WorldWideScience

Sample records for surf celestial tsunamis

  1. Run-up of tsunamis and long waves in terms of surf-similarity

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2008-01-01

    of the surf-similarity parameter and the amplitude to depth ratio determined at some offshore location. We use the analytical expressions to analyze the impact of tsunamis on beaches and relate the discussion to the recent Indian Ocean tsunami from December 26, 2004. An important conclusion is that extreme...... run-up combined with extreme flow velocities occurs for surf-similarity parameters of the order 3-6, and for typical tsunami wave periods this requires relatively mild beach slopes. Next, we compare the theoretical solutions to measured run-up of breaking and non-breaking irregular waves on steep...

  2. Celestial Treasury

    Science.gov (United States)

    Lachièze-Rey, Marc; Luminet, Jean-Pierre

    2001-07-01

    Throughout history, the mysterious dark skies have inspired our imaginations in countless ways, influencing our endeavors in science and philosophy, religion, literature, and art. Filled with 380 full-color illustrations, Celestial Treasury shows the influence of astronomical theories and the richness of illustrations in Western civilization through the ages. The authors explore the evolution of our understanding of astronomy and weave together ancient and modern theories in a fascinating narrative. They incorporate a wealth of detail from Greek verse, medieval manuscripts and Victorian poetry with contemporary spacecraft photographs and computer-generated star charts. Celestial Treasury is more than a beautiful book: it answers a variety of questions that have intrigued scientists and laymen for centuries. -- How did philosophers and scientists try to explain the order that governs celestial motion? -- How did geometers and artists measure and map the skies? -- How many different answers have been proposed for the most fundamental of all questions: When and how did Earth come about? -- Who inhabits the heavens--gods, angels or extraterrestrials? No other book recounts humankind's fascination with the heavens as compellingly as Celestial Treasury. Marc Lachièze-Rey is a director of research at the Centre National pour la Récherche Scientifique and astrophysicist at the Centre d'Etudes de Saclay. He is the author of The Cosmic Background Radiation (Cambridge, 1999), and and The Quest for Unity, (Oxford, 1999 ), as well as many books in French. Jean-Pierre Luminet is a research director of the Centre National pour la Rechérche Scientifique, based at the Paris-Meudon observatory. He is the author of Black Holes, (Cambridge 1992), as well as science documentaries for television.

  3. Methods of celestial mechanics

    CERN Document Server

    Brouwer, Dirk

    2013-01-01

    Methods of Celestial Mechanics provides a comprehensive background of celestial mechanics for practical applications. Celestial mechanics is the branch of astronomy that is devoted to the motions of celestial bodies. This book is composed of 17 chapters, and begins with the concept of elliptic motion and its expansion. The subsequent chapters are devoted to other aspects of celestial mechanics, including gravity, numerical integration of orbit, stellar aberration, lunar theory, and celestial coordinates. Considerable chapters explore the principles and application of various mathematical metho

  4. Surf Tourism, Artificial Surfing Reefs, and Environmental Sustainability

    Science.gov (United States)

    Slotkin, Michael H.; Chambliss, Karen; Vamosi, Alexander R.; Lindo, Chris

    2009-07-01

    This paper explores the confluence of surf tourism, artificial surfing reefs, and sustainability. Surfing is an ascendant recreational and tourism industry and artificial surfing reefs are a new and innovative technology and product. Presented within the context of Florida's Space Coast, empirical details on surf tourism are discussed along with the possible implications for sustainability.

  5. Burnham's celestial handbook

    CERN Document Server

    Burnham, Robert

    1978-01-01

    Volume II of a comprehensive three-part guide to celestial objects outside our solar system ranges from Chamaeleon to Orion. Features coordinates, classifications, physical descriptions, hundreds of visual aids. 1977 edition.

  6. Surfing on the Spectrum

    Science.gov (United States)

    Apel, Laura

    2007-01-01

    Israel Paskowitz loves surfing. As a former competitive surfer, he has spent much of his life in the ocean and absorbed in a community of athletes that share a special connection with the water. Surfing is often thought of as a spiritual hobby that brings peace and relaxation to those who experience it. However, it was not until Israel's son,…

  7. Surfing on the Spectrum

    Science.gov (United States)

    Apel, Laura

    2007-01-01

    Israel Paskowitz loves surfing. As a former competitive surfer, he has spent much of his life in the ocean and absorbed in a community of athletes that share a special connection with the water. Surfing is often thought of as a spiritual hobby that brings peace and relaxation to those who experience it. However, it was not until Israel's son,…

  8. Burnham's celestial handbook

    CERN Document Server

    Burnham, Robert

    1978-01-01

    Volume I of this comprehensive three-part guide to the thousands of celestial objects outside our solar system ranges from Andromeda through Cetus. Objects are grouped according to constellation, and their definitions feature names, coordinates, classifications, and physical descriptions. Additional notes offer fascinating historical information. Hundreds of visual aids. 1977 edition.

  9. Burnham's celestial handbook

    CERN Document Server

    Burnham, Robert

    1978-01-01

    Volume III of this three-part comprehensive guide to the thousands of celestial objects outside our solar system concludes with listings from Pavo through Vulpecula. Objects are grouped according to constellation, and their definitions feature names, coordinates, classifications, and physical descriptions. Additional notes offer fascinating historical information. Hundreds of visual aids. 1977 edition.

  10. Q&A: Surfing scientist

    Science.gov (United States)

    Hoffman, Jascha

    2013-11-01

    Historian Peter Westwick and his colleague Peter Neushul thought up their scientific history of surfing, The World in the Curl (Crown, 2013), on boards off the coast of California. As the winter surfing season gets into full swing, Westwick talks about warfare, wetsuits, climate change and forecasting surf.

  11. Adventures in Celestial Mechanics

    CERN Document Server

    Szebehely, Victor G

    1998-01-01

    A fascinating introduction to the basic principles of orbital mechanics. It has been three hundred years since Isaac Newton first formulated laws to explain the orbits of the Moon and the planets of our solar system. In so doing he laid the groundwork for modern science's understanding of the workings of the cosmos and helped pave the way to the age of space exploration. Adventures in Celestial Mechanics offers students an enjoyable way to become acquainted with the basic principles involved in the motions of natural and human-made bodies in space. Packed with examples in which these principle

  12. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  13. SURF Model Calibration Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    SURF and SURFplus are high explosive reactive burn models for shock initiation and propagation of detonation waves. They are engineering models motivated by the ignition & growth concept of high spots and for SURFplus a second slow reaction for the energy release from carbon clustering. A key feature of the SURF model is that there is a partial decoupling between model parameters and detonation properties. This enables reduced sets of independent parameters to be calibrated sequentially for the initiation and propagation regimes. Here we focus on a methodology for tting the initiation parameters to Pop plot data based on 1-D simulations to compute a numerical Pop plot. In addition, the strategy for tting the remaining parameters for the propagation regime and failure diameter is discussed.

  14. The geometry of celestial mechanics

    CERN Document Server

    Geiges, Hansjörg

    2016-01-01

    Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.

  15. Tsunami Preparedness

    Science.gov (United States)

    ... How to Prepare for Emergencies Types of Emergencies Tsunami Preparedness Learn how, why and where to evacuate ... hour away. [Recommendation: Create unique infographic] Before a Tsunami VIDEO: 3 Easy Steps to Prepare Prepare in ...

  16. An introduction to celestial mechanics

    CERN Document Server

    Moulton, Forest Ray

    1984-01-01

    An unrivaled text in the field of celestial mechanics, Moulton's theoretical work on the prediction and interpretation of celestial phenomena has not been superseded. By providing a general account of all parts of celestial mechanics without an over-full treatment of any single aspect, by stating all the problems in advance, and, where the transformations are long, giving an outline of the steps which must be made, and by noting all the places where assumptions have been introduced or unjustified methods employed, Moulton has insured that his work will be valuable to all who are interested in

  17. Celestial data routing network

    Science.gov (United States)

    Bordetsky, Alex

    2000-11-01

    Imagine that information processing human-machine network is threatened in a particular part of the world. Suppose that an anticipated threat of physical attacks could lead to disruption of telecommunications network management infrastructure and access capabilities for small geographically distributed groups engaged in collaborative operations. Suppose that small group of astronauts are exploring the solar planet and need to quickly configure orbital information network to support their collaborative work and local communications. The critical need in both scenarios would be a set of low-cost means of small team celestial networking. To the geographically distributed mobile collaborating groups such means would allow to maintain collaborative multipoint work, set up orbital local area network, and provide orbital intranet communications. This would be accomplished by dynamically assembling the network enabling infrastructure of the small satellite based router, satellite based Codec, and set of satellite based intelligent management agents. Cooperating single function pico satellites, acting as agents and personal switching devices together would represent self-organizing intelligent orbital network of cooperating mobile management nodes. Cooperative behavior of the pico satellite based agents would be achieved by comprising a small orbital artificial neural network capable of learning and restructing the networking resources in response to the anticipated threat.

  18. Tsunami flooding

    Science.gov (United States)

    Geist, Eric; Jones, Henry; McBride, Mark; Fedors, Randy

    2013-01-01

    Panel 5 focused on tsunami flooding with an emphasis on Probabilistic Tsunami Hazard Analysis (PTHA) as derived from its counterpart, Probabilistic Seismic Hazard Analysis (PSHA) that determines seismic ground-motion hazards. The Panel reviewed current practices in PTHA and determined the viability of extending the analysis to extreme design probabilities (i.e., 10-4 to 10-6). In addition to earthquake sources for tsunamis, PTHA for extreme events necessitates the inclusion of tsunamis generated by submarine landslides, and treatment of the large attendant uncertainty in source characterization and recurrence rates. Tsunamis can be caused by local and distant earthquakes, landslides, volcanism, and asteroid/meteorite impacts. Coastal flooding caused by storm surges and seiches is covered in Panel 7. Tsunamis directly tied to earthquakes, the similarities with (and path forward offered by) the PSHA approach for PTHA, and especially submarine landslide tsunamis were a particular focus of Panel 5.

  19. The Celestial Basis of Civilization

    Science.gov (United States)

    Masse, W. B.

    Scholars have long puzzled over the reasons for the ubiquity of celestial images in the residue of the world's earliest civilizations: in art, myth, religious cosmology, iconography, cosmogony, eschatological beliefs, and as portents for the conduct of royal and chiefly power. The general consensus is that these images represented a need by early societies to use the fixed celestial heavens in order to regulate ritual and agricultural cycles, and to satisfy a psychological need by people to relate themselves to their surrounding Universe. Such explanations are facile and miss an important aspect of the celestial heavens. The fixed celestial heavens served as the back-drop for a large number of often spectacular temporary naked-eye visible celestial events which animated the night and sometimes the daytime sky, and which created an 'otherworld' for virtually all cultural groups. In this paper I present a model derived from the detailed analysis of Hawaiian oral traditions and culture history in relation to historic astronomical records of temporary celestial events, and then apply this model to cultural traditions from Mesoamerica and other geographic regions in order to demonstrate that novae, supernovae, variable stars, comets, great meteor showers, aurorae, solar and lunar eclipses, and impacting Solar System debris, together played a critical role in the artistic, intellectual, and political development of early civilizations. These data not only provide important insights into the development of civilization, but also provide important details and longitudinal records of astronomical events and phenomena which are otherwise not readily available for scientific scrutiny.

  20. Surfing the quantum world

    CERN Document Server

    Levin, Frank S

    2017-01-01

    The ideas and phenomena of the quantum world are strikingly unlike those encountered in our visual world. Surfing the Quantum World shows why and how this is so. It does this via a historical review and a gentle introduction to the fundamental principles of quantum theory, whose core concepts and symbolic representations are used to explain not only "ordinary" microscopic phenomena like the properties of the hydrogen atom and the structure of the Periodic Table of the Elements, but also a variety of mind-bending phenomena. Readers will learn that particles such as electrons and photons can behave like waves, allowing them to be in two places simultaneously, why white dwarf and neutron stars are gigantic quantum objects, how the maximum height of mountains has a quantum basis, and why quantum objects can tunnel through seemingly impenetrable barriers. Included among the various interpretational issues addressed is whether Schrodinger's cat is ever both dead and alive.

  1. Tsunami Hockey

    Science.gov (United States)

    Weinstein, S.; Becker, N. C.; Wang, D.; Fryer, G. J.

    2013-12-01

    An important issue that vexes tsunami warning centers (TWCs) is when to cancel a tsunami warning once it is in effect. Emergency managers often face a variety of pressures to allow the public to resume their normal activities, but allowing coastal populations to return too quickly can put them at risk. A TWC must, therefore, exercise caution when cancelling a warning. Kim and Whitmore (2013) show that in many cases a TWC can use the decay of tsunami oscillations in a harbor to forecast when its amplitudes will fall to safe levels. This technique should prove reasonably robust for local tsunamis (those that are potentially dangerous within only 100 km of their source region) and for regional tsunamis (whose danger is limited to within 1000km of the source region) as well. For ocean-crossing destructive tsunamis such as the 11 March 2011 Tohoku tsunami, however, this technique may be inadequate. When a tsunami propagates across the ocean basin, it will encounter topographic obstacles such as seamount chains or coastlines, resulting in coherent reflections that can propagate great distances. When these reflections reach previously-impacted coastlines, they can recharge decaying tsunami oscillations and make them hazardous again. Warning center scientists should forecast sea-level records for 24 hours beyond the initial tsunami arrival in order to observe any potential reflections that may pose a hazard. Animations are a convenient way to visualize reflections and gain a broad geographic overview of their impacts. The Pacific Tsunami Warning Center has developed tools based on tsunami simulations using the RIFT tsunami forecast model. RIFT is a linear, parallelized numerical tsunami propagation model that runs very efficiently on a multi-CPU system (Wang et al, 2012). It can simulate 30-hours of tsunami wave propagation in the Pacific Ocean at 4 arc minute resolution in approximately 6 minutes of real time on a 12-CPU system. Constructing a 30-hour animation using 1

  2. Celestial navigation in a nutshell

    CERN Document Server

    Schlereth, Hewitt

    2000-01-01

    Celestial Navigation in a Nutshell demonstrates how to take sights by the sun, moon, stars, and planets, discussing the advantages and disadvantages of each method. The reader is taken carefully through several examples and situational illustrations, making this a most effective self-teaching guide. Common errors are reviewed and several tips on how to improve accuracy are given.

  3. Landslide tsunami

    Science.gov (United States)

    Ward, Steven N.

    2001-06-01

    In the creation of "surprise tsunami," submarine landslides head the suspect list. Moreover, improving technologies for seafloor mapping continue to sway perceptions on the number and size of surprises that may lie in wait offshore. At best, an entirely new distribution and magnitude of tsunami hazards has yet to be fully appreciated. At worst, landslides may pose serious tsunami hazards to coastlines worldwide, including those regarded as immune. To raise the proper degree of awareness, without needless alarm, the potential and frequency of landslide tsunami have to be assessed quantitatively. This assessment requires gaining a solid understanding of tsunami generation by landslides and undertaking a census of the locations and extent of historical and potential submarine slides. This paper begins the process by offering models of landslide tsunami production, propagation, and shoaling and by exercising the theory on several real and hypothetical landslides offshore Hawaii, Norway, and the United States eastern seaboard. I finish by broaching a line of attack for the hazard assessment by building on previous work that computed probabilistic tsunami hazard from asteroid impacts.

  4. Tsunamis - General

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tsunami is a Japanese word meaning harbor wave. It is a water wave or a series of waves generated by an impulsive vertical displacement of the surface of the ocean...

  5. Surfing the Tsunami: Faculty Engagement with the Open Learning Initiative

    Science.gov (United States)

    Thille, Candace M.

    2013-01-01

    There are two major discussions emerging out of higher education. The first is the dual challenge of increasing completion rates and reducing the cost of instruction. The second is about the impact of technology on higher education, a topic brought to the fore in the past year by the Massive Open Online Course (MOOC) phenomenon. The Open Learning…

  6. Surfing the Tsunami: Faculty Engagement with the Open Learning Initiative

    Science.gov (United States)

    Thille, Candace M.

    2013-01-01

    There are two major discussions emerging out of higher education. The first is the dual challenge of increasing completion rates and reducing the cost of instruction. The second is about the impact of technology on higher education, a topic brought to the fore in the past year by the Massive Open Online Course (MOOC) phenomenon. The Open Learning…

  7. New Methods of Celestial Mechanics

    CERN Document Server

    Vrbik, Jan

    2010-01-01

    The book is trying to explain the main features of Celestial Mechanics using a new technique (in this, it is very unique). Its emphasis, in terms of applications, is on the Solar System, including its most peculiar properties (such as chaos, resonances, relativistic corrections, etc.). All results are derived in a reasonably transparent manner, so that anyone with a PC and a rudimentary knowledge of Mathematica can readily verify them, and even extend them to explore new situations, if desired. The more mathematically oriented reader may also appreciate seeing quaternions as the basic algebric

  8. Modern Questions of Celestial Mechanics

    CERN Document Server

    Colombo, Giovanni

    2011-01-01

    C. Agostinelli: Sul problema delle aurore boreali e il moto di un corpuscolo elettrizzato in presenza di un dipolo magnetico.- G. Colombo: Introduction to the theory of earth's motion about its center of mass.- E.M. Gaposchkin: The motion of the pole and the earth's elasticity as studied from the gravity field of the earth by means of artificial earth satellites.- I.I. Shapiro: Radar astronomy, general relativity, and celestial mechanics.- V. Szebehely: Applications of the restricted problem of three bodies in space research.- G.A. Wilkins: The analysis of the observation of the satellites of

  9. Observation of Celestial Phenomena in Ancient China

    Science.gov (United States)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  10. Resolving Implementation Ambiguity and Improving SURF

    CERN Document Server

    Abeles, Peter

    2012-01-01

    Speeded Up Robust Features (SURF) has emerged as one of the more popular feature descriptors and detectors in recent years. Due to SURF's complexity and ambiguities found in its description, performance and algorithmic details between these implementations vary widely. To resolve these ambiguities a set of general techniques for feature stability is defined based on the smoothness rule and applied to SURF. Additional new improvements to SURF are proposed for speed and stability. To illustrate the importance of these implementation details, a performance study of popular SURF implementations is done. By utilizing all the suggested improvements it is possible to create a SURF implementation which is several times faster and/or more stable.

  11. Sand, sea and surf: segmenting South African surfers | Kruger ...

    African Journals Online (AJOL)

    Sand, sea and surf: segmenting South African surfers. ... and that they differ according to their socio-demographic characteristics, surfing behaviour and motives. The results of ... Keywords: Market segmentation; Surfing; South Africa; Typology ...

  12. Tsunami.gov: NOAA's Tsunami Information Portal

    Science.gov (United States)

    Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.

    2014-12-01

    We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into

  13. Performance Analysis of Surfing: A Review.

    Science.gov (United States)

    Farley, Oliver R L; Abbiss, Chris R; Sheppard, Jeremy M

    2017-01-01

    Farley, ORL, Abbiss, CR, and Sheppard, JM. Performance Analysis of Surfing: A Review. J Strength Cond Res 31(1): 260-271, 2017-Despite the increased professionalism and substantial growth of surfing worldwide, there is limited information available to practitioners and coaches in terms of key performance analytics that are common in other field-based sports. Indeed, research analyzing surfing performance is limited to a few studies examining male surfers' heart rates, surfing activities through time-motion analysis (TMA) using video recordings and Global Positioning Satellite (GPS) data during competition and recreational surfing. These studies have indicated that specific activities undertaken during surfing are unique with a variety of activities (i.e., paddling, resting, wave riding, breath holding, and recovery of surfboard in the surf). Furthermore, environmental and wave conditions also seem to influence the physical demands of competition surfing. It is due to these demands that surfers are required to have a high cardiorespiratory fitness, high muscular endurance, and considerable strength and anaerobic power, particular within the upper torso. By exploring various methods of performance analysis used within other sports, it is possible to improve our understanding of surfing demands. In so doing this will assist in the development of protocols and strategies to assess physiological characteristics of surfers, monitor athlete performance, improve training prescription, and identify talent. Therefore, this review explores the current literature to provide insights into methodological protocols, delimitations of research into athlete analysis and an overview of surfing dynamics. Specifically, this review will describe and review the use of TMA, GPS, and other technologies (i.e., HR) that are used in external and internal load monitoring as they pertain to surfing.

  14. Mathieu Moonshine and Symmetry Surfing

    CERN Document Server

    Gaberdiel, Matthias R; Paul, Hynek

    2016-01-01

    Mathieu Moonshine, the observation that the Fourier coefficients of the elliptic genus on K3 can be interpreted as dimensions of representations of the Mathieu group M24, has been proven abstractly, but a conceptual understanding in terms of a representation of the Mathieu group on the BPS states, is missing. Some time ago, Taormina and Wendland showed that such an action can be naturally defined on the lowest non-trivial BPS states, using the idea of `symmetry surfing', i.e., by combining the symmetries of different K3 sigma models. In this paper we find non-trivial evidence that this construction can be generalized to all BPS states.

  15. Shock Detector for SURF model

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  16. Shock Detector for SURF model

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  17. An elementary survey of celestial mechanics

    CERN Document Server

    Ryabov, Y

    2006-01-01

    An accessible exposition of gravitation theory and celestial mechanics, this classic, oft-cited work was written by a distinguished Soviet astronomer. It explains with exceptional clarity the methods used by physicists in studying celestial phenomena.A historical introduction explains the Ptolemaic view of planetary motion and its displacement by the studies of Copernicus, Kepler, and Newton. Succeeding chapters examine the making of celestial observations and measurements and explain such central concepts as the ecliptic, the orbital plane, the two- and three-body problems, and perturbed moti

  18. What Causes Tsunamis?

    Science.gov (United States)

    Mogil, H. Michael

    2005-01-01

    On December 26, 2004, a disastrous tsunami struck many parts of South Asia. The scope of this disaster has resulted in an outpouring of aid throughout the world and brought attention to the science of tsunamis. "Tsunami" means "harbor wave" in Japanese, and the Japanese have a long history of tsunamis. The word…

  19. Towards designing miniature surfing robots

    Science.gov (United States)

    Jafari Kang, Saeed; Vandadi, Vahid; Masoud, Hassan

    2016-11-01

    We theoretically study the surfing motion of chemically and thermally active particles located at a flat liquid-gas interface that sits above a liquid layer of finite depth. The particles' activity creates and maintains a surface tension gradient resulting in the auto-surfing. It is intuitively perceived that Marangoni surfers propel towards the direction with a higher surface tension. Remarkably, we find that the surfers may propel in the lower surface tension direction depending on their geometry and proximity to the bottom of the liquid layer. In particular, our analytical calculations for Stokes flow and diffusion-dominated scalar (i.e. chemical concentration and temperature) fields indicate that spherical particles undergo reverse Marangoni propulsion under confinement whereas disk-shaped surfers always move in the expected direction. We extend our results by proposing an approximate formula for the propulsion speed of oblate spheroidal particles based on the speeds of spheres and disks. Overall, our findings pave the way for designing microsurfers capable of operating in bounded environments.

  20. Celestial Navigation for the Novice

    Science.gov (United States)

    Sadler, Philip M.

    2011-01-01

    What kinds of astronomical lab activities can introductory astronomy students carry out easily in daytime? The most impressive is the determination of their latitude and longitude from observations of the sun. The "shooting of a noon sight” and its "reduction to a position” is a technique still practiced by navigators in this age of GPS. Indeed, the U.S. Coast Guard exams for ocean-going licenses and include celestial navigation. These techniques continue to be used by the military and by private sailors as a backup to electronic navigation systems. We present a method to establish one's latitude and longitude to better than 30 miles from measurements of the sun's altitude that is easily within the capability non-science majors. This is a practical application of astronomy in use the world over. The streamlined method used is based on an easy-to-build protractor and string quadrant. Participants will leave with all materials to conduct this activity in their own classroom.

  1. Celestial mechanics the waltz of the planets

    CERN Document Server

    Celletti, Alessandra

    2007-01-01

    The aim of this book is to demonstrate to a wider audience, as well as to a more skilled audience, the many fascinating aspects of modern celestial mechanics. It sets out to do this without the use of mathematics.

  2. Celestial mechanics and astrodynamics theory and practice

    CERN Document Server

    Gurfil, Pini

    2016-01-01

    This volume is designed as an introductory text and reference book for graduate students, researchers and practitioners in the fields of astronomy, astrodynamics, satellite systems, space sciences and astrophysics. The purpose of the book is to emphasize the similarities between celestial mechanics and astrodynamics, and to present recent advances in these two fields so that the reader can understand the inter-relations and mutual influences. The juxtaposition of celestial mechanics and astrodynamics is a unique approach that is expected to be a refreshing attempt to discuss both the mechanics of space flight and the dynamics of celestial objects. “Celestial Mechanics and Astrodynamics: Theory and Practice” also presents the main challenges and future prospects for the two fields in an elaborate, comprehensive and rigorous manner. The book presents homogenous and fluent discussions of the key problems, rendering a portrayal of recent advances in the field together with some basic concepts and essential in...

  3. Connecting VLBI and Gaia celestial reference frames

    CERN Document Server

    Malkin, Zinovy

    2016-01-01

    The current state of the link problem between radio and optical celestial reference frames is considered. The main objectives of the investigations in this direction during the next few years are the preparation of a comparison and the mutual orientation and rotation between the optical {\\it Gaia} Celestial Reference Frame (GCRF) and the 3rd generation radio International Celestial Reference Frame (ICRF3), obtained from VLBI observations. Both systems, ideally, should be a realization of the ICRS (International Celestial Reference System) at micro-arcsecond level accuracy. Therefore, the link accuracy between the ICRF and GCRF should be obtained with similar error level, which is not a trivial task due to relatively large systematic and random errors in source positions at different frequency bands. In this paper, a brief overview of recent work on the GCRF--ICRF link is presented. Additional possibilities to improve the GCRF--ICRF link accuracy are discussed. The suggestion is made to use astrometric radio s...

  4. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  5. Predicting natural catastrophes tsunamis

    CERN Document Server

    CERN. Geneva

    2005-01-01

    1. Tsunamis - Introduction - Definition of phenomenon - basic properties of the waves Propagation and dispersion Interaction with coasts - Geological and societal effects Origin of tsunamis - natural sources Scientific activities in connection with tsunamis. Ideas about simulations 2. Tsunami generation - The earthquake source - conventional theory The earthquake source - normal mode theory The landslide source Near-field observation - The Plafker index Far-field observation - Directivity 3. Tsunami warning - General ideas - History of efforts Mantle magnitudes and TREMOR algorithms The challenge of "tsunami earthquakes" Energy-moment ratios and slow earthquakes Implementation and the components of warning centers 4. Tsunami surveys - Principles and methodologies Fifteen years of field surveys and related milestones. Reconstructing historical tsunamis: eyewitnesses and geological evidence 5. Lessons from the 2004 Indonesian tsunami - Lessons in seismology Lessons in Geology The new technologies Lessons in civ...

  6. Tsunami diaries

    Directory of Open Access Journals (Sweden)

    Radović Srđan

    2005-01-01

    Full Text Available Inspired by recent discussion on how Serbian media influenced allegedly indifferent reaction of the public to the aftermath of tsunami, this paper examines the role of electronic media in Serbia, television in particular, in regard to their function as a central communication channel for acquiring knowledge about world surroundings. With a premise of having cultural and discursive power, Dnevnik, the central news program of the Serbian public broadcaster, is taken as a paradigmatic media text for analysis in order to examine ways in which global affairs and phenomena are portrayed and structured in television representation of reality. It is suggested that it is fair to conclude that world affairs are marginalized within the representational frame of news broadcasts, and that the media discourse could be depicted as dominantly introverted when it comes to global flow of information and cultural meanings, which is significant regarding cultural perception of world realities among Serbian audiences.

  7. Characterization of SURF-1 expression and Surf-1p function in normal and disease conditions.

    Science.gov (United States)

    Tiranti, V; Galimberti, C; Nijtmans, L; Bovolenta, S; Perini, M P; Zeviani, M

    1999-12-01

    Loss-of-function mutations of the SURF-1 gene have been associated with Leigh syndrome with cytochrome c oxidase (COX) deficiency. Mature Surf-1 protein (Surf-1p) is a 30 kDa hydrophobic polypeptide whose function is still unknown. Using antibodies against a recombinant, hemagglutinin-tagged Surf-1p, we have demonstrated that this protein is imported into mitochondria as a larger precursor, which is then processed into the mature product by cleaving off an N-terminal leader polypeptide of approximately 40 amino acids. By using western blot analysis with specific antibodies, we showed that Surf-1p is localized in and tightly bound to the mitochondrial inner membrane. The same analysis revealed that no protein is present in cell lines harboring loss-of-function mutations of SURF-1, regardless of their type and position. Northern blot analysis showed the virtual absence of specific SURF-1 transcripts in different mutant cell lines. This result suggests that several mutations of SURF-1 are associated with severe mRNA instability. To understand better whether and which domains of the protein are essential for function, we generated several constructs with truncated or partially deleted SURF-1 cDNAs. None of these constructs, expressed into Surf-1p null mutant cells, were able to rescue the COX phenotype, suggesting that different regions of the protein are all essential for function. Finally, experiments based on blue native two-dimensional gel electrophoresis indicated that assembly of COX in Surf-1p null mutants is blocked at an early step, most likely before the incorporation of subunit II in the nascent intermediates composed of subunit I alone or subunit I plus subunit IV. However, detection of residual amounts of fully assembled complex suggests a certain degree of redundancy of this system.

  8. Significant Tsunami Events

    Science.gov (United States)

    Dunbar, P. K.; Furtney, M.; McLean, S. J.; Sweeney, A. D.

    2014-12-01

    Tsunamis have inflicted death and destruction on the coastlines of the world throughout history. The occurrence of tsunamis and the resulting effects have been collected and studied as far back as the second millennium B.C. The knowledge gained from cataloging and examining these events has led to significant changes in our understanding of tsunamis, tsunami sources, and methods to mitigate the effects of tsunamis. The most significant, not surprisingly, are often the most devastating, such as the 2011 Tohoku, Japan earthquake and tsunami. The goal of this poster is to give a brief overview of the occurrence of tsunamis and then focus specifically on several significant tsunamis. There are various criteria to determine the most significant tsunamis: the number of deaths, amount of damage, maximum runup height, had a major impact on tsunami science or policy, etc. As a result, descriptions will include some of the most costly (2011 Tohoku, Japan), the most deadly (2004 Sumatra, 1883 Krakatau), and the highest runup ever observed (1958 Lituya Bay, Alaska). The discovery of the Cascadia subduction zone as the source of the 1700 Japanese "Orphan" tsunami and a future tsunami threat to the U.S. northwest coast, contributed to the decision to form the U.S. National Tsunami Hazard Mitigation Program. The great Lisbon earthquake of 1755 marked the beginning of the modern era of seismology. Knowledge gained from the 1964 Alaska earthquake and tsunami helped confirm the theory of plate tectonics. The 1946 Alaska, 1952 Kuril Islands, 1960 Chile, 1964 Alaska, and the 2004 Banda Aceh, tsunamis all resulted in warning centers or systems being established.The data descriptions on this poster were extracted from NOAA's National Geophysical Data Center (NGDC) global historical tsunami database. Additional information about these tsunamis, as well as water level data can be found by accessing the NGDC website www.ngdc.noaa.gov/hazard/

  9. Tsunami Casualty Model

    Science.gov (United States)

    Yeh, H.

    2007-12-01

    More than 4500 deaths by tsunamis were recorded in the decade of 1990. For example, the 1992 Flores Tsunami in Indonesia took away at least 1712 lives, and more than 2182 people were victimized by the 1998 Papua New Guinea Tsunami. Such staggering death toll has been totally overshadowed by the 2004 Indian Ocean Tsunami that claimed more than 220,000 lives. Unlike hurricanes that are often evaluated by economic losses, death count is the primary measure for tsunami hazard. It is partly because tsunamis kill more people owing to its short lead- time for warning. Although exact death tallies are not available for most of the tsunami events, there exist gender and age discriminations in tsunami casualties. Significant gender difference in the victims of the 2004 Indian Ocean Tsunami was attributed to women's social norms and role behavior, as well as cultural bias toward women's inability to swim. Here we develop a rational casualty model based on humans' limit to withstand the tsunami flows. The application to simple tsunami runup cases demonstrates that biological and physiological disadvantages also make a significant difference in casualty rate. It further demonstrates that the gender and age discriminations in casualties become most pronounced when tsunami is marginally strong and the difference tends to diminish as tsunami strength increases.

  10. Tsunamis: Water Quality

    Science.gov (United States)

    ... Landslides Tornadoes Tsunamis Volcanoes Wildfires Winter Weather Tsunamis: Water Quality Language: English Español (Spanish) Recommend on Facebook ... about testing should be directed to local authorities. Water for Drinking, Cooking, and Personal Hygiene Safe water ...

  11. Cascadia Tsunami Deposit Database

    Science.gov (United States)

    Peters, Robert; Jaffe, Bruce; Gelfenbaum, Guy; Peterson, Curt

    2003-01-01

    The Cascadia Tsunami Deposit Database contains data on the location and sedimentological properties of tsunami deposits found along the Cascadia margin. Data have been compiled from 52 studies, documenting 59 sites from northern California to Vancouver Island, British Columbia that contain known or potential tsunami deposits. Bibliographical references are provided for all sites included in the database. Cascadia tsunami deposits are usually seen as anomalous sand layers in coastal marsh or lake sediments. The studies cited in the database use numerous criteria based on sedimentary characteristics to distinguish tsunami deposits from sand layers deposited by other processes, such as river flooding and storm surges. Several studies cited in the database contain evidence for more than one tsunami at a site. Data categories include age, thickness, layering, grainsize, and other sedimentological characteristics of Cascadia tsunami deposits. The database documents the variability observed in tsunami deposits found along the Cascadia margin.

  12. Relativistic Celestial Mechanics of the Solar System

    CERN Document Server

    Kopeikin, Sergei; Kaplan, George

    2011-01-01

    This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r

  13. Characteristics of the 2011 Tohoku Tsunami and introduction of two level tsunamis for tsunami disaster mitigation.

    Science.gov (United States)

    Sato, Shinji

    2015-01-01

    Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami.

