International Nuclear Information System (INIS)

    Noda, Tetsuji; Araki, Hiroshi; Ito, Shinji; Fujita, Mitsutane; Maki, Koichi

    1997-01-01

    Impurity of SiC f /SiC composites prepared by CVI was analyzed by neutron activation analysis and glow discharge mass spectrometry. The evaluation of the induced activity of the composites based on the chemical compositions was made using a simulation calculation for fusion reactor blanket. Impurities of 35 elements were detected in the composites. However the total concentration of metallic impurities was below 20 mass ppm. The analyses of induced activity of the composites show that the dose rate decreases by about 5 orders of magnitude in a day after the shutdown. It is recommended that the purification of SiC fibers is necessary to reduce the activity by 10 9 after several ten years cooling of fusion reactors. (author)

  17. Impurities and evaluation of induced activity of CVI SiCf/SiC composites

    International Nuclear Information System (INIS)

    Noda, Tetsuji; Fujita, Mitsutane; Araki, Hiroshi; Kohyama, Akira

    2000-01-01

    Impurity of SiC f /SiC composites prepared by CVI was analyzed by neutron activation analysis and glow discharge mass spectrometry. The evaluation of the induced activity of the composites based on the chemical compositions was made using a simulation calculation for fusion reactor blanket. Impurities of 35 elements were detected in the composites. However, the total concentration of metallic impurities was below 20 mass ppm. The analyses of induced activity of the composites show that the dose rate decreases by about six orders of magnitude in a day after the shutdown. It is recommended that the purification of SiC composites, especially reduction of Fe and Ni contents, is necessary to reduce the activity to satisfy the limit of remote handling recycling after several 10 years cooling of fusion reactors

  18. Highly Sensitive Detection of Surface and Intercalated Impurities in Graphene by LEIS.

    Science.gov (United States)

    Průša, Stanislav; Procházka, Pavel; Bábor, Petr; Šikola, Tomáš; ter Veen, Rik; Fartmann, Michael; Grehl, Thomas; Brüner, Philipp; Roth, Dietmar; Bauer, Peter; Brongersma, Hidde H

    2015-09-08

    Low-energy ion scattering (LEIS) is known for its extreme surface sensitivity, as it yields a quantitative analysis of the outermost surface as well as highly resolved in-depth information for ultrathin surface layers. Hence, it could have been generally considered to be a suitable technique for the analysis of graphene samples. However, due to the low scattering cross section for light elements such as carbon, LEIS has not become a common technique for the characterization of graphene. In the present study we use a high-sensitivity LEIS instrument with parallel energy analysis for the characterization of CVD graphene transferred to thermal silica/silicon substrates. Thanks to its high sensitivity and the exceptional depth resolution typical of LEIS, the graphene layer closure was verified, and different kinds of contaminants were detected, quantified, and localized within the graphene structure. Utilizing the extraordinarily strong neutralization of helium by carbon atoms in graphene, LEIS experiments performed at several primary ion energies permit us to distinguish carbon in graphene from that in nongraphitic forms (e.g., the remains of a resist). Furthermore, metal impurities such as Fe, Sn, and Na located at the graphene-silica interface (intercalated) are detected, and the coverages of Fe and Sn are determined. Hence, high-resolution LEIS is capable of both checking the purity of graphene surfaces and detecting impurities incorporated into graphene layers or their interfaces. Thus, it is a suitable method for monitoring the quality of the whole fabrication process of graphene, including its transfer on various substrates.

  19. Impurity generation

    International Nuclear Information System (INIS)

    Roth, J.

    1982-01-01

    The contact of the plasma with the surrounding walls leads to surface erosion and production of impurity atoms. Obvious signs of erosion in today's high temperature plasma experiments are the characteristic cathode are tracks and local melting spots from overheated areas. Impurity production by sputtering is not so readily observed. It can, however, be deduced from mass and energy analysis of impurity atoms leaving the wall and divertor plates. The mechanism of sputtering, evaporation and arcing will be outlined. The conditions found in the boundary layer of today's tokamaks, i.e. the particle fluxes and energies, will be presented and estimates for the erosion rates will be made for the erosion rates will be made for the different erosion processes. (orig.)

  20. Silicon impurity release and surface transformation of TiO2 anatase and rutile nanoparticles in water environments

    International Nuclear Information System (INIS)

    Liu, Xuyang; Chen, Gexin; Erwin, Justin G.; Su, Chunming

    2014-01-01

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO 2 ) nanoparticles (NPs) in water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting effect on TiO 2 NP transformation in aqueous solutions. The release of Si increased from 2 h to 19 d at three pHs with the order: pH 11.2 ≥ pH 2.4 > pH 8.2. The Si release process followed parabolic kinetics which is similar to diffusion controlled dissolution of minerals, and the release magnitude followed the order: 10 × 40 nm rutile > 50 nm anatase > 30 × 40 nm rutile. FTIR data indicated preferential dissolving of less polymerized Si species on NP surface. Surface potential and particle size of TiO 2 NPs remained almost constant during the 42-day monitoring, implying the unaffected stability and transport of these NPs by the incongruent dissolution of impurities. Highlights: • Si impurity may affect the colloid stability, reactivity, and toxicity of TiO 2 NPs. • Si impurity gradually released during 2 h – 19 d following a parabolic curve. • FTIR data indicated less polymerized Si species dissolved from TiO 2 NPs. • Surface potential and size of TiO 2 remained constant during impurity release. • NP production needs to consider ion release and environmental transformation. -- The incongruent dissolution of surface charge determining Si impurity did not significantly affect the surface potential and aggregation status of TiO 2 nanoparticles in aqueous solutions

  1. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-01-01

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He + ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C + ion impurities in He + ion irradiations. For introducing such tiny C + ion impurities, gas mixtures of He and CH 4 have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He + ion (for Mo fuzz growth due to only He + ions) and 100% H + ion (for confirming the significance of tiny 0.04–2.0% H + ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 10 24  ions m −2 ), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He + ion irradiation case. Enhancement of C + ion impurities in He + ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity concentrations. Additionally, no fuzz formation for 100% H + ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H + ions in Mo fuzz evolutions (at least for such tiny amount, 0.04–2.0% H + ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications. - Highlights: • Mo Fuzz evolutions due to low-energy high-flux 100% He + ion irradiation. • Sequential reduction in Mo fuzz evolutions with increasing C + ion impurities in He + ions. • Almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity in He + ions. • No Mo fuzz formation for 100% H + ion

  2. Quantification of active pharmaceutical ingredient and impurities in sildenafil citrate obtained from the Internet.

    Science.gov (United States)

    Veronin, Michael A; Nutan, Mohammad T; Dodla, Uday Krishna Reddy

    2014-10-01

    The accessibility of prescription drugs produced outside of the United States, most notably sildenafil citrate (innovator product, Viagra®), has been made much easier by the Internet. Of greatest concern to clinicians and policymakers is product quality and patient safety. The US Food and Drug Administration (FDA) has issued warnings to potential buyers that the safety of drugs purchased from the Internet cannot be guaranteed, and may present a health risk to consumers from substandard products. The objective of this study was to determine whether generic sildenafil citrate tablets from international markets obtained via the Internet are equivalent to the US innovator product regarding major aspects of pharmaceutical quality: potency, accuracy of labeling, and presence and level of impurities. This will help identify aspects of drug quality that may impact public health risks. A total of 15 sildenafil citrate tablets were obtained for pharmaceutical analysis: 14 generic samples from international Internet pharmacy websites and the US innovator product. According to US Pharmacopeial guidelines, tablet samples were tested using high-performance liquid chromatography for potency of active pharmaceutical ingredient (API) and levels of impurities (impurities A, B, C, and D). Impurity levels were compared with International Conference on Harmonisation (ICH) limits. Among the 15 samples, 4 samples possessed higher impurity B levels than the ICH qualification threshold, 8 samples possessed higher impurity C levels than the ICH qualification threshold, and 4 samples possessed more than 1% impurity quantity of maximum daily dose (MDD). For API, 6 of the samples failed to fall within the 5% assay limit. Quality assurance tests are often used to detect formulation defects of drug products during the manufacturing and/or storage process. Results suggest that manufacturing standards for sildenafil citrate generic drug products compared with the US innovator product are not

  3. Quantification of active pharmaceutical ingredient and impurities in sildenafil citrate obtained from the Internet

    Science.gov (United States)

    Nutan, Mohammad T.; Dodla, Uday Krishna Reddy

    2014-01-01

    Background: The accessibility of prescription drugs produced outside of the United States, most notably sildenafil citrate (innovator product, Viagra®), has been made much easier by the Internet. Of greatest concern to clinicians and policymakers is product quality and patient safety. The US Food and Drug Administration (FDA) has issued warnings to potential buyers that the safety of drugs purchased from the Internet cannot be guaranteed, and may present a health risk to consumers from substandard products. Objective: The objective of this study was to determine whether generic sildenafil citrate tablets from international markets obtained via the Internet are equivalent to the US innovator product regarding major aspects of pharmaceutical quality: potency, accuracy of labeling, and presence and level of impurities. This will help identify aspects of drug quality that may impact public health risks. Methods: A total of 15 sildenafil citrate tablets were obtained for pharmaceutical analysis: 14 generic samples from international Internet pharmacy websites and the US innovator product. According to US Pharmacopeial guidelines, tablet samples were tested using high-performance liquid chromatography for potency of active pharmaceutical ingredient (API) and levels of impurities (impurities A, B, C, and D). Impurity levels were compared with International Conference on Harmonisation (ICH) limits. Results: Among the 15 samples, 4 samples possessed higher impurity B levels than the ICH qualification threshold, 8 samples possessed higher impurity C levels than the ICH qualification threshold, and 4 samples possessed more than 1% impurity quantity of maximum daily dose (MDD). For API, 6 of the samples failed to fall within the 5% assay limit. Conclusions: Quality assurance tests are often used to detect formulation defects of drug products during the manufacturing and/or storage process. Results suggest that manufacturing standards for sildenafil citrate generic drug

  4. Nonperturbative effects and indirect exchange interaction between quantum impurities on metallic (111) surfaces

    Science.gov (United States)

    Allerdt, A.; Žitko, R.; Feiguin, A. E.

    2017-06-01

    The (111) surface of noble metals is usually treated as an isolated two-dimensional (2D) triangular lattice completely decoupled from the bulk. However, unlike in topological insulators, bulk bands also cross the Fermi level. We here introduce an effective tight-binding model that accurately reproduces results from first-principles calculations, accounting for both surface and bulk states. We numerically solve the many-body problem of two quantum impurities sitting on the surface by means of the density matrix renormalization group. By performing simulations in a star geometry, we are able to study the nonperturbative problem in the thermodynamic limit with machine precision accuracy. We find that there is a nontrivial competition between Kondo and RKKY physics and as a consequence, ferromagnetism is never developed, except at short distances. The bulk introduces a variation in the period of the RKKY interactions, and therefore the problem departs considerably from the simpler 2D case. In addition, screening and the magnitude of the effective indirect exchange are enhanced by the contributions from the bulk states.

  5. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik

    2015-09-22

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  6. Silicon Impurity Release and Surface Transformation of TiO2 Anatase and Rutile Nanoparticles in Water Environments

    Science.gov (United States)

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO2) nanoparticles (NPs) when released to water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting ef...

  7. AN ELECTROLYTIC CIP-CLEANING PROCESS FOR REMOVING IMPURITIES FROM THE INNER SURFACE OF A METALLIC CONTAINER

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to a novel electrolytic process for removing impurities from the inner surface of a metallic container. The process is particularly useful for cleaning process reactors used for culturing microorganisms, and storage tanks used for storing metabolites formed in the process...... reactor, as well as containers for dairy products....

  8. Surface Changes and Impurity Release Kinetics of Titanium Dioxide Nanoparticles in Aqueous Environment

    Science.gov (United States)

    Previous studies have found the significant role of impurities (i.e., silicon, phosphorus) in the aggregation and sedimentation of TiO2 nanoparticles in water environment. However, it is not understood whether dissolution of the impurities potentially impacts the environment or t...

  9. Fast determination of impurities in metallurgical grade silicon for photovoltaics by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hampel, J.; Boldt, F.M.; Gerstenberg, H.; Hampel, G.; Kratz, J.V.; Reber, S.; Wiehl, N.

    2011-01-01

    Standard wafer solar cells are made of near-semiconductor quality silicon. This high quality material makes up a significant part of the total costs of a solar module. Therefore, new concepts with less expensive so called solar grade silicon directly based on physiochemically upgraded metallurgical grade silicon are investigated. Metallurgical grade silicon contains large amounts of impurities, mainly transition metals like Fe, Cr, Mn, and Co, which degrade the minority carrier lifetime and thus the solar cell efficiency. A major reduction of the transition metal content occurs during the unidirectional crystallization due to the low segregation coefficient between the solid and liquid phase. A further reduction of the impurity level has to be done by gettering procedures applied to the silicon wafers. The efficiency of such cleaning procedures of metallurgical grade silicon is studied by instrumental neutron activation analysis (INAA). Small sized silicon wafers of approximately 200 mg with and without gettering step were analyzed. To accelerate the detection of transition metals in a crystallized silicon ingot, experiments of scanning whole vertical silicon columns with a diameter of approximately 1 cm by gamma spectroscopy were carried out. It was demonstrated that impurity profiles can be obtained in a comparably short time. Relatively constant transition metal ratios were found throughout an entire silicon ingot. This led to the conclusion that the determination of several metal profiles might be possible by the detection of only one 'leading element'. As the determination of Mn in silicon can be done quite fast compared to elements like Fe, Cr, and Co, it could be used as a rough marker for the overall metal concentration level. Thus, a fast way to determine impurities in photovoltaic silicon material is demonstrated. - Highlights: → We demonstrate a fast way to determine impurities in photovoltaic silicon by NAA. → We make first experiments of locally

  10. Electronically Active Impurities in Colloidal Quantum Dot Solids

    KAUST Repository

    Carey, Graham H.

    2014-11-25

    © 2014 American Chemical Society. Colloidal quantum dot films have seen rapid progress as active materials in photodetection, light emission, and photovoltaics. Their processing from the solution phase makes them an attractive option for these applications due to the expected cost reductions associated with liquid-phase material deposition. Colloidally stable nanoparticles capped using long, insulating aliphatic ligands are used to form semiconducting, insoluble films via a solid-state ligand exchange in which the original ligands are replaced with short bifunctional ligands. Here we show that this ligand exchange can have unintended and undesired side effects: a high molecular weight complex can form, containing both lead oleate and the shorter conductive ligand, and this poorly soluble complex can end up embedded within the colloidal quantum dot (CQD) active layer. We further show that, by adding an acidic treatment during film processing, we can break up and wash away these complexes, producing a higher quality CQD solid. The improved material leads to photovoltaic devices with reduced series resistance and enhanced fill factor relative to controls employing previously reported CQD solids. (Figure Presented).

  11. Study of trace impurities in heroin by neutron activation analysis

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Yang, J.H.; Ouyang, H.; Li, Z.J.; Chai, Z.F.; Zhu, J.; Xi'an JiaoTong Univ., Shaanxi; Zhao, J.Z.; Yu, Z.S.; Wang, J.

    2004-01-01

    Sixty-two heroin samples were analyzed for their contents of 15 trace elements (Au, Ba, Br, Ca, Ce, Co, Cr, Fe, La, Na, Sb, Sc, Sm, Th, and Zn) by neutron activation analysis (NAA). Large variations of elemental concentrations between samples were found to possess statistical significance. Of all the elements calcium was the most abundant element, followed by zinc and sodium. The concentrations of Au, Ce, Co, La, Sb, Sc, Sm, and Th in all the samples were below 1 μg x g -1 . Classification of these heroin samples was achieved by the application of hierarchical cluster analysis. The results show that NAA can provide useful information on the origin of the illicit drugs. (author)

  12. An investigation of the mutagenic activity of salamide - a major impurity of hydrochlorothiazide.

    Science.gov (United States)

    Emerce, Esra; Cok, Ismet; Sari, Sibel; Bostanci, Omur

    2016-11-01

    Hydrochlorothiazide is a widely used antihypertensive agent and one of its major impurities, salamide (4-amino-6-chlorobenzene-1,3-disulphonamide), has a chemical structure containing a primary amino group, a functional group that has previously been reported to be associated with carcinogenic activity. It is known that hydrochlorothiazide purity is a challenging problem for the pharmaceutical industry. As there were no prior mutagenicity data for the impurity salamide, the aim was to investigate its mutagenicity in this study. Salamide was tested for mutagenic potential in Salmonella typhimurium TA98, TA100, TA 1535, TA 1537, and E. coli WP2 uvrA + E. coli WP2 [pKM101] strains at six different concentrations, the highest concentration being the 5000 μg/plate. In both the presence and absence of the metabolic activation system, no mutagenic activity was observed. Results indicated that salamide should be classified as an ordinary impurity and controlled according to Q3A(R2) and Q3B(R2) guidelines.

  13. 3He impurity states on liquid 4He: From thin films to the bulk surface

    International Nuclear Information System (INIS)

    Pavloff, N.; Treiner, J.

    1991-01-01

    The structure of the states accessible to 3 He impurities in films of liquid 4 He on Nuclepore is investigated using a density functional approach with a finite-range effective interaction. In thick films, one finds that the two lowest states are localized in the surface region. For thinner films, the variation with film thickness of the first three states results from a delicate balance between the attractive tail of the substrate potential and the quantum finite-size effect. The existence of states localized in the second layer of the films is discussed. The energy difference between the ground state and the first excited state agrees with the recent determination of Higley, Sprague, and Hallock from magnetization measurements. The effective mass of the ground state has a structure similar to that obtained by Krotscheck and coworkers and exhibits a maximum for a 4 He coverage of 0.15 angstrom -2 , in agreement with the data of Gasparini and coworkers. A similar behavior is predicted for the effective mass of the first, second, and third excited states. The structure of the energy spectrum may also explain former results on third-sound measurements in thin mixture films by Laheurte et al. and by Hallock

  14. Influence of impurities and contact scale on the lubricating properties of bovine submaxillary mucin (BSM) films on a hydrophobic surface

    DEFF Research Database (Denmark)

    Nikogeorgos, Nikolaos; Madsen, Jan Busk; Lee, Seunghwan

    2014-01-01

    Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively...... on the underlying substrates, and thus induced higher friction forces compared to the sliding contact on bare substrates.© 2014 Elsevier B.V. All rights reserved...

  15. Mechanics of active surfaces

    Science.gov (United States)

    Salbreux, Guillaume; Jülicher, Frank

    2017-09-01

    We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape instabilities that are related to active processes in the surface.

  16. The effect of glyphosate, its metabolites and impurities on erythrocyte acetylcholinesterase activity.

    Science.gov (United States)

    Kwiatkowska, Marta; Nowacka-Krukowska, Hanna; Bukowska, Bożena

    2014-05-01

    Glyphosate [N-(phosphonomethyl)glycine] is used all over the world to protect agricultural and horticultural crops. According to initial reports, glyphosate has been considered to be safe for humans and animals; nevertheless, recent investigations had proven its toxicity. Extensive use of glyphosate and the conviction of its low toxicity leads to a situation in which it is used in excessive amounts in agriculture. That is why, we have investigated the effect of the most commonly used pesticide: glyphosate, its metabolites and impurities on acetylcholinesterase (AChE) activity (in vitro) in human erythrocytes, which is biochemically similar to acetylcholinesterase present in neural synapses. The analysis of noxious effects of metabolites and impurities of pesticides seems to be very important to evaluate toxicological risk that is associated with the effect of pesticide formulations (requirement of the EU regulations 1107/200/EC). The erythrocytes were incubated with xenobiotics at concentrations range from 0.01 to 5 mM for 1 and 4 h. Statistically significant decrease in AChE activity (about 20%) was observed only at high concentrations of the compounds (0.25-5 mM), which enter body only as a result of acute poisoning. There were no statistically significant differences in the effect of the investigated compounds, while the changes caused by them were similar after 1 and 4 h incubation. The investigated metabolites and impurities did not cause stronger changes in AChE activity than glyphosate itself. It may be concluded that the compounds studied (used in the concentrations that are usually determined in the environment) do not disturb function of human erythrocyte acetylcholinesterase. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. An investigation of the impurities in native gold by neutron-activation analysis

    International Nuclear Information System (INIS)

    Erasmus, C.S.; Sellschop, J.P.F.; Hallbauer, D.K.; Novak, E.

    1980-01-01

    Instrumental and radiochemical methods of neutron-activation analysis, developed for the determination of major, minor, and trace impurities in native gold, are described. The gold was obtained from Witwatersrand reefs and from deposits in the Barberton area. It was extracted by decomposition of the ore in cold hydrofluoric acid. Quantitative results are presented for 14 elements found in native gold, and the significance of these elements in relation to the distribution of gold is discussed. The results suggest that there are geochemical differences in native gold from various reefs and deposits

  18. Modelling of impurity deposition in gaps of castellated surfaces with the 3D-GAPS code

    Czech Academy of Sciences Publication Activity Database

    Matveev, D.; Kirschner, A.; Litnovsky, A.; Borodin, D.; Philipps, V.; Van Oost, G.; Komm, Michael

    2010-01-01

    Roč. 52, č. 7 (2010), 075007-075007 ISSN 0741-3335 R&D Projects: GA ČR GA202/07/0044 Institutional research plan: CEZ:AV0Z20430508 Keywords : TEXTOR * simulation * PIC * impurity * transport * gap * divertor * limiter * retention Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.466, year: 2010 http://iopscience.iop.org/0741-3335/52/7/075007/pdf/0741-3335_52_7_075007.pdf

  19. Role of carbon impurities on the surface morphology evolution of tungsten under high dose helium ion irradiation

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    The effect of carbon impurities on the surface evolution (e.g., fuzz formation) of tungsten (W) surface during 300 eV He ions irradiation was studied. Several tungsten samples were irradiated by He ion beam with a various carbon ions percentage. The presence of minute carbon contamination within the He ion beam was found to be effective in preventing the fuzz formation. At higher carbon concentration, the W surface was found to be fully covered with a thick graphitic layer on the top of tungsten carbide (WC) layer that cover the sample surface. Lowering the ion beam carbon percentage was effective in a significant reduction in the thickness of the surface graphite layer. Under these conditions the W surface was also found to be immune for the fuzz formation. The effect of W fuzz prevention by the WC formation on the sample surface was more noticeable when the He ion beam had much lower carbon (C) ions content (0.01% C). In this case, the fuzz formation was prevented on the vast majority of the W sample surface, while W fuzz was found in limited and isolated areas. The W surface also shows good resistance to morphology evolution when bombarded by high flux of pure H ions at 900 °C. - Highlights: • Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. • The effect of adding various percentage of carbon impurity to the He ion beam on the trend of W fuzz formation was studied. • Mitigation of W fuzz formation due to addition of small percentage of carbon to the He ion beam is reported. • The formation of long W nanowires due to He ion beam irradiation mixed with 0.01% carbon ions is reported.

  20. Effect of nitrogen-containing impurities on the activity of perovskitic catalysts for the catalytic combustion of methane.

    Science.gov (United States)

    Buchneva, Olga; Gallo, Alessandro; Rossetti, Ilenia

    2012-11-05

    LaMnO(3), either pure or doped with 10 mol % Sr, has been prepared by flame pyrolysis in nanostructured form. Such catalysts have been tested for the catalytic flameless combustion of methane, achieving very high catalytic activity. The resistance toward poisoning by some model N-containing impurities has been checked in order to assess the possibility of operating the flameless catalytic combustion with biogas, possibly contaminated by S- or N-based compounds. This would be a significant improvement from the environmental point of view because the application of catalytic combustion to gas turbines would couple improved energy conversion efficiency and negligible noxious emissions, while the use of biogas would open the way to energy production from a renewable source by means of very efficient technologies. A different behavior has been observed for the two catalysts; namely, the undoped sample was more or less heavily poisoned, whereas the Sr-doped sample showed slightly increasing activity upon dosage of N-containing compounds. A possible reaction mechanism has been suggested, based on the initial oxidation of the organic backbone, with the formation of NO. The latter may adsorb more or less strongly depending on the availability of surface oxygen vacancies (i.e., depending on doping). Decomposition of NO may leave additional activated oxygen species on the surface, available for low-temperature methane oxidation and so improving the catalytic performance.

  1. Characterization of light element impurities in ultrathin silicon-on-insulator layers by luminescence activation using electron irradiation

    International Nuclear Information System (INIS)

    Nakagawa-Toyota, Satoko; Tajima, Michio; Hirose, Kazuyuki; Ohshima, Takeshi; Itoh, Hisayoshi

    2009-01-01

    We analyzed light element impurities in ultrathin top Si layers of silicon-on-insulator (SOI) wafers by luminescence activation using electron irradiation. Photoluminescence (PL) analysis under ultraviolet (UV) light excitation was performed on various commercial SOI wafers after the irradiation. We detected the C-line related to a complex of interstitial carbon and oxygen impurities and the G-line related to a complex of interstitial and substitutional carbon impurities in the top Si layer with a thickness down to 62 nm after electron irradiation. We showed that there were differences in the impurity concentration depending on the wafer fabrication methods and also that there were variations in these concentrations in the respective wafers. Xenon ion implantation was used to activate top Si layers selectively so that we could confirm that the PL signal under the UV light excitation comes not from substrates but from top Si layers. The present method is a very promising tool to evaluate the light element impurities in top Si layers. (author)

  2. Determination of impurity distributions in ingots of solar grade silicon by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Karches, Barbara; Hampel, Gabriele; Plonka, Christian; Stieghorst, Christian; Wiehl, Norbert [Mainz Univ. (Germany). Inst. for Nuclear Chemistry; Schoen, Jonas; Krenckel, Patricia; Riepe, Stephan [Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany); Gerstenberg, Heiko [Technische Univ. Muenchen, Garching (Germany). Heinz-Maier-Leibniz Zentrum; Ponsard, Bernard [Belgian Nuclear Research Centre (SCK CEN), Mol (Belgium). BR2 reactor

    2017-09-01

    In a series of crystallization experiments, the directional solidification of silicon was investigated as a low cost path for the production of silicon wafers for solar cells. Instrumental neutron activation analysis was employed to measure the influence of different crystallization parameters on the distribution of 3d-metal impurities of the produced ingots. A theoretical model describing the involved diffusion and segregation processes during the solidification and cooling of the ingots could be verified by the experimental results. By successive etching of the samples after the irradiation, it could be shown that a layer of at least 60 μm of the samples has to be removed to get real bulk concentrations.

  3. Study of the oxidation mechanisms between impurities and surfaces applied to the future gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Duval, A.

    2010-01-01

    Inconel 617, main candidate for the heat exchangers of the gas-cooled next generation of nuclear reactors has been investigated. Two different problems occurring in the cooling system splits the study into two parts. Oxidizing impurities contained in the coolant can cause severe corrosion at 850 C. Radioactive impurities, coming from the fission reaction of the core can, in another hand contaminate the cooling loop and cause radioprotection problem for the maintenance and dismantling operations. Firstly, oxidizing gas partial pressure influence on oxidation of IN 617 at 850 C was investigated varying oxygen and water vapour partial pressure between 1.10 -5 mbar and 200 mbar. Oxide layers were characterized using XPS, SEM, EDX, GD-OES, XRD. Influence of partial pressure on layers structure and composition was determined. Effect of water vapour and partial pressure on growth mechanisms were also investigated. The second part of this study is focused on diffusion of Ag, stable isotope of Ag-110m in IN617 alloy and in the oxide layer forming at its surface at 850 C. Concentration profiles were obtained by GD-OES calibrated analysis. Diffusion coefficient could be obtained from these diffusion profiles: volume diffusion and grain boundary diffusion coefficients for the diffusion in the alloy, and an apparent diffusion coefficient for the diffusion in the oxide, due to the porosity of the structure. (author) [fr

  4. Self-consistent Green’s-function technique for bulk and surface impurity calculations: Surface core-level shifts by complete screening

    DEFF Research Database (Denmark)

    Aldén, M.; Abrikosov, I. A.; Johansson, B.

    1994-01-01

    of the frozen-core and atomic-sphere approximation but, in addition, includes the dipole contribution to the intersphere potential. Within the concept of complete screening, we identify the surface core-level binding-energy shift with the surface segregation energy of a core-ionized atom and use the Green......'s-function impurity technique in a comprehensive study of the surface core-level shifts (SCLS) of the 4d and 5d transition metals. In those cases, where observed data refer to single crystals, we obtain good agreement with experiment, whereas the calculations typically underestimate the measured shift obtained from...... a polycrystalline surface. Comparison is made with independent theoretical data for the surface core-level eigenvalue shift, and the much debated role of the so-called initial-and final-state contributions to the SCLS is discussed....

  5. Amphoteric surface active agents

    OpenAIRE

    Eissa, A.M. F.

    1995-01-01

    2-[trimethyl ammonium, triethyl ammonium, pyridinium and 2-amino pyridinium] alkanoates, four series of surface active agents containing carbon chain C12, C14, C16 and C18carbon atoms, were prepared. Their structures were characterized by microanalysis, infrared (IR) and nuclear magnetic resonance (NMR). Surface and interfacial tension, Krafft point, wetting time, emulsification power, foaming height a...

  6. Quantification of potential impurities by a stability indicating UV-HPLC method in niacinamide active pharmaceutical ingredient.

    Science.gov (United States)

    Thomas, Saji; Bharti, Amber; Tharpa, Kalsang; Agarwal, Ashutosh

    2012-02-23

    A sensitive, stability indicating reverse phase UV-HPLC method has been developed for the quantitative determination of potential impurities of niacinamide active pharmaceutical ingredient. Efficient chromatographic separation was achieved on C18 stationary phase in isocratic mode using simple mobile phase. Forced degradation study confirmed that the newly developed method was specific and selective to the degradation products. Major degradation of the drug substance was found to occur under oxidative stress conditions to form niacinamide N-oxide. The method was validated according to ICH guidelines with respect to specificity, precision, linearity and accuracy. Regression analysis showed correlation coefficient value greater than 0.999 for niacinamide and its six impurities. Detection limit of impurities was in the range of 0.003-0.005% indicating the high sensitivity of the newly developed method. Accuracy of the method was established based on the recovery obtained between 93.3% and 113.3% for all impurities. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Analysis of impurities at trace levels in metallic niobium by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Favaro, D.I.T.; Vasconcellos, M.B.A.; Santos, C.

    1989-10-01

    The interest in obtaining niobium of high purity has increased due to the recent applications of this material in both vacuum and high temperature technologies and to its potential uses in the aeronautic and aerospacial industries and in the nuclear energy field. In the present work, a procedure of analysis of impurities in the parts per million level, in eletrolitic and non-eletrolitic niobium samples has been established. The method of neutron activation analysis followed by high resolution gamma ray spectrometry has been used. The elements Al, Na, Mn, Cl and In, in ppm level and Y, in the percentage level, were determined after irradiation from 1 to 20 minutes, under a thermal neutron flux of 10 11 n.cm -2 .s -1 at the IEA-Rl reactor of the IPEN-CNEN/SP. The γ-rays from the radioactive products were measured with a Ge(Li) detector coupled to a 4096 channel analyzer. The elements Ta, Cr and W, in the parts per million level, were determined with irradiation of 8 hours under a thermal neutron flux of 10 12 n.cm -2 .s -1 . (autor) [pt

  8. The Consultancy Activity on In Silico Models for Genotoxic Prediction of Pharmaceutical Impurities.

    Science.gov (United States)

    Pavan, Manuela; Kovarich, Simona; Bassan, Arianna; Broccardo, Lorenza; Yang, Chihae; Fioravanzo, Elena

    2016-01-01

    The toxicological assessment of DNA-reactive/mutagenic or clastogenic impurities plays an important role in the regulatory process for pharmaceuticals; in this context, in silico structure-based approaches are applied as primary tools for the evaluation of the mutagenic potential of the drug impurities. The general recommendations regarding such use of in silico methods are provided in the recent ICH M7 guideline stating that computational (in silico) toxicology assessment should be performed using two (Q)SAR prediction methodologies complementing each other: a statistical-based method and an expert rule-based method.Based on our consultant experience, we describe here a framework for in silico assessment of mutagenic potential of drug impurities. Two main applications of in silico methods are presented: (1) support and optimization of drug synthesis processes by providing early indication of potential genotoxic impurities and (2) regulatory evaluation of genotoxic potential of impurities in compliance with the ICH M7 guideline. Some critical case studies are also discussed.

  9. The deconvolution of sputter-etching surface concentration measurements to determine impurity depth profiles

    International Nuclear Information System (INIS)

    Carter, G.; Katardjiev, I.V.; Nobes, M.J.

    1989-01-01

    The quasi-linear partial differential continuity equations that describe the evolution of the depth profiles and surface concentrations of marker atoms in kinematically equivalent systems undergoing sputtering, ion collection and atomic mixing are solved using the method of characteristics. It is shown how atomic mixing probabilities can be deduced from measurements of ion collection depth profiles with increasing ion fluence, and how this information can be used to predict surface concentration evolution. Even with this information, however, it is shown that it is not possible to deconvolute directly the surface concentration measurements to provide initial depth profiles, except when only ion collection and sputtering from the surface layer alone occur. It is demonstrated further that optimal recovery of initial concentration depth profiles could be ensured if the concentration-measuring analytical probe preferentially sampled depths near and at the maximum depth of bombardment-induced perturbations. (author)

  10. On an layer-by-layer analysis of impurity profiles by ions of chemically active gases

    International Nuclear Information System (INIS)

    Kornich, G.V.; Kornilova, L.O.; Teplov, S.V.

    1992-01-01

    A phenomenological model of layer-by-layer analysis by oxygen ions has been described with account taken of the chemical interaction of the bombarding ions with the matrix impurity atoms. The results of the layer-by-layer analysis for a two-layer system of impurity Mg in the Si matrix have been calculated in the framework of the model. It has been concluded that the use of oxygen ions for profiles of Mg and Ca in Si improves the resolvability and increases the sensitivity of the layer-by-layer analysis method

  11. Amphoteric surface active agents

    Directory of Open Access Journals (Sweden)

    Eissa, A.M. F.

    1995-10-01

    Full Text Available 2-[trimethyl ammonium, triethyl ammonium, pyridinium and 2-amino pyridinium] alkanoates, four series of surface active agents containing carbon chain C12, C14, C16 and C18carbon atoms, were prepared. Their structures were characterized by microanalysis, infrared (IR and nuclear magnetic resonance (NMR. Surface and interfacial tension, Krafft point, wetting time, emulsification power, foaming height and critical micelle concentration (cmc were determined and a comparative study was made between their chemical structure and surface active properties. Antimicrobial activity of these surfactants was also determined.

    Se prepararon cuatro series de agentes tensioactivos del tipo 2-[trimetil amonio, trietil amonio, piridinio y 2-amino piridinio] alcanoatos, que contienen cadenas carbonadas con C12, C14, C16 y C18 átomos de carbono.
    Se determinaron la tensión superficial e interfacial, el punto de Krafft, el tiempo humectante, el poder de emulsionamiento, la altura espumante y la concentración critica de miscela (cmc y se hizo un estudio comparativo entre la estructura química y sus propiedades tensioactivas. Se determinó también la actividad antimicrobiana de estos tensioactivos. Estas estructuras se caracterizaron por microanálisis, infrarrojo (IR y resonancia magnética nuclear (RMN.

  12. Competitive surface segregation of C, Al and S impurities in Fe(100)

    CERN Document Server

    Blum, V; Meier, W; Hammer, L; Heinz, K

    2003-01-01

    The stoichiometries and geometric structures formed by the segregation of C, Al and S on a Fe(100) surface have been investigated by Auger electron spectroscopy and quantitative low-energy electron diffraction (LEED). Step-wise annealing of a sputtered surface with increasing annealing temperature reveals the successive segregation of C, Al and S. According to quantitative LEED analyses, each segregand forms a distinct c(2 x 2) long-range ordered structure. Also, each segregand removes the preceding one from the surface entirely, i.e. segregation in the Fe(100)-(C, Al, S) system is purely competitive with no ordered co-segregation regimes involving two or even three elements. The c(2 x 2) phases of segregated carbon and sulfur consist of elemental surface adlayers with the adatoms residing in four-fold symmetric hollow sites of the iron substrate. This is in contrast to segregated Al which, according to an earlier analysis, forms a c(2 x 2)-symmetric surface alloy layer with iron. In all cases there is some c...

  13. Tailoring Surface Impurity Content to Maximize Q-factors of Superconducting Resonators

    Energy Technology Data Exchange (ETDEWEB)

    Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, Anna [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Melnychuk, Oleksandr [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Posen, Sam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sergatskov, Dmitri [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zasadzinski, John [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-06-01

    Quality factor of superconducting radio-frequency (SRF) cavities is degraded whenever magnetic flux is trapped in the cavity walls during the cooldown. In this contribution we study how the trapped flux sensitivity, defined as the trapped flux surface resistance normalized for the amount of flux trapped, depends on the mean free path. A variety of 1.3 GHz cavities with different surface treatments (EP, 120 C bake and different N-doping) were studied in order to cover the largest range of mean free path nowadays achievable, from few to thousands of nanometers. A bell shaped trend appears for the range of mean free path studied. Over doped cavities falls at the maximum of this curve defining the largest values of sensitivity. In addition, we have also studied the trend of the BCS surface resistance contribution as a function of mean free path, revealing that N-doped cavities follow close to the theoretical minimum of the BCS surface resistance as a function of the mean free path. Adding these results together we unveil that optimal N-doping treatment allows to maximize Q-factor at 2 K and 16 MV/m until the magnetic field fully trapped during the cavity cooldown stays below 10 mG.

  14. Decoupling single nanowire mobilities limited by surface scattering and bulk impurity scattering

    International Nuclear Information System (INIS)

    Khanal, D. R.; Levander, A. X.; Wu, J.; Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W.; Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.

    2011-01-01

    We demonstrate the isolation of two free carrier scattering mechanisms as a function of radial band bending in InN nanowires via universal mobility analysis, where effective carrier mobility is measured as a function of effective electric field in a nanowire field-effect transistor. Our results show that Coulomb scattering limits effective mobility at most effective fields, while surface roughness scattering only limits mobility under very high internal electric fields. High-energy α particle irradiation is used to vary the ionized donor concentration, and the observed decrease in mobility and increase in donor concentration are compared to Hall effect results of high-quality InN thin films. Our results show that for nanowires with relatively high doping and large diameters, controlling Coulomb scattering from ionized dopants should be given precedence over surface engineering when seeking to maximize nanowire mobility.

  15. Segregation of sp-impurities at grain boundaries and surfaces: comparison of fcc cobalt and nickel

    Czech Academy of Sciences Publication Activity Database

    Všianská, Monika; Vémolová, H.; Šob, Mojmír

    2017-01-01

    Roč. 25, č. 8 (2017), č. článku 085004. ISSN 0965-0393 R&D Projects: GA ČR(CZ) GA16-24711S Institutional support: RVO:68081723 Keywords : local magnetic-moments * total-energy calculations * augmented-wave method * solute segregation * tilt boundaries * embrittling potency * alloying elements * hcp metals * basis-set * 1st-principles * grain boundary segregation * strengthening/embrittling energy * grain boundary magnetism * ab initio calculations * surface segregation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.891, year: 2016

  16. Visualization of low-contrast surface modifications: Thin films, printed pattern, laser-induced changes, imperfections, impurities, and degradation

    Science.gov (United States)

    Stockmann, J.; Hertwig, A.; Beck, U.

    2017-11-01

    Visualization of surface modifications may be very challenging for coating/substrate systems of either almost identical optical constants, e.g. transparent films on substrates of the same material, or minor film thickness, substance quantity and affected area, e.g. ultra-thin or island films. Methods for visualization are optical microscopy (OM), imaging ellipsometry (IE), and referenced spectroscopic ellipsometry (RSE). Imaging ellipsometry operates at oblique incidence near Brewster angle of the bare, clean or unmodified substrate. In this configuration, reflected intensities are rather weak. However, the contrast to add-on and sub-off features may be superior. Referenced spectroscopic ellipsometry operates in a two-sample configuration but with much higher intensities. In many cases, both ellipsometric techniques reveal and visualize thin films, printed-pattern, laser-induced changes, and impurities better than optical microscopy. In particular for stratified homogeneous modifications, ellipsometric techniques give access to modelling and hence thickness determination. Modifications under investigation are polymer foil residue on silicon, laser-induced changes of ta-C:H coatings on 100Cr6 steel, imperfections of ta-C:H on thermal silicon oxide, degradation of glass, thin film tin oxide pattern on silicon, printed and dried pattern of liquids such as deionized water, cleaning agents, and dissolved silicone.

  17. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.

    2000-01-01

    The nonequilibrium, steady-state phase transitions and the structure of the different phases of a two-dimensional system with two thermodynamic temperatures are studied via a simple lattice-gas model with mobile active impurities ("hot/cold spots'') whose activity is controlled by an external drive....... The properties of the model are calculated by Monte Carlo computer-simulation techniques. The two temperatures and the external drive on the system lead to a rich phase diagram including regions of microstructured phases in addition to macroscopically ordered (phase-separated) and disordered phases. Depending...

  18. Self-pumping impurity control by in-situ metal deposition. Summary for tokamak innovations activities workshop

    International Nuclear Information System (INIS)

    Brooks, J.N.; Mattas, R.F.; Smith, D.L.

    1986-01-01

    The self pumping concept uses vanadium, nickel, or certain other materials to selectively trap impinging helium from the plasma, in-situ, on a surface. No vacuum ducts or pumps are used. The trapping materials are added to the surface at an average rate of 3-4 times the α-production rate. Trapping material can be added by injecting pellets or exposing rods, etc. to the edge or scrapeoff plasma where it is ablated, vaporized and transported to the trapping surface. Several self-pumping systems have been examined - a first wall/limiter, self-pumped divertor, slot limiter, and a slot divertor. The first two concepts trap helium on the front surface (i.e., first wall or divertor plate) directly exposed to the edge plasma. The slot systems trap helium on partially hidden surfaces thus minimizing the heat flux on the trapping surfaces and the plasma contamination potential. Although there are clear uncertainties, due to the lack of reactor relevant data, self-pumping impurity control appears promising for improving the tokamak reactor. These improvements are a cost savings, of the order of 125 M$ for a STARFIRE size reactor (approx. 100 M$ in reduced shielding costs and approx. 25 M$ in reduced tritium system costs), a substantial increase in the mass utilization factor, a long (approx. 10 year) limiter or divertor lifetime, a reduction in tritium processing and inventory, and the elimination of several reactor components

  19. Impurities determination in precious metals like rhodium, palladium and platinum by neutron activation without separation

    International Nuclear Information System (INIS)

    May, S.; Piccot, D.; Pinte, G.

    1978-01-01

    The possibilities of the method explored using an installation of gamma or X ray spectrometry of good performance. The irradiations were realized in the reactors EL.3 (flux approximately 6.10 12 n.cm -2 .s -1 ) and Osiris (flux > 10 14 n.cm -2 .s -1 ) of the CEN Saclay. In rhodium the presence of iridium limits the analysis possibilities. However gold, silver and platinum are easily determined, just as the other elements (As, Br, Cl, Co, Mn, Na, Sb). In platinum it is possible to determine the elements of long period, especially antimony, silver, cobalt, iridium, tantalum and zinc. As for palladium the principal impurities are gold, silver and ruthenium for what is of precious metals and particularly zinc among the other metals. For the three matrices considered the detection limits of a certain number of elements are indicated [fr

  20. Rotation and impurity studies in the presence of MHD activity and internal transport barriers on TCV

    International Nuclear Information System (INIS)

    Federspiel, L. I.

    2014-01-01

    This thesis focuses on measurements of toroidal rotation and impurity profiles in improved plasma scenarios and in the presence of magneto-hydrodynamic (MHD) activity. Experiments were performed on TCV, the Tokamak a Configuration Variable in Lausanne. In TCV, plasma rotation is measured by the charge exchange recombination spectroscopy diagnostic (CXRS). The CXRS is associated with a low power diagnostic neutral beam injector (DNBI) that provides CX emission from the hot plasma core, without perturbing the plasma with additional torque. The beam is observed transversally by the CXRS diagnostic so that local ion temperature, density and intrinsic velocity measurements are obtained. The three systems composing the present day CXRS2013 diagnostic cover the entire TCV radial midplane with up to 80 measurement locations separated by around 7 mm with a time resolution ranging from 2-30 ms. The main upgrades concerned the installation of new sensitive cameras, the overhaul of the toroidal system, the extended-chord configuration and the automation of the acquisition and analysis processes. These new Cars capabilities permitted the investigation of more complex scenarios featuring low intensity and/or fast events, like the low density electron internal transport barriers (eITBs) and the sawtooth (ST) instability. A comparison between rotation profiles measured over several sawtooth events and across a 'canonical' sawtooth cycle has been undertaken in limited L-mode plasmas. The averaged rotation profiles obtained with the upgraded CXRS diagnostic show that ST restrict the maximum attainable and that the rotation profiles are flattened and almost always display a small co-current contribution. It is this effect that results in the 1/I p scaling observed in TCV limited L-mode plasmas. The co-current core contribution is related to the ST crash, whilst, during the quiescent ramp of the sawtooth period, a plasma recoil outside the mixing radius is observed. A high

  1. Band selection and disentanglement using maximally localized Wannier functions: the cases of Co impurities in bulk copper and the Cu(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Korytar, Richard; Pruneda, Miguel; Ordejon, Pablo; Lorente, Nicolas [Centre d' Investigacio en Nanociencia i Nanotecnologia (CSIC-ICN), Campus de la UAB, E-08193 Bellaterra (Spain); Junquera, Javier, E-mail: rkorytar@cin2.e [Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, E-39005 Santander (Spain)

    2010-09-29

    We have adapted the maximally localized Wannier function approach of Souza et al (2002 Phys. Rev. B 65 035109) to the density functional theory based SIESTA code (Soler et al 2002 J. Phys.: Condens. Mater. 14 2745) and applied it to the study of Co substitutional impurities in bulk copper as well as to the Cu(111) surface. In the Co impurity case, we have reduced the problem to the Co d-electrons and the Cu sp-band, permitting us to obtain an Anderson-like Hamiltonian from well defined density functional parameters in a fully orthonormal basis set. In order to test the quality of the Wannier approach to surfaces, we have studied the electronic structure of the Cu(111) surface by again transforming the density functional problem into the Wannier representation. An excellent description of the Shockley surface state is attained, permitting us to be confident in the application of this method to future studies of magnetic adsorbates in the presence of an extended surface state.

  2. The microstructure of reduced activation ferritic/martensitic (RAFM) steels exposed to D plasma with different seeding impurities

    Science.gov (United States)

    Rasiński, M.; Kreter, A.; Möller, S.; Schlummer, T.; Martynova, Y.; Brezinsek, S.; Linsmeier, Ch

    2017-12-01

    EUROFER, P92 steel and iron samples were exposed in the linear plasma generator PSI-2 at a sample temperature of about 470–500 K with an incident ion flux of about 3–5 × 1021 m‑2 s‑1, an incident ion fluence of 1 × 1026 m‑2 and an incident ion energy of 60–70 eV. Samples were exposed to deuterium plasma and with additional seeding impurities of He, Ar, Ne, Kr or Kr + He. Laterally averaged surface W enrichment varied between 0.6 and 6 at.%, depending on the exposure conditions, measured by energy dispersive x-ray spectroscopy with low energy electron beam and Rutherford backscattered spectroscopy. Microstructure observation revealed a complex morphology depending on the plasma composition. W enrichment was mostly located in the spike nano structures. Addition of He to the plasma rounded and enlarged the spikes on the surface whereas addition of heavier species to the plasma resulted in smoothing the steels surface. In case of steel samples exposed to D + He plasma, fine nano-bubbles with sizes below 3 nm were found near the sample surface. Sputtering rate increases by one order of magnitude by Ar and Ne seeding and by two orders of magnitude by Kr seeding for both types of steels. Measured D retention increases with He addition and decreases with higher-Z species seeding.

  3. Active Particles on Curved Surfaces

    OpenAIRE

    Fily, Yaouen; Baskaran, Aparna; Hagan, Michael F.

    2016-01-01

    Recent studies have highlighted the sensitivity of active matter to boundaries and their geometries. Here we develop a general theory for the dynamics and statistics of active particles on curved surfaces and illustrate it on two examples. We first show that active particles moving on a surface with no ability to probe its curvature only exhibit steady-state inhomogeneities in the presence of orientational order. We then consider a strongly confined 3D ideal active gas and compute its steady-...