  14. Connecting VLBI and Gaia celestial reference frames

    Directory of Open Access Journals (Sweden)

    Zinovy Malkin

    2016-09-01

    Full Text Available The current state of the link problem between radio and optical celestial reference frames is considered.The main objectives of the investigations in this direction during the next few years are the preparation of a comparisonand the mutual orientation and rotation between the optical it Gaia Celestial Reference Frame (GCRFand the 3rd generation radio International Celestial Reference Frame (ICRF3, obtained from VLBI observations.Both systems, ideally, should be a realization of the ICRS (International Celestial Reference System at micro-arcsecond level accuracy.Therefore, the link accuracy between the ICRF and GCRF should be obtained with similar error level, which is not a trivial taskdue to relatively large systematic and random errors in source positions at different frequency bands.In this paper, a brief overview of recent work on the GCRF--ICRF link is presented.Additional possibilities to improve the GCRF--ICRF link accuracy are discussed.The suggestion is made to use astrometric radio sources with optical magnitude to 20$^m$ rather than to 18$^m$ as currently plannedfor the GCRF--ICRF link.In addition, the use of radio stars is also a prospective method to obtain independent and accurate orientation between the Gaia frame and the ICRF.

  15. Experimental Investigation of Shock Wave Surfing

    CERN Document Server

    Parziale, N J; Hornung, H G; Shepherd, J E

    2010-01-01

    Shock wave surfing is investigated experimentally in GALCIT's Mach 4.0 Ludwieg Tube. Shock wave surfing occurs when a secondary free-body follows the bow shock formed by a primary free-body; an example of shock wave surfing occurs during meteorite breakup. The free-bodies in the current investigation are nylon spheres. During each run in the Ludwieg tube a high speed camera is used to capture a series of schlieren images; edge tracking software is used to measure the position of each sphere. Velocity and acceleration are had from processing the position data. The radius ratio and initial orientation of the two spheres are varied in the test matrix. The variation of sphere radius ratio and initial angle between the centers of gravity are shown to have a significant effect on the dynamics of the system.

  16. Quantitative assessment of surf-produced sea spray aerosol

    NARCIS (Netherlands)

    Neele, F.P.; De Leeuw, G.; Jansen, M.; Stive, M.J.F.

    1998-01-01

    The first results are presented from a quantitative model describing the aerosol production in the surf zone. A comparison is made with aerosol produced in the surf zone as measured during EOPACE experiments in La Jolla and Monterey. The surf aerosol production was derived from aerosol concentration

  17. Quantitative assessment of surf-produced sea spray aerosol

    NARCIS (Netherlands)

    Neele, F.P.; De Leeuw, G.; Jansen, M.; Stive, M.J.F.

    1998-01-01

    The first results are presented from a quantitative model describing the aerosol production in the surf zone. A comparison is made with aerosol produced in the surf zone as measured during EOPACE experiments in La Jolla and Monterey. The surf aerosol production was derived from aerosol concentration

  18. TIDE-TSUNAMI INTERACTIONS

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalik

    2006-01-01

    Full Text Available In this paper we investigate important dynamics defining tsunami enhancement in the coastal regions and related to interaction with tides. Observations and computations of the Indian Ocean Tsunami usually show amplifications of the tsunami in the near-shore regions due to water shoaling. Additionally, numerous observations depicted quite long ringing of tsunami oscillations in the coastal regions, suggesting either local resonance or the local trapping of the tsunami energy. In the real ocean, the short-period tsunami wave rides on the longer-period tides. The question is whether these two waves can be superposed linearly for the purpose of determining the resulting sea surface height (SSH or rather in the shallow water they interact nonlinearly, enhancing/reducing the total sea level and currents. Since the near–shore bathymetry is important for the run-up computation, Weisz and Winter (2005 demonstrated that the changes of depth caused by tides should not be neglected in tsunami run-up considerations. On the other hand, we hypothesize that much more significant effect of the tsunami-tide interaction should be observed through the tidal and tsunami currents. In order to test this hypothesis we apply a simple set of 1-D equations of motion and continuity to demonstrate the dynamics of tsunami and tide interaction in the vicinity of the shelf break for two coastal domains: shallow waters of an elongated inlet and narrow shelf typical for deep waters of the Gulf of Alaska.

  19. Recent advances in celestial and space mechanics

    CERN Document Server

    Chyba, Monique

    2016-01-01

    This book presents recent advances in space and celestial mechanics, with a focus on the N-body problem and astrodynamics, and explores the development and application of computational techniques in both areas. It highlights the design of space transfers with various modes of propulsion, like solar sailing and low-thrust transfers between libration point orbits, as well as a broad range of targets and applications, like rendezvous with near Earth objects. Additionally, it includes contributions on the non-integrability properties of the collinear three- and four-body problem, and on general conditions for the existence of stable, minimum energy configurations in the full N-body problem. A valuable resource for physicists and mathematicians with research interests in celestial mechanics, astrodynamics and optimal control as applied to space transfers, as well as for professionals and companies in the industry.

  20. Orbital behavior around a nonuniform celestial body

    Science.gov (United States)

    Rosson, Z.; Hall, F.; Vogel, T.

    2016-09-01

    To effectively model the orbit around a nonuniform celestial body, detailed information needs to be determined of the perturbations. This research looked at one of the most crucial perturbations: the nonuniform gravitational field of a celestial body. Given an orbiting particle (a satellite), we utilized numerical methods to calculate its orbit in two dimensions around a discretized center mass structure. The gravitational acceleration imposed on the particle due to each mass point sums vectorally as the particle completes each infinitesimal time step of one orbit. There are noticeable effects on the orbit as the conditions of the center mass change. The development of a simulation code allows for the modelling of the orbit about an irregular body with satisfactory accuracy.

  1. Seismically generated tsunamis.

    Science.gov (United States)

    Arcas, Diego; Segur, Harvey

    2012-04-13

    People around the world know more about tsunamis than they did 10 years ago, primarily because of two events: a tsunami on 26 December 2004 that killed more than 200,000 people around the shores of the Indian Ocean; and an earthquake and tsunami off the coast of Japan on 11 March 2011 that killed nearly 15,000 more and triggered a nuclear accident, with consequences that are still unfolding. This paper has three objectives: (i) to summarize our current knowledge of the dynamics of tsunamis; (ii) to describe how that knowledge is now being used to forecast tsunamis; and (iii) to suggest some policy changes that might protect people better from the dangers of future tsunamis.

  2. Marin Tsunami (video)

    Science.gov (United States)

    Filmed and edited by: Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. The Marin coast could be struck by a tsunami. Whether you live in Marin County, visit the beaches, or rent or own a home near the coast, it is vital to understand the tsunami threat and take preparation seriously. Marin Tsunami tells the story of what several West Marin communities are doing to be prepared. This video was produced by the US Geological Survey (USGS) in cooperation with the Marin Office of Emergency Services.

  3. Women's Recreational Surfing: A Patronising Experience

    Science.gov (United States)

    Olive, Rebecca; McCuaig, Louise; Phillips, Murray G.

    2015-01-01

    Research analysing the operation of power within sport and physical activity has exposed the marginalisation and exclusion of women's sport in explicit and institutionalised ways. However, for women in recreational and alternative physical activities like surfing, sporting experiences lie outside institutionalised structures, thus requiring…

  4. An Analysis of the SURF Method

    Directory of Open Access Journals (Sweden)

    Edouard Oyallon

    2015-07-01

    Full Text Available The SURF method (Speeded Up Robust Features is a fast and robust algorithm for local, similarity invariant representation and comparison of images. Similarly to many other local descriptor-based approaches, interest points of a given image are defined as salient features from a scale-invariant representation. Such a multiple-scale analysis is provided by the convolution of the initial image with discrete kernels at several scales (box filters. The second step consists in building orientation invariant descriptors, by using local gradient statistics (intensity and orientation. The main interest of the SURF approach lies in its fast computation of operators using box filters, thus enabling real-time applications such as tracking and object recognition. The SURF framework described in this paper is based on the PhD thesis of H. Bay [ETH Zurich, 2009], and more specifically on the paper co-written by H. Bay, A. Ess, T. Tuytelaars and L. Van Gool [Computer Vision and Image Understanding, 110 (2008, pp. 346–359]. An implementation is proposed and used to illustrate the approach for image matching. A short comparison with a state-of-the-art approach is also presented, the SIFT algorithm of D. Lowe [International Journal of Computer Vision, 60 (2004, pp. 91–110], with which SURF shares a lot in common.

  5. Tsunamis in Cuba?; Tsunamis en Cuba?

    Energy Technology Data Exchange (ETDEWEB)

    Cotilla Rodriguez, M. O.

    2011-07-01

    Cuba as neo tectonics structure in the southern of the North American plate had three tsunamis. One of them [local] occurred in the Central-Northern region [1931.10.01, Nortecubana fault], the other was a tele tsunami [1755.11.01, in the SW of the Iberian Peninsula] that hit the Bay of Santiago de Cuba, and the third took place at 1867.11.18, by the regional source of Virgin Islands, which produced waves in the Eastern Cuban region. This tsunami originated to the NE of Puerto Rico in 1918.10.11, with another earthquake of equal magnitude and at similar coordinates, produced a tsunami that did not affect Cuba. Information on the influence of regional tsunami in 1946.08.08 of the NE of the Dominican Republic [Matanzas] in Northwestern Cuba [beaches Guanabo-Baracoa] is contrary to expectations with the waves propagation. The local event of 1939.08.15 attributed to Central- Northern Cuba [Cayo Frances with M = 8.1] does not correspond at all with the maximum magnitude of earthquakes in this region and the potential of the Nortecubana fault. Tsunamis attributed to events such as 1766.06.11 and 1932.02.03 in the Santiago de Cuba Bay are not reflected in the original documents from experts and eyewitnesses. Tsunamis from Jamaica have not affected the coasts of Cuba, despite its proximity. There is no influence in Cuba of tsunamigenic sources of the southern and western parts of the Caribbean, or the Gulf of Mexico. Set out the doubts as to the influence of tsunamis from Haiti and Dominican Republic at Guantanamo Bay which is closer to and on the same latitude, and spatial orientation than the counterpart of Santiago de Cuba, that had impact. The number of fatalities by authors in the Caribbean is different and contradictory. (Author) 76 refs.

  6. The Cape Mendocino tsunami

    Science.gov (United States)

    Gonzalez, F.I.; Bernard, E. N.

    1992-01-01

    The Cape Mendocino earthquake of April 25, 1992, generated a tsunami recorded by NOAA (National Oceanic and Atmospheric Administration) sea level gauges in California, Oregon, and Hawaii. The accompanying figure shows the tsunami waveforms acquired at twelve of these stations. the table that follows identifies these stations and gives preliminary estimates of the tsunami travel time from the source region to selected West Coast stations. 

  7. Probabilistic Tsunami Hazard Analysis

    Science.gov (United States)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  8. Inversion of tsunami waveforms and tsunami warning

    Science.gov (United States)

    An, Chao

    Ever since the 2004 Indian Ocean tsunami, the technique of inversion of tsunami data and the importance of tsunami warning have drawn the attention of many researchers. However, since tsunamis are rare and extreme events, developed inverse techniques lack validation, and open questions rise when they are applied to a real event. In this study, several of those open questions are investigated, i.e., the wave dispersion, bathymetry grid size and subfault division. First, tsunami records from three large tsunami events -- 2010 Maule, 2011 Tohoku and 2012 Haida Gwaii -- are analyzed to extract the main characteristics of the leading tsunami waves. Using the tool of wavelet transforming, the instant wave period can be obtained and thus the dispersive parameter mu2 can be calculated. mu2 is found to be smaller than 0.02 for all records, indicating that the wave dispersion is minor for the propagation of tsunami leading waves. Second, inversions of tsunami data are carried out for three tsunami events -- 2011 Tohoku, 2012 Haida Gwaii and 2014 Iquique. By varying the subfault size and the bathymetry grid size in the inversions, general rules are established for choosing those two parameters. It is found that the choice of bathymetry grid size depends on various parameters, such as the subfault size and the depth of subfaults. The global bathymetry data GEBCO with spatial resolution of 30 arcsec is generally good if the subfault size is larger than 40 km x 40 km; otherwise, bathymetry data with finer resolution is desirable. Detailed instructions of choosing the bathymetry size can be found in Chapter 2. By contrast, the choice of subfault size has much more freedom; our study shows that the subfault size can be very large without significant influence on the predicted tsunami waves. For earthquakes with magnitude of 8.0 ˜ 9.0, the subfault size can be 60 km ˜ 100 km. In our study, the maximum subfault size results in 9 ˜ 16 subfault patches on the ruptured fault surface

  9. Database of recent tsunami deposits

    Science.gov (United States)

    Peters, Robert; Jaffe, Bruce E.

    2010-01-01

    This report describes a database of sedimentary characteristics of tsunami deposits derived from published accounts of tsunami deposit investigations conducted shortly after the occurrence of a tsunami. The database contains 228 entries, each entry containing data from up to 71 categories. It includes data from 51 publications covering 15 tsunamis distributed between 16 countries. The database encompasses a wide range of depositional settings including tropical islands, beaches, coastal plains, river banks, agricultural fields, and urban environments. It includes data from both local tsunamis and teletsunamis. The data are valuable for interpreting prehistorical, historical, and modern tsunami deposits, and for the development of criteria to identify tsunami deposits in the geologic record.

  10. Enhanced Approximated SURF Model For Object Recognition

    Directory of Open Access Journals (Sweden)

    S. Sangeetha

    2014-02-01

    Full Text Available Computer vision applications like camera calibration, 3D reconstruction, and object recognition and image registration are becoming widely popular now a day. In this paper an enhanced model for speeded up robust features (SURF is proposed by which the object recognition process will become three times faster than common SURF model The main idea is to use efficient data structures for both, the detector and the descriptor. The detection of interest regions is considerably speed-up by using an integral image for scale space computation. The descriptor which is based on orientation histograms is accelerated by the use of an integral orientation histogram. We present an analysis of the computational costs comparing both parts of our approach to the conventional method. Extensive experiments show a speed-up by a factor of eight while the matching and repeatability performance is decreased only slightly.

  11. Multispectral observations of the surf zone

    Science.gov (United States)

    Schoonmaker, Jon S.; Dirbas, Joseph; Gilbert, Gary

    2003-09-01

    Airborne multispectral imagery was collected over various targets on the beach and in the water in an attempt to characterize the surf zone environment with respect to electro-optical system capabilities and to assess the utility of very low cost, small multispectral systems in mine counter measures (MCM) and intelligence, surveillance and reconnaissance applications. The data was collected by PAR Government Systems Corporation (PGSC) at the Army Corps of Engineers Field Research Facility at Duck North Carolina and on the beaches of Camp Pendleton Marine Corps Base in Southern California. PGSC flew the first two of its MANTIS (Mission Adaptable Narrowband Tunable Imaging Sensor) systems. Both MANTIS systems were flown in an IR - red - green - blue (700, 600, 550, 480 nm) configuration from altitudes ranging from 200 to 700 meters. Data collected has been lightly analyzed and a surf zone index (SZI) defined and calculated. This index allows mine hunting system performance measurements in the surf zone to be normalized by environmental conditions. The SZI takes into account water clarity, wave energy, and foam persistence.

  12. Modeling and Simulation for a Surf Zone Robot

    Science.gov (United States)

    2012-12-14

    on a surf zone vehicle focused on negative buoyancy using tracked platforms that used traditional tank drive mechanisms to remain on the sea floor...through the surf zone transit and drive on to the beach. Provided by the Surf Zone Crawler Group of Naval Surface Warfare Center Panama City, a Foster...with the traction and obstacle scaling of a leg [2]. Further work elaborated this concept into an entire drivetrain concept. Focused on the

  13. The Three Tsunamis

    Science.gov (United States)

    Antcliff, Richard R.

    2007-01-01

    We often talk about how different our world is from our parent's world. We then extrapolate this thinking to our children and try to imagine the world they will face. This is hard enough. However, change is changing! The rate at which change is occurring is accelerating. These new ideas, technologies and ecologies appear to be coming at us like tsunamis. Our approach to responding to these oncoming tsunamis will frame the future our children will live in. There are many of these tsunamis; I am just going to focus on three really big ones heading our way.

  14. Tsunami Preparedness in Washington (video)

    Science.gov (United States)

    Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. This video about tsunami preparedness in Washington distinguishes between a local tsunami and a distant event and focus on the specific needs of this region. It offers guidelines for correct tsunami response and community preparedness from local emergency managers, first-responders, and leading experts on tsunami hazards and warnings, who have been working on ways of making the tsunami affected regions safer for the people and communities on a long-term basis. This video was produced by the US Geological Survey (USGS) in cooperation with Washington Emergency Management Division (EMD) and with funding by the National Tsunami Hazard Mitigation Program.

  15. Tsunamis and marine life

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.V.S.; Ingole, B.S.; Tang, D.; Satyanarayan, B.; Zhao, H.

    The 26 December 2004 tsunami in the Indian Ocean exerted far reaching temporal and spatial impacts on marine biota. Our synthesis was based on satellite data acquired by the Laboratory for Tropical Marine Environmental Dynamics (LED) of the South...

  16. Floods and tsunamis.

    Science.gov (United States)

    Llewellyn, Mark

    2006-06-01

    Floods and tsunamis cause few severe injuries, but those injuries can overwhelm local areas, depending on the magnitude of the disaster. Most injuries are extremity fractures, lacerations, and sprains. Because of the mechanism of soft tissue and bone injuries, infection is a significant risk. Aspiration pneumonias are also associated with tsunamis. Appropriate precautionary interventions prevent communicable dis-ease outbreaks. Psychosocial health issues must be considered.

  17. Tsunami: ocean dynamo generator.

    Science.gov (United States)

    Sugioka, Hiroko; Hamano, Yozo; Baba, Kiyoshi; Kasaya, Takafumi; Tada, Noriko; Suetsugu, Daisuke

    2014-01-08

    Secondary magnetic fields are induced by the flow of electrically conducting seawater through the Earth's primary magnetic field ('ocean dynamo effect'), and hence it has long been speculated that tsunami flows should produce measurable magnetic field perturbations, although the signal-to-noise ratio would be small because of the influence of the solar magnetic fields. Here, we report on the detection of deep-seafloor electromagnetic perturbations of 10-micron-order induced by a tsunami, which propagated through a seafloor electromagnetometer array network. The observed data extracted tsunami characteristics, including the direction and velocity of propagation as well as sea-level change, first to verify the induction theory. Presently, offshore observation systems for the early forecasting of tsunami are based on the sea-level measurement by seafloor pressure gauges. In terms of tsunami forecasting accuracy, the integration of vectored electromagnetic measurements into existing scalar observation systems would represent a substantial improvement in the performance of tsunami early-warning systems.

  18. Lidar and aerosol measurements over the surf zone

    NARCIS (Netherlands)

    Moerman, M.M.; Cohen, L.H.; Leeuw, G. de; Kunz, G.J.

    2001-01-01

    The aerosol produced by waves breaking in the surf zone is important for a variety of processes, such as transport of pollutants and bacteria, and electro optical propagation in the coastal zone. Yet, quantitative information on surf produced aerosol is very limited (de Leeuw et al., 2000). In the f

  19. User's Manual for Space Debris Surfaces (SD_SURF)

    Science.gov (United States)

    Elfer, N. C.

    1996-01-01

    A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design which is best suited to the predominant penetration mechanism. The analysis also indicates the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs and Microsoft EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII version 1.2a or 1.3 (Cosmic released). The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs.

  20. Tsunami Preparedness in Oregon (video)

    Science.gov (United States)

    Filmed and edited by: Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. This video about tsunami preparedness in Oregon distinguishes between a local tsunami and a distant event and focus on the specific needs of this region. It offers guidelines for correct tsunami response and community preparedness from local emergency managers, first-responders, and leading experts on tsunami hazards and warnings, who have been working on ways of making the tsunami affected regions safer for the people and communities on a long-term basis. This video was produced by the US Geological Survey (USGS) in cooperation with Oregon Department of Geology and Mineral Industries (DOGAMI).

  1. Protection of celestial environments and the law of outer space

    Science.gov (United States)

    Tennen, Leslie; Race, Margaret

    The law of outer space expressly addresses the matter of preservation and protection of natural celestial environments from harmful contamination and disruption by mankind in the explo-ration and use of outer space, including the moon and other celestial bodies. The Outer Space Treaty, however, does not prohibit all human impact to an extraterrestrial environment, but rather permits a wide range of activities that could have significant environmental ramifications. This legal regime may be in conflict with the interests of preserving celestial environments for scientific research, especially when considered in relation to activities conducted for commercial purposes. Nevertheless, the Moon Agreement provides a mechanism by which special protective measures can be implemented to protect particular areas of the moon and other celestial bodies for scientific investigation. This paper examines the current status of the law of outer space vis-a-vis the protection and preservation of natural celestial environments. Particular emphasis is placed on the policies on which the legal obligations are based, together with consideration of the non-appropriation principle, and the commercial use of lunar and other celestial resources and areas. In addition, the concepts of international scientific preserves, special regions, keep out zones, and planetary parks are compared and evaluated as potential means to limit the disturbance to celestial environments caused by the activities of mankind.

  2. 2004 Sumatra Tsunami

    Directory of Open Access Journals (Sweden)

    Vongvisessomjai, S.

    2005-09-01

    Full Text Available A catastrophic tsunami on December 26, 2004 caused devastation in the coastal region of six southern provinces of Thailand on the Andaman Sea coast. This paper summaries the characteristics of tsunami with the aim of informing and warning the public and reducing future casualties and damage.The first part is a review of the records of past catastrophic tsunamis, namely those in Chile in 1960, Alaska in 1964, and Flores, Java, Indonesia, in 1992, and the lessons drawn from these tsunamis. An analysis and the impact of the 2004 Sumatra tsunami is then presented and remedial measures recommended.Results of this study are as follows:Firstly, the 2004 Sumatra tsunami ranked fourth in terms of earthquake magnitude (9.0 M after those in 1960 in Chile (9.5 M, 1899 in Alaska (9.2 M and 1964 in Alaska (9.1 M and ranked first in terms of damage and casualties. It was most destructive when breaking in shallow water nearshore.Secondly, the best alleviation measures are 1 to set up a reliable system for providing warning at the time of an earthquake in order to save lives and reduce damage and 2 to establish a hazard map and implement land-use zoning in the devastated areas, according to the following principles:- Large hotels located at an elevation of not less than 10 m above mean sea level (MSL- Medium hotels located at an elevation of not less than 6 m above MSL- Small hotel located at elevation below 6 m MSL, but with the first floor elevated on poles to allow passage of a tsunami wave- Set-back distances from shoreline established for various developments- Provision of shelters and evacuation directionsFinally, public education is an essential part of preparedness.

  3. Tsunami Deposit Data Base

    Science.gov (United States)

    Keating, B. H.; Wanink, M.

    2007-05-01

    A digital database has been established describing tsunami deposits around the world (3 phases; 15 months). The projects involved the review and tabulation of data derived from books, catalogs, journals, preprints, citations and abstracts (currently 1000 references), into a database designed to provide a comprehensive review of the types of tsunami deposits, their geographic distribution and location, sedimentary characteristics, fossil content, age, preservation, run-up, wave height and inundation observations, etc. (34 parameters). The tsunami occurrences can be divided into many subjects, e.g., Volcanogenic (N=375), Seismites (N=49), Co-seismic (N=258), K/T Boundary Impact-triggered debris flows (N=97), Landslides (N=43), etc. Numerous publications compare tsunami deposits to storm deposits (N=38), or analyze the origin of megaboulders (N=22). Tsunami deposits occur throughout geologic time (Pre-Cambrian to present day), and because of plate tectonics, they occur along plate margins (primarily subduction zones) as well as interior to plates. In addition, they occur in epi-continental seas, fjords, etc. Few publications describe depositional processes. Deposits generated by tsunamis occur in multiple environments such as the marine, fresh water, and subaerial. Common characteristics of tsunami deposits include: 1) Deposition of thin sand sheets (can be normal, massive, inversely graded, chaotic or bimodal). 2) Erosional: basal uncomformity, mud balls, rip-up clasts, reworked fossils produced by scouring. 3) Lithology: Stacks of couplets reflecting marine incursions (often sands) into fresh water or subaerial environments (mud, soil, peat). 4) Fossil: Couplets reflects marine fossils, fresh water fossils or a mixed assemblage. 5) Geomorphology: The sand sheets taper landward and can rise in elevation. 6) Deformation: syn-depositional (soft sediments) and intraformational (stiff sediments).

  4. Tsunami Catalog in Korea

    Science.gov (United States)

    Jin, Sobeom; Hyun, Seung Gyu; Noh, Myunghyun

    2015-04-01

    Significant tsunamis are described in historic and instrumental earthquake sources for all regions around the Korean Peninsula. According to the low seismicity near the Peninsula, there are relatively few tsunami events in Korea. Most of the tsunami events are associated with big earthquakes at the eastern margin of the East Sea. One historical event is associated with a volcanic eruption. For that reason, the eastern coast of the Korean Peninsula is the affectable area for tsunami. One historical event at the Yellow Sea area is inferred a result from a big earthquake in China. And one plate boundary earthquake between the Philippine Plate and the Eurasian Plate affected to an island located in south of the Korean Peninsula. We confirmed the historic tsunami events by review the foreign literatures. More detailed information is presented for the instrumental earthquake source events. This work was supported by the Nuclear Safety Research Program through the Korea Radiation Safety Foundation (KORSAFe) and the Nuclear Safety and Security Commission (NSSC), Republic of Korea (Grant No. 1305001).

  5. The stratification of regolith on celestial objects

    CERN Document Server

    Schräpler, Rainer; von Borstel, Ingo; Güttler, Carsten

    2015-01-01

    All atmosphere-less planetary bodies are covered with a dust layer, the so-called regolith, which determines the optical, mechanical and thermal properties of their surface. These properties depend on the regolith material, the size distribution of the particles it consists of, and the porosity to which these particles are packed. We performed experiments in parabolic flights to determine the gravity dependency of the packing density of regolith for solid-particle sizes of 60 $\\mu$m and 1 mm as well as for 100-250 $\\mu$m-sized agglomerates of 1.5 $\\mu$m-sized solid grains. We utilized g-levels between 0.7 m s$^{-2}$ and 18 m s$^{-2}$ and completed our measurements with experiments under normal gravity conditions. Based on previous experimental and theoretical literature and supported by our new experiments, we developed an analytical model to calculate the regolith stratification of celestial rocky and icy bodies and estimated the mechanical yields of the regolith under the weight of an astronaut and a spacec...

  6. Magnetic information calibrates celestial cues during migration.

    Science.gov (United States)

    Sandberg; Bäckman; Moore; Lõhmus

    2000-10-01

    Migratory birds use celestial and geomagnetic directional information to orient on their way between breeding and wintering areas. Cue-conflict experiments involving these two orientation cue systems have shown that directional information can be transferred from one system to the other by calibration. We designed experiments with four species of North American songbirds to: (1) examine whether these species calibrate orientation information from one system to the other; and (2) determine whether there are species-specific differences in calibration. Migratory orientation was recorded with two different techniques, cage tests and free-flight release tests, during autumn migration. Cage tests at dusk in the local geomagnetic field revealed species-specific differences: red-eyed vireo, Vireo olivaceus, and northern waterthrush, Seiurus noveboracensis, selected seasonally appropriate southerly directions whereas indigo bunting, Passerina cyanea, and grey catbird, Dumetella carolinensis, oriented towards the sunset direction. When tested in deflected magnetic fields, vireos and waterthrushes responded by shifting their orientation according to the deflection of the magnetic field, but buntings and catbirds failed to show any response to the treatment. In release tests, all four species showed that they had recalibrated their star compass on the basis of the magnetic field they had just experienced in the cage tests. Since release tests were done in the local geomagnetic field it seems clear that once the migratory direction is determined, most likely during the twilight period, the birds use their recalibrated star compass for orientation at departure. Copyright 2000 The Association for the Study of Animal Behaviour.

  7. Modern Celestial Mechanics: From Theory to Applications

    Science.gov (United States)

    Celletti, A.; Ferraz-Mello, S.; Henrard, J.

    2002-10-01

    This book is intended to diffuse original research results interesting to people working in Celestial Mechanics in both theory and applications. Theoretical investigators will find several results on Hamiltonian Dynamics, Periodic Orbits, Chaos Diagnostic and Perturbations Theory. Applications cover several directions of research starting with those related to space exploration (mission design and space research) to those related to astronomy (extrasolar planets, asteroids, Near Earth asteroids). Since this book carries original results, it is unique and complements similar books and journals. Some of the subjects have great media appeal: the risk of impact of space debris on the Space Station, the possibility of fly-by missions to asteroids approaching dangerously to our planet, the study of the orbits of these objects, etc. Appealing for a large audience among scientists are the subjects related to Chaos and Order as well as those centered on the study of the dynamics of exoplanets (extrasolar planets). The appeal of the more theoretical papers lies in the fact that they make a tour on the state-of-the-art of several classical problems. Link: http://www.wkap.nl/prod/b/1-4020-0762-0

  8. Celestial shadows eclipses, transits, and occultations

    CERN Document Server

    Westfall, John

    2015-01-01

    Much of what is known about the universe comes from the study of celestial shadows—eclipses, transits, and occultations.  The most dramatic are total eclipses of the Sun, which constitute one of the most dramatic and awe-inspiring events of nature.  Though once a source of consternation or dread, solar eclipses now lead thousands of amateur astronomers and eclipse-chasers to travel to remote points on the globe to savor their beauty and the adrenaline-rush of experiencing totality, and were long the only source of information about the hauntingly beautiful chromosphere and corona of the Sun.   Long before Columbus, the curved shadow of the Earth on the Moon during a lunar eclipse revealed that we inhabit a round world. The rare and wonderful transits of Venus, which occur as it passes between the Earth and the Sun, inspired eighteenth century expeditions to measure the distance from the Earth to the Sun, while the recent transits of 2004 and 2012 were the most widely observed ever--and still produced re...

  9. 76 FR 8651 - Special Local Regulation; Mavericks Surf Competition, Half Moon Bay, CA

    Science.gov (United States)

    2011-02-15

    ... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AA08 Special Local Regulation; Mavericks Surf Competition... the Mavericks Surf Competition. This special local regulation is necessary to ensure the safety of... dangers posed by the surf conditions during the Mavericks Surf Competition, the special local regulation...

  10. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  11. Industrial Scale Production of Celestial Body Simulants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objectives of this program are to develop a cost-effective process to deliver Celestial body simulants for the foreseeable future. Specifically, the...

  12. A Review of Celestial Burying Ground in Tibet

    Institute of Scientific and Technical Information of China (English)

    YUQIAN

    2005-01-01

    Celestial burying ground ,also called “Mandala”,is where life leaves and comes.A huge piece of stone hidden in high mountains is surrounded by burning plants that give up smoke going up into the air.

  13. Frontiers in Relativistic Celestial Mechanics, Vol. 2, Applications and Experiments

    Science.gov (United States)

    Kopeikin, Sergei

    2014-08-01

    Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This second volume of a two-volume series covers applications of the theory as well as experimental verifications. From tools to determine light travel times in curved space-time to laser ranging between earth and moon and between satellites, and impacts on the definition of time scales and clock comparison techniques, a variety of effects is discussed. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: J. Simon, A. Fienga: Victor Brumberg and the French school of analytical celestial mechanics T. Fukushima: Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy P. Teyssandier: New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order G2 J. Müller, L. Biskupek, F. Hofmann and E. Mai: Lunar laser ranging and relativity N. Wex: Testing relativistic celestial mechanics with radio pulsars I. Ciufolini et al.: Dragging of inertial frames, fundamental physics, and satellite laser ranging G. Petit, P. Wolf, P. Delva: Atomic time, clocks, and clock comparisons in relativistic spacetime: a review

  14. Probabilistic analysis of tsunami hazards

    Science.gov (United States)

    Geist, E.L.; Parsons, T.

    2006-01-01

    Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).

  15. Tsunami wave energy

    CERN Document Server

    Dutykh, Denys

    2008-01-01

    In the vast literature on tsunami research, few articles have been devoted to energy issues. A theoretical investigation on the energy of waves generated by bottom motion is performed here. We start with the full incompressible Euler equations in the presence of a free surface and derive both dispersive and non-dispersive shallow-water equations with an energy equation. It is shown that dispersive effects only appear at higher order in the energy budget. Then we solve the Cauchy-Poisson problem of tsunami generation for the linearized water wave equations. Exchanges between potential and kinetic energies are clearly revealed.

  16. On the moroccan tsunami catalogue

    Directory of Open Access Journals (Sweden)

    F. Kaabouben

    2009-07-01

    Full Text Available A primary tool for regional tsunami hazard assessment is a reliable historical and instrumental catalogue of events. Morocco by its geographical situation, with two marine sides, stretching along the Atlantic coast to the west and along the Mediterranean coast to the north, is the country of Western Africa most exposed to the risk of tsunamis. Previous information on tsunami events affecting Morocco are included in the Iberian and/or the Mediterranean lists of tsunami events, as it is the case of the European GITEC Tsunami Catalogue, but there is a need to organize this information in a dataset and to assess the likelihood of claimed historical tsunamis in Morocco. Due to the fact that Moroccan sources are scarce, this compilation rely on historical documentation from neighbouring countries (Portugal and Spain and so the compatibility between the new tsunami catalogue presented here and those that correspond to the same source areas is also discussed.

  17. Let’s Surf on The internet

    Institute of Scientific and Technical Information of China (English)

    李申禹

    1996-01-01

    在今日大学之校园内,电脑热正呈“奔腾”之势。李申禹所在的寝室购买了一台“合资”电脑,这为他们的学习另辟了一块天地,也为他们的生活着上了一点色彩,Let′s Surf on The Internet这篇习作标题潇洒,内容实在,既写出了作者漫步电脑书林的惊喜,又有对未来的展望——现在的年青人将携着the electronic books跨入新世纪。习作开首较好地运用了parllelism:结尾想象驰骋,并巧妙点题。本文Reviewed by Mr.John C.Green

  18. Palmprint Based Verification System Using SURF Features

    Science.gov (United States)

    Srinivas, Badrinath G.; Gupta, Phalguni

    This paper describes the design and development of a prototype of robust biometric system for verification. The system uses features extracted using Speeded Up Robust Features (SURF) operator of human hand. The hand image for features is acquired using a low cost scanner. The palmprint region extracted is robust to hand translation and rotation on the scanner. The system is tested on IITK database of 200 images and PolyU database of 7751 images. The system is found to be robust with respect to translation and rotation. It has FAR 0.02%, FRR 0.01% and accuracy of 99.98% and can be a suitable system for civilian applications and high-security environments.

  19. Daytime Celestial Navigation for the Novice

    Science.gov (United States)

    Sadler, Philip M.; Night, Christopher

    2010-03-01

    What kinds of astronomical lab activities can high school and college astronomy students carry out easily in daytime? The most impressive is the determination of latitude and longitude from observations of the Sun. The ``shooting of a noon sight'' and its ``reduction to a position'' grew to become a daily practice at the start of the 19th century1 following the perfection of the marine chronometer by John Harrison and its mass production.2 This technique is still practiced by navigators in this age of GPS. Indeed, the U.S. Coast Guard exams for ocean-going licenses include celestial navigation.3 These techniques continue to be used by the military and by private sailors as a backup to all-too-fallible and jammable electronic navigation systems. A sextant, a nautical almanac,4 special sight reduction tables,5 and involved calculations are needed to determine position to the nearest mile using the Sun, Moon, stars, or planets. Yet, finding latitude and longitude to better than 30 miles from measurements of the Sun's altitude is easily within the capability of those taking astronomy or physics for the first time by applying certain basic principles. Moreover, it shows a practical application of astronomy in use the world over. The streamlined method described here takes advantage of the similar level of accuracy of its three components: 1.Observations using a homemade quadrant6 (instead of a sextant), 2. Student-made graphs of the altitude of the Sun over a day7 (replacing lengthy calculation using sight reduction tables), and 3. An averaged 20-year analemma used to find the Sun's navigational coordinates8,9 (rather than the 300+ page Nautical Almanac updated yearly).

  20. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  1. Alternative Tsunami Models

    Science.gov (United States)

    Tan, A.; Lyatskaya, I.

    2009-01-01

    The interesting papers by Margaritondo (2005 "Eur. J. Phys." 26 401) and by Helene and Yamashita (2006 "Eur. J. Phys." 27 855) analysed the great Indian Ocean tsunami of 2004 using a simple one-dimensional canal wave model, which was appropriate for undergraduate students in physics and related fields of discipline. In this paper, two additional,…

  2. Alternative Tsunami Models

    Science.gov (United States)

    Tan, A.; Lyatskaya, I.

    2009-01-01

    The interesting papers by Margaritondo (2005 "Eur. J. Phys." 26 401) and by Helene and Yamashita (2006 "Eur. J. Phys." 27 855) analysed the great Indian Ocean tsunami of 2004 using a simple one-dimensional canal wave model, which was appropriate for undergraduate students in physics and related fields of discipline. In this paper, two additional,…

  3. The Flores Island tsunamis

    Science.gov (United States)

    Yeh, Harry; Imamura, Fumihiko; Synolakis, Costas; Tsuji, Yoshinobu; Liu, Philip; Shi, Shaozhong

    On December 12, 1992, at 5:30 A.M. GMT, an earthquake of magnitude Ms 7.5 struck the eastern region of Flores Island, Indonesia (Figure 1), a volcanic island located just at the transition between the Sunda and Banda Island arc systems. The local newspaper reported that 25-m high tsunamis struck the town of Maumere, causing substantial casualties and property damage. On December 16, television reports broadcast in Japan via satellite reported that 1000 people had been killed in Maumere and twothirds of the population of Babi Island had been swept away by the tsunamis.The current toll of the Flores earthquake is 2080 deaths and 2144 injuries, approximately 50% of which are attributed to the tsunamis. A tsunami survey plan was initiated within 3 days of the earthquake, and a cooperative international survey team was formed with four scientists from Indonesia, nine from Japan, three from the United States, one from the United Kingdom, and one from Korea.

  4. Anatomy of Historical Tsunamis: Lessons Learned for Tsunami Warning

    Science.gov (United States)

    Igarashi, Y.; Kong, L.; Yamamoto, M.; McCreery, C. S.

    2011-11-01

    Tsunamis are high-impact disasters that can cause death and destruction locally within a few minutes of their occurrence and across oceans hours, even up to a day, afterward. Efforts to establish tsunami warning systems to protect life and property began in the Pacific after the 1946 Aleutian Islands tsunami caused casualties in Hawaii. Seismic and sea level data were used by a central control center to evaluate tsunamigenic potential and then issue alerts and warnings. The ensuing events of 1952, 1957, and 1960 tested the new system, which continued to expand and evolve from a United States system to an international system in 1965. The Tsunami Warning System in the Pacific (ITSU) steadily improved through the decades as more stations became available in real and near-real time through better communications technology and greater bandwidth. New analysis techniques, coupled with more data of higher quality, resulted in better detection, greater solution accuracy, and more reliable warnings, but limitations still exist in constraining the source and in accurately predicting propagation of the wave from source to shore. Tsunami event data collected over the last two decades through international tsunami science surveys have led to more realistic models for source generation and inundation, and within the warning centers, real-time tsunami wave forecasting will become a reality in the near future. The tsunami warning system is an international cooperative effort amongst countries supported by global and national monitoring networks and dedicated tsunami warning centers; the research community has contributed to the system by advancing and improving its analysis tools. Lessons learned from the earliest tsunamis provided the backbone for the present system, but despite 45 years of experience, the 2004 Indian Ocean tsunami reminded us that tsunamis strike and kill everywhere, not just in the Pacific. Today, a global intergovernmental tsunami warning system is coordinated

  5. METHODS OF TSUNAMI DETECTION AND OF POST-TSUNAMI SURVEYS

    Directory of Open Access Journals (Sweden)

    A. Kurkin

    2016-05-01

    Full Text Available In our paper we describe some of the methods of the last 25 years which have been used extensively to examine and register tsunami traces - particularly by satellite imaging of coastal zones before and after a tsunami has struck, thus assessing quickly the extent of coastal inundation over large areas without the need of a site visit. Nearly all countries bordering oceans, seas and bodies of water have established digital systems of water level registration in the range of tsunami waves. In this article we describe methods of tsunami detection and runup measurements, some based on our own participation in post-tsunami surveys. Also, we discuss the possibility of using robotic systems to survey tsunami traces in hard-to- reach places.

  6. NOAA/WDC Global Tsunami Deposits Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Discover where, when and how severely tsunamis affected Earth in geologic history. Information regarding Tsunami Deposits and Proxies for Tsunami Events complements...

  7. Research Trends in Massive Open Online Course (MOOC Theses and Dissertations: Surfing the Tsunami Wave

    Directory of Open Access Journals (Sweden)

    Aras Bozkurt

    2016-08-01

    Full Text Available Massive Open Online Courses (MOOCs have attracted a great deal of attention by higher education and private enterprises. MOOCs have evolved considerably since their emergence in 2008, all the while given rise to academic discussions on MOOC impact, design and reach. In an effort to understand MOOCs more comprehensively, this study analyzes theses and dissertations (N = 51 related to MOOCs and published between 2008 and 2015, identifying research trends from these academic documents. Theses and dissertations within this research scope were gathered through a comprehensive search in multiple academic databases. For the purposes of the study, the research employed a systematic review approach. In order to reveal trends in research themes, emphasize theoretical/conceptual backgrounds, research designs and models, first a document analysis was used to collect data and this was followed by a content analysis. Our research findings indicate that MOOC research is generally derived from education, engineering and computer science, as well as information and communication technology related disciplines. Qualitative methodology linked to a case study research model is most common, and the theoretical/conceptual backgrounds are usually distance education related. Remarkably, nearly half of the studies didn’t benefit from any theoretical or conceptual perspectives. In sum, this study presents an evaluation regarding research trends derived from MOOC theses and dissertations, and provides directions for future MOOC research.

  8. Research Trends in Massive Open Online Course (MOOC) Theses and Dissertations: Surfing the Tsunami Wave

    Science.gov (United States)

    Bozkurt, Aras; Keskin, Nilgun Ozdamar; de Waard, Inge

    2016-01-01

    Massive Open Online Courses (MOOCs) have attracted a great deal of attention by higher education and private enterprises. MOOCs have evolved considerably since their emergence in 2008, all the while given rise to academic discussions on MOOC impact, design and reach. In an effort to understand MOOCs more comprehensively, this study analyzes theses…

  9. Tsunami Impacts in River Environments

    Science.gov (United States)

    Tolkova, E.; Tanaka, H.; Roh, M.

    2014-12-01

    The 2010 Chilean and the 2011 Tohoku tsunami events demonstrated the tsunami's ability to penetrate much farther along rivers than the ground inundation. At the same time, while tsunami impacts to the coastal areas have been subject to countless studies, little is known about tsunami propagation in rivers. Here we examine the field data and conduct numerical simulations to gain better understanding of the tsunami impacts in rivers.The evidence which motivated our study is comprised of water level measurements of the aforementioned tsunamis in multiple rivers in Japan, and the 2011 Tohoku and some other tsunamis in the Columbia River in the US. When the available tsunami observations in these very different rivers are brought together, they display remarkably similar patterns not observed on the open coast. Two phenomena were discovered in the field data. First, the phase of the river tide determines the tsunami penetration distance in a very specific way common to all rivers. Tsunami wave progressively disappears on receding tide, whereas high tide greatly facilitates the tsunami intrusion, as seen in the Figure. Second, a strong near-field tsunami causes substantial and prolonged water accumulation in lower river reaches. As the 2011 tsunami intruded rivers in Japan, the water level along rivers rose 1-2 m and stayed high for many hours, with the maximum rise occurring several km from the river mouth. The rise in the water level at some upstream gaging stations even exceeded the tsunami amplitude there.Using the numerical experiments, we attempt to identify the physics behind these effects. We will demonstrate that the nonlinear interactions among the flow components (tsunami, tide, and riverine flow) are an essential condition governing wave dynamics in tidal rivers. Understanding these interactions might explain some previous surprising observations of waves in river environments. Figure: Measurements of the 2010/02/27 tsunami along Naruse and Yoshida rivers

  10. Improving tsunami resiliency: California's Tsunami Policy Working Group

    Science.gov (United States)

    Real, Charles R.; Johnson, Laurie; Jones, Lucile M.; Ross, Stephanie L.; Kontar, Y.A.; Santiago-Fandiño, V.; Takahashi, T.

    2014-01-01

    California has established a Tsunami Policy Working Group to facilitate development of policy recommendations for tsunami hazard mitigation. The Tsunami Policy Working Group brings together government and industry specialists from diverse fields including tsunami, seismic, and flood hazards, local and regional planning, structural engineering, natural hazard policy, and coastal engineering. The group is acting on findings from two parallel efforts: The USGS SAFRR Tsunami Scenario project, a comprehensive impact analysis of a large credible tsunami originating from an M 9.1 earthquake in the Aleutian Islands Subduction Zone striking California’s coastline, and the State’s Tsunami Preparedness and Hazard Mitigation Program. The unique dual-track approach provides a comprehensive assessment of vulnerability and risk within which the policy group can identify gaps and issues in current tsunami hazard mitigation and risk reduction, make recommendations that will help eliminate these impediments, and provide advice that will assist development and implementation of effective tsunami hazard risk communication products to improve community resiliency.

  11. Frontiers in Relativistic Celestial Mechanics, Vol. 1. Theory

    Science.gov (United States)

    Kopeikin, Sergei

    2014-10-01

    Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This first volume of a two-volume series is concerned with theoretical foundations such as post-Newtonian solutions to the two-body problem, light propagation through time-dependent gravitational fields, as well as cosmological effects on the movement of bodies in the solar systems. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: M. Soffel: On the DSX-framework T. Damour: The general relativistic two body problem G. Schaefer: Hamiltonian dynamics of spinning compact binaries through high post-Newtonian approximations A. Petrov and S. Kopeikin: Post-Newtonian approximations in cosmology T. Futamase: On the backreaction problem in cosmology Y. Xie and S. Kopeikin: Covariant theory of the post-Newtonian equations of motion of extended bodies S. Kopeikin and P. Korobkov: General relativistic theory of light propagation in multipolar gravitational fields

  12. Tsunami Hazards - A National Threat

    Science.gov (United States)

    ,

    2006-01-01

    In December 2004, when a tsunami killed more than 200,000 people in 11 countries around the Indian Ocean, the United States was reminded of its own tsunami risks. In fact, devastating tsunamis have struck North America before and are sure to strike again. Especially vulnerable are the five Pacific States--Hawaii, Alaska, Washington, Oregon, and California--and the U.S. Caribbean islands. In the wake of the Indian Ocean disaster, the United States is redoubling its efforts to assess the Nation's tsunami hazards, provide tsunami education, and improve its system for tsunami warning. The U.S. Geological Survey (USGS) is helping to meet these needs, in partnership with the National Oceanic and Atmospheric Administration (NOAA) and with coastal States and counties.

  13. TSUNAMI WAVE PROPAGATION ALONG WAVEGUIDES

    Directory of Open Access Journals (Sweden)

    Andrei G. Marchuk

    2009-01-01

    Full Text Available This is a study of tsunami wave propagation along the waveguide on a bottom ridge with flat sloping sides, using the wave rays method. During propagation along such waveguide the single tsunami wave transforms into a wave train. The expression for the guiding velocities of the fastest and slowest signals is defined. The tsunami wave behavior above the ocean bottom ridges, which have various model profiles, is investigated numerically with the help of finite difference method. Results of numerical experiments show that the highest waves are detected above a ridge with flat sloping sides. Examples of tsunami propagation along bottom ridges of the Pacific Ocean are presented.

  14. Dynamical Configurations of Celestial Systems Comprised of Multiple Irregular Bodies

    CERN Document Server

    Jiang, Yu; Baoyin, Hexi; Li, Junfeng

    2016-01-01

    This manuscript considers the main features of the nonlinear dynamics of multiple irregular celestial body systems. The gravitational potential, static electric potential, and magnetic potential are considered. Based on the three established potentials, we show that three conservative values exist for this system, including a Jacobi integral. The equilibrium conditions for the system are derived and their stability analyzed. The equilibrium conditions of a celestial system comprised of n irregular bodies are reduced to 12n minus 9 equations. The dynamical results are applied to simulate the motion of multiple-asteroid systems. The simulation is useful for the study of the stability of multiple irregular celestial body systems and for the design of spacecraft orbits to triple asteroid systems discovered in the solar system. The dynamical configurations of the five triple-asteroid systems 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, and 136617 1994CC, and the six-body system 134340 Pluto are calculated and...

  15. The Tsunami challenge

    Directory of Open Access Journals (Sweden)

    Greco Pietro

    2005-03-01

    Full Text Available Many lives could have been saved on 26 December 2004, when the tsunami unleashed by an earthquake of magnitude 9.0 off the coast of the Indonesian island Sumatra struck a dozen coastal villages along the Indian Ocean. Those lives could have been saved if, on that day, science communication had not resulted in a complete failure to communicate scientific information adequately in many cases, in different places and at different levels.

  16. Post Fukushima tsunami simulations for Malaysian coasts

    Science.gov (United States)

    Koh, Hock Lye; Teh, Su Yean; Abas, Mohd Rosaidi Che

    2014-10-01

    The recent recurrences of mega tsunamis in the Asian region have rekindled concern regarding potential tsunamis that could inflict severe damage to affected coastal facilities and communities. The 11 March 2011 Fukushima tsunami that crippled nuclear power plants in Northern Japan has further raised the level of caution. The recent discovery of petroleum reserves in the coastal water surrounding Malaysia further ignites the concern regarding tsunami hazards to petroleum facilities located along affected coasts. Working in a group, federal government agencies seek to understand the dynamics of tsunami and their impacts under the coordination of the Malaysian National Centre for Tsunami Research, Malaysian Meteorological Department. Knowledge regarding the generation, propagation and runup of tsunami would provide the scientific basis to address safety issues. An in-house tsunami simulation models known as TUNA has been developed by the authors to assess tsunami hazards along affected beaches so that mitigation measures could be put in place. Capacity building on tsunami simulation plays a critical role in the development of tsunami resilience. This paper aims to first provide a simple introduction to tsunami simulation towards the achievement of tsunami simulation capacity building. The paper will also present several scenarios of tsunami dangers along affected Malaysia coastal regions via TUNA simulations to highlight tsunami threats. The choice of tsunami generation parameters reflects the concern following the Fukushima tsunami.

  17. Post Fukushima tsunami simulations for Malaysian coasts

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hock Lye, E-mail: kohhl@ucsiuniversity.edu.my [Office of Deputy Vice Chancellor for Research and Post Graduate Studies, UCSI University, Jalan Menara Gading, 56000 Kuala Lumpur (Malaysia); Teh, Su Yean, E-mail: syteh@usm.my [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Abas, Mohd Rosaidi Che [Malaysian Meteorological Department, MOSTI, Kuala Lumpur (Malaysia)

    2014-10-24

    The recent recurrences of mega tsunamis in the Asian region have rekindled concern regarding potential tsunamis that could inflict severe damage to affected coastal facilities and communities. The 11 March 2011 Fukushima tsunami that crippled nuclear power plants in Northern Japan has further raised the level of caution. The recent discovery of petroleum reserves in the coastal water surrounding Malaysia further ignites the concern regarding tsunami hazards to petroleum facilities located along affected coasts. Working in a group, federal government agencies seek to understand the dynamics of tsunami and their impacts under the coordination of the Malaysian National Centre for Tsunami Research, Malaysian Meteorological Department. Knowledge regarding the generation, propagation and runup of tsunami would provide the scientific basis to address safety issues. An in-house tsunami simulation models known as TUNA has been developed by the authors to assess tsunami hazards along affected beaches so that mitigation measures could be put in place. Capacity building on tsunami simulation plays a critical role in the development of tsunami resilience. This paper aims to first provide a simple introduction to tsunami simulation towards the achievement of tsunami simulation capacity building. The paper will also present several scenarios of tsunami dangers along affected Malaysia coastal regions via TUNA simulations to highlight tsunami threats. The choice of tsunami generation parameters reflects the concern following the Fukushima tsunami.

  18. TSUNAMI EVACUATION BEHAVIOR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Thai CHARNKOL

    2006-01-01

    Full Text Available Evacuation behavior analysis is known to be one step in a transportation disaster response. The purpose of this study was therefore, to investigate permanent and transient resident's behaviors and their backgrounds during a hypothetical tsunami evacuation. Evacuation behavior data were collected from two affected areas, Phuket and Phang-nga, Thailand. A behavioral analysis was carried out to gain some insights into human responses to a future tsunami warning, especially in determining evacuees' response patterns (fast, medium, and slow under various conditions (four preparation and response time intervals, i.e., 60 minutes, 45 minutes, 30 minutes, and 15 minutes. Preparation and response curves, which represent the time at which the evacuees were expected to begin their evacuation and move to a safer area, were estimated and compared between the permanent and transient residents. Furthermore, evacuation models were employed using binary logistic regression techniques to estimate the likelihood of evacuees being involved in each response group (quick or slow group. Results of the models revealed natural reactions to tsunami evacuation warning, including the response times and evacuation behaviors based on their different backgrounds. This research could help address and improve future evacuation management to become more efficient and more effective, which can increase public safety for the community.

  19. The SAFRR Tsunami Scenario

    Science.gov (United States)

    Porter, K.; Jones, Lucile M.; Ross, Stephanie L.; Borrero, J.; Bwarie, J.; Dykstra, D.; Geist, Eric L.; Johnson, L.; Kirby, Stephen H.; Long, K.; Lynett, P.; Miller, K.; Mortensen, Carl E.; Perry, S.; Plumlee, G.; Real, C.; Ritchie, L.; Scawthorn, C.; Thio, H.K.; Wein, Anne; Whitmore, P.; Wilson, R.; Wood, Nathan J.; Ostbo, Bruce I.; Oates, Don

    2013-01-01

    The U.S. Geological Survey and several partners operate a program called Science Application for Risk Reduction (SAFRR) that produces (among other things) emergency planning scenarios for natural disasters. The scenarios show how science can be used to enhance community resiliency. The SAFRR Tsunami Scenario describes potential impacts of a hypothetical, but realistic, tsunami affecting California (as well as the west coast of the United States, Alaska, and Hawaii) for the purpose of informing planning and mitigation decisions by a variety of stakeholders. The scenario begins with an Mw 9.1 earthquake off the Alaska Peninsula. With Pacific basin-wide modeling, we estimate up to 5m waves and 10 m/sec currents would strike California 5 hours later. In marinas and harbors, 13,000 small boats are damaged or sunk (1 in 3) at a cost of $350 million, causing navigation and environmental problems. Damage in the Ports of Los Angeles and Long Beach amount to $110 million, half of it water damage to vehicles and containerized cargo. Flooding of coastal communities affects 1800 city blocks, resulting in $640 million in damage. The tsunami damages 12 bridge abutments and 16 lane-miles of coastal roadway, costing $85 million to repair. Fire and business interruption losses will substantially add to direct losses. Flooding affects 170,000 residents and workers. A wide range of environmental impacts could occur. An extensive public education and outreach program is underway, as well as an evaluation of the overall effort.

  20. Surfing the internet with a BCI mouse

    Science.gov (United States)

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Gu, Zhenghui

    2012-06-01

    In this paper, we present a new web browser based on a two-dimensional (2D) brain-computer interface (BCI) mouse, where our major concern is the selection of an intended target in a multi-target web page. A real-world web page may contain tens or even hundreds of targets, including hyperlinks, input elements, buttons, etc. In this case, a target filter designed in our system can be used to exclude most of those targets of no interest. Specifically, the user filters the targets of no interest out by inputting keywords with a P300-based speller, while keeps those containing the keywords. Such filtering largely facilitates the target selection task based on our BCI mouse. When there are only several targets in a web page (either an original sparse page or a target-filtered page), the user moves the mouse toward the target of interest using his/her electroencephalographic signal. The horizontal movement and vertical movement are controlled by motor imagery and P300 potential, respectively. If the mouse encounters a target of no interest, the user rejects it and continues to move the mouse. Otherwise the user selects the target and activates it. With the collaboration of the target filtering and a series of mouse movements and target selections/rejections, the user can select an intended target in a web page. Based on our browser system, common navigation functions, including history rolling forward and backward, hyperlink selection, page scrolling, text input, etc, are available. The system has been tested on seven subjects. Experimental results not only validated the efficacy of the proposed method, but also showed that free internet surfing with a BCI mouse is feasible.

  1. Sorry,officer,I was just surfing

    Institute of Scientific and Technical Information of China (English)

    英文姿

    1998-01-01

    美国被称为a nation on wheels(汽车轮子上的国家),当今计算机科学的迅猛发展与汽车车型的改进和设计的“联姻”就是一个必然。 本文对这种“联姻”的产品——network vehicle/net-mobile——的描绘具有极大的诱惑力: In a net-mobile, a motorist could tap into a regional road system not only to getdirections but also to map out a route around rush-hour traffic snags. Drivers andpassengers will be able to send and receive email, track the latest sports scores or stockquotes, surf the Web, and even play video games. 当然,除了上述“表层”的“联姻”之外.尚有其“深层”的“联姻”,如: On-board microcomputers improve fuel economy and reduce emissions. 也许有人会问:开车时一心岂能两用?不必担心: It not only offered such desktop-computer-like services as email, but allowed adriver to use them without looking away form the road. 文章还列举了不少名车,如General Motors,Toyota,BMW和Mecedes-Benz 已经研制了net-mobile的样车。其中的神奇之处有: OnStar also calls automatically for help if an accident triggers the airbag. (OnStar系统能在事故触发了保

  2. Tsunami Preparedness in California (videos)

    Science.gov (United States)

    Filmed and edited by: Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. These videos about tsunami preparedness in California distinguish between a local tsunami and a distant event and focus on the specific needs of each region. They offer guidelines for correct tsunami response and community preparedness from local emergency managers, first-responders, and leading experts on tsunami hazards and warnings, who have been working on ways of making the tsunami affected regions safer for the people and communities on a long-term basis. These videos were produced by the U.S. Geological Survey (USGS) in cooperation with the California Emergency Management Agency (CalEMA) and Pacific Gas and Electric Company (PG&E).

  3. Goddard and Caldwell Oahu, Hawaii Surf Observation Dataset for 1968-2004 (NODC Accession 0001754)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surf reports are typically made several times per day at select locations around Oahu, primarily by Honolulu City and County lifeguards and the Surf News Network,...

  4. Goddard and Caldwell: Oahu, Hawaii surf observation data set for 1968 - 2004 (NODC Accession 0001754)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surf reports are typically made several times per day at select locations around Oahu, primarily by Honolulu City and County lifeguards and the Surf News Network,...

  5. An advanced three-phase physical, experimental and numerical method for tsunami induced boulder transport

    Science.gov (United States)

    Oetjen, Jan; Engel, Max; Prasad Pudasaini, Shiva; Schüttrumpf, Holger; Brückner, Helmut

    2017-04-01

    immersed boundary method we can compute the interactions between fluid, particles and arbitrary boulder shape. We are able to reproduce the exact physical experiment for calibration and verification of the tsunami boulder transport phenomena. First results of the study will be presented. Engel, M.; May, S.M.: Bonaire's boulder fields revisited: evidence for Holocene tsunami impact on the Leeward, Antilles. Quaternary Science Reviews 54, 126-141, 2012. Peskin, C.S.: The immersed boundary method. Acta Numerica, 479 - 517, 2002. Pudasaini, S. P.: A general two-phase debris flow model. J. Geophys. Res. Earth Surf., 117, F03010, 2012. Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M.: 'Structure-from-Motion' photogrammetry - a low-cost, effective tool for geoscience applications. Geomorphology 179, 300-314, 2012.

  6. Empirical and Computational Tsunami Probability

    Science.gov (United States)

    Geist, E. L.; Parsons, T.; ten Brink, U. S.; Lee, H. J.

    2008-12-01

    A key component in assessing the hazard posed by tsunamis is quantification of tsunami likelihood or probability. To determine tsunami probability, one needs to know the distribution of tsunami sizes and the distribution of inter-event times. Both empirical and computational methods can be used to determine these distributions. Empirical methods rely on an extensive tsunami catalog and hence, the historical data must be carefully analyzed to determine whether the catalog is complete for a given runup or wave height range. Where site-specific historical records are sparse, spatial binning techniques can be used to perform a regional, empirical analysis. Global and site-specific tsunami catalogs suggest that tsunami sizes are distributed according to a truncated or tapered power law and inter-event times are distributed according to an exponential distribution modified to account for clustering of events in time. Computational methods closely follow Probabilistic Seismic Hazard Analysis (PSHA), where size and inter-event distributions are determined for tsunami sources, rather than tsunamis themselves as with empirical analysis. In comparison to PSHA, a critical difference in the computational approach to tsunami probabilities is the need to account for far-field sources. The three basic steps in computational analysis are (1) determination of parameter space for all potential sources (earthquakes, landslides, etc.), including size and inter-event distributions; (2) calculation of wave heights or runup at coastal locations, typically performed using numerical propagation models; and (3) aggregation of probabilities from all sources and incorporation of uncertainty. It is convenient to classify two different types of uncertainty: epistemic (or knowledge-based) and aleatory (or natural variability). Correspondingly, different methods have been traditionally used to incorporate uncertainty during aggregation, including logic trees and direct integration. Critical

  7. TSUNAMI INFORMATION SOURCES - PART 4

    Directory of Open Access Journals (Sweden)

    Robert L. Wiegel

    2006-01-01

    Full Text Available I have expanded substantially my list of information sources on: tsunami generation (sources, impulsive mechanisms, propagation, effects of nearshore bathymetry, and wave run-up on shore - including physical (hydraulic modeling and numerical modeling. This expanded list includes the subjects of field investigations of tsunamis soon after an event; damage effects in harbors on boats, ships, and facilities; tsunami wave-induced forces; damage by tsunami waves to structures on shore; scour/erosion; hazard mitigation; land use planning; zoning; siting, design, construction and maintenance of structures and infrastructure; public awareness and education; distant and local sources; tsunami warning and evacuation programs; tsunami probability and risk criteria. A few references are on "sedimentary signatures" useful in the study of historic and prehistoric tsunamis (paleo-tsunamis. In addition to references specifically on tsunamis, there are references on long water wave and solitary wave theory; wave refraction, diffraction, and reflection; shelf and basin free and forced oscillations (bay and harbor response; seiches; edge waves; Mach- reflection of long water waves ("stem waves"; wave run-up on shore; energy dissipation. All are important in understanding tsunamis, and in hazard mitigation. References are given on subaerial and submarine landslide (and rockfall generated waves in reservoirs, fjords, bays, and ocean; volcano explosive eruptions/collapse; underwater and surface explosions; asteroid impact. This report is in two parts: 1 Bibliographies, books and pamphlets, catalogs, collections, journals and newsletters, maps, organizations, proceedings, videos and photos; 2 Articles, papers, reports listed alphabetically by author.Many papers on the Indian Ocean (Sumatra tsunami of 26 December 2004, were given at the 22nd IUGG International Tsunami Symposium, Chania, Crete, 27-29 June 2005, but had not been published at the date of this report. For

  8. Project Vesta: A Laboratory Exercise on the Measurement of Celestial Coordinates

    Science.gov (United States)

    Laird, David E.

    1974-01-01

    Described is an activity that was developed to measure celestial coordinates. Pictures were taken of the asteroid Vesta, coordinates for reference stars determined, and then celestial coordinates of Vesta were determined with assistance of a computer. (RH)

  9. Evaluation of Sift and Surf for Vision Based Localization

    Science.gov (United States)

    Qu, Xiaozhi; Soheilian, Bahman; Habets, Emmanuel; Paparoditis, Nicolas

    2016-06-01

    Vision based localization is widely investigated for the autonomous navigation and robotics. One of the basic steps of vision based localization is the extraction of interest points in images that are captured by the embedded camera. In this paper, SIFT and SURF extractors were chosen to evaluate their performance in localization. Four street view image sequences captured by a mobile mapping system, were used for the evaluation and both SIFT and SURF were tested on different image scales. Besides, the impact of the interest point distribution was also studied. We evaluated the performances from for aspects: repeatability, precision, accuracy and runtime. The local bundle adjustment method was applied to refine the pose parameters and the 3D coordinates of tie points. According to the results of our experiments, SIFT was more reliable than SURF. Apart from this, both the accuracy and the efficiency of localization can be improved if the distribution of feature points are well constrained for SIFT.

  10. The Global Tsunami Model (GTM)

    Science.gov (United States)

    Thio, H. K.; Løvholt, F.; Harbitz, C. B.; Polet, J.; Lorito, S.; Basili, R.; Volpe, M.; Romano, F.; Selva, J.; Piatanesi, A.; Davies, G.; Griffin, J.; Baptista, M. A.; Omira, R.; Babeyko, A. Y.; Power, W. L.; Salgado Gálvez, M.; Behrens, J.; Yalciner, A. C.; Kanoglu, U.; Pekcan, O.; Ross, S.; Parsons, T.; LeVeque, R. J.; Gonzalez, F. I.; Paris, R.; Shäfer, A.; Canals, M.; Fraser, S. A.; Wei, Y.; Weiss, R.; Zaniboni, F.; Papadopoulos, G. A.; Didenkulova, I.; Necmioglu, O.; Suppasri, A.; Lynett, P. J.; Mokhtari, M.; Sørensen, M.; von Hillebrandt-Andrade, C.; Aguirre Ayerbe, I.; Aniel-Quiroga, Í.; Guillas, S.; Macias, J.

    2016-12-01

    The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  11. The Global Tsunami Model (GTM)

    Science.gov (United States)

    Løvholt, Finn

    2017-04-01

    The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  12. Sea spray aerosol and wave energy dissipation in the surf zone

    NARCIS (Netherlands)

    Francius, M.J.; Piazzola, J.; Forget, P.; Calve, O. le; Kusmierczyk-Michulec, J.

    2007-01-01

    Results from a quantitative model for the prediction of the sea-salt mass flux produced in the surf zone are presented in this paper. The model relates the surf zone sea salt mass flux to the amount of wave energy dissipated in the surf zone. In order to apply this aerosol emission model, a wave num

  13. Tsunami risk assessment in Indonesia

    Directory of Open Access Journals (Sweden)

    G. Strunz

    2011-01-01

    Full Text Available In the framework of the German Indonesian Tsunami Early Warning System (GITEWS the assessment of tsunami risk is an essential part of the overall activities. The scientific and technical approach for the tsunami risk assessment has been developed and the results are implemented in the national Indonesian Tsunami Warning Centre and are provided to the national and regional disaster management and spatial planning institutions in Indonesia.

    The paper explains the underlying concepts and applied methods and shows some of the results achieved in the GITEWS project (Rudloff et al., 2009. The tsunami risk assessment has been performed at an overview scale at sub-national level covering the coastal areas of southern Sumatra, Java and Bali and also on a detailed scale in three pilot areas. The results are provided as thematic maps and GIS information layers for the national and regional planning institutions. From the analyses key parameters of tsunami risk are derived, which are integrated and stored in the decision support system of the national Indonesian Early Warning Centre. Moreover, technical descriptions and guidelines were elaborated to explain the developed approach, to allow future updates of the results and the further development of the methodologies, and to enable the local authorities to conduct tsunami risk assessment by using their own resources.

  14. Searching versus surfing: how different ways of acquiring content online affect cognitive processing.

    Science.gov (United States)

    Wise, Kevin; Kim, Hyo Jung

    2008-06-01

    An experiment tested whether people orient to and encode pictures selected from a Web site differently, depending on whether the pictures were selected by searching or surfing. Participants in the search condition spent more time selecting pictures than the participants in the surf condition spent. The pictures chosen in the search condition elicited cardiac orienting, while pictures chosen in the surf condition did not. Participants recognized pictures acquired by searching more accurately than they recognized those acquired by surfing, indicating that searching led to better encoding than surfing.

  15. TSUNAMI_DEPOSITS - Tsunami Deposits at Seaside, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set is a point shapefile representing tsunami deposits within the Seaside, Oregon region obtained by Brooke Fiedorowicz and Curt Peterson in 1997 and Bruce...