  4. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    Science.gov (United States)

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  5. Determination of oxygen impurity in silicon by activation analysis based on secondary nuclear reactions

    International Nuclear Information System (INIS)

    Mukhammedov, S.

    2002-01-01

    opening 8x8 mm in size. Three or four plates and one or two comparison samples are soldered in a quartz tube and irradiated by thermal neutron flux during 0.5-4 h. After irradiation (in for 2 h) the tube is broken and the samples are prepared for analyzing. The surface of the plates and comparison samples are etched by sulfuric acid to remove the lithium. In so doing, some layers are removed and '1 8 F radioactivity of a Si-plate and the comparison sample is measured by Na J(Tl) detectors. Oxygen content is obtained by the comparison of the sample and standard radioactivity. The uncertainties of the analysis do not exceed 20 % when oxygen content is determined at the level 3.9·10 18 at/cm 3 . The detection limit for oxygen by triton activation method is estimated equal 5·10 14 at./cm 3 , which is close to the 3 HeAA characteristics that is the most sensitive method

  6. Iron impurities as the active sites for peroxidase-like catalytic reaction on graphene and its derivatives.

    Science.gov (United States)

    Dong, Ying; Li, Jing; Shi, Lei; Guo, Zhiguang

    2015-07-22

    We established four kinds of good dispersing systems of graphene and its derivatives with different structural characteristics to estimate their peroxidase-like activity. Besides graphene oxide (GO), it is demonstrated that defect-free graphene, low-oxygen graphene, and iron(III)-doped graphene oxide (GO-Fe) are all capable of H2O2 activation to oxidize peroxidase substrates. As for defect-free graphene, the dispersibility in reaction medium exerts great impact on its catalytic activity and our further judgements concerning the nature of active sites. Improved stability and further exfoliation of defect-free graphene in reaction medium are beneficial to the access of reactants to active sites on the basal planes and enhance its peroxidase-like activity, which is superior to that of low-oxygen graphene and much higher than that of GO. In addition, their peroxidase-like activity can be greatly inhibited by the addition of iron chelators. Interestingly, the introduction of trace ferric ions into GO does not lead to an apparent change except for remarkable increase of its peroxidase-like activity. Therefore, we propose that the observed iron impurities rather than the doped nonmetallic heteroatoms play an important role in the peroxidase-like activity of graphene and its derivatives. In this light, saturated iron(III) was immobilized onto the oxygen-donor coordination of GO to immensely promote its activity. The peroxidase-like activity of the prepared GO-Fe was systematically evaluated by using 3,3',5,5'-tetramethylbenzidine and pyrogallol as peroxidase substrates and was compared to that of horseradish peroxidase and hemin. As a result, GO-Fe shows excellent peroxidase-like catalytic activity, which is comparable to that of hemin. Furthermore, GO-Fe was used for the quantitative detection of H2O2 and glucose.

  7. UO2 Fuel pellet impurities, pellet surface roughness and n(18O)/n(16O) ratios, applied to nuclear forensic science

    International Nuclear Information System (INIS)

    Pajo, L.

    2001-01-01

    In the last decade, law enforcement has faced the problem of illicit trafficking of nuclear materials. Nuclear forensic science is a new branch of science that enables the identification of seized nuclear material. The identification is not based on a fixed scheme, but further identification parameters are decided based on previous identification results. The analysis is carried out by using traditional analysis methods and applying modern measurement technology. The parameters are generally not unambiguous and not self-explanatory. In order to have a full picture about the origin of seized samples, several identification parameters should be used together and the measured data should be compared to corresponding data from known sources. A nuclear material database containing data from several fabrication plants is installed for the purpose. In this thesis the use of UO 2 fabrication plant specific parameters, fuel impurities, fuel pellet surface roughness and oxygen isotopic ratio in UO 2 were investigated for identification purposes in nuclear forensic science. The potential use of these parameters as 'fingerprints' is discussed for identification purposes of seized nuclear materials. Impurities of the fuel material vary slightly according to the fabrication method employed and a plant environment. Here the impurities of the seized UO 2 were used in order to have some clues about the origin of the fuel material by comparing a measured data to nuclear database information. More certainty in the identification was gained by surface roughness of the UO 2 fuel pellets, measured by mechanical surface profilometry. Categories in surface roughness between a different fuel element type and a producer were observed. For the time oxygen isotopic ratios were determined by Thermal Ionisation Mass Speckometry (TIMS). Thus a TIMS measurement method, using U 16 O + and U 18 0 + ions, was developed and optimised to achieve precise oxygen isotope ratio measurements for the

  8. Role of impurity ions in the impurity influx into the plasma of a fusion device

    International Nuclear Information System (INIS)

    Voitsenya, V.S.

    1989-01-01

    Experimental data on the fluxes of impurity and hydrogen (deuterium) ions outside the confinement volume of magnetic-confinement fusion devices are analyzed. The sputtering coefficients of a stainless steel surface for sputtering by deuterium ions and also by ions of light impurities (C) and metal impurities are calculated as a function of the electron temperature of the plasma near the wall. The potential difference near the wall is taken into account. It is concluded from a comparison of the relative magnitudes of the fluxes and the sputtering coefficients that the sputtering caused by multiply charged impurity ions plays a leading role in the impurity flux in existing fusion devices

  9. Activity measurement of phosphorus-32 in the presence of pure beta-emitting impurities

    CSIR Research Space (South Africa)

    Simpson, B

    2006-02-27

    Full Text Available Activity measurements undertaken at the CSIR's National Metrology Laboratory (NML) on a solution of the pure beta-emitting radionuclide phosphorus-32, which formed part of an international key comparison, are described. Since exploratory source...

  10. Active Free Surface Density Maps

    Science.gov (United States)

    Çelen, S.

    2016-10-01

    Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.

  11. Partially Hydrogenated Graphene Materials Exhibit High Electrocatalytic Activities Related to Unintentional Doping with Metallic Impurities.

    Science.gov (United States)

    Jankovský, Ondřej; Libánská, Alena; Bouša, Daniel; Sedmidubský, David; Matějková, Stanislava; Sofer, Zdeněk

    2016-06-13

    Partially hydrogenated graphene materials, synthesized by the chemical reduction/hydrogenation of two different graphene oxides using zinc powder in acidic environment or aluminum powder in alkaline environment, exhibit high electrocatalytic activities, as well as electrochemical sensing properties. The starting graphene oxides and the resultant hydrogenated graphenes were characterized in detail. Their electrocatalytic activity was examined in the oxygen reduction reaction, whereas sensing properties towards explosives were tested by using picric acid as a redox probe. Findings indicate that the high electrocatalytic performance originates not only from the hydrogenation of graphene, but also from unintentional contamination of graphene with manganese and other metals during synthesis. A careful evaluation of the obtained data and a detailed chemical analysis are necessary to identify the origin of this anomalous electrocatalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of surface-active additives on the temperature behavior of interfacial tension in water- n-hexane systems

    Science.gov (United States)

    Ataev, G. M.

    2012-03-01

    The temperature dependence of interface tension in a water- n-hexane system without additives and after addition of stearic acid was experimentally studied at four different concentrations. A method for determining the excess surface chemical potential from experimental data on the temperature dependence of interfacial or surface tension is proposed for a diluted solution of surface-active impurity. The excess surface chemical potential of stearic acid at the interface of a water- n-hexane binary mixture is determined.

  13. Graphene plasmons: Impurities and nonlocal effects

    Science.gov (United States)

    Viola, Giovanni; Wenger, Tobias; Kinaret, Jari; Fogelström, Mikael

    2018-02-01

    This work analyzes how impurities and vacancies on the surface of a graphene sample affect its optical conductivity and plasmon excitations. The disorder is analyzed in the self-consistent Green's function formulation and nonlocal effects are fully taken into account. It is shown that impurities modify the linear spectrum and give rise to an impurity band whose position and width depend on the two parameters of our model, the density and the strength of impurities. The presence of the impurity band strongly influences the electromagnetic response and the plasmon losses. Furthermore, we discuss how the impurity-band position can be obtained experimentally from the plasmon dispersion relation and discuss this in the context of sensing.

  14. Determination of trace element impurities in aspirin tablets by neutron activation analysis

    International Nuclear Information System (INIS)

    Iskander, F.Y.; Klein, D.E.; Bauer, T.L.

    1986-01-01

    Twenty-five trace and minor elements in five different Egyptian aspirin brands (Aspo, Askin, Aspocid, Aspeol and Rivo) were determined by instrumental neutron activation analysis. It was concluded that the concentration of As, Ba, Br, Co, Cr, Fe (except in Aspocid), Mg, Mn, Rb, Se, Sr and Zn in the Egyptian brands is below or within the concentration range reported for these elements in 16 American aspirin and aspirin-like brands. (author)

  15. Neutron activation analysis of chemical impurities in manipulated samples of omeprazole

    International Nuclear Information System (INIS)

    Sepe, Fernanda Peixoto; Leal, Alexandre Soares; Gomes, Tatiana Cristina Bomfim; Menezes, Maria Angela de Barros Correia; Silva, Maria Aparecida

    2011-01-01

    In this work, samples of Omeprazole (C 17 H 19 N 3 O 3 S), a largely used drug in the treatment of dyspepsia and peptic ulcer, were acquired from five different pharmacies of manipulation - or retail pharmacies which prepare personalized drugs under medical recommendation - in Belo Horizonte/Brazil and investigated using the k 0 - Neutron Activation Analysis (NAA). The preliminary results showed the presence of elements not foreseen in the original formula. It confirms the potential risk offered by medicines without suitable inspection. (author)

  16. Activity measurement of phosphorus-32 in the presence of pure beta-emitting impurities

    CSIR Research Space (South Africa)

    Simpson, BRS

    2006-01-01

    Full Text Available in liquid-scintillation counting standardizations. Appl. Radiat. Isot. 51, 183–188. 364 South African Journal of Science 102, July/August 2006 The CSIR at 60 Synthesis of single-walled carbon nanotubes by dual laser vaporization M.K Moodleya,b*, N..., by observing 12 different liquid scintillation counting sources. The sources were prepared The CSIR at 60 South African Journal of Science 102, July/August 2006 361 We describe the activity measurements undertaken at the CSIR’s National Metrology Laboratory...

  17. Neutron activation analysis of chemical impurities in manipulated samples of omeprazole

    Energy Technology Data Exchange (ETDEWEB)

    Sepe, Fernanda Peixoto; Leal, Alexandre Soares; Gomes, Tatiana Cristina Bomfim; Menezes, Maria Angela de Barros Correia; Silva, Maria Aparecida, E-mail: asleal@cdtn.br [Nuclear Technology Development Centre/Brazilian Commission for Nuclear Energy (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    In this work, samples of Omeprazole (C{sub 17}H{sub 19}N{sub 3}O{sub 3}S), a largely used drug in the treatment of dyspepsia and peptic ulcer, were acquired from five different pharmacies of manipulation - or retail pharmacies which prepare personalized drugs under medical recommendation - in Belo Horizonte/Brazil and investigated using the k{sub 0} - Neutron Activation Analysis (NAA). The preliminary results showed the presence of elements not foreseen in the original formula. It confirms the potential risk offered by medicines without suitable inspection. (author)

  18. Moessbauer Studies of Implanted Impurities in Solids

    CERN Multimedia

    2002-01-01

    Moessbauer studies were performed on implanted radioactive impurities in semiconductors and metals. Radioactive isotopes (from the ISOLDE facility) decaying to a Moessbauer isotope were utilized to investigate electronic and vibrational properties of impurities and impurity-defect structures. This information is inferred from the measured impurity hyperfine interactions and Debye-Waller factor. In semiconductors isoelectronic, shallow and deep level impurities have been implanted. Complex impurity defects have been produced by the implantation process (correlated damage) or by recoil effects from the nuclear decay in both semiconductors and metals. Annealing mechanisms of the defects have been studied. \\\\ \\\\ In silicon amorphised implanted layers have been recrystallized epitaxially by rapid-thermal-annealing techniques yielding highly supersaturated, electrically-active donor concentrations. Their dissolution and migration mechanisms have been investigated in detail. The electronic configuration of Sb donors...

  19. Surface heat flux feedback controlled impurity seeding experiments with Alcator C-Mod’s high-Z vertical target plate divertor: performance, limitations and implications for fusion power reactors

    Science.gov (United States)

    Brunner, D.; Wolfe, S. M.; LaBombard, B.; Kuang, A. Q.; Lipschultz, B.; Reinke, M. L.; Hubbard, A.; Hughes, J.; Mumgaard, R. T.; Terry, J. L.; Umansky, M. V.; The Alcator C-Mod Team

    2017-08-01

    The Alcator C-Mod team has recently developed a feedback system to measure and control surface heat flux in real-time. The system uses real-time measurements of surface heat flux from surface thermocouples and a pulse-width modulated piezo valve to inject low-Z impurities (typically N2) into the private flux region. It has been used in C-Mod to mitigate peak surface heat fluxes  >40 MW m-2 down to    1. While the system works quite well under relatively steady conditions, use of it during transients has revealed important limitations on feedback control of impurity seeding in conventional vertical target plate divertors. In some cases, the system is unable to avoid plasma reattachment to the divertor plate or the formation of a confinement-damaging x-point MARFE. This is due to the small operational window for mitigated heat flux in the parameters of incident plasma heat flux, plasma density, and impurity density as well as the relatively slow response of the impurity gas injection system compared to plasma transients. Given the severe consequences for failure of such a system to operate reliably in a reactor, there is substantial risk that the conventional vertical target plate divertor will not provide an adequately controllable system in reactor-class devices. These considerations motivate the need to develop passively stable, highly compliant divertor configurations and experimental facilities that can test such possible solutions.

  20. Hydroxamic acid surface active agents

    Directory of Open Access Journals (Sweden)

    El-Sawy, A. A.

    2001-10-01

    Full Text Available p-Hydroxy phenyloctadecanol and p-hydroxy phenyloctadecanoic acid were used as new precursors for the preparation of surface active hydroxamic acid including different moles of propylene oxide. The hydroxamic acid was prepared by the reaction of propenoxylated products with sodium chloroacetate, followed by methyl esterification and the resultant product reacted with hydroxyl amine hydrochloride to give the hydroxamic acid. The structures of prepared hydroxamic acid were confirmed by spectroscopic study. The surface activity of prepared hydroxamic acid was studied; the results revealed that, the prepared hydroxamic acid has pronounced surface activity, the alcohol substrate shows a surface activity superior than the acid substrate.Se han utilizado el p-hidroxifeniloctadecanol y el ácido p-hidroxifeniloctadecanoico como nuevos precursores para la preparación de tensioactivos derivados del ácido hidroxámico, que incluyen diferentes moles de óxido de propileno. El ácido hidroxámico se preparó por reacción de los productos propenoxilados con cloroacetato sódico, seguido de la formación de ésteres metílicos, y los productos resultantes se hicieron reaccionar con clorhidrato de hidroxilamina para dar los derivados del ácido hidroxámico. Las estructuras de los derivados preparados del ácido hidroxámico, se confirmaron por técnicas espectroscópicas, estudiándose su actividad superficial cuyos resultados mostraron que dichos compuestos tenían un alto valor. La actividad superficial del sustrato alcohólico fue mayor que la del sustrato ácido.

  1. A FEASIBLE APPROACH TO EVALUATE THE RELATIVE REACTIVITY OF NHS-ESTER ACTIVATED GROUP WITH PRIMARY AMINE-DERIVATIZED DNA ANALOGUE AND NON-DERIVATIZED IMPURITY

    Science.gov (United States)

    Dou, Shuping; Virostko, John; Greiner, Dale L.; Powers, Alvin C.; Liu, Guozheng

    2015-01-01

    Synthetic DNA analogues with improved stability are widely used in life science. The 3′ and/or 5′ equivalent terminuses are often derivatized by attaching an active group for further modification, but a certain amount of non-derivatized impurity often remains. It is important to know to what extent the impurity would influence further modification. The reaction of an NHS ester with primary amine is one of the most widely used options to modify DNA analogues. In this short communication, a 3′-(NH2-biotin)-derivatized morpholino DNA analogue (MORF) was utilized as the model derivatized DNA analogue. Inclusion of a biotin concomitant with the primary amine at the 3′-terminus allows for the use of streptavidin to discriminate between the products from the derivatized MORF and non-derivatized MORF impurity. To detect the MORF reaction with NHS ester, S-acetyl NHS-MAG3 was conjugated to the DNA analogue for labeling with 99mTc, a widely used nuclide in the clinic. It was found that the non-derivatized MORF also reacted with the S-acetyl NHS-MAG3. Radiolabeling of the product yielded an equally high labeling efficiency. Nevertheless, streptavidin binding indicated that under the conditions of this investigation, the non-derivatized MORF was five times less reactive than the amine-derivatized MORF. PMID:25621701

  2. Control and analysis of hydrazine, hydrazides and hydrazones--genotoxic impurities in active pharmaceutical ingredients (APIs) and drug products.

    Science.gov (United States)

    Elder, D P; Snodin, D; Teasdale, A

    2011-04-05

    This is the latest of a series of reviews focused on the analysis of genotoxic impurities. This review summarises the analytical approaches reported in the literature relating to hydrazine, hydrazines, hydrazides and hydrazones. It is intended to provide guidance for analysts needing to develop procedures to control such impurities, particularly where this is due to concerns relating to their potential genotoxicity. Of particular note is the wide variety of techniques employed, both chromatographic and spectroscopic, with most involving derivatisation. Such a wide variety of options allow the analyst a real choice in terms of selecting the most appropriate technique specific to their requirements. Several generic methodologies, covering the three main analytical approaches; i.e. HPLC (high performance liquid chromatography), GC (gas chromatography) and IC (ion chromatography), are also described. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Vortices and impurities

    Energy Technology Data Exchange (ETDEWEB)

    Tong, David; Wong, Kenny [Department of Applied Mathematics and Theoretical Physics,University of Cambridge, Cambridge (United Kingdom)

    2014-01-17

    We describe the BPS dynamics of vortices in the presence of impurities. We argue that a moduli space of solitons survives the addition of both electric and magnetic impurities. However, dynamics on the moduli space is altered. In the case of electric impurities, the metric remains unchanged but the dynamics is accompanied by a connection term, acting as an effective magnetic field over the moduli space. We give an expression for this connection and compute the vortex-impurity bound states in simple cases. In contrast, magnetic impurities distort the metric on the moduli space. We show that magnetic impurities can be viewed as vortices associated to a second, frozen, gauge group. We provide a D-brane description of the dynamics of vortices in product gauge groups and show how one can take the limit such that a subset of the vortices freeze.

  4. Surface-active and electrophysical semiconductors properties of the CdTe-CdSe system

    Science.gov (United States)

    Kirovskaya, I. A.; Bukashkina, T. L.; Ekkert, R. V.; Ushakov, O. V.; Kolesnikov, L. V.; Matyash, Yu I.

    2018-01-01

    Surface properties (acid-base, adsorptive, electrophysical) of binary and multicomponent semiconductors of the CdTe-CdSe system have been holistically studied. Changing patterns of the studied surface properties correlated among themselves and with changing patterns of the bulk physical and chemical properties have been revealed. The nature of active centers, acid-base, adsorptive and electronic interactions mechanisms have been determined with due account for local and collective factors The most active discovered adsorbents are recommended as primary transducers of CO trace impurities measuring cells.

  5. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  6. Active neutral particle diagnostics on LHD by locally enhanced charge exchange on an impurity pellet ablation cloud

    International Nuclear Information System (INIS)

    Goncharov, P.R.; Ozaki, T.; Sudo, S.; Tamura, N.; Kalinina, D.V.; Veshchev, E.A.

    2005-01-01

    Production, confinement and thermalization of high-energy particles are the fundamental issues in fusion plasma ion kinetics. The ion distribution function and its evolution under the ion cyclotron heating and neutral beam injection are studied by energy resolved charge exchange neutral flux measurements. For helical systems, such as LHD, local diagnostics are required due to the complex 3D magnetic field. In passive methods one needs to analyze the integral relation between the plasma ion distribution function and the observed neutral flux, which is a superposition along the diagnostic sightline, taking into account the charge exchange target density profile. In active measurements either a diagnostic neutral beam or a solid pellet injection are used to enhance the charge exchange locally. An impurity pellet ablation cloud r cloud plasma provides a localized charge exchange target scanning the plasma radially. Pellet-induced neutral fluxes were previously measured on LHD with a natural diamond detector. However, obtaining the energy spectra from these data in the main energy range of interest (10 1 -10 2 keV in the present experiments) is complicated due to the high operating speed, i.e. the spatial resolution requirement. A new diagnostic based on a compact neutral particle analyser (CNPA) has been installed on LHD for measurements in the H 0 energy range 1 - 170 keV. CNPA employs a thin 50 A diamond-like carbon stripping film instead of a traditional gas stripping cell, a high-field-strength permanent analysing magnet and an array of 40 channel electron multipliers (CEMs) for particle detection. CEMs can be used in both counting and current modes to be able to process high neutral particle fluxes from the charge exchange on the dense pellet cloud. Thus, the system is suitable for both passive measurements and the active probing with a diagnostic pellet. Pneumatically accelerated polystyrene (-C 8 H 8 -) n balls are injected transversally; typical D pel = 500

  7. Comparative study of adsorptive role of carbonaceous materials in removal of UV-active impurities of paclitaxel extracts.

    Science.gov (United States)

    Nasiri, Jaber; Motamedi, Elaheh; Reza Naghavi, Mohammad

    2015-12-01

    Graphite oxide (GO) and reduced graphene oxide (rGO) nanosheets were synthesized with a low-cost manufacturing method. The morphology and structures of the synthesized samples were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared (FTIR) and Raman spectroscopy. The efficiencies of GO and rGO as novel candidate adsorbents in the pre-purification of paclitaxel were compared and contrasted with those of commercial graphite (Gt), graphene (G) and multi-wall carbon nanotube (MWCNT). According to UV-vis and HPLC analyses, rGO was evaluated as the best absorbent for the removal of impurities in pre-purification of paclitaxel from plant cell cultures. In contrast, the GO had the poorest proficiency for paclitaxel pre-purification in comparison with the other carbonaceous adsorbents. This is attributed to the existence of many localized defects in the π-structure of GO that is related to weakness of π-π stacking interactions between crude extract impurities and GO.

  8. Comparative study of adsorptive role of carbonaceous materials in removal of UV-active impurities of paclitaxel extracts

    Directory of Open Access Journals (Sweden)

    Jaber Nasiri

    2015-12-01

    Full Text Available Graphite oxide (GO and reduced graphene oxide (rGO nanosheets were synthesized with a low-cost manufacturing method. The morphology and structures of the synthesized samples were studied using X-ray diffraction (XRD, atomic force microscopy (AFM, Fourier-transform infrared (FTIR and Raman spectroscopy. The efficiencies of GO and rGO as novel candidate adsorbents in the pre-purification of paclitaxel were compared and contrasted with those of commercial graphite (Gt, graphene (G and multi-wall carbon nanotube (MWCNT. According to UV–vis and HPLC analyses, rGO was evaluated as the best absorbent for the removal of impurities in pre-purification of paclitaxel from plant cell cultures. In contrast, the GO had the poorest proficiency for paclitaxel pre-purification in comparison with the other carbonaceous adsorbents. This is attributed to the existence of many localized defects in the π-structure of GO that is related to weakness of π–π stacking interactions between crude extract impurities and GO.

  9. Identification, characterization and quantification of new impurities by LC-ESI/MS/MS and LC-UV methods in rivastigmine tartrate active pharmaceutical ingredient.

    Science.gov (United States)

    Thomas, Saji; Shandilya, Sanjeev; Bharati, Amber; Paul, Saroj Kumar; Agarwal, Ashutosh; Mathela, Chandra S

    2012-01-05

    Six impurities were detected at trace level in rivastigmine tartrate drug substance by a newly developed high performance liquid chromatography method. Three impurities were characterized rapidly and three impurities were found to be unknown. The unknown impurities were enriched and identified with a combination of semi-preparative HPLC and LC/MS/MS techniques. Proposed structures were further confirmed by characterization using NMR, FT-IR, and EA techniques of impurity standards. Based on the spectroscopic, spectrometric and elemental analysis data unknown impurities were characterized as 3-[1-(dimethylamino)ethyl]phenyl N-ethyl-N-methyl carbamate N-oxide, ethyl-methyl-carbamic acid 4-(1-dimethylamino-ethyl)-phenyl ester and ethyl-methyl-carbamic acid 2-(1-dimethylamino-ethyl)-phenyl ester. A plausible mechanism for the formation of these impurities is also proposed. The method was validated according to ICH guidelines for fourteen impurities to demonstrate specificity, precision, linearity, accuracy and stability indicating nature of the method. Regression analysis showed correlation coefficient value greater than 0.999 for rivastigmine tartrate and its impurities. Accuracy of the method was established based on the recovery obtained between 93.41 and 113.33% for all impurities. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Biocatalytic Route to Surface Active Lipid

    DEFF Research Database (Denmark)

    Cheong, Ling-Zhi; Xu, Xuebing

    Lipid can be structurally modified in order to attain improved functional properties. This work look into the possibilities of developing surface active lipids with improved functional properties through biocatalytic route. Biocatalytic route to surface active lipid are usually complex involving ...... distinct self assembling property and find useful application in surfactant industry.......Lipid can be structurally modified in order to attain improved functional properties. This work look into the possibilities of developing surface active lipids with improved functional properties through biocatalytic route. Biocatalytic route to surface active lipid are usually complex involving...

  11. Simulating graphene impurities

    OpenAIRE

    Szyniszewski, Marcin

    2013-01-01

    We study a model of magnetic impurities deposited onto a graphene lattice, interacting via exchange of conduction electrons. Our objective is to look for the long-range ordering of the impurities, which would lead to drastic changes in the transport properties of graphene. Numerical simulations are performed and we indeed observe the ordered phase. We also estimate the critical temperature of a transition between disordered and ordered phases.

  12. On impurities transport in a tokamak

    International Nuclear Information System (INIS)

    Rozhanskij, V.A.

    1980-01-01

    Transport of impurity ions is analitically analized in the case when main plasma is in plateau or banana regimes but impurity ions - in the Pfirsch-Schlutter mode. It is shown that in the large region of parameters the impUrity transport represents a drift in a p oloidal electric field, averaged from magnetic surface with provision for disturbance of concentration on it. Therefore, transport velocity does not depend on Z value and impurity type, as well as collision frequency both in the plateau and banana regimes. A value of flows is determined by the value of poloidal rotation velocity. At the rotation velocity corresponding to the electric field directed from the centre to periphery impurities are thrown out of a discharge, in the reverse case the flow is directed inside. Refusal from the assumption that Zsub(eff) > approximately 2, does not considerably change the results of work. The approach developed in the process of work can be applied to the case when impurity ions are in the plateau or banana modes

  13. Impurity control in TFTR

    International Nuclear Information System (INIS)

    Cecchi, J.L.

    1980-06-01

    The control of impurities in TFTR will be a particularly difficult problem due to the large energy and particle fluxes expected in the device. As part of the TFTR Flexibility Modification (TEM) project, a program has been implemented to address this problem. Transport code simulations are used to infer an impurity limit criterion as a function of the impurity atomic number. The configurational designs of the limiters and associated protective plates are discussed along with the consideration of thermal and mechanical loads due to normal plasma operation, neutral beams, and plasma disruptions. A summary is given of the materials-related research, which has been a collaborative effort involving groups at Argonne National Laboratory, Sandia Laboratories, and Princeton Plasma Physics Laboratory. Conceptual designs are shown for getterng systems capable of regenerating absorbed tritium. Research on this topic by groups at the previously mentioned laboratories and SAES Research Laboratory is reviewed

  14. Purifying Impure Virtue Epistemology

    DEFF Research Database (Denmark)

    Broncano-Berrocal, Fernando

    2018-01-01

    A notorious objection to robust virtue epistemology—the view that an agent knows a proposition if and only if her cognitive success is because of her intellectual virtues—is that it fails to eliminate knowledge-undermining luck. Modest virtue epistemologists agree with robust virtue epistemologists...... instances of impure virtue epistemology. The aim of the paper is to argue, firstly, that such a move lacks adequate motivation; secondly, that the resulting impure accounts equally fail to handle knowledge-undermining luck. On a more positive note, these results bolster a more orthodox virtue...

  15. Transitions and excitations in a superfluid stream passing small impurities

    KAUST Repository

    Pinsker, Florian

    2014-05-08

    We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.

  16. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    Science.gov (United States)

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  17. Plasma impurities and cooling

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1976-11-01

    In high-temperature low-density plasmas radiation cooling by impurity atoms can be an important energy loss mechanism, since the radiation is not reabsorbed. In a brief historical survey it is shown that the problem is not new but was discussed since the first beginning of controlled thermonuclear fusion research. It is then shown radiation losses enter into the general power balance equation of a plasma containing impurities. The equations for the different types of radiation losses are given as a function of the atomic quantities. In a special section simplifications due to the corona model assumption are discussed. It follows a detailed survey of the results obtained by several authors for the ionization balance and power losses of impurity elements observed in present high-temperature plasma machines used in CTR, especially in TOKAMAKS. In the conclusion a survey is given of the atomic data which experimentalists and theorists need for current research on impurities in fusion-like plasmas. (86 references)

  18. Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 active pharmaceutical ingredient (API) according to USP 〈232〉/〈233〉.

    Science.gov (United States)

    Chahrour, Osama; Malone, John; Collins, Mark; Salmon, Vrushali; Greenan, Catherine; Bombardier, Amy; Ma, Zhongze; Dunwoody, Nick

    2017-10-25

    The new guidelines of the United States pharmacopeia (USP), European pharmacopeia (EP) and international conference on harmonization (ICH) regulating elemental impurities limits in pharmaceuticals signify the end of unspecific analysis of metals as outlined in USP 〈231〉. The new guidelines specify both daily doses and concentration/limits of elemental impurities in pharmaceutical final products, active pharmaceutical ingredients (API) and excipients. In chapter USP 〈233〉 method implementation, validation and quality control during the analytical process are described. We herein report the use of a stabilising matrix that overcomes low spike recovery problem encountered with Os and allows the determination of all USP required elemental impurities (As, Cd, Hg, Pb, V, Cr, Ni, Mo, Cu, Pt, Pd, Ru, Rh, Os and Ir) in a single analysis. The matrix was used in the validation of a method to determine elemental impurities in TP-6076 active pharmaceutical ingredient (API) by ICP-MS according to the procedures defined in USP〈233〉 and to GMP requirements. This validation will support the regulatory submission of TP-6076 which is a novel tetracycline analogue effective against the most urgent multidrug-resistant gram-negative bacteria. Evaluation of TP-6076 in IND-enabling toxicology studies has led to the initiation of a phase 1 clinical trial. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Determination of the impurities in drug products containing montelukast and in silico/in vitro genotoxicological assessments of sulfoxide impurity.

    Science.gov (United States)

    Emerce, Esra; Cok, Ismet; Degim, I Tuncer

    2015-10-14

    Impurities affecting safety, efficacy, and quality of pharmaceuticals are of increasing concern for regulatory agencies and pharmaceutical industries, since genotoxic impurities are understood to play important role in carcinogenesis. The study aimed to analyse impurities of montelukast chronically used in asthma theraphy and perform genotoxicological assessment considering regulatory approaches. Impurities (sulfoxide, cis-isomer, Michael adducts-I&II, methylketone, methylstyrene) were quantified using RP-HPLC analysis on commercial products available in Turkish market. For sulfoxide impurity, having no toxicity data and found to be above the qualification limit, in silico mutagenicity prediction analysis, miniaturized bacterial gene mutation test, mitotic index determination and in vitro chromosomal aberration test w/wo metabolic activation system were conducted. In the analysis of different batches of 20 commercial drug products from 11 companies, only sulfoxide impurity exceeded qualification limit in pediatric tablets from 2 companies and in adult tablets from 7 companies. Leadscope and ToxTree programs predicted sulfoxide impurity as nonmutagenic. It was also found to be nonmutagenic in Ames MPF Penta I assay. Sulfoxide impurity was dose-dependent cytotoxic in human peripheral lymphocytes, however, it was found to be nongenotoxic. It was concluded that sulfoxide impurity should be considered as nonmutagenic and can be classified as ordinary impurity according to guidelines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

  1. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  2. Technical activities, 1990: Surface Science Division

    International Nuclear Information System (INIS)

    Powell, C.J.

    1991-05-01

    The report summarizes technical activities and accomplishments of the NIST Surface Science Division during Fiscal Year 1990. Overviews are presented of the Division and of its three constituent groups: Surface Dynamical Processes, Thin Films and Interfaces, and Surface Spectroscopies and Standards. These overviews are followed by reports of selected technical accomplishments during the year. A summary is given of Division outputs and interactions that includes lists of publications, talks, committee assignments, seminars (including both Division seminars and Interface Science seminars arranged through the Division), conferences organized, and a standard reference material certified. Finally, lists are given of Division staff and of guest scientists who have worked in the Division during the past year

  3. Coupling of an electrodialyzer with inductively coupled plasma mass spectrometry for the on-line determination of trace impurities in silicon wafers after surface metal extraction.

    Science.gov (United States)

    Chang, I-long; Hsu, I-hsiang; Yang, Mo-hsiung; Sun, Yun-chang

    2010-02-19

    Understanding the properties that determine the distribution and behavior of trace impurities in Si wafers is critical to defining and controlling the performance, reliability, and yields of integrated microelectronic devices. It remains, however, an intrinsically difficult task to determine trace impurities in Si because of the minute concentrations and extremely high levels of matrix involved. In this study, we used an electrodialyzer for the simultaneous on-line removal of the silicate and acid matrices through the neutralization of the excessive hydrogen ion and selectively separation of acid and silicate ions by the combination of electrode reaction as a source of hydroxide ions with the anion exchange membrane separation. To retain the analyte ions in the sample stream, we found that the presence of moderate amounts of nitric acid and hydrazine were necessary to improve the retention efficiency, not only for Zn(2+), Ni(2+), Cu(2+), and Co(2+) ions but also for CrO(4)(2-) ion. Under the optimized conditions, the interference that resulted from the sample matrix was suppressed significantly to provide satisfactory analytical signals. The precision of this method was ca. 5% when we used an electrodialyzer equipped with an anion exchange membrane to remove the sample matrix prior to performing inductively coupled plasma mass spectrometry (ICP-MS); the good agreement between the data obtained using our proposed method and those obtained using a batchwise wet chemical technique confirmed its accuracy. Our method permits the determination of Zn, Ni, Cu, Co, and Cr in Si wafers at detection limits within the range from 2.2 x 10(15) to 9.0 x 10(15) atoms cm(-3). Copyright 2009 Elsevier B.V. All rights reserved.

  4. JCMT active surface control system: implementation

    Science.gov (United States)

    Smith, Ian A.

    1998-05-01

    The James Clerk Maxwell Telescope on the summit of Mauna Kea in Hawaii is a 15 meter sub-millimeter telescope which operates in the 350 microns to 2 millimeter region. The primary antenna surface consists of 276 panels, each of which is positioned by 3 stepper motors. In order to achieve the highest possible surface accuracy we are embarking upon a project to actively control the position of the panels adjuster system is based on a 6809 micro connected to the control computer by a GPIB interface. This system is slow and inflexible and it would prove difficult to build an active surface control system with it. Part of the upgrade project is to replace the existing micro with a 68060 VME micro. The poster paper will describe how the temperature of the antenna is monitored with the new system, how a Finite Element Analyses package transforms temperature changes into a series of panel adjuster moves, and how these moves are then applied to the surface. The FEA package will run on a high end Sun workstation. A series of DRAMA tasks distributed between the workstation and the Baja 68060 VxWorks Active Surface Control System micro will control the temperature monitoring, FEA and panel adjustment activities. Users can interact with the system via a Tcl/TK based GUI.

  5. Bactericidal activity of biomimetic diamond nanocone surfaces.

    Science.gov (United States)

    Fisher, Leanne E; Yang, Yang; Yuen, Muk-Fung; Zhang, Wenjun; Nobbs, Angela H; Su, Bo

    2016-03-17

    The formation of biofilms on implant surfaces and the subsequent development of medical device-associated infections are difficult to resolve and can cause considerable morbidity to the patient. Over the past decade, there has been growing recognition that physical cues, such as surface topography, can regulate biological responses and possess bactericidal activity. In this study, diamond nanocone-patterned surfaces, representing biomimetic analogs of the naturally bactericidal cicada fly wing, were fabricated using microwave plasma chemical vapor deposition, followed by bias-assisted reactive ion etching. Two structurally distinct nanocone surfaces were produced, characterized, and the bactericidal ability examined. The sharp diamond nanocone features were found to have bactericidal capabilities with the surface possessing the more varying cone dimension, nonuniform array, and decreased density, showing enhanced bactericidal ability over the more uniform, highly dense nanocone surface. Future research will focus on using the fabrication process to tailor surface nanotopographies on clinically relevant materials that promote both effective killing of a broader range of microorganisms and the desired mammalian cell response. This study serves to introduce a technology that may launch a new and innovative direction in the design of biomaterials with capacity to reduce the risk of medical device-associated infections.

  6. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  7. Plasma-Surface Interaction Activities in KSTAR

    NARCIS (Netherlands)

    Hong, S. H.; Yu, Y.; Kim, K. P.; Bak, J. G.; Park, H. J.; Oh, Y. S.; Chung, J.; Nam, Y. U.; Bang, E. N.; Kim, K. R.; Litnovsky, A.; Hellwig, M.; Matveev, D.; Komm, M.; van den Berg, M. A.; Kim, W. C.; Kim, H. K.; Rho, T. H.; Chu, Y.; Oh, Y. K.; Yang, H. L.; Park, K. R.; Chung, K. S.; Kstar Team,

    2013-01-01

    Selected topics of Plasma-Surface Interaction (PSI) activities in KSTAR are briefly introduced. SOL parameter measurements, particle balance and fuel retention, in-vessel dust research, and finally tungsten R & D are discussed. Some quantitative numbers from the initial phase of the operation

  8. Mechanotransductive surfaces for reversible biocatalysis activation

    Science.gov (United States)

    Mertz, Damien; Vogt, Cédric; Hemmerlé, Joseph; Mutterer, Jérôme; Ball, Vincent; Voegel, Jean-Claude; Schaaf, Pierre; Lavalle, Philippe

    2009-09-01

    Fibronectin, like other proteins involved in mechanotransduction, has the ability to exhibit recognition sites under mechanical stretch. Such cryptic sites are buried inside the protein structure in the native fold and become exposed under an applied force, thereby activating specific signalling pathways. Here, we report the design of new active polymeric nanoassembled surfaces that show some similarities to these cryptic sites. These nanoassemblies consist of a first polyelectrolyte multilayer stratum loaded with enzymes and capped with a second polyelectrolyte multilayer acting as a mechanically sensitive nanobarrier. The biocatalytic activity of the film is switched on/off reversibly by mechanical stretching, which exposes enzymes through the capping barrier, similarly to mechanisms involved in proteins during mechanotransduction. This first example of a new class of biologically inspired surfaces should have great potential in the design of various devices aimed to trigger and modulate chemical reactions by mechanical action with applications in the field of microfluidic devices or mechanically controlled biopatches for example.

  9. Active colloidal propulsion over a crystalline surface

    Science.gov (United States)

    Choudhury, Udit; Straube, Arthur V.; Fischer, Peer; Gibbs, John G.; Höfling, Felix

    2017-12-01

    We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements (MSDs) obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the MSD describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.

  10. Surface active properties of lipid nanocapsules.

    Directory of Open Access Journals (Sweden)

    Celia R A Mouzouvi

    Full Text Available Lipid nanocapsules (LNCs are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs' properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8-35.0 mN/m and 37.7-38.8 mN/m, respectively, as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC that was 10-fold higher than the critical micellar concentration (CMC of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications.

  11. Analysis of potential genotoxic impurities in rabeprazole active pharmaceutical ingredient via Liquid Chromatography-tandem Mass Spectrometry, following quality-by-design principles for method development.

    Science.gov (United States)

    Iliou, Katerina; Malenović, Anđelija; Loukas, Yannis L; Dotsikas, Yannis

    2018-02-05

    A novel Liquid Chromatography-tandem mass spectrometry (LC-MS/MS) method is presented for the quantitative determination of two potential genotoxic impurities (PGIs) in rabeprazole active pharmaceutical ingredient (API). In order to overcome the analytical challenges in the trace analysis of PGIs, a development procedure supported by Quality-by-Design (QbD) principles was evaluated. The efficient separation between rabeprazole and the two PGIs in the shortest analysis time was set as the defined analytical target profile (ATP) and to this purpose utilization of a switching valve allowed the flow to be sent to waste when rabeprazole was eluted. The selected critical quality attributes (CQAs) were the separation criterion s between the critical peak pair and the capacity factor k of the last eluted compound. The effect of the following critical process parameters (CPPs) on the CQAs was studied: %ACN content, the pH and the concentration of the buffer salt in the mobile phase, as well as the stationary phase of the analytical column. D-Optimal design was implemented to set the plan of experiments with UV detector. In order to define the design space, Monte Carlo simulations with 5000 iterations were performed. Acceptance criteria were met for C 8 column (50×4mm, 5μm) , and the region having probability π≥95% to achieve satisfactory values of all defined CQAs was computed. The working point was selected with the mobile phase consisting ‎of ACN, ammonium formate 11mM at a ratio 31/69v/v with pH=6,8 for the water phase. The LC protocol was transferred to LC-MS/MS and validated according to ICH guidelines. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Infrared active thermography for surface layer characterization

    International Nuclear Information System (INIS)

    Semerok, A.; Fomichev, S.; Farcage, D.; Sortais, C.; Courtois, X.

    2006-05-01

    Deposited layer characterization was stated as the main goal of our studies for 2006. The investigations by DRFC/SIPP/GCFP (CEA Cadarache) were performed with the procedure of surface temperature measurements based on infrared thermography with synchronous demodulation (Lock-in Thermography). It was applied to provide the temperature surface monitoring during the modulated heating by illumination. The obtained 2D-cartography revealed the zones with a weak heat transfer resulting from a low layer/surface adhesion or poor layer thermal conductivity. The obtained lock-in cartography data should be regarded only as qualitative. For deposited layers characterization (layer depth, adhesion with the substrate), the active laser pyrometer measurements with the developed experimental device were made in LILM laboratory (CEA Saclay). Active surface pyrometry with repetitive laser heating can provide both qualitative and quantitative data on the first layer and the interface with the substrate. A 3D-numerical model of graphite deposited layer heating by a pulsed high repetition rate laser beam was developed to determine the heated surface temperature with a high temporal and spatial resolution. The theoretical data obtained with 3D-numerical model for surface heating were compared with the experimental results. It was demonstrated that for the given optical and thermo-physical parameters of materials, the theoretical temperatures may be fitted with the experimental results to assess certain unknown parameters of the layer (thermal contact resistance, diffusivity, thickness, porosity, ). Based on the comparison of the obtained experimental and theoretical results, the deposited layer characterization was made. The results of the investigations on Active Laser Pyrometry and Lock-in Thermography demonstrated that the methods can provide qualitative and quantitative data on the deposited layer and on the layer/substrate interface. The correlation and cross-check of the results

  13. Calculations of neoclassical impurity transport in stellarators

    Science.gov (United States)

    Mollén, Albert; Smith, Håkan M.; Langenberg, Andreas; Turkin, Yuriy; Beidler, Craig D.; Helander, Per; Landreman, Matt; Newton, Sarah L.; García-Regaña, José M.; Nunami, Masanori

    2017-10-01

    The new stellarator Wendelstein 7-X has finished the first operational campaign and is restarting operation in the summer 2017. To demonstrate that the stellarator concept is a viable candidate for a fusion reactor and to allow for long pulse lengths of 30 min, i.e. ``quasi-stationary'' operation, it will be important to avoid central impurity accumulation typically governed by the radial neoclassical transport. The SFINCS code has been developed to calculate neoclassical quantities such as the radial collisional transport and the ambipolar radial electric field in 3D magnetic configurations. SFINCS is a cutting-edge numerical tool which combines several important features: the ability to model an arbitrary number of kinetic plasma species, the full linearized Fokker-Planck collision operator for all species, and the ability to calculate and account for the variation of the electrostatic potential on flux surfaces. In the present work we use SFINCS to study neoclassical impurity transport in stellarators. We explore how flux-surface potential variations affect the radial particle transport, and how the radial electric field is modified by non-trace impurities and flux-surface potential variations.

  14. Influence of traces of impurities on the combustion kinetics of graphites

    International Nuclear Information System (INIS)

    Heuchamps, Claude

    1960-01-01

    This research thesis reports the study of the influence of the presence of impurities on the combustion kinetics of graphite. The author first discusses the benefits and drawbacks of the different methods which can be used to make the graphite impurity content vary. These methods belong to three groups: addition of impurities, purification of raw graphite, and surface accumulation of impurities during combustion. After a presentation of the adopted experimental technique, the author reports the indirect study of the influence of impurities on graphite combustion, and then its direct study. In the next part, he discusses the relationships between various kinetic values. He finally discusses the combustion mechanism

  15. Neo-classical impurity transport

    International Nuclear Information System (INIS)

    Stringer, T.E.

    The neo-classical theory for impurity transport in a toroidal plasma is outlined, and the results discussed. A general account is given of the impurity behaviour and its dependence on collisionality. The underlying physics is described with special attention to the role of the poloidal rotation

  16. Impurity study experiment proposal

    International Nuclear Information System (INIS)

    1975-05-01

    ISX is a modest tokamak which emphasizes the production of a predictable test plasma, experimental flexibility, ease of assembly and disassembly, and good diagnostic access. Its plasma models the outer cooler layers in EPR like plasmas. In addition, provisions will be made for long discharge times which may be necessary to observe some impurity effects. These machine characteristics will enable one to study the collisional transport of impurities in the plasma, perform systematic studies of wall and limiter materials and geometries, study methods of cleaning the walls, and develop and test new diagnostic techniques. ISX will employ water-cooled copper coils to produce a maximum toroidal magnetic field of 20 kG at the plasma axis, which is 77 cm from the major axis. The plasma minor radius will be about 15 cm, and the maximum plasma current will be 100 kA which will be induced by an iron core transformer with a capability of up to 0.9 volt-sec for long discharges. An aspect ratio of five and the modest magnetic field permit a design with ample space for thick wall structures such as honeycomb walls. The ''picture frame'' toroidal field coil provides additional space, while removable coil top sections allow easy replacement of the vacuum chamber. The 72-turn toroidal field coil is grouped into 24 sections for increased access. Absence of a conducting shell and placement of the vertical field and transformer primary coils away from the plasma allow easy viewing of the plasma and good diagnostic access. (U.S.)

  17. Ion chromatographic analysis of high specific activity 18FDG preparations and detection of the chemical impurity 2-deoxy-2-chloro-D-glucose

    International Nuclear Information System (INIS)

    Alexoff, D.L.; Casati, R.; Fowler, J.S.; Wolf, A.P.; Shea, C.; Schlyer, D.J.; Chyng-Yann Shiue

    1992-01-01

    Because of the widespread use of 2-deoxy-2-[ 18 F]fluoro-D-glucose(FDG) prepared by the ''Julich'' method or its variants it was decided necessary to determine the major chemical impurities present in the final product. An analytical system for quantifying FDG was developed using pulsed amperometry after separation by high-performance anion exchange chromotography. With this system a heretofore unidentified impurity, 2-deoxy-2-chloro-D-glucose(C1DG) was found in our preparation and in those from other laboratories using the ''Julich'' method. C1DG arises from C1 - ion displacement during the labeling procedure where C1 - ion comes from several sources, and C1 - ion displacement from the HC1 used in the hydrolysis step. FDG mass was present in the same preparations at a level of ca 1-40 μg. Other major chemical constituents were glucose (ca 1-6 mg) and mannose (ca 10-18 μg). Glycerol, arising from sterilizing filters, was also detected in most preparations. Although C1DG is a chemical impurity which has not been detected previously in nca FDG preparations, its biochemical and pharmacological properties are similar to FDG and 2-deoxy-D-glucose. Thus it is unlikely that the presence of small quantities of C1DG found in typical FDG preparations (ca 100 μg) would have adverse pharmacological or toxicological consequences that would limit continued application of this radiopharmaceutical in basic and clinical studies. (Author)

  18. Mobile impurities in integrable models

    Directory of Open Access Journals (Sweden)

    Andrew S. Campbell, Dimitri M. Gangardt

    2017-08-01

    Full Text Available We use a mobile impurity or depleton model to study elementary excitations in one-dimensional integrable systems. For Lieb-Liniger and bosonic Yang-Gaudin models we express two phenomenological parameters characterising renormalised inter- actions of mobile impurities with superfluid background: the number of depleted particles, $N$ and the superfluid phase drop $\\pi J$ in terms of the corresponding Bethe Ansatz solution and demonstrate, in the leading order, the absence of two-phonon scattering resulting in vanishing rates of inelastic processes such as viscosity experienced by the mobile impurities

  19. Mobile impurities in ferromagnetic liquids

    Science.gov (United States)

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  20. Does Titan have an Active Surface?