  16. TSUNAMI_DEPOSITS - Tsunami Deposits at Seaside, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set is a point shapefile representing tsunami deposits within the Seaside, Oregon region obtained by Brooke Fiedorowicz and Curt Peterson in 1997 and Bruce...

  17. Collaboration on ICT in Dutch Higher Education: The SURF Approach

    Science.gov (United States)

    Boezerooy, Petra; Cordewener, Bas; Liebrand, Wim

    2007-01-01

    In "Thinking Ahead: A Vision of the Role of ICT in Education and Research in the Future, 2007-2010," the higher education institutions in the Netherlands agreed on future strategy. Under the direction of SURF, the Dutch national organization, a collaborative strategy for the application of information and communications technology (ICT)…

  18. Global concept, local practice: Taiwanese experience of CouchSurfing

    NARCIS (Netherlands)

    Chen, D.-J.

    2012-01-01

    Hospitality exchange tourism is a new type of niche tourism, which is highly dependent on the Internet. Through participating in global hospitality exchange networks, such as CouchSurfing, tourists can meet local people who are willing to offer free accommodation, and hosts can also meet people arou

  19. CoBrowser: Surfing the Web Using a Standard Browser.

    Science.gov (United States)

    Maly, K.; Zubair, M.; Li, L.

    Co-browsing is a synchronous class of collaborative applications, which allows a group of users to surf the Web together. Such an application can be deployed in an education environment in several ways. One example of where it can be used would be in courses that are project-oriented. Students would be required to collectively research or explore…

  20. Droplets move over viscoelastic substrates by surfing a ridge

    NARCIS (Netherlands)

    Karpitschka, S.A.; Das, S.; Gorcum, van M.; Perrin, H.; Andreotti, B.; Snoeijer, J.H.

    2015-01-01

    Liquid drops on soft solids generate strong deformations below the contact line, resulting from a balance of capillary and elastic forces. The movement of these drops may cause strong, potentially singular dissipation in the soft solid. Here we show that a drop on a soft substrate moves by surfing a

  1. Sea-spray aerosol particles generated in the surf zone

    NARCIS (Netherlands)

    Eijk, A.M.J. van; Kusmierczyk‐Michulec, J.T.; Francius, M.J.; Tedeschi, G.; Piazzola,J.; Merritt, D.L.; Fontana, J.D.

    2011-01-01

    To assess the properties of aerosol particles generated over the surf zone, two experiments were held at the pier of Scripps Institution of Oceanography (SIO), La Jolla CA, and at the pier of the U.S. Army Corps of Engineers Field Research Facility (FRF) in Duck NC. On both sites concentrations of s

  2. Observations of turbulence within a natural surf zone

    NARCIS (Netherlands)

    Ruessink, B.G.

    2010-01-01

    Here, the Reynolds stresses and , where u′, v′, and w′ are the cross-shore, alongshore, and vertical turbulence velocities, respectively, and the angle brackets represent time averaging, are used to diagnose turbulence dynamics beneath natural breaking surf-zone waves. The data were col

  3. Internet Surfing for Kindergarten Children: A Feasibility Study

    Science.gov (United States)

    Loo, Alfred

    2012-01-01

    The Internet is an effective learning tool for gifted children because it allows them to independently select the areas in which they have talent. The Internet also enables children to discover and maximize their potential. However, younger children might not have a large enough vocabulary to surf the Internet, even if they are gifted. For…

  4. Uncertainty in tsunami sediment transport modeling

    Science.gov (United States)

    Jaffe, Bruce E.; Goto, Kazuhisa; Sugawara, Daisuke; Gelfenbaum, Guy R.; La Selle, SeanPaul M.

    2016-01-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.

  5. On the modelling of tsunami generation and tsunami inundation

    CERN Document Server

    Dias, Frédéric; O'Brien, Laura; Renzi, Emiliano; Stefanakis, Themistoklis

    2012-01-01

    While the propagation of tsunamis is well understood and well simulated by numerical models, there are still a number of unanswered questions related to the generation of tsunamis or the subsequent inundation. We review some of the basic generation mechanisms as well as their simulation. In particular, we present a simple and computationally inexpensive model that describes the seabed displacement during an underwater earthquake. This model is based on the finite fault solution for the slip distribution under some assumptions on the kinematics of the rupturing process. We also consider an unusual source for tsunami generation: the sinking of a cruise ship. Then we review some aspects of tsunami run-up. In particular, we explain why the first wave of a tsunami is sometimes less devastating than the subsequent waves. A resonance effect can boost the waves that come later. We also look at a particular feature of the 11 March 2011 tsunami in Japan - the formation of macro-scale vortices - and show that these macr...

  6. Coupling 3d Tsunami Generation With Boussinesq Tsunami Propagation

    Science.gov (United States)

    Watts, P.; Grilli, S. T.; Kirby, J. T.

    A general recognition of landslide tsunami hazards has recently led to a proliferation of landslide tsunami models with widely varying assumptions and capabilities. We develop a two part simulation technique that makes few fluid dynamic assumptions so that we can examine the sensitivity of landslide tsunami events to geological param- eters. Tsunami generation of underwater landslide tsunamis is currently being simu- lated with a fully nonlinear, higher order, three-dimensional (3D) Boundary Element Method (BEM) model at the University of Rhode Island. Likewise, wave propagation and runup is currently being simulated with a fully nonlinear Boussinesq model called FUNWAVE at the University of Delaware's Center for Applied Coastal Research. We demonstrate an exact coupling of the 3D BEM model to FUNWAVE by running the generation model until after landslide motion ceases. The free surface shape and water velocities are then transferred to the Boussinesq model FUNWAVE for wave propaga- tion and runup. We run the coupled models for the 1994 Skagway, Alaska event, the 1998 Papua New Guinea event, and the somewhat more speculative 1812 Santa Bar- bara event. We demonstrate that good agreement is obtained with known observations and measurements, thereby validating our geological description of these events. We also show that the tsunami sources predicted by TOPICS are satisfactory to describe these events. We find that fluid dynamic simulations are sensitive to some geological parameters, indicating a need to refine our geological understanding of underwater landslides.

  7. Data on cytochrome c oxidase assembly in mice and human fibroblasts or tissues induced by SURF1 defect.

    Science.gov (United States)

    Kovářová, Nikola; Pecina, Petr; Nůsková, Hana; Vrbacký, Marek; Zeviani, Massimo; Mráček, Tomáš; Viscomi, Carlo; Houštěk, Josef

    2016-06-01

    This paper describes data related to a research article entitled "Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects" [1]. This paper includes data of the quantitative analysis of individual forms of respiratory chain complexes I, III and IV present in SURF1 knockout (SURF1 (-/-) ) and control (SURF1 (+/+) ) mouse fibroblasts and tissues and in fibroblasts of human control and patients with SURF1 gene mutation. Also it includes data demonstrating response of complex IV, cytochrome c oxidase (COX), to reversible inhibition of mitochondrial translation in SURF1 (-/-) mouse and SURF1 patient fibroblast cell lines.

  8. Tsunami-induced boulder transport - combining physical experiments and numerical modelling

    Science.gov (United States)

    Oetjen, Jan; Engel, Max; May, Simon Matthias; Schüttrumpf, Holger; Brueckner, Helmut; Prasad Pudasaini, Shiva

    2016-04-01

    since they have been largely neglected. In order to tackle these gaps, we develop a novel BTM in two steps. First, scaled physical experiments are performed that determine the exact hydrodynamic processes within a tsunami during boulder transportations. Furthermore, the experiments are the basis for calibrating the numerical BTM. The BTM is based on the numerical two-phase mass flow model of Pudasaini (2012) that employs an advanced and unified high-resolution computational tool for mixtures consisting of the solid and fluid components and their interactions. This allows for the motion of the boulder while interacting with the particle-laden tsunami on the inundated coastal plane as a function of the total fluid and solid stresses. Our approach leads to fundamentally new insights in to the essential physical processes in BTM. Goto, K., Chavanich, S. A., Imamura, F., Kunthasap, P., Matsui, T., Minoura, K., Sugawara, D. and Yanagisawa, H.: Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Sediment. Geol., 202, 821-837, 2007. Imamura, F., Goto, K. and Ohkubo, S.: A numerical model of the transport of a boulder by tsunami. J. Geophys. Res. Oceans, 113, C01008, 2008. Pudasaini, S. P.: A general two-phase debris flow model. J. Geophys. Res. Earth Surf., 117, F03010, 2012.

  9. Schroedinger Equation and the Quantization of Celestial Systems

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2006-04-01

    Full Text Available In the present article, we argue that it is possible to generalize Schroedinger equation to describe quantization of celestial systems. While this hypothesis has been described by some authors, including Nottale, here we argue that such a macroquantization was formed by topological superfluid vortice. We also provide derivation of Schroedinger equation from Gross-Pitaevskii-Ginzburg equation, which supports this superfluid dynamics interpretation.

  10. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  11. Distribution of tsunami interevent times

    Science.gov (United States)

    Geist, E.L.; Parsons, T.

    2008-01-01

    The distribution of tsunami interevent times is analyzed using global and site-specific (Hilo, Hawaii) tsunami catalogs. An empirical probability density distribution is determined by binning the observed interevent times during a period in which the observation rate is approximately constant. The empirical distributions for both catalogs exhibit non-Poissonian behavior in which there is an abundance of short interevent times compared to an exponential distribution. Two types of statistical distributions are used to model this clustering behavior: (1) long-term clustering described by a universal scaling law, and (2) Omori law decay of aftershocks and triggered sources. The empirical and theoretical distributions all imply an increased hazard rate after a tsunami, followed by a gradual decrease with time approaching a constant hazard rate. Examination of tsunami sources suggests that many of the short interevent times are caused by triggered earthquakes, though the triggered events are not necessarily on the same fault.

  12. TSUNAMI HAZARD IN NORTHERN VENEZUELA

    Directory of Open Access Journals (Sweden)

    B. Theilen-Willige

    2006-01-01

    Full Text Available Based on LANDSAT ETM and Digital Elevation Model (DEM data derived by the Shuttle Radar Topography Mission (SRTM, 2000 of the coastal areas of Northern Venezuela were investigated in order to detect traces of earlier tsunami events. Digital image processing methods used to enhance LANDSAT ETM imageries and to produce morphometric maps (such as hillshade, slope, minimum and maximum curvature maps based on the SRTM DEM data contribute to the detection of morphologic traces that might be related to catastrophic tsunami events. These maps combined with various geodata such as seismotectonic data in a GIS environment allow the delineation of coastal regions with potential tsunami risk. The LANDSAT ETM imageries merged with digitally processed and enhanced SRTM data clearly indicate areas that might be prone by flooding in case of catastrophic tsunami events.

  13. Camana, Peru, and Tsunami Vulnerability

    Science.gov (United States)

    2002-01-01

    A tsunami washed over the low-lying coastal resort region near Camana, southern Peru, following a strong earthquake on June 23, 2001. The earthquake was one of the most powerful of the last 35 years and had a magnitude of 8.4. After the initial quake, coastal residents witnessed a sudden drawdown of the ocean and knew a tsunami was imminent. They had less than 20 minutes to reach higher ground before the tsunami hit. Waves as high as 8 m came in four destructive surges reaching as far as 1.2 km inland. The dashed line marks the approximate area of tsunami inundation. Thousands of buildings were destroyed, and the combined earthquake and tsunami killed as many as 139 people. This image (ISS004-ESC-6128) was taken by astronauts onboard the International Space Station on 10 January 2002. It shows some of the reasons that the Camana area was so vulnerable to tsunami damage. The area has a 1 km band of coastal plain that is less than 5 m in elevation. Much of the plain can be seen by the bright green fields of irrigated agriculture that contrast with the light-colored desert high ground. Many of the tsunami-related deaths were workers in the onion fields in the coastal plain that were unwilling to leave their jobs before the end of the shift. A number of lives were spared because the tsunami occurred during the resort off-season, during the daylight when people could see the ocean drawdown, and during one of the lowest tides of the year. Information on the Tsunami that hit Camana can be found in a reports on the visit by the International Tsunami Survey Team and the USC Tsunami Research Lab. Earthquake Epicenter, Peru shows another image of the area. Image provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  14. A Celestial Assisted INS Initialization Method for Lunar Explorers

    Directory of Open Access Journals (Sweden)

    Jiancheng Fang

    2011-07-01

    Full Text Available The second and third phases of the Chinese Lunar Exploration Program (CLEP are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS and celestial navigation system (CNS are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors’ biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface.

  15. Revisiting the 1761 Transatlantic Tsunami

    Science.gov (United States)

    Baptista, Maria Ana; Wronna, Martin; Miranda, Jorge Miguel

    2016-04-01

    The tsunami catalogs of the Atlantic include two transatlantic tsunamis in the 18th century the well known 1st November 1755 and the 31st March 1761. The 31st March 1761 earthquake struck Portugal, Spain, and Morocco. The earthquake occurred around noontime in Lisbon alarming the inhabitants and throwing down ruins of the past 1st November 1755 earthquake. According to several sources, the earthquake was followed by a tsunami observed as far as Cornwall (United Kingdom), Cork (Ireland) and Barbados (Caribbean). The analysis of macroseismic information and its compatibility with tsunami travel time information led to a source area close to the Ampere Seamount with an estimated epicenter circa 34.5°N 13°W. The estimated magnitude of the earthquake was 8.5. In this study, we revisit the tsunami observations, and we include a report from Cadiz not used before. We use the results of the compilation of the multi-beam bathymetric data, that covers the area between 34°N - 38°N and 12.5°W - 5.5°W and use the recent tectonic map published for the Southwest Iberian Margin to select among possible source scenarios. Finally, we use a non-linear shallow water model that includes the discretization and explicit leap-frog finite difference scheme to solve the shallow water equations in the spherical or Cartesian coordinate to compute tsunami waveforms and tsunami inundation and check the results against the historical descriptions to infer the source of the event. This study received funding from project ASTARTE- Assessment Strategy and Risk Reduction for Tsunamis in Europe a collaborative project Grant 603839, FP7-ENV2013 6.4-3

  16. The IAA Cosmic Study 'Protecting the Environment of Celestial Bodies'

    Science.gov (United States)

    Rettberg, Petra; Hofmann, Mahulena; Williamson, Mark

    The study group tasked with producing this International Academy of Astronautics (IAA) `Cosmic Study' on Protecting the Environment of Celestial Bodies was formed under the aus-pices of IAA Commission V (Space Policy, Law Economy). The members of the international, multidisciplinary team assembled to undertake the Study accept, as a premise, the Planetary Protection Policy guidelines developed by COSPAR, which differentiate the degree of protec-tion according to the type of space activity and the celestial body under investigation (such that fly-by missions have less stringent requirements than lander missions, while Mars is `better protected' than the Moon). However, this Study goes deliberately beyond the interpretation of `Planetary Protection' as a set of methods for protecting the planets from biological con-tamination and extends consideration to the geophysical, industrial and cultural realms. The Study concludes that, from the perspective of current and future activities in outer space, present measures aimed at protecting the space environment are insufficient. Deficiencies in-clude a lack of suitable in-situ methods of chemical and biological detection and the absence of a systematic record of radioactive contaminants. Other issues identified by the Study include an insufficient legal framework, a shortage of effective economic tools and a lack of political will to address these concerns. It is expected that new detection methods under development, and the resultant increase in microbiological knowledge of the planetary surfaces, will lead to changes in the COSPAR planetary protection guidelines and bioburden limits. It is important, however, that any new approaches should not hamper future exploration and exploitation of celestial bodies more than absolutely necessary. The Study addresses the need to find a balance between protection and freedom of action. From a legal perspective, the Study concludes that a general consensus on protection of the

  17. Tsunami Defense Efforts at Samcheok Port, Korea

    Science.gov (United States)

    Cho, Y. S.

    2016-02-01

    Tsunamis mainly triggered by impulsive undersea motions are long waves and can propagate a long distance. Thus, they can cause huge casualties not only neighboring countries but also distant countries. Recently, several devastating tsunamis have been occurred around the Pacific Ocean rim. Among them, the Great East Japan tsunami occurred on March 11, 2011 is probably recorded as one of the most destructive tsunamis during last several decades. The Tsunami killed more than 20,000 people (including missing people) and deprived of property damage of approximately 300 billion USD. The eastern coast of the Korean Peninsula has been attacked historically by unexpected tsunami events. These tsunamis were generated by undersea earthquakes occurred off the west coast of Japan. For example, the Central East Sea Tsunami occurred on May 26, 1983 killed 3 people and caused serious property damage at Samcheok Port located at the eastern coast of Korea. Thus, a defense plan against unexpected tsunami strikes is an essential task for the port authority to protect lives of human beings and port facilities. In this study, a master plan of tsunami defense is introduced at Samcheok Port. A tsunami hazard map is also made by employing both propagation and inundation models. Detailed defense efforts are described including the procedure of development of a tsunami hazard map. Keywords: tsunami, hazard map, run-up height, emergency action plan

  18. Tsunami risk mapping simulation for Malaysia

    Science.gov (United States)

    Teh, S.Y.; Koh, H. L.; Moh, Y.T.; De Angelis, D. L.; Jiang, J.

    2011-01-01

    The 26 December 2004 Andaman mega tsunami killed about a quarter of a million people worldwide. Since then several significant tsunamis have recurred in this region, including the most recent 25 October 2010 Mentawai tsunami. These tsunamis grimly remind us of the devastating destruction that a tsunami might inflict on the affected coastal communities. There is evidence that tsunamis of similar or higher magnitudes might occur again in the near future in this region. Of particular concern to Malaysia are tsunamigenic earthquakes occurring along the northern part of the Sunda Trench. Further, the Manila Trench in the South China Sea has been identified as another source of potential tsunamigenic earthquakes that might trigger large tsunamis. To protect coastal communities that might be affected by future tsunamis, an effective early warning system must be properly installed and maintained to provide adequate time for residents to be evacuated from risk zones. Affected communities must be prepared and educated in advance regarding tsunami risk zones, evacuation routes as well as an effective evacuation procedure that must be taken during a tsunami occurrence. For these purposes, tsunami risk zones must be identified and classified according to the levels of risk simulated. This paper presents an analysis of tsunami simulations for the South China Sea and the Andaman Sea for the purpose of developing a tsunami risk zone classification map for Malaysia based upon simulated maximum wave heights. ?? 2011 WIT Press.

  19. Post-tsunami changes in the littoral environment along the southeast coast of India.

    Science.gov (United States)

    Jaya Kumar, S; Naik, K A; Ramanamurthy, M V; Ilangovan, D; Gowthaman, R; Jena, B K

    2008-10-01

    The 26th December 2004 Indian Ocean tsunami devastated coastal regions of the Indian subcontinent. Andaman and Nicobar Islands, coastal stretches of Tamil Nadu, Andhra Pradesh and Kerala were the most affected regions of India. Changes in the beach profiles, long shore currents, breaking wave characteristics in the surf zone at selected locations along the Tamil Nadu coast were studied during January, April, October 2005 and January 2006. Long shore sediment transport rates were estimated from the observed parameters. Studies were carried out earlier (1995-1996 and 1998) to understand the coastal environment over a one-year cycle in the study region. The post-tsunami observations were compared with the earlier studies to establish the variations in the littoral environment and to ascertain the normalcy of the littoral environment in the post-tsunami scenario. From the changes in the beach profiles, the shoreline was observed to recede by about 20 m and built-up of backshore by about 0.5 m at most locations. Observations from the field investigations and comparisons with earlier studies along this stretch of the coastline indicate that the coastline is yet to return completely to normalcy.

  20. Occurrence of larval fishes in the surf zone of a northern Gulf of Mexico barrier island

    Science.gov (United States)

    Ruple, David L.

    1984-02-01

    Larval fishes were collected from the surf zone of Horn Island, Mississippi between March 1978 and April 1979. A standardized total of 39 435 larvae were taken from 222 collections in the inner and outer surf zone regions, representing fish in 69 taxa. Overall, considerably more larvae were collected in the outer surf zone (78·3%) than in the inner surf zone (21·7%). Engraulids, Chloroscombrus chrysurus and Symphurus spp. were the most abundant larvae taken from the outer surf zone while engraulids, Leiostomus xanthurus, Brevoortia patronus and Trinectes maculatus were the numerically dominant larvae in the inner surf zone. Seasonal peaks in abundance occurred at the outer surf zone stations during May and June and at the inner surf zone stations during December. Larval densities were significantly greater in night collections than in day collections. The occurrence of early larvae, late larvae and juveniles suggests that the surf zone habitat is important to several species of coastal marine fishes. Menticirrhus littoralis, Harengula jaguana and Trachinotus carolinus appear to most readily utilize the surf zone as a nursery area.

  1. Midway Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  2. Bermuda Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bermuda Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  3. Historical Tsunami Event Locations with Runups

    Data.gov (United States)

    Department of Homeland Security — The Global Historical Tsunami Database provides information on over 2,400 tsunamis from 2100 BC to the present in the the Atlantic, Indian, and Pacific Oceans; and...

  4. CTD_DATABASE - Cascadia tsunami deposit database

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Cascadia Tsunami Deposit Database contains data on the location and sedimentological properties of tsunami deposits found along the Cascadia margin. Data have...

  5. Statistical Analysis of Tsunami Variability

    Science.gov (United States)

    Zolezzi, Francesca; Del Giudice, Tania; Traverso, Chiara; Valfrè, Giulio; Poggi, Pamela; Parker, Eric J.

    2010-05-01

    The purpose of this paper was to investigate statistical variability of seismically generated tsunami impact. The specific goal of the work was to evaluate the variability in tsunami wave run-up due to uncertainty in fault rupture parameters (source effects) and to the effects of local bathymetry at an individual location (site effects). This knowledge is critical to development of methodologies for probabilistic tsunami hazard assessment. Two types of variability were considered: • Inter-event; • Intra-event. Generally, inter-event variability refers to the differences of tsunami run-up at a given location for a number of different earthquake events. The focus of the current study was to evaluate the variability of tsunami run-up at a given point for a given magnitude earthquake. In this case, the variability is expected to arise from lack of knowledge regarding the specific details of the fault rupture "source" parameters. As sufficient field observations are not available to resolve this question, numerical modelling was used to generate run-up data. A scenario magnitude 8 earthquake in the Hellenic Arc was modelled. This is similar to the event thought to have caused the infamous 1303 tsunami. The tsunami wave run-up was computed at 4020 locations along the Egyptian coast between longitudes 28.7° E and 33.8° E. Specific source parameters (e.g. fault rupture length and displacement) were varied, and the effects on wave height were determined. A Monte Carlo approach considering the statistical distribution of the underlying parameters was used to evaluate the variability in wave height at locations along the coast. The results were evaluated in terms of the coefficient of variation of the simulated wave run-up (standard deviation divided by mean value) for each location. The coefficient of variation along the coast was between 0.14 and 3.11, with an average value of 0.67. The variation was higher in areas of irregular coast. This level of variability is

  6. Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami

    Science.gov (United States)

    Satake, Kenji

    2014-12-01

    The December 2004 Indian Ocean tsunami was the worst tsunami disaster in the world's history with more than 200,000 casualties. This disaster was attributed to giant size (magnitude M ~ 9, source length >1000 km) of the earthquake, lacks of expectation of such an earthquake, tsunami warning system, knowledge and preparedness for tsunamis in the Indian Ocean countries. In the last ten years, seismology and tsunami sciences as well as tsunami disaster risk reduction have significantly developed. Progress in seismology includes implementation of earthquake early warning, real-time estimation of earthquake source parameters and tsunami potential, paleoseismological studies on past earthquakes and tsunamis, studies of probable maximum size, recurrence variability, and long-term forecast of large earthquakes in subduction zones. Progress in tsunami science includes accurate modeling of tsunami source such as contribution of horizontal components or "tsunami earthquakes", development of new types of offshore and deep ocean tsunami observation systems such as GPS buoys or bottom pressure gauges, deployments of DART gauges in the Pacific and other oceans, improvements in tsunami propagation modeling, and real-time inversion or data assimilation for the tsunami warning. These developments have been utilized for tsunami disaster reduction in the forms of tsunami early warning systems, tsunami hazard maps, and probabilistic tsunami hazard assessments. Some of the above scientific developments helped to reveal the source characteristics of the 2011 Tohoku earthquake, which caused devastating tsunami damage in Japan and Fukushima Dai-ichi Nuclear Power Station accident. Toward tsunami disaster risk reduction, interdisciplinary and trans-disciplinary approaches are needed for scientists with other stakeholders.

  7. Disseminated aspergillosis associated with tsunami lung.

    Science.gov (United States)

    Kawakami, Yutaka; Tagami, Takashi; Kusakabe, Takashi; Kido, Norihiro; Kawaguchi, Takanori; Omura, Mariko; Tosa, Ryoichi

    2012-10-01

    Many survivors of the tsunami that occurred following the Great East Japan Earthquake on March 11, 2011, contracted a systemic disorder called "tsunami lung," a series of severe systemic infections following aspiration pneumonia caused by near drowning in the tsunami. Generally, the cause of aspiration pneumonia is polymicrobial, including fungi and aerobic and anaerobic bacteria, but Aspergillus infection is rarely reported. Here we report a case of tsunami lung complicated by disseminated aspergillosis, as diagnosed during autopsy.

  8. Surf zone Exchange on a Rip Channeled Beach

    Science.gov (United States)

    Reniers, A.; Macmahan, J.

    2008-12-01

    The dispersion and surf zone exchange of GPS-equipped surface drifters observed during the Rip Current EXperiment (RCEX) is examined with help of Lagrangian Coherent Structures (LCSs). LCSs allow for the detection of transport barriers in unsteady flows and are typically applied to shelf-scale circulation systems. Here LCSs are specifically computed to detect the effects of surfzone-originated Very Low Frequency motions (VLFs) with O(10) minute time scale on the cross-shore exchange of floating material using numerical model calculations of the Lagrangian surface velocity at the wave group timescale. After verification with RCEX field observations, the model is run for a range of environmental conditions experienced during the field experiment to assess the effects of VLFs on the cross-shore surf zone exchange. Results are relevant for (but not restricted to) sediment and nutrient exchange, human health, water clarity, and swimmer safety.

  9. Region Duplication Forgery Detection Technique Based on SURF and HAC

    Directory of Open Access Journals (Sweden)

    Parul Mishra

    2013-01-01

    Full Text Available Region duplication forgery detection is a special type of forgery detection approach and widely used research topic under digital image forensics. In copy move forgery, a specific area is copied and then pasted into any other region of the image. Due to the availability of sophisticated image processing tools, it becomes very hard to detect forgery with naked eyes. From the forged region of an image no visual clues are often detected. For making the tampering more robust, various transformations like scaling, rotation, illumination changes, JPEG compression, noise addition, gamma correction, and blurring are applied. So there is a need for a method which performs efficiently in the presence of all such attacks. This paper presents a detection method based on speeded up robust features (SURF and hierarchical agglomerative clustering (HAC. SURF detects the keypoints and their corresponding features. From these sets of keypoints, grouping is performed on the matched keypoints by HAC that shows copied and pasted regions.

  10. Synthetic tsunamis along the Israeli coast.

    Science.gov (United States)

    Tobias, Joshua; Stiassnie, Michael

    2012-04-13

    The new mathematical model for tsunami evolution by Tobias & Stiassnie (Tobias & Stiassnie 2011 J. Geophys. Res. Oceans 116, C06026) is used to derive a synthetic tsunami database for the southern part of the Eastern Mediterranean coast. Information about coastal tsunami amplitudes, half-periods, currents and inundation levels is presented.

  11. TSUNAMI MITIGATION IN HAWAI`I

    Directory of Open Access Journals (Sweden)

    George D. Curtis

    2008-01-01

    Full Text Available Hawai`i has a long, though sporadic history of deadly tsunami attacks.Since the 1946 tsunami disaster the State of Hawaii has developed increasingly sophisticated and effective mitigation strategies. The evolution and operation of these strategies is described in this paper. Tsunamis will no longer be Hawai`i’s deadliest natural hazard.

  12. SURF IA Conflict Detection and Resolution Algorithm Evaluation

    Science.gov (United States)

    Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Barker, Glover D.

    2012-01-01

    The Enhanced Traffic Situational Awareness on the Airport Surface with Indications and Alerts (SURF IA) algorithm was evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. SURF IA is designed to increase flight crew situation awareness of the runway environment and facilitate an appropriate and timely response to potential conflict situations. The purpose of the study was to evaluate the performance of the SURF IA algorithm under various runway scenarios, multiple levels of conflict detection and resolution (CD&R) system equipage, and various levels of horizontal position accuracy. This paper gives an overview of the SURF IA concept, simulation study, and results. Runway incursions are a serious aviation safety hazard. As such, the FAA is committed to reducing the severity, number, and rate of runway incursions by implementing a combination of guidance, education, outreach, training, technology, infrastructure, and risk identification and mitigation initiatives [1]. Progress has been made in reducing the number of serious incursions - from a high of 67 in Fiscal Year (FY) 2000 to 6 in FY2010. However, the rate of all incursions has risen steadily over recent years - from a rate of 12.3 incursions per million operations in FY2005 to a rate of 18.9 incursions per million operations in FY2010 [1, 2]. The National Transportation Safety Board (NTSB) also considers runway incursions to be a serious aviation safety hazard, listing runway incursion prevention as one of their most wanted transportation safety improvements [3]. The NTSB recommends that immediate warning of probable collisions/incursions be given directly to flight crews in the cockpit [4].

  13. Stern-Gerlach surfing in laser wakefield accelerators

    CERN Document Server

    Flood, Stephen P

    2015-01-01

    We investigate the effects of a Stern-Gerlach-type addition to the Lorentz force on electrons in a laser wakefield accelerator. The Stern-Gerlach-type terms are found to generate a family of trajectories describing electrons that surf along the plasma density wave driven by a laser pulse. Such trajectories could lead to an increase in the size of an electron bunch, which may have implications for attempts to exploit such bunches in future free electron lasers.

  14. Stern-Gerlach surfing in laser wakefield accelerators

    Science.gov (United States)

    Flood, Stephen P.; Burton, David A.

    2015-09-01

    We investigate the effects of a Stern-Gerlach-type addition to the Lorentz force on electrons in a laser wakefield accelerator. The Stern-Gerlach-type terms are found to generate a family of trajectories describing electrons that 'surf' along the plasma density wave driven by a laser pulse. Such trajectories could lead to an increase in the size of an electron bunch, which may have implications for attempts to exploit such bunches in future free electron lasers.

  15. Las alteraciones posturales en miembros inferiores en el surf

    OpenAIRE

    2015-01-01

    Cuando el equilibrio neuromuscular no es óptimo durante la práctica de un deporte, es posible que, a largo plazo, aparezcan trastornos posturales que, dependiendo del tiempo de entrenamiento, pueden convertirse en un obstáculo para la salud. Es por esto, que mediante esta investigación he pretendido mostrar las alteraciones posturales que el surf puede llegar a provocar en quienes lo practican. Objetivo: Analizar las alteraciones posturales en los miembros inferiores de surfist...

  16. 5th Austrian Hungarian workshop on celestial mechanics

    Science.gov (United States)

    Süli, Áron

    2011-06-01

    The 5th Hungarian-Austrian Workshop on Celestial Mechanics took place from 9th until the 10th of April 2010 in Vienna, Austria. The workshop was held in the Institute for Astronomy of Vienna University. From the Eötvös University and from the host institute experts and PhD students gathered together to discuss the challenges and new results of the actual problems of celestial mechanics. The workshop was held in the meeting room at the Sternwarte of the Vienna University located in a magnificent park in the heart of Vienna. Following the themes of the four previous events the focus for this workshop ranged from the Trojan problem, dynamics in binary star systems and exoplanetray systems. We were pleased to acknowledge the support of the host university. The talks were characterized by a large spectrum, which is typical of the workshops on celestial mechanics. Several talks discussed different aspects of the trojan problem, such as the three Trojan Problem, dynamics of trojan-like planets in binary stars, the frequencies of their motion around the triangular lagrangian points, etc. Several speakers focused on the formation of planetary systems and on the field of exoplanetary systems, like exoplanetary systems in higher order mean motion resonances, formation of planets in binary systems, stability of exomoons etc. Some of the presentation used sophisticated mathematical tools in order to understand mean motion resonances, the Sitnikov problem applying the KAM and the Nekhoroshev theorem. The theme of a number of talks was the motion of Solar System bodies: dynamics of the newly discovered moons of Pluto and of near-Earth asteroids. General problems were also addressed, among others chaos in Hamiltonian systems, adaptive Lie-integration method and iterative solution approximation to the generalised Sitnikov problem.

  17. Tsunamis and splay fault dynamics

    Science.gov (United States)

    Wendt, J.; Oglesby, D.D.; Geist, E.L.

    2009-01-01

    The geometry of a fault system can have significant effects on tsunami generation, but most tsunami models to date have not investigated the dynamic processes that determine which path rupture will take in a complex fault system. To gain insight into this problem, we use the 3D finite element method to model the dynamics of a plate boundary/splay fault system. We use the resulting ground deformation as a time-dependent boundary condition for a 2D shallow-water hydrodynamic tsunami calculation. We find that if me stress distribution is homogeneous, rupture remains on the plate boundary thrust. When a barrier is introduced along the strike of the plate boundary thrust, rupture propagates to the splay faults, and produces a significantly larger tsunami man in the homogeneous case. The results have implications for the dynamics of megathrust earthquakes, and also suggest mat dynamic earthquake modeling may be a useful tool in tsunami researcn. Copyright 2009 by the American Geophysical Union.

  18. Discovery of Minoan tsunami deposits

    Science.gov (United States)

    Minoura, K.; Imamura, F.; Kuran, U.; Nakamura, T.; Papadopoulos, G. A.; Takahashi, T.; Yalciner, A. C.

    2000-01-01

    The Hellenic arc is a terrane of extensive Quaternary volcanism. One of the main centers of explosive eruptions is located on Thera (Santorini), and the eruption of the Thera volcano in late Minoan time (1600 1300 B.C.) is considered to have been the most significant Aegean explosive volcanism during the late Holocene. The last eruptive phase of Thera resulted in an enormous submarine caldera, which is believed to have produced tsunamis on a large scale. Evidence suggesting seawater inundation was found previously at some archaeological sites on the coast of Crete; however, the cause of the tsunami and its effects on the area have not been well understood. On the Aegean Sea coast of western Turkey (Didim and Fethye) and Crete (Gouves), we have found traces of tsunami deposits related to the Thera eruption. The sedimentological consequences and the hydraulics of a Thera-caused tsunami indicate that the eruption of Thera volcano was earlier than the previous estimates and the tsunami did not have disruptive influence on Minoan civilization.

  19. Tsunami-HySEA model validation for tsunami current predictions

    Science.gov (United States)

    Macías, Jorge; Castro, Manuel J.; González-Vida, José Manuel; Ortega, Sergio

    2016-04-01

    Model ability to compute and predict tsunami flow velocities is of importance in risk assessment and hazard mitigation. Substantial damage can be produced by high velocity flows, particularly in harbors and bays, even when the wave height is small. Besides, an accurate simulation of tsunami flow velocities and accelerations is fundamental for advancing in the study of tsunami sediment transport. These considerations made the National Tsunami Hazard Mitigation Program (NTHMP) proposing a benchmark exercise focussed on modeling and simulating tsunami currents. Until recently, few direct measurements of tsunami velocities were available to compare and to validate model results. After Tohoku 2011 many current meters measurement were made, mainly in harbors and channels. In this work we present a part of the contribution made by the EDANYA group from the University of Malaga to the NTHMP workshop organized at Portland (USA), 9-10 of February 2015. We have selected three out of the five proposed benchmark problems. Two of them consist in real observed data from the Tohoku 2011 event, one at Hilo Habour (Hawaii) and the other at Tauranga Bay (New Zealand). The third one consists in laboratory experimental data for the inundation of Seaside City in Oregon. Acknowledgements: This research has been partially supported by the Junta de Andalucía research project TESELA (P11-RNM7069) and the Spanish Government Research project DAIFLUID (MTM2012-38383-C02-01) and Universidad de Málaga, Campus de Excelencia Andalucía TECH. The GPU and multi-GPU computations were performed at the Unit of Numerical Methods (UNM) of the Research Support Central Services (SCAI) of the University of Malaga.

  20. TRIP: General computer algebra system for celestial mechanics

    Science.gov (United States)

    Laskar, J.; Gastineau, M.

    2012-10-01

    TRIP is an interactive computer algebra system that is devoted to perturbation series computations, and specially adapted to celestial mechanics. Its development started in 1988, as an upgrade of the special purpose FORTRAN routines elaborated by J. Laskar for the demonstration of the chaotic behavior of the Solar System. TRIP is a mature and efficient tool for handling multivariate generalized power series, and embeds two kernels, a symbolic and a numerical kernel. This numerical kernel communicates with Gnuplot or Grace to plot the graphics and allows one to plot the numerical evaluation of symbolic objects.

  1. Kepler-16 Circumbinary System Validates Quantum Celestial Mechanics

    Directory of Open Access Journals (Sweden)

    Potter F.

    2012-01-01

    Full Text Available We report the application of quantum celestial mechanics (QCM to the Kepler-16 cir- cumbinary system which has a single planet orbiting binary stars with the important system parameters known to within one percent. Other gravitationally bound systems such as the Solar System of planets and the Jovian satellite systems have large uncertain- ties in their total angular momentum. Therefore, Kepler-16 allows us for the first time to determine whether the QCM predicted angular momentum per mass quantization is valid.

  2. Virtual Quake and Tsunami Squares: Scenario Earthquake and Tsunami Simulations for a Pacific Rim GNSS Tsunami Early Warning System

    Science.gov (United States)

    Schultz, K.; Yoder, M. R.; Sachs, M. K.; Heien, E. M.; Donnellan, A.; Rundle, J. B.; Turcotte, D. L.

    2015-12-01

    Plans for the first operational prototype for a Pacific Rim Tsunami Early Warning (TEW) system utilizing real-time data from the Global Navigational Satellite System (GNSS) are now gaining momentum. The proposed Pacific Rim TEW prototype may resemble the Japanese Meteorological Society's early warning algorithms and use earthquake parameters rapidly determined from GPS data to select the most similar earthquake and tsunami scenario from a database of precomputed scenarios to guide alerts and disaster response. To facilitate the development of this Pacific Rim TEW system, we have integrated tsunami modeling capabilities into the earthquake simulator Virtual Quake (formerly Virtual California). We will present the first results from coupling the earthquake simulator output (seafloor displacements) with the tsunami modeling method called Tsunami Squares. Combining Virtual Quake and Tsunami Squares provides a highly scalable and flexible platform for producing catalogs of tsunami scenarios for a wide range of simulated subduction zone earthquakes.

  3. The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf

    Science.gov (United States)

    2008-01-01

    E. Richardson, 2008, Field verification of a CFD model for wave transformation and breaking in the surf zone, J. Waterw. Port Coastal Engrg., 134(2...The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf Dr. Thomas C. Lippmann Center for Coastal...wave- and tidally-driven shallow water flows in the shallow depths of the inner shelf and surf zone. OBJECTIVES 1. Theoretical investigations of

  4. Great East Japan Earthquake Tsunami

    Science.gov (United States)

    Iijima, Y.; Minoura, K.; Hirano, S.; Yamada, T.

    2011-12-01

    The 11 March 2011, Mw 9.0 Great East Japan Earthquake, already among the most destructive earthquakes in modern history, emanated from a fault rupture that extended an estimated 500 km along the Pacific coast of Honshu. This earthquake is the fourth among five of the strongest temblors since AD 1900 and the largest in Japan since modern instrumental recordings began 130 years ago. The earthquake triggered a huge tsunami, which invaded the seaside areas of the Pacific coast of East Japan, causing devastating damages on the coast. Artificial structures were destroyed and planted forests were thoroughly eroded. Inrush of turbulent flows washed backshore areas and dunes. Coastal materials including beach sand were transported onto inland areas by going-up currents. Just after the occurrence of the tsunami, we started field investigation of measuring thickness and distribution of sediment layers by the tsunami and the inundation depth of water in Sendai plain. Ripple marks showing direction of sediment transport were the important object of observation. We used a soil auger for collecting sediments in the field, and sediment samples were submitted for analyzing grain size and interstitial water chemistry. Satellite images and aerial photographs are very useful for estimating the hydrogeological effects of tsunami inundation. We checked the correspondence of micro-topography, vegetation and sediment covering between before and after the tsunami. The most conspicuous phenomenon is the damage of pine forests planted in the purpose of preventing sand shifting. About ninety-five percent of vegetation coverage was lost during the period of rapid currents changed from first wave. The landward slopes of seawalls were mostly damaged and destroyed. Some aerial photographs leave detailed records of wave destruction just behind seawalls, which shows the occurrence of supercritical flows. The large-scale erosion of backshore behind seawalls is interpreted to have been caused by

  5. Introduction to "Tsunami Science: Ten Years After the 2004 Indian Ocean Tsunami. Volume I"

    Science.gov (United States)

    Rabinovich, Alexander B.; Geist, Eric L.; Fritz, Hermann M.; Borrero, Jose C.

    2015-03-01

    Twenty-two papers on the study of tsunamis are included in Volume I of the PAGEOPH topical issue "Tsunami Science: Ten Years after the 2004 Indian Ocean Tsunami." Eight papers examine various aspects of past events with an emphasis on case and regional studies. Five papers are on tsunami warning and forecast, including the improvement of existing tsunami warning systems and the development of new warning systems in the northeast Atlantic and Mediterranean region. Three more papers present the results of analytical studies and discuss benchmark problems. Four papers report the impacts of tsunamis, including the detailed calculation of inundation onshore and into rivers and probabilistic analysis for engineering purposes. The final two papers relate to important investigations of the source and tsunami generation. Overall, the volume not only addresses the pivotal 2004 Indian Ocean (Sumatra) and 2011 Japan (Tohoku) tsunamis, but also examines the tsunami hazard posed to other critical coasts in the world.

  6. A new approach for tsunami early warning using tsunami observations in a source region

    Science.gov (United States)

    Tanioka, Y.

    2015-12-01

    After the 2011 devastating Tohoku tsunami, improvement of tsunami early warning system is one of key issues in Japan. Japanese government was decided to install 125 ocean bottom pressure sensors and seismometers with a cable system along the Japan and Kurile trench. Each sensor is separated by 30km. We should develop a new approach for real-time tsunami forecast using those newly available data combined with GNSS data or seismic data. A well-recognized problem to use tsunami data at pressure sensors on the top of tsunami source area is a fact that a large vertical coseismic deformation due to a large earthquake cannot be observed at those sensors. The sensors observe a tsunami wave when it starts to propagate. Because of that problem, GSNN data or seismic data are typically used to estimate the coseismic deformation for the tsunami numerical simulation. In this paper, we develop a new technique, which solve the problem. Our technique uses the observations at pressure sensors on the tsunami source area as an input to compute the tsunami directly. Actual tsunami heights at the sensors on the source area is unknown because the cosismic vertical deformation is unknown. However, we can observe directly the time derivative of tsunami heights at those sensors. Time derivatives of tsunami heights at each point are used as inputs to compute the tsunami height distribution in the calculated area. Then we can numerically compute a tsunami using a traditional finite difference technique from the tsunami height distribution computed. For numerical test, first, we compute the synthetic tsunamis using the fault model with 1 minute grid system. The computed tsunami waveforms at 15 minutes x 15 minutes grid points are used as the observed data for this new technique. Each observed point is separated by 15 minutes, about 30km. The result show that the accuracy of tsunami computation is good enough for tsunami forecast. Tsunami generation with a long duration, such as tsunami

  7. Sandy Deposits of the 2006 Java Tsunami

    Science.gov (United States)

    Setja Atmadja, C. M.; Yulianto, E.

    2007-05-01

    A field reconnaissance was performed out a week after Java tsunami on July, last year. It focused on documentation of sedimentary deposit as the first step to study delineate tsunami history in extend to tsunami hazard assessments. In a region with tremendous tsunami thread, the 2006 Java tsunami still gave a shock with at least 650 death tolls at 300 km affected coast line. The slight felt shaking onshore and unobvious leading recession of sea water were probably the reason as these were the reverse indications of tsunami to the lessons learned from the great Sumatra 2004 event. In addition, although tsunami of similar size have struck the southern coast of Java at least twice in the last century, in 1921 and 1994, tsunami history and the potential threat is still unknown to local population. Three shore normal transects across coastal plain were made in the two affected sites to exhibit the recent tsunami deposit thickness, internal layering, and landward extent. During the documentation, we also discovered two additional sand beds at the end of 2006 deposit landward extent in greater depth. All this information may provides preliminary information to better identify the geologic traces of earlier Javanese tsunami which in turn may help constructing Java's tsunami history.

  8. Tsunami Focusing and Leading Amplitude

    Science.gov (United States)

    Kanoglu, U.

    2016-12-01

    Tsunamis transform substantially through spatial and temporal spreading from their source region. This substantial spreading might result unique maximum tsunami wave heights which might be attributed to the source configuration, directivity, the waveguide structures of mid-ocean ridges and continental shelves, focusing and defocusing through submarine seamounts, random focusing due to small changes in bathymetry, dispersion, and, most likely, combination of some of these effects. In terms of the maximum tsunami wave height, after Okal and Synolakis (2016 Geophys. J. Int. 204, 719-735), it is clear that dispersion would be one of the reasons to drive the leading wave amplitude in a tsunami wave train. Okal and Synolakis (2016), referring to this phenomenon as sequencing -later waves in the train becoming higher than the leading one, considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp) formalism, in addition to LeMéhauté and Wang's (1995 Water waves generated by underwater explosion, World Scientific, 367 pp), to evaluate linear dispersive tsunami propagation from a circular plug uplifted on an ocean of constant depth. They identified transition distance, as the second wave being larger, performing parametric study for the radius of the plug and the depth of the ocean. Here, we extend Okal and Synolakis' (2016) analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave (Tadepalli and Synolakis, 1994 Proc. R. Soc. A: Math. Phys. Eng. Sci. 445, 99-112). First, we investigate the focusing feature in the leading-depression side, which enhance tsunami wave height as presented by Kanoglu et al. (2013 Proc. R. Soc. A: Math. Phys. Eng. Sci. 469, 20130015). We then discuss the results in terms of leading wave amplitude presenting a parametric study and identify a simple relation for the transition distance. The solution presented here could be used to better analyze dispersive

  9. The Power of Stars How Celestial Observations Have Shaped Civilization

    CERN Document Server

    Penprase, Bryan E

    2011-01-01

    What are some of the connections that bind us to the stars? How have these connections been established? And how have people all around the world and throughout time reacted to the night sky, the sun and moon, in their poetry, mythology, rituals, and temples? This book explores the influence of the sky on both ancient and modern civilization, by providing a clear overview of the many ways in which humans have used the stars as an ordering principle in their cultures, and which today still inspire us intellectually, emotionally, and spiritually. The book explores constellation lore from around the world, celestial alignments of monuments and temples, both from ancient and modern civilizations, and the role the sky has played in the cultures of the Greek, Egyptian, Babylonian, Native American, Chinese, Mayan, Aztec, and Inca. Models of the universe from each of these cultures are described clearly, and each culture’s explanation of the stars, planets, and other celestial objects are described. The roots of as...

  10. On the characteristics of landslide tsunamis.

    Science.gov (United States)

    Løvholt, F; Pedersen, G; Harbitz, C B; Glimsdal, S; Kim, J

    2015-10-28

    This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. © 2015 The Authors.

  11. Tsunami response system for ports in Korea

    Science.gov (United States)

    Cho, H.-R.; Cho, J.-S.; Cho, Y.-S.

    2015-09-01

    The tsunamis that have occurred in many places around the world over the past decade have taken a heavy toll on human lives and property. The eastern coast of the Korean Peninsula is not safe from tsunamis, particularly the eastern coastal areas, which have long sustained tsunami damage. The eastern coast had been attacked by 1983 and 1993 tsunami events. The aim of this study was to mitigate the casualties and property damage against unexpected tsunami attacks along the eastern coast of the Korean Peninsula by developing a proper tsunami response system for important ports and harbors with high population densities and high concentrations of key national industries. The system is made based on numerical and physical modelings of 3 historical and 11 virtual tsunamis events, field surveys, and extensive interviews with related people.

  12. Analysis of Tsunami Culture in Countries Affected by Recent Tsunamis

    NARCIS (Netherlands)

    Esteban, M.; Tsimopoulou, V.; Shibayama, T.; Mikami, T.; Ohira, K.

    2012-01-01

    Since 2004 there is a growing global awareness of the risks that tsunamis pose to coastal communities. Despite the fact that these events were already an intrinsic part of the culture of some countries (such as Chile and Japan), in many other places they had been virtually unheard of before 2004.

  13. Analysis of Tsunami Culture in Countries Affected by Recent Tsunamis

    NARCIS (Netherlands)

    Esteban, M.; Tsimopoulou, V.; Shibayama, T.; Mikami, T.; Ohira, K.

    2012-01-01

    Since 2004 there is a growing global awareness of the risks that tsunamis pose to coastal communities. Despite the fact that these events were already an intrinsic part of the culture of some countries (such as Chile and Japan), in many other places they had been virtually unheard of before 2004. Ne

  14. Integrated Historical Tsunami Event and Deposit Database

    Science.gov (United States)

    Dunbar, P. K.; McCullough, H. L.

    2010-12-01

    The National Geophysical Data Center (NGDC) provides integrated access to historical tsunami event, deposit, and proxy data. The NGDC tsunami archive initially listed tsunami sources and locations with observed tsunami effects. Tsunami frequency and intensity are important for understanding tsunami hazards. Unfortunately, tsunami recurrence intervals often exceed the historic record. As a result, NGDC expanded the archive to include the Global Tsunami Deposits Database (GTD_DB). Tsunami deposits are the physical evidence left behind when a tsunami impacts a shoreline or affects submarine sediments. Proxies include co-seismic subsidence, turbidite deposits, changes in biota following an influx of marine water in a freshwater environment, etc. By adding past tsunami data inferred from the geologic record, the GTD_DB extends the record of tsunamis backward in time. Although the best methods for identifying tsunami deposits and proxies in the geologic record remain under discussion, developing an overall picture of where tsunamis have affected coasts, calculating recurrence intervals, and approximating runup height and inundation distance provides a better estimate of a region’s true tsunami hazard. Tsunami deposit and proxy descriptions in the GTD_DB were compiled from published data found in journal articles, conference proceedings, theses, books, conference abstracts, posters, web sites, etc. The database now includes over 1,200 descriptions compiled from over 1,100 citations. Each record in the GTD_DB is linked to its bibliographic citation where more information on the deposit can be found. The GTD_DB includes data for over 50 variables such as: event description (e.g., 2010 Chile Tsunami), geologic time period, year, deposit location name, latitude, longitude, country, associated body of water, setting during the event (e.g., beach, lake, river, deep sea), upper and lower contacts, underlying and overlying material, etc. If known, the tsunami source mechanism

  15. Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects.

    Science.gov (United States)

    Kovářová, Nikola; Pecina, Petr; Nůsková, Hana; Vrbacký, Marek; Zeviani, Massimo; Mráček, Tomáš; Viscomi, Carlo; Houštěk, Josef

    2016-04-01

    Mitochondrial protein SURF1 is a specific assembly factor of cytochrome c oxidase (COX), but its function is poorly understood. SURF1 gene mutations cause a severe COX deficiency manifesting as the Leigh syndrome in humans, whereas in mice SURF1(-/-) knockout leads only to a mild COX defect. We used SURF1(-/-) mouse model for detailed analysis of disturbed COX assembly and COX ability to incorporate into respiratory supercomplexes (SCs) in different tissues and fibroblasts. Furthermore, we compared fibroblasts from SURF1(-/-) mouse and SURF1 patients to reveal interspecies differences in kinetics of COX biogenesis using 2D electrophoresis, immunodetection, arrest of mitochondrial proteosynthesis and pulse-chase metabolic labeling. The crucial differences observed are an accumulation of abundant COX1 assembly intermediates, low content of COX monomer and preferential recruitment of COX into I-III2-IVn SCs in SURF1 patient fibroblasts, whereas SURF1(-/-) mouse fibroblasts were characterized by low content of COX1 assembly intermediates and milder decrease in COX monomer, which appeared more stable. This pattern was even less pronounced in SURF1(-/-) mouse liver and brain. Both the control and SURF1(-/-) mice revealed only negligible formation of the I-III2-IVn SCs and marked tissue differences in the contents of COX dimer and III2-IV SCs, also less noticeable in liver and brain than in heart and muscle. Our studies support the view that COX assembly is much more dependent on SURF1 in humans than in mice. We also demonstrate markedly lower ability of mouse COX to form I-III2-IVn supercomplexes, pointing to tissue-specific and species-specific differences in COX biogenesis.

  16. Understanding Landslide Tsunami Hazard in Alaska Fjords for Tsunami Inundation Mapping

    Science.gov (United States)

    Suleimani, E.; Hansen, R.

    2007-12-01

    Several communities of the southern coast of Alaska are located in glacial fjords, which are fed by major rivers and creeks draining nearby glaciers and depositing sediments into the bays at a high rate. Sediment accumulation on the steep underwater slopes contributes to the landslide tsunami hazard in these communities. During the Great Alaska Earthquake of 1964, the majority of tsunami-related deaths was due to local landslide tsunamis that occurred almost immediately after the initial shaking, and without any warning signs. In these coastal communities, tsunami potential from tectonic and submarine landslide sources must be evaluated for comprehensive mapping of areas that are at risk for inundation. We are creating tsunami inundation maps for Seward, Alaska, in the scope of the National Tsunami Hazard Mitigation Program. Seward is a community located at the head of Resurrection Bay, which was hit hard by both tectonic and landslide-generated tsunami waves during the 1964 earthquake. The purpose of the project is long- term prediction of potential landslide-generated tsunamis in Resurrection Bay, and public education on landslide-related tsunami hazard. In order to construct tsunami inundation maps for Seward, we use an approach that combines modeling of the historical tsunami events of 1964 in Resurrection Bay for model verification, and assessing the landslide tsunami hazard by simulating hypothetical landslide scenarios and performing sensitivity analysis. To reconstruct the sequence of waves observed at Seward on March 27, 1964, we model tsunami waves caused by superposition of the local landslide-generated tsunamis and the major tectonic tsunami. Next we create hypothetical landslide scenarios that are based on the underwater sediment accumulation areas derived from the bathymetry difference maps. Numerical simulations yield runup heights, extent of maximum inundation for chosen tsunami scenarios, depths of inundation on dry land, and maximum velocity

  17. Tsunami Bores in Kitakami River

    Science.gov (United States)

    Tolkova, Elena; Tanaka, Hitoshi

    2016-07-01

    The 2011 Tohoku tsunami entered the Kitakami river and propagated there as a train of shock waves, recorded with a 1-min interval at water level stations at Fukuchi, Iino, and the weir 17.2 km from the mouth, where the bulk of the wave was reflected back. The records showed that each bore kept its shape and identity as it traveled a 10.9-km-path Fukuchi-Iino-weir-Iino. Shock handling based on the cross-river integrated classical shock conditions was applied to reconstruct the flow velocity time histories at the measurement sites, to estimate inflow into the river at each site, to evaluate the wave heights of incident and reflected tsunami bores near the weir, and to estimate propagation speed of the individual bores. Theoretical predictions are verified against the measurements. We discuss experiences of exercising the shock conditions with actual tsunami measurements in the Kitakami river, and test applicability of the shallow-water approximation for describing tsunami bores with heights ranging from 0.3 to 4 m in a river segment with a depth of 3-4 m.

  18. Tsunami engineering study in India

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    - blish tsunami engi neering study ce n tres. We need to carry out research in the fields like: (a) developing early warning system to alert coastal residen ts based on n u merical forecasting, (b) implementing and maintaining an awareness on the war...

  19. Tsunami Bores in Kitakami River

    Science.gov (United States)

    Tolkova, Elena; Tanaka, Hitoshi

    2016-12-01

    The 2011 Tohoku tsunami entered the Kitakami river and propagated there as a train of shock waves, recorded with a 1-min interval at water level stations at Fukuchi, Iino, and the weir 17.2 km from the mouth, where the bulk of the wave was reflected back. The records showed that each bore kept its shape and identity as it traveled a 10.9-km-path Fukuchi-Iino-weir-Iino. Shock handling based on the cross-river integrated classical shock conditions was applied to reconstruct the flow velocity time histories at the measurement sites, to estimate inflow into the river at each site, to evaluate the wave heights of incident and reflected tsunami bores near the weir, and to estimate propagation speed of the individual bores. Theoretical predictions are verified against the measurements. We discuss experiences of exercising the shock conditions with actual tsunami measurements in the Kitakami river, and test applicability of the shallow-water approximation for describing tsunami bores with heights ranging from 0.3 to 4 m in a river segment with a depth of 3-4 m.

  20. Tsunami Tallinna lahel / Vivika Veski

    Index Scriptorium Estoniae

    Veski, Vivika

    2008-01-01

    Tallinna Tehnikaülikooli Küberneetika Instituudis tehtav mere- ja rannikuteaduse alane töö on pälvinud rahvusvahelist tähelepanu. Tallinna laht võib anda maailmale vastuse, kuidas kaitsta end tsunami eest

  1. Tsunami Tallinna lahel / Vivika Veski

    Index Scriptorium Estoniae

    Veski, Vivika

    2008-01-01

    Tallinna Tehnikaülikooli Küberneetika Instituudis tehtav mere- ja rannikuteaduse alane töö on pälvinud rahvusvahelist tähelepanu. Tallinna laht võib anda maailmale vastuse, kuidas kaitsta end tsunami eest

  2. Food Safety After a Tsunami

    Science.gov (United States)

    ... a Tornado Tsunamis Health Effects Food & Water Safety Food Safety Water Quality Sanitation & Hygiene Diseases & Health Concerns Information for Clinicians ... 5 gallons (approximately 19 liters) of treated drinking-quality water. Use a marker to ... opened food containers have screw caps, snap lids, crimped caps ( ...

  3. Dispersive mudslide-induced tsunamis

    Directory of Open Access Journals (Sweden)

    A. Rubino

    1998-01-01

    Full Text Available A nonlinear nested model for mudslide-induced tsunamis is proposed in which three phases of the life of the wave, i.e. the generation, far-field propagation and costal run-up are described by means of different mathematical models, that are coupled through appropriate matching procedures. The generation and run-up dynamics are simulated through a nonlinear shallow-water model with movable lateral boundaries: in the generation region two active layers are present, the lower one describing the slide descending on a sloping topography. For the intermediate phase, representing wave propagation far from the generation region, the hydrostatic assumption is not assumed as appropriate in general and, therefore, a nonlinear model allowing for weak phase dispersion, namely a Kadomtsev-Petviashvili equation, is used. This choice is made in order to assess the relevance of dispersive features such as solitary waves and dispersive tails. It is shown that in some realistic circumstances dispersive mudslide-induced tsunami waves can be produced over relatively short, distances. In such cases the use of a hydrostatic model throughout the whole tsunami history turns out to give erroneous results. In particular, when solitary waves are generated during the tsunami propagation in the open sea, the resulting run-up process yields peculiar wave forms leading to amplified coastal inundations with respect to a mere hydrostatic context.

  4. On the abundance of deuterium in celestial objects

    Science.gov (United States)

    Lundin, Rickard; Kero, Johan; Liszka, Ludwik

    2016-04-01

    The deuterium hydrogen ratio (D/H) is the subject of conflicting ideas about the origin of water on the Earth. The present D/H ratio in the Earth oceans (≈1.5x10-4) is substantially lower than most, if not all potential cosmic sources. Furthermore, other celestial bodies, including interstellar space, display a fairly wide range of D/H ratios superseding the terrestrial one. Escape processes may in part explain higher D/H ratios on Mars and Venus, but cannot explain the Earth's low ratio compared to that of the potential sources (e.g. comets and meteors), unless a deuterium "removal" process can be inferred that reduces the D/H ratio. Alternatively, the D/H ratio in the Earth's ocean represents a time capsule of a yet to be identified cosmic source. It is here hypothesized that the former is the cause, a "removal" of deuterium in matter (carbohydrates, water etc.) having high (pristine) D/H ratios. By "removal" is here meant an isotope transmutation, i.e. deuterium is transmuted to hydrogen plus a thermal neutron, a process requiring >2.25 MeV (≈3.6·10-13 J). However, once released a thermal neutron will eventually fuse with another heavier element by thermal neutron capture, a process that may lead to energy in excess of the spallation energy. The energy gain differs for different isotopes, but if exceeding unity it will induce more heat/power than the input power, maintaining power production over time. A gain less than unity will still result in deuterium removal, but also isotope transmutation, and/or element transmutation via β± decay. This report gives a theoretical background for the plasma forcing that can lead to thermal neutron spallation, a process that changes/decrease the D/H ratio in celestial objects. The applicability of the theory will be tested on celestial objects subjected to strong dynamic, and electromagnetic forcing, by the Sun or during the entry of high-speed objects into the Earth's atmosphere.

  5. Tsunami mitigation - redistribution of energy

    Science.gov (United States)

    Kadri, Usama

    2017-04-01

    Tsunamis are water waves caused by the displacement of a large volume of water, in the deep ocean or a large lake, following an earthquake, landslide, underwater explosion, meteorite impacts, or other violent geological events. On the coastline, the resulting waves evolve from unnoticeable to devastating, reaching heights of tens of meters and causing destruction of property and loss of life. Over 225,000 people were killed in the 2004 Indian Ocean tsunami alone. For many decades, scientists have been studying tsunami, and progress has been widely reported in connection with the causes (1), forecasting (2), and recovery (3). However, none of the studies ratifies the approach of a direct mitigation of tsunamis, with the exception of mitigation using submarine barriers (e.g. see Ref. (4)). In an attempt to open a discussion on direct mitigation, I examine the feasibility of redistributing the total energy of a very long surface ocean (gravity) wave over a larger space through nonlinear resonant interaction with two finely tuned acoustic-gravity waves (see Refs. (5-8)). Theoretically, while the energy input in the acoustic-gravity waves required for an effective interaction is comparable to that in a tsunami (i.e. impractically large), employing the proposed mitigation technique the initial tsunami amplitude could be reduced substantially resulting in a much milder impact at the coastline. Moreover, such a technique would allow for the harnessing of the tsunami's own energy. Practically, this mitigation technique requires the design of highly accurate acoustic-gravity wave frequency transmitters or modulators, which is a rather challenging ongoing engineering problem. References 1. E. Bryant, 2014. Tsunami: the underrated hazard. Springer, doi:10.1007/978-3-319- 06133-7. 2. V. V. Titov, F. I. Gonza`lez, E. N. Bernard, M. C. Eble, H. O. Mofjeld, J. C. Newman, A. J. Venturato, 2005. Real-Time Tsunami Forecasting: Challenges and Solutions. Nat. Hazards 35:41-58, doi:10

  6. Challenges in Defining Tsunami Wave Heights

    Science.gov (United States)

    Dunbar, Paula; Mungov, George; Sweeney, Aaron; Stroker, Kelly; Arcos, Nicolas

    2017-08-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 M w earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 coastal tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were definition (maximum peak or amplitude) would have validated the forecasts issued by the NOAA Tsunami Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height for each tide gauge and deep-ocean buoy, NCEI will consider adding an additional field for the maximum

  7. Tsunami Modeling, Forecast and Warning (Invited)

    Science.gov (United States)

    Satake, K.

    2010-12-01

    Tsunami is an infrequent natural hazard; however, once it happens, the effects are devastating and can be on global scale, as demonstrated by the 2004 Indian Ocean tsunami. Deterministic modeling of tsunami generation, propagation and coastal behavior has become popular, at least for earthquake tsunamis. Once the earthquake parameters are specified, tsunami arrival times, heights and current velocity at specific coastal points, and inland inundation area can be estimated. Such modeling has been used to make hazard maps usually by assuming largest possible earthquakes. However, smaller tsunamis than such a worst-case scenario occur more frequently. If the hazard maps are used incorrectly, it may lose reliability of coastal residents. Probabilistic tsunami hazard assessments, similar to Probabilistic Seismic Hazard Analysis, have been made for some coasts. The output is tsunami hazard curves, i.e. annual probability (or return period) for specified coastal tsunami heights. A hazard curve is obtained by integration over the aleatory uncertainties, and a large number of hazard curves are made for each branch of logic tress representing epistemic uncertainty. Probabilistic tsunami hazard analysis is used for design of critical facilities but not popularly used for disaster mitigation. Tsunami warning systems, which have been significantly developed since 2004, rely on seismic and sea-level monitoring and pre-made numerical simulation. Real-time data assimilation of offshore sea level measurements can be used to update the warning levels. Tsunami from the February 2010 Chilean earthquake was recorded on many tide gauges and ocean bottom pressure gauges in the Pacific, before it arrived on the Japanese coast about 22 hours after the earthquake. The tsunami height was up to 2 m on the Japanese coast, causing fishery damage amounting 60 million US dollars, but did not cause any human damage.

  8. Tsunami Data and Scientific Data Diplomacy

    Science.gov (United States)

    Arcos, N. P.; Dunbar, P. K.; Gusiakov, V. K.; Kong, L. S. L.; Aliaga, B.; Yamamoto, M.; Stroker, K. J.

    2016-12-01

    Free and open access to data and information fosters scientific progress and can build bridges between nations even when political relationships are strained. Data and information held by one stakeholder may be vital for promoting research of another. As an emerging field of inquiry, data diplomacy explores how data-sharing helps create and support positive relationships between countries to enable the use of data for societal and humanitarian benefit. Tsunami has arguably been the only natural hazard that has been addressed so effectively at an international scale and illustrates the success of scientific data diplomacy. Tsunami mitigation requires international scientific cooperation in both tsunami science and technology development. This requires not only international agreements, but working-level relationships between scientists from countries that may have different political and economic policies. For example, following the Pacific wide tsunami of 1960 that killed two thousand people in Chile and then, up to a day later, hundreds in Hawaii, Japan, and the Philippines; delegates from twelve countries met to discuss and draft the requirements for an international tsunami warning system. The Pacific Tsunami Warning System led to the development of local, regional, and global tsunami databases and catalogs. For example, scientists at NOAA/NCEI and the Tsunami Laboratory/Russian Academy of Sciences have collaborated on their tsunami catalogs that are now routinely accessed by scientists and the public around the world. These data support decision-making during tsunami events, are used in developing inundation and evacuation maps, and hazard assessments. This presentation will include additional examples of agreements for data-sharing between countries, as well as challenges in standardization and consistency among the tsunami research community. Tsunami data and scientific data diplomacy have ultimately improved understanding of tsunami and associated impacts.

  9. Impact of the Internet surfing on reading practices and choices

    Directory of Open Access Journals (Sweden)

    Fayaz Ahmad Loan

    2012-06-01

    Full Text Available Reading in the 21st century networked society is no longer confined to the print reading. The scope of the reading has extended to the Internet sources that changed the traditional reading culture of the readers. The present study was conducted to identify the impact of the Internet surfing on reading practices and choices of the net generation college students. The survey method was applied to conduct the study and a questionnaire was used as a data collection tool. A sample of 676 students was selected from different strata based on gender, region and faculty in the degree colleges of the Kashmir region, Jammu and Kashmir state, India. In the sample size only 302 confirmed themselves as the e-readers and their responses were analyzed. Results reveal that the reading behavior of the online readers is in transition as the Internet surfing has increased non-sequential reading, interactive reading, superficial reading, and extensive reading and at the same rates is responsible for decreasing concentrated and in-depth reading. Plus, the Internet surfing has increased reading of the news & views, general knowledge, selected fields, sexual content, spiritual/religious text and has decreased reading of literature. To validate the results, the findings were correlated with earlier studies and hypotheses were formed and tested using the Chi-square test. However, the students have not experienced any electronic reading device like kindle (of Amazon or iPod (of Apple during browsing the electronic sources and it could be the future area of research.