    Science.gov (United States)

    Nelson, R.

    2009-12-01

    ammonia, a compound expected in Titan’s interior. This, combined with the previous evidence from VIMS and RADAR images, creates a strong case for Titan having a presently active surface, possibly due to cryovolcanism. Cassini encountered Titan at very close range on 2008-11-19-13:58 and again on 2008-12-05-12:38. These epochs are called T47 and T48. Comparison of earlier lower resolution data (T5) with the recent T47 and T48 data reveal changes of the surface reflectance and morphology in the Hotei region. This is the first evidence from VIMS that confirms the RADAR report that Hotei Reggio has morphology consistent with volcanic terrain. It has not escaped our attention that ammonia, in association with methane and nitrogen, the principal species of Titan’s atmosphere, closely replicates the environment at the time that live first emerged on earth. If Titan is currently active then these results raise the following questions: What is the full extent of current geologic activity? What are the ongoing processes? Are Titan’s chemical processes today supporting a prebiotic chemistry similar to that under which life evolved on Earth? This work done at JPL under contract with NASA. Refs: [1]R. M. Nelson et al., Icarus 199 (2009) 429-441. [2]R. M. Nelson et al., GRL, VOL. 36, L04202, doi:10.1029/2008GL036206, 2009. [3]S. D. Wall GRL, VOL. 36, L04203, doi:10.1029/2008GL036415, 2009

  1. The influence of the composition on the electronic state and activity of the semiconductor surfaces AIIIBV-ZnTe, AIIBVI-ZnTe

    Science.gov (United States)

    Kirovskaya, I. A.; Vasina, M. V.; Novgorodzeva, L. V.

    2017-08-01

    The surface properties (acid-BASIC, optical, electrophysical) of solid solutions and binary components of AIIIBV-AIIBVI, AIIBVI-AIIBVI (GaSbB-ZnTe, CdSe-ZnTe) have been examined. The charge state, the surface activity in relation to the gases of different electronic nature and their system changes have been defined. The most active components such as (GASB)x (ZnTe)1-x, (CdSe)x (ZnTe)1-x solid solutions of the extreme compositions recommended as sensor materials on carbon monoxide micro-impurity have been found out.

  2. Recent trends in the impurity profile of pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Kavita Pilaniya

    2010-01-01

    Full Text Available Various regulatory authorities such as the International Conference on Harmonization (ICH, the United States Food and Drug administration (FDA, and the Canadian Drug and Health Agency (CDHA are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs. The various sources of impurity in pharmaceutical products are - reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas-liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid-liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC-Mass Spectroscopy (MS, LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research.

  3. Impurities confined in quantum structures

    CERN Document Server

    Holtz, Per Olof

    2004-01-01

    The introduction of impurities, even in very small concentrations, in a semiconductor can change its optical and electrical properties entirely. This attribute of the semiconductor is utilized in the manifoldness of their applications. In this book, the progress on elucidating the physical properties of impurities confined in quantum structures are reviewed with an emphasis on the experimental aspects. The major results of various kinds of characterization, such as infrared spectroscopy, Raman measurements, luminescence characterization, perturbation spectroscopy and dynamical studies of the confined impurities are reviewed, but also the theoretical basis to calculate the electronic structure of the confined donors and acceptors are presented. This monograph also describes more specific aspects of the confined impurities such as the properties in the high doping regime and the effects of hydrogen passivation.

  4. Surface and interface electronic structure: Three year activity report

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1992-01-01

    The 3-year activity report covers surface structure and phonon anomalies (surface reconstruction on W(001) and Mo(001), adsorbate lateral ordering, surface Fermi contours and phonon anomalies on Pt(111) and Pd(001)), adsorbate vibrational damping, charge transfer in momentum space: W(011)-K, surface states and resonances (relativistic effects ampersand computations, surface resonances)

  5. Impurities in Holography and Transport Coefficients

    CERN Document Server

    Hashimoto, Koji

    2012-01-01

    We present a way to include impurities in AdS/CFT correspondence, in view of its application to condensed matter physics. Examples of these are the current impurity and spin impurity. We calculate electric conductivity and spin susceptibility of holographic superconductors, with doping of density/spin impurities.

  6. Magnetic field nanosensor based on Mn impurities

    Directory of Open Access Journals (Sweden)

    Daniela ENCIU

    2014-06-01

    Full Text Available Nanosensors based on graphene nanoribbon, studied in the present work, could provide a special interest in (aero space applications. More specifically, the paper proposes the construction of a nanosensor based on Mn (Manganese impurities. Different spin configurations of the Mn atoms are considered. The mathematical model used to determine the spin transport is based on Kohn-Sham equations. The spin-dependent transmission functions are calculated using the formalism of the nonequilibrium Green’s functions. The implementation of the mathematical model is performed in the SIESTA package. The spin transport properties are determined using the first principle calculations using density functional theory. The graphene nanoribbon with transition metal impurities is based on active element – the system of spins – which is influenced by the external perturbation field. Such nanostructures may serve as spatial applications. The differences between different excited states are determined and it is established that the energy range overlaps the mid-infrared wavelengths.

  7. Kinetic neoclassical calculations of impurity radiation profiles

    Directory of Open Access Journals (Sweden)

    D.P. Stotler

    2017-08-01

    Full Text Available Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions at a given electron temperature. Analogous simulations with a neon impurity yield qualitatively similar results.

  8. Toroidal asymmetries in divertor impurity influxes in NSTX

    Directory of Open Access Journals (Sweden)

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  9. Influence of impurities on silicide contact formation

    International Nuclear Information System (INIS)

    Kazdaev, Kh.R.; Meermanov, G.B.; Kazdaev, R.Kh.

    2002-01-01

    Research objectives of this work are to investigate the influence of light impurities implantation on peculiarities of the silicides formation in molybdenum monocrystal implanted by silicon, and in molybdenum films sputtered on silicon substrate at subsequent annealing. Implantation of the molybdenum samples was performed with silicon ions (90 keV, 5x10 17 cm -2 ). Phase identification was performed by X ray analysis with photographic method of registration. Analysis of the results has shown the formation of the molybdenum silicide Mo 3 Si at 900 deg. C. To find out the influence of impurities present in the atmosphere (C,N,O) on investigated processes we have applied combined implantation. At first, molybdenum was implanted with ions of the basic component (silicon) and then -- with impurities ions. Acceleration energies (40keV for C, 45 keV for N and 50 keV for O) were chosen to obtain the same distribution profiles for basic and impurities ions. Ion doses were 5x10 17 cm -2 for Si-ions and 5x10 16 cm -2 - for impurities. The most important results are reported here. The first, for all three kinds of impurities the decreased formation temperatures of the phase Mo 3 Si were observed; in the case of C and N it was ∼100 deg. and in the case of nitrogen - ∼200 deg. Further, simultaneously with the Mo 3 Si phase, the appearance of the rich-metal phase Mo 5 Si 3 was registered (not observed in the samples without additional implantation). In case of Mo/Si-structure, the implantation of the impurities (N,O) was performed to create the peak concentration (∼4at/%) located in the middle of the molybdenum film (∼ 150nm) deposited on silicon substrate. Investigation carried out on unimplanted samples showed the formation of the silicide molybdenum MoSi 2 , observed after annealing at temperatures 900/1000 deg. C, higher than values 500-600 deg. C reported in other works. It is discovered that electrical conductivity of Mo 5 Si 3 -films synthesized after impurities

  10. Investigation of impurity states in AlSb

    International Nuclear Information System (INIS)

    Agaev, Ya.; Bekmedova, N.G.; Mikhailov, A.P.

    1976-01-01

    The spectra of infrared absorption and the Hall effect have been investigated in the impurity region of aluminium antimonide crystals doped with sulphur and tellurium. By the measurements of the Hall effect temperature dependence in n-AlSb(S) and n-AlSb(Te) crystals determined is the activation energy of an impurity level equal to 0.24 eV and 0.068 eV respectively. The ionization energy for n-AlSb(S), equal to 0.22 eV, and for n-AlSb(Te) equal to 0.09 eV has been found from the infrared absorption curves. The absorption bands caused by the ionized impurity-band transition have been shown to be well described by the Callouway formula. Deep impurity centers have been revealed

  11. Orbit effects on impurity transport in a rotating plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-01-01

    In 1985, very high ion temperature plasmas were first produced in TFTR with co-injecting neutral beams in low current, low density plasmas. This mode of operation is called the energetic ion mode in which the plasma rotates at very high speed. It was found that heavy impurities injected into these plasmas diffused out very quickly. In this paper, the authors calculate the impurity ion orbits in a rotating tokamak plasma based on the equation of motion in the frame that rotates with the plasma. It is shown that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster. Particle orbits near the surface of a rotating tokamak are also analyzed. During impurity injection experiments, freshly ionized impurities near the plasma surface are essentially stationary in the laboratory frame and they are counter-rotating in the plasma frame with co-beam injection. The results are substantiated by numeral particle simulation. The computer code follows the impurity guiding center positions by integrating the equation of motion with the second order predictor-corrector method

  12. Elemental Impurities in Pharmaceutical Excipients.

    Science.gov (United States)

    Li, Gang; Schoneker, Dave; Ulman, Katherine L; Sturm, Jason J; Thackery, Lisa M; Kauffman, John F

    2015-12-01

    Control of elemental impurities in pharmaceutical materials is currently undergoing a transition from control based on concentrations in components of drug products to control based on permitted daily exposures in drug products. Within the pharmaceutical community, there is uncertainty regarding the impact of these changes on manufactures of drug products. This uncertainty is fueled in part by a lack of publically available information on elemental impurity levels in common pharmaceutical excipients. This paper summarizes a recent survey of elemental impurity levels in common pharmaceutical excipients as well as some drug substances. A widely applicable analytical procedure was developed and was shown to be suitable for analysis of elements that are subject to United States Pharmacopoeia Chapter and International Conference on Harmonization's Q3D Guideline on Elemental Impurities. The procedure utilizes microwave-assisted digestion of pharmaceutical materials and inductively coupled plasma mass spectrometry for quantitative analysis of these elements. The procedure was applied to 190 samples from 31 different excipients and 15 samples from eight drug substances provided through the International Pharmaceutical Excipient Council of the Americas. The results of the survey indicate that, for the materials included in the study, relatively low levels of elemental impurities are present. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Impurity bubbles in a BEC

    Science.gov (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  14. The Effects of Impurities on Protein Crystal Growth and Nucleation: A Preliminary Study

    Science.gov (United States)

    Schall, Constance A.

    1998-01-01

    Kubota and Mullin (1995) devised a simple model to account for the effects of impurities on crystal growth of small inorganic and organic molecules in aqueous solutions. Experimentally, the relative step velocity and crystal growth of these molecules asymptotically approach zero or non-zero values with increasing concentrations of impurities. Alternatively, the step velocity and crystal growth can linearly approach zero as the impurity concentration increases. The Kubota-Mullin model assumes that the impurity exhibits Langmuirian adsorption onto the crystal surface. Decreases in step velocities and subsequent growth rates are related to the fractional coverage (theta) of the crystal surface by adsorbed impurities; theta = Kx / (I +Kx), x = mole fraction of impurity in solution. In the presence of impurities, the relative step velocity, V/Vo, and the relative growth rate of a crystal face, G/Go, are proposed to conform to the following equations: V/Vo approx. = G/Go = 1 - (alpha)(theta). The adsorption of impurity is assumed to be rapid and in quasi-equilibrium with the crystal surface sites available. When the value of alpha, an effectiveness factor, is one the growth will asymptotically approach zero with increasing concentrations of impurity. At values less than one, growth approaches a non-zero value asymptotically. When alpha is much greater than one, there will be a linear relationship between impurity concentration and growth rates. Kubota and Mullin expect alpha to decrease with increasing supersaturation and shrinking size of a two dimensional nucleus. It is expected that impurity effects on protein crystal growth will exhibit behavior similar to that of impurities in small molecule growth. A number of proteins were added to purified chicken egg white lysozyme, the effect on crystal nucleation and growth assessed.

  15. Final Technical Report: Effects of Impurities on Fuel Cell Performance and Durability

    Energy Technology Data Exchange (ETDEWEB)

    James G. Goodwin, Jr.; Hector Colon-Mercado; Kitiya Hongsirikarn; and Jack Z. Zhang

    2011-11-11

    The main objectives of this project were to investigate the effect of a series of potential impurities on fuel cell operation and on the particular components of the fuel cell MEA, to propose (where possible) mechanism(s) by which these impurities affected fuel cell performance, and to suggest strategies for minimizing these impurity effects. The negative effect on Pt/C was to decrease hydrogen surface coverage and hydrogen activation at fuel cell conditions. The negative effect on Nafion components was to decrease proton conductivity, primarily by replacing/reacting with the protons on the Bronsted acid sites of the Nafion. Even though already well known as fuel cell poisons, the effects of CO and NH3 were studied in great detail early on in the project in order to develop methodology for evaluating poisoning effects in general, to help establish reproducibility of results among a number of laboratories in the U.S. investigating impurity effects, and to help establish lower limit standards for impurities during hydrogen production for fuel cell utilization. New methodologies developed included (1) a means to measure hydrogen surface concentration on the Pt catalyst (HDSAP) before and after exposure to impurities, (2) a way to predict conductivity of a Nafion membranes exposed to impurities using a characteristic acid catalyzed reaction (methanol esterification of acetic acid), and, more importantly, (3) application of the latter technique to predict conductivity on Nafion in the catalyst layer of the MEA. H2-D2 exchange was found to be suitable for predicting hydrogen activation of Pt catalysts. The Nafion (ca. 30 wt%) on the Pt/C catalyst resides primarily on the external surface of the C support where it blocks significant numbers of micropores, but only partially blocks the pore openings of the meso- and macro-pores wherein lie the small Pt particles (crystallites). For this reason, even with 30 wt% Nafion on the Pt/C, few Pt sites are blocked and, hence, are

  16. Plasma technology of the surface polymer activation

    International Nuclear Information System (INIS)

    Dutra, Jorge C.N.; Mello, Sandra C.; Massi, Marcos; Otani, Choyu; Maciel, Homero S.; Bittencourt, Edison

    2005-01-01

    A number of polymers, especially rubbers, require surface treatment to achieve a satisfactory level of adhesion. The surface of EPDM rubber vulcanized is high hydrophobicity and is not suited for a number of potential applications, in particular, for adhering to the polyurethane liner of solid rocket propellants. In this case, plasma treatment can be a very attractive process because it can efficiently increase the surface energy attributed to surface oxidation with the introduction of polar groups 1, 2. In order to investigate the influence of the parameters on the modifications of the treated surface samples of EPDM rubber by plasma generated by gas oxygen and argon, the water and methylene iodide contact angles were measured at room temperature with an image analyzing using the sessile drop technique 3 - 6 . (author)

  17. Impurity gettering in silicon using cavities formed by helium implantation and annealing

    Science.gov (United States)

    Myers, Jr., Samuel M.; Bishop, Dawn M.; Follstaedt, David M.

    1998-01-01

    Impurity gettering in silicon wafers is achieved by a new process consisting of helium ion implantation followed by annealing. This treatment creates cavities whose internal surfaces are highly chemically reactive due to the presence of numerous silicon dangling bonds. For two representative transition-metal impurities, copper and nickel, the binding energies at cavities were demonstrated to be larger than the binding energies in precipitates of metal silicide, which constitutes the basis of most current impurity gettering. As a result the residual concentration of such impurities after cavity gettering is smaller by several orders of magnitude than after precipitation gettering. Additionally, cavity gettering is effective regardless of the starting impurity concentration in the wafer, whereas precipitation gettering ceases when the impurity concentration reaches a characteristic solubility determined by the equilibrium phase diagram of the silicon-metal system. The strong cavity gettering was shown to induce dissolution of metal-silicide particles from the opposite side of a wafer.

  18. Influence of impurities on the H2/H2O/Ni/YSZ electrode

    DEFF Research Database (Denmark)

    Høgh, Jens Valdemar Thorvald

    2005-01-01

    . The impurities found on the SZ are believed tosegregate from the bulk of SZ to the surface. Sulfur was found on the surface of the Ni, but its origin is unclear. A higher impurity level was detected on the surface of the Ni and SZ outside the contact area (between the Ni and YSZ) than inside thecontact area...

  19. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  20. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  1. Tokamak impurity-control techniques

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1980-01-01

    A brief review is given of the impurity-control functions in tokamaks, their relative merits and disadvantages and some prominent edge-interaction-control techniques, and there is a discussion of a new proposal, the particle scraper, and its potential advantages. (author)

  2. Divertor retention for recycling impurities

    International Nuclear Information System (INIS)

    Krieger, K.; Roth, J.; Fussmann, G.

    1992-01-01

    As an important issue for fusion devices with divertor configurations the retention capability for both recycling and non-recycling impurities receives increasing interest. In the case of recycling, gaseous, impurities the retention capability is usually investigated by means of short impurity gas puffs into the plasma vessel and the analysis of the time dependence of the observed line radiation. The detailed understanding of the impurity transport processes related to the retention capability of a certain divertor structure will require modelling of the experimental results with 2D or 3D transport code simulations. However, for the comparison of the global behavior of different configurations a much simpler description of the divertor retention in terms of global time constants may be sufficient. We will give a summary of experimental results from ASDEX for the dependence of the retention capability on parameters like divertor plasma density and temperature and the distance along field lines between main plasma and divertor. In addition we will compare some of these results with similar experiments on DIIID. (author) 8 refs., 2 figs., 2 tabs

  3. Breatherlike impurity modes in discrete nonlinear lattices

    DEFF Research Database (Denmark)

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.

    1995-01-01

    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  4. Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps

    Directory of Open Access Journals (Sweden)

    B. Di Mauro

    2017-11-01

    Full Text Available The amount of reflected energy by snow and ice plays a fundamental role in their melting processes. Different non-ice materials (carbonaceous particles, mineral dust (MD, microorganisms, algae, etc. can decrease the reflectance of snow and ice promoting the melt. The object of this paper is to assess the capability of field and satellite (EO-1 Hyperion hyperspectral data to characterize the impact of light-absorbing impurities (LAIs on the surface reflectance of ice and snow of the Vadret da Morteratsch, a large valley glacier in the Swiss Alps. The spatial distribution of both narrow-band and broad-band indices derived from Hyperion was analyzed in relation to ice and snow impurities. In situ and laboratory reflectance spectra were acquired to characterize the optical properties of ice and cryoconite samples. The concentrations of elemental carbon (EC, organic carbon (OC and levoglucosan were also determined to characterize the impurities found in cryoconite. Multi-wavelength absorbance spectra were measured to compare the optical properties of cryoconite samples and local moraine sediments. In situ reflectance spectra showed that the presence of impurities reduced ice reflectance in visible wavelengths by 80–90 %. Satellite data also showed the outcropping of dust during the melting season in the upper parts of the glacier, revealing that seasonal input of atmospheric dust can decrease the reflectance also in the accumulation zone of the glacier. The presence of EC and OC in cryoconite samples suggests a relevant role of carbonaceous and organic material in the darkening of the ablation zone. This darkening effect is added to that caused by fine debris from lateral moraines, which is assumed to represent a large fraction of cryoconite. Possible input of anthropogenic activity cannot be excluded and further research is needed to assess the role of human activities in the darkening process of glaciers observed in recent years.

  5. Charge state of sputtered impurity ions near a limiter or divertor in a tokamak

    International Nuclear Information System (INIS)

    Boley, C.D.; Brooks, J.N.; Kim, Y.K.

    1983-03-01

    Many impurity atoms sputtered from a limiter or divertor plate are ionized in the scrapeoff zone and return to the sputtering surface bacause of friction with incoming plasma ions. The final charge state attained by such impurities has been calculated for a variety of plasma edge conditions. The surface materials considered are tungsten, beryllium, beryllium oxide, and carbon. Estimates of the successive ionization cross sections for tungsten are developed. In all cases examined, returning impurity ions are found to be multiply ionized. This implies a significant energy gain in the sheath region, with important implications for self-sputtering of redeposited surface material

  6. Surface activity of thymol: implications for an eventual pharmacological activity.

    Science.gov (United States)

    Sánchez, Mariela E; Turina, Anahí del V; García, Daniel A; Nolan, M Verónica; Perillo, María A

    2004-03-15

    In the present work, we studied the ability of thymol to affect the organization of model membranes and the activity of an intrinsic membrane protein, the GABA(A) receptor (GABA(A)-R). In this last aspect, we tried to elucidate if the action mechanism of this terpene at the molecular level, involves its binding to the receptor protein, changes in the organization of the receptor molecular environment, or both. The self-aggregation of thymol in water with a critical micellar concentration approximately = 4 microM and its ability to penetrate in monomolecular layers of soybean phosphatidylcholine (sPC) at the air-water interface, even at surface pressures above the equilibrium, lateral pressure of natural bilayers were demonstrated. Thymol affected the self-aggregation of Triton X-100 and the topology of sPC vesicles. It also increased the polarity of the membrane environment sensed by the electrochromic dye merocyanine. A dipolar moment of 1.341 Debye was calculated from its energy-minimized structure. Its effect on the binding of [3H]-flunitrazepam ([3H]-FNZ) to chick brain synaptosomal membranes changed qualitatively from a tendency to the inhibition to a clear activatory regime, up on changing the phase state of the terpene (from a monomeric to a self-aggregated state). Above its CMC, thymol increased the affinity of the binding of [3H]-FNZ (K(d-control)= 2.9, K(d-thymol)= 1.7 nM) without changing the receptor density (B(max-control)= 910, B(max-thymol)= 895 fmol/mg protein). The activatory effect of thymol on the binding of [ [3H]-FNZ was observed even in the presence of the allosteric activator gamma-aminobutyric acid (GABA) at a concentration of maximal activity, and was blocked by the GABA antagonist bicuculline. Changes in the dipolar arrangement and in the molecular packing of GABA(A)-R environment are discussed as possible mediators of the action mechanism of thymol.

  7. Sperm cell surface dynamics during activation and fertilization

    NARCIS (Netherlands)

    Boerke, A.|info:eu-repo/dai/nl/304822922

    2013-01-01

    Before the sperm cell can reach the oocyte it needs to be activated and to undergo a series of preparative steps. The sperm surface dynamics was studied in relation to this activation process and the modifications and removal of sperm surface components havebeen investigated. Bicarbonate-induced

  8. Temperature effects on surface activity and application in oxidation ...

    Indian Academy of Sciences (India)

    Keywords. Surface activity; cetyl trimethylammonium bromide; sodium dodecyl sulfate; temperature; oxidation. ... Catalytic effect on oxidation of toluene derivatives with potassium permanganate follows the order CTAB-SDS > SDS > CTAB. This is not caused by the dissociative effect of CTAB-SDS with low surface activity at ...

  9. Modeling of the Microchemistry for Diffusion of Selected Impurities in Uranium

    International Nuclear Information System (INIS)

    Kirkpatrick, J. R.; Bullock, J.S. IV

    2001-01-01

    Unalloyed metallic uranium used in some work done at Y-12 contains small quantities of impurities, the three most significant of which are carbon, iron, and silicon. During metallurgical processing, as the metal cools from a molten condition towards room temperature, the metallic matrix solution becomes supersaturated in each of the impurities whose concentration exceeds the solubility limit. Many impurity atoms form compounds with uranium that precipitate out of the solution, thus creating and growing inclusions. The objective of the present work is to study the distribution of impurity atoms about some of the inclusions, with a view toward examining the effect of the interaction between inclusions on the impurity atom distribution. The method used is time-dependent mass diffusion from the supersaturated solution to the surfaces of the inclusions. Micrographs of metal samples suggest that the inclusions form in successive stages. After each inclusion forms, it begins to draw impurity atoms from its immediate vicinity, thus altering the amounts and distributions of impurity atoms available for formation and growth of later inclusions. In the present work, a one-dimensional spherical approximation was used to simulate inclusions and their regions of influence. A first set of calculations was run to simulate the distribution of impurity atoms about the largest inclusions. Then, a second set of calculations was run to see how the loss of impurity atoms to the largest inclusions might affect the distribution of impurity atoms around the next stage of inclusions. Plots are shown for the estimated distributions of impurity atoms in the region of influence about the inclusions for the three impurities studied. The authors believe that these distributions are qualitatively correct. However, there is enough uncertainty about precisely when inclusions nucleate and begin to grow that one should not put too much reliance on the quantitative results. This work does provide a

  10. Impurity-controlled recrystallization in natural fluorite

    Science.gov (United States)

    Duschl, Florian; Wischhöfer, Philipp; Vollbrecht, Axel

    2017-04-01

    Microfabrics in natural fluorite from stratiform fluorite occurrences in Zechstein carbonate rocks (Ca2) near Eschwege (Germany) exhibit complex recrystallization features with different stages of accretive crystallization. Thin sections were studied using standard petrographic microscopy and hot-cathodoluminescence microscopy (CL); to identify fluid inclusion composition microthermometric analysis was applied. Though fluorite occurs in various forms at the locality, the focus of this study lies on early-diagenetic fluorite that replaced aragonitic ooids in the Zechstein carbonate. It can be subdivided into three groups: (I) brown or violet, impurity-rich replacement fluorite, (II) aggregates of parallel, bar-shaped or fibrous crystals with brown to violet grain boundaries, and (III) white fluorite grains with rectangular to mostly polygonal grain boundaries. Type (III) is the product of merged type (II) crystal aggregates. Artificial decoration of fluorite grain surfaces due to CL-induced electron irradiation (acceleration voltage: 14 kV) helped to visualize otherwise invisible crystallographic features. This technique revealed a strong crystallographic control on bar-shaped fluorite (type II) at an early stage of recrystallization. Parallel bundles of type (II) crystals show a crystallographic preferred orientation after {100}, that is no longer apparent after consumption by type (III) fluorite and formation of polygonal grains. Impurities such as fluid and solid inclusions in type (I) fluorite were segregated during progressive recrystallization; subsequently, solid and fluid inclusions accumulated along newly formed grain boundaries. Increase in grain size due to recrystallization is locally hindered by the concentration of impurities along grain boundaries. Therefore, we assume that impurity-controlled recrystallization not only influenced the formation of bar-shaped crystals prior to the development of a polygonal fabric, but locally also strongly affected

  11. Observation of impurity accumulation and concurrent impurity influx in PBX

    International Nuclear Information System (INIS)

    Sesnic, S.S.; Fonck, R.J.; Ida, K.

    1986-07-01

    Impurity studies in L- and H-mode discharges in PBX have shown that both types of discharges can evolve into either an impurity accumulative or nonaccumulative case. In a typical accumulative discharge, Zeff peaks in the center to values of about 5. The central metallic densities can be high, n/sub met//n/sub e/ ≅ 0.01, resulting in central radiated power densities in excess of 1 W/cm 3 , consistent with bolometric estimates. The radial profiles of metals obtained independently from the line radiation in the soft x-ray and the VUV regions are very peaked. Concurrent with the peaking, an increase in the impurity influx coming from the edge of the plasma is observed. At the beginning of the accumulation phase the inward particle flux for titanium has values of 6 x 10 10 and 10 x 10 10 particles/cm 2 s at minor radii of 6 and 17 cm. At the end of the accumulation phase, this particle flux is strongly increased to values of 3 x 10 12 and 1 x 10 12 particles/cm 2 s. This increased flux is mainly due to influx from the edge of the plasma and to a lesser extent due to increased convective transport. Using the measured particle flux, an estimate of the diffusion coefficient D and the convective velocity v is obtained

  12. Observation of impurity accumulation and concurrent impurity influx in PBX

    International Nuclear Information System (INIS)

    Sesnic, S.S.; Fonck, R.J.; Ida, K.; Couture, P.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Powell, E.T.; Reusch, M.; Takahashi, H.; Gammel, G.; Morris, W.

    1987-01-01

    Impurity studies in L- and H-mode discharges in PBX have shown that both types of discharges can evolve into either an impurity accumulative or nonaccumulative case. In a typical accumulative discharge, Z eff peaks in the center to values of about 5. The central metallic densities can be high, n met /n e ≅ 0.01, resulting in central radiated power densities in excess of 1 W/cm 3 , consistent with bolometric estimates. The radial profiles of metals obtained independently from the line radiation in the soft X-ray and the VUV regions are very peaked. Concurrent with the peaking, an increase in the impurity influx coming from the edge of the plasma is observed. At the beginning of the accumulation phase the inward particle flux for titanium has values of 6x10 10 and 10x10 10 particles/cm 2 s at minor radii of 6 and 17 cm. At the end of the accumulation phase, this particle flux is strongly increased to values of 3x10 12 and 1x10 12 particles/cm 2 s. This increased flux is mainly due to influx from the edge of the plasma and to a lesser extent due to increased convective transport. Using the measured particle flux, an estimate of the diffusion coefficient D and the convective velocity v is obtained. (orig.)

  13. Detection, isolation and characterization of principle synthetic route indicative impurity in telmisartan

    Directory of Open Access Journals (Sweden)

    V. Srinivasan

    2016-11-01

    Full Text Available An unknown impurity was detected in the telmisartan bulk drug (active pharmaceutical ingredient – API using an isocratic reversed-phase high performance liquid chromatography (HPLC. This impurity was isolated by preparative HPLC. Spectral data of the isolated impurity were collected. Based on the spectral data deriving from two dimensional nuclear magnetic spectroscopy (2D-NMR and mass spectrometry (MS, the impurity was characterized as “methyl 4′,4′-dibromo methyl biphenyl-2-carboxylate”. The arrived structure was further confirmed by theoretical studies.

  14. Coordinated surface activities in Variovorax paradoxus EPS

    Directory of Open Access Journals (Sweden)

    Gregory Glenn A

    2009-06-01

    Full Text Available Abstract Background Variovorax paradoxus is an aerobic soil bacterium frequently associated with important biodegradative processes in nature. Our group has cultivated a mucoid strain of Variovorax paradoxus for study as a model of bacterial development and response to environmental conditions. Colonies of this organism vary widely in appearance depending on agar plate type. Results Surface motility was observed on minimal defined agar plates with 0.5% agarose, similar in nature to swarming motility identified in Pseudomonas aeruginosa PAO1. We examined this motility under several culture conditions, including inhibition of flagellar motility using Congo Red. We demonstrated that the presence of a wetting agent, mineral, and nutrient content of the media altered the swarming phenotype. We also demonstrated that the wetting agent reduces the surface tension of the agar. We were able to directly observe the presence of the wetting agent in the presence and absence of Congo Red, and found that incubation in a humidified chamber inhibited the production of wetting agent, and also slowed the progression of the swarming colony. We observed that swarming was related to both carbon and nitrogen sources, as well as mineral salts base. The phosphate concentration of the mineral base was critical for growth and swarming on glucose, but not succinate. Swarming on other carbon sources was generally only observed using M9 salts mineral base. Rapid swarming was observed on malic acid, d-sorbitol, casamino acids, and succinate. Swarming at a lower but still detectable rate was observed on glucose and sucrose, with weak swarming on maltose. Nitrogen source tests using succinate as carbon source demonstrated two distinct forms of swarming, with very different macroscopic swarm characteristics. Rapid swarming was observed when ammonium ion was provided as nitrogen source, as well as when histidine, tryptophan, or glycine was provided. Slower swarming was observed

  15. The increase of surface area of a Brazilian palygorskite clay activated with sulfuric acid solutions using a factorial design

    Directory of Open Access Journals (Sweden)

    R. N. Oliveira

    2013-01-01

    Full Text Available Palygorskite is fibrous clay in which the structural tetrahedral and octahedral layers are organized in a way that structural channels are formed, leading to high surface area. However, impurities inside the channels and aggregated ones considerably reduce the available area. In order to increase the surface area, an activation treatment can be considered useful. The goal of this work is the activation of palygorskite from Guadalupe, Piauí, via sulfuric acid treatment using a two-level factorial design. The influence of three parameters (solution molarity, temperature and time on BET surface area was determined. Moreover, samples were characterized via X-ray diffraction (XRD and fluorescence (XRF, Fourier-transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM. The largest surface area (282 m²/g without considerable changes in clay structure and morphology was found in a sample treated with 5M H2SO4 at 70°C for 1h. The main parameters that favored the improvement of the surface area were the solution's molarity, temperature and their interaction.

  16. Particle fueling and impurity control in PDX

    International Nuclear Information System (INIS)

    Fonck, R.J.; Bell, M.; Bol, K.

    1984-12-01

    Fueling requirements and impurity levels in neutral-beam-heated discharges in the PDX tokamak have been compared for plasmas formed with conventional graphite rail limiters, a particle scoop limiter, and an open or closed poloidal divertor. Gas flows necessary to obtain a given density are highest for diverted discharges and lowest for the scoop limiter. Hydrogen pellet injection provides an efficient alternate fueling technique, and a multiple pellet injector has produced high density discharges for an absorbed neutral beam power of up to 600 kW, above which higher speeds or more massive pellets are required for penetration to the plasma core. Power balance studies indicate that 30 to 40% of the total input power is radiated while approx. 15% is absorbed by the limiting surface, except in the open divertor case, where 60% flows to the neutralizer plate. In all operating configurations, Z/sub eff/ usually rises at the onset of neutral beam injection. Both open divertor plasmas and those formed on a well conditioned water-cooled limiter have Z/sub eff/ less than or equal to 2 at the end of neutral injection. A definitive comparison of divertors and limiters for impurity control purposes requires longer beam pulses or higher power levels than available on present machines

  17. Sodium sampling and impurities determination

    International Nuclear Information System (INIS)

    Docekal, J.; Kovar, C.; Stuchlik, S.

    1980-01-01

    Samples may be obtained from tubes in-built in the sodium facility and further processed or they are taken into crucibles, stored and processed later. Another sampling method is a method involving vacuum distillation of sodium, thus concentrating impurities. Oxygen is determined by malgamation, distillation or vanadium balance methods. Hydrogen is determined by the metal diaphragm extraction, direct extraction or amalgamation methods. Carbon is determined using dry techniques involving burning a sodium sample at 1100 degC or using wet techniques by dissolving the sample with an acid. Trace amounts of metal impurities are determined after dissolving sodium in ethanol. The trace metals are concentrated and sodium excess is removed. (M.S.)

  18. Transverse Ising model with multi-impurity

    International Nuclear Information System (INIS)

    Huang, Xuchu; Yang, Zhihua

    2015-01-01

    We study the transverse Ising spin model with spin-1 impurities under the exact solution. We develop a universal method to deal with the multi-impurity problem by introducing a displacement quantity in the wave function and get a recursive formula to simplify the calculation of the partition function. This allows us to rigorously determine the impurity effects for a specific distribution of impurity in the thermodynamic limit. The low temperature behaviors are governed by the interplay between host and impurity excitations, and the quantum critical fluctuations around the critical point of the transverse Ising model are tuned by the transverse field and the concentration of impurity. However the impurity effects are limited, which depends on the host–impurity exchange interaction and the coupling strength of impurities. - Highlights: • A universal method is proposed to exactly resolve the transverse Ising model with many impurities. • The phase diagram of the ground state is obtained for different impurity concentrations. • The thermodynamic properties can be determined rigorously by a recursive formula in the thermodynamic limit

  19. Phonon scattering by isotopic impurities

    International Nuclear Information System (INIS)

    Dacol, D.K.

    1974-06-01

    The effects upon vibrations of a perfect crystal lattice due to the replacement of some of its atoms by isotopes of these atoms are studied. The approach consists in considering the isotopic impurities as scattering centres for the quanta of the elastic waves the objective is to obtain the scattering amplitudes. These amplitudes are obtained through a canonical transformation method which was introduced by Chevalier and Rideau in the study of the Wentzel's model in quantum field theory

  20. Self-consistent modeling of plasma response to impurity spreading from intense localized source

    International Nuclear Information System (INIS)

    Koltunov, Mikhail

    2012-07-01

    Non-hydrogen impurities unavoidably exist in hot plasmas of present fusion devices. They enter it intrinsically, due to plasma interaction with the wall of vacuum vessel, as well as are seeded for various purposes deliberately. Normally, the spots where injected particles enter the plasma are much smaller than its total surface. Under such conditions one has to expect a significant modification of local plasma parameters through various physical mechanisms, which, in turn, affect the impurity spreading. Self-consistent modeling of interaction between impurity and plasma is, therefore, not possible with linear approaches. A model based on the fluid description of electrons, main and impurity ions, and taking into account the plasma quasi-neutrality, Coulomb collisions of background and impurity charged particles, radiation losses, particle transport to bounding surfaces, is elaborated in this work. To describe the impurity spreading and the plasma response self-consistently, fluid equations for the particle, momentum and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solution in principal details: the magnitudes of plasma density and plasma temperatures in the regions of impurity localization and the spatial scales of these regions. The results of calculations for plasma conditions typical in tokamak experiments with impurity injection are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures is proposed.

  1. Active Surface Compensation for Large Radio Telescope Antennas

    Science.gov (United States)

    Wang, Congsi; Li, Haihua; Ying, Kang; Xu, Qian; Wang, Na; Duan, Baoyan; Gao, Wei; Xiao, Lan; Duan, Yuhu

    2018-03-01

    With the development of radio telescope antennas with large apertures, high gain, and wide frequency bands, compensation methods, such as mechanical or electronic compensation, are obviously essential to ensure the electrical performance of antennas that work in complex environments. Since traditional compensation methods can only adjust antenna pointing but not the surface accuracy, which are limited for obtaining high surface precision and aperture efficiency, active surface adjustment has become an indispensable tool in this field. Therefore, the development process of electrical performance compensation methods for radio telescope antennas is introduced. Further, a series of analyses of the five key technologies of active surface adjustment is presented. Then, four typical large antennas that have been designed with active main reflector technology are presented and compared. Finally, future research directions and suggestions for reflector antenna compensation method! s based on active surface adjustment are presented.

  2. Surface enhanced Raman optical activity (SEROA)

    DEFF Research Database (Denmark)

    Abdali, Salim; Blanch, E.W.

    2008-01-01

    Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic...

  3. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    prominent role in stellarators than in tokamaks. In the final chapter of this thesis, analytical expressions for the particle and heat fluxes in an impure, collisional plasma are derived from first principles. Contrary to the tokamak case, where collisional transport is exclusively caused directly by friction, in stellarators an additional source of transport exists, namely anisotropy between the pressures parallel and perpendicular to the magnetic field. Whereas this anisotropy term does not contribute much to the overall fluxes at high collisionality since it is then considerably smaller than the friction contributions, it is nonetheless important since it is not ambipolar and therefore of relevance to the ambipolar electric field. Based on these results, the behaviour of heavy impurity ions under the influence of strong radial temperature and density gradients of the background plasma is studied. It is shown that a redistribution of the impurity ions within each magnetic flux surface arises. The effect of 3D geometry is studied. Since the resulting partial differential equations are too complicated for an analytical treatment, different limits are considered analytically and the full equation is solved numerically. The redistribution is driven by parallel friction and qualitatively influenced by the radial temperature gradient of the background plasma and the spatially varying E x B rotation due to the radial electric potential. The resulting impurity density patterns on the flux surface are sensitive to the exact geometry of the device and can be determined with the help of numerical databases of the magnetic configurations of different experiments. (orig.)

  4. Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F-: activities and distribution in the [18F]FDG synthesis process.

    Science.gov (United States)

    Bowden, Louise; Vintró, Luis León; Mitchell, Peter I; O'Donnell, Ruairi G; Seymour, Anne Marie; Duffy, George J

    2009-02-01

    Proton- and neutron-induced activation products in the components of a high-pressure [(18)O]H(2)O target vessel used for the production of (18)F(-) in a medical cyclotron have been identified using high resolution gamma spectrometry. The activities leached from the target vessel into the [(18)O]H(2)O during irradiation, and the distribution of the identified radionuclide impurities in the various cartridges and solutions used in the [(18)F]FDG synthesis process have been measured and are discussed from the perspective of waste disposal. The results indicate that, at the energies and beam currents employed, only a few, relatively short-lived radionuclides are present in the irradiated [(18)O]H(2)O, and that the activities involved (irradiated [(18)O]H(2)O, produced via the (18)O(p,(3)H)(16)O reaction, have also been determined using liquid scintillation spectrometry. Measured activity concentrations, in the range 150-180 kBq g(-1), are consistent with those reported by other workers. Analyses of the synthesised [(18)F]FDG confirm the radiochemical purity of the product, both for (3)H and for gamma-emitting radionuclides in the energy range 25-1650 keV.

  5. Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F-: Activities and distribution in the [18F]FDG synthesis process

    International Nuclear Information System (INIS)

    Bowden, Louise; Leon Vintro, Luis; Mitchell, Peter I.; O'Donnell, Ruairi G.; Seymour, Anne Marie; Duffy, George J.

    2009-01-01

    Proton- and neutron-induced activation products in the components of a high-pressure [ 18 O]H 2 O target vessel used for the production of 18 F - in a medical cyclotron have been identified using high resolution gamma spectrometry. The activities leached from the target vessel into the [ 18 O]H 2 O during irradiation, and the distribution of the identified radionuclide impurities in the various cartridges and solutions used in the [ 18 F]FDG synthesis process have been measured and are discussed from the perspective of waste disposal. The results indicate that, at the energies and beam currents employed, only a few, relatively short-lived radionuclides are present in the irradiated [ 18 O]H 2 O, and that the activities involved ( 3 H in irradiated [ 18 O]H 2 O, produced via the 18 O(p, 3 H) 16 O reaction, have also been determined using liquid scintillation spectrometry. Measured activity concentrations, in the range 150-180 kBq g -1 , are consistent with those reported by other workers. Analyses of the synthesised [ 18 F]FDG confirm the radiochemical purity of the product, both for 3 H and for gamma-emitting radionuclides in the energy range 25-1650 keV

  6. Acid-base characteristics of powdered-activated-carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E. (West Virginia Univ., Morgantown (United States)); Jensen, J.N.; Matsumoto, M.R. (State Univ. of New York, Buffalo (United States))

    Adsorption of heavy metals onto activated carbon has been described using the surface-complex-formation (SCF) model, a chemical equilibrium model. The SCF model requires a knowledge of the amphoteric nature of activated carbon prior to metal adsorption modeling. In the past, a single-diprotic-acid-site model had been employed to describe the amphoteric nature of activated-carbon surfaces. During this study, the amphoteric nature of two powdered activated carbons were investigated, and a three-monoprotic site surface model was found to be a plausible alternative. The single-diprotic-acid-site and two-monoprotic-site models did not describe the acid-base behavior of the two carbons studied adequately. The two-diprotic site was acceptable for only one of the study carbons. The acid-base behavior of activated carbon surfaces seem to be best modeled as a series of weak monoprotic acids.

  7. Carbon transport phenomena and gaseous impurities behavior in HENDEL

    International Nuclear Information System (INIS)

    Okuyama, Kunito; Yokota, Syuuichi

    1988-01-01

    In a high temperature gas cooled reactor (HTGR), high gaseous impurity levels could lead to carbon transport problem. The carbon transport process is based on two chemical reactions occurring in turn. One is the reaction of the impurity species water and/or CO 2 with praphite in the core, and the other is that of produced CO and H 2 to form C deposit at metal surface. Carbon deposition occurred on the inner surface of the pressure vessel of the T 2 test section in Helium Engineering Demonstration Loop (HENDEL), where the 50 t graphite is installed. From the analysis of the deposition, the C was not graphite but amorphous carbon. Chemical reaction should take place. The levels of H 2 and CO in He gas remarkably increased just after increasing the temperature of He gas flowing into the graphite from 700degC to 930degC. The increase of the impurities can be regarded as the result of the reaction of graphite with water absorbed in the atmosphere and outgassing of the products. It has been shown that the effective method to reduce the C deposition is the He gas purification taking account of the impurity concentration ratios, H 2 /H 2 O and/or CO/CO 2 based on the thermodynamical equilibrium state. (author)

  8. Forced degradation and impurity profiling: recent trends in analytical perspectives.

    Science.gov (United States)

    Jain, Deepti; Basniwal, Pawan Kumar

    2013-12-01

    This review describes an epigrammatic impression of the recent trends in analytical perspectives of degradation and impurities profiling of pharmaceuticals including active pharmaceutical ingredient (API) as well as drug products during 2008-2012. These recent trends in forced degradation and impurity profiling were discussed on the head of year of publication; columns, matrix (API and dosage forms) and type of elution in chromatography (isocratic and gradient); therapeutic categories of the drug which were used for analysis. It focuses distinctly on comprehensive update of various analytical methods including hyphenated techniques for the identification and quantification of thresholds of impurities and degradants in different pharmaceutical matrices. © 2013 Elsevier B.V. All rights reserved.

  9. Metal impurity release in diverted tokamak discharges

    International Nuclear Information System (INIS)

    Staudenmaier, G.; Wampler, W.R.

    1986-01-01

    Plasma materials interaction at the wall of the main plasma chamber of the divertor tokamak ASDEX was investigated by a combined probe, allowing simultaneous measurements of the erosion rate by neutral particles, and the flux and average energy of neutrals. The erosion was measured by collecting part of the released material on a carbon strip. Subsequent surface analysis was performed by electron induced x-ray analysis. Flux and energy of the impinging neutral particles were measured after each single discharge with an energy resolving carbon resistance probe. Such combined measurements yield the erosion yield being characteristic for the erosion process. Data for ohmic discharges in deuterium and helium are compared. It turns out that the carbon resistance probe is a simple but powerful means to study the metal impurity release from the tokamak walls by charge exchange neutrals

  10. Plasma Interactions with Mixed Materials and Impurity Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chernov, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magee, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Umansky, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  11. Plasma Interactions with Mixed Materials and Impurity Transport

    International Nuclear Information System (INIS)

    Rognlien, T. D.; Beiersdorfer, Peter; Chernov, A.; Frolov, T.; Magee, E.; Rudd, R.; Umansky, M.

    2016-01-01

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  12. Surface coverage dictates the surface bio-activity of D-amino acid oxidase.

    Science.gov (United States)

    Herrera, Elisa; Giacomelli, Carla E

    2014-05-01

    This work presents a systematic study on the relationship between the adsorption mechanism and the surface bio-activity of D-amino acid oxidase (pkDAAO). This rational approach is based on measuring the characteristic filling and relaxation times under different experimental conditions. With such a goal, real-time adsorption-desorption experiments at different degrees of surface coverage were performed tuning the electrostatic and hydrophobic interactions by changing the pH condition for the adsorption and the substrate properties (silica or gold). Surface bio-activity was measured in situ by amperometry using the bio-functional surface as the working electrode and ex situ by spectrophotometry. On both solid substrates, pkDAAO adsorption is a transport-controlled process, even under unfavorable electrostatic interactions (charged protein and substrate with the same sign) due to the high percentage of basic amino acids in the enzyme. On silica, the relaxation step is electrostatic in nature and occurs in the same time-scale as filling the surface when the substrate and the enzyme are oppositely charged at low surface coverage. Under unfavorable electrostatic conditions, the relaxation (if any) occurs at long time. Accordingly, the bio-activity of the native pkDAAO is preserved at any surface coverage. On gold, this step is driven by hydrophobic interactions (pH-independent) and the surface bio-activity is highly dependent on the degree of surface coverage. Under these conditions, the surface bio-activity is preserved only at high surfaces coverage. Our results clearly indicate that pkDAAO bio-functionalized surfaces cannot be coupled to amperometry because the analyte interferes the electrochemical signal. However, this simple bio-functionalized strategy can be joined to other detection methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Fibroblast adhesion and activation onto micro-machined titanium surfaces.