  10. Ribosomal protein L7a is encoded by a gene (Surf-3) within the tightly clustered mouse surfeit locus.

    Science.gov (United States)

    Giallongo, A; Yon, J; Fried, M

    1989-01-01

    The mouse Surfeit locus, which contains a cluster of at least four genes (Surf-1 to Surf-4), is unusual in that adjacent genes are separated by no more than 73 base pairs (bp). The heterogeneous 5' ends of Surf-1 and Surf-2 are separated by only 15 to 73 bp, the 3' ends of Surf-1 and Surf-3 are only 70 bp apart, and the 3' ends of Surf-2 and Surf-4 overlap by 133 bp. This very tight clustering suggests a cis interaction between adjacent Surfeit genes. The Surf-3 gene (which could code for a basic polypeptide of 266 amino acids) is a highly expressed member of a pseudogene-containing multigene family. By use of an anti-peptide serum (against the C-terminal nine amino acids of the putative Surf-3 protein) for immunofluorescence and immunoblotting of mouse cell components and by in vitro translation of Surf-3 cDNA hybrid-selected mRNA, the Surf-3 gene product was identified as a 32-kilodalton ribosomal protein located in the 60S ribosomal subunit. From its subunit location, gel migration, and homology with a limited rat ribosomal peptide sequence, the Surf-3 gene was shown to encode the mouse L7a ribosomal protein. The Surf-3 gene is highly conserved through evolution and was detected by nucleic acid hybridization as existing in multiple copies (multigene families) in other mammals and as one or a few copies in birds, Xenopus, Drosophila, and Schizosaccharomyces pombe. The Surf-3 C-terminal anti-peptide serum detects a 32-kilodalton protein in other mammals, birds, and Xenopus but not in Drosophila and S. pombe. The possible effect of interaction of the Surf-3 ribosomal protein gene with adjacent genes in the Surfeit locus at the transcriptional or posttranscriptional level or both levels is discussed. Images PMID:2648130

  11. Image Retrieval Method Using Top-surf Descriptor

    CERN Document Server

    Ji, Ye

    2011-01-01

    This report presents the results and details of a content-based image retrieval project using the Top-surf descriptor. The experimental results are preliminary, however, it shows the capability of deducing objects from parts of the objects or from the objects that are similar. This paper uses a dataset consisting of 1200 images of which 800 images are equally divided into 8 categories, namely airplane, beach, motorbike, forest, elephants, horses, bus and building, while the other 400 images are randomly picked from the Internet. The best results achieved are from building category.

  12. Electron surfing acceleration in a current sheet of flares

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A model of electron acceleration in a current sheet of flares is studied by the analytical approximation solution and the test particle simulation. The electron can be trapped in a potential of propagating electrostatic wave. The trapped electron moving with the phase velocity vp of wave may be effectively accelerated by evc p× Bz force along the outflow direction in the current sheet, if a criterion condition K > 0 for electron surfing acceleration is satisfied. The electron will be accelerated continuously until the electron detrap from the wave potential at the turning point S.

  13. Cross-shore currents in the surf zone

    DEFF Research Database (Denmark)

    Aagaard, Troels; Vinther, Niels

    2008-01-01

      While the dynamics and kinematics of various types of mean cross-shore current flows in the surf zone (undertow and rip currents) are fairly well understood, the causes for transitions occurring between these two types of mean circulation patterns remain obscure. On longshore barred beaches......, such transitions involve the formation and/or degeneration of rip channels. In this paper, field evidence is presented to suggest that transitions between undertow and rip current (cell) circulations may depend upon the magnitude of the wave-induced onshore mass transport across a longshore bar, rip channel...... that both hydrodynamic conditions and existing bathymetry are critical in determining the type of mean current circulation....

  14. Bedforms and undertow in the surf zone; an analysis of the LIP 11D-data

    NARCIS (Netherlands)

    Boers, M.

    1995-01-01

    The present report gives the results of a study on bedforms and undertow in the surf zone. It is the objective of this study to get a better insight into the physical processes in the surf zone. In this study, we make use of the data obtained during the LIP llDexperiments (Arcilla et al. [1994] and

  15. Transport of larvae and detritus across the surf zone of a steep reflective pocket beach

    NARCIS (Netherlands)

    Shanks, A.L.; MacMahan, J.; Morgan, S.G.; Reniers, A.J.H.M.; Jarvis, M.; Brown, J.; Fujimura, A.; Griesemer, C.

    2015-01-01

    Larvae of many intertidal species develop offshore and must cross the surf zone to complete their onshore migration to adult habitats. Depending on hydrodynamics, the surf zone may limit this migration, especially on reflective rocky shores. As a logistically tractable analog of a rocky shore enviro

  16. Social Networking Sites' Influence on Travelers' Authentic Experience a Case Study of Couch Surfing

    Science.gov (United States)

    Liu, Xiao

    2013-01-01

    This study explored travelers' experiences in the era of network hospitality 2.0 using CouchSurfing.org as a case study. The following research questions guided this study: 1) what experience does CouchSurfing create for travelers before, during and after their travel? 2) how does couch surfers' experience relate to authenticity in context of…

  17. E-based Humanities and E-humanities on a SURF platform

    NARCIS (Netherlands)

    Kircz, J.G.

    2004-01-01

    As of 2003, SURF enables three platforms: ICT and Research, Education, and Organisation. Within these programmes, SURF has funds available to promote ICT innovations. Innovation is not an easy notion to explain. Too often we encounter new wine in old bottles and changes in vocabulary frequently cove

  18. Transport of larvae and detritus across the surf zone of a steep reflective pocket beach

    NARCIS (Netherlands)

    Shanks, A.L.; MacMahan, J.; Morgan, S.G.; Reniers, A.J.H.M.; Jarvis, M.; Brown, J.; Fujimura, A.; Griesemer, C.

    2015-01-01

    Larvae of many intertidal species develop offshore and must cross the surf zone to complete their onshore migration to adult habitats. Depending on hydrodynamics, the surf zone may limit this migration, especially on reflective rocky shores. As a logistically tractable analog of a rocky shore

  19. Learning and Identity in Overlapping Communities of Practice: Surf Club, School and Sports Clubs

    Science.gov (United States)

    Light, Richard; Nash, Melanie

    2006-01-01

    Large numbers of children and young people spend their weekends and holidays engaged in the activities of over 300 surf clubs across Australia each summer. Long term membership in these clubs, beginning from as young as five years of age, forms a significant part of children's and young people's development yet surf clubs have yet to receive…

  20. Sea spray aerosol production from waves breaking in the surf zone

    NARCIS (Netherlands)

    Leeuw, G. de

    1999-01-01

    Sea spray aerosol is a product of wave breaking. A very strong source of this aerosol is the surf zone. In this sense, measurements in the surf zone can be suitable for the assessment of the contributions of the various spray production mechanisms to the total concentrations. At present, a comprehen

  1. The ancient Armenian calendars' connection with the celestial bodies

    Science.gov (United States)

    Broutian, G. H.

    2015-07-01

    The two oldest Armenian calendars - the Haykian and Protohaykian calendars were connected with observations of celestial bodies. Particularly since 2341 B.C. the heliacal rising of the first star of Orion was used to determine the day of the main holiday - Nawasard. Before that the observations of the same star were used in Protohaykian calendar to determine both the beginning and the end of the year. The year was determined as the duration of visibility of the star Betelgeuse. The year started with the heliacal rising of this star and ended with its heliacal setting. The remaining duration was considered to be out of the year. There are also evidences in Armenian medieval literary sources concerning the observations of heliacal rising and setting of Pleiades. An attempt was made to substantiate that the large symbol carved on the rock platform of the small hill in Metzamor also concerns to the Pleiades and shows the direction of heliacal rising of Pleiades.

  2. An approach to Mel'nikov theory in celestial mechanics

    CERN Document Server

    Cicogna, G

    1999-01-01

    Using a completely analytic procedure - based on a suitable extension of a classical method - we discuss an approach to the Poincaré-Mel'nikov theory, which can be conveniently applied also to the case of non-hyperbolic critical points, and even if the critical point is located at the infinity. In this paper, we concentrate our attention on the latter case, and precisely on problems described by Kepler-like potentials in one or two degrees of freedom, in the presence of general time-dependent perturbations. We show that the appearance of chaos (possibly including Arnol'd diffusion) can be proved quite easily and in a direct way, without resorting to singular coordinate transformations, such as the McGehee or blowing-up transformations. Natural examples are provided by the classical Gyldén problem, originally proposed in celestial mechanics, but also of interest in different fields, and by the general 3-body problem in classical mechanics.

  3. Celestial Navigation Fix Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tsou Ming-Cheng

    2015-09-01

    Full Text Available A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing spatial data processing and display functions in a Geographical Information System, calculation results and chart work used in Circle of Position graphical positioning can both be integrated. As a result, in addition to avoiding tedious and complicated computational and graphical procedures, this work has more flexibility and is more robust when compared to other analytical approaches.

  4. Incontri celesti, vita del padre Clavio in cinque atti

    CERN Document Server

    Sigismondi, Costantino

    2011-01-01

    The year 2012 will be the fourth centennial year of the Jesuit Christopher Clavius (1535-1612), known as the Euclid of XVI century and the collaborator of the Pope Gregory XIII for the calendar reformation. In the occasion of the year of astronomy I wrote a short theatre pi\\`ece "Celestial encounters" dedicated to the life of Ft. Clavius. He observed two total eclipses from centreline in 1560 in Coimbra and in 1567 in Rome, a fact which is remarkable even for contemporary astronomers. The story is developed around those trips: scientific and religious motivations are put in evidence with historical and fantasy, but realistic, facts. An interregional project between Switzerland and Italy, dedicated to the development of high resolution CMOS camera for astronomy and medical sciences has been entitled to Clavius and will produce high resolution measurements of solar diameter.

  5. Issues of tsunami hazard maps revealed by the 2011 Tohoku tsunami

    Science.gov (United States)

    Sugimoto, M.

    2013-12-01

    Tsunami scientists are imposed responsibilities of selection for people's tsunami evacuation place after the 2011 Tohoku Tsunami in Japan. A lot of matured people died out of tsunami hazard zone based on tsunami hazard map though students made a miracle by evacuation on their own judgment in Kamaishi city. Tsunami hazard maps were based on numerical model smaller than actual magnitude 9. How can we bridge the gap between hazard map and future disasters? We have to discuss about using tsunami numerical model better enough to contribute tsunami hazard map. How do we have to improve tsunami hazard map? Tsunami hazard map should be revised included possibility of upthrust or downthrust after earthquakes and social information. Ground sank 1.14m below sea level in Ayukawa town, Tohoku. Ministry of Land, Infrastructure, Transport and Tourism's research shows around 10% people know about tsunami hazard map in Japan. However, people know about their evacuation places (buildings) through experienced drills once a year even though most people did not know about tsunami hazard map. We need wider spread of tsunami hazard with contingency of science (See the botom disaster handbook material's URL). California Emergency Management Agency (CEMA) team practically shows one good practice and solution to me. I followed their field trip in Catalina Island, California in Sep 2011. A team members are multidisciplinary specialists: A geologist, a GIS specialist, oceanographers in USC (tsunami numerical modeler) and a private company, a local policeman, a disaster manager, a local authority and so on. They check field based on their own specialties. They conduct an on-the-spot inspection of ambiguous locations between tsunami numerical model and real field conditions today. The data always become older. They pay attention not only to topographical conditions but also to social conditions: vulnerable people, elementary schools and so on. It takes a long time to check such field

  6. Celestial Navigation in the USA, Fiji, and Tunisia

    Science.gov (United States)

    Holbrook, Jarita C.

    2015-05-01

    Today there are many coastal communities that are home to navigators who use stars for position finding at night; I was, however, unaware of this fact when I began researching celestial navigation practices in 1997. My project focused on three communities: the Moce Islanders of Fiji, the Kerkennah Islanders in Tunisia, and the U.S. Navy officers and students at the United States Naval Academy, Annapolis, Maryland. My goal was to answer the question of why people continue to navigate by the stars, but also to understand the role of technology in their navigation practices. Using anthropology techniques of ethnography including participant observation, formal and informal interviews, audio and videotaping, I gathered data over five years at the three communities. I began by learning the details of how they use the stars for navigation. Next, I learned about who did the navigation and where they learned to navigate. I gathered opinions on various navigation aids and instruments, and opinions about the future of using the stars for navigation. I listened to the stories that they told about navigating. In the United States I worked in English, in Fiji, in Fijian and English, and in Tunisia, French and English. For the formal interviews I worked with translators. The navigators use stars for navigating today but the future of their techniques is not certain. Though practiced today, these celestial navigation traditions have undergone and continue to undergo changes. New navigational technologies are part of the stimulation for change, thus 'a meeting of different worlds' is symbolized by peoples encounters with these technologies.

  7. Numerical tsunami modeling and the bottom relief

    Science.gov (United States)

    Kulikov, E. A.; Gusiakov, V. K.; Ivanova, A. A.; Baranov, B. V.

    2016-11-01

    The effect of the quality of bathymetric data on the accuracy of tsunami-wave field calculation is considered. A review of the history of the numerical tsunami modeling development is presented. Particular emphasis is made on the World Ocean bottom models. It is shown that the modern digital bathymetry maps, for example, GEBCO, do not adequately simulate the sea bottom in numerical models of wave propagation, leading to considerable errors in estimating the maximum tsunami run-ups on the coast.

  8. Information surfing with the JHU/APL coherent imager

    Science.gov (United States)

    Ratto, Christopher R.; Shipley, Kara R.; Beagley, Nathaniel; Wolfe, Kevin C.

    2015-05-01

    The ability to perform remote forensics in situ is an important application of autonomous undersea vehicles (AUVs). Forensics objectives may include remediation of mines and/or unexploded ordnance, as well as monitoring of seafloor infrastructure. At JHU/APL, digital holography is being explored for the potential application to underwater imaging and integration with an AUV. In previous work, a feature-based approach was developed for processing the holographic imagery and performing object recognition. In this work, the results of the image processing method were incorporated into a Bayesian framework for autonomous path planning referred to as information surfing. The framework was derived assuming that the location of the object of interest is known a priori, but the type of object and its pose are unknown. The path-planning algorithm adaptively modifies the trajectory of the sensing platform based on historical performance of object and pose classification. The algorithm is called information surfing because the direction of motion is governed by the local information gradient. Simulation experiments were carried out using holographic imagery collected from submerged objects. The autonomous sensing algorithm was compared to a deterministic sensing CONOPS, and demonstrated improved accuracy and faster convergence in several cases.

  9. Using GPS to Detect Imminent Tsunamis

    Science.gov (United States)

    Song, Y. Tony

    2009-01-01

    A promising method of detecting imminent tsunamis and estimating their destructive potential involves the use of Global Positioning System (GPS) data in addition to seismic data. Application of the method is expected to increase the reliability of global tsunami-warning systems, making it possible to save lives while reducing the incidence of false alarms. Tsunamis kill people every year. The 2004 Indian Ocean tsunami killed about 230,000 people. The magnitude of an earthquake is not always a reliable indication of the destructive potential of a tsunami. The 2004 Indian Ocean quake generated a huge tsunami, while the 2005 Nias (Indonesia) quake did not, even though both were initially estimated to be of the similar magnitude. Between 2005 and 2007, five false tsunami alarms were issued worldwide. Such alarms result in negative societal and economic effects. GPS stations can detect ground motions of earthquakes in real time, as frequently as every few seconds. In the present method, the epicenter of an earthquake is located by use of data from seismometers, then data from coastal GPS stations near the epicenter are used to infer sea-floor displacements that precede a tsunami. The displacement data are used in conjunction with local topographical data and an advanced theory to quantify the destructive potential of a tsunami on a new tsunami scale, based on the GPS-derived tsunami energy, much like the Richter Scale used for earthquakes. An important element of the derivation of the advanced theory was recognition that horizontal sea-floor motions contribute much more to generation of tsunamis than previously believed. The method produces a reliable estimate of the destructive potential of a tsunami within minutes typically, well before the tsunami reaches coastal areas. The viability of the method was demonstrated in computational tests in which the method yielded accurate representations of three historical tsunamis for which well-documented ground

  10. Stand-alone tsunami alarm equipment

    Science.gov (United States)

    Katsumata, Akio; Hayashi, Yutaka; Miyaoka, Kazuki; Tsushima, Hiroaki; Baba, Toshitaka; Catalán, Patricio A.; Zelaya, Cecilia; Riquelme Vasquez, Felipe; Sanchez-Olavarria, Rodrigo; Barrientos, Sergio

    2017-05-01

    One of the quickest means of tsunami evacuation is transfer to higher ground soon after strong and long ground shaking. Ground shaking itself is a good initiator of the evacuation from disastrous tsunami. Longer period seismic waves are considered to be more correlated with the earthquake magnitude. We investigated the possible application of this to tsunami hazard alarm using single-site ground motion observation. Information from the mass media is sometimes unavailable due to power failure soon after a large earthquake. Even when an official alarm is available, multiple information sources of tsunami alert would help people become aware of the coming risk of a tsunami. Thus, a device that indicates risk of a tsunami without requiring other data would be helpful to those who should evacuate. Since the sensitivity of a low-cost MEMS (microelectromechanical systems) accelerometer is sufficient for this purpose, tsunami alarm equipment for home use may be easily realized. Amplitude of long-period (20 s cutoff) displacement was proposed as the threshold for the alarm based on empirical relationships among magnitude, tsunami height, hypocentral distance, and peak ground displacement of seismic waves. Application of this method to recent major earthquakes indicated that such equipment could effectively alert people to the possibility of tsunami.

  11. Tsunami hazard map in eastern Bali

    Energy Technology Data Exchange (ETDEWEB)

    Afif, Haunan, E-mail: afif@vsi.esdm.go.id [Geological Agency, Bandung (Indonesia); Cipta, Athanasius [Geological Agency, Bandung (Indonesia); Australian National University, Canberra (Australia)

    2015-04-24

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  12. SOME OPPORTUNITITES OF THE LANDSLIDE TSUNAMI HYPOTHESIS

    Directory of Open Access Journals (Sweden)

    Phillip Watts

    2001-01-01

    Full Text Available Tsunami sources are intimately linked to geological events. Earthquakes and landslides are shown to be part of a continuum of complicated geological phenomena. Advances in landslide tsunami research will remain coupled with marine geology research. The landslide tsunami hypothesis is shown to have originated in the scientific literature in the early 1900s. Tsunami science has been slow to embrace the hypothesis in part because of the tremendous uncertainity that it introduces into tsunami gneration. The 1998 Papua New Guyinea event sparked much controbersy regarding the landslide tsunami hypothesis despite a preponderance of the evidence in favor of one simple and consistent explanation of the tsunami source. Part of the difficulty was the unanticipated distinction between slide and slump tsunami sources. Significant controversies still exist over other aspects of the Papua New Guinea event. The landslide hypothesis will become widely acceepted once direct measurements of underwater landslide events are made. These measurements will likely be integrated into a local tsunami warning system.

  13. Book review: Physics of tsunamis

    Science.gov (United States)

    Geist, Eric L.

    2017-01-01

    “Physics of Tsunamis”, second edition, provides a comprehensive analytical treatment of the hydrodynamics associated with the tsunami generation process. The book consists of seven chapters covering 388 pages. Because the subject matter within each chapter is distinct, an abstract appears at the beginning and references appear at the end of each chapter, rather than at the end of the book. Various topics of tsunami physics are examined largely from a theoretical perspective, although there is little information on how the physical descriptions are applied in numerical models.“Physics of Tsunamis”, by B. W. Levin and M. A. Nosov, Second Edition, Springer, 2016; ISBN-10: 33-1933106X, ISBN-13: 978-331933-1065

  14. In Search of the Largest Possible Tsunami: An Example Following the 2011 Japan Tsunami

    Science.gov (United States)

    Geist, E. L.; Parsons, T.

    2012-12-01

    Many tsunami hazard assessments focus on estimating the largest possible tsunami: i.e., the worst-case scenario. This is typically performed by examining historic and prehistoric tsunami data or by estimating the largest source that can produce a tsunami. We demonstrate that worst-case assessments derived from tsunami and tsunami-source catalogs are greatly affected by sampling bias. Both tsunami and tsunami sources are well represented by a Pareto distribution. It is intuitive to assume that there is some limiting size (i.e., runup or seismic moment) for which a Pareto distribution is truncated or tapered. Likelihood methods are used to determine whether a limiting size can be determined from existing catalogs. Results from synthetic catalogs indicate that several observations near the limiting size are needed for accurate parameter estimation. Accordingly, the catalog length needed to empirically determine the limiting size is dependent on the difference between the limiting size and the observation threshold, with larger catalog lengths needed for larger limiting-threshold size differences. Most, if not all, tsunami catalogs and regional tsunami source catalogs are of insufficient length to determine the upper bound on tsunami runup. As an example, estimates of the empirical tsunami runup distribution are obtained from the Miyako tide gauge station in Japan, which recorded the 2011 Tohoku-oki tsunami as the largest tsunami among 51 other events. Parameter estimation using a tapered Pareto distribution is made both with and without the Tohoku-oki event. The catalog without the 2011 event appears to have a low limiting tsunami runup. However, this is an artifact of undersampling. Including the 2011 event, the catalog conforms more to a pure Pareto distribution with no confidence in estimating a limiting runup. Estimating the size distribution of regional tsunami sources is subject to the same sampling bias. Physical attenuation mechanisms such as wave breaking

  15. Repensar la comunicación institucional: las diez reglas del surf / Rethinking institutional communication: the ten rules of surfing

    Directory of Open Access Journals (Sweden)

    Diego Apolo Buenaño

    2014-12-01

    Full Text Available En este ensayo se presenta un análisis desde distintas concepciones de la comunicación estratégica, en donde además de vincular aspectos centrales y tensiones que enfrentan las organizaciones en la actualidad, se ofrecen acercamientos teóricos y prácticos que contribuyan a repensar la manera que en se desarrolla la comunicación en las instituciones. En el trabajo se vincula el deporte del surf y sus reglas como eje que permite realizar comparaciones que aporten al abordaje de la comunicación desde perspectivas que buscan la confluencia entre intereses institucionales y de los actores que intervienen en el proceso mediante la investigación del entorno, el respeto a las prácticas sociales y la colaboración como base para la consecución de los objetivos conjuntos. Abstract This article presents an analysis from different conceptions of strategic communication, which in addition to linking central aspects and tensions developed by organizations today, theoretical and practical approaches are offered and contribute to rethink the way that the communication is developed in institutions. In this work the sport of surfing and its rules are vinculated as the axis that allows comparisons to contribute to addressing communication from perspectives seeking convergence between institutional interests and actors involved in the process investigating the environment, the respect to social practices and collaboration as the basis for achieving the common goals.

  16. Parallel Implementation of Dispersive Tsunami Wave Modeling with a Nesting Algorithm for the 2011 Tohoku Tsunami

    Science.gov (United States)

    Baba, Toshitaka; Takahashi, Narumi; Kaneda, Yoshiyuki; Ando, Kazuto; Matsuoka, Daisuke; Kato, Toshihiro

    2015-12-01

    Because of improvements in offshore tsunami observation technology, dispersion phenomena during tsunami propagation have often been observed in recent tsunamis, for example the 2004 Indian Ocean and 2011 Tohoku tsunamis. The dispersive propagation of tsunamis can be simulated by use of the Boussinesq model, but the model demands many computational resources. However, rapid progress has been made in parallel computing technology. In this study, we investigated a parallelized approach for dispersive tsunami wave modeling. Our new parallel software solves the nonlinear Boussinesq dispersive equations in spherical coordinates. A variable nested algorithm was used to increase spatial resolution in the target region. The software can also be used to predict tsunami inundation on land. We used the dispersive tsunami model to simulate the 2011 Tohoku earthquake on the Supercomputer K. Good agreement was apparent between the dispersive wave model results and the tsunami waveforms observed offshore. The finest bathymetric grid interval was 2/9 arcsec (approx. 5 m) along longitude and latitude lines. Use of this grid simulated tsunami soliton fission near the Sendai coast. Incorporating the three-dimensional shape of buildings and structures led to improved modeling of tsunami inundation.

  17. Tsunami disaster risk management capabilities in Greece

    Science.gov (United States)

    Marios Karagiannis, Georgios; Synolakis, Costas

    2015-04-01

    Greece is vulnerable to tsunamis, due to the length of the coastline, its islands and its geographical proximity to the Hellenic Arc, an active subduction zone. Historically, about 10% of all world tsunamis occur in the Mediterranean region. Here we review existing tsunami disaster risk management capabilities in Greece. We analyze capabilities across the disaster management continuum, including prevention, preparedness, response and recovery. Specifically, we focus on issues like legal requirements, stakeholders, hazard mitigation practices, emergency operations plans, public awareness and education, community-based approaches and early-warning systems. Our research is based on a review of existing literature and official documentation, on previous projects, as well as on interviews with civil protection officials in Greece. In terms of tsunami disaster prevention and hazard mitigation, the lack of tsunami inundation maps, except for some areas in Crete, makes it quite difficult to get public support for hazard mitigation practices. Urban and spatial planning tools in Greece allow the planner to take into account hazards and establish buffer zones near hazard areas. However, the application of such ordinances at the local and regional levels is often difficult. Eminent domain is not supported by law and there are no regulatory provisions regarding tax abatement as a disaster prevention tool. Building codes require buildings and other structures to withstand lateral dynamic earthquake loads, but there are no provisions for resistance to impact loading from water born debris Public education about tsunamis has increased during the last half-decade but remains sporadic. In terms of disaster preparedness, Greece does have a National Tsunami Warning Center (NTWC) and is a Member of UNESCO's Tsunami Program for North-eastern Atlantic, the Mediterranean and connected seas (NEAM) region. Several exercises have been organized in the framework of the NEAM Tsunami Warning

  18. A probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-11-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  19. Influence of the Surf Zone on the Marine Aerosol Concentration in a Coastal Area

    Science.gov (United States)

    Tedeschi, Gilles; van Eijk, Alexander M. J.; Piazzola, Jacques; Kusmierczyk-Michulec, Jolanta T.

    2017-01-01

    Sea-salt aerosol concentrations in the coastal zone are assessed with the numerical aerosol-transport model MACMod that applies separate aerosol source functions for open ocean and the surf zone near the sea-land transition. Numerical simulations of the aerosol concentration as a function of offshore distance from the surf zone compare favourably with experimental data obtained during a surf-zone aerosol experiment in Duck, North Carolina in autumn 2007. Based on numerical simulations, the effect of variations in aerosol production (source strength) and transport conditions (wind speed, air-sea temperature difference), we show that the surf-zone aerosols are replaced by aerosols generated over the open ocean as the airmass advects out to sea. The contribution from the surf-generated aerosol is significant during high wind speeds and high wave events, and is significant up to 30 km away from the production zone. At low wind speeds, the oceanic component dominates, except within 1-5 km of the surf zone. Similar results are obtained for onshore flow, where no further sea-salt aerosol production occurs as the airmass advects out over land. The oceanic aerosols that are well-mixed throughout the boundary layer are then more efficiently transported inland than are the surf-generated aerosols, which are confined to the first few tens of metres above the surface, and are therefore also more susceptible to the type of surface (trees or grass) that determines the deposition velocity.

  20. Surf zone diatoms: A review of the drivers, patterns and role in sandy beaches food chains

    Science.gov (United States)

    Odebrecht, Clarisse; Du Preez, Derek R.; Abreu, Paulo Cesar; Campbell, Eileen E.

    2014-10-01

    The accumulation of high biomass of diatoms in the surf zone is a characteristic feature of some sandy beaches where the wave energy is sufficiently high. A few species of diatoms, called surf diatoms, thrive in this harsh environment. The main processes driving the spatial and temporal distribution of surf diatoms as well as their standing biomass and growth were described twenty to thirty years ago based on studies conducted on the western coast of the United States of America and South African beaches. Since then, over fifty locations around the world have been reported to have surf diatom accumulations with most (three-quarters) of these being in the southern hemisphere. Their occurrence is controlled by physical and chemical factors, including wave energy, beach slope and length, water circulation patterns in the surf zone and the availability of nutrients to sustain the high biomass. The main forces driving the patterns of temporal variability of surf diatom accumulations are meteorological. In the short term (hours), the action of wind stress and wave energy controls the diatom accumulation. In the intermediate time scale (weeks to months), seasonal onshore winds of sufficient strength, as well as storm events are important. Furthermore, anthropogenic disturbances that influence the beach ecosystem as well as large-scale events, such as the El Niño Southern Oscillation, may lead to significant changes in surf diatom populations in the long term (inter-annual). Surf diatoms form the base of a short and very productive food chain in the inshore of the sandy beaches where they occur. However, the role of surf diatoms in the microbial food web is not clear and deserves further studies.

  1. Improving Tsunami Hazard Mitigation and Preparedness Using Real-Time and Post-Tsunami Field Data

    Science.gov (United States)

    Wilson, R. I.; Miller, K. M.

    2012-12-01

    The February 27, 2010 Chile and March 11, 2011 Japan tsunamis caused dramatic loss of life and damage in the near-source region, and notable impacts in distant coastal regions like California. Comprehensive real-time and post-tsunami field surveys and the availability of hundreds of videos within harbors and marinas allow for detailed documentation of these two events by the State of California Tsunami Program, which receives funding through the National Tsunami Hazard Mitigation Program. Although neither event caused significant inundation of dry land in California, dozens of harbors sustained damage totaling nearly $100-million. Information gathered from these events has guided new strategies in tsunami evacuation planning and maritime preparedness. Scenario-specific, tsunami evacuation "playbook" maps and guidance are being produced detailing inundation from tsunamis of various size and source location. These products help coastal emergency managers prepare local response plans when minor distant source tsunamis or larger tsunamis from local and regional sources are generated. In maritime communities, evaluation of strong tsunami currents and damage are being used to validate/calibrate numerical tsunami model currents and produce in-harbor hazard maps and identify offshore safety zones for potential boat evacuation when a tsunami Warning is issued for a distant source event. Real-time and post-tsunami field teams have been expanded to capture additional detailed information that can be shared in a more timely manner during and after an event through a state-wide clearinghouse. These new products and related efforts will result in more accurate and efficient emergency response by coastal communities, potentially reducing the loss of lives and property during future tsunamis.

  2. Celestial delights the best astronomical events through 2020

    CERN Document Server

    Reddy, Francis

    2012-01-01

    Celestial Delights is the essential 'TV Guide' for the sky. Through extensive graphics integrated with an eight-year-long calendar of sky events, it provides a look at "don't miss" sky events, mostly for naked-eye and binocular observing. It is organized by ease of observation – lunar phases and the brighter planets come first, with solar eclipses, the aurora, and comets coming later. This third edition also includes a hefty dose of sky lore, astronomical history, and clear overviews of current science. It provides a handy reference to upcoming naked-eye events, with information broken out in clear and simple diagrams and tables that are cross-referenced against a detailed almanac for each year covered. This book puts a variety of information all in one place, presents it in a friendly way that does not require prior in-depth astronomical knowledge, and provides the context and historical background for understanding events that astronomy software or web sites lack.

  3. The periodic dynamics of the irregular heterogeneous celestial bodies

    Science.gov (United States)

    Lan, Lei; Yang, Mo; Baoyin, Hexi; Li, Junfeng

    2017-02-01

    In this paper, we develop a methodology to study the periodic dynamics of irregular heterogeneous celestial bodies. Heterogeneous bodies are not scarce in space. It has been found that bodies, such as 4 Vesta, 624 Hektor, 87 Sylvia, 16 Psyche and 25143 Itokawa, may all have varied internal structures. They can be divided into large-scale and small-scale cases. The varied internal structures of large-scale bodies always result from gradient pressure inside, which leads to compactness differences of the inner material. However, the heterogeneity of a small-scale body is always reflected by the different densities of different areas, which may originate from collision formation from multiple objects. We propose a modeling procedure for the heterogeneous bodies derived from the conventional polyhedral method and then compare its dynamical characteristics with those of the homogeneous case. It is found that zero-velocity curves, positions of equilibrium points, types of bifurcations in the continuation of the orbital family and the stabilities of periodic orbits near the heterogeneous body are different from those in the homogeneous case. The suborbicular orbits near the equatorial plane are potential parking orbits for a future mission, so we discuss the switching of the orbital stability of the family because it has fundamental significance to orbit maintenance and operations around actual asteroids.

  4. Extending the K-band celestial frame emphasizing Southern hemisphere.

    Science.gov (United States)

    de Witt, A.; Bertarini, A.; Horiuchi, S.; Jacobs, C.; Jung, T.; Lovel, J.; McCallum, J.; Quick, J.; Sohn, B. W.; Ojha, R.

    2014-12-01

    K-band radio observations have the potential to form the basis for the most accurate celestial reference frame (CRF) ever constructed. We present a new collaboration to observe southern hemisphere extra-galactic radio sources at 22 GHz (K-band). The aim of this project is to densify the ICRF at that frequency and to provide calibrators for astronomy. Relative to the standard S/X observing bands, at K-band sources are expected to exhibit more compact source morphology and reduced core shift. This reduction of astrophysical systematics should be advantageous in tying the VLBI radio frame to the Gaia optical frame. Initial fringe demonstrations were carried out on 23 August 2013 between telescopes in Australia, Korea and South Africa. The Korea to South Africa baselines will extend K-band CRF coverage down to about -45° declination. Observations between Australia and South Africa will extend coverage to the south polar cap and thus gain full sky coverage for the K-band CRF. The second phase of our plan includes more extensive astrometric observations to complete sky coverage at K-band as well as observations using a larger network of telescopes in an effort to image source structure.

  5. Estimating the Celestial Reference Frame via Intra-Technique Combination

    Science.gov (United States)

    Iddink, Andreas; Artz, Thomas; Halsig, Sebastian; Nothnagel, Axel

    2016-12-01

    One of the primary goals of Very Long Baseline Interferometry (VLBI) is the determination of the International Celestial Reference Frame (ICRF). Currently the third realization of the internationally adopted CRF, the ICRF3, is under preparation. In this process, various optimizations are planned to realize a CRF that does not benefit only from the increased number of observations since the ICRF2 was published. The new ICRF can also benefit from an intra-technique combination as is done for the Terrestrial Reference Frame (TRF). Here, we aim at estimating an optimized CRF by means of an intra-technique combination. The solutions are based on the input to the official combined product of the International VLBI Service for Geodesy and Astrometry (IVS), also providing the radio source parameters. We discuss the differences in the setup using a different number of contributions and investigate the impact on TRF and CRF as well as on the Earth Orientation Parameters (EOPs). Here, we investigate the differences between the combined CRF and the individual CRFs from the different analysis centers.