    Science.gov (United States)

    Guillem-Marti, J; Delgado, L; Godoy-Gallardo, M; Pegueroles, M; Herrero, M; Gil, F J

    2013-07-01

    Surface modifications performed at the neck of dental implants, in the manner of micro-grooved surfaces, can reduce fibrous tissue encapsulation and prevent bacterial colonization, thereby improving fibrointegration and the formation of a biological seal. However, the applied procedures are technically complex and/or time consuming methods. The aim of this study was to analyse the fibroblast behaviour on modified titanium surfaces obtained, applying a simple and low-cost method. An array of titanium surfaces was obtained using a commercial computerized numerical control lathe, modifying the feed rate and the cutting depth. To elucidate the potential ability of the generated surfaces to activate connective tissue cells, a thorough gene (by real time - qPCR) and protein (by western blot or zymography) expression and cellular response characterization (cell morphology, cell adhesion and cell activation by secreting extracellular matrix (ECM) components and their enzyme regulators) was performed. Micro-grooved surfaces have statistically significant differences in the groove's width (approximately 10, 50 and 100 μm) depending on the applied advancing fixed speed. Field emission scanning electron microscopy images showed that fibroblasts oriented along the generated grooves, but they were only entirely accommodated on the wider grooves (≥50 μm). Micro-grooved surfaces exhibited an earlier cell attachment and activation, as seen by collagen Iα1 and fibronectin deposition and activation of ECM remodelling enzymes, compared with the other surfaces. However, fibroblasts could remain in an activated state on narrower surfaces (micro-grooved surfaces could improve implant integration at the gingival site with respect to polished surfaces. Micro-grooved surfaces enhance early fibroblast adhesion and activation, which could be critical for the formation of a biological seal and finally promote tissue integration. Surfaces with wider grooves (≥50 μm) seem to be more

  14. Evolution of internal modes, disruptions and high-Z impurities at high density in pulsator

    International Nuclear Information System (INIS)

    Sesnic, S.

    1976-04-01

    The m = 1, n = 1 internal modes, the m = 0, n = 0 internal disruption and the development of high-Z impurities in high-density Tokamak discharges were investigated in the soft X-ray region. The increased density due to the fast gas input results in an increased relaxation period of the m = 0 disruption and increased modulation coefficient. The energy consideration for the internal disruption shows that only about one quarter of the ohmic heating power is lost through the electron channel. The measurements with Si surface barrier diodes, the measurements of Zeta (factor of the amount of the impurities in a hydrogen plasma) of molybdenum and stainless steel lines seem to indicate that the impurity profile is inverted with a minimum in the center. These measurements also indicate not only that the relative impurity content goes down during the fast gas input, but also that the impurities are possibly even expelled from the center of the discharge. (orig.) [de

  15. Surface activity of Acinetobacter calcoaceticus sp. 2CA2

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, R.J.; Zajic, J.E.

    1984-01-01

    The hydrocarbon metabolizing Acinetobacter calcoaceticus sp. 2CA2 reduces the surface tension of the culture broth during growth on liquid hydrocarbons. This activity, which is not evident during growth on soluble substrates, is associated with the whole cells. Removing the cells from the culture broth increases the surface tension of the liquid phase. The cells when resuspended in water result in a dramatic lowering of the surface tension. Acinetobacter sp. 2CA2 tends to partition between the two liquid phases during growth on hydrocarbons. Both the hydrocarbon bound and nonadhering cells are equally surface active. The whole cells are also able to form and stabilize kerosene-water emulsions. This ability is not related to the lowering of the liquid surface or interfacial tension, since both surface active and nonsurface active cells demonstrated the same emulsifying properties. An extracellular lipopeptide produced during growth on hydrocarbons is not surface active but effectively forms and stabilizes kerosene-water emulsions. The cells and extracellular lipopeptide are also effective in de-emulsifying surfactant stabilized test emulsions. The cells and extracellular lipopeptide are also effective in de-emulsifying surfactant stabilized test emulsions. The lipopeptide product reduced the half-life of a Tween-Span (TS) stabilized kerosene-water emulsion from 650 to 0.4 h at product concentrations of less than 1% (w/v).

  16. Monovalent impurities on graphene: midgap states and migration barriers

    OpenAIRE

    Wehling, T. O.; Katsnelson, M. I.; Lichtenstein, A. I.

    2009-01-01

    Monovalent impurities on graphene can be divided into ionically and covalently bond impurities. The covalent impurities cause universal midgap states as the carbon atom next to the impurity is effectively decoupled from the graphene pi-bands. The electronic structure of graphene suppresses migration of these impurities and making the universal midgap very stable. This effect is strongest for neutral covalently bond impurities. The ionically bond impurities have migration barriers of typically...

  17. Void growth suppression by dislocation impurity atmospheres

    International Nuclear Information System (INIS)

    Weertman, J.; Green, W.V.

    1976-01-01

    A detailed calculation is given of the effect of an impurity atmosphere on void growth under irradiation damage conditions. Norris has proposed that such an atmosphere can suppress void growth. The hydrostatic stress field of a dislocation that is surrounded by an impurity atmosphere was found and used to calculate the change in the effective radius of a dislocation line as a sink for interstitials and vacancies. The calculation of the impurity concentration in a Cottrell cloud takes into account the change in hydrostatic pressure produced by the presence of the cloud itself. It is found that void growth is eliminated whenever dislocations are surrounded by a condensed atmosphere of either oversized substitutional impurity atoms or interstitial impurity atoms. A condensed atmosphere will form whenever the average impurity concentration is larger than a critical concentration

  18. Impure placebo is a useless concept.

    Science.gov (United States)

    Louhiala, Pekka; Hemilä, Harri; Puustinen, Raimo

    2015-08-01

    Placebos are allegedly used widely in general practice. Surveys reporting high level usage, however, have combined two categories, 'pure' and 'impure' placebos. The wide use of placebos is explained by the high level usage of impure placebos. In contrast, the prevalence of the use of pure placebos has been low. Traditional pure placebos are clinically ineffective treatments, whereas impure placebos form an ambiguous group of diverse treatments that are not always ineffective. In this paper, we focus on the impure placebo concept and demonstrate problems related to it. We also show that the common examples of impure placebos are not meaningful from the point of view of clinical practice. We conclude that the impure placebo is a scientifically misleading concept and should not be used in scientific or medical literature. The issues behind the concept, however, deserve serious attention in future research.

  19. Laser activation of diamond surface for electroless metal plating

    Science.gov (United States)

    Pimenov, S. M.; Shafeev, G. A.; Laptev, V. A.; Loubnin, E. N.

    1994-04-01

    Selective area electroless nickel and copper deposition onto the surface of diamond single crystals and polycrystalline diamond films has been realized. Three methods of laser-assisted activation of diamond surface were applied: (i) prenucleation of diamond surface with a thin layer of palladium catalyst via laser-induced decomposition of a palladium acetyl-acetonate [Pd(acac)2] solid film; (ii) deposition of palladium by means of the decomposition of Pd(acac)2 dissolved in dimethylformamide; (iii) laser-induced damage of diamond surface.

  20. Impurity study of TMX using ultraviolet spectroscopy

    International Nuclear Information System (INIS)

    Allen, S.L.; Strand, O.T.; Moos, H.W.; Fortner, R.J.; Nash, T.J.; Dietrich, D.D.

    1981-01-01

    An extreme ultraviolet (EUV) study of the emissions from intrinsic and injected impurities in TMX is presented. Two survey spectrographs were used to determine that the major impurities present were oxygen, nitrogen, carbon, and titanium. Three absolutely-calibrated monochromators were used to measure the time histories and radial profiles of these impurity emissions in the central cell and each plug. Two of these instruments were capable of obtaining radial profiles as a function of time in a single shot

  1. Effect of Feedstock and Catalyst Impurities on the Methanol?to?Olefin Reaction over H?SAPO?34

    OpenAIRE

    Vogt, Charlotte; Weckhuysen, Bert M.; Ruiz?Mart?nez, Javier

    2016-01-01

    Abstract Operando UV/Vis spectroscopy with on?line mass spectrometry was used to study the effect of different types of impurities on the hydrocarbon pool species and the activity of H?SAPO?34 as a methanol?to?olefins (MTO) catalyst. Successive reaction cycles with different purity feedstocks were studied, with an intermittent regeneration step. The combined study of two distinct impurity types (i.e., feed and internal impurities) leads to new insights into MTO catalyst activation and deactiv...

  2. Effect of Feedstock and Catalyst Impurities on the Methanol-to-Olefin Reaction over H-SAPO-34

    OpenAIRE

    Vogt, Charlotte; Weckhuysen, Bert M.; Ruiz-martínez, Javier

    2017-01-01

    Operando UV/Vis spectroscopy with on-line mass spectrometry was used to study the effect of different types of impurities on the hydrocarbon pool species and the activity of H-SAPO-34 as a methanol-to-olefins (MTO) catalyst. Successive reaction cycles with different purity feedstocks were studied, with an intermittent regeneration step. The combined study of two distinct impurity types (i.e., feed and internal impurities) leads to new insights into MTO catalyst activation and deactivation mec...

  3. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickenheim, B. R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bibler, N. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hay, M. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-08

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid

  4. Method for detecting trace impurities in gases

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  5. Morphological stability during solidification of silicon incorporating metallic impurities

    Science.gov (United States)

    Warrender, Jeffrey M.; Mathews, Jay; Recht, Daniel; Smith, Matthew; Gradečak, Silvija; Aziz, Michael J.

    2014-04-01

    We study the stability of a planar solidification front during pulsed laser melting-induced rapid solidification of silicon containing high concentrations of ion-implanted metallic impurities. We calculate the critical impurity concentration for destabilizing plane-front solidification, and introduce the "amplification coefficient," which is an empirical parameter describing the degree of amplification that must occur between the time the planar liquid-solid interface first becomes unstable, and the time of formation of morphological features of interface breakdown that is later observed in the microstructure. By connecting our calculations to experimental observations from the literature, we determine this parameter for Au, Co, Cr, Fe, Ga, In, and Zn in (100) Si and Ti in (111) Si, and find that it increases with impurity diffusive speed vD approximately as vD0.56. We present an approximate but simple method of estimating the maximum impurity concentration that may be incorporated in a surface layer of a given thickness without the appearance of cellular breakdown.

  6. PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF

    Science.gov (United States)

    Kilner, S.B.

    1959-11-01

    A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.

  7. Effect of light impurities on the early stage of swelling in austenitic stainless steel

    International Nuclear Information System (INIS)

    Igata, N.

    1998-01-01

    The objective of this study is to analyse the early stage of swelling and clarify the role of light impurities (nitrogen) in swelling of austenitic stainless steel. Recent results show that light impurities affect the swelling of 316 stainless steel under HVEM irradiation up to 10 dpa. At low concentration of light impurities the radiation swelling increases then decreases through the maximum as the concentration of light impurities increases. In the present paper the theoretical model is presented for the explanation of this effect. The model is based on the two factors: the influence of absorbed impurities on the voids caused by the production of an additional gas pressure in voids for their stabilization and the effect of impurities segregated around the surface of voids by the lowering of surface tension. These two affects are taken into account in the calculations of the critical size and the growth rate of cavities. The theoretical predictions on the radiation swelling rate dependent on the impurity concentration and temperature coincided with the experimental results on 316 stainless steel irradiated by HVEM. (orig.)

  8. Surface-activated joining method for surveillance coupon reconstitution

    International Nuclear Information System (INIS)

    Kaihara, Shoichiro; Nakamura, Terumi

    1993-01-01

    As nuclear power plants approach the end of their license periods and license renewal is contemplated, there is an increasing need to expand the data base of mechanical properties obtainable from archival surveillance specimens. A new joining method for reconstituting broken Charpy specimens is being developed, the objective being to retain the original properties of the material in the process. The new method is called surface-activated joining (SAJ). It is designed to obtain a good junction without applying extra heating and deformation. In particular, the purpose of SAJ is to minimize the width of the heat-affected zone (HAZ) and to decrease the maximum temperature experienced by the specimen during reconsolidation of the two pieces. Generally, machined metal surfaces are contaminated with films of oxide, adsorbed gas, oil, or other vapors that impede bonding of surfaces during joining. However, if surface contamination is removed and the two surfaces are mated as closely as possible, joining can be achieved at low temperatures and modest stress levels. In order to apply the SAJ method, the following requirements must be met: (1) inert atmosphere to protect the surfaces from atmospheric gases and oxidation; (2) removal of the existing contamination layers to activate the surfaces; and (3) method for bringing the two surfaces into very intimate contact prior to joining

  9. Surface activity, lipid profiles and their implications in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Preetha A

    2005-01-01

    Full Text Available Background: The profiles of lipids in normal and cancerous tissues may differ revealing information about cancer development and progression. Lipids being surface active, changes in lipid profiles can manifest as altered surface activity profiles. Langmuir monolayers offer a convenient model for evaluating surface activity of biological membranes. Aims: The aims of this study were to quantify phospholipids and their effects on surface activity of normal and cancerous human cervical tissues as well as to evaluate the role of phosphatidylcholine (PC and sphingomyelin (SM in cervical cancer using Langmuir monolayers. Methods and Materials: Lipid quantification was done using thin layer chromatography and phosphorus assay. Surface activity was evaluated using Langmuir monolayers. Monolayers were formed on the surface of deionized water by spreading tissue organic phase corresponding to 1 mg of tissue and studying their surface pressure-area isotherms at body temperature. The PC and SM contents of cancerous human cervical tissues were higher than those of the normal human cervical tissues. Role of PC and SM were evaluated by adding varying amounts of these lipids to normal cervical pooled organic phase. Statistical analysis: Student′s t-test (p < 0.05 and one-way analysis of variance (ANOVA was used. Results: Our results reveals that the phosphatidylglycerol level in cancerous cervical tissue was nearly five folds higher than that in normal cervical tissue. Also PC and sphingomyelin SM were found to be the major phospholipid components in cancerous and normal cervical tissues respectively. The addition of either 1.5 µg DPPC or 0.5 µg SM /mg of tissue to the normal organic phase changed its surface activity profile to that of the cancerous tissues. Statistically significant surface activity parameters showed that PC and SM have remarkable roles in shifting the normal cervical lipophilic surface activity towards that of cancerous lipophilic

  10. Distribution of light-absorbing impurities in snow of glacier on Mt. Yulong, southeastern Tibetan Plateau

    Science.gov (United States)

    Niu, Hewen; Kang, Shichang; Zhang, Yulan; Shi, Xiaoyi; Shi, Xiaofei; Wang, Shijin; Li, Gang; Yan, Xingguo; Pu, Tao; He, Yuanqing

    2017-11-01

    Insoluble light-absorbing impurities (ILAIs) in surface snow of glacier reduce snow albedo and accelerate glacier melt. In order to assess effects of ILAIs on glacier melt, we present the first results from field measurements of ILAIs, including black carbon (BC) and dust in snowpacks of glacier on Mt. Yulong, southeastern Tibetan Plateau (TP). Amplification factors because of snow melt were calculated for BC and dust concentrations in surface snow, and melt scavenging rates, effects of ILAIs on snow spectral albedo, and associated radiative forcing (RF) were estimated. Melt amplification generally appeared to be confined to the top few centimeters of the snowpack, and our results indicated that BC was more efficiently scavenged with meltwater than the other insoluble light-absorbers (e.g., dust). Absorbing impurities reduced snow spectral albedo more with larger particulate grain radius (re). Spectral albedo reduction was investigated using the SNow ICe Aerosol Radiative (SNICAR) model. Albedo reduction for 1200 ng g- 1 of BC in Mt. Yulong snow was 0.075 for snow with re = 500 compared with re = 200 μm. If dust (51.37 ppm) was the only impurity in the snowpack, the spectral albedo reduction would be only 0.03, and the associated RF was 42.76 W m- 2. For a BC and dust mixed scenario, the spectral albedo was substantially reduced (0.11 ± 0.03), and the associated RF (145.23 W m- 2) was more than three times larger than that for the dust-only scenario. BC in snow is an active factor controlling snow albedo and snow-ice RF. Further observational studies are needed to quantify the contribution of BC and dust to albedo reduction and glacier melt and to characterize the variation of glacier RF.

  11. Interaction of horophile impurities in multi-component alloy during their internal adsorption

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Darovskikh, E.G.; Zhuravlev, B.F.; AN Ukrainskoj SSR, Donetsk. Fiziko-Tekhnicheskij Inst.; AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1975-01-01

    The X-ray spectral analysis was used to investigate into the phenomenon of intercrystalline internal adsorption of different elements present in a multicomponent Nb-base alloy. The samples to be investigated underwent various kinds of heat treatments within the temperature range of 800 to 1800 deg C with different hold-up periods during heating and with different cooling rate. The annealing was performed in a high temperature vacuum furnace. The surface enrichment of the intercrystalline fractures was evaluated from the ratio of the element characteristic line intensity on the X-ray spectrograms of the fractures and sections. The studies have shown, that along with a possible intercrystalline internal adsorption of different impurities, the cases occur when one of the impurities is more readily adsorbed, while suppressing or preventing the adsorption of other elememts. The ''exchange'' of competing impurities proceeds by way of diffusion and is temperature dependent. The intercrystalline internal adsorption of chromium occurs within the temperature range of 1800 to 1500 deg C. Zr exhibits a noticeable intercrystalline internal adsorption at 800 deg C, whereas at 1100 deg and above there exists practically no intercrystalline internal adsorption of Zr. The intercrystalline internal adsorption of W and Mn occurs at about 1800 deg C, that of Mo at 1500 deg C. An evident enrichment of the fracture surfaces with Cu takes place during heating at 1100 deg within 200 hrs after quenching or slow cooling from 1800 deg C. Zirconium not only occupies the places of a possible adsorption in the structure of intercrystalline joints, getting vacant due to Cr adsorption (at 800 deg), but replaces its competitors actively at this temperature

  12. HLA-F is a surface marker on activated lymphocytes.

    Science.gov (United States)

    Lee, Ni; Ishitani, Akiko; Geraghty, Daniel E

    2010-08-01

    Of the three nonclassical class I antigens expressed in humans, HLA-F has been least characterized with regard to expression or function. In this study, we examined HLA-F expression focusing on lymphoid cells, where our previous work with homologous cell lines had demonstrated surface HLA-F expression. HLA-F protein expression was observed by Western blot analysis in all resting lymphocytes, including B cells, T cells, NK cells, and monocytes, all of which lacked surface expression in the resting state. Upon activation, using a variety of methods to activate different lymphocyte subpopulations, all cell types that expressed HLA-F intracellularly showed an induction of surface HLA-F protein. An examination of peripheral blood from individuals genetically deficient for TAP and tapasin expression demonstrated the same activation expression profiles for HLA-F,but with altered kinetics post-activation. Further analysis of CD41+CD25+1 Treg showed that HLA-F was not upregulated on the major fraction of these cells when they were activated,whereas CD41+CD25- T cells showed strong expression of surface HLA-F when activated under identical conditions. These findings are discussed with regard to possible functions for HLA-F and its potential clinical use as a marker of an activated immune response.

  13. Synthesis and surface active properties of cationic surface active agents from crude rice bran oil

    Directory of Open Access Journals (Sweden)

    El-Dougdoug, W. I. A.

    1999-10-01

    Full Text Available Cationic surfactants of 2-hidroxy-3-(2- alkylamidopolyethyl amino propane-1-triethylammonium hydroxides (ix-xuia-d were prepared from fatty acids (ia-d [palmitic, stearic, oleic, linoleic acid] and mixed fatty acids of crude rice bran oil ie [RBO]. The reaction of these acids with ethylenediamine, diethylenetriamine, triethylenetetramine andletraethylenepentamine (iia-d produced (iii-viia-d. The produced amidopolyethylamine (iii-viia-d reacted with 2-epoxypropylenetriethylammonium chloride (viii to give the cationic surfactants (ix-xiiia-d . The produced derivatives were purified and characterized by microanalysis, molecular weight determination, infra-red (IR, and proton nuclear magnetic resonance (1H NMR spectra. The surface active properties and inhibition efficiency of the prepared cationic surfactants were determined.

    Se han preparado tensioactivos catiónicos de hidróxidos de! 2-hidroxi-3-(2-alquilamidopolietilamino propano-1;trietilamonio (ix-xiiia-d a partir de los ácidos grasos (ia-d [ácido palmítico, esteárico, oleico y linoleico] y mezclas de ácidos grasos de aceite de germen de arroz crudo ie [RBO]. La reacción de estos ácidos con etilenodiamina, dietilenotriamina, trietilenotetramina y tetraetilenopentamina (iia-d produjo los compuestos (iv-viia-d . Los amidopolietilaminos producidos (iii-viia-d reaccionaron con el cloruro de 2-epoxipropilenotrietilamonio (viii para dar los tensioactivos catiónicos (ix-xiiia-d. Los derivados producidos se purificaron y caracterizaron por microanálisis, determinación del peso molecular, espectros de infrarrojo (IR y resonancia magnética nuclear de protón (1H NMR. Se determinaron las propiedades tensioactivas y la eficacia de inhibición de los tensioactivos cati

  14. Mechanochemical activation and gallium and indiaarsenides surface catalycity

    Science.gov (United States)

    Kirovskaya, I. A.; Mironova, E. V.; Umansky, I. V.; Brueva, O. Yu; Murashova, A. O.; Yureva, A. V.

    2018-01-01

    The present work has been carried out in terms of determining the possibilities for a clearer identification of the active sites nature, intermediate surface compounds nature, functional groups during adsorption and catalysis, activation of the diamond-like semiconductors surface (in particular, the AIIIBV type) based on mechanochemical studies of the “reaction medium (H2O, iso-C3H7OH) - dispersible semiconductor (GaAs, InAs)” systems. As a result, according to the read kinetic curves of dispersion in water, both acidification and alkalinization of the medium have been established and explained; increased activity of the newly formed surface has been noted; intermediate surface compounds, functional groups appearing on the real surface and under H2O adsorption conditions, adsorption and catalytic decomposition of iso-C3H7OH have been found (with explanation of the origin). The unconcealed role of coordinatively unsaturated atoms as active sites of these processes has been shown; the relative catalytic activity of the semiconductors studied has been evaluated. Practical recommendations on the preferred use of gallium arsenide in semiconductor gas analysis and semiconductor catalysis have been given in literature searches, great care should be taken in constructing both.

  15. Atomic and molecular layer activation of dielectric surfaces

    Science.gov (United States)

    Senkevich, John Joseph

    Strong interaction between the material deposit and substrate is critical to stable deposits and interfaces. The work presented here focuses on the surface activation of dielectric surfaces and oxidized metal surfaces to promote the chemisorption of palladium (II) hexafluoroacetylacetonate (PdII (hfac)2). The goal is to develop reliable, robust metallization protocols, which enable strong interactions between the metal and substrate. SiO2, air exposed Ta, Trikon, and SiLK were activated with sulfur or phosphorus. Two types of activations were developed; one based on self-assembled chemistry, and the other a plasma-assisted process. Activation of the surface using self-assembly techniques was carried out using mercaptan-terminated silane and tetrasulfide silane. The resulting films were characterized by variable angle spectroscopic ellipsometry, contact angle goniometry, and X-ray photoelectron spectroscopy. Tetrasulfide silane sources films exhibit self-limiting behavior, even in the presence of water vapor; whereas mercaptan-terminated silane sourced films tend to be thicker. The surface activations using atomic layers of sulfur and phosphorus were carried out in a rf plasma chamber using hydrogen sulfide and phosphine sources, respectively. The activations were studied as functions of rf power, system pressure, and substrate material. Results show that higher rf powers and lower system pressures promote greater surface coverages by sulfur with a reduced oxidation state. The activated dielectrics show evidence of PdII(hfac)2 chemisorption, in contrast to non-activated surfaces. The binding energy shift of the Pd3d 5/2 XPS peak towards elemental Pd provides evidence for the dissociative chemisorption of PdII(hfac)2. The extent of dissociation depends on the substrate temperature and the activation method used. The conclusions of the work presented here have implications for metallization using highly polarizable transition metals. Specifically, it can be applied to

  16. Impurity control in near-term tokamak reactors

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Smith, D.L.; Brooks, J.N.

    1976-10-01

    Several methods for reducing impurity contamination in near-term tokamak reactors by modifying the first-wall surface with a low-Z or low-sputter material are examined. A review of the sputtering data and an assessment of the technological feasibility of various wall modification schemes are presented. The power performance of a near-term tokamak reactor is simulated for various first-wall surface materials, with and without a divertor, in order to evaluate the likely effect of plasma contamination associated with these surface materials

  17. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Posske, Thore Hagen

    2016-02-26

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  18. Effects of Surface Treatment of Activated Carbon on Its Surface and Cr(VI) Adsorption Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Jin; Jang, Yu Sin [Advanced Materials Division., Korea Research Institute of Chimical Technology, Taejon (Korea)

    2001-04-01

    In this work, the effect of surface treatments on activated carbons (ACs) has been studied in the context of gas and liquid adsorption behaviors. The chemical solutions used in this experiment were 35% sodium hydroxide, and these were used for the acidic and basic treatments, respectively. The surface properties have been determined by pH, acid-base values, and FT-IR. The adsorption isotherms of Cr(VI) ion on activated carbons have been studied with the 5 mg/l concentration at ambient temperature. N{sub 2} adsorption isotherm characteristics, which include the specific surface area, micro pore volume, and microporosity, were determined by BET and Boer's-plot methods. In case of the acidic treatment of activated carbons, it was observed that the adsorption of Cr(VI) ion was more effective due to the increase acid value (or acidic functional group) of activated carbon surfaces. However, the basic treatment on activated carbons was caused no significant effects, probably due to the decreased specific surface area and total pore volume. 27 refs., 7 figs., 4 tabs.

  19. Depolarization of diffusing spins by paramagnetic impurities

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Hutson, R.L.; Heffner, R.H.; Leon, M.; Dodds, S.A.; Estle, T.L.

    1980-01-01

    The depolarization of diffusing spins (muons) interacting with dilute paramagnetic impurities in a solid was studied using a simple computational model which properly treats the muon motion and preserves correct muon-impurity distances. Long-range (dipolar) and nearest-neighbor (contact) interactions are treated together. Diffusion parameters are deduced and model comparisons made for AuGd

  20. Nonlinear screening of charge impurities in graphene

    OpenAIRE

    Katsnelson, M. I.

    2006-01-01

    It is shown that a ``vacuum polarization'' induced by Coulomb potential in graphene leads to a strong suppression of electric charges even for undoped case (no charge carriers). A standard linear response theory is therefore not applicable to describe the screening of charge impurities in graphene. In particular, it overestimates essentially the contributions of charge impurities into the resistivity of graphene.

  1. Response surface optimisation for activation of bentonite with microwave irradiation

    Directory of Open Access Journals (Sweden)

    Rožić Ljiljana S.

    2011-01-01

    Full Text Available In this study, the statistical design of the experimental method was applied on the acid activation process of bentonite with microwave irradiation. The influence of activation parameters (time, acid normality and microwave heating power on the selected process response of the activated bentonite samples was studied. The specific surface area was chosen for the process response, because the chemical, surface and structural properties of the activated clay determine and limit its potential applications. The relationship of various process parameters with the specific surface area of bentonite was examined. A mathematical model was developed using a second-order response surface model (RSM with a central composite design incorporating the above mentioned process parameters. The mathematical model developed helped in predicting the variation in specific surface area of activated bentonite with time (5-21 min, acid normality (2-7 N and microwave heating power (63-172 W. The calculated regression models were found to be statistically significant at the required range and presented little variability. Furthermore, high values of R2 (0.957 and R2 (adjusted (0.914 indicate a high dependence and correlation between the observed and the predicted values of the response. These high values also indicate that about 96% of the result of the total variation can be explained by this model. In addition, the model shows that increasing the time and acid normality improves the textural properties of bentonites, resulting in increased specific surface area. This model also can be useful for setting an optimum value of the activation parameters for achieving the maximum specific surface area. An optimum specific surface area of 142 m2g-1 was achieved with an acid normality of 5.2 N, activation time of 7.38 min and microwave power of 117 W. Acid activation of bentonite was found to occur faster with microwave irradiation than with conventional heating. Microwave

  2. Linear response theory of activated surface diffusion with interacting adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Marti' nez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A.S.; Vega, J.L. [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rojas-Lorenzo, G. [Instituto Superior de Tecnologi' as y Ciencias Aplicadas, Ave. Salvador Allende, esq. Luaces, 10400 La Habana (Cuba); Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain); Miret-Artes, S., E-mail: s.miret@imaff.cfmac.csic.es [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain)

    2010-05-12

    Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.

  3. Low Energy Surface Activation of Zirconia Based Restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N

    2016-03-01

    To evaluate the influence of low energy surface activation technique on the biaxial flexure strength of zirconia frameworks. Zirconia discs were prepared by cutting CAD/CAM zirconia blocks. Sintered discs were airborne particle abraded using one of the following particles: 30 μm alumina particles, 50 μm alumina particles, or modified round edges 30 μm alumina particles at low pressure. Scanning electron microscopy, x-ray diffraction analysis, surface roughness, and biaxial flexure strength tests were performed (n = 20). Fractured specimens were fractographically analyzed (α = 0.05). Low energy surface activation resulted in 7% monoclinic crystallographic transformation, increasing surface roughness from 0.05 to 0.3 μm and in significant increase in biaxial flexure strength (1718 MPa) compared 30 μm (1064 MPa), 50 μm (1210 MPa), and as-sintered specimens (1150 MPa). Low energy surface activation of zirconia specimens improved the biaxial flexure strength of zirconia frameworks without creation of surface damage. Clinical implications: by controlling particle size and shape of alumina, the flexure strength of zirconia restorations could be increased usinglow pressure particle abrasion.

  4. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, cultur...... for determining bacterial activity might provide a means for future monitoring and assessment of microbial water quality in aquaculture farming systems......Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  5. Active surface system for the new Sardinia Radiotelescope

    Science.gov (United States)

    Orfei, Alessandro; Morsiani, Marco; Zacchiroli, Giampaolo; Maccaferri, Giuseppe; Roda, Juri; Fiocchi, Franco

    2004-09-01

    In this paper we'll describe the active surface system that will be provided on the new Italian radiotelescope being in the phase of erection in the Sardinia Island. SRT (Sardinia Radiotelescope) will be a 64m shaped dish working up to 100GHz by exploiting the active surface facility designed by the authors. This facility will overcome the effects of gravity deformations on the antenna gain and will also be used to re-shape in a parabolic form the primary mirror, in order to avoid large phase error contribution on the antenna gain for the highest frequencies placed on the primary focus. Together with the description of the SRT system, a wide overview will be given regarding our previous installation of an active surface system, that can be seen like a prototype for SRT, mounted on the 32m dish of the Noto antenna.

  6. Influence of impurities on the fuel retention in fusion reactors

    International Nuclear Information System (INIS)

    Reinhart, Michael

    2015-01-01

    The topic of this thesis is the influence of plasma impurities on the hydrogen retention in metals, in the scope of plasma-wall-interaction research for fusion reactors. This is addressed experimentally and by modelling. The mechanisms of the hydrogen retention are influenced by various parameters like the wall temperature, ion energy, flux and fluence as well as the plasma composition. The plasma composition is a relevant factor for hydrogen retention in fusion reactors, as their plasma will also contain impurities like helium or seeded impurities like argon. The experiments treated in this thesis were performed in the linear plasma generator PSI-2 at Forschungszentrum Juelich, and are divided in 3 parts: The first experiments cover the plasma diagnostics, most importantly the measurement of the impurity ion concentration in the plasma by optical emission spectroscopy. This is a requirement for the later experiments with mixed plasmas. Diagnostics like Langmuir probe measurements are not applicable for this task because they do not distinguish different ionic species. The results also show that the impurity ion concentrations cannot be simply concluded from the neutral gas input to the plasma source, because the relation between the neutral gas concentration and impurity ion concentration is not linear. The second and main part of the experiments covers the exposure of tungsten samples to deuterium plasmas. In the experiments, the impurity ion type and concentration is variated, to verify the general influence of helium and argon on the deuterium retention in tungsten samples exposed at low temperatures. It shows that helium impurities reduce the amount of retained deuterium by a factor of 3, while argon impurities slightly increase the total retention, compared to exposures to a pure deuterium plasma. Cross-sections of the exposed tungsten surfaces via TEM-imaging reveal a 12-15 nm deep helium nanobubble layer at the surface of the sample, while for the cases of

  7. Investigation by the Rutherford backscattering method of impurity deposited on the T-3M tokamak diaphragm

    International Nuclear Information System (INIS)

    Danelyan, L.S.; Egorova, I.M.; Kulikauskas, V.S.; Baratov, D.G.; Belykh, T.A.

    1994-01-01

    The Rutherford backscattering of helium-4 ions was used for investigation of impurity deposited on the annular graphite diaphragm as a result of the interaction between hydrogen plasma and liquid-metal spray limiter. The experimental RBS spectra distributions of the impurity elements surface densities along the direction from plasma to the chamber wall are presented as depth of the elements. The erosion coefficient of the main liquid-metal limiter element has been estimated

  8. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    Energy Technology Data Exchange (ETDEWEB)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K. [Tokyo Univ., Tokyo (Japan); Mishima, K. [Kyoto Univ., Kyoto (Japan); Furuya, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2003-07-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by {gamma}-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by {gamma}-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co {gamma}-ray irradiation.

  9. Mechanism of Hydrophilicity by Radiation-Induced Surface Activation

    Science.gov (United States)

    Honjo, Yoshio; Furuya, Masahiro; Takamasa, Tomoji; Okamoto, Koji

    When a metal oxide is irradiated by gamma rays, the irradiated surface becomes hydrophilic. This surface phenomenon is called as radiation-induced surface activation (RISA) hydrophilicity. In order to investigate gamma ray-induced and photoinduced hydrophilicity, the contact angles of water droplets on a titanium dioxide surface were measured in terms of irradiation intensity and time for gamma rays of cobalt-60 and for ultraviolet rays. Reciprocals of the contact angles increased in proportion to the irradiation time before the contact angles reached its super-hydrophilic state. The irradiation time dependency is equal to each other qualitatively. In addition, an effect of ambient gas was investigated. In pure argon gas, the contact angle remains the same against the irradiation time. This clearly indicates that certain humidity is required in ambient gas to take place of RISA hydrophilicity. A single crystal titanium dioxide (100) surface was analyzed by X-ray photoelectron spectrometry (XPS). After irradiation with gamma rays, a peak was found in the O1s spectrum, which indicates the adsorption of dissociative water to a surface 5-fold coordinate titanium site, and the formation of a surface hydroxyl group. We conclude that the RISA hydrophilicity is caused by chemisorption of the hydroxyl group on the surface.

  10. Uranium analysis. Impurities determination by spark mass spectrometry

    International Nuclear Information System (INIS)

    Anon.

    Determination of impurities in uranium, suitable for atomic content greater than 10 -8 , particularly adapted for a low content. The method is quantitative for metallic impurities and qualitative for non metallic impurities [fr

  11. Surface activation of dyed fabric for cellulase treatment.

    Science.gov (United States)

    Schimper, Christian B; Ibanescu, Constanta; Bechtold, Thomas

    2011-10-01

    Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to fabricate a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate a suitably-doped active layer...

  13. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to fabricate a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate a suitably-doped active layer...

  14. Immune complement activation is attenuated by surface nanotopography

    Directory of Open Access Journals (Sweden)

    Elwing H

    2011-10-01

    Full Text Available Mats Hulander1, Anders Lundgren1, Mattias Berglin1, Mattias Ohrlander2, Jukka Lausmaa3,4, Hans Elwing1 1Department of Cell and Molecular Biology/Interface Biophysics, University of Gothenburg, Medicinaregatan 9E, Gothenburg, 2Bactiguard AB, Stockholm, 3SP Technical Research Institute, Boras, 4Biomatcell, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Abstract: The immune complement (IC is a cell-free protein cascade system, and the first part of the innate immune system to recognize foreign objects that enter the body. Elevated activation of the system from, for example, biomaterials or medical devices can result in both local and systemic adverse effects and eventually loss of function or rejection of the biomaterial. Here, the researchers have studied the effect of surface nanotopography on the activation of the IC system. By a simple nonlithographic process, gold nanoparticles with an average size of 58 nm were immobilized on a smooth gold substrate, creating surfaces where a nanostructure is introduced without changing the surface chemistry. The activation of the IC on smooth and nanostructured surfaces was viewed with fluorescence microscopy and quantified with quartz crystal microbalance with dissipation monitoring in human serum. Additionally, the ability of pre-adsorbed human immunoglobulin G (IgG (a potent activator of the IC to activate the IC after a change in surface hydrophobicity was studied. It was found that the activation of the IC was significantly attenuated on nanostructured surfaces with nearly a 50% reduction, even after pre-adsorption with IgG. An increase in surface hydrophobicity blunted this effect. The possible role of the curvature of the nanoparticles for the orientation of adsorbed IgG molecules, and how this can affect the subsequent activation of the IC, are discussed. The present findings are important for further understanding of how surface nanotopography affects complex protein

  15. Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities.

    Science.gov (United States)

    Jung, Han Sae; Tsai, Hsin-Zon; Wong, Dillon; Germany, Chad; Kahn, Salman; Kim, Youngkyou; Aikawa, Andrew S; Desai, Dhruv K; Rodgers, Griffin F; Bradley, Aaron J; Velasco, Jairo; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Zettl, Alex; Crommie, Michael F

    2015-07-24

    Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene's charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene's electronic properties. Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge and/or molecular states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies. These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices.

  16. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    International Nuclear Information System (INIS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-01-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N 2 /H 2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  17. Sputtering of a silicon surface: Preferential sputtering of surface impurities

    Czech Academy of Sciences Publication Activity Database

    Nietiadi, M.L.; Rosandi, Y.; Lorinčík, Jan; Urbassek, H.M.

    -, č. 303 (2013), s. 205-208 ISSN 0168-583X Institutional support: RVO:67985882 Keywords : Sputtering * Molecular dynamics * SIMS Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.186, year: 2013

  18. Spectroscopic Study of the Surface Oxidation of Mechanically Activated Sulphides

    Czech Academy of Sciences Publication Activity Database

    Godočíková, E.; Baláž, P.; Bastl, Zdeněk; Brabec, Libor

    2002-01-01

    Roč. 200, č. 1 (2002), s. 36-47 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z4040901 Keywords : mechanical activation * surface oxidation * sulphide minerals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.295, year: 2002

  19. Temperature effects on surface activity and application in oxidation ...

    Indian Academy of Sciences (India)

    Unknown

    Surface activity; cetyl trimethylammonium bromide; sodium dodecyl sulfate; temperature; oxidation. 1. Introduction. Cationic systems show strong synergism in their so- lutions and display physicochemical properties that differ distinctly from those of individual surfactants,1 due to their electrostatic interaction between oppo-.

  20. Improved efficiency of budesonide nebulization using surface-active agents

    NARCIS (Netherlands)

    Heijstra, M. P.; Schaefer, N. C.; Duiverman, E. J.; LeSouef, P. N.; Devadason, S. G.

    2006-01-01

    Our aim was to improve the efficiency of nebulised budesonide using surface-active agents. Cationic, anionic, and nonionic detergents were added to commercial budesonide suspension, and the particle size distribution during nebulization was measured using both cascade impaction and laser

  1. The Impact of Metallic Impurities on Minority Carrier Lifetime in High Purity N-type Silicon

    Science.gov (United States)

    Yoon, Yohan

    Boron-doped p-type silicon is the industry standard silicon solar cell substrate. However, it has serious limitations: iron boron (Fe-B) pairs and light induced degradation (LID). To suppress LID, the replacement of boron by gallium as a p-type dopant has been proposed. Although this eliminates B-O related defects, gallium-related pairing with iron, oxygen, and carbon can reduce lifetime in this material. In addition resistivity variations are more pronounced in gallium doped ingots, however Continuous-Czochralski (c-Cz) growth technologies are being developed to overcome this problem. In this work lifetime limiting factors and resistivity variations have been investigated in this material. The radial and axial variations of electrically active defects were observed using deep level transient spectroscopy (DLTS) these have been correlated to lifetime and resistivity variations. The DLTS measurements demonstrated that iron-related pairs are responsible for the lifetime variations. Specifically, Fe-Ga pairs were found to be important recombination sites and are more detrimental to lifetime than Fei. Typically n-type silicon has a higher minority carrier lifetime than p-type silicon with similar levels of contamination. That is because n-type silicon is more tolerant to metallic impurities, especially Fe. Also, it has no serious issues in relation to lifetime degradation, such as FeB pairs and light-induced degradation (LID). However, surface passivation of the p + region in p+n solar cells is much more problematic than the n+p case where silicon nitride provides very effective passivation of the cell. SiO2 is the most effective passivation for n type surfaces, but it does not work well on B-doped surfaces, resulting in inadequate performance. Al2O3 passivation layer suggested for B-doped emitters. With this surface passivation layer a 23.2 % conversion efficiency has been achieved. After this discovery n-type silicon is now being seriously considered for

  2. Impurity studies and discharge cleaning in Doublet III

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges

  3. Impurity studies and discharge cleaning in Doublet III

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges.

  4. Influence of iron impurities on defected graphene

    International Nuclear Information System (INIS)

    Faccio, Ricardo; Pardo, Helena; Araújo-Moreira, Fernando M.; Mombrú, Alvaro W.

    2015-01-01

    Highlights: • The interaction among a multivacancy graphene system and iron impurities is studied. • The studied iron impurities were single atom and tetrahedral and octahedral clusters. • DFT calculations using the VASP code were performed. • The embedding of Fe affects the structure and electronic behavior in the graphene. • Half metal or semimetal behavior can be obtained, depending on the Fe impurities. - Abstract: The aim of this work is to study the interaction of selected iron cluster impurities and a multivacancy graphene system, in terms of the structural distortion that the impurities cause as well as their magnetic response. While originally, the interaction has been limited to vacancies and isolated metallic atoms, in this case, we consider small iron clusters. This study was undertaken using Density Functional Theory (DFT) calculations. The influence of the iron impurities in the electronic structure of the vacant graphene system is discussed. The main conclusion of this work is that the presence of iron impurities acts lowering the magnetic signal due to the occurrence of spin pairing between carbon and iron, instead of enhancing the possible intrinsic carbon magnetism

  5. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    Science.gov (United States)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are

  6. Resonant scattering by realistic impurities in graphene.

    Science.gov (United States)

    Wehling, T O; Yuan, S; Lichtenstein, A I; Geim, A K; Katsnelson, M I

    2010-07-30

    We develop a first-principles theory of resonant impurities in graphene and show that a broad range of typical realistic impurities leads to the characteristic sublinear dependence of the conductivity on the carrier concentration. By means of density functional calculations various organic groups as well as adatoms such as H absorbed to graphene are shown to create midgap states within ±0.03  eV around the neutrality point. A low energy tight-binding description is mapped out. Boltzmann transport theory as well as a numerically exact Kubo formula approach yield the conductivity of graphene contaminated with these realistic impurities in accordance with recent experiments.

  7. Tunneling effect in superconductors with magnetic impurities

    International Nuclear Information System (INIS)

    Ahmed, M.

    1985-07-01

    We investigate the influence of transition metal impurities on the amplitude of the Josephson tunneling current. We consider a junction made up of two identical superconductors containing transition metal impurities and define a parameter K which is the normalised difference of the derivative of Josephson currents for superconducting pairs with and without magnetic impurities. We find K=0 for U/πGAMMA >1 in the Abrikosov-Gorkov theory, as well as large deviations of K from this value for 1< U/πGAMMA<3, where U/πGAMMA is the parameter of the Anderson theory. (author)

  8. Influence of the impurity-defect and impurity-impurity interactions on the crystalline silicon solar cells conversion efficiency

    International Nuclear Information System (INIS)

    Dubois, S.

    2007-05-01

    This study aims at understanding the influence of the impurity - defect interaction on the silicon solar cell performances. We studied first the case of single-crystalline silicon. We combined numerical simulations and experimental data providing new knowledge concerning metal impurities in silicon, to quantify the evolution of the conversion efficiency with the impurity concentration. Mainly due to the gettering effects, iron appears to be quite well tolerated. It is not the case for gold, diffusing too slowly. Hydrogenation effects were limited. We transposed then this study toward multi-crystalline silicon. Iron seems rather well tolerated, due to the gettering effects but also due to the efficiency of the hydrogenation. When slow diffusers are present, multi crystalline silicon is sensitive to thermal degradation. n-type silicon could solve this problem, this material being less sensitive to metal impurities. (author)

  9. Surface active complexes formed between keratin polypeptides and ionic surfactants.

    Science.gov (United States)

    Pan, Fang; Lu, Zhiming; Tucker, Ian; Hosking, Sarah; Petkov, Jordan; Lu, Jian R

    2016-12-15

    Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C 12 TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes. Copyright © 2016. Published by Elsevier Inc.

  10. Microstructure and surface properties of lignocellulosic-based activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, P., E-mail: pegonzal@quim.ucm.es [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain); Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, E-33080 Oviedo (Spain); Urones-Garrote, E. [Centro Nacional de Microscopia Electronica, Universidad Complutense, E-28040, Madrid (Spain); Avila-Brande, D.; Otero-Diaz, L.C. [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Activated carbons were produced by KOH activation at 700 Degree-Sign C. Black-Right-Pointing-Pointer The observed nanostructure consists of highly disordered graphene-like layers with sp{sup 2} bond content Almost-Equal-To 95%. Black-Right-Pointing-Pointer Textural parameters show high surface area ( Almost-Equal-To 1000 m{sup 2}/g) and pore width of 1.3-1.8 nm. Black-Right-Pointing-Pointer Specific capacitance reaches values as high as 161 F/g. - Abstract: Low cost activated carbons have been produced via chemical activation, by using KOH at 700 Degree-Sign C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp{sup 2} content Almost-Equal-To 95% and average mass density of 1.65 g/cm{sup 3} (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m{sup 2}/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm{sup 2}) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  11. Impurities of oxygen in silicon

    International Nuclear Information System (INIS)

    Gomes, V.M.S.

    1985-01-01

    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  12. Surface barrier silicon detectors with a large active area

    International Nuclear Information System (INIS)

    Kim, Y.; Husimi, K.; Ikeda, Y.; Kim, C.; Ohkawa, S.; Sakai, T.

    1985-01-01

    Surface barrier silicon detectors with a large active area have been produced by using high resistive n-type silicon crystals, diameters of which are 3 to 5 inches. High quality detectors with a low leakage current and a low noise were achieved by developing the improved surface treatment. Characteristics of detectors obtained are good in energy resolution compared with conventional large area Si(Li) detectors. It has also been confirmed that local dead region is not found from measuring results of photo-pulse injection

  13. Determination of sulphur-35 impurity in solutions of phosphorus-32

    International Nuclear Information System (INIS)

    Rodriguez Pasques, R.H.; Iglicki, F.A; Cittadini, P.E.

    1982-01-01

    A method has been developed in order to evaluate the activity of sulphur-35 impurity in solutions of phosphorus-32. The procedure is based on the precipitation on benzidine sulphate in acid solution and further purification by dissolving and reprecipitating under appropriate conditions. 35 S beta radiation is measured with and end-window gas counter. A correction for any remaining 32 P is determined by differential absorption through aluminum. (author) [es

  14. Studies on impurity control and hydrogen pumping with chromium gettering in ISX-B

    International Nuclear Information System (INIS)

    Mioduszewski, P.; Simpkins, J.E.; Edmonds, P.H.; Isler, R.C.; Lazarus, E.A.; Ma, C.H.; Murakami, M.; Wootton, A.J.