  6. Numeric calculation of celestial bodies with spreadsheet analysis

    Science.gov (United States)

    Koch, Alexander

    2016-04-01

    The motion of the planets and moons in our solar system can easily be calculated for any time by the Kepler laws of planetary motion. The Kepler laws are a special case of the gravitational law of Newton, especially if you consider more than two celestial bodies. Therefore it is more basic to calculate the motion by using the gravitational law. But the problem is, that by gravitational law it is not possible to calculate the state of motion with only one step of calculation. The motion has to be numerical calculated for many time intervalls. For this reason, spreadsheet analysis is helpful for students. Skills in programmes like Excel, Calc or Gnumeric are important in professional life and can easily be learnt by students. These programmes can help to calculate the complex motions with many intervalls. The more intervalls are used, the more exact are the calculated orbits. The sutdents will first get a quick course in Excel. After that they calculate with instructions the 2-D-coordinates of the orbits of Moon and Mars. Step by step the students are coding the formulae for calculating physical parameters like coordinates, force, acceleration and velocity. The project is limited to 4 weeks or 8 lessons. So the calcualtion will only include the calculation of one body around the central mass like Earth or Sun. The three-body problem can only be shortly discussed at the end of the project.

  7. TSUNAMI LOADING ON BUILDINGS WITH OPENINGS

    Directory of Open Access Journals (Sweden)

    P. Lukkunaprasit

    2009-01-01

    Full Text Available Reinforced concrete (RC buildings with openings in the masonry infill panels have shown superior performance to those without openings in the devastating 2004 Indian Ocean Tsunami. Understanding the effect of openings and the resulting tsunami force is essential for an economical and safe design of vertical evacuation shelters against tsunamis. One-to-one hundred scale building models with square shape in plan were tested in a 40 m long hydraulic flume with 1 m x 1 m cross section. A mild slope of 0.5 degree representing the beach condition at Phuket, Thailand was simulated in the hydraulic laboratory. The model dimensions were 150 mm x 150 mm x 150 mm. Two opening configurations of the front and back walls were investigated, viz., 25% and 50% openings. Pressure sensors were placed on the faces of the model to measure the pressure distribution. A high frequency load cell was mounted at the base of the model to record the tsunami forces. A bi-linear pressure profile is proposed for determining the maximum tsunami force acting on solid square buildings. The influence of openings on the peak pressures on the front face of the model is found to be practically insignificant. For 25% and 50% opening models, the tsunami forces reduce by about 15% and 30% from the model without openings, respectively. The reduction in the tsunami force clearly demonstrates the benefit of openings in reducing the effect of tsunami on such buildings.

  8. Numerical modeling of surf beat generated by moving breakpoint

    Institute of Scientific and Technical Information of China (English)

    DONG GuoHai; MA XiaoZhou; TENG Bin

    2009-01-01

    As an important hydrodynamic phenomenon in the nearshore zone, the cross-shore surf beat is nu-merically studied in this paper with a fully nonlinear Boussinesq-type model, which resolves the pri-mary wave motion as well as the long waves. Compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics. Wave breaking and run-up in the swash zone are included in the numerical model. Mutual interactions between short waves and long waves are inherent in the model. The numerical study of long waves is based on bichromatic wave groups with a wide range of mean frequencies, group frequencies and modulation rates. The cross-shore variation in the amplitudes of short waves and long waves is investigated. The model results are compared with laboratory experiments from the literature and good agreement is found.

  9. Modelling of sediment movement in the surf and swash zones

    Institute of Scientific and Technical Information of China (English)

    TOKPOHOZIN N B; KOUNOUHEWA B; AVOSSEVOU G Y H; HOUEKPOHEHAM A; AWANOU C N

    2015-01-01

    Under the action of marine currents, non-cohesive sediments evolve by bed-load, by saltation or suspension depending on their granulometry. Several authors have considered that the movement of sediment is bidimensional and modelized the effects of swell by a constant velocitynear the seabed. Here we have studied the velocity profile of fluctuating currents near the seabed and studied the movement of sediment in 3D. The results show that in the areas of study (surf and swash) the movement of sediment occurs in a volume, and the evolution of sediment varies from an areato another. The obtained theoretical profiles of the position and velocity vectors confirm the observations of several authors.

  10. Detection of Region Duplication Forgery in Digital Images Using SURF

    Directory of Open Access Journals (Sweden)

    B L Shivakumar

    2011-07-01

    Full Text Available An Image would yield better impact in convincing someone of something rather than pure description by words. Digital images are widely used in various fields like medical imaging, journalism, scientific manipulations and digital forensics. However, images are not reliable as it may be. Digital images can be easily tampered with image editing tools. One of the major problems in image forensics is determining if a particular image is authentic or not. Digital image forensic is an emerging field of image processing area. Copy-move forgery is one type of image forgery in digital image forensic where various methods have been proposed in the field to detect the forgery. In this paper a technique is presented to detect Copy-Move Forgery based on SURF and KD-Tree for multidimensional data matching. We demonstrate our method with high resolution images affected by copy-move forgery.

  11. SurfCut: Free-Boundary Surface Extraction

    KAUST Repository

    Algarni, Marei

    2016-09-15

    We present SurfCut, an algorithm for extracting a smooth simple surface with unknown boundary from a noisy 3D image and a seed point. In contrast to existing approaches that extract smooth simple surfaces with boundary, our method requires less user input, i.e., a seed point, rather than a 3D boundary curve. Our method is built on the novel observation that certain ridge curves of a front propagated using the Fast Marching algorithm are likely to lie on the surface. Using the framework of cubical complexes, we design a novel algorithm to robustly extract such ridge curves and form the surface of interest. Our algorithm automatically cuts these ridge curves to form the surface boundary, and then extracts the surface. Experiments show the robustness of our method to errors in the data, and that we achieve higher accuracy with lower computational cost than comparable methods. © Springer International Publishing AG 2016.

  12. Numerical modeling of surf beat generated by moving breakpoint

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    As an important hydrodynamic phenomenon in the nearshore zone, the cross-shore surf beat is numerically studied in this paper with a fully nonlinear Boussinesq-type model, which resolves the primary wave motion as well as the long waves. Compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics. Wave breaking and run-up in the swash zone are included in the numerical model. Mutual interactions between short waves and long waves are inherent in the model. The numerical study of long waves is based on bichromatic wave groups with a wide range of mean frequencies, group frequencies and modulation rates. The cross-shore variation in the amplitudes of short waves and long waves is investigated. The model results are compared with laboratory experiments from the literature and good agreement is found.

  13. Post tsunami rebuilding of beaches and the texture of sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Gujar, A.R.; Rajamanickam, G.V.; Chandrasekar, N.; Manickaraj, D.S.; Chandrasekaran, R.; Chaturvedi, S.K.; Mahesh, R.; Josephine, P.J.; Deepa, V.; Sudha, V.; Sunderasen, D.

    of collection such as pre-tsunami, immediately after tsunami and post-tsunami. Even after giving lapse of one year, the transformed sands though slowly ebbing to reach the 2003 stage of distribution, reaching to the pre-tsunami conditions could not be achieved...

  14. Military personnel recognition system using texture, colour, and SURF features

    Science.gov (United States)

    Irhebhude, Martins E.; Edirisinghe, Eran A.

    2014-06-01

    This paper presents an automatic, machine vision based, military personnel identification and classification system. Classification is done using a Support Vector Machine (SVM) on sets of Army, Air Force and Navy camouflage uniform personnel datasets. In the proposed system, the arm of service of personnel is recognised by the camouflage of a persons uniform, type of cap and the type of badge/logo. The detailed analysis done include; camouflage cap and plain cap differentiation using gray level co-occurrence matrix (GLCM) texture feature; classification on Army, Air Force and Navy camouflaged uniforms using GLCM texture and colour histogram bin features; plain cap badge classification into Army, Air Force and Navy using Speed Up Robust Feature (SURF). The proposed method recognised camouflage personnel arm of service on sets of data retrieved from google images and selected military websites. Correlation-based Feature Selection (CFS) was used to improve recognition and reduce dimensionality, thereby speeding the classification process. With this method success rates recorded during the analysis include 93.8% for camouflage appearance category, 100%, 90% and 100% rates of plain cap and camouflage cap categories for Army, Air Force and Navy categories, respectively. Accurate recognition was recorded using SURF for the plain cap badge category. Substantial analysis has been carried out and results prove that the proposed method can correctly classify military personnel into various arms of service. We show that the proposed method can be integrated into a face recognition system, which will recognise personnel in addition to determining the arm of service which the personnel belong. Such a system can be used to enhance the security of a military base or facility.

  15. Surfing through Hyperspace - Understanding Higher Universes in Six Easy Lessons

    Science.gov (United States)

    Pickover, Clifford A.

    2001-05-01

    Do a little armchair time-travel, rub elbows with a four-dimensional intelligent life form, or stretch your mind to the furthest corner of an uncharted universe. With this astonishing guidebook, Surfing Through Hyperspace , you need not be a mathematician or an astrophysicist to explore the all-but-unfathomable concepts of hyperspace and higher-dimensional geometry.No subject in mathematics has intrigued both children and adults as much as the idea of a fourth dimension. Philosophers and parapsychologists have meditated on this mysterious space that no one can point to but may be all around us. Yet this extra dimension has a very real, practical value to mathematicians and physicists who use it every day in their calculations. In the tradition of Flatland , and with an infectious enthusiasm, Clifford Pickover tackles the problems inherent in our 3-D brains trying to visualize a 4-D world, muses on the religious implications of the existence of higher-dimensional consciousness, and urges all curious readers to venture into "the unexplored territory lying beyond the prison of the obvious." Pickover alternates sections that explain the science of hyperspace with sections that dramatize mind-expanding concepts through a fictional dialogue between two futuristic FBI agents who dabble in the fourth dimension as a matter of national security. This highly accessible and entertaining approach turns an intimidating subject into a scientific game open to all dreamers.Surfing Through Hyperspace concludes with a number of puzzles, computer experiments and formulas for further exploration, inviting readers to extend their minds across this inexhaustibly intriguing scientific terrain.

  16. -Advanced Models for Tsunami and Rogue Waves

    Directory of Open Access Journals (Sweden)

    D. W. Pravica

    2012-01-01

    Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.

  17. Methods of Celestial Mechanics Volume II: Application to Planetary System, Geodynamics and Satellite Geodesy

    CERN Document Server

    Beutler, Gerhard

    2005-01-01

    G. Beutler's Methods of Celestial Mechanics is a coherent textbook for students as well as an excellent reference for practitioners. Volume II is devoted to the applications and to the presentation of the program system CelestialMechanics. Three major areas of applications are covered: (1) Orbital and rotational motion of extended celestial bodies. The properties of the Earth-Moon system are developed from the simplest case (rigid bodies) to more general cases, including the rotation of an elastic Earth, the rotation of an Earth partly covered by oceans and surrounded by an atmosphere, and the rotation of an Earth composed of a liquid core and a rigid shell (Poincaré model). (2) Artificial Earth Satellites. The oblateness perturbation acting on a satellite and the exploitation of its properties in practice is discussed using simulation methods (CelestialMechanics) and (simplified) first order perturbation methods. The perturbations due to the higher-order terms of the Earth's gravitational potential and reso...

  18. Advanced Spacecraft Navigation and Timing Using Celestial Gamma-Ray Sources Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed novel program will use measurements of the high-energy photon output from gamma-ray celestial sources to design a new, unique navigation system. This...

  19. Combining sky and earth: desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues.

    Science.gov (United States)

    Legge, Eric L G; Wystrach, Antoine; Spetch, Marcia L; Cheng, Ken

    2014-12-01

    Insects typically use celestial sources of directional information for path integration, and terrestrial panoramic information for view-based navigation. Here we set celestial and terrestrial sources of directional information in conflict for homing desert ants (Melophorus bagoti). In the first experiment, ants learned to navigate out of a round experimental arena with a distinctive artificial panorama. On crucial tests, we rotated the arena to create a conflict between the artificial panorama and celestial information. In a second experiment, ants at a feeder in their natural visually-cluttered habitat were displaced prior to their homing journey so that the dictates of path integration (feeder to nest direction) based on a celestial compass conflicted with the dictates of view-based navigation (release point to nest direction) based on the natural terrestrial panorama. In both experiments, ants generally headed in a direction intermediate to the dictates of celestial and terrestrial information. In the second experiment, the ants put more weight on the terrestrial cues when they provided better directional information. We conclude that desert ants weight and integrate the dictates of celestial and terrestrial information in determining their initial heading, even when the two directional cues are highly discrepant. © 2014. Published by The Company of Biologists Ltd.

  20. Mathematics of tsunami: modelling and identification

    Science.gov (United States)

    Krivorotko, Olga; Kabanikhin, Sergey

    2015-04-01

    Tsunami (long waves in the deep water) motion caused by underwater earthquakes is described by shallow water equations ( { ηtt = div (gH (x,y)-gradη), (x,y) ∈ Ω, t ∈ (0,T ); η|t=0 = q(x,y), ηt|t=0 = 0, (x,y) ∈ Ω. ( (1) Bottom relief H(x,y) characteristics and the initial perturbation data (a tsunami source q(x,y)) are required for the direct simulation of tsunamis. The main difficulty problem of tsunami modelling is a very big size of the computational domain (Ω = 500 × 1000 kilometres in space and about one hour computational time T for one meter of initial perturbation amplitude max|q|). The calculation of the function η(x,y,t) of three variables in Ω × (0,T) requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height S(x,y) which is based on kinematic-type approach and analytical representation of fundamental solution. Proposed algorithm of determining the function of two variables S(x,y) reduces the number of operations in 1.5 times than solving problem (1). If all functions does not depend on the variable y (one dimensional case), then the moving tsunami wave height satisfies of the well-known Airy-Green formula: S(x) = S(0)° --- 4H (0)/H (x). The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate two different inverse problems of determining a tsunami source q(x,y) using two different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements and satellite altimeters wave-form images. These problems are severely ill-posed. The main idea consists of combination of two measured data to reconstruct the source parameters. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of

  1. Extreme tsunami runup simulation at Babi Island due to 1992 Flores tsunami and Okushiri due to 1993 Hokkido tsunami

    Science.gov (United States)

    Chule Kim, Dong; Choi, Byung Ho; Kim, Kyeong Ok; Pelinovsky, Efim

    2014-05-01

    This study is based on a series of three dimensional numerical modeling experiments to understand the tsunami run-up and inundation process at the circular shape Babi Island in the Indonesia caused by 1992 Flores earthquake tsunami and at Monai valley in Okushiri Island, west part of East (Japan) Sea caused by the 1993 Hokkaido Nansei-Oki earthquake. The wave field in the coastal area is modeled within the framework of fully nonlinear dispersive Reynolds-averaged Navier-Stokes (RANS) equations solved using the FLOW3D code. Boundary conditions for this model were extracted from computed wave characteristics obtained from the 2D tsunami propagation model based on the shallow water equations. This model has shown it effectivity to explain extreme runup characteristics during the 2004 Indian Ocean tsunami and 2011 Japan tsunami (Kim et al, 2013). In case of the 1992 Flores Island tsunami the results of numerical simulation run-up results are compared with field measured run-up heights. It has good agreement with measurement and computational run-up heights. The particle velocity distribution is also computed. In the case of 1993 Okushiri tsunami the numerical simulation reproduces extreme run-up at the Monai valley (31.7 m).

  2. Evaluation of a 3% surf solution (surf field mastitis test) for the diagnosis of subclinical bovine and bubaline mastitis.

    Science.gov (United States)

    Muhammad, Ghulam; Naureen, Abeera; Asi, Muhammad Nadeem; Saqib, Muhammad; Fazal-ur-Rehman

    2010-03-01

    To evaluate a 3% solution of household detergent viz., Surf Excel (Surf field mastitis test, SFMT) vis-à-vis California mastitis test (CMT), Whiteside test (WST), somatic cell counts (SCC; cut off limit = 5 x 10(5) cells per millilitre) and bacteriological cultures for the detection of subclinical mastitis in quarter foremilk samples (n=800) of dairy cows and buffaloes. Culture and SCC were used as gold standards. All tests were evaluated parallel and serial patterns. The sensitivities of SFMT, SCC, culture, CMT and WST in parallel testing were 72.82, 81.55, 87.38, 75.73 and 54.37%, respectively in cows, while 66.22, 79.73, 82.43, 70.27 and 50.00, respectively in buffaloes. SFMT was significantly (pCMT in both species. In serial testing, percent specificity of SFMT (87.12 in cow; 85.16 in buffaloes) was significantly (PCMT (83.33 in cow; 80.64 in buffaloes). The negative predictive values of SFMT (93.50 in cow; 96.35 in buffaloes) differed non-significantly from that of CMT (94.02 in cow; 96.15 in buffaloes). The kappa index between the tests was moderate to perfect both in parallel (0.54 to >0.80) and serial (0.58 to >0.8) testing. On the basis of closely similar diagnostic efficiency of SFMT to CMT in terms of sensitivity, specificity, predictive values and kappa index together with inexpensive and ready availability of SFMT reagent, it tempting to suggest that SFMT can be use as a cheaper, user-friendly alternative animal-side subclinical mastitis diagnostic test in poor countries.

  3. SURF imaging beams in an aberrative medium: generation and post-processing enhancement

    CERN Document Server

    Nasholm, Sven Peter; 10.1109/TUFFC.2012.2494

    2013-01-01

    This paper presents numerical simulations of dual-frequency second-order ultrasound field (SURF) reverberation suppression transmit-pulse complexes. Such propagation was previously studied in a homogeneous medium. Here instead the propagation path includes a strongly aberrating body-wall modeled by a sequence of delay-screens. The applied SURF transmit pulse complexes each consist of a high-frequency imaging 3.5 MHz pulse combined with a low-frequency 0.5 MHz sound speed manipulation pulse. Furthermore, the feasibility of two signal post-processing methods are investigated using the aberrated transmit SURF beams. These methods are previously shown to adjust the depth of maximum SURF reverberation suppression within a homogeneous medium. The request of the study arises because imaging situations where reverberation suppression is useful are also likely to produce pulse wave-front distortion (aberration). Such distortions could potentially produce time-delays that cancel the accumulated propagation time-delay n...

  4. Analytical Derivation of Three Dimensional Vorticity Function for wave breaking in Surf Zone

    CERN Document Server

    Dutta, R

    2015-01-01

    In this report, Mathematical model for generalized nonlinear three dimensional wave breaking equations was de- veloped analytically using fully nonlinear extended Boussinesq equations to encompass rotational dynamics in wave breaking zone. The three dimensional equations for vorticity distributions are developed from Reynold based stress equations. Vorticity transport equations are also developed for wave breaking zone. This equations are basic model tools for numerical simulation of surf zone to explain wave breaking phenomena. The model reproduces most of the dynamics in the surf zone. Non linearity for wave height predictions is also shown close to the breaking both in shoaling as well as surf zone. Keyword Wave breaking, Boussinesq equation, shallow water, surf zone. PACS : 47.32-y

  5. Advanced Planning for Tsunamis in California

    Science.gov (United States)

    Miller, K.; Wilson, R. I.; Larkin, D.; Reade, S.; Carnathan, D.; Davis, M.; Nicolini, T.; Johnson, L.; Boldt, E.; Tardy, A.

    2013-12-01

    The California Tsunami Program is comprised of the California Governor's Office of Emergency Services (CalOES) and the California Geological Survey (CGS) and funded through the National Tsunami Hazard Mitigation Program (NTHMP) and the Federal Emergency Management Agency (FEMA). The program works closely with the 20 coastal counties in California, as well as academic, and industry experts to improve tsunami preparedness and mitigation in shoreline communities. Inundation maps depicting 'worst case' inundation modeled from plausible sources around the Pacific were released in 2009 and have provided a foundation for public evacuation and emergency response planning in California. Experience during recent tsunamis impacting the state (Japan 2011, Chile 2010, Samoa 2009) has brought to light the desire by emergency managers and decision makers for even more detailed information ahead of future tsunamis. A solution to provide enhanced information has been development of 'playbooks' to plan for a variety of expected tsunami scenarios. Elevation 'playbook' lines can be useful for partial tsunami evacuations when enough information about forecast amplitude and arrival times is available to coastal communities and there is sufficient time to make more educated decisions about who to evacuate for a given scenario or actual event. NOAA-issued Tsunami Alert Bulletins received in advance of a distant event will contain an expected wave height (a number) for each given section of coast. Provision of four elevation lines for possible inundation enables planning for different evacuation scenarios based on the above number potentially alleviating the need for an 'all or nothing' decision with regard to evacuation. Additionally an analytical tool called FASTER is being developed to integrate storm, tides, modeling errors, and local tsunami run-up potential with the forecasted tsunami amplitudes in real-time when a tsunami Alert is sent out. Both of these products will help

  6. The First Real-Time Tsunami Animation

    Science.gov (United States)

    Becker, N. C.; Wang, D.; McCreery, C.; Weinstein, S.; Ward, B.

    2014-12-01

    For the first time a U.S. tsunami warning center created and issued a tsunami forecast model animation while the tsunami was still crossing an ocean. Pacific Tsunami Warning Center (PTWC) scientists had predicted they would have this ability (Becker et al., 2012) with their RIFT forecast model (Wang et al., 2009) by using rapidly-determined W-phase centroid-moment tensor earthquake focal mechanisms as tsunami sources in the RIFT model (Wang et al., 2012). PTWC then acquired its own YouTube channel in 2013 for its outreach efforts that showed animations of historic tsunamis (Becker et al., 2013), but could also be a platform for sharing future tsunami animations. The 8.2 Mw earthquake of 1 April 2014 prompted PTWC to issue official warnings for a dangerous tsunami in Chile, Peru and Ecuador. PTWC ended these warnings five hours later, then issued its new tsunami marine hazard product (i.e., no coastal evacuations) for the State of Hawaii. With the international warning canceled but with a domestic hazard still present PTWC generated a forecast model animation and uploaded it to its YouTube channel six hours before the arrival of the first waves in Hawaii. PTWC also gave copies of this animation to television reporters who in turn passed it on to their national broadcast networks. PTWC then created a version for NOAA's Science on a Sphere system so it could be shown on these exhibits as the tsunami was still crossing the Pacific Ocean. While it is difficult to determine how many people saw this animation since local, national, and international news networks showed it in their broadcasts, PTWC's YouTube channel provides some statistics. As of 1 August 2014 this animation has garnered more than 650,000 views. Previous animations, typically released during significant anniversaries, rarely get more than 10,000 views, and even then only when external websites share them. Clearly there is a high demand for a tsunami graphic that shows both the speed and the severity of a

  7. The rate of beneficial mutations surfing on the wave of a range expansion.

    Directory of Open Access Journals (Sweden)

    Rémi Lehe

    Full Text Available Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during species invasions.

  8. The rate of beneficial mutations surfing on the wave of a range expansion.

    Science.gov (United States)

    Lehe, Rémi; Hallatschek, Oskar; Peliti, Luca

    2012-01-01

    Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during species invasions.

  9. Sandy beach surf zones: An alternative nursery habitat for 0-age Chinook salmon

    Science.gov (United States)

    Marin Jarrin, J. R.; Miller, J. A.

    2013-12-01

    The role of each habitat fish use is of great importance to the dynamics of populations. During their early marine residence, Chinook salmon (Oncorhynchus tshawytscha), an anadromous fish species, mostly inhabit estuaries but also use sandy beach surf zones and the coastal ocean. However, the role of surf zones in the early life history of Chinook salmon is unclear. We hypothesized that surf zones serve as an alternative nursery habitat, defined as a habitat that consistently provides a proportion of a population with foraging and growth rates similar to those experienced in the primary nursery. First, we confirmed that juvenile Chinook salmon cohorts are simultaneously using both habitats by combining field collections with otolith chemical and structural analysis to directly compare size and migration patterns of juveniles collected in two Oregon (USA) estuaries and surf zones during three years. We then compared juvenile catch, diet and growth in estuaries and surf zones. Juveniles were consistently caught in both habitats throughout summer. Catches were significantly higher in estuaries (average ± SD = 34.3 ± 19.7 ind. 100 m-2) than surf zones (1.0 ± 1.5 ind. 100 m-2) and were positively correlated (r = 0.92). Size at capture (103 ± 15 mm fork length, FL), size at marine entry (76 ± 13 mm FL), stomach fullness (2 ± 2% body weight) and growth rates (0.4 ± 0.0 mm day-1) were similar between habitats. Our results suggest that when large numbers of 0-age Chinook salmon inhabit estuaries, juveniles concurrently use surf zones, which serve as an alternative nursery habitat. Therefore, surf zones expand the available rearing habitat for Chinook salmon during early marine residence, a critical period in the life history.

  10. A possible space-based tsunami early warning system using observations of the tsunami ionospheric hole

    Science.gov (United States)

    Kamogawa, Masashi; Orihara, Yoshiaki; Tsurudome, Chiaki; Tomida, Yuto; Kanaya, Tatsuya; Ikeda, Daiki; Gusman, Aditya Riadi; Kakinami, Yoshihiro; Liu, Jann-Yenq; Toyoda, Atsushi

    2016-12-01

    Ionospheric plasma disturbances after a large tsunami can be detected by measurement of the total electron content (TEC) between a Global Positioning System (GPS) satellite and its ground-based receivers. TEC depression lasting for a few minutes to tens of minutes termed as tsunami ionospheric hole (TIH) is formed above the tsunami source area. Here we describe the quantitative relationship between initial tsunami height and the TEC depression rate caused by a TIH from seven tsunamigenic earthquakes in Japan and Chile. We found that the percentage of TEC depression and initial tsunami height are correlated and the largest TEC depressions appear 10 to 20 minutes after the main shocks. Our findings imply that Ionospheric TEC measurement using the existing ground receiver networks could be used in an early warning system for near-field tsunamis that take more than 20 minutes to arrive in coastal areas.

  11. Quakes and tsunamis detected by GOCE (Invited)

    Science.gov (United States)

    Garcia, R.; Doornbos, E.; Bruinsma, S.; Hebert, H.

    2013-12-01

    The aerodynamic accelerations measured by GOCE are used to calculate air density variations and air velocity estimates along GOCE orbit track. The detection of infrasonic waves generated by seismic surface waves and gravity waves generated by tsunamis are presented for earthquakes and tsunamis generated in Tohoku (11/03/2011) and Samoa (29/09/2009) regions. For the seismic/infrasonic waves, a wave propagation modelling is presented and synthetic data are compared to GOCE measurements. The travel time and amplitude discrepancies are discussed in terms of lateral velocity variations in the solid Earth and the atmosphere. For the tsunami/gravity waves, a plane wave analysis is performed and relations between vertical velocity, cross-track velocity and density variations are deduced. By using these relations, an indicator of gravity wave presence is constructed. It allows scanning of the GOCE data to search for gravity wave crossings. Simulations of the gravity wave crossing space/time ranges, using models of tsunami and gravity wave propagation, demonstrate that the observed gravity waves coincide with model-predicted tsunami generated gravity waves for the Tohoku event. This study demonstrates that very low earth orbit spacecraft with high-resolution accelerometers are able to detect atmospheric waves generated by the tectonic activity. Such spacecraft may supply additional data to tsunami alert systems in order to validate some tsunami alerts.

  12. Plasmon tsunamis on metallic nanoclusters.

    Science.gov (United States)

    Lucas, A A; Sunjic, M

    2012-03-14

    A model is constructed to describe inelastic scattering events accompanying electron capture by a highly charged ion flying by a metallic nanosphere. The electronic energy liberated by an electron leaving the Fermi level of the metal and dropping into a deep Rydberg state of the ion is used to increase the ion kinetic energy and, simultaneously, to excite multiple surface plasmons around the positively charged hole left behind on the metal sphere. This tsunami-like phenomenon manifests itself as periodic oscillations in the kinetic energy gain spectrum of the ion. The theory developed here extends our previous treatment (Lucas et al 2011 New J. Phys. 13 013034) of the Ar(q+)/C(60) charge exchange system. We provide an analysis of how the individual multipolar surface plasmons of the metallic sphere contribute to the formation of the oscillatory gain spectrum. Gain spectra showing characteristic, tsunami-like oscillations are simulated for Ar(15+) ions capturing one electron in distant collisions with Al and Na nanoclusters.

  13. Historical tsunami in the Azores archipelago (Portugal)

    Science.gov (United States)

    Andrade, C.; Borges, P.; Freitas, M. C.

    2006-08-01

    Because of its exposed northern mid-Atlantic location, morphology and plate-tectonics setting, the Azores Archipelago is highly vulnerable to tsunami hazards associated with landslides and seismic or volcanic triggers, local or distal. Critical examination of available data - written accounts and geologic evidence - indicates that, since the settlement of the archipelago in the 15th century, at least 23 tsunami have struck Azorean coastal zones. Most of the recorded tsunami are generated by earthquakes. The highest known run-up (11-15 m) was recorded on 1 November 1755 at Terceira Island, corresponding to an event of intensity VII-VIII (damaging-heavily damaging) on the Papadopolous-Imamura scale. To date, eruptive activity, while relatively frequent in the Azores, does not appear to have generated destructive tsunami. However, this apparent paucity of volcanogenic tsunami in the historical record may be misleading because of limited instrumental and documentary data, and small source-volumes released during historical eruptions. The latter are in contrast with the geological record of massive pyroclastic flows and caldera explosions with potential to generate high-magnitude tsunami, predating settlement. In addition, limited evidence suggests that submarine landslides from unstable volcano flanks may have also triggered some damaging tsunamigenic floods that perhaps were erroneously attributed to intense storms. The lack of destructive tsunami since the mid-18th century has led to governmental complacency and public disinterest in the Azores, as demonstrated by the fact that existing emergency regulations concerning seismic events in the Azores Autonomous Region make no mention of tsunami and their attendant hazards. We suspect that the coastal fringe of the Azores may well preserve a sedimentary record of some past tsunamigenic flooding events. Geological field studies must be accelerated to expand the existing database to include prehistoric events

  14. -Advanced Models for Tsunami and Rogue Waves

    OpenAIRE

    Pravica, D. W.; Randriampiry, N.; Spurr, M. J.

    2012-01-01

    A wavelet ${K}_{q}(t)$ , that satisfies the q-advanced differential equation ${K}_{q}^{\\prime }(t)={K}_{q}(qt)$ for $q>1$ , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by ${F}_{q}(t,x)={K}_{q}{(t)}_{q}\\text{S}\\text{i}\\text{n}(x)$ . The profile ${F}_{q}$ is similar to tsunam...

  15. Sistema Nacional de Monitoreo de Tsunamis

    OpenAIRE

    Chacón Barrantes, Silvia

    2016-01-01

    En cualquier cuerpo de agua, y más específicamente en cualquier océano, se pude generar un tsunami. Por esto, nuestro país, al tener dos costas, se encuentra expuesto a ellos. Los tsunamis no se pueden evitar ni pronosticar con más de varias horas de anticipación a su arribo, lo que hace a los centros de alerta de tsunamis indispensables en la mitigación de las consecuencias que pueden tener en las poblaciones costeras. En nuestro país, el único ente autorizado a emitir alertas es la Comisión...

  16. Tsunami Induced Scour Around Monopile Foundations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Eltard-Larsen, Bjarke; Baykal, Cüneyt

    a monopile at model (laboratory) spatial and temporal scales. Therefore, prior to conducting such numerical simulations involving tsunami-induced scour, it is necessary to first establish a methodology for maintaining similarity of model and full field scales. To achieve hydrodynamic similarity we......, will be similar at both model and full scales. This strategy also yields reasonable similarity in the expected tsunami period-to-scour time scale ratio. As an example, three full tsunami periods have been simulated in succession, taking a full scale period of 13 min. Snapshots of the computed scour hole...

  17. Tsunami characteristics and formation potential of sandy tsunami deposit in Sanriku Coast: implications from numerical modeling

    Science.gov (United States)

    Sugawara, D.; Haraguchi, T.; Takahashi, T.

    2013-12-01

    Geological investigation of paleotsunami deposit is crucial for knowing the history and magnitude of tsunami events in the past. Among various kinds of grain sizes, sandy tsunami deposit has been best investigated by previous studies, because of its potential for identification in the sedimentary column. Many sandy tsunami deposits have been found from coastal plains, which have sandy beach and low-lying wetlands. However, sandy tsunami deposits in narrow valleys at rocky ria coast have rarely been found. It may be presumed that formation potential of sandy tsunami layer in the rocky coasts is generally lower than coastal plains, because of the absence of sandy beach, tsunami run-up on steeper slope and stronger return flow. In this presentation, characteristics of the 2011 Tohoku-oki earthquake tsunami in Sanriku Coast, a continuous rocky ria coast located in the northeast Japan, is investigated based on numerical modeling. In addition, the formation potential of sandy tsunami deposit is also investigated based on numerical modeling of sediment transport. Preliminary result of tsunami hydrodynamics showed that the waveform and amplification of the tsunami are clearly affected by the local bathymetry, which is associated with submerged topography formed during the last glacial stage. Although the tsunami height in the offshore of each bay is around 8.0 m, the tsunami height at the bay head was increased in different way. The amplification factor at the bay head was typically 2.0 among most of V-shaped narrow embayments; meanwhile the amplification factor is much lower than 1.0 at some cases. The preliminary result of the modeling of sediment transport predicted huge amount of sediments may be suspended into the water column, given that sandy deposit is available there. Massive erosion and deposition of sea bottom sediments may commonly take place in the bays. However, formation of onshore tsunami deposit differs from each other. Whether the suspended sediments

  18. Large Eddy Simulation for Wave Breaking in the Surf Zone

    Institute of Scientific and Technical Information of China (English)

    白玉川; 蒋昌波; 沈焕庭

    2001-01-01

    In this paper, the large eddy simulation method is used combined with the marker and cell method to study the wave propagation or shoaling and breaking process. As wave propagates into shallow water, the shoaling leads to the increase of wave height, and then at a certain position, the wave will be breaking. The breaking wave is a powerful agent for generating turbulence, which plays an important role in most of the fluid dynamic processes throughout the sarf zone, such as transformation of wave energy, generation of near-shore current and diffusion of materials. So a proper numerical model for describing the turbulence effect is needed. In this paper, a revised Smagorinsky subgrid-scale model is used to describe the turbulence effect. The present study reveals that the coefficient of the Smagorinsky model for wave propagation or breaking simulation may be taken as a varying function of the water depth and distance away from the wave breaking point. The large eddy simulation model presented in this paper has been used to study the propagation of the solitary wave in constant water depth and the shoaling of the non-breaking solitary wave on a beach. The model is based on large eddy simulation, and to track free-surface movements, the Tokyo University Modified Marker and Cell (TUMMAC) method is employed. In order to ensure the accuracy of each component of this wave mathematical model,several steps have been taken to verify calculated solutions with either analytical solutions or experimental data. For non-breaking waves, very accurate results are obtained for a solitary wave propagating over a constant depth and on a beach. Application of the model to cnoidal wave breaking in the surf zone shows that the model results are in good agreement with analytical solution and experimental data. From the present model results, it can be seen that the turbulent eddy viscosity increases from the bottom to the water surface in surf zone. In the eddy viscosity curve, there is a

  19. The Relationship Between Shoreline Change and Surf Zone Sand Thickness

    Science.gov (United States)

    Miselis, J. L.; McNinch, J. E.