    1984-01-01

    Chromium gettering has been proven to be a trouble-free and efficient method of surface pumping in tokamaks. The impurity control capabilities are excellent and comparable to that of titanium. The hydrogen uptake is reduced to monolayer quantities on the surface. The expansion of the operating space is similar to that seen with titanium without the disadvantage of strongly increased hydrogen fluxes. Possible applications of chromium gettering are: impurity control in contemporary tokamaks; surface pumping in short pulse DT-burning devices to minimize tritium inventory, and wall conditioning of future large machines prior to operation

  15. Nanostructured surface topographies have an effect on bactericidal activity.

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Maniura-Weber, Katharina; Brugger, Juergen; Ren, Qun

    2018-02-28

    Due to the increased emergence of antimicrobial resistance, alternatives to minimize the usage of antibiotics become attractive solutions. Biophysical manipulation of material surface topography to prevent bacterial adhesion is one promising approach. To this end, it is essential to understand the relationship between surface topographical features and bactericidal properties in order to develop antibacterial surfaces. In this work a systematic study of topographical effects on bactericidal activity of nanostructured surfaces is presented. Nanostructured Ormostamp polymer surfaces are fabricated by nano-replication technology using nanoporous templates resulting in 80-nm diameter nanopillars. Six Ormostamp surfaces with nanopillar arrays of various nanopillar densities and heights are obtained by modifying the nanoporous template. The surface roughness ranges from 3.1 to 39.1 nm for the different pillar area parameters. A Gram-positive bacterium, Staphylococcus aureus, is used as the model bacterial strain. An average pillar density at ~ 40 pillars μm -2 with surface roughness of 39.1 nm possesses the highest bactericidal efficiency being close to 100% compared with 20% of the flat control samples. High density structures at ~ 70 pillars μm -2 and low density structures at bactericidal efficiency to almost the level of the control samples. The results obtained here suggests that the topographical effects including pillar density and pillar height inhomogeneity may have significant impacts on adhering pattern and stretching degree of bacterial cell membrane. A biophysical model is prepared to interpret the morphological changes of bacteria on these nanostructures.

  16. Energy expenditure and muscular activation patterns through active sitting on compliant surfaces

    Directory of Open Access Journals (Sweden)

    D. Clark Dickin

    2017-06-01

    Conclusion: Compliant surfaces resulted in higher levels of muscular activation in the lower extremities facilitating increased caloric expenditure. Given the increasing trends in sedentary careers and the increases in obesity, this is an important finding to validate the merits of active sitting facilitating increased caloric expenditure and muscle activation.

  17. Direct instrumental identification of catalytically active surface sites

    Science.gov (United States)

    Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.

    2017-09-01

    The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.

  18. Simulation of impurity transport in tokamaks, 1

    International Nuclear Information System (INIS)

    Amano, T.; Mizuno, J.; Kako, M.

    1982-11-01

    A computer code to simulate impurity transport in tokamaks are described. The code solves the coupled rate and diffusion equations for a set of plasma ions, hydrogen isotopes plus several charge states of one or more impurity elements. Neoclassical transport for all ion species including both density gradient and temperature gradient effects is used. Impurity ions and plasma ions can be either in Pfirsch-Schluter or plateau-banana regime. Anomalous transport is also considered. Several models are used for atomic rates. The source of impurity is calculated from the sputtering of limiter and wall. The rate and diffusion equations are solved by Cranck-Nicholson's implicit scheme. The Crank-Nicholson's method is compared with more accurate Gear's method and a fairly good agreement is found between the two methods. (author)

  19. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  20. Numerical Studies of Impurities in Fusion Plasmas

    Science.gov (United States)

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  1. Hydrogenic impurity in double quantum dots

    International Nuclear Information System (INIS)

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  2. Design parameters for measurements of local catalytic activity on surfaces

    DEFF Research Database (Denmark)

    Johansson, Martin; Johannessen, Tue; Jørgensen, Jan Hoffmann

    2006-01-01

    Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward...... the catalytic surface through the annulus between the tubes, and the gas is sampled close to the surface by the capillary. The influence of various design parameters on the lateral resolution and sensitivity of the measurements is investigated. It is found that the cuter diameter of the annulus sets the upper......, the limits of the range in reaction rate, which can be Studied are estimated. (c) 2005 Elsevier B.V. All rights reserved....

  3. Effects of helium impurities on superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented.

  4. Effects of helium impurities on superalloys

    International Nuclear Information System (INIS)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented

  5. Effect of impurities and electrolyte thickness on degradation of pure magnesium: A finite element study

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, R., E-mail: rodrigo.montoya@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas, CENIM, CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Departamento de Matematicas, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Departamento de Ingenieria Metalurgica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Ciudad Universitaria, 04510 Mexico D.F. Mexico (Mexico); Escudero, M.L., E-mail: escudero@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas, CENIM, CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Garcia-Alonso, M.C., E-mail: crisga@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas, CENIM, CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Degradation of Mg due to the presence of impurities by finite element method. Black-Right-Pointing-Pointer A thin film of electrolyte causes galvanic corrosion focused only close on impurities. Black-Right-Pointing-Pointer A thick layer of electrolyte provokes galvanic corrosion extended the whole surface. Black-Right-Pointing-Pointer A higher number of impurities causes galvanic corrosion on the Mg surface independently of electrolyte thickness. Black-Right-Pointing-Pointer The electrolyte thickness is an important variable that affects the in vivo degradation. - Abstract: The aim of this work is to study the degradation of magnesium due to the presence of impurities, by finite element method (FEM), when different thickness of physiological medium bathes the surface. The electrochemical experimental data obtained from polarization curves are used to model mathematically the corrosion process by solving the Laplace equation and the proper boundary conditions by means of FEM. The results show that when Mg is covered by a thin film of electrolyte, galvanic corrosion is focused only on the areas located really close to the cathodic sites, and far from the impurities, the Mg matrix remains near to its corrosion potential with a natural corrosion process. However, if the Mg matrix is completely covered by a thick layer of electrolyte the potentials obtained in the Mg surface far from the impurity are higher than its corrosion potential, so the Mg suffers more severe galvanic corrosion. On the other hand, when a higher number of impurities is considered, the Mg matrix is anodically polarized and it suffers severe galvanic corrosion, independently of h. The thickness of the electrolyte h must be considered as an important variable that affects the in vivo degradation.

  6. Mechanisms of impurity diffusion in rutile

    International Nuclear Information System (INIS)

    Peterson, N.L.; Sasaki, J.

    1984-01-01

    Tracer diffusion of 46 Sc, 51 Cr, 54 Mn, 59 Fe, 60 Co, 63 Ni, and 95 Zr, was measured as functions of crystal orientation, temperature, and oxygen partial pressure in rutile single crystals using the radioactive tracer sectioning technique. Compared to cation self-diffusion, divalent impurities (e.g., Co and Ni) diffuse extremely rapidly in TiO 2 and exhibit a large anisotropy in the diffusion behavior; divalent-impurity diffusion parallel to the c-axis is much larger than it is perpendicular to the c-axis. The diffusion of trivalent impurity ions (Sc and Cr) and tetravalent impurity ions (Zr) is similar to cation self-diffusion, as a function of temperature and of oxygen partial pressure. The divalent impurity ions Co and Ni apparently diffuse as interstitial ions along open channels parallel to the c-axis. The results suggest that Sc, Cr, and Zr ions diffuse by an interstitialcy mechanism involving the simultaneous and cooperative migration of tetravalent interstitial titanium ions and the tracer-impurity ions. Iron ions diffused both as divalent and as trivalent ions. 8 figures

  7. Light impurity transport in JET ILW L-mode plasmas

    Science.gov (United States)

    Bonanomi, N.; Mantica, P.; Giroud, C.; Angioni, C.; Manas, P.; Menmuir, S.; Contributors, JET

    2018-03-01

    A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of 3He, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of 3He density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.

  8. The impurity transport in HT-6M tokamak

    International Nuclear Information System (INIS)

    Xu Wei; Wan Baonian; Xie Jikang

    2003-01-01

    The space-time profile of impurities has been measured with a multichannel visible spectroscopic detect system and UV rotation-mirror system in the HT-6M tokamak. An ideal impurity transport code has been used to simulate impurities (carbon and oxygen) behaviour during the OHM discharge. The profiles of impurities diffusion and convection coefficient, impurities ion densities in different ionized state, loss power density and effective charge number have been derived. The impurity behaviour during low-hybrid current drive has also been analyzed, the results show that the confinement of particles, impurities and energy has been improved, and emission power and effective charge number have been reduced

  9. New approach to controlling impurity contamination of a plasma-gun-produced compact torus

    International Nuclear Information System (INIS)

    Post, R.F.; Turner, W.C.

    1982-01-01

    The presence of impurity ions, notably carbon and oxygen, has been determined to be a major factor limiting the lifetime of field-reversed plasma entities produced by coaxial plasma guns such as the Beta II gun at LLNL. Similar problems are encountered in other toroidal plasmas, e.g. those in tokamaks. However, the solution employed there, discharge cleaning, followed by initiation of the plasma at low density (where impurity radiation losses are exceeded by ohmic heating rates) is not applicable here. This note discusses a proposed means for drastically reducing the level of impurities. (These are believed to be evolved from the gun electrode surfaces as a result of thermal shock associated with UV emission from the gun plasma). The idea: take advantage of the UV pulse preferentially to release hydrogen from the electrode surfaces. These surfaces are to be coated with a few-micron-thick layer of titanium, outgassed by preheating and subsequently loaded with hydrogen

  10. Fabrication of Bioactive Surfaces by Functionalization of Electroactive and Surface-Active Block Copolymers

    Directory of Open Access Journals (Sweden)

    Omotunde Olubi

    2014-08-01

    Full Text Available Biofunctional block copolymers are becoming increasingly attractive materials as active components in biosensors and other nanoscale electronic devices. We have described two different classes of block copolymers with biofuctional properties. Biofunctionality for block copolymers is achieved through functionalization with appropriate biospecific ligands. We have synthesized block copolymers of electroactive poly(3-decylthiophene and 2-hydroxyethyl methacrylate by atom transfer radical polymerization. The block copolymers were functionalized with the dinitrophenyl (DNP groups, which are capable of binding to Immunoglobulin E (IgE on cell surfaces. The block copolymers were shown to be redox active. Additionally, the triblock copolymer of α, ω-bi-biotin (poly(ethylene oxide-b-poly (styrene-b-poly(ethylene oxide was also synthesized to study their capacity to bind fluorescently tagged avidin. The surface-active property of the poly(ethylene oxide block improved the availability of the biotin functional groups on the polymer surfaces. Fluorescence microscopy observations confirm the specific binding of biotin with avidin.

  11. Theory of charged impurity scattering in two dimensional graphene

    OpenAIRE

    Adam, S.; Hwang, E. H.; Rossi, E.; Sarma, S. Das

    2008-01-01

    We review the physics of charged impurities in the vicinity of graphene. The long-range nature of Coulomb impurities affects both the nature of the ground state density profile as well as graphene's transport properties. We discuss the screening of a single Coulomb impurity and the ensemble averaged density profile of graphene in the presence of many randomly distributed impurities. Finally, we discuss graphene's transport properties due to scattering off charged impurities both at low and hi...

  12. Surface electromyography activity of trunk muscles during wheelchair propulsion.

    Science.gov (United States)

    Yang, Yu-Sheng; Koontz, Alicia M; Triolo, Ronald J; Mercer, Jennifer L; Boninger, Michael L

    2006-12-01

    Trunk instability due to paralysis can have adverse effects on posture and function in a wheelchair. The purpose of this study was to record trunk muscle recruitment patterns using surface electromyography from unimpaired individuals during wheelchair propulsion under various propulsion speed conditions to be able to design trunk muscle stimulation patterns for actual wheelchair users with spinal cord injury. Fourteen unimpaired subjects propelled a test wheelchair on a dynamometer system at two steady state speeds of 0.9 m/s and 1.8 m/s and acceleration from rest to their maximum speed. Lower back/abdominal surface electromyography and upper body movements were recorded for each trial. Based on the hand movement during propulsion, the propulsive cycle was further divided into five stages to describe the activation patterns. Both abdominal and back muscle groups revealed significantly higher activation at early push and pre-push stages when compared to the other three stages of the propulsion phase. With increasing propulsive speed, trunk muscles showed increased activation (Pactivity was significantly higher than abdominal muscle activity across the three speed conditions (PAbdominal and back muscle groups cocontracted at late recovery phase and early push phase to provide sufficient trunk stability to meet the demands of propulsion. This study provides an indication of the amount and duration of stimulation needed for a future application of electrical stimulation of the trunk musculature for persons with spinal cord injury.

  13. Magnetic impurities in single-walled carbon nanotubes and graphene: a review.

    Science.gov (United States)

    Vejpravova, J; Pacakova, B; Kalbac, M

    2016-04-25

    Control over magnetism in single-walled carbon nanotubes (SWCNTs) and graphene is of fundamental importance. Creation and manipulation using the unpaired spins without the need for archetypal magnetic elements results in sp(2)-hybridised nanocarbons being at the forefront of applications in both spintronics and nanoelectronics. The crucial limitation for the experimental observation of the intrinsic carbon magnetism stems from the presence of magnetic impurities, from which a magnetic response usually dominates. Thus, the rigorous identification of such magnetic impurities and their efficient removal is of enormous importance. The present review reports on the current state-of-the-art methodology for the detection and quantification of magnetic impurities in SWCNTs and graphene, reflecting both the preparation and subsequent purification procedures. First, the most common techniques for the preparation of SWCNTs (i.e., arc discharge, laser ablation and chemical vapour deposition) and the corresponding magnetic impurities are reviewed. Then, the available volume, surface and local probes for the identification and quantification of the impurities are discussed, and their efficiency and limitations are evaluated for the given cases. A summary of the current understanding of graphene-related magnetism in the context of the identified impurities is also given. Finally, the key knowledge is reviewed with respect to future prospects in the field.

  14. A description of the BNL active surface analysis facility

    International Nuclear Information System (INIS)

    Tyler, J.W.

    1989-11-01

    Berkeley Nuclear Laboratories has a responsibility for the assessment of radioactive specimens arising both from post irradiation examination of power reactor components and structures and experimental programmes concerned with fission and activation product transport. Existing analytical facilities have been extended with the commissioning of an active surface analysis instrument (XSAM 800pci, Kratos Analytical). Surface analysis involves the characterisation of the outer few atomic layers of a solid surface/interface whose chemical composition and electronic structure will probably be different from the bulk. The new instrument consists three interconnected chambers positioned in series; comprising of a high vacuum sample introduction chamber, an ultra-high vacuum sample treatment/fracture chamber and an ultra-high vacuum sample analysis chamber. The sample analysis chamber contains the electron, X-ray and ion-guns and the electron and ion detectors necessary for performing X-ray photoelectron spectroscopy, scanning Auger microscopy and secondary-ion mass spectroscopy. The chamber also contains a high stability manipulator to enable sub-micron imaging of specimens to be achieved and provide sample heating and cooling between - 180 and 600 0 C. (author)

  15. Nitrate reducing activity pervades surface waters during upwelling

    Science.gov (United States)

    Fernandes, Sheryl Oliveira; Halarnekar, Reena; Malik, Ashish; Vijayan, Vijitha; Varik, Sandesh; Kumari, Ritu; V. K., Jineesh; Gauns, Manguesh U.; Nair, Shanta; LokaBharathi, P. A.

    2014-09-01

    Nitrate reducing activity (NRA) is known to be mediated by microaerophilic to anaerobic bacteria and generally occurs in the sub-surface waters. However, we hypothesize that NRA could become prominent in the surface waters during upwelling. Hence, we examined nitrification and nitrate reduction along with hydrographic and environmental parameters off Trivandrum and Kochi, south-west-India in June 2010. Shoaling isolines of temperature, density, and nutrients revealed the onset of upwelling off Trivandrum. Shoaling of these signatures was absent in the northern transect off Kochi. The degree of nutrient consumption (DNC) was low emphasizing the presence of newly upwelled water off Trivandrum. A significant increase in NRA (df = 1, p < 0.05) was observed off Trivandrum than at Kochi. Moreover, as hypothesized, NRA at Trivandrum was pronounced at the surface with a maximum rate of 0.85 (± 0.02) μmol L1 h- 1 nearshore which was ~ 29 × higher than that at Kochi. Further, an inverse relationship between NRA and NO3- concentration (n = 34, r = - 0.415, p < 0.01) suggested transformation of the upwelled nutrient. Nitrification/NRA was ~ 10 × lower at 0.28 off Trivandrum indicating a discernible shift towards reduction. Such contribution from bacterial activity could be a response towards restoration of homeostasis.

  16. On the radiative effects of light-absorbing impurities on snowpack evolution

    Science.gov (United States)

    Dumont, M.; Tuzet, F.; Lafaysse, M.; Arnaud, L.; Picard, G.; Lejeune, Y.; Lamare, M.; Morin, S.; Voisin, D.; Di Mauro, B.

    2017-12-01

    The presence of light absorbing impurities in snow strongly decreases snow reflectance leading to an increase in the amount of solar energy absorbed by the snowpack. This effect is also known as impurities direct radiative effect. The change in the amount of energy absorbed by the snowpack modifies the temperature profile inside the snowpack and in turn snow metamorphism (impurities indirect radiative effects). In this work, we used the detailed snowpack model SURFEX/ISBA-Crocus with an explicit representation of snow light-absorbing impurities content (Tuzet et al., 2017) fed by medium-resolution ALADIN-Climate atmospheric model to represent dust and black carbon atmospheric deposition fluxes. The model is used at two sites: Col de Porte (medium elevation site in the French Alps) and Torgnon (high elevation site in the Italian Alps). The simulations are compared to in-situ observations and used to quantify the effects of light-absorbing impurities on snow melt rate and timing. The respective parts of the direct and indirect radiative effects of light-absorbing impurities in snow are also computed for the two sites, emphasizing the need to account for the interactions between snow metamorphism and LAI radiative properties, to accurately predict the effects of light-absorbing impurities in snow. Moreover, we describe how automated hyperspectral reflectance can be used to estimate effective impurities surface content in snow. Finally we demonstrate how these reflectances measurements either from in situ or satellite data can be used via an assimilation scheme to constrain snowpack ensemble simulations and better predict the snowpack state and evolution.

  17. Behaviour of impurities during the H-mode in JET

    International Nuclear Information System (INIS)

    Gianella, R.; Behringer, K.; Denne, B.; Gottardi, N.; Hellermann, M. von; Morgan, P.D.; Pasini, D.; Stamp, M.F.

    1989-01-01

    In additionally-heated tokamak discharges, the H-mode phases are reported to display, together with a better energy confinement, a longer global containment time for particles. In particular, steep gradients of electron density and temperature are sustained in the outer region of the plasma column. This enhanced performance is observed especially in discharges in which the activity of edge localized modes (ELMs) is low or absent. High confinement and accumulation of metallic impurities, which quickly give raise to terminal disruptions have been described under similar conditions. In JET H-modes very long impurity confinement times are also observed. However the experimental condition is somewhat more favourable since quiescent H-modes are obtained lasting much longer than the energy confinement times and the radiation from metals is generally negligible. The dominant impurities are normally carbon and oxygen, the latter generally accounting for half or more of the power radiated from the bulk plasma. During the X-point operation the effective influx of carbon into the discharge, which is normally in close correlation with that of deuterium, is substantially reduced while the influx of oxygen, whose production mechanisms is believed to be of a chemical nature, does not show significant variations. (author) 5 refs., 4 figs

  18. Interstitial impurity interactions and dislocation microdynamics in Mo crystals

    International Nuclear Information System (INIS)

    Kwok, D.N.

    1975-05-01

    The effects of interstitial impurities on the mechanical properties of molybdenum are explored by comparing results obtained for crystals of various interstitial contents controlled by ultra-high vacuum outgassing. Results show a modulus reduction for as-grown samples and for outgassed specimens at low applied stresses. As a function of plastic microstrain, the values of modulus defect for both as-grown and outgassed specimens saturate at the same value. Interstitial impurities act as pinning agents to dislocation bowing, but when all the easy dislocation loops have broken away from local interstitial pins, the modulus defect reaches a constant saturation value. Etch pitting techniques were used to correlate microstrain observations with dislocation generation and motion. It has been found that edge dislocation generation and movement are active in the microstrain region while screw dislocations are relatively inactive until the macrostrain region is reached. Dislocation velocities range from 10 -6 to 10 -3 cm/s and the average distance between interstitial impurity pinning points is found to be approximately 8 x 10 -4 cm. (U.S.)

  19. Perspective of surface active agents in baking industry: an overview.

    Science.gov (United States)

    Ahmad, Asif; Arshad, Nazish; Ahmed, Zaheer; Bhatti, Muhammad Shahbaz; Zahoor, Tahir; Anjum, Nomana; Ahmad, Hajra; Afreen, Asma

    2014-01-01

    Different researchers have previously used surfactants for improving bread qualities and revealed that these compounds result in improving the quality of dough and bread by influencing dough strength, tolerance, uniform crumb cell size, and improve slicing characteristics and gas retention. The objective of this review is to highlight the areas where surfactants are most widely used particularly in the bread industries, their role and mechanism of interaction and their contribution to the quality characteristics of the dough and bread. This review reveals some aspects of surface-active agents regarding its role physiochemical properties of dough that in turn affect the bread characteristics by improving its sensory quality and storage stability.

  20. Molluscicidal properties and selective toxicity of surface-active agents

    Science.gov (United States)

    Visser, S. A.

    1965-01-01

    Of over 100 commercially produced surface-active agents tested against the bilharziasis vector snail Biomphalaria sudanica, 13 were found to possess considerable and highly selective molluscicidal properties at concentrations of less than 1 ppm for exposures of 48 hours. Against crustacea, fish, water plants, mosquito larvae, mice, and the eggs of B. sudanica, the toxicities of the 13 surfactants were slight. The chemicals did not appear to be absorbed by organic matter to any appreciable extent. It is thought that the toxicity to B. sudanica is of both a chemical and a physical nature. PMID:5294185

  1. Oscillatory impurity potential induced dynamics of doped quantum dots: Analysis based on coupled influence of impurity coordinate and impurity influenced domain

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nirmal Kumar [Department of Physics, Suri Vidyasagar College, Suri, Birbhum 731 101, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2010-06-16

    Graphical abstract: The pattern of time evolution of eigenstates of a repulsive impurity doped quantum dot is explored. We have considered Gaussian impurity centers. Under a periodically fluctuating impurity potential, the system reveals a long time dynamics that is undulatory in nature. Coupled to the dopant location, the domain of influence of the impurity potential affects the separation between the eigenstates of the unperturbed system. The investigation points to a threshold value of spatial extension of impurity potential. Above this threshold value, the dopant location becomes important in monitoring the minimum value of impurity potential required to cause excitation. - Abstract: We explore the pattern of time evolution of eigenstates of a repulsive impurity doped quantum dot. The quantum dot is 2-dimensional and contains one electron which is harmonically confined. We have considered Gaussian impurity centers. A static transverse magnetic field is also present. Under a periodically fluctuating impurity potential, the system reveals a long time dynamics that is undulatory in nature. Coupled to the dopant location, the domain of influence of the impurity potential affects the separation between the eigenstates of the unperturbed system. The investigation points to a threshold value of spatial extension of impurity potential. Above this threshold value, the dopant location becomes important in monitoring the minimum value of impurity potential required to cause excitation.

  2. In vitro study of proteins surface activity by tritium probe

    International Nuclear Information System (INIS)

    Chernysheva, M.G.; Badun, G.A.

    2010-01-01

    A new technique for in vitro studies of biomacromolecules interactions, their adsorption at aqueous/organic liquid interfaces and distribution in the bulk of liquid/liquid systems was developed. The method includes (1) tritium labeling of biomolecules by tritium thermal activation method and (2) scintillation phase step with organic phase, which can be concerned as a model of cellular membrane. Two globular proteins lysozyme and human serum albumin tested. We have determined the conditions of tritium labeling when labeled by-products can be easy separated by means of dialysis and size-exclusion chromatography. Scintillation phase experiments were conducted for three types of organic liquids. Thus, the influences of the nature of organic phase on proteins adsorption and its distribution in the bulk of aqueous/organic liquid system were determined. It was found that proteins possess high surface activity at aqueous/organic liquid interface. Furthermore, values of hydrophobicity of globular proteins were found by the experiment. (author)

  3. Impurity production and acceleration in CTIX

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, D. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States)], E-mail: dabuche@sandia.gov; Clift, W.M. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States); Klauser, R.; Horton, R.D. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States); Howard, S.J. [General Fusion Inc., Burnaby, BC V5A 3H4 (Canada); Brockington, S.J. [HyperV Technologies Corp., Chantilly, VA 20151 (United States); Evans, R.W.; Hwang, D.Q. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States)

    2009-06-15

    The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT's exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 A thickness (1000 CT interactions). Using a smaller number of CT interactions (10-20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.

  4. Spectroscopic impurity survey in Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Buttenschoen, Birger; Burhenn, Rainer; Thomsen, Henning [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Biel, Wolfgang; Assmann, Jochen; Hollfeld, Klaus-Peter [Forschungszentrum Juelich GmbH, Juelich (Germany); Collaboration: the Wendelstein 7-X Team

    2016-07-01

    The High Efficiency eXtreme ultraviolet Overview Spectrometer (HEXOS) has been developed specifically for impurity identification and survey purposes on the Wendelstein 7-X stellarator. This spectrometer system, consisting of four individual spectrometers, covers the wavelength range between λ=2.5 nm and λ=160 nm, observing the intense resonance lines of relevant Mg-, Na-, Be- and Li-like impurity ions as well as the high-Z W/Ta quasi-continua. During the first operation phase of W7-X, commissioning of HEXOS was finished by providing an in-situ wavelength calibration. The permanently acquired spectra are evaluated to monitor the overall impurity content in the plasma, and serve as an indicator for unintended plasma-wall contact possibly leading to machine damage. HEXOS results from the first operation phase of W7-X are presented and discussed with respect to future scientific exploitation of the available data.

  5. Impurity dependence of superconductivity in niobium

    International Nuclear Information System (INIS)

    Laa, C.

    1984-04-01

    Jump temperatures, the critical fields Hsubc and Hsubc 2 and specific heats were measured on niobium samples where the impurity content was systematically varied by loading with nitrogen. Quantities could thus be extrapolated to lattice perfection and absolute purity. Comparisons with theories were made and some parameters extracted. Agreement was found with Gorkov theory for small impurities. A new value of the Ginsburg-Landau parameter Ko was determined to be just above 1/sqrt2 which proves that niobium is an elementary Type II semiconductor. By comparisons with the BCS and the CLAC theory the values of the mean Fermi velocity, the London penetration depth, the BCS coherence length and the impurity parameter were extracted. (G.Q.)

  6. Magnetic impurity coupled to interacting conduction electrons

    International Nuclear Information System (INIS)

    Schork, T.

    1996-01-01

    We consider a magnetic impurity which interacts by hybridization with a system of weakly correlated electrons and determine the energy of the ground state by means of a 1/N f expansion. The correlations among the conduction electrons are described by a Hubbard Hamiltonian and are treated to the lowest order in the interaction strength. We find that their effect on the Kondo temperature, T K , in the Kondo limit is twofold: first, the position of the impurity level is shifted due to the reduction of charge fluctuations, which reduces T K . Secondly, the bare Kondo exchange coupling is enhanced as spin fluctuations are enlarged. In total, T K increases. Both corrections require intermediate states beyond the standard Varma-Yafet ansatz. This shows that the Hubbard interaction does not just provide quasiparticles, which hybridize with the impurity, but also renormalizes the Kondo coupling. copyright 1996 The American Physical Society

  7. Impurity and particle control for INTOR

    International Nuclear Information System (INIS)

    Post, D.

    1985-02-01

    The INTOR impurity control system studies have been focused on the development of an impurity control system which would be able to provide the necessary heat removal and He pumping while satisfying the requirements for (1) minimum plasma contamination by impurities, (2) reasonable component lifetime (approx. 1 year), and (3) minimum size and cost. The major systems examined were poloidal divertors and pumped limiters. The poloidal divertor was chosen as the reference option since it offered the possibility of low sputtering rates due to the formation of a cool, dense plasma near the collector plates. Estimates of the sputtering rates associated with pumped limiters indicated that they would be too high for a reasonable system. Development of an engineering design concept was done for both the poloidal divertor and the pumped limiter

  8. Effect of impurity radiation on tokamak equilibrium

    International Nuclear Information System (INIS)

    Rebut, P.H.; Green, B.J.

    1977-01-01

    The energy loss from a tokamak plasma due to the radiation from impurities is of great importance in the overall energy balance. Taking the temperature dependence of this loss for two impurities characteristic of those present in existing tokamak plasmas, the condition for radial power balance is derived. For the impurities considered (oxygen and iron) it is found that the radiation losses are concentrated in a thin outer layer of the plasma and the equilibrium condition places an upper limit on the plasma paraticle number density in this region. This limiting density scales with mean current density in the same manner as is experimentally observed for the peak number density of tokamak plasmas. The stability of such equilibria is also discussed. (author)

  9. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  10. The electronic structure of impurities in semiconductors

    CERN Multimedia

    Nylandsted larsen, A; Svane, A

    2002-01-01

    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  11. The physics of Kondo impurities in graphene.

    Science.gov (United States)

    Fritz, Lars; Vojta, Matthias

    2013-03-01

    This article summarizes our understanding of the Kondo effect in graphene, primarily from a theoretical perspective. We shall describe different ways to create magnetic moments in graphene, either by adatom deposition or via defects. For dilute moments, the theoretical description is in terms of effective Anderson or Kondo impurity models coupled to graphene's Dirac electrons. We shall discuss in detail the physics of these models, including their quantum phase transitions and the effect of carrier doping, and confront this with existing experimental data. Finally, we will point out connections to other quantum impurity problems, e.g., in unconventional superconductors, topological insulators, and quantum spin liquids.

  12. Impurity screening in strongly coupled plasma systems

    CERN Document Server

    Kyrkos, S

    2003-01-01

    We present an overview of the problem of screening of an impurity in a strongly coupled one-component plasma within the framework of the linear response (LR) theory. We consider 3D, 2D and quasi-2D layered systems. For a strongly coupled plasma the LR can be determined by way of the known S(k) structure functions. In general, an oscillating screening potential with local overscreening and antiscreening regions emerges. In the case of the bilayer, this phenomenon becomes global, as overscreening develops in the layer of the impurity and antiscreening in the adjacent layer. We comment on the limitations of the LR theory in the strong coupling situation.

  13. Correlations between locked modes and impurity influxes

    Energy Technology Data Exchange (ETDEWEB)

    Fishpool, G.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K.D. [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.

  14. Fluid and gyrokinetic simulations of impurity transport at JET

    DEFF Research Database (Denmark)

    Nordman, H; Skyman, A; Strand, P

    2011-01-01

    Impurity transport coefficients due to ion-temperature-gradient (ITG) mode and trapped-electron mode turbulence are calculated using profile data from dedicated impurity injection experiments at JET. Results obtained with a multi-fluid model are compared with quasi-linear and nonlinear gyrokinetic...... simulation results obtained with the code GENE. The sign of the impurity convective velocity (pinch) and its various contributions are discussed. The dependence of the impurity transport coefficients and impurity peaking factor −∇nZ/nZ on plasma parameters such as impurity charge number Z, ion logarithmic...

  15. Characterization of impurities in biogas before and after upgrading to vehicle fuel

    Energy Technology Data Exchange (ETDEWEB)

    Arrhenius, Karine; Johansson, Ulrika [SP Technical Research Institute of Sweden, Boraas (Sweden)

    2012-01-15

    Biogases produced by digesting organic wastes, residual sludge from waste water treatment, energy crops,byproducts from industry or in landfills contain impurities which can be harmful for components that will be in contact with the biogas during its utilization. In this project, the impurities present in biogases have been mapped out depending upon which feedstock is digested. P-cymene och D-limonene, two terpenes, have been found to be characteristics for biogases produced from the digestion of waste including household wastes while an 'oil' fraction containing alkanes with 9 to 13 carbon atoms is characteristic for biogases produced at waste water treatment plants. Ketones and sulfur compounds are found in biogases produced from the digestion of food industry wastes or energy crops. It was not possible to characterize impurities in biogases produced in farm plants digesting manure because not enough samples were analyzed from these plants. In order to understand the relation between the feedstock and the impurities present in the biogas, an extensive study on feedstock characterization must be conducted. One question to be answered is if these impurities only originate from the volatilization from the feedstock and in this case, why only these specific compounds are found at significant concentrations. In this study we have also studied how effective purification/upgrading techniques are to remove impurities that have been identified in biogases. En general comment is that the upgraded gas still contains a part of the characteristic impurities which have been identified for each feedstock at different levels of concentration depending on which technique has been used. The results show that activated carbon filters are more or less effective. Some of them can remove more than 90 % of the impurities while others remove less that 10 %. Results show also that the amine scrubber have very moderate effects on the impurities composition. In that case, the

  16. Effect of Feedstock and Catalyst Impurities on the Methanol‐to‐Olefin Reaction over H‐SAPO‐34

    Science.gov (United States)

    Vogt, Charlotte; Ruiz‐Martínez, Javier

    2016-01-01

    Abstract Operando UV/Vis spectroscopy with on‐line mass spectrometry was used to study the effect of different types of impurities on the hydrocarbon pool species and the activity of H‐SAPO‐34 as a methanol‐to‐olefins (MTO) catalyst. Successive reaction cycles with different purity feedstocks were studied, with an intermittent regeneration step. The combined study of two distinct impurity types (i.e., feed and internal impurities) leads to new insights into MTO catalyst activation and deactivation mechanisms. In the presence of low amounts of feed impurities, the induction and active periods of the process are prolonged. Feed impurities are thus beneficial in the formation of the initial hydrocarbon pool, but also aid in the unwanted formation of deactivating coke species by a separate, competing mechanism favoring coke species over olefins. Further, feedstock impurities strongly influence the location of coke deposits, and thus influence the deactivation mechanism, whereas a study of the organic impurities retained after calcination reveals that these species are less relevant for catalyst activity and function as “seeds” for coke formation only. PMID:28163792

  17. Effect of Feedstock and Catalyst Impurities on the Methanol-to-Olefin Reaction over H-SAPO-34.

    Science.gov (United States)

    Vogt, Charlotte; Weckhuysen, Bert M; Ruiz-Martínez, Javier

    2017-01-09

    Operando UV/Vis spectroscopy with on-line mass spectrometry was used to study the effect of different types of impurities on the hydrocarbon pool species and the activity of H-SAPO-34 as a methanol-to-olefins (MTO) catalyst. Successive reaction cycles with different purity feedstocks were studied, with an intermittent regeneration step. The combined study of two distinct impurity types (i.e., feed and internal impurities) leads to new insights into MTO catalyst activation and deactivation mechanisms. In the presence of low amounts of feed impurities, the induction and active periods of the process are prolonged. Feed impurities are thus beneficial in the formation of the initial hydrocarbon pool, but also aid in the unwanted formation of deactivating coke species by a separate, competing mechanism favoring coke species over olefins. Further, feedstock impurities strongly influence the location of coke deposits, and thus influence the deactivation mechanism, whereas a study of the organic impurities retained after calcination reveals that these species are less relevant for catalyst activity and function as "seeds" for coke formation only.

  18. The Ice Nucleation Activity of Surface Modified Soot

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    The ice nucleation efficiency of many important atmospheric particles remains poorly understood. Since soot is ubiquitous in the Earth's troposphere, they might have the potential to significantly impact the Earth's climate (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1998). Here we present the ice nucleation activity (INA) in immersion freezing mode of different types of soot. Therefor a CAST (combustion aerosol standard) generator was used to produce different kinds of soot samples. The CAST generator combusts a propane-air-mixture and deposits thereby produced soot on a polyvinyl fluoride filter. By varying the propane to air ratio, the amount of organic portion of the soot can be varied from black carbon (BC) with no organic content to brown carbon (BrC) with high organic content. To investigate the impact of functional sites of ice nuclei (IN), the soot samples were exposed to NO2 gas for a certain amount of time (30 to 360 minutes) to chemically modify the surface. Immersion freezing experiments were carried out in a unique reaction gadget. In this device a water-in-oil suspension (with the soot suspended in the aqueous phase) was cooled till the freezing point and was observed through a microscope (Pummer et al., 2012; Zolles et al., 2015) It was found that neither modified nor unmodified BC shows INA. On the contrary, unmodified BrC shows an INA at -32˚ C, which can be increased up to -20˚ C. The INA of BrC depends on the duration of NO2- exposure. To clarify the characteristics of the surface modifications, surface sensitive analysis like infrared spectroscopy and X-ray photoelectron spectroscopy were carried out. Finlayson-Pitts, B. J. and Pitts, J. N. J.: Chemistry of the Upper and Lower Atmosphere, Elsevier, New York, 2000. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos Chem Phys, 12, 2541-2550, 2012. Seinfeld, J

  19. Controlled release of biologically active silver from nanosilver surfaces.

    Science.gov (United States)

    Liu, Jingyu; Sonshine, David A; Shervani, Saira; Hurt, Robert H

    2010-11-23

    Major pathways in the antibacterial activity and eukaryotic toxicity of nanosilver involve the silver cation and its soluble complexes, which are well established thiol toxicants. Through these pathways, nanosilver behaves in analogy to a drug delivery system, in which the particle contains a concentrated inventory of an active species, the ion, which is transported to and released near biological target sites. Although the importance of silver ion in the biological response to nanosilver is widely recognized, the drug delivery paradigm has not been well developed for this system, and there is significant potential to improve nanosilver technologies through controlled release formulations. This article applies elements of the drug delivery paradigm to nanosilver dissolution and presents a systematic study of chemical concepts for controlled release. After presenting thermodynamic calculations of silver species partitioning in biological media, the rates of oxidative silver dissolution are measured for nanoparticles and macroscopic foils and used to derive unified area-based release kinetics. A variety of competing chemical approaches are demonstrated for controlling the ion release rate over 4 orders of magnitude. Release can be systematically slowed by thiol and citrate ligand binding, formation of sulfidic coatings, or the scavenging of peroxy-intermediates. Release can be accelerated by preoxidation or particle size reduction, while polymer coatings with complexation sites alter the release profile by storing and releasing inventories of surface-bound silver. Finally, the ability to tune biological activity is demonstrated through a bacterial inhibition zone assay carried out on selected formulations of controlled release nanosilver.

  20. Investigation of correlations in some chemical impurities and isotope ratios for nuclear forensic purposes

    International Nuclear Information System (INIS)

    Wallenius, M.; Mayer, K.; Nicholl, A.; Horta, J.

    2002-01-01

    Full text: Institute for Transuranium Elements (ITU) has worked in the area of nuclear forensic science since 1992 when the first seized sample was analysed. From the beginning the analytical tools for seized materials were adapted from safeguards measurements and from materials science. Especially in the view of the origin determination the spectrum of parameters to be taken into account had to be widened. In addition to the development of a comprehensive database on nuclear materials for power reactor fuels, experimental investigations were started to identify characteristic parameters. These systematic investigations comprised the development of methodologies for age determination of Pu and highly enriched uranium, surface roughness determination of UO 2 pellets and n( 18 O)/n( 16 O) measurements in uranium oxides. However, a more profound understanding on the nature of the characteristic chemical impurities and their propagation throughout the entire process appeared necessary in particular for uranium materials. Therefore a systematic research programme was launched in order to better understand which chemical impurities might be considered as characteristic for the origin of the base material. On the other hand some impurities are introduced intentionally during the processing of the material. These impurities might be characteristic for the process used or for the plant where the material was processed. We carried out impurity measurements on uranium ores, on intermediate products (Ammoniumdiuranate or yellow cake) and on (natural) uranium oxides, hence 'vertically' throughout the process in individual facilities. n( 18 O)/n( 16 O) ratio measurements have been proven to provide useful additional information on the geographic origin of the materials. We therefore investigated the n( 18 O)/n( 16 O) isotope ratios in these different compounds, in order to obtain further experimental evidence for a consistent set of materials reportedly originating from the same

  1. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Science.gov (United States)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  2. Relationship between heating atmosphere and copper foil impurities during graphene growth via low pressure chemical vapor deposition

    OpenAIRE

    Çelik, Yasemin; Escoffier, Walter; Yang, Ming; Flahaut, Emmanuel; Suvacı, Ender

    2016-01-01

    International audience; Low-pressure chemical vapor deposition synthesis of graphene films on two different Cu foils, with different surface oxygen and carbon contents, was performed by controlling H2 and/or Ar flow rates during heating. The influences of heating atmosphere on the final impurity level, quality of the synthesized graphene films and thickness uniformity were investigated depending on Cu foil impurities. Heating of carbon-rich, but oxygen-poor Cu foil in H2 environment resulted ...

  3. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  4. Energy bands and gaps near an impurity

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Schulman, L. S.

    2016-01-01

    Roč. 380, č. 41 (2016), s. 3430-3433 ISSN 0375-9601 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal structure * impurity * modeling * energy bands Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.772, year: 2016

  5. Anomalous temperature behavior of Sn impurities

    International Nuclear Information System (INIS)

    Haskel, D.; Shechter, H.; Stern, E.A.; Newville, M.; Yacoby, Y.

    1993-01-01

    Sn impurities in Pb and Ag hosts have been investigated by Moessbauer effect and in Pb by x-ray-absorption fine-structure (XAFS) studies. The Sn atoms are dissolved up to at least 2 at. % in Pb and up to at least 8 at. % in Ag for the temperature ranges investigated. The concentration limit for Sn-Sn interactions is 1 at. % for Pb and 2 at. % for Ag as determined experimentally by lowering the Sn concentration until no appreciable change occurs in the Moessbauer effect. XAFS measurements verify that the Sn impurities in Pb are dissolved and predominantly at substitutional sites. For both hosts the temperature dependence of the spectral intensities of isolated Sn impurities below a temperature T 0 is as expected for vibrating about a lattice site. Above T 0 the Moessbauer spectral intensity exhibits a greatly increased rate of drop-off with temperature without appreciable broadening. This drop-off is too steep to be explained by ordinary anharmonic effects and can be explained by a liquidlike rapid hopping of the Sn, localized about a lattice site. Higher-entropy-density regions of radii somewhat more than an atomic spacing surround such impurities, and can act as nucleation sites for three-dimensional melting

  6. Detection of mineral impurities in diatomite ores

    NARCIS (Netherlands)

    Guatame Garcia, L.A.; Buxton, M.W.N.; Fiore, Saverio

    2017-01-01

    Diatomaceous Earth (DE) is commonly used in the industry for the manufacturing of filters, where diatomite is preferred due to its low chemical reactivity and high porosity. Diatomite deposits with major amounts of mineral impurities, such as carbonates, present a problem in the production DE. In

  7. Mechanical stress-controlled tunable active frequency-selective surface

    Science.gov (United States)

    Huang, Bo-Cin; Hong, Jian-Wei; Lo, Cheng-Yao

    2017-01-01

    This study proposes a tunable active frequency-selective surface (AFSS) realized by mechanically expanding or contracting a split-ring resonator (SRR) array. The proposed AFSS transfers mechanical stress from its elastic substrate to the top of the SRR, thereby achieving electromagnetic (EM) modulation without the need for an additional external power supply, meeting the requirements for the target application: the invisibility cloak. The operating mechanism of the proposed AFSS differs from those of other AFSSs, supporting modulations in arbitrary frequencies in the target range. The proposed stress-controlled or strain-induced EM modulation proves the existence of an identical and linear relationship between the strain gradient and the frequency shift, implying its suitability for other EM modulation ranges and applications.

  8. Self-activated, self-limiting reactions on Si surfaces

    DEFF Research Database (Denmark)

    Morgen, Per; Hvam, Jeanette; Bahari, Ali

    , and the temperatures vary from room temperature to 10000C.The growth is in these cases self-limiting, with the optimal oxide thickness around 0.7-0.8 nm, at 5000C, and up to a few nm for nitride. The self-limiting oxide case was recently predicted by Alex Demkov in a structural optimization to minimise the total...... energy of an oxide system, which happened for an ordered structure, at a thickness of 0.7-0.8 nm. Thus this thin oxide structure has definite crystalline features. We have closely monitored the reaction kinetics with normal x-ray induced photoelectron spectroscopies, and also the structure, composition...... and electrical properties of the system, with surface sensitive, high resolution core level photoelectron spectroscopy. The growth kinetics is well fitted by a Hill function, with parameters, which give information about the character of the process. This function describes a self-activated process. Thus...

  9. A novel broadband bi-mode active frequency selective surface

    Science.gov (United States)

    Xu, Yang; Gao, Jinsong; Xu, Nianxi; Shan, Dongzhi; Song, Naitao

    2017-05-01

    A novel broadband bi-mode active frequency selective surface (AFSS) is presented in this paper. The proposed structure is composed of a periodic array of convoluted square patches and Jerusalem Crosses. According to simulation results, the frequency response of AFSS definitely exhibits a mode switch feature between band-pass and band-stop modes when the diodes stay in ON and OFF states. In order to apply a uniform bias to each PIN diode, an ingenious biasing network based on the extension of Wheatstone bridge is adopted in prototype AFSS. The test results are in good agreement with the simulation results. A further physical mechanism of the bi-mode AFSS is shown by contrasting the distribution of electric field on the AFSS patterns for the two working states.

  10. A novel broadband bi-mode active frequency selective surface

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2017-05-01

    Full Text Available A novel broadband bi-mode active frequency selective surface (AFSS is presented in this paper. The proposed structure is composed of a periodic array of convoluted square patches and Jerusalem Crosses. According to simulation results, the frequency response of AFSS definitely exhibits a mode switch feature between band-pass and band-stop modes when the diodes stay in ON and OFF states. In order to apply a uniform bias to each PIN diode, an ingenious biasing network based on the extension of Wheatstone bridge is adopted in prototype AFSS. The test results are in good agreement with the simulation results. A further physical mechanism of the bi-mode AFSS is shown by contrasting the distribution of electric field on the AFSS patterns for the two working states.

  11. Improved efficiency of budesonide nebulization using surface-active agents.

    Science.gov (United States)

    Bouwman, A M; Heijstra, M P; Schaefer, N C; Duiverman, E J; Lesouëf, P N; Devadason, S G

    2006-01-01

    Our aim was to improve the efficiency of nebulised budesonide using surface-active agents. Cationic, anionic, and nonionic detergents were added to commercial budesonide suspension, and the particle size distribution during nebulization was measured using both cascade impaction and laser diffraction. Our results showed that the emitted dose was increased after addition of cationic (p < 0.001) and nonionic detergents (p < 0.01) compared with the commercial formulation alone. The respirable fraction was increased for all detergent formulations (p < 0.001) compared with the commercial formulation. We concluded that cationic and nonionic detergent increased the total output of budesonide from the Sidestream. All detergent formulations increased the respirable fraction of nebulized budesonide.

  12. Zirconium analysis. Impurities determination by spark mass specrometry

    International Nuclear Information System (INIS)

    Anon.

    Determination of impurities in zirconium, suitable for atomic content greater than 10 -8 but particularly adapted for low contents. The method is quantitative only if a reference sample is available (metallic impurities) [fr

  13. Li-FSI Impurity Impact Study: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Pupek, Krzysztof [Argonne National Lab. (ANL), Argonne, IL (United States); Dzwiniel, Trevor [Argonne National Lab. (ANL), Argonne, IL (United States); Krumdick, Gregory [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    There is growing interest in lithium bis(fluorosulfonyl)imide (LiFSI ) as an alternative to LiPF6 and as an additive to electrolytes used in lithium-ion cells. LiFSI has attracted attention because it is reported to have higher ionic conductivity, better high temperature stability, and enhanced stability toward hydrolysis, Also, LiFSI additive to electrolytes can bring benefits of improved storage properties and reduced gas evolution in the cells. Different levels of different electrochemically active impurities could affect the performance of LiFSI as an electrolyte salt for Li-ion batteries, generating inconsistent and conflicting interpretations of the experimental data.

  14. The Research of Phase Retrieval Holography Method Based on the Active Deformation of the Active Reflector Surface

    Science.gov (United States)

    Wang, Z. Q.; Chen, M. Z.; Pei, X.; Wang, J.

    2017-09-01

    The surface accuracy of a large reflector radio telescope is one of the important factors influencing the performance of the antenna. The effects of panel processing, installation, as well as gravity, temperature, and wind load, will greatly limit the observation efficiency of the antenna. Focused on the technology of active surface which is more accurately controllable than the minor reflector surface of six-ploe, the continuous distribution of active deformation phase factor described by Zernike polynomials is adopted for the first time. Only getting the far field amplitude through adjusting the active surface, the surface error can be detected. By building the models of numerical simulation, the retrieval error of arbitrary surface deformation is calculated, and the retrieval results of surface deformation in a variety of continuous active surface deformation is also studied. It is indicated that this method can stably and accurately detect surface deformation, and can also improve the efficiency of radio telescope observations effectively.

  15. A trial fabrication of activity standard surface sources and positional standard surface sources for an imaging plate system

    International Nuclear Information System (INIS)

    Sato, Yasushi; Hino, Yoshio; Yamada, Takahiro; Matsumoto, Mikio

    2003-01-01

    An imaging plate system can detect low level activity, but quantitative analysis is difficult because there are no adequate standard surface sources. A new fabrication method was developed for standard surface sources by printing on a sheet of paper using an ink-jet printer with inks in which a radioactive material was mixed. The fabricated standard surface sources had high uniformity, high positional resolution arbitrary shapes and a broad intensity range. The standard sources were used for measurement of surface activity as an application. (H. Yokoo)

  16. Proceedings of the workshop on new diagnostics related to impurity release

    International Nuclear Information System (INIS)

    1979-10-01

    There were three major objectives of this workshop. The first was to publicize the need for developing experimental techniques to study the questions of impurity generation and transport. The second reason was to have a public forum where several new approaches, including fluorescence spectroscopy, infrared photometry and surface analytic techniques, could have their relative advantages discussed. A third goal of the meeting was to arrive at a concensus as to what questions related to impurity release were of critical importance. The assembled notes are copies of viewgraphs presented at the meeting. In a few cases a summary, or even an expanded text, was provided by the authors

  17. Visualization and modeling of impurity atom migration for superdiffusion in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wada, T. [Nagoya Sangyo University, Aichi (Japan); Kojiguchi, K. [Nagoya Sangyo University, Aichi (Japan); Nagao, H. [Graduate School of information Science, Nagoya University (Japan); Fujimoto, H. [Daido institute of Technology, Nagoya (Japan)]. E-mail: fujimoto@daido-it.ac.jp

    2006-04-01

    Radiation-enhanced superdiffusion in two-layered structures, comprised of an impurity overlayer and a semiconductor substrate, subjected to electron beam irradiation is modeled and visualized using computer graphics animation. The important and experimentally observed large sticking probabilities of impurities at the wafer surface were modeled in the algorithm, and the animation was found to behave as expected under irradiation. Programming of the animation algorithm was performed using an object modeling technique. The animation generated a continuous display of radiation-enhanced superdiffusion that was qualitatively consistent with experimental observations, thereby facilitating understanding of the superdiffusion process.

  18. Occurrence of Surface Active Agents in the Environment

    Directory of Open Access Journals (Sweden)

    Ewa Olkowska

    2014-01-01

    Full Text Available Due to the specific structure of surfactants molecules they are applied in different areas of human activity (industry, household. After using and discharging from wastewater treatment plants as effluent stream, surface active agents (SAAs are emitted to various elements of the environment (atmosphere, waters, and solid phases, where they can undergo numerous physic-chemical processes (e.g., sorption, degradation and freely migrate. Additionally, SAAs present in the environment can be accumulated in living organisms (bioaccumulation, what can have a negative effect on biotic elements of ecosystems (e.g., toxicity, disturbance of endocrine equilibrium. They also cause increaseing solubility of organic pollutants in aqueous phase, their migration, and accumulation in different environmental compartments. Moreover, surfactants found in aerosols can affect formation and development of clouds, which is associated with cooling effect in the atmosphere and climate changes. The environmental fate of SAAs is still unknown and recognition of this problem will contribute to protection of living organisms as well as preservation of quality and balance of various ecosystems. This work contains basic information about surfactants and overview of pollution of different ecosystems caused by them (their classification and properties, areas of use, their presence, and behavior in the environment.

  19. Effects of impurities on silicon solar-cell performance

    Science.gov (United States)

    Hopkins, R. H.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs (back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings) can produce devices with conversion efficiencies above 20%. To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentraion at which cell performance degrades is more than an order of magnitude lower for an 18% cell than for a 16% cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as grown material can lead to the production of devices with efficiencies above 18%, as verified experimentally.

  20. Impurity effects in silicon for high efficiency solar cells

    Science.gov (United States)

    Hopkins, R. H.; Rohatgi, A.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs including, e.g., back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings can produce devices with conversion efficiencies above 20 percent (AM1). To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentration at which cell performance degrades is more than an order of magnitude lower for an 18-percent cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as-grown material can lead to the production of devices with efficiencies aboved 18 percent, as has been verified experimentally.

  1. Spin-Polarized Semiconductor Induced by Magnetic Impurities in Graphene

    OpenAIRE

    Daghofer, Maria; Zheng, Nan; Moreo, Adriana

    2010-01-01

    Magnetic impurities adsorbed on graphene are coupled magnetically via the itinerant electrons. This interaction opens a gap in the band structure of graphene. The result strongly depends on how the magnetic impurities are distributed. While random doping produces a semiconductor, if all or most impurities are located in the same sublattice, the spin degeneracy is removed and a spin-polarized semiconductor arises.

  2. In vitro genotoxicity of piperacillin impurity-A | Vijayan | African ...

    African Journals Online (AJOL)

    Since no report of genotoxicity data is available on the impurities of piperacillin, further studies were designed and conducted to provide information for establishing the safety profile and qualification of the piperacillin impurity-A. Salmonella typhimurium strains were exposed to Piperacillin impurity-A for Ames tests. Neither ...

  3. Impurity diagnostics in the GAMMA 10 tandem mirror

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M.; Okamoto, Y.; Kawamori, E.; Ito, T.; Watabe, C.; Watanabe, Y.; Tamano, T. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Ikeda, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamaguchi, N. [Toyota Technological Institute, Nagoya, Aichi (Japan)

    2000-01-01

    We have constructed spectroscopic measurement systems in the wavelength range from soft X-ray to visible lights. We observed absolute impurity line intensities, Doppler line broadenings and Doppler shifts of impurity lines and time dependent radial profiles of the impurity lines in the GAMMA 10 tandem mirror. (author)

  4. Impurity and trace tritium transport in tokamak edge turbulence

    DEFF Research Database (Denmark)

    Naulin, V.

    2005-01-01

    The turbulent transport of impurity or minority species, as for example tritium, is investigated in drift-Alfven edge turbulence. The full effects of perpendicular and parallel convection are kept for the impurity species. The impurity density develops a granular structure with steep gradients...

  5. Air impurity in holographic photonic crystals made with dichromated gelatin

    Science.gov (United States)

    Ren, Zhi; Li, Songtao; Liu, Dahe

    2010-11-01

    The physical mechanism of the air impurity in volume holographic photonic crystals was investigated in this paper. The photonic forbidden band with the air impurity was analyzed and calculated by the transfer matrix method. Verifications were carried out using one dimensional holographic photonic crystals made with Dichromated Gelatin (DCG), and the impurity modes were observed.

  6. Culture of Impure Human Islet Fractions in the Presence of Alpha-1-Antitrypsin Prevents Insulin Cleavage and Improves Islet Recovery

    Science.gov (United States)

    Loganathan, G.; Dawra, R.K.; Pugazhenthi, S.; Wiseman, A.C.; Sanders, M.A.; Saluja, A.K.; Sutherland, D.E.R.; Hering, B.J.; Balamurugan, A.N.

    2010-01-01

    Background Exocrine tissue is commonly cotransplanted with islets in autografting and allotransplantation of impure preparations. Proteases and insulin are released by acinar cells and islets, respectively, during pretransplantation culture and also systemically after transplantation. We hypothesized that released proteases could cleave insulin molecules and that addition of alpha 1 antitrypsin (A1AT) to impure islet cultures would block this cleavage, improving islet recovery and function. Methods Trypsin, chymotrypsin, and elastase (TCE) activity and insulin levels were measured in culture supernates of pure (n = 5) and impure (n = 5) islet fractions, which were isolated from deceased donors. SDS-PAGE was used to detect insulin after incubation with proteases. We assessed the effects of A1AT supplementation (0.5 mg/mL; n = 4] on TCE activity, insulin levels, culture recovery, and islet quality. The ultrastructure of islets exposed to TCE versus control medium was examined using electron microscopy (EM). Results Protease (TCE) activity in culture supernates was directly proportional to the percentage purity of islets: pure, impure, or highly impure. Increasingly lower levels of insulin were detected in culture supernates with higher protease activity levels. Insulin levels measured in supernates of 2000 IE aliquots of impure and highly impure islet preparations were 61 ± 23.7% and 34 ± 33% of that in pure preparations, respectively. Incubation with commercially available proteases (TCE) or exocrine acinar cell supernates cleaved insulin molecules as assessed using SDS-PAGE. Addition of A1AT to impure islet preparations reduced protease activity and restored normal insulin levels as detected using enzyme-linked immunosorbent assay (ELISA) and SDS-PAGE of culture supernates. A1AT improved insulin levels to 98% ± 1.3% in impure and 78% ± 34.2% in highly impure fractions compared with pure islet fractions. A1AT supplementation improved postculture recovery of

  7. Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing

    Science.gov (United States)

    Li, Xiaofei; Kang, Shichang; Zhang, Guoshuai; Qu, Bin; Tripathee, Lekhendra; Paudyal, Rukumesh; Jing, Zhefan; Zhang, Yulan; Yan, Fangping; Li, Gang; Cui, Xiaoqing; Xu, Rui; Hu, Zhaofu; Li, Chaoliu

    2018-02-01

    Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD), deposited on the surface snow of glacier can reduce the surface albedo. As there exists insufficient knowledge to completely characterize LAIs variations and difference in LAIs distributions, it is essential to investigate the behaviors of LAIs and their influence on the glaciers across the Tibetan Plateau (TP). Therefore, surface snow and snowpit samples were collected during September 2014 to September 2015 from Zhadang (ZD) glacier in the southern TP to investigate the role of LAIs in the glacier. LAIs concentrations were observed to be higher in surface aged snow than in the fresh snow possibly due to post-depositional processes such as melting or sublimation. The LAIs concentrations showed a significant spatial distribution and marked negative relationship with elevation. Impurity concentrations varied significantly with depth in the vertical profile of the snowpit, with maximum LAIs concentrations frequently occurred in the distinct dust layers which were deposited in non-monsoon, and the bottom of snowpit due to the eluviation in monsoon. Major ions in snowpit and backward trajectory analysis indicated that regional activities and South Asian emissions were the major sources. According to the SNow ICe Aerosol Radiative (SNICAR) model, the average simulated albedo caused by MD and BC in aged snow collected on 31 May 2015 accounts for about 13% ± 3% and 46% ± 2% of the albedo reduction. Furthermore, we also found that instantaneous RF caused by MD and BC in aged snow collected on 31 May 2015 varied between 4-16 W m- 2 and 7-64 W m- 2, respectively. The effect of BC exceeds that of MD on albedo reduction and instantaneous RF in the study area, indicating that BC played a major role on the surface of the ZD glacier.

  8. Mass Spectral Profile for Rapid Differentiating Beta-Lactams from Their Ring-Opened Impurities

    Directory of Open Access Journals (Sweden)

    Hecheng Wang

    2015-01-01

    Full Text Available High performance liquid chromatography tandem mass spectrometry (HPLC MS has been widely used for β-lactam antibiotics determination. However, its application to identify impurities of these frequently used drugs is not sufficient at present. In this job, characteristic profiles of the collision induced dissociation (CID spectra of both β-lactams and ring-opened β-lactams were extracted from the MS data of six β-lactam antibiotics and their forty-five impurities, and were confirmed by the MS data reported in the literature. These characteristics have been successfully applied to rapid differentiation of β-lactam and ring-opened β-lactam impurities in cefixime, cefdinir, and cefaclor. However, these characteristic profiles can only be obtained under low activating voltage. They did not display in the high energy activated CID spectra. Diagnostic fragmentations for determining the localization of double bond and substituents on the thiazine ring and the side chain were also observed. In addition, several characteristic fragmentations are hopeful to be used to differentiate the configurations of C-2 on the thiazine ring of ring-opened impurities, which is generally disadvantageous of mass spectrometry. Taken together, forty-five impurities were identified from the capsules of cefixime, cefdinir, and cefaclor.

  9. TEM study of impurity segregations in beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  10. Structural-impurity ordering under the effect of low doses of penetrating radiation

    International Nuclear Information System (INIS)

    Borkovskaya, O.Yu.; Grusha, S.A.; Dmitruk, N.L.

    1985-01-01

    Electrophysical, photoelectrical, electrooptical and metallographic investigations of the effect of radiation-induced ordering in multilayer homoepitaxial structures n + -n-n ++ -GaAs being in contact with metal (Au, Sn, Cr, Pt) are performed. It is established that this effect manifested in the growth of charge carrier mobility and their lifetime owing to weakening of radiationless recombination is clearly prounced in thin near the surface n + -layers and occurs but in imperfect structures with high density of three-dimensional defects (''cupolas''). Experimental features of the radiation-induced ordering effect indicate the structural-impurity transformations in the n + -GaAs near the surface under penetrating radiation. It is assumed that the nature of these transformations consists in the interaction of impurities and primary defects resulting in formation of neutral complexes. The surface effect intensification is explained by planar gettering of defects in the course of which their shifting along the surface occurs

  11. The distribution of impurities in beryllium pebbles produced by rotating electrode method

    International Nuclear Information System (INIS)

    Iwadachi, T.; Schmidt, D.; Kawamura, H.

    2000-01-01

    Oxygen and other impurities' distribution in the beryllium pebbles produced by the rotating electrode method (REM) was investigated by EPMA and AES. Oxygen is rich on surface of the beryllium pebbles produced by REM. The thickness of the surface oxide was estimated at approximately 200 nm. A peculiar oxide pattern was observed on the surface of the pebbles. Oxygen was in existtanc throughout the grains of the beryllium pebbles not located at grain boundaries. Surface oxide was removed by acid cleaning. The thickness of the oxide was estimated at approximately 50 nm. Oxide content was reduced to half of that before acid cleaning. Other impurities such as magnesium, aluminum and silicon were not localized at grain boundaries but were more or less segregated throughout the grains also iron was not localized in grain boundaries. (orig.)

  12. Assessing the Antimicrobial Activity of Polyisoprene Based Surfaces

    Directory of Open Access Journals (Sweden)

    Hope Badawy

    2015-02-01

    Full Text Available There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the “miracle solution” has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred.

  13. Immunoadjuvant activity of the nanoparticles’ surface modified with mannan

    Science.gov (United States)

    Haddadi, Azita; Hamdy, Samar; Ghotbi, Zahra; Samuel, John; Lavasanifar, Afsaneh

    2014-09-01

    Mannan (MN) is the natural ligand for mannose receptors, which are widely expressed on dendritic cells (DCs). The purpose of this study was to assess the effect of formulation parameters on the immunogenicity of MN-decorated poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to stimulate DC phenotypic as well as functional maturation. For this purpose, NPs were formulated from either ester-terminated or COOH-terminated PLGA. Incorporation of MN in NPs was achieved through encapsulation, physical adsorption or chemical conjugation. Murine bone marrow derived DCs (BMDCs) were treated with various NP formulations and assessed for their ability to up-regulate DC cell surface markers, secrete immunostimulatory cytokines and to activate allogenic T cell responses. DCs treated with COOH-terminated PLGA-NPs containing chemically conjugated MN (MN-Cov-COOH) have shown superior performance in improving DC biological functions, compared to the rest of the formulations tested. This may be attributed to the higher level of MN incorporation in the former formulation. Incorporation of MN in PLGA NPs through chemical conjugation can lead to enhanced DC maturation and stimulatory function. This strategy may be used to develop more effective PLGA-based vaccine formulations.

  14. Quantitative spectrographic analysis of impurities in antimonium

    International Nuclear Information System (INIS)

    Brito, J. de; Gomes, R.P.

    1978-01-01

    An emission spectrographic method is describe for the determination of Ag, Al, As, Be, Bi, Cd, Cr, Cu, Ga, Ni, Pb, Sn, Si, and Zn in high purity antimony metal. The metal sample ia dissolved in nitric acid(1:1) and converted tp oxide by calcination at 900 0 C for one hour. The oxide so obtained is mixed with graphite, which is used as a spectroscopic buffer, and excited by a direct current arc. Many parameters are studied optimum conditions are selected for the determination of the impurities mentioned. The spectrum is photographed in the second order of a 15.000 lines per inch grating and the most sensitive lines for the elements are selected. The impurities are determined in the concentration range of 1 - 0,01% with a precision of approximately 10% [pt

  15. Impurities enhance caking in lactose powder

    DEFF Research Database (Denmark)

    Carpin, M.; Bertelsen, H.; Dalberg, A.

    2017-01-01

    Caking of lactose and other dry ingredients is a common problem in the dairy and food industries. The lactose production process includes different purification steps, depending on the type of lactose produced. The aim of this study was therefore to investigate how the remaining impurities (i.......e. non-lactose components) affect the caking tendency of the final powder. The results from a combination of different methods, including dynamic vapor sorption, characterization of the physicochemical composition and assessment of caking with a ring shear tester, suggested humidity caking. Larger...... amounts of impurities in the lactose powder resulted in enhanced moisture sorption and greater caking tendency. These findings emphasize the importance of controlling the washing and purification steps throughout the production process in order to limit caking in the final product...

  16. INTOR impurity control and first wall system

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1983-04-01

    The highlights of the recent INTOR effort on examining the key issues of the impurity control/first wall system are summarized. The emphasis of the work was an integrated study of the edge-region physics, plasma-wall interaction, materials, engineering and magnetic considerations associated with the poloidal divertor and pump limiter. The development of limiter and divertor collector plate designs with an acceptable lifetime was a major part of the work

  17. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    Science.gov (United States)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1980-01-01

    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  18. Evidence of antibacterial activity on titanium surfaces through nanotextures

    Science.gov (United States)

    Seddiki, O.; Harnagea, C.; Levesque, L.; Mantovani, D.; Rosei, F.

    2014-07-01

    Nosocomial infections (Nis) are a major concern for public health. As more and more of the pathogens responsible for these infections are antibiotic resistant, finding new ways to overcome them is a major challenge for biomedical research. We present a method to reduce Nis spreading by hindering bacterial adhesion in its very early stage. This is achieved by reducing the contact interface area between the bacterium and the surface by nanoengineering the surface topography. In particular, we studied the Escheria Coli adhesion on titanium surfaces exhibiting different morphologies, that were obtained by a combination of mechanical polishing and chemical etching. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) characterization revealed that the titanium surface is modified at both micro- and nano-scale. X-ray Photoelectron Spectroscopy (XPS) revealed that the surfaces have the same composition before and after piranha treatment, consisting mainly of TiO2. Adhesion tests showed a significant reduction in bacterial accumulation on nanostructured surfaces that had the lowest roughness over large areas. SEM images acquired after bacterial culture on different titanium substrates confirmed that the polished titanium surface treated one hour in a piranha solution at a temperature of 25 °C has the lowest bacterial accumulation among all the surfaces tested. This suggests that the difference observed in bacterial adhesion between the different surfaces is due primarily to surface topography.

  19. Evidence of antibacterial activity on titanium surfaces through nanotextures

    International Nuclear Information System (INIS)

    Seddiki, O.; Harnagea, C.; Levesque, L.; Mantovani, D.; Rosei, F.

    2014-01-01

    Nosocomial infections (Nis) are a major concern for public health. As more and more of the pathogens responsible for these infections are antibiotic resistant, finding new ways to overcome them is a major challenge for biomedical research. We present a method to reduce Nis spreading by hindering bacterial adhesion in its very early stage. This is achieved by reducing the contact interface area between the bacterium and the surface by nanoengineering the surface topography. In particular, we studied the Escheria Coli adhesion on titanium surfaces exhibiting different morphologies, that were obtained by a combination of mechanical polishing and chemical etching. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) characterization revealed that the titanium surface is modified at both micro- and nano-scale. X-ray Photoelectron Spectroscopy (XPS) revealed that the surfaces have the same composition before and after piranha treatment, consisting mainly of TiO 2 . Adhesion tests showed a significant reduction in bacterial accumulation on nanostructured surfaces that had the lowest roughness over large areas. SEM images acquired after bacterial culture on different titanium substrates confirmed that the polished titanium surface treated one hour in a piranha solution at a temperature of 25 °C has the lowest bacterial accumulation among all the surfaces tested. This suggests that the difference observed in bacterial adhesion between the different surfaces is due primarily to surface topography.

  20. Evidence of antibacterial activity on titanium surfaces through nanotextures

    Energy Technology Data Exchange (ETDEWEB)

    Seddiki, O.; Harnagea, C. [INRS – Centre Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Levesque, L.; Mantovani, D. [Laboratory for Biomaterials and Bioengineering (CRC-I), Dept Min-Met-Materials Engineering and Research Center CHU-Quebec, Laval University, Quebec City (Canada); Rosei, F., E-mail: rosei@emt.inrs.ca [INRS – Centre Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Center for Self-Assembled Chemical Structures, McGill University, H3A 2K6 Montreal, Quebec (Canada)

    2014-07-01

    Nosocomial infections (Nis) are a major concern for public health. As more and more of the pathogens responsible for these infections are antibiotic resistant, finding new ways to overcome them is a major challenge for biomedical research. We present a method to reduce Nis spreading by hindering bacterial adhesion in its very early stage. This is achieved by reducing the contact interface area between the bacterium and the surface by nanoengineering the surface topography. In particular, we studied the Escheria Coli adhesion on titanium surfaces exhibiting different morphologies, that were obtained by a combination of mechanical polishing and chemical etching. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) characterization revealed that the titanium surface is modified at both micro- and nano-scale. X-ray Photoelectron Spectroscopy (XPS) revealed that the surfaces have the same composition before and after piranha treatment, consisting mainly of TiO{sub 2}. Adhesion tests showed a significant reduction in bacterial accumulation on nanostructured surfaces that had the lowest roughness over large areas. SEM images acquired after bacterial culture on different titanium substrates confirmed that the polished titanium surface treated one hour in a piranha solution at a temperature of 25 °C has the lowest bacterial accumulation among all the surfaces tested. This suggests that the difference observed in bacterial adhesion between the different surfaces is due primarily to surface topography.

  1. Evaluation of determinative methods for sodium impurities

    International Nuclear Information System (INIS)

    Molinari, Marcelo; Guido, Osvaldo; Botbol, Jose; Ares, Osvaldo

    1988-01-01

    Sodium, universally accepted as heat transfer fluid in fast breeder reactors, requires a special technology for every operation involved in any applicable methodology, due to its well known chemical reactivity. The purpose of this work is: a) to study the sources and effects of chemical species which, as traces, accompany sodium used in the nuclear field; b) to classify, taking into account, the present requirements and resources of the National Atomic Energy Commission (CNEA), the procedures found in the literature for determination of the most important impurities which exist in experimental liquid sodium systems and c) to describe the principles of the methods and to evaluate them in order to make a selection. It was concluded the convenience to develop, as a first stage, laboratory procedures to determine carbon, oxygen, hydrogen and non-volatile impurities, which besides serving present needs, will be referential for direct methods with undeferred response. The latter are needed in liquid sodium experimental loops and require, primarily, more complex and extended development. Additionally, a description is made of experimental work performed up-to-now in this laboratory, consisting of a transfer device for sodium sampling and a sodium distillation device, adapted from a previous design, with associated vacuum and inert gas systems. It is intended as a separative technique for indirect determination of oxygen and non-volatile impurities. (Author) [es

  2. Metal impurity release in diverted tokamak discharges

    International Nuclear Information System (INIS)

    Staudenmaier, G.; Wampler, W.R.

    1987-01-01

    Plasma-materials interaction at the wall of the main plasma chamber of the divertor tokamak ASDEX was investigated by a combined probe, allowing simultaneous measurements of the erosion rate by neutral particles, and the flux and average energy of neutrals. The erosion was measured by collecting part of the released material which was analysed subsequently by electron induced X-ray analysis. The flux and energy of the impinging neutral particles were measured after each single discharge with an energy resolving carbon resistance probe. The carbon probe is an excellent detector not only for deuterium but also for energetic neutral helium atoms. Wall sputtering by CX neutrals is the dominant iron impurity source in ohmically heated deuterium discharges. However, during discharges in helium not only CX neutral sputtering but also sputtering by helium ions is an important impurity release mechanism. But during auxiliary heating by neutral beams and radio frequency in deuterium, impurity generation by CX neutrals was found to increase with heating power. (orig.)

  3. Defect-impurity interactions in irradiated germanium

    International Nuclear Information System (INIS)

    Cleland, J.W.; James, F.J.; Westbrook, R.D.

    1975-07-01

    Results of experiments are used to formulate a better model for the structures of lattice defects and defect-impurity complexes in irradiated n-type Ge. Single crystals were grown by the Czochralski process from P, As, or Sb-doped melts, and less than or equal to 10 15 to greater than or equal to 10 17 oxygen cm -3 was added to the furnace chamber after approximately 1 / 3 of the crystal had been solidified. Hall coefficient and resistivity measurements (at 77 0 K) were used to determine the initial donor concentration due to the dopant and clustered oxygen, and infrared absorption measurements (at 11.7 μ) were used to determine the dissociated oxygen concentration. Certain impurity and defect-impurity interactions were then investigated that occurred as a consequence of selected annealing, quenching, Li diffusion, and irradiation experiments at approximately 300 0 K with 60 Co photons, 1.5 to 2.0 MeV electrons, or thermal energy neutrons. Particular attention was given to determining the electrical role of the irradiation produced interstitial and vacancy, and to look for any evidence from electrical and optical measurements of vacancy--oxygen, lithium--oxygen, and lithium--vacancy interactions. (U.S.)

  4. Understanding the effect of steps, strain, poisons, and alloying: Methane activation on Ni surfaces

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    that variations in epsilon(d) can be used to quantitatively describe variations in the activation energy when the surface structure is changed, when the coverage of carbon is changed, when the surface is strained, when the surface is alloyed, and when the surface is poisoned by sulfur. The d-band center is...

  5. Surface activity and molecular characteristics of cuttlefish skin gelatin modified by oxidized linoleic acid

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Wierenga, P.A.; Gruppen, H.

    2011-01-01

    Surface activity and molecular changes of cuttlefish skin gelatin modified with oxidized linoleic acid (OLA) prepared at 60, 70 and 80 °C at different times were investigated. Modification of gelatin with OLA could improve surface activity of resulting gelatin as evidenced by the decreased surface

  6. Morphology and optical properties of aluminum oxide formed into oxalic electrolyte with addition surface active agents

    International Nuclear Information System (INIS)

    Kazarkin, B; Stsiapanau, A; Smirnov, A; Zhilinski, V; Chernik, A; Bezborodov, V; Kozak, G; Danilovich, S

    2016-01-01

    The article discusses the results of investigations of porous films of alumina, formed into oxalic electrolyte with addition surface active agents, in particular, ordering structure, roughness of a surface, the optical transparency of the electrolyte concentration and surface active agents. Also discusses the features of the formation of porous films of temperature and IR radiation. (paper)

  7. Operational Estimates of Surface Albedo, Vegetation Photosynthetic Activity and Surface Structure: An Overview of the GVM/SAI Activities

    Science.gov (United States)

    Verstraete, M. M.; Pinty, B.; Gobron, N.; Widlowski, J.

    2001-05-01

    The GVM Unit of the SAI derives reliable, accurate, quantitative information on the state and evolution of the biosphere from remote sensing data, using state of the art techniques. This information is provided to various services of the European Commission in support of the verification of compliance with national and international treaties, protocols and conventions, and to the scientific community in the framework of defined collaborations. Estimates of land surface albedo have been obtained from an analysis of monospectral but multiangular observations from the geostationary Meteosat platform. An analysis of these results has shown the continental scale impact of human activities (in particular biomass burning over large areas). An extension of this approach to the more advanced Meteosat Second Generation platform, to be launched in 2002, will yield more and better products. High performance yet very fast algorithms have been derived to optimally assess the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) of live green vegetation, which largely controls the productivity of plants and therefore their ability to sequester atmospheric carbon dioxide. These algorithms, typically used with multispectral but monoangular sensors such as AVHRR, SeaWiFS, or VEGETATION, have now been further developed to take advantage of the high spatial resolution or multiangular views offered by modern sensors such as the MISR on NASA's Terra platform. Recent advances in radiation transfer modeling and scientific collaborations with the cloud community have opened new vistas on the possibility of characterizing the structure of ecosystems a the sub-pixel scale on the basis of multiangular data, and may lead to improved land cover classifications and new applications.

  8. Levothyroxine sodium revisited: A wholistic structural elucidation approach of new impurities via HPLC-HRMS/MS, on-line H/D exchange, NMR spectroscopy and chemical synthesis.

    Science.gov (United States)

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-02-20

    The structural elucidation of unknown pharmaceutical impurities plays an important role in the quality control of newly developed and well-established active pharmaceutical ingredients (APIs). The United States Pharmacopeia (USP) monograph for the API Levothyroxine Sodium, a synthetic thyroid hormone, features two high pressure liquid chromatography (HPLC) methods using UV-VIS absorption detection to determine organic impurities in the drug substance. The impurity profile of the first USP method ("Procedure 1") has already been extensively studied, however for the second method ("Procedure 2"), which exhibits a significantly different impurity profile, no wholistic structural elucidation of impurities has been performed yet. Applying minor modifications to the chromatographic parameters of USP "Procedure 2" and using various comprehensive structural elucidation methods such as high resolution tandem mass spectrometry with on-line hydrogen-deuterium (H/D) exchange or two-dimensional nuclear magnetic resonance spectroscopy (NMR) we gained new insights about the complex impurity profile of the synthetic thyroid hormone. This resulted in the characterization of 24 compounds previously unknown to literature and the introduction of two new classes of Levothyroxine Sodium impurities. Five novel compounds were unambiguously identified via isolation or synthesis of reference substances and subsequent NMR spectroscopic investigation. Additionally, Collision-Induced Dissociation (CID)-type fragmentation of identified major impurities as well as neutral loss fragmentation patterns of many characterized impurities were discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Substrate integrated ferrite phase shifters and active frequency selective surfaces

    International Nuclear Information System (INIS)

    Cahill, B.M.

    2002-01-01

    There are two distinct parts to this thesis; the first investigates the use of ferrite tiles in the construction of printed phase shifting transmission lines, culminating in the design of two compact electromagnetic controlled beam steered patch and slot antenna arrays. The second part investigates the use of active frequency selective surfaces (AFSS), which are later used to cover a uPVC constructed enclosure. Field intensity measurements are taken from within the enclosure to determine the dynamic screening effectiveness. Trans Tech G-350 Ferrite is investigated to determine its application in printed microstrip and stripline phase shifting transmission lines. 50-Ohm transmission lines are constructed using the ferrite tile and interfaced to Rogers RT Duroid 5870 substrate. Scattering parameter measurements are made under the application of variable magnetic fields to the ferrite. Later, two types of planar microwave beam steering antennas are constructed. The first uses the ferrites integrated into the Duroid as microstrip lines with 3 patch antennas as the radiating elements. The second uses stripline transmission lines, with slot antennas as the radiating sources etched into the ground plane of the triplate. Beam steering is achieved by the application of an external electromagnet. An AFSS is constructed by the interposition of PIN diodes into a dipole FSS array. Transmission response measurements are then made for various angles of electromagnetic wave incidence. Two states of operation exist: when a current is passed through the diodes and when the diodes are switched off. These two states form a high pass and band stop space filter respectively. An enclosure covered with the AFSS is constructed and externally illuminated in the range 2.0 - 2.8GHz. A probe antenna inside the enclosure positioned at various locations through out the volume is used to establish the effective screening action of the AFSS in 3 dimensional space. (author)

  10. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities*

    International Nuclear Information System (INIS)

    Valerio, Luis G.; Cross, Kevin P.

    2012-01-01

    Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describe the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive performance.

  11. Surface and interface electronic structure: Sixth year activity report

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1992-01-01

    Several productive runs were made on beamline U4A at NSLS. An upgrade of angle-resolved photoemission spectrometer was largely completed on the beamline. Progress was made on studies of surface states and reconstruction on Mo(001) and W(001), and of surface states and resonances on Pt(111)

  12. Features of impurity photoconductivity in Si:Er/Si epitaxial diodes

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A. V.; Kudryavtsev, K. E., E-mail: konstantin@ipmras.ru; Shengurov, D. V.; Shmagin, V. B.; Krasilnik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2013-11-15

    The photocurrent spectra of Si:Er/Si epitaxial diode structures are studied. It is shown that the nature of the sub-band-gap photoresponse is determined by the epitaxial growth temperature of the Si:Er layer and is not related to the composition of erbium emission centers. It is found that the absorption of light with photon energies lower than the energy-gap of silicon is determined by impurity-defect complexes that appear during the growth of the epitaxial layer and form a quasi-continuous spectrum of states in the energy gap of silicon. It is assumed that these impurity centers are not related to optically active erbium centers and are not involved in excitation-energy transfer to the rare-earth impurity.

  13. Impurities in sugar cane and their influence on industrial processing evaluated by nuclear techniques

    International Nuclear Information System (INIS)

    Bacchi, M.A.; Fernandes, E.A.N.; Ferraz, E.S.B.

    1990-01-01

    During the cutting and loading operations, impurities, mainly soil, are added to sugar cane in amounts that can impair industrial processing due to excessive wear of metallic members and contamination of juice and bagasse. Mechanization of loading operation has showed a considerable enhancement of the impurity content, leading to the improvement of cane washing technology. Nevertheless, for a correct understanding of the problem and the process optimization, it is necessary and exact and fast quantification of these impurities as well as of its consequences. Nuclear techniques, in special neutron activation analysis, have been proved to be appropriate for estimating soil level in sugar cane, washing process efficiency and wearing of cases and moving parts. (author)

  14. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    Science.gov (United States)

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-04

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  16. Chemical surface tuning electrocatalysis of redox-active nanoparticles

    DEFF Research Database (Denmark)

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable immobili......This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable...... PBNPs are characterized by atomic force microscopy (AFM). Reversible electron transfer (ET) was detected by cyclic voltammetry (CV) of the PBNPs on all the surfaces. ET kinetics can be controlled by adjusting the chain length of the SAMs. The rate constants are found to depend exponentially on the ET...... distance, with a decay factor (β) of ca. 0.9, 1.1, 1.3 per CH2, respectively. This feature suggests a tunneling mechanism adopted by the nanoparticles, resembling that for metalloproteins in a similar assembly. High-efficient electrocatalysis towards the reduction of H2O2 is observed, and possible...

  17. Comparison of impurity production, recycling and power deposition on carbon and tungsten limiters in TEXTOR-94

    International Nuclear Information System (INIS)

    Huber, A.; Philipps, V.; Pospieszczyk, A.; Kirschner, A.; Lehnen, M.; Ohgo, T.; Ohya, K.; Rubel, M.; Schweer, B.; Seggern, J. von; Sergienko, G.; Tanabe, T.; Wada, M.

    2001-01-01

    Impurity production, hydrogen recycling and power deposition on carbon and tungsten limiters have been investigated in TEXTOR-94 using a C-W twin test limiter. Considerable differences have been observed on W and C surfaces, which can be explained by the different particle and energy reflection coefficients of hydrogen on these surfaces. The measurements show in addition that the majority of the carbon release is from recycled carbon and that only a small part (below 10%) is due to net-erosion from the bulk carbon material. The heat deposition on C and W sides differs under the same plasma conditions significantly and is typically about 30% larger on the carbon surface. The behaviour of the impurity production, recycling and power deposition for various discharge conditions is presented

  18. Determination of elemental impurities in phosphoric acid by INAA employing a novel method of phosphate precipitation

    Czech Academy of Sciences Publication Activity Database

    Kameník, Jan; Amsil, H.; Kučera, Jan

    2015-01-01

    Roč. 304, APR (2015), s. 157-162 ISSN 0236-5731 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : instrumental neutron activation analysis * phosphoric acid * elemental impurities * isothermal distillation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.983, year: 2015

  19. Determination of elemental impurities in phosphoric acid by INAA employing a novel method of phosphate precipitation

    Czech Academy of Sciences Publication Activity Database

    Kameník, Jan; Amsil, H.; Kučera, Jan

    2014-01-01

    Roč. 2014, AUG (2014), s. 3455 ISSN 1588-2780 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : instrumental neutron activation analysis * phosphoric acid * elemental impurities * isothermal distillation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  20. Protecting Surface Transportation Systems and Patrons from Terrorist Activities

    Science.gov (United States)

    1997-11-01

    This report documents the first phase of a continuing research effort carried out by the Norman Y. Mineta International Institute for Surface Transportation Policy Studies (IISTPS) on behalf of the U.S. Department of Transportation. It comprises a ch...

  1. Magnetic activity at Mars - Mars Surface Magnetic Observatory

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Menvielle, M.; Merayo, José M.G.

    2012-01-01

    We use the extensive database of magnetic observations from the Mars Global Surveyor to investigate magnetic disturbances in the Martian space environment statistically, both close to and far from crustal anomalies. We discuss the results in terms of possible ionospheric and magnetospheric currents...... a magnetic experiment at the martian surface, the Mars Surface Magnetic Observatory (MSMO) including the science objectives, science experiment requirements, instrument and basic operations. We find the experiment to be feasible within the constraints of proposed stationary landing platforms....

  2. Control of surface composition and hydrogen recycling by plasma conditioning

    International Nuclear Information System (INIS)

    Clausing, R.E.; Heatherly, L.

    1984-01-01

    Data from a laboratory simulator, TEXTOR, JET, and other tokamaks are used to show that oxygen and carbon surface impurities on the walls of plasma chambers are interrelated and can be manipulated by controlling the composition of the gas used for plasma surface conditioning. Not only can oxygen be reduced to low levels, but carbon (and other elements) can be either removed or deposited and reacted with the substrate. In the case of carbon deposits, a thin metal-carbide layer can be formed or thicker deposits of elemental carbon can be made. Surface compositions can be reproduced easily and reversibly in a controlled way. Furthermore, these composition changes can alter the hydrogen recycling speed and plasma impurity levels by an order of magnitude or more. In the simulator we have related gas composition to surface composition changes and resulting recycling behavior. Surface oxygen levels can be reduced from 30 to less than 3 at.% in less than 45 min of discharge cleaning. Carbon and oxygen levels as well as those of other surface active impurities are interrelated. Examples are shown and discussed. Comparisons are made to show the changes in the hydrogen recycling behavior caused by various surface preparations (compositions). (orig.)

  3. Nature of the Elimination of the Penicillinase Plasmid from Staphylococcus aureus by Surface-Active Agents

    Science.gov (United States)

    Sonstein, Stephen A.; Baldwin, J. N.

    1972-01-01

    Growth of Stapylococcus aureus in various ionic surface-active agents resulted in loss of the ability to produce penicillinase, whereas growth in nonionic surface-active agents had no effect on penicillinase production. The curing effect of various alkyl sulfates was found to be dependent upon the chain length. Curing by surface-active agents could be inhibited by magnesium. Reciprocal transduction experiments showed that curing by a surface-active agent was a property of the plasmid, not of the bacterial strain in which the plasmic resides. PMID:4204903

  4. Numerical calculation of impurity charge state distributions

    International Nuclear Information System (INIS)

    Crume, E.C.; Arnurius, D.E.

    1977-09-01

    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly

  5. Numerical calculation of impurity charge state distributions

    Energy Technology Data Exchange (ETDEWEB)

    Crume, E. C.; Arnurius, D. E.

    1977-09-01

    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.

  6. Spectrophotometric determination of zinc in impure solutions

    International Nuclear Information System (INIS)

    Rodriguez Hernandez, B.; Reyes Tamaral, A.

    1972-01-01

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs

  7. Enhanced ionized impurity scattering in nanowires

    Science.gov (United States)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  8. Impurity beam-trapping instability in tokamaks

    International Nuclear Information System (INIS)

    Hogan, J.T.; Howe, H.C.

    1976-01-01

    The sensitivity of neutron energy production to the impurity trapping of injected neutral beams is considered. This process is affected by inherent low-Z contamination of the tritium pre-heat plasma, by the species composition of the neutral beam, and by the entrance angle of the beam. The sensitivities of the process to these variables, and to the variation of wall material are compared. One finds that successful use of a low-Z, low-sputtering material can appreciably lengthen the useful pulse length

  9. Impurity beam-trapping instability in tokamaks

    International Nuclear Information System (INIS)

    Hogan, J.T.; Howe, H.C.

    1976-12-01

    The sensitivity of neutron energy production to the trapping by impurities by injected neutral beams is considered. The beam-trapping process is affected by inherent low-Z contamination of the tritium plasma, by the species composition of the neutral beam, and by the entrance angle of the beam. The sensitivities of the process are compared to these variables and to the variation with wall material. One finds that use of a low-Z, low sputtering material could retard a possible beam trapping instability

  10. Magnetic states of single impurity in disordered environment

    Directory of Open Access Journals (Sweden)

    G.W. Ponedilok

    2013-01-01

    Full Text Available The charged and magnetic states of isolated impurities dissolved in amorphous metallic alloy are investigated. The Hamiltonian of the system under study is the generalization of Anderson impurity model. Namely, the processes of elastic and non-elastic scattering of conductive electrons on the ions of a metal and on a charged impurity are included. The configuration averaged one-particle Green's functions are obtained within Hartree-Fock approximation. A system of self-consistent equations is given for calculation of an electronic spectrum, the charged and the spin-polarized impurity states. Qualitative analysis of the effect of the metallic host structural disorder on the observed values is performed. Additional shift and broadening of virtual impurity level is caused by a structural disorder of impurity environment.

  11. Impurity screening of scrape-off plasma in a tokamak

    International Nuclear Information System (INIS)

    Kishimoto, Hiroshi; Tani, Keiji; Nakamura, Hiroo

    1981-11-01

    Impurity screening effect of a scrape-off layer has been studied in a tokamak, based on a simple model of wall-released impurity behavior. Wall-sputtered impurities are stopped effectively by the scrape-off plasma for a medium-Z or high-Z wall system while major part of impurities enters the main plasma in a low-Z wall system. The screening becomes inefficient with increase of scrape-off plasma temperature. Successive multiplication of recycling impurities in the scrape-off layer is large for a high-Z wall and is enhanced by a rise of scrape-off plasma temperature. The stability of plasma-wall interaction is determined by a multiplication factor of recycling impurities. (author)

  12. Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities

    Science.gov (United States)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.

  13. The influence of Mg content and impurities in AA5083 alloy on the properties of flow formed tubes

    Directory of Open Access Journals (Sweden)

    Milutin Nikačević

    2013-12-01

    Full Text Available Microstructure and mechanical properties of flow formed thin-walled tubes of AA5083 alloy from two metallurgical heats are presented. The influence of the chemical composition and applied reduction on the surface features and residual macro stresses were also studied. The residual macro stresses were estimated by ring method. The heat with higher content of alloying elements and impurities (Mg, Mn, Fe, Si had higher strength of preforms as well as flow formed tubes. These tubes exhibit three times higher residual stresses, lower spinnability, and the large amount of the surface defects (microcracks. This behaviour is attributed to the inhomogeneous material flow during deformation and presence of impurities.

  14. Effect of enzymatic hydrolysis on surface activity and surface rheology of type I collagen.

    Science.gov (United States)

    Kezwoń, Aleksandra; Chromińska, Ilona; Frączyk, Tomasz; Wojciechowski, Kamil

    2016-01-01

    We describe the adsorption behaviour and rheological properties of a calf skin type I collagen, and of its hydrolysates obtained using a Clostridium histolyticum collagenase (CHC) under moderate conditions (pH 7, 37°C). The effect of CHC concentration (2×10(-9)-2×10(-6)M) and incubation time (35-85min) was studied and optimised to achieve the highest decrease of surface tension and the highest dilational surface viscoelasticity of the adsorbed layers. SDS-PAGE electrophoresis and reverse-phase high performance liquid chromatography (RP-HPLC) were used to characterise the hydrolysis products. The results show that even simple modifications (heat treatment, pH change, partial hydrolysis) of collagen enhances its surface properties, especially in terms of surface dilational elasticity modulus. The use of low enzyme concentration (CHC-to-collagen molar ratio of 4×10(-3)) and short incubation time (<45min) results in moderately hydrolysed products with the highest ability to lower surface tension (γ=53.9mNm(-1)) forming highly elastic adsorbed layers (surface dilational elasticity, E'=74.5mNm(-1)). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    Science.gov (United States)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  16. Determination of impurities and degradation products from veterinary medicinal products by HPLC method

    Directory of Open Access Journals (Sweden)

    Elena Gabriela Oltean

    2014-06-01

    Full Text Available The organic or inorganic impurities in the veterinary medicinal product can derive from starting materials, manufacturing process, incomplete purification, inappropriate storage. The acceptable levels of impurities in pharmaceuticals are estimated by comparison with standard solutions, according to the appropriate monographs. Forced degradation studies determine the stability of the method of dosage for the active compounds and for the entire finished product under excessive accelerated degradation conditions. They also provide information on degradation pathways and selectivity of analytical methods applied. The information provided by the degradation studies on the active compound and finished pharmaceutical product should demonstrate the specificity of the analytical method regarding impurities. Forced degradation studies should demonstrate that the impurities and degradation products generated do not interfere with the active compound. The current forced degradation methods consist of acid hydrolysis, basic hydrolysis, oxidation, exposure of the medicinal product to temperature and light. HPLC methods are an integral analytical instrument for the analysis of the medicinal product. The HPLC method should be able to separate, detect and quantify various specific degradation products that can appear after manufacture or storage of the medicinal product, as well as new elements appearing after synthesis. FDA and ICH guidelines recommend the enclosure of the results, including the chromatograms specific to the forced degradation-subjected medicinal product, in the documentation for marketing authorization. Using HPLC methods in forced degradation studies on medicinal products provides relevant information on the method of determination for the formulation of the medicinal product, synthesis product, packaging methods and storage.

  17. comparison of sorption capacity and surface area of activated

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. Activated carbons were prepared from fruit pericarp and seed coat of Jatropha curcas using. KOH and NaCl as activating agents leading to the production of four samples of activated carbons JPS, JPP, JCS and JCP. The adsorption capacity based on adsorption of methylene blue was determined for each ...

  18. Impurity injection into tokamak plasmas by erosion probes

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Bakos, J.S.; Buerger, G.; Paszti, F.; Petravich, G.

    1987-08-01

    Exposing special erosion probes into the edge plasma of MT-1 the impurities Li and Ti were released and contaminated the plasma. By the use of collector probes the torodial transport of these impurities were investigated. The results indicate a preferential impurity flow into codirection of the plasma current. However, the asymmetric component of this flow is much larger than expected from the toroidal drift correlated to the plasma current. (author)

  19. Spin-spin correlations of magnetic impurities in graphene

    OpenAIRE

    Guclu, A. D.; Bulut, Nejat

    2014-01-01

    We study the interaction between two magnetic adatom impurities in graphene using the Anderson model. The two-impurity Anderson Hamiltonian is solved numerically by using the quantum Monte Carlo technique. We find that the inter-impurity spin susceptibility is strongly enhanced at low temperatures, significantly diverging from the well-known Ruderman-Kittel-Kasuya-Yoshida (RKKY) result which decays as $R^{-3}$.

  20. Investigation of Impurity Dynamics at GOL-3 Facility

    International Nuclear Information System (INIS)

    Polosatkin, S.V.; Burdako, A.V.; Piffl, V.; Postupaev, V.V.; Weinzettl, V.

    2005-01-01

    Dynamics of light impurities at multimirror trap GOL-3 was studied using imaging spectroscopy diagnostics in VUV and visible spectral range. The results of impurity balance and transport simulation as well as comparison with measurements are presented in this paper. Concentration of impurities in plasma and diffusion coefficient are found out from the measurements. Suitability using VUV and XUV spectroscopy for measuring main plasma parameters is considered

  1. Recommended methods for purification of solvents and tests for impurities

    CERN Document Server

    Coetzee, J F

    1982-01-01

    Recommended Methods for Purification of Solvents and Tests for Impurities is a compilation of recommended procedures for purification of solvents and tests for solvent impurities. Ten solvents are covered: acetonitrile, sulfolane, propylene carbonate, dimethyl sulfoxide, dimethylformamide, hexamethylphosphoramide, pyridine, ethylenediamine, N-methylacetamide, and N-methylpropionamide. This book is comprised of 12 chapters and opens with an introduction to general aspects of impurity effects. The rationale for the selection of solvent is explained, and the relative reactivities of solutes in di

  2. Impurity binding energy for δ-doped quantum well structures

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The binding energy of an impurity delta layer situated either in the centre or at the edge of a quantum well (QW) is theoretically considered for the example of n-type Si0∙8Ge0∙2/Si/Si0∙8Ge0∙2 QW doped with phosphorus. Calculations are made for the case of not so big impurity concentrations, when impurity.

  3. X-ray microanalysis of impurities in ice

    Science.gov (United States)

    Mallard, D. C.; Mader, H. M.; Wolff, E. W.

    2003-04-01

    In order to understand better the physical properties of ice and to correctly interpret the chemical records of ice cores, it is necessary to know the microphysical location and concentration of impurities in ice. To date, only cryo-scanning electron microscopy (SEM) with energy dispersive X-ray microanalysis (EDS) has been used to investigate impurities in ice in any systematic way. Cryo-SEM with X-ray microanalysis of ice is fraught with problems of sample charging, targeting, damage, rough surfaces and homogeneous standards, all of which are detrimental to accurate analysis, and must be explored further. This study looks at the potential of both EDS and wavelength dispersive spectrometry (WDS) X-ray analysis techniques, and the problems encountered over a range of operating conditions (15 kV to 5 kV accelerating voltage; 5 nA to 0.5 nA beam current; -135°C to -100°C; 1 µm^2 and 4 µm^2 analysis areas). 1 M NaCl-doped ice samples were produced in order to provide grain boundaries with detectable impurity for the purposes of the study. Measurement of the Duane-Hunt limit (high energy cut-off) on the EDS spectrum provides an indication of the degree of sample charging during X-ray collection. This data showed that samples were charging significantly over the full range of conditions investigated. It was difficult to maintain the position of the beam during analysis, and mass loss was also frequently visible on micrographs of the analysed area. Despite the problems the WDS data demonstrated that characteristic X-ray peak counts are still distinguishable above background for a 1 µm^2 analysis area and reasonable count times (30 s on peak, 30 s on background) even at low accelerating voltage (5 kV) and beam current (0.5 nA). WDS should potentially provide detection limits an order of magnitude lower than those of EDS. Recommendations for analysis conditions and further study are made on the basis of the findings.

  4. Digital autoradiography technique for studying of spatial Impurity distributions Delara

    International Nuclear Information System (INIS)

    Khamrayeva, S.

    2001-01-01

    In this report, the possibilities of the digital image processing for autoradiographic investigations of impurity distributions in the different objects (crystals, biology, geology et al) are shown. Activation autoradiography based on the secondary beta-irradiation is the method spread widely for investigations of the spatial distribution of chemical elements in the different objects. The analysis of autoradiography features is connected with the elucidation of optical density distribution of photoemulsion by means of photometry. The photoemulsion is used as detector of secondary beta irradiation. For different technological and nature materials to have elemental shifts the fine structure of chemical element distribution is often interested. But photometry makes it difficult to study the inhomogeneous chemical elements with the little gradient of concentration (near 20%). Therefore, the suppression of the background and betterment of linear solvability are the main problems of autoradiographic analysis. Application of the fast-acting digital computers and the technical means of signals treatment are allowed to spread the possibilities and the resolution of activation autoradiography. Mechanism of creation of autoradiographic features is described. The treatment of autoradiograms was conducted with the help of the dialogue system having matrix in 512 x 512 elements. For the interpretation of the experimental data clustering analysis methodology was used. Classification of the zones on the minimum of the square mistake was conducted according to the data of histograms of the optical densities of the studying autoradiograms. It was proposed algorithm for digital treatment for reconstruction of autoradiographic features. At a minimal contrast the resolution of the method has been enhanced on the degree by adaptation of methods of digital image processing (DIP) to suppress background activity. Results of the digital autoradiographic investigations of spatial impurity

  5. Influence of impurities on the H{sub 2}/H{sub 2}O/Ni/YSZ electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hoegh, J.

    2005-05-15

    The kinetics of the SOFC anode or more specific the H{sub 2}/H{sub 2}O/Ni/SZ electrode (SZ=stabilized zirconia) is widely investigated, but there are large disagreements about the kinetics and mechanisms in the literature. It is reported that impurities from the electrode materials (Ni/SZ) segregate to the surface/interface/TPB (TPB=three phase boundary) and that these impurities have a negative influence on the kinetics. These impurities may be the explanation for the disagreements found in the literature. The purpose of this study is therefore to perform electrochemical measurements in a very clean system to avoid the effects of impurities. This is attempted by using high purity materials, lowering the operation temperature to prevent fast segregation of impurities and by limiting impurities from the environment. A simplified geometry of the real SOFC anode, which is a porous Ni/SZ composite, was studied. The simplified anode was made by pressing a Ni wire against a single crystal of stabilized zirconia. In spite of the efforts of making electrochemical measurements in a very clean system, impurities were still found on the surface of the electrode materials (Ni and SZ) after an electrochemical experiment. The impurities found on the SZ are believed to segregate from the bulk of SZ to the surface. Sulfur was found on the surface of the Ni, but its origin is unclear. A higher impurity level was detected on the surface of the Ni and SZ outside the contact area (between the Ni and YSZ) than inside the contact area. The initial smooth surface of the SZ had developed a hill and valley structure in the contact area after a heat treatment. Also, a ridge around the contact area on the SZ was seen. The polarization resistance at open circuit voltage (500 deg. C, 3% H20/H2) increased by a factor of 5-19 over 10-20 days before leveling out. The increase in polarization resistance is believed to be caused by: 1) Segregated impurities, 2) The built up of a ridge around the

  6. The screening of charged impurities in bilayer graphene

    International Nuclear Information System (INIS)

    Zhang Wenjing; Li, Lain-Jong

    2010-01-01

    Positively charged impurities were introduced into a bilayer graphene (BLG) transistor by n-doping with dimethylformamide. Subsequent exposure of the BLG device to moisture resulted in a positive shift of the Dirac point and an increase of hole mobility, suggesting that moisture could reduce the scattering strength of the existing charged impurities. In other words, moisture screened off the 'effective density' of charged impurities. At the early stage of moisture screening the scattering of hole carriers is dominated by long-range Coulomb scatter, but an alternative scattering mechanism should also be taken into consideration when the effective density of impurities is further lowered on moisture exposure.

  7. Fractal growth in impurity-controlled solidification in lipid monolayers

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.

    1987-01-01

    A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  8. Isotope effect in impure high T_c superconductors

    OpenAIRE

    Mierzynska, M.; Wysokinski, K. I.

    2003-01-01

    The influence of various kinds of impurities on the isotope shift exponent \\alpha of high temperature superconductors has been studied. In these materials the dopant impurities, like Sr in La_{2-x}Sr_xCuO_4, play different role and usually occupy different sites than impurities like Zn, Fe, Ni {\\it etc} intentionally introduced into the system to study its superconducting properties. In the paper the in-plane and out-of-plane impurities present in layered superconductors have been considered....

  9. Local chemistry of Al and P impurities in silica

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Stokbro, Kurt

    2000-01-01

    The local structure around Al and P impurities in silica is investigated using density-functional theory. Two distinct cases are considered: impurities substituting for a Si atom in alpha quartz, and impurities implanted in a stoichiometric alpha-quartz crystal. Both impurity elements are found...... to have similar stable substitutional configurations; however, when they are implanted the geometries are quite different: While P prefers to stay in the interstitial region, Al tends to substitute for a Si atom, which in this way is forced into the interstitial region. The underlying chemical origin...

  10. Collective impurity effects in the Heisenberg triangular antiferromagnet

    International Nuclear Information System (INIS)

    Maryasin, V S; Zhitomirsky, M E

    2015-01-01

    We theoretically investigate the Heisenberg antiferromagnet on a triangular lattice doped with nonmagnetic impurities. Two nontrivial effects resulting from collective impurity behavior are predicted. The first one is related to presence of uncompensated magnetic moments localized near vacancies as revealed by the low-temperature Curie tail in the magnetic susceptibility. These moments exhibit an anomalous growth with the impurity concentration, which we attribute to the clustering mechanism. In an external magnetic field, impurities lead to an even more peculiar phenomenon lifting the classical ground-state degeneracy in favor of the conical state. We analytically demonstrate that vacancies spontaneously generate a positive biquadratic exchange, which is responsible for the above degeneracy lifting

  11. Using of the surface activation method for enhancement of machine realibility

    International Nuclear Information System (INIS)

    Postnikov, V.I.; Garbar, I.N.

    1979-01-01

    A surface activation method is described for controlling the wear of units and details, allowing one to measure the wear at continuous operation of the mechanism by any program. The main advantages of the surface activation method for the wear tests are shown. By means of that method it was possible to develop a simultaneous controlling conjugate detail wear, and a method of different-activity brands, as well as the method for repeated activation of details. Development of theory for the engineering and technology of engine wear control by the surface activation method allowed one to improve the efficiency and reduce the time of research in the field of friction and wear

  12. The influence of alkali metal impurities on the uranium dioxide hydrofluorination reaction

    International Nuclear Information System (INIS)

    Ponelis, A.A.

    1989-01-01

    The effect alkali metal impurities (sodium and potassium) in the uranium dioxide (UO 2 ) feed material have on the conversion to uraniumtetrafluoride (UF 4 ) was examined. A direct correlation exists between impurity level and sintering with concomitant reduced conversion. The sintering mechanism is attributable to decreased specific surface area. The typical 'die-off' of reaction or conversion can be explained in terms of increased particle growth rather than an arbitray zero porosity function. Hydrofluorination temperatures varied from 250 to 650 degrees C using pellets varying in size from 0.42 mm to 10 mm. Scanning electron microscope photographs show clearly the particle or grain growth in the pellet as well as the increased size with impurity level. A new dimensionless constant, N KP , is defined to facilitate explanation of the reaction as a function of pellet radius. N KP is defined as the ratio of pellet diffusion resistance to particle diffusion resistance of the reacting HF gas. At high values of this number (N KP >40) the conversion is limited to the outer periphery of the pellet while at low values (N KP KP at higher reaction temperatures which means that the particle diffusion resistance increases with increasing impurity level and results in easier sintering of these materials. 53 refs., 206 figs., 94 tabs

  13. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under apply...

  14. Effect of impurities in the electrothermic instability

    International Nuclear Information System (INIS)

    Azevedo, M.T. de.

    1982-04-01

    It is proposed a model for a ''impure'' plasma based on the homogenous hydrogen plasma used in the theory formulated by Tomimura and Haines to explain the increasing of instable electrothermal modes with wave vector perpendicular to the applyed magnetic field. The impurities are implicity introduced in the transport coeficients of the model of two fluids through the effective charge number Z eff as suggested by Duechs et al., Furth etc... The results obtained are: (i) the greatest increasing ratio for the absolute mode (non-convective) decreases with the increasing of Z eff going to zero for a given value of these parameter which is denominated Z crit ; (ii) the wavelenght associated with that greatest ratio of increasing decreases with the increasing of Z eff ; (iii) Z crit x T eo /T io curves, where T eo and T io are the electronic and ionic temperatures of equilibri um show that, for each value of T eo (used as a parameter) there is a limiting value Z crit from which the plasma is stable, independently of the temperature ratio. The correlation of these results with that of a difuse pinch model, which shows the tendency in assume in the stationary state a filamental current structure is inconclusive with respect to the Z eff dependence. (M.W.O.) [pt

  15. Assessment of Embrittlement of VHTR Structural Alloys in Impure Helium Environments

    Energy Technology Data Exchange (ETDEWEB)

    Crone, Wendy; Cao, Guoping; Sridhara, Kumar

    2013-05-31

    The helium coolant in high-temperature reactors inevitably contains low levels of impurities during steady-state operation, primarily consisting of small amounts of H{sub 2}, H{sub 2}O, CH{sub 4}, CO, CO{sub 2}, and N{sub 2} from a variety of sources in the reactor circuit. These impurities are problematic because they can cause significant long-term corrosion in the structural alloys used in the heat exchangers at elevated temperatures. Currently, the primary candidate materials for intermediate heat exchangers are Alloy 617, Haynes 230, Alloy 800H, and Hastelloy X. This project will evaluate the role of impurities in helium coolant on the stress-assisted grain boundary oxidation and creep crack growth in candidate alloys at elevated temperatures. The project team will: • Evaluate stress-assisted grain boundary oxidation and creep crack initiation and crack growth in the temperature range of 500-850°C in a prototypical helium environment. • Evaluate the effects of oxygen partial pressure on stress-assisted grain boundary oxidation and creep crack growth in impure helium at 500°C, 700°C, and 850°C respectively. • Characterize the microstructure of candidate alloys after long-term exposure to an impure helium environment in order to understand the correlation between stress-assisted grain boundary oxidation, creep crack growth, material composition, and impurities in the helium coolant. • Evaluate grain boundary engineering as a method to mitigate stress-assisted grain boundary oxidation and creep crack growth of candidate alloys in impure helium. The maximum primary helium coolant temperature in the high-temperature reactor is expected to be 850-1,000°C.Corrosion may involve oxidation, carburization, or decarburization mechanisms depending on the temperature, oxygen partial pressure, carbon activity, and alloy composition. These corrosion reactions can substantially affect long-term mechanical properties such as crack- growth rate and fracture

  16. Effect of impurities on the performance of lithium intended for lithium/thionyl chloride battery manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, W.P.; Hampson, N.A.; Packer, R.K.

    1988-09-01

    The elemental impurities in four different, commercially-available lithium samples have been determined. Cells consisting of these lithium samples as anodes and pressed acetylene black as cathodes were discharged at 20 C and at 70 C at a rate of 50 mA/sq cm. The passivating films remaining on the lithium surface after discharge were examined using electron microscopy and their elemental compositions determined using the surface sensitive technique of X-ray photoelectron spectroscopy. Performance characteristics (voltage and capacity) of test cells consisting, in part, of the different lithium samples are discussed in terms of impurity concentrations determined by secondary ion mass spectrometry and atomic absorption spectroscopy. The permeability and electronic conductivity of the LiCl passivating films are adduced as two possible reasons for the variations in capacity and on-load voltage of the different lithium samples. 25 references.

  17. Comparison of sorption capacity and surface area of activated ...

    African Journals Online (AJOL)

    Ash content and percentage fixed carbon were determined for two of the activated carbons (JPS and JCS) with the highest adsorptive capacity. Equilibrium study on adsorption was carried out and the adsorption data were analyzed using the Langmuir isotherm. The results obtained indicate that activated carbons from the ...

  18. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through...

  19. A proposed definition of the 'activity' of surface sites on lactose carriers for dry powder inhalation

    NARCIS (Netherlands)

    Grasmeijer, Floris; Frijlink, Henderik W.; de Boer, Anne

    2014-01-01

    A new definition of the activity of surface sites on lactose carriers for dry powder inhalation is proposed which relates to drug detachment during dispersion. The new definition is expected to improve the understanding of 'carrier surface site activity', which stimulates the unambiguous

  20. Developments of a bonding technique for optical materials by a surface activation method

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Oda, Tomohiro; Abe, Tomoyuki; Kusunoki, Isao

    2005-01-01

    We started developing the laser crystal bounding by the surface activation method which can splice crystals together without using hydrogen bonding. For the surface activation, neutral argon beams were used for irradiation of specimens. In the bonding trials with sapphire crystals, we recognized possibility of the bonding method for optical elements. (author)

  1. Monitoring RAYT activity by surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Bocková, Markéta; Špringer, Tomáš; Nečasová, Iva; Nunvář, Jaroslav; Schneider, Bohdan; Homola, Jiří

    2015-01-01

    Roč. 407, č. 14 (2015), s. 3985-3993 ISSN 1618-2642 R&D Projects: GA ČR GAP305/12/1801 Grant - others:GA MŠk(CZ) CZ.1.05/1.1.00/02.0109 Institutional support: RVO:67985882 ; RVO:86652036 Keywords : Surface plasmon resonance * Biosensor * REP-associated tyrosine transposase Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; EB - Genetics ; Molecular Biology (BTO-N) Impact factor: 3.125, year: 2015

  2. THE EFFECTS OF RARE EARTHS ON ACTIVITY AND SURFACE ...

    African Journals Online (AJOL)

    higher the temperature of H2O desorption is, the stronger the Ru−OH2 bond at the surface of the catalysts and the greater the dissociation of H2O become. The shift reaction needs the dissociative of adsorption H2O to break OH−H and O−H bonds. Therefore the increase of the adsorbing intensity of H2O is associated with ...

  3. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Asahi, Kawashima; Koji, Hashimoto; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  4. Study of the processes of adsorption of amine-containing surface-active substance on the surface of Aluminum powder

    Directory of Open Access Journals (Sweden)

    Antonina Dyuryagina

    2012-03-01

    Full Text Available Equilibrium characteristics of adsorption on a surface of a pigment depending on concentration factors and temperature of the dispersive environment are defined. Kinetic laws of superficial activity of binary, threefold homogeneous and heterogeneous modeling systems are studied. The estimation of mechanisms of process of adsorption is carried out.

  5. Stability of thin liquid films containing surface active particles

    Science.gov (United States)

    Umashankar, Hariharan; Kalpathy, Sreeram; Dixit, Harish

    2017-11-01

    The stability and dynamics of thin liquid films(industrial settings like coating and printing processes and extraction of oil from porous rocks. In this study a hydrodynamic model is introduced to capture the long term evolution of a Newtonian liquid film containing insoluble surfaceactive particles.We consider here the possibility of four distinct interaction regimes based on the surface rheological effects of the particles, such that either, both or neither of Marangoni and surface viscosity effects would be present at the leading order in the governing equations. The liquid film is bounded by a rigid impermeable solid below and covered by passive air phase above.A standard linear stability analysis and nonlinear simulations are performed on the set of highly coupled partial differential evolution equations. Linear stability analysis gives insights on whether a particular imposed perturbationwavenumber will grow or decay in time and also evaluating the fastest growing wavenumber. Parametric studies for all four regimes provides a strong confirmation that surface viscosity and Marangoni effects are indeed rupture delaying effects.

  6. 357 Datation des carbonates impurs au Maroc à l'aide de la ...

    African Journals Online (AJOL)

    youness

    alpha utilisant un détecteur semi-conducteur à barrière de surface. 3. Résultats. Le tableau 1 regroupe les résultats des datations qui ont été effectuées sur plusieurs types de carbonates impurs provenant des dépôts continentaux des régions des Abdda-Doukalla et du Plateau Central. Marocain. Un exemple de correction, ...

  7. Impurity of Sulfur Layers and Magmatic Gas Scrubbing: Implications for Gas Monitoring

    Science.gov (United States)

    Scolamacchia, T.

    2017-12-01

    The evidence of bodies of elemental sulfur (Se) beneath acid crater lakes at the summit of composite active volcanoes has been recognized several decades ago (Oppenheimer and Stevenson, 1989; Christenson and Woods, 1993). But Se accumulation was already hypothesized a century ago at Kusatzu Shirane (Japan) based on the observation of sulfur spherules floating on its crater-lake (Ohashi, 1919). Since these pioneering works, other studies have focused on understanding key aspects of molten sulfur bodies, considered a feature unique of volcanic lakes. Instead, it is reasonable to assume that Se bodies occur in several volcanic settings because a) several reactions may lead to Se deposition from S-bearing gases, and b) crater-lakes, surface expressions of hydrothermal systems, are transient features. The scrubbing of several magmatic gases, some of which critical for volcano monitoring, has been attributed to ground/surface waters (Symonds et al. 2001). Nevertheless, gas scrubbing could reflect viscosity variations of impure Se within hydrothermal systems. Industrial experiments indicated that impurities (organics, H2S, ammonia, HCl, HF, HBr, HI) hinder Se polymerization at T ≥ 160ºC, allowing viscosity to remain low for long time depending on the maximum T achieved and heating rates (Bacon and Fanelli, 1943). However, a prolonged heating destroys the viscosity-modifying substances (e.g. H2Sx formed by reactions with organics, H2S, or ammonia) and dramatic Se viscosity increases occur after a certain number of heating and cooling cycles. A prolonged boiling of Se with organics was observed to release H2S, following H2Sx disruption. Some gases (e.g. SO2) do not affect Se viscosity. In volcanic environments gases such as SO2, CO2 could escape under Selow viscosity regimes. Also, halogens absence in gas emissions could be caused by their participation in reactions within S-layers causing its viscosity to remain low. More data are needed to validate the hypothesis

  8. Polyphosphate nanoparticles on the platelet surface trigger contact system activation

    NARCIS (Netherlands)

    Verhoef, Johan J F; Barendrecht, Arjan D; Nickel, Katrin F; Dijkxhoorn, Kim; Kenne, Ellinor; Labberton, Linda; McCarty, Owen J T; Schiffelers, Raymond; Heijnen, Harry F G; Hendrickx, Antoni P A; Schellekens, Huub; Fens, Marcel H; de Maat, Steven; Renné, Thomas; Maas, Coen

    2017-01-01

    Polyphosphate is an inorganic polymer that can potentiate several interactions in the blood coagulation system. Blood platelets contain polyphosphate, and the secretion of platelet-derived polyphosphate has been associated with increased thrombus formation and activation of coagulation factor XII.

  9. Controlled Release of Biologically Active Silver from Nanosilver Surfaces

    OpenAIRE

    Liu, Jingyu; Sonshine, David A.; Shervani, Saira; Hurt, Robert H.

    2010-01-01

    Major pathways in the antibacterial activity and eukaryotic toxicity of nano-silver involve the silver cation and its soluble complexes, which are well established thiol toxicants. Through these pathways, nano-silver behaves in analogy to a drug delivery system, in which the particle contains a concentrated inventory of an active species, the ion, which is transported to and released near biological target sites. Although the importance of silver ion in the biological response to nano-silver ...

  10. Giant and switchable surface activity of liquid metal via surface oxidation

    OpenAIRE

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial energy of a liquid metal via electrochemical deposition (or removal) of an oxide layer on its surface. Unlike conventional surfactants, this approach can tune the interfacial tension of a metal significantly (from ∼7× that of water to near zero), rapidly, and reversibly using only modest voltages. These properties can be harnessed to induce previously unidentified electrohydrodynamic phenomena for manipulating liquid metal alloys based on gallium...

  11. Impurity-seeded plasma experiments on JET

    Science.gov (United States)

    Maddison, G. P.; Brix, M.; Budny, R.; Charlet, M.; Coffey, I.; Cordey, J. G.; Dumortier, P.; Erents, S. K.; Hawkes, N. C.; von Hellermann, M.; Hillis, D. L.; Hogan, J.; Horton, L. D.; Ingesson, L. C.; Jachmich, S.; Jackson, G. L.; Kallenbach, A.; Koslowski, H. R.; Lawson, K. D.; Loarte, A.; Matthews, G. F.; McDonald, D.; McKee, G. R.; Meigs, A.; Messiaen, A. M.; Milani, F.; Monier-Garbet, P.; Murakami, M.; Nave, M. F. F.; Ongena, J.; Puiatti, M. E.; Rachlew, E.; Rapp, J.; Sharapov, S.; Staebler, G. M.; Stamp, M.; Strachan, J. D.; Suttrop, W.; Telesca, G.; Tokar, M. Z.; Unterberg, B.; Valisa, M.; Zastrow, K.-D.; 2000 workprogramme contributors, EFDA-JET

    2003-01-01

    Scaling to larger tokamaks of high confinement plasmas with radiating edges, induced by impurities, is being studied through internationally collaborative experiments on JET. In campaigns till the end of 2000, three different regimes have been explored. A small number of limiter L-mode discharges seeded with neon have most closely repeated the approach used on TEXTOR-94, but different collisionality and particle transport in JET impede central peaking of the density associated with improved confinement. Divertor L-modes at intermediate density, again with neon injection, have pursued transiently enhanced states found on DIII-D. Confinement up to H-mode quality, together with radiation fractions of approx40%, have briefly been obtained, though central Zeff quickly increases. Most effectively, neon and argon seeding of higher density ELMy H-modes formed mainly at low triangularity on the septum of the MkIIGB divertor, resembling a pumped-limiter arrangement, have been examined. Good confinement has been sustained at densities close to the Greenwald level in `afterpuff' (AP) phases following the end of main gas fuelling, for little change of central Zeff but up to approx60% radiation. Outstanding normalized properties up to H97 = 0.99 at fGwd = 0.94 have thus been achieved, above the conventional H-mode density limit for diverted plasmas. Stationarity of states has also been extended to many energy confinement times by including low, extra gas inputs in the `AP', suggestive of an optimized fuelling scheme. Further development in 2001 is reported separately in [1]. Accompanying ELMs are generally reduced in frequency though not evidently in size, electron pedestal pressure being almost unchanged from unseeded behaviour. There are indications of the most favourable impurity species scaling with plasma parameters, performance, radiation and its concentration within a mantle all increasing with argon compared to neon in JET. These benefits in terms of integrated

  12. MICROBIAL SURFACE-ACTIVE SUBSTANCES AS ANTIADHESIVE AGENTS

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2016-06-01

    Full Text Available The literature data of recent years about capacity of biosurfactants synthesized by bacteria (Pseudomonas, Lactobacillus, Bacillus and fungi (Candida, Trichosporon, Saccharomyces not only to avert the adhesion of microorganisms on the different materials, but also to destroy formed biofilms on them were presented. The perspective of biosurfactants to prevent pathogens colonization on biotic and abiotic surfaces, that is known, can be a reason of cause and spread of infectious diseases was discussed. The data of our researches about antiadhesive properties of biosurfactants synthesized by Acinetobacter calcoaceticus IMV B-7241, Nocardia vaccinni IMV B-7405 and Rhodococcus erythropolis IMV Ac-5017 were presented.

  13. Strain field due to self-interstitial impurity in Ni

    Indian Academy of Sciences (India)

    metals due to substitutional impurities using Kanzaki lattice static method based on discrete lattice theory. This method ... lattice under applied external forces is expanded in powers series of the displacements which in the .... Since the interstitial impurity interacts with short-range interactions, the external force is expected to ...

  14. In vitro genotoxicity of piperacillin impurity-A

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... The manufacturing and storage of the piperacillin produce different impurities of various concentrations, which may influence the efficacy and safety of the drug. Since no report of genotoxicity data is available on the impurities of piperacillin, further studies were designed and conducted to.

  15. Effects of electronically neutral impurities on muonium in germanium

    International Nuclear Information System (INIS)

    Clawson, C.W.; Crowe, K.M.; Haller, E.E.; Rosenblum, S.S.; Brewer, J.H.

    1983-04-01

    Low-temperature measurements of muonium parameters in various germanium crystals have been performed. We have measured crystals with different levels of neutral impurities, with and without dislocations, and with different annealing histories. The most striking result is the apparent trapping of Mu by silicon impurities in germanium

  16. The effects of naturally occurring impurities in rock salt

    Indian Academy of Sciences (India)

    In this paper we investigate the effect that naturally occurring impurities in salt mines have both on effective permittivity of the medium and on radio wave propagation at ∼200 MHz. The effective permittivity is determined based on the dielectric properties of salt and the characteristics of the main impurities. We conclude that ...

  17. Time-Dependent Impurity in Ultracold Fermions: Orthogonality Catastrophe and Beyond

    Directory of Open Access Journals (Sweden)

    Michael Knap

    2012-12-01

    Full Text Available The recent experimental realization of strongly imbalanced mixtures of ultracold atoms opens new possibilities for studying impurity dynamics in a controlled setting. In this paper, we discuss how the techniques of atomic physics can be used to explore new regimes and manifestations of Anderson’s orthogonality catastrophe (OC, which could not be accessed in solid-state systems. Specifically, we consider a system of impurity atoms, localized by a strong optical-lattice potential, immersed in a sea of itinerant Fermi atoms. We point out that the Ramsey-interference-type experiments with the impurity atoms allow one to study the OC in the time domain, while radio-frequency (RF spectroscopy probes the OC in the frequency domain. The OC in such systems is universal, not only in the long-time limit, but also for all times and is determined fully by the impurity-scattering length and the Fermi wave vector of the itinerant fermions. We calculate the universal Ramsey response and RF-absorption spectra. In addition to the standard power-law contributions, which correspond to the excitation of multiple particle-hole pairs near the Fermi surface, we identify a novel, important contribution to the OC that comes from exciting one extra particle from the bottom of the itinerant band. This contribution gives rise to a nonanalytic feature in the RF-absorption spectra, which shows a nontrivial dependence on the scattering length, and evolves into a true power-law singularity with the universal exponent 1/4 at the unitarity. We extend our discussion to spin-echo-type experiments, and show that they probe more complicated nonequilibirum dynamics of the Fermi gas in processes in which an impurity switches between states with different interaction strength several times; such processes play an important role in the Kondo problem, but remained out of reach in the solid-state systems. We show that, alternatively, the OC can be seen in the energy-counting statistics

  18. Spectrographic determination of impurities in magnesium metal

    International Nuclear Information System (INIS)

    Capdevila, C.; Diaz-Guerra, J. P.

    1979-01-01

    The spectrographic determination of trace quantities of Al, B, Cd, Co, Cr, Cu, Fe, Li, Hn, Mo, Ni and Si in magnesium metal is described. Samples are dissolved with HNO 3 and calcinate into MgO. In order to avoid losses of boron NH 4 OH is added to the nitric solution. Except for aluminium and chromium the analysis is performed through the use of the carrier distillation technique. These two impurities are determined by burning to completion the MgO. Among the compounds studied as carriers (AgCl, AgF, CsCl, CuF 2 , KCl and SrF 2 ) AgCl allows, In general, the best volatilization efficiency. Lithium determination is achieved by using KC1 or CsCl. Detection limits, on the basis of MgO, are in the range 0,1 to 30 ppm, depending on the element. (Author) 8 refs

  19. Viscoelasticity of colloidal polycrystals doped with impurities

    Science.gov (United States)

    Louhichi, Ameur; Tamborini, Elisa; Oberdisse, Julian; Cipelletti, Luca; Ramos, Laurence

    2015-09-01

    We investigate how the microstructure of a colloidal polycrystal influences its linear visco-elasticity. We use thermosensitive copolymer micelles that arrange in water in a cubic crystalline lattice, yielding a colloidal polycrystal. The polycrystal is doped with a small amount of nanoparticles, of size comparable to that of the micelles, which behave as impurities and thus partially segregate in the grain boundaries. We show that the shear elastic modulus only depends on the packing of the micelles and varies neither with the presence of nanoparticles nor with the crystal microstructure. By contrast, we find that the loss modulus is strongly affected by the presence of nanoparticles. A comparison between rheology data and small-angle neutron-scattering data suggests that the loss modulus is dictated by the total amount of nanoparticles in the grain boundaries, which in turn depends on the sample microstructure.

  20. Impurity transport studies on the FTU tokamak

    International Nuclear Information System (INIS)

    Pacella, D.; Romanelli, F.; Gregory, B.

    1999-01-01

    In this work, the radial profile of the diffusion coefficient D and the convective velocity V in the plasma core (0 2 /s and V ∼ 100 m/s. A model for the anomalous transport induced by electrostatic turbulence is developed. With a typical fluctuation spectrum (ω = 10 5 -2x10 5 Hz), calculations can reproduce very well the experimental results. To investigate the impurity behavior in a non-stationary phase, Kr gas was injected into the plasma. It is found that the total flux of Kr gas flowing into the core is also driven by diffusion but the magnitude is much lower than the single ion fluxes derived for Mo ions. The effect of the turbulence on the single ion is very strong but it is reduced when averaged over many charge states. (author)

  1. Spectroscopical determination of impurities in nuclear graphite

    International Nuclear Information System (INIS)

    Lordello, A.R.; Tognini, R.P.

    1975-01-01

    A spectrochemical method for the direct determination of B, Cd, Si, Hg, Fe, Mg, Mn, Cr, Ni, Al, Mo, Ti, Sr, Na, Zn, and As in nuclear grade graphite is described. A 9:1 ratio of graphite to copper difluoride is used in the preparation of samples and standards. The excitation is carried out in a d-c at 10 amperes. The copper fluoride used as spectrographic buffer serves to increase the volatilization rate of the impurities and to diminish the differences in the nature of the analytical and calibration samples. The relative standard deviations for the determination of the 16 trace elements, except Sr, Fe, Cd, Al and Si, are in the range of 8 - 20% in their appropriate calibration levels. For the latter five elements they are approximately 20-40%

  2. Recycling of gaseous impurities in ASDEX

    International Nuclear Information System (INIS)

    Poschenrieder, W.; Desinger, K.

    1990-01-01

    The closed divertor configuration of ASDEX isolates the zone of dominant plasma-wall interaction in a rather well defined manner from the plasma in the main chamber. Studies have shown that for recycling gases the effective conductance between divertor and plasma chamber is closely represented by the values for molecular flow also during a discharge. Hence, from partial pressure measurements of contaminant gases in the divertor impurity recycling fluxes can be obtained. In deuterium discharges the problem of mass peak interferences, especially for methane and watervapour, has to be resolved. Data are shown for various ASDEX scenarios: stainless steel walls, carbon wall elements, Ti-gettering and boronization. The results expose the production of CO as main culprit, as long as no gettering or boronization is employed. Then, however, with carbon still present in the machine, the hydrocarbons limit the attainment of optimum performance parameters. What are the conclusions? (orig.)

  3. Electrically Driven Spin Dynamics of Paramagnetic Impurities

    Science.gov (United States)

    Saha, D.; Siddiqui, L.; Bhattacharya, P.; Datta, S.; Basu, D.; Holub, M.

    2008-05-01

    The spin dynamics of dilute paramagnetic impurities embedded in a semiconductor GaAs channel of a conventional lateral spin valve has been investigated. It is observed that the electron spin of paramagnetic Mn atoms can be polarized electrically when driven by a spin valve in the antiparallel configuration. The transient current through the MnAs/GaAs/MnAs spin valve bears the signature of the underlying spin dynamics driven by the exchange interaction between the conduction band electrons in GaAs and the localized Mn electron spins. The time constant for this interaction is observed to be dependent on temperature and is estimated to be 80 ns at 15 K.

  4. Resonance surface enhanced Raman optical activity of myoglobin as a result of optimized resonance surface enhanced Raman scattering conditions

    DEFF Research Database (Denmark)

    Abdali, Salim; Johannessen, Christian; Nygaard, Jesper

    2007-01-01

    Using Surface enhanced ROA (SEROA), novel results are achieved by combining Raman Optical Activity (ROA) and resonance Surface Enhanced Raman Scattering (SERRS), applied on myoglobin. The novelty of this work is ascribed the first time reporting on chiral results of a study performed on a protein...... has shown that the SERS effect behaves consequently, depending on the concentration ratio of each component, i.e., myoglobin, Ag colloids and NaCl. Accordingly, it is shown here that SERS intensity has its maximum at certain concentration of these components, whereas below or above this value...

  5. Diagnostics of heavy impurities at GOL-3 facility

    Science.gov (United States)

    Sorokina, N.; Burdakov, A.; Ivanov, I.; Kuklin, K.; Polosatkin, S.; Popov, S.; Postupaev, V.; Rovenskikh, A.; Shoshin, A.; Schudlo, I.

    2010-11-01

    Multimirror approach to plasma confinement for fusion is studied at GOL-3 facility in the Budker Institute of Nuclear Physics (Novosibirsk, Russia). The presented work is devoted to diagnostics of heavy impurities in plasma of this facility. The main purpose is quantitative measurement of density, degree of ionization of the main heavy impurities in plasma and their contribution to an effective charge of plasma at the GOL-3 facility. Density of interested elements was measured by optical spectroscopy and mass-spectroscopy of residual vacuum. A number of spectroscopic diagnostics has been developed for this purpose. Experimental data were compared with results of numerical calculations of impurities dynamics. As a result it is revealed that the contribution of heavy impurities to effective charge of plasma does not exceed 20%; thus the presence of impurities in plasma of the GOL-3 facility does not influence essentially the plasma confinement at the multimirror trap.

  6. Diagnostics of heavy impurities at GOL-3 facility

    International Nuclear Information System (INIS)

    Sorokina, N.; Burdakov, A.; Ivanov, I.; Kuklin, K.; Polosatkin, S.; Popov, S.; Postupaev, V.; Rovenskikh, A.; Shoshin, A.; Schudlo, I.

    2010-01-01

    Multimirror approach to plasma confinement for fusion is studied at GOL-3 facility in the Budker Institute of Nuclear Physics (Novosibirsk, Russia). The presented work is devoted to diagnostics of heavy impurities in plasma of this facility. The main purpose is quantitative measurement of density, degree of ionization of the main heavy impurities in plasma and their contribution to an effective charge of plasma at the GOL-3 facility. Density of interested elements was measured by optical spectroscopy and mass-spectroscopy of residual vacuum. A number of spectroscopic diagnostics has been developed for this purpose. Experimental data were compared with results of numerical calculations of impurities dynamics. As a result it is revealed that the contribution of heavy impurities to effective charge of plasma does not exceed 20%; thus the presence of impurities in plasma of the GOL-3 facility does not influence essentially the plasma confinement at the multimirror trap.

  7. Application of HPLC with ELSD Detection for the Assessment of Azelaic Acid Impurities in Liposomal Formulation

    Directory of Open Access Journals (Sweden)

    Stanislaw Han

    2013-01-01

    Full Text Available In the course of research and development of a new pharmaceutical formulation of azelaic acid in the liposomal form, we developed a rapid and accurate method for the detection of impurities using high-performance liquid chromatography. A chromatographic column from Merck (Purospher Star RP C18, 250–4 mm (5 μm was used in the assay, and the mobile phase gradient consisted of three phases: A—methanol : water (5 : 95 + 1.5% (v/v acetic acid; B—water : methanol (5 : 95 + 1.5% (v/v acetic acid; and C—chloroform. Detection of the impurities and the active substance was performed by an evaporative light-scattering detector. The method was validated for selectivity, system precision, method precision, limit of detection, and response rates. The proposed method can be used to detect impurities in the liposomal formulation of azelaic acid. The method enables separation of azelaic acid from the identified and unidentified impurities and from the excipients used in the drug form.

  8. Application of HPLC with ELSD detection for the assessment of azelaic acid impurities in liposomal formulation.

    Science.gov (United States)

    Han, Stanislaw; Karlowicz-Bodalska, Katarzyna; Szura, Dorota; Ozimek, Lukasz; Musial, Witold

    2013-01-01

    In the course of research and development of a new pharmaceutical formulation of azelaic acid in the liposomal form, we developed a rapid and accurate method for the detection of impurities using high-performance liquid chromatography. A chromatographic column from Merck (Purospher Star RP C18, 250-4 mm (5 μm) was used in the assay, and the mobile phase gradient consisted of three phases: A--methanol : water (5 : 95) + 1.5% (v/v) acetic acid; B--water : methanol (5 : 95) + 1.5% (v/v) acetic acid; and C--chloroform. Detection of the impurities and the active substance was performed by an evaporative light-scattering detector. The method was validated for selectivity, system precision, method precision, limit of detection, and response rates. The proposed method can be used to detect impurities in the liposomal formulation of azelaic acid. The method enables separation of azelaic acid from the identified and unidentified impurities and from the excipients used in the drug form.

  9. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste

    Science.gov (United States)

    Zhang, Yan-Juan; Xing, Zhen-Jiao; Duan, Zheng-Kang; Li, Meng; Wang, Yin

    2014-10-01

    The effects of steam activation on the pore structure evolution and surface chemistry of activated carbon (AC) obtained from bamboo waste were investigated. Nitrogen adsorption-desorption isotherms revealed that higher steam activation temperatures and/or times promoted the creation of new micropores and widened the existing micropores, consequently decreasing the surface area and total pore volume. Optimum conditions included an activation temperature of 850 °C, activation time of 120 min, and steam flush generated from deionized water of 0.2 cm3 min-1. Under these conditions, AC with a BET surface area of 1210 m2 g-1 and total pore volume of 0.542 cm-3 g-1was obtained. Changes in surface chemistry were determined through Boehm titration, pH measurement, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Results revealed the presence of a large number of basic groups on the surface of the pyrolyzed char and AC. Steam activation did not affect the species of oxygen-containing groups but changed the contents of these species when compared with pyrolyzed char. Scanning electron microscopy was used to observe the surface morphology of the products. AC obtained under optimum conditions showed a monolayer adsorption capacity of 330 mg g-1 for methylene blue (MB), which demonstrates its excellent potential for MB adsorption applications.

  10. Hydrocyclones for the separation of impurities in pretreated biowaste.

    Science.gov (United States)

    Jank, Anna; Müller, Wolfgang; Waldhuber, Sebastian; Gerke, Frédéric; Ebner, Christian; Bockreis, Anke

    2017-06-01

    The aim of the mechanical pretreatment in case of anaerobic digestion of biowaste is to produce a substrate without impurities. To facilitate a failure free operation of the anaerobic digestion process even small impurities like stones or sand should be separated. As a result of an insufficient pretreatment or impurities separation, plant malfunctions, increased equipment wear or pipe clogging are reported. Apart from grit chambers or pulper systems, a hydrocyclone is a cost-efficient and space-saving option to remove impurities. The aim of this work was to investigate the efficiency of hydrocyclones for the separation of impurities. Two hydrocyclones at two different plants were investigated regarding their capability to separate the small inert impurities from pretreated source separated biowaste. In plant A, the hydrocyclone is part of the digester system. In plant B, the hydrocyclone is part of the biowaste pretreatment line (after milling and sieving the biowaste) before digestion. Separation rates of inert impurities such as stones, glass and sand were determined as well as the composition of the concentrated solids separated by the hydrocyclone. Due to the heterogeneity of the biowaste the impurity separation rates showed variations, therefore the following mean results were obtained in average: the investigated hydrocyclones of plant B, part of the biowaste treatment, separated more than 80% of the inert impurities in the waste stream before anaerobic digestion. These impurities had a size range of 0.5-4mm. The hydrocyclone integrated in the digester system of plant A showed separation rates up to 80% only in the size range of 2-4mm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... of different factors, such as the nature of the enzyme, the properties of the support, the type of immobilization and the interaction between enzyme and support, has to be taken into consideration. In this thesis, these factors are pursued and addressed by exploiting various types of polymers with focus...

  12. Donor type semiconductor at low temperature as maser active medium

    OpenAIRE

    Kornyushin, Yuri

    2007-01-01

    In some semiconductors donor impurity atoms can attract additional electrons, forming negative donor impurity ions. Thus we have 3 energy levels for electrons: zero energy levels at the bottom of the conductivity band, negative energy levels of the bounded electrons of the negative donor impurity ions, and deeper negative energy levels of the outer electrons of the neutral donor impurity atoms. So the donor impurity atoms could serve as active centres for a maser. The maximum achievable relat...

  13. Center deviation of localized modes in a one-dimension anharmonic single impurity chain

    Science.gov (United States)

    Chen, Xuan-Lin; Zhu, Gang-Bei; Jiang, Ze-Hui; Yang, Yan-Qiang

    2018-04-01

    A 1D anharmonic chain with a single impurity particle is used to study the center deviation and stability of the localized modes. The displacement patterns of the localized modes for a variable impurity mass and anharmonic parameter are studied. The pattern center is shifted away from the impurity with decreasing anharmonic parameter for both symmetric and asymmetric anharmonic impurity modes. In the limit of a heavy-mass impurity, the energy localization is constrained to the three particles nearest to the impurity.

  14. Effect of polymer surface activity on cavitation nuclei stability against dissolution

    Science.gov (United States)

    Porter, Tyrone M.; Crum, Lawrence A.; Stayton, Patrick S.; Hoffman, Allan S.

    2004-08-01

    The persistence of acoustic cavitation in a pulsed wave ultrasound regime depends upon the ability of cavitation nuclei, i.e., bubbles, to survive the off time between pulses. Due to the dependence of bubble dissolution on surface tension, surface-active agents may affect the stability of bubbles against dissolution. In this study, measurements of bubble dissolution rates in solutions of the surface-active polymer poly(propyl acrylic acid) (PPAA) were conducted to test this premise. The surface activity of PPAA varies with solution pH and concentration of dissolved polymer molecules. The surface tension of PPAA solutions (55-72 dynes/cm) that associated with the polymer surface activity was measured using the Wilhelmy plate technique. Samples of these polymer solutions then were exposed to 1.1 MHz high intensity focused ultrasound, and the dissolution of bubbles created by inertial cavitation was monitored using an active cavitation detection scheme. Analysis of the pulse echo data demonstrated that bubble dissolution time was inversely proportional to the surface tension of the solution. Finally, comparison of the experimental results with dissolution times computed from the Epstein-Plesset equation suggests that the radii of residual bubbles from inertial cavitation increase as the surface tension decreases.

  15. Influence of Oscillatory Impurity Potential and Concurrent Gasping of Impurity Spread on Excitation Profile of Doped Quantum Dots

    Directory of Open Access Journals (Sweden)

    Suvajit Pal

    2013-01-01

    Full Text Available Excitation in quantum dots is an important phenomenon. Realizing the importance we investigate the excitation behavior of a repulsive impurity-doped quantum dot induced by simultaneous oscillations of impurity potential and spatial stretch of impurity domain. The impurity potential has been assumed to have a Gaussian nature. The ratio of two oscillations (η has been exploited to understand the nature of excitation rate. Indeed it has been found that the said ratio could fabricate the excitation in a remarkable way. The present study also indicates attainment of stabilization in the excitation rate as soon as η surpasses a threshold value regardless of the dopant location. However, within the stabilization zone we also observe maximization in the excitation rate at some typical location of dopant incorporation. The critical analysis of pertinent impurity parameters provides important perception about the physics behind the excitation process.

  16. Cell-surface display of the active mannanase in Yarrowia lipolytica with a novel surface-display system.

    Science.gov (United States)

    Yang, Xiao-Song; Jiang, Zheng-Bing; Song, Hui-Ting; Jiang, Si-Jing; Madzak, Catherine; Ma, Li-Xin

    2009-10-13

    A novel surface-display system was constructed using the cell-wall anchor protein Flo1p from Saccharomyces cerevisiae, the mannanase (man1) from Bacillus subtilis fused with the C-terminus of Flo1p and the 6xHis tag was inserted between Flo1p and man1. The fusion protein was displayed on the cell surface of Yarrowia lipolytica successfully, and it was confirmed by immunofluorescence. In succession, the surface-displayed mannanase was characterized. The optimum catalytic conditions for the recombinant mannanase were 55 degrees C at pH 6.0, and it exhibited high stability against pH variation. The highest activity of the recombinant mannanase reached 62.3 IU/g (dry cell weight) after the recombinant was cultivated for 96 h in YPD medium [1% (w/v) yeast extract/2% (w/v) peptone/2% (w/v) glucose]. To our knowledge, the present paper is the first to report that high-activity mannanase is displayed on the cell surface of Y. lipolytica with Flo1p.

  17. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    Science.gov (United States)

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Reinforcement of a porous collagen scaffold with surface-activated PLA fibers.

    Science.gov (United States)

    Liu, Xi; Huang, Changbin; Feng, Yujie; Liang, Jie; Fan, Yujiang; Gu, Zhongwei; Zhang, Xingdong

    2010-01-01

    A hybrid porous collagen scaffold mechanically reinforced with surface-activated poly(lactic acid) (PLA) fiber was prepared. PLA fibers, 20 mum in diameter and 1 mm in length, were aminolyzed with hexanediamine to introduce free amino groups on the surfaces. After the amino groups were transferred to aldehyde groups by treatment with glutaraldehyde, different amounts (1.5, 3, 5 and 8 mg) of surface-activated PLA fibers were homogeneously mixed with 2 ml type-I collagen solution (pH 2.8, 0.6 wt%). This mixture solution was then freeze-dried and cross-linked to obtain collagen sponges with surface-activated PLA fiber. Scanning electron microscopy observation indicated that the collagen sponges had a highly interconnected porous structure with an average pore size of 170 mum, irrespective of PLA fiber incorporation. The dispersion of surface-activated PLA fibers was homogeneous in collagen sponge, in contrast to unactivated PLA fibers. The compression modulus test results showed that, compared with unactivated PLA fibers, the surface-activated PLA fibers enhanced the resistance of collagen sponge to compression more significantly. Cytotoxicity assay by MTT test showed no cytotoxicity of these collagen sponges. L929 mouse fibroblast cell-culture studies in vitro revealed that the number of L929 cells attached to the collagen sponge with surface-activated PLA fibers, both 6 h and 24 h after seeding, was higher than that in pure collagen sponge and sponge with unactivated PLA fibers. In addition, a better distribution of cells infiltrated in collagen sponge with surface-activated PLA fibers was observed by histological staining. These results indicated that the collagen sponge reinforced with surface-activated PLA fibers is a promising biocompatible scaffold for tissue engineering.

  19. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.

    Science.gov (United States)

    Sunde, Margaret; Pham, Chi L L; Kwan, Ann H

    2017-06-20

    Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.

  20. Chemical vapor deposition grown monolayer graphene field-effect transistors with reduced impurity concentration

    Science.gov (United States)

    Ha, Tae-Jun; Lee, Alvin

    2015-07-01

    We report on the restoration of the electronic characteristics of waferscale chemical vapor deposition (CVD) monolayer graphene field-effect transistors (GFETs) by reducing the impurity concentration. An optimized electropolishing process on copper foils combined with carbon-fluorine encapsulation using a suitable amorphous fluoropolymer enables reducing the surface roughness of graphene and screening out interfacial impurity scattering, which leads to an improvement in all key device metrics. The conductivity at the Dirac point is substantially reduced, resulting in an increase in the on-off current ratio. In addition, the field-effect mobility increased from 1817 to 3918 cm2/V-s, the impurity concentration decreased from 1.1 × 1012 to 2.1 × 1011 cm-2 and the electron and hole transport became more symmetric. Significantly, favorable shifts toward zero voltage were observed in the Dirac point. We postulate that the smoother surface due to electropolishing and a pool of strong dipole-dipole moments in the flouropolymer coating provide a charge buffer that relaxes the fluctuation in the electron-hole puddles. We also investigate the long-term stability in GFETs encapsulated with fluoropolymer, which exhibit a high hydrophobicity that suppresses the chemical interaction with water molecules. [Figure not available: see fulltext.

  1. Black carbon and other light-absorbing impurities in the Andes of Northern Chile

    Science.gov (United States)

    Rowe, P. M.; Cordero, R.; Warren, S. G.; Pankow, A.; Jorquera, J.; Schrempf, M.; Doherty, S. J.; Cabellero, M.; Carrasco, J. F.; Neshyba, S.

    2015-12-01

    Black carbon (BC) and other light-absorbing impurities in snow absorb solar radiation and thus have the potential to accelerate glacial retreat and snowmelt. In Chile, glaciers and seasonal snow are important sources of water for irrigation and domestic uses. In July 2015 (Austral winter) we sampled snow in the western Andes in a north-south transect of Chile from 18 S to 34 S. Most of the sampled snow had fallen during a single synoptic event, during 11-13 July. The snow was melted and passed through 0.4 micrometer nuclepore filters. Preliminary estimates indicate that (1) the ratio of BC to dust in snow increases going south from Northern to Central Chile, and (2) in snow sampled during the two weeks following the snowstorm, the impurities were concentrated in the upper 5 cm of snow, indicating that the surface layer became polluted over time by dry deposition.

  2. Influence of Impurities on the Radiation Response of the TlBr Semiconductor Crystal

    Directory of Open Access Journals (Sweden)

    Robinson Alves dos Santos

    2017-01-01

    Full Text Available Two commercially available TlBr salts were used as the raw material for crystal growths to be used as radiation detectors. Previously, TlBr salts were purified once, twice, and three times by the repeated Bridgman method. The purification efficiency was evaluated by inductively coupled plasma mass spectroscopy (ICP-MS, after each purification process. A compartmental model was proposed to fit the impurity concentration as a function of the repetition number of the Bridgman growths, as well as determine the segregation coefficients of impurities in the crystals. The crystalline structure, the stoichiometry, and the surface morphology of the crystals were evaluated, systematically, for the crystals grown with different purification numbers. To evaluate the crystal as a radiation semiconductor detector, measurements of its resistivity and gamma-ray spectroscopy were carried out, using 241Am and 133Ba sources. A significant improvement of the radiation response was observed in function of the crystal purity.

  3. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties.

    Science.gov (United States)

    Ambrosi, Adriano; Pumera, Martin

    2014-01-07

    High quality graphene films can be fabricated by chemical vapor deposition (CVD) using Ni and Cu as catalytic substrates. Such a synthesis procedure always requires a subsequent transfer process to be performed in order to eliminate the metallic substrate and transfer the graphene onto the desired surface. We show here that such a transfer process causes significant contamination of the graphene film with residual Fe and Ni metal impurities. Fe contamination derives from the use of Fe-based etching solutions to dissolve Ni (or Cu) substrates, while residual Ni (or Cu) is due to an incomplete metal substrate etching. The presence of these metallic impurities within the transferred graphene film affects tremendously its electrochemical behavior when adopted as an electrode material.

  4. Measurements of impurity migration in graphite at high temperatures using a proton microprobe

    International Nuclear Information System (INIS)

    Shroy, R.E.; Soo, P.; Sastre, C.A.; Schweiter, D.G.; Kraner, H.W.; Jones, K.W.

    1978-01-01

    The migration of fission products and other impurities through the graphite core of a High Temperature Gas Cooled Reactor is of prime importance in studies of reactor safety. Work in this area is being carried out in which graphite specimens are heated to temperatures up to 3800 0 C to induce migration of trace elements whose local concentrations are then measured with a proton microprobe. This instrument is a powerful device for such work because of its ability to determine concentrations at a part per million (ppm) level in a circular area as small as 10 μm while operating in an air environment. Studies show that Si, Ca, Cl, and Fe impurities in graphite migrate from hotter to cooler regions. Also Si, S, Cl, Ca, Fe, Mn, and Cr are observed to escape from the graphite and be deposited on cooler surfaces

  5. Spin-1 two-impurity Kondo problem on a lattice

    Science.gov (United States)

    Allerdt, A.; Žitko, R.; Feiguin, A. E.

    2018-01-01

    We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on a square lattice using an exact canonical transformation to map the problem onto an effective one-dimensional system that can be numerically solved using the density matrix renormalization group method. We provide a simple intuitive picture and identify the different regimes, depending on the distance between the two impurities, Kondo coupling JK, longitudinal anisotropy D , and transverse anisotropy E . In the isotropic case, two impurities on opposite (the same) sublattices have a singlet (triplet) ground state. However, the energy difference between the triplet ground state and the singlet excited state is very small and we expect an effectively fourfold-degenerate ground state, i.e., two decoupled impurities. For large enough JK the impurities are practically uncorrelated forming two independent underscreened states with the conduction electrons, a clear nonperturbative effect. When the impurities are entangled in an RKKY-like state, Kondo correlations persist and the two effects coexist: the impurities are underscreened, and the dangling spin-1 /2 degrees of freedom are responsible for the interimpurity entanglement. We analyze the effects of magnetic anisotropy in the development of quasiclassical correlations.

  6. Nisin-activated hydrophobic and hydrophilic surfaces: assessment of peptide adsorption and antibacterial activity against some food pathogens.

    Science.gov (United States)

    Karam, Layal; Jama, Charafeddine; Mamede, Anne-Sophie; Boukla, Samir; Dhulster, Pascal; Chihib, Nour-Eddine

    2013-12-01

    An effective antimicrobial packaging or food contact surface should be able to kill or inhibit micro-organisms that cause food-borne illnesses. Setting up such systems, by nisin adsorption on hydrophilic and hydrophobic surfaces, is still a matter of debate. For this purpose, nisin was adsorbed on two types of low-density polyethylene: the hydrophobic native film and the hydrophilic acrylic acid-treated surface. The antibacterial activity was compared for those two films and it was highly dependent on the nature of the surface and the nisin-adsorbed amount. The hydrophilic surfaces presented higher antibacterial activity and higher amount of nisin than the hydrophobic surfaces. The effectiveness of the activated surfaces was assessed against Listeria innocua and the food pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. S. aureus was more sensitive than the three other test bacteria toward both nisin-functionalized films. Simulation tests to mimic refrigerated temperature showed that the films were effective at 20 and 4 °C with no significant difference between the two temperatures after 30 min of exposure to culture media.

  7. Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface.

    Science.gov (United States)

    Hua, Xiaoqing; Bevan, Michael A; Frechette, Joelle

    2018-04-16

    Nanoparticles (NPs) can add functionality (e.g., catalytic, optical, rheological) to an oil-water interface. Adsorption of ∼10 nm NPs can be reversible; however, the mechanisms for adsorption and its effects on surface pressure remain poorly understood. Here we demonstrate how the competitive reversible adsorption of NPs and surfactants at fluid interfaces can lead to independent control of both the adsorbed amount and surface pressure. In contrast to prior work, both species investigated (NPs and surfactants) interact reversibly with the interface and without the surface active species binding to NPs. Independent measurements of the adsorption and surface pressure isotherms allow determination of the equation of state (EOS) of the interface under conditions where the NPs and surfactants are both in dynamic equilibrium with the bulk phase. The adsorption and surface pressure measurements are performed with gold NPs of two different sizes (5 and 10 nm), at two pH values, and across a wide concentration range of surfactant (tetrapentylammonium, TPeA + ) and NPs. We show that free surface active ions compete with NPs for the interface and give rise to larger surface pressures upon the adsorption of NPs. Through a competitive adsorption model, we decouple the contributions of NPs wetting at the interface and their surface activity on the measured surface pressure. We also demonstrate reversible control of adsorbed amount via changes in the surfactant concentration or the aqueous phase pH.

  8. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 surface expression on cancer cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various...

  9. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  10. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties

    Science.gov (United States)

    Ambrosi, Adriano; Pumera, Martin

    2013-12-01

    High quality graphene films can be fabricated by chemical vapor deposition (CVD) using Ni and Cu as catalytic substrates. Such a synthesis procedure always requires a subsequent transfer process to be performed in order to eliminate the metallic substrate and transfer the graphene onto the desired surface. We show here that such a transfer process causes significant contamination of the graphene film with residual Fe and Ni metal impurities. Fe contamination derives from the use of Fe-based etching solutions to dissolve Ni (or Cu) substrates, while residual Ni (or Cu) is due to an incomplete metal substrate etching. The presence of these metallic impurities within the transferred graphene film affects tremendously its electrochemical behavior when adopted as an electrode material.High quality graphene films can be fabricated by chemical vapor deposition (CVD) using Ni and Cu as catalytic substrates. Such a synthesis procedure always requires a subsequent transfer process to be performed in order to eliminate the metallic substrate and transfer the graphene onto the desired surface. We show here that such a transfer process causes significant contamination of the graphene film with residual Fe and Ni metal impurities. Fe contamination derives from the use of Fe-based etching solutions to dissolve Ni (or Cu) substrates, while residual Ni (or Cu) is due to an incomplete metal substrate etching. The presence of these metallic impurities within the transferred graphene film affects tremendously its electrochemical behavior when adopted as an electrode material. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05230c

  11. Identifying the Active Surfaces of Electrochemically Tuned LiCoO2 for Oxygen Evolution Reaction

    International Nuclear Information System (INIS)

    Lu, Zhiyi; Chen, Guangxu; Li, Yanbin; Wang, Haotian; Xie, Jin

    2017-01-01

    Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces and their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2 ) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.

  12. Characterization of fucosyltransferase activity during mouse spermatogenesis: Evidence for a cell surface fucosyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Cardullo, R.A.; Armant, D.R.; Millette, C.F. (Harvard Medical School, Boston, MA (USA))

    1989-02-21

    Fucosyltransferase activity was quantified in mouse germ cells at different stages of spermatogenesis. Specifically, fucosyltransferase activities of pachytene spermatocytes, round spermatids, and cauda epididymal sperm were compared. Fucosyltranferase activity of mixed germ cells displayed an apparent V{sub max} of 17 pmol (mg of protein){sup {minus}1} min{sup {minus}1} and an apparent K{sub m} of approximately 13 {mu}M for GDP-L-({sup 14}C)fucose in the presence of saturating amounts of asialofetuin at 33{degree}C. Under these conditions, cellular fucosyltransferase activity was found to increase during spermatogenesis. In agreement with assays of intact cells, examination of subcellular fractions indicated that a large fraction of fucosyltransferase activity was associated with the cell surface. The fraction of fucosyltransferase activity that was associated with the cell surface progressively increased throughout spermatogenesis and epididymal maturation so that nearly all of the fucosyltransferase in epididymal sperm was on the cell surface. Specifically, by comparison of activities in the presence and absence of the detergent NP-40, the fraction of fucosyltransferase activity that was associated with the cell surface in pachytene spermatocytes, round spermatids, and epididymal sperm was 0.36, 0.5, and 0.85, respectively. These results suggest that a cell surface fucosyltransferase may be important during differentiation of spermatogenic cells in the testis as well as during epididymal maturation and fertilization.

  13. STM studies of individual Ti impurity atoms in Sr2RuO4

    International Nuclear Information System (INIS)

    Barker, B.I.; Dutta, S.K.; Lupien, C.; McEuen, P.L.; Kikugawa, N.; Maeno, Y.; Davis, J.C.

    2003-01-01

    The unconventional superconductor, Sr 2 RuO 4 , was studied with an ultra-low temperature scanning tunneling microscope. Atomic resolution images of the SrO plane were obtained with perturbations caused by Ti impurities substituted for 0.125% of the Ru atoms clearly visible. A complicated gap-like structure in local density of states was measured at all locations on the surface, with some modifications caused by the Ti atoms. The superconducting gap was not clearly visible, possibly due to surface termination effects, but other gap-like structures were found at ∼5 and ∼50 meV

  14. Grey Tienshan Urumqi Glacier No.1 and light-absorbing impurities

    OpenAIRE

    Ming, Jing; Xiao, Cunde; Wang, Feiteng; Li, Zhongqin; Li, Yamin

    2016-01-01

    The Tienshan Urumqi Glacier No.1 (TUG1) usually shows ?grey? surfaces in summers. Besides known regional warming, what should be responsible for largely reducing its surface albedo and making it look ?grey?? A field campaign was conducted on the TUG1 on a selected cloud-free day of 2013 after a snow fall at night. Fresh and aged snow samples were collected in the field, and snow densities, grain sizes, and spectral reflectances were measured. Light-absorbing impurities (LAIs) including black ...

  15. Modeling of impurity transport in the core plasma

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1992-01-01

    This paper presents a brief overview of computer modeling of impurity transport in the core region of controlled thermonuclear fusion plasmas. The atomic processes of importance in these high temperature plasmas and the numerical formulation of the model are described. Selected modeling examples are then used to highlight some features of the physics of impurity behavior in large tokamak fusion devices, with an emphasis on demonstrating the sensitivity of such modeling to uncertainties in the rate coefficients used for the atomic processes. This leads to a discussion of current requirements and opportunities for generating the improved sets of comprehensive atomic data needed to support present and future fusion impurity modeling studies

  16. Impurity states in two and three dimensional disordered system S

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-01-01

    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered system. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (author) [pt

  17. Impurity production and transport at the JET belt limiter

    International Nuclear Information System (INIS)

    Pitcher, C.S.; McCracken, G.M.; Strangeby, P.C.; Toronto Univ., ON; Summers, D.D.R.

    1989-01-01

    Under certain operating conditions in JET the impurity content of the discharge can be high, thus reducing the fusion reaction rate through the dilution of the hydrogenic fuel. The dilution in most discharges is predominantly due to carbon impurities. In order to understand how carbon impurities are produced and transported into the plasma, detailed measurements with interference filters centered on intense spectral lines of the low ionization states of carbon (C I, C II, C III) as well as the fuel species (Dα) and helium (He I). (author) 6 refs., 4 figs

  18. Studies of impurity recycling by the collector probe technique

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Grote, H.; Herrmann, A.; Laux, M.; Pech, P.; Reiner, H.D.; Wolff, H.

    1987-01-01

    In order to study recycling effects of the nonintrinsic impurity Li discharges with and without LiD-pellet injection were investigated. The observed maximum impurity level of Li in the SOL plasma of discharges without injection reaches less than 10% of that observed in discharges with injection. The measurements offer the possibility to distinguish between influxes from the wall and those which reach the collector probe via the core plasma. The time evolution, orientation and radial dependence of the impurity fluxes are characteristic features of their origin. The consideration of all these features facilitates a better understanding of collector probe measurements in the SOL-plasma. (orig.)

  19. Electronic structure of deep impurity centers in silicon

    International Nuclear Information System (INIS)

    Oosten, A.B. van.

    1989-01-01

    This thesis reports an experimental study of deep level impurity centers in silicon, with much attention for theoretical interpretation of the data. A detailed picture of the electronic structure of several centers was obtained by magnetic resonance techniques, such as electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR) and field scanned ENDOR (FSE). The thesis consists of two parts. The first part deals with chalcogen (sulfur, selenium and tellurium) related impurities, which are mostly double donors. The second part is about late transition metal (nickel, palladium and platinum) impurities, which are single (Pd,Pt) or double (Ni) acceptor centers. (author). 155 refs.; 51 figs.; 23 tabs

  20. Laser Ablation Plume Expansion In The Presence Of Charged Impurities

    International Nuclear Information System (INIS)

    Djebli, M.

    2008-01-01

    The expansion of plasma created by laser ablation is investigated using the fluid model. At the first stage of the expansion, electrons are considered in thermal equilibrium. The presence of highly charged impurities is considered through Poisson's equation. The set of nonlinear differential equations is solved using a moving boundary and taken into account the charge separation effect. The uniformly distributed impurities can accelerate or decelerate the ion motion depending on their charge and concentration. It is also found that the separation of the charge is valid for a specific time which depends on the impurities parameters.

  1. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  2. Determination of trace impurities in materials

    International Nuclear Information System (INIS)

    Parashar, D.C.

    1991-01-01

    Research work done at the National Physical Laboratory to develop new methods which are more specific and/or more sensitive has been reviewed. These methods are based on the use of existing facilities viz. atomic absorption spectrophotometry, uv-visible spectrophotometry, gas chromatography and conventional chemical methods. It is possible to determine impurities like boron at 5ppb level, phosphorus at 100 ppb and oxygen non-stoichiometry in 1:2:3 compounds with higher accuracy. Boron is determined spectrophotometrically by forming a complex with curcumin and phosphorus is determined indirectly by atomic absorption spectrophotometry by forming phosphomolybdate complex with antimony or bismuth which have 1:1 ratio with phosphorus in the complex. Gas chromatographic technique has been used to evaluate the oxygen non-stoichiometry in high temperature superconductors (1:2:3 compound) where the HTc sample is dissolved in dilute nitric acid in helium environment and the oxygen released is determined using thermal conductivity detector. (author). 19 refs., 3 figs., 4 tabs

  3. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia

    2002-01-01

    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  4. Surface modification of Cobalt ferrite nano-hollowspheres for inherent multiple photoluminescence and enhanced photocatalytic activities

    Science.gov (United States)

    Talukdar, Souvanik; Mandal, Dipika; Mandal, Kalyan

    2017-03-01

    Nano-hollow spheres (NHSs) are the new drift in magnetic nanostructures as they provide more surface area at nano length scale with enhanced magnetic properties compared to their nanoparticle counterpart. Here we reported the synthesis of biocompatible CoFe2O4 NHSs of diameter around 250 nm and emergence of intrinsic multiple photoluminescence from blue, green to red on modifying their surface with small organic ligands like tartrate. The surface modified NHSs also showed notable photocatalytic activity towards the degradation of environmentally malefic dyes like Methylene Blue and Rhodamine B. The surface modified NHSs are found to exhibit superior magnetic properties.

  5. Analysis methods for fast impurity ion dynamics data

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Almagri, A.F.; Prager, S.C.; Fonck, R.J.

    1994-08-01

    A high resolution spectrometer has been developed and used on the MST reversed-field pinch (RFP) to measure passively impurity ion temperatures and flow velocities with 10 μs temporal resolution. Such measurements of MHD-scale fluctuations are particularly relevant in the RFP because the flow velocity fluctuation induced transport of current (the ''MHD dynamo'') may produce the magnetic field reversal characteristic of an RFP. This instrument will also be used to measure rapid changes in the equilibrium flow velocity, such as occur during locking and H-mode transition. The precision of measurements made to date is <0.6 km/s. The authors are developing accurate analysis techniques appropriate to the reduction of this fast ion dynamics data. Moment analysis and curve-fitting routines have been evaluated for noise sensitivity and robustness. Also presented is an analysis method which correctly separates the flux-surface average of the correlated fluctuations in u and B from the fluctuations due to rigid shifts of the plasma column

  6. Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide.

    Directory of Open Access Journals (Sweden)

    Shiho Sugawara

    Full Text Available The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM. BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP. PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β and growth factors (EGF, VEGF on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface.

  7. A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow

    Science.gov (United States)

    Tuzet, Francois; Dumont, Marie; Lafaysse, Matthieu; Picard, Ghislain; Arnaud, Laurent; Voisin, Didier; Lejeune, Yves; Charrois, Luc; Nabat, Pierre; Morin, Samuel

    2017-11-01

    Light-absorbing impurities (LAIs) decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive and direct impact is to accelerate snowmelt. Enhanced energy absorption in snow also modifies snow metamorphism, which can indirectly drive further variations of snow albedo in the near-infrared part of the solar spectrum because of the evolution of the near-surface snow microstructure. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities' deposition and evolution within the snowpack and their direct and indirect impacts. Once deposited, the model computes impurities' mass evolution until snow melts out, accounting for scavenging by meltwater. Taking advantage of the recent inclusion of the spectral radiative transfer model TARTES (Two-stream Analytical Radiative TransfEr in Snow model) in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. The model was evaluated at the Col de Porte experimental site (French Alps) during the 2013-2014 snow season against in situ standard snow measurements and spectral albedo measurements. In situ meteorological measurements were used to drive the snowpack model, except for aerosol deposition fluxes. Black carbon (BC) and dust deposition fluxes used to drive the model were extracted from simulations of the atmospheric model ALADIN-Climate. The model simulates snowpack evolution reasonably, providing similar performances to our reference Crocus version in terms of snow depth, snow water equivalent (SWE), near-surface specific surface area (SSA) and shortwave albedo. Since the reference empirical albedo scheme was calibrated at the Col de Porte, improvements were not expected to be significant in this study. We show that the deposition fluxes from the ALADIN-Climate model provide a reasonable estimate of the amount of light-absorbing impurities deposited on the

  8. Laboratory measurement of the interface pressures applied by active therapy support surfaces: a consensus document.

    Science.gov (United States)

    2010-02-01

    A key element in pressure ulcer prevention and management is the selection of appropriate pressure redistributing (PR) patient support surfaces for use while seated and in bed. However little explicit guidance exists allowing standardised quantitative comparison of different PR surfaces based upon their ability to redistribute pressure from anatomical landmarks such as the heels and sacrum. In 2008 a working group was established in Europe through the US National Pressure Ulcer Advisory Panel (NPUAP) support surface standardisation initiative (S3I) and under the aegis of the European Pressure Ulcer Advisory Panel with the specific remit of developing test methods for the evaluation of active therapy support surfaces (alternating pressure air mattresses). This report describes a consensus development process to agree test methods appropriate to compare active therapy surfaces based upon their ability to redistribute pressure from the sacrum and the heels. Copyright 2009 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  9. Micro Surface Defect Detection Method for Silicon Steel Strip Based on Saliency Convex Active Contour Model

    Directory of Open Access Journals (Sweden)

    Kechen Song

    2013-01-01

    Full Text Available Accurate detection of surface defect is an indispensable section in steel surface inspection system. In order to detect the micro surface defect of silicon steel strip, a new detection method based on saliency convex active contour model is proposed. In the proposed method, visual saliency extraction is employed to suppress the clutter background for the purpose of highlighting the potential objects. The extracted saliency map is then exploited as a feature, which is fused into a convex energy minimization function of local-based active contour. Meanwhile, a numerical minimization algorithm is introduced to separate the micro surface defects from cluttered background. Experimental results demonstrate that the proposed method presents good performance for detecting micro surface defects including spot-defect and steel-pit-defect. Even in the cluttered background, the proposed method detects almost all of the microdefects without any false objects.

  10. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    Science.gov (United States)

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  11. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties

    International Nuclear Information System (INIS)

    Valdes, H.; Zaror, C.A.

    2006-01-01

    The combined or sequential use of ozone and activated carbon to treat toxic effluents has increased in recent years. However, little is known about the influence of carbon surface active sites on ozonation of organic adsorbed pollutants. This paper presents experimental results on the effect of metal oxides and oxygenated surface groups on gaseous ozonation of spent activated carbons. Benzothiazole (BT) was selected as a target organic compound in this study due to its environmental concern. Activated carbons with different chemical surface composition were prepared from a Filtrasorb-400 activated carbon. Pre-treatment included: ozonation, demineralisation, and deoxygenation of activated carbon. Ozonation experiments of BT saturated-activated carbons were conducted in a fixed bed reactor loaded with 2 g of carbon samples. The reactor was fed with an O 2 /O 3 gas mixture (2 dm 3 /min, 5 g O 3 /h), for a given exposure time, in the range 10-120 min, at 298 K and 1 atm. Results show that extended gaseous ozonation of activated carbon saturated with BT led to the effective destruction of the adsorbate by oxidation reactions. Oxidation of BT adsorbed on activated carbon seemed to occur via both direct reaction with ozone molecules, and by oxygen radical species generated by catalytic ozone decomposition on metallic surface sites

  12. Control surfaces of aquatic vertebrates: active and passive design and function.

    Science.gov (United States)

    Fish, Frank E; Lauder, George V

    2017-12-01

    Aquatic vertebrates display a variety of control surfaces that are used for propulsion, stabilization, trim and maneuvering. Control surfaces include paired and median fins in fishes, and flippers and flukes in secondarily aquatic tetrapods. These structures initially evolved from embryonic fin folds in fishes and have been modified into complex control surfaces in derived aquatic tetrapods. Control surfaces function both actively and passively to produce torque about the center of mass by the generation of either lift or drag, or both, and thus produce vector forces to effect rectilinear locomotion, trim control and maneuvers. In addition to fins and flippers, there are other structures that act as control surfaces and enhance functionality. The entire body can act as a control surface and generate lift for stability in destabilizing flow regimes. Furthermore, control surfaces can undergo active shape change to enhance their performance, and a number of features act as secondary control structures: leading edge tubercles, wing-like canards, multiple fins in series, finlets, keels and trailing edge structures. These modifications to control surface design can alter flow to increase lift, reduce drag and enhance thrust in the case of propulsive fin-based systems in fishes and marine mammals, and are particularly interesting subjects for future research and application to engineered systems. Here, we review how modifications to control surfaces can alter flow and increase hydrodynamic performance. © 2017. Published by The Company of Biologists Ltd.

  13. Long-lived impurities of 90Y-labeled microspheres, TheraSphere and SIR-spheres, and the impact on patient dose and waste management.

    Science.gov (United States)

    Metyko, John; Williford, John M; Erwin, William; Poston, John; Jimenez, Sandra

    2012-11-01

    Yittrium-90 microsphere brachytherapy procedures have increased in number due to their efficacy in treating some unresectable metastatic liver tumors. The discovery of long-lived impurities in two microsphere products, first reported between 2006 and 2007, has resulted in some radiation safety concerns. Since then, microsphere production processes have been refined, which reportedly lead to a reduction in detectable by-products. In this study unused vials of TheraSphere and SIR-Spheres, manufactured in early January 2011, were analyzed to identify and quantify the low-level radioactive impurities. Absorbed dose calculations were performed to assess the potential increased dose to the patient due to long-lived impurities. Results showed that while the SIR-Spheres vials contained no detectable impurities (contrary to other published results in the literature), the TheraSphere vials contained 17 radionuclides in one sample and 15 in the other. The dominant impurities were Y and Y, with specific activities ranging from 0.99 ± 3.40 × 10 kBq mg to 6.30 ± 0.40 kBq mg at vendor assay date. Other impurities were on the order of Bq mg. Based on Medical Internal Radiation Dose (MIRD) liver and lung dose estimates, the long-lived impurities would be expected to increase an administered dose by less than 0.1% from the prescribed dose.

  14. Fast neutron-induced changes in net impurity concentration of high-resistivity silicon

    International Nuclear Information System (INIS)

    Tsveybak, I.; Bugg, W.; Harvey, J.A.; Walter, J.

    1992-01-01

    Resistivity changes produced by 1 MeV neutron irradiation at room temperature have been measured in float-zone grown n and p-type silicon with initial resistivities ranging from 1.8 to 100 kΩcm. Observed changes are discussed in terms of net electrically active impurity concentration. A model is presented which postulates escape of Si self-interstitials and vacancies from damage clusters and their subsequent interaction with impurities and other pre-existing defects in the lattice. These interactions lead to transfer of B and P from electrically active substitutional configurations into electrically inactive positions (B i , Pi i , and E-center), resulting in changes of net electrically active impurity concentration. The changes in spatial distribution of resistivity are discussed, and the experimental data are fit by theoretical curves. Differences in the behavior of n-type and p-type material are explained on the basis of a faster removal of substitutional P and a more nonuniform spatial distribution of the original P concentration

  15. Surface reaction and transport in mixed conductors with electrochemically-active surfaces: a 2-D numerical study of ceria.

    Science.gov (United States)

    Ciucci, Francesco; Chueh, William C; Goodwin, David G; Haile, Sossina M

    2011-02-14

    A two-dimensional, small-bias model has been developed for describing transport through a mixed ionic and electronic conductor (MIEC) with electrochemically-active surfaces, a system of particular relevance to solid oxide fuel cells. Utilizing the h-adaptive finite-element method, we solve the electrochemical potential and flux for both ionic and electronic species in the MIEC, taking the transport properties of Sm(0.15)Ce(0.85)O(1.925-δ) (SDC15). In addition to the ionic flux that flows between the two sides of the cell, there are two types of electronic fluxes: (1) cross-plane current that flows in the same general direction as the ionic current, and (2) in-plane current that flows between the catalytically-active MIEC surface and the metal current collectors. From an evaluation of these fluxes, the macroscopic interfacial resistance is decomposed into an electrochemical reaction resistance and an electron diffusion-drift resistance, the latter associated with the in-plane electronic current. Analysis of the experimental data for the interfacial resistance for hydrogen electro-oxidation on SDC15 having either Pt or Au current collectors (W. Lai and S. M. Haile, J. Am. Ceram. Soc., 2005, 88, 2979-2997; W. C. Chueh, W. Lai and S. M. Haile, Solid State Ionics, 2008, 179, 1036-1041) indicates that surface reaction rather than electron migration is the overall rate-limiting step, and suggests furthermore that the surface reaction rate, which has not been directly measured in the literature, scales with pO2(-1/4). The penetration depth for the in-plane electronic current is estimated at 0.6 μm for the experimental conditions of interest to SDC15, and is found to attain a value as high as 4 μm within the broader range of computational conditions.

  16. Effect of impurity on electronic properties of carbon nano tubes

    International Nuclear Information System (INIS)

    Jalili, S.; Jafari, M.; Habibian, J.

    2008-01-01

    We have studied the effect of impurity on electronic properties of single-walled carbon nano tubes using Density Functional Theory. Electronic band structures and density of states of (4, 4) and (7, 0) carbon nano tubes in the presence of different amount of B and N impurities were calculated. It was found that these impurities have significant effect on the conductivity of carbon nano tubes. The metallic (4, 4) nano tube remains to be metallic after doping with B and N. The electronic properties of small gap semiconducting (7, 0) tube can extensively change in the presence of impurity. Our results indicate that B-doped and N-doped (7, 0) carbon nano tubes can be p-type and n-type semiconductors, respectively

  17. Impurity adsorption mechanism of borax for a suspension growth condition: A comparison of models and experimental data

    International Nuclear Information System (INIS)

    Al-Jibbouri, Sattar; Ulrich, Joachim

    2004-01-01

    A fluidized bed crystallizer is employed to investigate the growth and dissolution rates of MgSO 4 .7H 2 O from aqueous solutions in the presence of borax as impurity at 25 C. By adding 0.5, 1, 2 and 5 wt % of impurity the pH value changes from 6.7 to 7.11, while the saturation temperature shifts to 24.8, 24.4, 24 and 23.1 C, respectively. The data on crystal growth rates from aqueous solutions as a function of impurity concentration are discussed from the standpoint of Cabrera and Vermileya, and Kubota and Mullin. The value of the impurity effect, αθ eq , determined from analysis of the data on growth kinetics was found to be in good agreement with the value obtained from direct adsorption experiments. The estimated value of the average spacing between the adjacent adsorption active sites and the average distance between the neighbouring impurity-adsorbed sites are also reported. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Sensitivity of graphene flakes and nanorings to impurities

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@volsu.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Volgograd Institute of Business, Uzhno-Ukrainskaya Str., Volgograd 400048 (Russian Federation)

    2017-06-01

    In this paper, we consider the influence of impurity on the graphene flakes and nanorings conductance. Based on the jumping Hamiltonian for graphene electrons with its direct diagonalization, we obtain the density of states. Further, the tunneling current is calculated for the following contacts: graphene flake-metal, graphene flake-quantum dots, graphene nanoring-quantum dots. We analyze the effect of the flake dimensions and the positions of the adsorbed molecule of impurity on the characteristic properties of the tunneling current.

  19. Engineering and material aspects of impurity control systems

    International Nuclear Information System (INIS)

    Koski, J.A.

    1985-01-01

    The design of impurity control devices for fusion energy devices is discussed from the engineering and materials viewpoint. First, examples of impurity control devices are presented, and the plasma edge environment for which they are designed is briefly described. Materials concerns related to the design of the components are discussed and some currently proposed designs presented. Engineering tools available to the designer are listed, and some commonly encountered engineering analysis problems described

  20. INVESTIGATION OF IMPURITY DYNAMICS AT GOL-3 FACILITY

    Czech Academy of Sciences Publication Activity Database

    Polosatkin, S.; Burdakov, A. V.; Piffl, Vojtěch; Postupaev, V. V.; Weinzettl, Vladimír

    2005-01-01

    Roč. 47, 1T (2005), s. 267-269 ISSN 0748-1896. [International Conference on Open Magnetic Systems for Plasma Confinement/5th./. Novosibirsk, 5.7.2005-9.7.2005] R&D Projects: GA AV ČR(CZ) KSK2043105 Institutional research plan: CEZ:AV0Z20430508 Keywords : UV spectroscopy * plasma impurities * impurity transport Subject RIV: BL - Plasma and Gas Discharge Physics

  1. Impurity-defect induced noncentrosymmetricity in nonlinear optical processes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Noncentrosymmetric nanosize-material processes in cadmium iodide are formed by doping it with the impurity copper. The noncentrosymmetricity in the processes are probed by the observation of the second-order optical susceptibility χ ijk (2) . The value of χ ijk (2) is found to depend fashionably on the impurity content of the nanomaterials. The results also show that a significant enhancement in the noncentrosymmetric response is achieved in nanomaterials with reduced sizes and at low temperatures.

  2. Nuclear relaxation in semiconductors doped with magnetic impurities

    International Nuclear Information System (INIS)

    Mel'nichuk, S.V.; Tovstyuk, N.K.

    1984-01-01

    The temperature and concentration dependences are investigated of the nuclear spin-lattice relaxation time with account of spin diffusion for degenerated and non-degenerated semicon- ductors doped with magnetic impurities. In case of the non-degenerated semiconductor the time is shown to grow with temperature, while in case of degenerated semiconductor it is practically independent of temperature. The impurity concentration growth results in decreasing the spin-lattice relaxation time

  3. Thermal Conductivity of Nanotubes: Effects of Chirality and Isotope Impurity

    OpenAIRE

    Gang, Zhang; Li, Baowen

    2005-01-01

    We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for t...

  4. Impurity modes in the one-dimensional XXZ Heisenberg model

    International Nuclear Information System (INIS)

    Sousa, J.M.; Leite, R.V.; Landim, R.R.; Costa Filho, R.N.

    2014-01-01

    A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.

  5. Overview of total beta activity index and beta rest in surface waters of the Spanish rivers

    International Nuclear Information System (INIS)

    Pujol, L.; Payeras, J.; Pablo, M. A. de

    2013-01-01

    This work aims to give an overview of the index of total beta activity and the activity index beta rest in surface waters of the main Spanish rivers. These indices are a parameter over water quality that CEDEX comes determined by order of the Ministry of Agriculture, Food and Environment, in water policy. (Author)

  6. Surface-active biopolymers from marine bacteria for potential biotechnological applications

    Directory of Open Access Journals (Sweden)

    Karina Sałek

    2016-03-01

    Full Text Available Surface-active agents are amphiphilic chemicals that are used in almost every sector of modern industry, the bulk of which are produced by organo-chemical synthesis. Those produced from biological sources (biosurfactants and bioemulsifiers, however, have gained increasing interest in recent years due to their wide structural and functional diversity, lower toxicities and high biodegradability, compared to their chemically-synthesised counterparts. This review aims to present a general overview on surface-active agents, including their classification, where new types of these biomolecules may lay awaiting discovery, and some of the main bottlenecks for their industrial-scale production. In particular, the marine environment is highlighted as a largely untapped source for discovering new types of surface-active agents. Marine bacteria, especially those living associated with micro-algae (eukaryotic phytoplankton, are a highly promising source of polymeric surface-active agents with potential biotechnological applications. The high uronic acids content of these macromolecules has been linked to conferring them with amphiphilic qualities, and their high structural diversity and polyanionic nature endows them with the potential to exhibit a wide range of functional diversity. Production yields (e.g. by fermentation for most microbial surface-active agents have often been too low to meet the volume demands of industry, and this principally remains as the most important bottleneck for their further commercial development. However, new developments in recombinant and synthetic biology approaches can offer significant promise to alleviate this bottleneck. This review highlights a particular biotope in the marine environment that offers promise for discovering novel surface-active biomolecules, and gives a general overview on specific areas that researchers and the industry could focus work towards increasing the production yields of microbial surface-active

  7. Preparation of High Surface Area Activated Carbon from Spent Phenolic Resin by Microwave Heating and KOH Activation

    Science.gov (United States)

    Cheng, Song; Zhang, Libo; Zhang, Shengzhou; Xia, Hongying; Peng, Jinhui

    2018-01-01

    The spent phenolic resin is as raw material for preparing high surface area activated carbon (HSAAC) by microwave-assisted KOH activation. The effects of microwave power, activation duration and impregnation ratio (IR) on the iodine adsorption capability and yield of HSAAC were investigated. The surface characteristics of HSAAC were characterized by nitrogen adsorption isotherms, FTIR, SEM and TEM. The operating variables were optimized utilizing the response surface methodology (RSM) and were identified to be microwave power of 700 W, activation duration of 15 min and IR of 4, corresponding to a yield of 51.25 % and an iodine number of 2,384 mg/g. The pore structure parameters of the HSAAC, i. e., Brunauer-Emmett-Teller (BET) surface area, total pore volume, and average pore diameter were estimated to be 4,269 m2/g, 2.396 ml/g and 2.25 nm, respectively, under optimum conditions. The findings strongly support the feasibility of microwave-assisted KOH activation for preparation of HSAAC from spent phenolic resin.

  8. Development of a tree classifier for discrimination of surface mine activity from Landsat digital data

    Science.gov (United States)

    Solomon, J. L.; Miller, W. F.; Quattrochi, D. A.

    1979-01-01

    In a cooperative project with the Geological Survey of Alabama, the Mississippi State Remote Sensing Applications Program has developed a single purpose, decision-tree classifier using band-ratioing techniques to discriminate various stages of surface mining activity. The tree classifier has four levels and employs only two channels in classification at each level. An accurate computation of the amount of disturbed land resulting from the mining activity can be made as a product of the classification output. The utilization of Landsat data provides a cost-efficient, rapid, and accurate means of monitoring surface mining activities.

  9. Spectroscopic studies of carbon impurities in PISCES-A

    International Nuclear Information System (INIS)

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W.; Pospieszczyk, A.

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH 4 , C 2 H 2 , C 2 H 4 , and CO 2 were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab

  10. Testing of degradation of alloy 800 H in impure helium at 760 °C

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Jan, E-mail: Jan.Berka@cvrez.cz [Research Centre Rez Ltd., Hlavni 130, 25068 Husinec-Rez (Czech Republic); University of Chemistry and Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Vilémová, Monika, E-mail: vilemova@ipp.cas.cz [Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Sajdl, Petr [University of Chemistry and Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic)

    2015-09-15

    Highlights: • Exposure of base metal, weld metal and heat affected zone specimens of alloy 800 H in impure helium. • Test temperature: 760 °C. • Exposure time: up to 1500 h. • Post exposure tests: weight changes, SEM/EDX, optical microscope, ESCA, hardness, micro hardness. - Abstract: The base metal, weld metal and heat affected zone specimen of alloy 800 H were exposed to impure helium at 760 °C for up to 1500 h. Helium impurities included 100 vppm of H{sub 2}, 500 vppm of CO and 100 vppm CH{sub 4}. The weight gain of alloy 800 H specimens were found to be higher than those of ferritic and austenitic stainless steel tested in similar environment. On the surface, corrosion product layers contained Cr and also Ti or Mn and other oxides. In some cases spalling of these layers was observed. Under corrosive layers the C, O, Ti, Cr and Al rich formations were also found. The exposure had no significant effect to hardness and micro hardness of tested alloy.

  11. Effect of impurities on the growth of {113} interstitial clusters in silicon under electron irradiation

    Science.gov (United States)

    Nakai, K.; Hamada, K.; Satoh, Y.; Yoshiie, T.

    2011-01-01

    The growth and shrinkage of interstitial clusters on {113} planes were investigated in electron irradiated Czochralski grown silicon (Cz-Si), floating-zone silicon (Fz-Si), and impurity-doped Fz-Si (HT-Fz-Si) using a high voltage electron microscope. In Fz-Si, {113} interstitial clusters were formed only near the beam incident surface after a long incubation period, and shrank on subsequent irradiation from the backside of the specimen. In Cz-Si and HT-Fz-Si, {113} interstitial clusters nucleated uniformly throughout the specimen without incubation, and began to shrink under prolonged irradiation at higher electron beam intensity. At lower beam intensity, however, the {113} interstitial cluster grew stably. These results demonstrate that the {113} interstitial cluster cannot grow without a continuous supply of impurities during electron irradiation. Detailed kinetics of {113} interstitial cluster growth and shrinkage in silicon, including the effects of impurities, are proposed. Then, experimental results are analyzed using rate equations based on these kinetics.

  12. Impurities incorporation into magnetite scale formed on simulated steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Yamaguchi, K.; Koike, M. [Kyushu Electric Power Co., Inc. (Japan); Kawamura, H.; Hirano, H. [Central Research Inst. of Electric Power Industry (Japan); Yamada, Y.; Nakamura, T. [The Kansai Electric Power Co., Inc. (Japan)

    2002-07-01

    From a viewpoint of ensuring the integrity of steam generators (SGs) tubing in PWR plants, the research was made into how impurities in the secondary coolant are incorporated into magnetite (Fe{sub 3}O{sub 4}) scale formed on the tube in a laboratory test. We experimented with a method to form Fe{sub 3}O{sub 4} scale on a tube under a boiling heat transfer condition in the laboratory test, simulating the conditions of SG in the actual PWR plants. Based on the scale formation method, we investigated the incorporation of sulfur (S) into the scale. S is known as the most common impurity solved in the secondary coolant and a dominant factor in making heat transfer crevice environment acidic. The effects of sodium (Na) and silicon (Si), solved in test solution with S, on the S incorporation into scale were also investigated. The test resulted in a double-layered scale being formed on the tube surface, with the outer scale being porous and the inner scale dense. It was revealed that the S incorporation into scales was affected by the S concentration in the solution and existence of other impurities, such as Na and Si. (authors)

  13. Impurities incorporation into magnetite scale formed on simulated steam generator tubing

    International Nuclear Information System (INIS)

    Takahashi, K.; Yamaguchi, K.; Koike, M.; Kawamura, H.; Hirano, H.; Yamada, Y.; Nakamura, T.

    2002-01-01

    From a viewpoint of ensuring the integrity of steam generators (SGs) tubing in PWR plants, the research was made into how impurities in the secondary coolant are incorporated into magnetite (Fe 3 O 4 ) scale formed on the tube in a laboratory test. We experimented with a method to form Fe 3 O 4 scale on a tube under a boiling heat transfer condition in the laboratory test, simulating the conditions of SG in the actual PWR plants. Based on the scale formation method, we investigated the incorporation of sulfur (S) into the scale. S is known as the most common impurity solved in the secondary coolant and a dominant factor in making heat transfer crevice environment acidic. The effects of sodium (Na) and silicon (Si), solved in test solution with S, on the S incorporation into scale were also investigated. The test resulted in a double-layered scale being formed on the tube surface, with the outer scale being porous and the inner scale dense. It was revealed that the S incorporation into scales was affected by the S concentration in the solution and existence of other impurities, such as Na and Si. (authors)

  14. Eradicated unintentional incorporated donor-type impurities of ZnO

    Science.gov (United States)

    Xie, Xiuhua; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2018-03-01

    Impurity control is essential for semiconductor doping. Through the systematic analysis of pollution sources, we determined that the residual electrons of as-grown unintentional doped zinc oxide (ZnO) films were derived from the unintentional incorporation of silicon, which grown by molecular beam epitaxy. At the same time, it was determined that unforeseen donor-type impurities (boron, carbon, chlorine and fluorine) were introduced during the nitrogen doping process. By subjecting the sources of the contamination to a surface passivation process, these donor-type impurities are controlled at a tolerable level. The residual electrons concentration of the unintentional doped ZnO film was lowered to 1 × 1015 cm-3, and the mobility was 155 cm2/V.s. Nitrogen-doped ZnO films exhibited p-type conductivity, with a hole concentration of 2 × 1016 cm-3 and a mobility of 10 cm2/V.s. Our results provide a pure foundation for further research on p-type doping of ZnO.

  15. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells

    KAUST Repository

    Mutoro, Eva

    2011-01-01

    Surface-decoration of perovskites can strongly affect the oxygen reduction activity, and therefore is a new and promising approach to improve SOFC cathode materials. In this study, we demonstrate that a small amount of secondary phase on a (001) La 0.8Sr 0.2CoO 3-δ (LSC) surface can either significantly activate or passivate the electrode. LSC (001) microelectrodes prepared by pulsed laser deposition on a (001)-oriented yttria-stabilized zirconia (YSZ) substrate were decorated with La-, Co-, and Sr-(hydr)oxides/carbonates. "Sr"-decoration with nanoparticle coverage in the range from 50% to 80% of the LSC surface enhanced the surface exchange coefficient, k q, by an order of magnitude while "La"- decoration and "Co"-decoration led to no change and reduction in k q, respectively. Although the physical origin for the enhancement is not fully understood, results from atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy suggest that the observed k q enhancement for "Sr"-decorated surfaces can be attributed largely to catalytically active interface regions between surface Sr-enriched particles and the LSC surface. © 2011 The Royal Society of Chemistry.

  16. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces

    International Nuclear Information System (INIS)

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H 2 MoO 4 ), which is based on molybdenum trioxide (MoO 3 ). The modification of various materials (e.g. polymers, metals) with MoO 3 particles or sol–gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Highlights: ► The presented modifications of materials surfaces with MoO 3 are non-cytotoxic and decrease biofilm growth and bacteria transmission. ► The material is insensitive towards emerging resistances of bacteria. ► Strong potential to reduce spreading of infectious agents on inanimate surfaces.

  17. Energetics of halogen impurities in thorium dioxide

    Science.gov (United States)

    Kuganathan, Navaratnarajah; Ghosh, Partha S.; Arya, Ashok K.; Dey, Gautam K.; Grimes, Robin W.

    2017-11-01

    Defect energies for halogen impurity atoms (Cl, Br and I) in thoria are calculated using the generalized gradient approximation and projector augmented plane wave potentials under the framework of density functional theory. The energy to place a halogen atom at a pre-existing lattice site is the incorporation energy. Seven sites are considered: octahedral interstitial, O vacancy, Th vacancy, Th-O di-vacancy cluster (DV) and the three O-Th-O tri-vacancy cluster (NTV) configurations. For point defects and vacancy clusters, neutral and all possible defect charge states up to full formal charge are considered. The most favourable incorporation site for Cl is the singly charged positive oxygen vacancy while for Br and I it is the NTV1 cluster. By considering the energy to form the defect sites, solution energies are generated. These show that in both ThO2-x and ThO2 the most favourable solution equilibrium site for halides is the single positively charged oxygen vacancy (although in ThO2, I demonstrates the same solubility in the NTV1 and DV clusters). Solution energies are much lower in ThO2-x than in ThO2 indicating that stoichiometry is a significant factor in determining solubility. In ThO2, all three halogens are highly insoluble and in ThO2-x Br and I remain insoluble. Although ½Cl2 is soluble in ThO2-x alternative phases such as ZrCl4 exist which are of lower energy.

  18. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface.

    Science.gov (United States)

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun

    2015-04-04

    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts.

  19. Synthesis, Isolation and Characterization of Process-Related Impurities in Oseltamivir Phosphate

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Sharma

    2012-01-01

    Full Text Available Three known impurities in oseltamivir phosphate bulk drug at level 0.1% (ranging from 0.05-0.1% were detected by gradient reverse phase high performance liquid chromatography. These impurities were preliminarily identified by the mass number of the impurities. Different experiments were conducted and finally the known impurities were synthesized and characterized.

  20. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.