    2002-12-01

    There is a lack of information concerning surf zone geologic processes and their relationship to shoreline behavior despite the consensus that the two are intimately linked. Variations in sand thickness over a highly irregular migration surface close to the shoreline may influence wave dynamics and sediment transport and thus may be connected to hotspot formation. A nearshore survey, spanning 40km from north of the USACE-FRF pier in Duck, NC to just north of Oregon Inlet, was conducted using an interferometric swath bathymetry system and a chirp sub-bottom profiler. The study was conducted within 1km of the shore (in the surf zone) to investigate the processes that may be responsible for the behavior of shoreline hotspots in the area. The topmost reflector and the seafloor of the seismic profile were digitized and the depth difference between them was calculated. Though no ground truths were done in the survey area, cores collected from just north of the site suggest that the topmost reflector is a pre-modern ravinement surface (cohesive muds with layers of sand and gravel) upon which the Holocene sands migrate. An isopach map was generated and shows that the layer of sand above the first sub-bottom reflector is very thin and in some places, exposed. There are many variables that may influence hotspot behavior, including bar position and wave conditions, however, the purpose of this study is to determine if there is a spatial correlation between a thin or absent (exposed reflector) nearshore sand layer and the presence of a shoreline hotspot. In an area associated with a hotspot approximately 14km south of the USACE-FRF pier in Duck, the maximum thickness of Holocene sands was less than 2.5m. The average thickness was less than 1m (0.705m). Thicknesses that were less than 0.2m were classified as areas where the reflector was exposed and accounted for 5 percent of those calculated. It seems the thin layer of sand may represent a deficient nearshore sand source

  20. Face Recognition System based on SURF and LDA Technique

    Directory of Open Access Journals (Sweden)

    Narpat A. Singh

    2016-02-01

    Full Text Available In the past decade, Improve the quality in face recognition system is a challenge. It is a challenging problem and widely studied in the different type of imag-es to provide the best quality of faces in real life. These problems come due to illumination and pose effect due to light in gradient features. The improvement and optimization of human face recognition and detection is an important problem in the real life that can be handles to optimize the error rate, accuracy, peak signal to noise ratio, mean square error, and structural similarity Index. Now-a-days, there several methods are proposed to recognition face in different problem to optimize above parameters. There occur many invariant changes in hu-man faces due to the illumination and pose variations. In this paper we proposed a novel method in face recogni-tion to improve the quality parameters using speed up robust feature and linear discriminant analysis for opti-mize result. SURF is used for feature matching. In this paper, we use linear discriminant analysis for the edge dimensions reduction to live faces from our data-sets. The proposed method shows the better result as compare to the previous result on the basis of comparative analysis because our method show the better quality and better results in live images of face.

  1. Large herbivores surf waves of green-up during spring.

    Science.gov (United States)

    Merkle, Jerod A; Monteith, Kevin L; Aikens, Ellen O; Hayes, Matthew M; Hersey, Kent R; Middleton, Arthur D; Oates, Brendan A; Sawyer, Hall; Scurlock, Brandon M; Kauffman, Matthew J

    2016-06-29

    The green wave hypothesis (GWH) states that migrating animals should track or 'surf' high-quality forage at the leading edge of spring green-up. To index such high-quality forage, recent work proposed the instantaneous rate of green-up (IRG), i.e. rate of change in the normalized difference vegetation index over time. Despite this important advancement, no study has tested the assumption that herbivores select habitat patches at peak IRG. We evaluated this assumption using step selection functions parametrized with movement data during the green-up period from two populations each of bighorn sheep, mule deer, elk, moose and bison, totalling 463 individuals monitored 1-3 years from 2004 to 2014. Accounting for variables that typically influence habitat selection for each species, we found seven of 10 populations selected patches exhibiting high IRG-supporting the GWH. Nonetheless, large herbivores selected for the leading edge, trailing edge and crest of the IRG wave, indicating that other mechanisms (e.g. ruminant physiology) or measurement error inherent with satellite data affect selection for IRG. Our evaluation indicates that IRG is a useful tool for linking herbivore movement with plant phenology, paving the way for significant advancements in understanding how animals track resource quality that varies both spatially and temporally.

  2. Surfing through hyperspace understanding higher universes in six easy lessons

    CERN Document Server

    Pickover, Clifford A

    1999-01-01

    Do a little armchair time-travel, rub elbows with a four-dimensional intelligent life form, or stretch your mind to the furthest corner of an uncharted universe. With this astonishing guidebook, Surfing Through Hyperspace, you need not be a mathematician or an astrophysicist to explore the all-but-unfathomable concepts of hyperspace and higher-dimensional geometry. No subject in mathematics has intrigued both children and adults as much as the idea of a fourth dimension. Philosophers and parapsychologists have meditated on this mysterious space that no one can point to but may be all around us. Yet this extra dimension has a very real, practical value to mathematicians and physicists who use it every day in their calculations. In the tradtion of Flatland, and with an infectious enthusiasm, Clifford Pickover tackles the problems inherent in our 3-D brains trying to visualize a 4-D world, muses on the religious implications of the existence of higher-dimensional consciousness, and urges all curious readers to v...

  3. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    Science.gov (United States)

    Fritz, H. M.; Blount, C.

    2009-12-01

    penetrated more than 50 km inland along the Ayeyarwady delta while the maximum inundation of the Indian Ocean tsunami was 7 km at Banda Aceh. The extent of affected coast lines differs with 2 m storm surge thresholds of cyclone Nargis spanning 200 km of coastline, whereas East Africa was severely affected by the Indian Ocean tsunami at 5000 km from the epicenter. The available time window for dissemination of warnings and evacuations are significantly shorter for tsunamis than cyclones. Coastal protection in the Indian Ocean must be approached with community-based planning, education and awareness programs suited for a multi-hazard perspective. Ayeyarwady delta in Myanmar after cyclone Nargis: (a) Deforestation of mangroves for use as charcoal and land use as rice paddies; (b) Drinking water wells scoured in surf zone at Aya highlighting more than 100 m land loss due to coastal erosion.

  4. China's Tsunami Relief Effort

    Institute of Scientific and Technical Information of China (English)

    LuRUCAI

    2005-01-01

    THE earthquake and subsequent tsunami in South and Southeast Asia last December figuratively shook the whole world. International humanitarian aid immediately began to pour into devastated areas, not least from China,

  5. On the solitary wave paradigm for tsunamis

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.; Schäffer, Hemming Andreas

    2008-01-01

    Since the 1970s, solitary waves have commonly been used to model tsunamis especially in experimental and mathematical studies. Unfortunately, the link to geophysical scales is not well established, and in this work we question the geophysical relevance of this paradigm. In part 1, we simulate...... of finite amplitude solitary wave theory in laboratory studies of tsunamis. We conclude that order-of-magnitude errors in effective temporal and spatial duration occur when this theory is used as an approximation for long waves on a sloping bottom. In part 3, we investigate the phenomenon of disintegration...... of long waves into shorter waves, which has been observed e.g. in connection with the Indian Ocean tsunami in 2004. This happens if the front of the tsunami becomes sufficently steep, and as a result the front turns into an undular bore. We discuss the importance of these very short waves in connection...

  6. Tsunami Induced Scour Around Monopile Foundations

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Baykal, Cüneyt

    2017-01-01

    A fully-coupled (hydrodynamic and morphologic) numerical model is presented, and utilized for the simulation of tsunami-induced scour around a monopile structure, representative of those commonly utilized as offshore wind turbine foundations at moderate depths i.e. for depths less than 30 m...... a steady current, where a generally excellent match with experimentally-based results is found. A methodology for maintaining and assessing hydrodynamic and morphologic similarity between field and (laboratory) model-scale tsunami events is then presented, combining diameter-based Froude number similarity...... with that based on the dimensionless wave boundary layer thickness-to-monopile diameter ratio. This methodology is utilized directly in the selection of governing tsunami wave parameters (i.e. velocity magnitude and period) used for subsequent simulation within the numerical model, with the tsunami-induced flow...

  7. Tsunami wave suppression using submarine barriers

    Energy Technology Data Exchange (ETDEWEB)

    Fridman, Aleksei M [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation); Alperovich, Leonid S; Pustil' nik, Lev A; Shtivelman, D [Department of Geophysics and Planetary Sciences, Tel-Aviv University (Israel); Shemer, L; Liberzon, D [School of Mechanical Engineering, Tel-Aviv University (Israel); Marchuk, An G [Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2010-11-15

    Submerged barriers, single or double, can be used to greatly reduce the devastating effect of a tsunami wave according to a research flume study conducted at Tel Aviv University. (instruments and methods of investigation)

  8. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  9. ON THE FREQUENCY SPECTRUM OF TSUNAMI RADIATION

    Directory of Open Access Journals (Sweden)

    Frank C Lin

    2015-07-01

    Full Text Available We have measured the spectrum of the tsunami radiation at the following wavelengths: 0.73 μm, 10.8μm, 12.0μm, 6.8μm and 3.8 μm (or 13,698 cm-1, 925 cm-1, 833 cm-1, 1,470 cm-1 and 2,631 cm-1 in wave numbers. By comparing with infrared spectroscopic measurements of water, we are able to identify these transitions corroborating our hypothesis that the radiation originates from the transition of vibrational quantum energy levels of water molecules in aggregate. We have also repeated our previous study of the decay rate of tsunamis for a different tsunami. An estimate of the intensity of the tsunami radiation is made.

  10. The Redwood Coast Tsunami Work Group: Promoting Earthquake and Tsunami Resilience on California's North Coast

    Science.gov (United States)

    Dengler, L. A.; Henderson, C.; Larkin, D.; Nicolini, T.; Ozaki, V.

    2014-12-01

    In historic times, Northern California has suffered the greatest losses from tsunamis in the U.S. contiguous 48 states. 39 tsunamis have been recorded in the region since 1933, including five that caused damage. This paper describes the Redwood Coast Tsunami Work Group (RCTWG), an organization formed in 1996 to address the tsunami threat from both near and far sources. It includes representatives from government agencies, public, private and volunteer organizations, academic institutions, and individuals interested in working to reduce tsunami risk. The geographic isolation and absence of scientific agencies such as the USGS and CGS in the region, and relatively frequent occurrence of both earthquakes and tsunami events has created a unique role for the RCTWG, with activities ranging from basic research to policy and education and outreach programs. Regional interest in tsunami issues began in the early 1990s when there was relatively little interest in tsunamis elsewhere in the state. As a result, the group pioneered tsunami messaging and outreach programs. Beginning in 2008, the RCTWG has partnered with the National Weather Service and the California Office of Emergency Services in conducting the annual "live code" tsunami communications tests, the only area outside of Alaska to do so. In 2009, the RCTWG joined with the Southern California Earthquake Alliance and the Bay Area Earthquake Alliance to form the Earthquake Country Alliance to promote a coordinated and consistent approach to both earthquake and tsunami preparedness throughout the state. The RCTWG has produced and promoted a variety of preparedness projects including hazard mapping and sign placement, an annual "Earthquake - Tsunami Room" at County Fairs, public service announcements and print material, assisting in TsunamiReady community recognition, and facilitating numerous multi-agency, multidiscipline coordinated exercises, and community evacuation drills. Nine assessment surveys from 1993 to 2013

  11. Our fingerprint in tsunami deposits - anthropogenic markers as a new tsunami identification tool

    Science.gov (United States)

    Bellanova, P.; Schwarzbauer, J.; Reicherter, K. R.; Jaffe, B. E.; Szczucinski, W.

    2016-12-01

    Several recent geochemical studies have focused on the use of inorganic indicators to evaluate a tsunami origin of sediment in the geologic record. However, tsunami transport not only particulate sedimentary material from marine to terrestrial areas (and vice versa), but also associated organic material. Thus, tsunami deposits may be characterized by organic-geochemical parameters. Recently increased attention has been given to the use of natural organic substances (biomarkers) to identify tsunami deposits. To date no studies have been made investigating anthropogenic organic indicators in recent tsunami deposits. Anthropogenic organic markers are more sensitive and reliable markers compared to other tracers due to their specific molecular structural properties and higher source specificity. In this study we evaluate whether anthropogenic substances are useful indicators for determining whether an area has been inundated by a tsunami. We chose the Sendai Plain and Sanemoura and Oppa Bays, Japan, as study sites because the destruction of infrastructure by flooding released environmental pollutants (e.g., fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating large areas of the coastal zone during the 2011 Tohoku-oki tsunami. Organic compounds from the tsunami deposits are extracted from tsunami sediment and compared with the organic signature of unaffected pre-tsunami samples using gas chromatography-mass spectrometry (GS/MS) based analyses. For the anthropogenic markers, compounds such as soil derived pesticides (DDT), source specific PAHs, halogenated aromatics from industrial sources were detected and used to observe the inland extent and the impact of the Tohoku-oki tsunami on the coastal region around Sendai.

  12. The Inner Meaning of Outer Space: Human Nature and the Celestial Realm

    Directory of Open Access Journals (Sweden)

    Timothy L. Hubbard

    2008-06-01

    Full Text Available Kant argued that humans possess a priori knowledge of space; although his argument focused on a physics of bodies, it also has implications for a psychology of beings. Many human cultures organize stars in the night sky into constellations (i.e., impose structure; attribute properties, behaviors, and abilities to objects in the celestial realm (i.e., impose meaning; and use perceived regularity in the celestial realms in development of calendars, long-range navigation, agriculture, and astrology (i.e., seek predictability and control. The physical inaccessibility of the celestial realm allows a potent source of metaphor, and also allows projection of myths regarding origin and ascension, places of power, and dwelling places of gods, immortals, and other souls. Developments in astronomy and cosmology infl uenced views of human nature and the place of humanity in the universe, and these changes parallel declines in egocentrism with human development. Views regarding alleged beings (e.g., angels, extraterrestrials from the celestial realm (and to how communicate with such beings are anthropocentric and ignore evolutionary factors in physical and cognitive development. It is suggested that in considering views and uses of the celestial realm, we learn not just about the universe, but also about ourselves. *

  13. An Algorithm for Early Warning of Tsunami

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The Dec. 26, 2004 earthquake under the Indian Ocean floor triggered an outbreak of devastating tsunami,leading to incredible damages and tragic losses of life in littoral countries. Records showed that the killer tsunami reached the seaside Indonesian islands after half an hour, and within several hours it reached the beach lands of Sri Lanka, Thailand and other countries at the rim of the Ocean.

  14. The National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Bernard, E. N.

    2004-12-01

    The National Tsunami Hazard Mitigation Program (NTHMP) is a state/Federal partnership that was created to reduce the impacts of tsunamis to U.S. Coastal areas. It is a coordinated effort between the states of Alaska, California, Hawaii, Oregon, and Washington and four Federal agencies: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), the U.S. Geological Survey (USGS), and the National Science Foundation (NSF). NOAA has led the effort to forge a solid partnership between the states and the Federal agencies because of it's responsibility to provide tsunami warning services to the nation. The successful partnership has established a mitigation program in each state that is developing tsunami resilient coastal communities. Inundation maps are now available for many of the coastal communities of Alaska, California, Hawaii, Oregon, and Washington. These maps are used to develop evacuation plans and, in the case of Oregon, for land use management. The NTHMP mapping technology is now being applied to FEMA's Flood Insurance Rate Maps (FIRMs). The NTHMP has successfully upgraded the warning capability in NOAA so that earthquakes can be detected within 5 minutes and tsunamis can be detected in the open ocean in real time. Deep ocean reporting of tsunamis has already averted one unnecessary evacuation of Hawaii and demonstrated that real-time tsunami forecasting is now possible. NSF's new Network for Earthquake Engineering (NEES) program has agreed to work with the NTHMP to focus tsunami research on national needs. An overview of the NTHMP will be given including a discussion of accomplishments and a progress report on NEES and FIRM activities.

  15. Tsunami simulation method initiated from waveforms observed by ocean bottom pressure sensors for real-time tsunami forecast; Applied for 2011 Tohoku Tsunami

    Science.gov (United States)

    Tanioka, Yuichiro

    2017-04-01

    After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami

  16. Quakes and tsunamis detected by GOCE

    Science.gov (United States)

    Garcia, Raphael F.; Doornbos, Eelco; Bruinsma, Sean; Hebert, Hélène

    2014-05-01

    The aerodynamic accelerations measured by GOCE are used to calculate air density variations and air velocity estimates along GOCE orbit track. The detection of infrasonic waves generated by seismic surface waves and gravity waves generated by tsunamis are presented for earthquakes and tsunamis generated by the great Tohoku quake (11/03/2011). For the seismic/infrasonic waves, a wave propagation modelling is presented and synthetic data are compared to GOCE measurements. The travel time and amplitude discrepancies are discussed in terms of lateral velocity variations in the solid Earth and the atmosphere. For the tsunami/gravity waves, a plane wave analysis is performed and relations between vertical velocity, cross-track velocity and density variations are deduced. From theoretical relations between air density, and vertical and horizontal velocities inside the gravity wave, we demonstrate that the measured perturbations are consistent with a gravity wave generated by the tsunami, and provide a way to estimate the propagation azimuth of the gravity wave. By using these relations, an indicator of gravity wave presence is constructed. It will allow to scan the GOCE data set to search for gravity wave crossings. This study demonstrates that very low earth orbit spacecraft with high-resolution accelerometers are able to detect atmospheric waves generated by the tectonic activity. Such spacecraft may supply additional data to tsunami alert systems in order to validate some tsunami alerts.

  17. Tsunamis vs meteotsunamis at the Balearic Islands

    Science.gov (United States)

    Monserrat, Sebastian; Mar Vich, Maria-Del

    2010-05-01

    Tsunamis and meteotsunamis have a very similar behaviour near the coast, being both strongly affected by the topography. Despite they have a clear different origin: seismic (tsunamis) and atmospheric disturbances (meteotsunamis), once generated, they present many similarities, particularly when recorded at the coast due to the strong influence of coastal resonance effects. But propagation over the shelf may be somehow different. The long wave generated after the eartquake propagates freely without any additional forcing and the meteotsunami requires some resonance process between the atmosphere and the ocean in order to optimally transfer the atmospheric energy into the ocean. Meteotsunamis are a very common phenomenon in the region of the Balearic Islands (western Mediterranean) where they are locally known as 'rissaga' but this region is not sismically active and tsunamis only occur in very rare ocasions. However, On 21 May 2003 a submarine earthquake occurred near Algiers producing a tsunami that propagated northward and reached the Balearic Islands and the Levantine coast of the Iberian Peninsula. This event represents a unique oportunity to compare tsunami and meteotsunami characteristics in this region. We separate source and topographic effects from coastal measurements during the tsunami generated in May 2003 and during some meteotsunamis recorded in the region this year. Available data allow to investigating the response of different events at the same coastal station and to compare them with the behaviour of the same event at nearby stations.

  18. The excitation of tsunamis by deep earthquakes

    Science.gov (United States)

    Okal, Emile A.

    2017-04-01

    Motivated by the detection of a millimetric tsunami following the deep earthquake of 2013 May 24 in the Sea of Okhotsk (depth 603 km; record moment M0 = 3.95 × 1028 dyn cm), we present a number of theoretical studies of the influence of source depth, zs, on the excitation of tsunamis by dislocation sources. In the framework of the static deformation of an elastic half-space, we show that the energy available for tsunami excitation by a seismic source whose depth is significantly greater than source dimensions is expected to vary as M_0^2/z_{{s}}^2, in contrast to the classical scaling as M_0^{4/3} for shallow sources. This is verified by numerical simulations based on the MOST algorithm, which also confirm the interpretation of the millimetric signals observed on DART sensors during the 2013 event. The normal-mode formalism, which considers tsunamis as a special branch of the spheroidal oscillations of the Earth in the presence of a water layer at its surface, also predicts an M_0^2/z_{{s}}^2 scaling for point source double-couples, and confirms millimetric amplitudes in the geometry of the DART buoys having recorded the 2013 Okhotsk tsunami. A general investigation of potential tsunami excitation as a function of depth for realistic intermediate and deep sources suggests the admittedly remote possibility of damaging events if deep earthquakes even greater than the 2013 event could occur at the bottom of Wadati-Benioff zones.

  19. The 2014 Lake Askja rockslide-induced tsunami: Optimization of numerical tsunami model using observed data

    Science.gov (United States)

    Gylfadóttir, Sigríǧur Sif; Kim, Jihwan; Helgason, Jón Kristinn; Brynjólfsson, Sveinn; Höskuldsson, Ármann; Jóhannesson, Tómas; Harbitz, Carl Bonnevie; Løvholt, Finn

    2017-05-01

    A large rockslide was released from the inner Askja caldera into Lake Askja, Iceland, on 21 July 2014. Upon entering the lake, it caused a large tsunami that traveled about ˜3 km across the lake and inundated the shore with vertical runup measuring up to 60-80 m. Following the event, comprehensive field data were collected, including GPS measurements of the inundation and multibeam echo soundings of the lake bathymetry. Using this exhaustive data set, numerical modeling of the tsunami has been conducted using both a nonlinear shallow water model and a Boussinesq-type model that includes frequency dispersion. To constrain unknown landslide parameters, a global optimization algorithm, Differential Evolution, was employed, resulting in a parameter set that minimized the deviation from measured inundation. The tsunami model of Lake Askja is the first example where we have been able to utilize field data to show that frequency dispersion is needed to explain the tsunami wave radiation pattern and that shallow water theory falls short. We were able to fit the trend in tsunami runup observations around the entire lake using the Boussinesq model. In contrast, the shallow water model gave a different runup pattern and produced pronounced offsets in certain areas. The well-documented Lake Askja tsunami thus provided a unique opportunity to explore and capture the essential physics of landslide tsunami generation and propagation through numerical modeling. Moreover, the study of the event is important because this dispersive nature is likely to occur for other subaerial impact tsunamis.

  20. Development of an online tool for tsunami inundation simulation and tsunami loss estimation

    Science.gov (United States)

    Srivihok, P.; Honda, K.; Ruangrassamee, A.; Muangsin, V.; Naparat, P.; Foytong, P.; Promdumrong, N.; Aphimaeteethomrong, P.; Intavee, A.; Layug, J. E.; Kosin, T.

    2014-05-01

    The devastating impacts of the 2004 Indian Ocean tsunami highlighted the need for an effective end-to-end tsunami early warning system in the region that connects the scientific components of warning with preparedness of institutions and communities to respond to an emergency. Essential to preparedness planning is knowledge of tsunami risks. In this study, development of an online tool named “INSPIRE” for tsunami inundation simulation and tsunami loss estimation is presented. The tool is designed to accommodate various accuracy levels of tsunami exposure data which will support the users to undertake preliminary tsunami risk assessment from the existing data with progressive improvement with the use of more detailed and accurate datasets. Sampling survey technique is introduced to improve the local vulnerability data with lower cost and manpower. The performance of the proposed methodology and the INSPIRE tool were tested against the dataset in Kamala and Patong municipalities, Phuket province, Thailand. The estimated building type ratios from the sampling survey show the satisfactory agreement with the actual building data at the test sites. Sub-area classification by land use can improve the accuracy of the building type ratio estimation. For the resulting loss estimation, the exposure data generated from detailed field survey can provide the agreeable results when comparing to the actual building damage recorded for the Indian Ocean tsunami event in 2004. However, lower accuracy exposure data derived from sampling survey and remote sensing can still provide a comparative overview of estimated loss.

  1. Inversion of tsunami height using ionospheric observations. The case of the 2012 Haida Gwaii tsunami

    Science.gov (United States)

    Rakoto, V.; Lognonne, P. H.; Rolland, L.

    2014-12-01

    Large and moderate tsunamis generate atmospheric internal gravity waves that are detectable using ionospheric monitoring. Indeed tsunamis of height 2cm and more in open ocean were detected with GPS (Rolland et al. 2010). We present a new method to retrieve the tsunami height from GPS-derived Total Electron Content observations. We present the case of the Mw 7.8 Haida Gwaii earthquake that occured the 28 october 2012 offshore the Queen Charlotte island near the canadian west coast. This event created a moderate tsunami of 4cm offshore the Hawaii archipelago. Equipped with more than 50 receivers it was possible to image the tsunami-induced ionospheric perturbation. First, our forward model leading to the TEC perturbation follows three steps : (1) 3D modeling of the neutral atmosphere perturbation by summation of tsunami-induced gravity waves normal modes. (2) Coupling of the neutral atmosphere perturbation with the ionosphere to retrieve the electron density perturbation. (3) Integration of the electron density perturbation along each satellite-station ray path. Then we compare this results to the data acquired by the Hawaiian GPS network. Finally, we examine the possibility to invert the TEC data in order to retrieve the tsunami height and waveform. For this we investigate the link between the height of tsunamis and the perturbed TEC in the ionosphere.

  2. On the mitigation of surf-riding by adjusting center of buoyancy in design stage

    Directory of Open Access Journals (Sweden)

    Liwei Yu

    2017-05-01

    Full Text Available High-speed vessels are prone to the surf-riding in adverse quartering seas. The possibility of mitigating the surf-riding of the ITTC A2 fishing vessel in the design stage is investigated using the 6-DOF weakly non-linear model developed for surf-riding simulations in quartering seas. The longitudinal position of the ship's center of buoyancy (LCB is chosen as the design parameter. The adjusting of LCB is achieved by changing frame area curves, and hull surfaces are reconstructed accordingly using the Radial Basis Function (RBF. Surf-riding motions in regular following seas for cases with different LCBs and Froude numbers are simulated using the numerical model. Results show that the surf-riding cannot be prevented by the adjusting of LCB. However, it occurs with a higher threshold speed when ship's center of buoyancy (COB is moved towards stem compared to moving towards stern, which is mainly due to the differences on wave resistance caused by the adjusting of LCB.

  3. KARAKTERISTIK, MOTIVASI DAN NIAT WISATAWAN SURFING DI PANTAI KECAMATAN KUTA UTARA

    Directory of Open Access Journals (Sweden)

    Ni Putu Windy Pramita

    2017-04-01

    Full Text Available Black sandy beach tourist attraction of Kuta Northen region that is Batu Bolong beach and Batu Mejan beach which has potential a beautifull oncean, sunset, sunbathing and surfingthe purpose of this study was to determinethe characteristics, motivasi, and intentions rating surfing at Kuta Northen beach. The method used observation, questionnaires, interviews, literature study, and documentation. 213 respondens rating surfing with quantitative descriptive and regression linier analisys. The result obtained in this study are based on age characteristics surfing travelers will see the most travelers age between 18-29 years, male gender, country of origin Australia, and is a businessman, a master degree educational level, and marital status is not married. Surfing tourist motivation using push and pull factor with the highest scores on the social interaction. And Intention surfing tourist with the highest score there is positive world of mouth with Variabel tourist have the effect of 13,20% with a probability level of sig. 0,000, the motivation positive and significant efeect on the intention tourist but in small quantities. Therefore to improve the intention tourist come to the beach district of north kuta from the motivation pull and push should also improve the quality of beaches such as keeping the beach becomes the most importans thing that will directly make tourist feel comfortable. advice for managers is to add a lifeguard to keep the beach.

  4. Factors affecting surf zone phytoplankton production in Southeastern North Carolina, USA

    KAUST Repository

    Cahoon, Lawrence B.

    2017-07-15

    Abstract: The biomass and productivity of primary producers in the surf zone of the ocean beach at Wrightsville Beach, North Carolina, USA, were measured during all seasons, along with environmental parameters and nutrient levels. Variation in biomass (chlorophyll a) was associated with temperature. Primary production (PP), measured by in situ 14-C incubations, was a function of chlorophyll a, tide height at the start of incubations, and rainfall in the preceding 24-hr period. Biomass-normalized production (PB) was also a function of tide height and rainfall in the preceding 24-hr period. We interpreted these results as evidence of surf production 1) as combined contributions of phytoplankton and suspended benthic microalgae, which may confound application of simple P-E models to surf zone production, and 2) being regulated by nutrient source/supply fluctuations independently from other factors. Surf zone biomass and production levels are intermediate between relatively high estuarine values and much lower coastal ocean values. Surf zone production may represent an important trophic connection between these two important ecosystems.

  5. Computing OpenSURF on OpenCL and General Purpose GPU

    Directory of Open Access Journals (Sweden)

    Wanglong Yan

    2013-10-01

    Full Text Available Speeded-Up Robust Feature (SURF algorithm is widely used for image feature detecting and matching in computer vision area. Open Computing Language (OpenCL is a framework for writing programs that execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors. This paper introduces how to implement an open-sourced SURF program, namely OpenSURF, on general purpose GPU by OpenCL, and discusses the optimizations in terms of the thread architectures and memory models in detail. Our final OpenCL implementation of OpenSURF is on average 37% and 64% faster than the OpenCV SURF v2.4.5 CUDA implementation on NVidia's GTX660 and GTX460SE GPUs, repectively. Our OpenCL program achieved real-time performance (>25 Frames Per Second for almost all the input images with different sizes from 320*240 to 1024*768 on NVidia's GTX660 GPU, NVidia's GTX460SE GPU and AMD's Radeon HD 6850 GPU. Our OpenCL approach on NVidia's GTX660 GPU is more than 22.8 times faster than its original CPU version on Intel's Dual-Core E5400 2.7G on average.

  6. Computing OpenSURF on OpenCL and General Purpose GPU

    Directory of Open Access Journals (Sweden)

    Wanglong Yan

    2013-10-01

    Full Text Available Speeded-Up Robust Feature (SURF algorithm is widely used for image feature detecting and matching in computer vision area. Open Computing Language (OpenCL is a framework for writing programs that execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors. This paper introduces how to implement an open-sourced SURF program, namely OpenSURF, on general purpose GPU by OpenCL, and discusses the optimizations in terms of the thread architectures and memory models in detail. Our final OpenCL implementation of OpenSURF is on average 37% and 64% faster than the OpenCV SURF v2.4.5 CUDA implementation on NVidia’s GTX660 and GTX460SE GPUs, repectively. Our OpenCL program achieved real-time performance (>25 Frames Per Second for almost all the input images with different sizes from 320*240 to 1024*768 on NVidia’s GTX660 GPU, NVidia’s GTX460SE GPU and AMD’s Radeon HD 6850 GPU. Our OpenCL approach on NVidia’s GTX660 GPU is more than 22.8 times faster than its original CPU version on Intel’s Dual-Core E5400 2.7G on average.

  7. Measuring and modeling suspended sediment concentration profiles in the surf zone

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Time-averaged suspended sediment concentration profiles across the surf zone were measured in a large-scale three-dimensional movable bed laboratory facility (LSTF:Large-scale Sediment Transport Facility). Sediment suspension under two different types of breaking waves, spilling and plunging breakers, was investigated. The magnitudes and shapes of the concentration profiles varied substantially at different locations across the surf zone, reflecting the different intensities of breaking-induced turbulence. Sediment sus- pension at the energetic plunging breaker-line was much more active, resulting in nearly homogeneous concentration profiles throughout most of the water column, as compared to the reminder of the surf zone and at the spilling breaker-line. Four suspended sediment concentration models were examined based on the LSTF data, including the mixing turbulence length approach, segment eddy viscosity model, breaking-induced wave-energy dissipation approach, and a combined breaking and turbulence length model developed by this study. Neglecting the breaking-induced turbulence and subsequent sediment mixing, suspended sediment concentration models failed to predict the across-shore variations of the sediment suspension, especially at the plunging breaker-line. Wave-energy dissipation rate provided an accurate method for estimating the intensity of turbulence generated by wave breaking. By incorporating the breaking-induced turbulence, the combined breaking and turbulence length model reproduced the across-shore variation of sediment suspension in the surf zone. The combined model reproduced the measured time-averaged suspended sediment concentration profiles reasonably well across the surf zone.

  8. Tsunamis

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  9. Tsunamis

    Science.gov (United States)

    ... underwater disturbance such as an earthquake , landslide , volcanic eruption , or meteorite. Earthquake-induced movement of the ocean ... Emergency Alerts Active Shooter Bioterrorism Chemical Emergencies Cyber Security Drought Earthquakes Explosions Extreme Heat Floods Hazardous Materials ...

  10. TRIDEC Natural Crisis Management Demonstrator for Tsunamis

    Science.gov (United States)

    Hammitzsch, M.; Necmioglu, O.; Reißland, S.; Lendholt, M.; Comoglu, M.; Ozel, N. M.; Wächter, J.

    2012-04-01

    The management of natural crises is an important application field of the technology developed in the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme. TRIDEC is based on the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS) providing a service platform for both sensor integration and warning dissemination. In TRIDEC new developments in Information and Communication Technology (ICT) are used to extend the existing platform realising a component-based technology framework for building distributed tsunami warning systems for deployment, e.g. in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region. The Kandilli Observatory and Earthquake Research Institute (KOERI), representing the Tsunami National Contact (TNC) and Tsunami Warning Focal Point (TWFP) for Turkey, is one of the key partners in TRIDEC. KOERI is responsible for the operation of a National Tsunami Warning Centre (NTWC) for Turkey and establishes Candidate Tsunami Watch Provider (CTWP) responsibilities for the NEAM region. Based on this profound experience, KOERI is contributing valuable requirements to the overall TRIDEC system and is responsible for the definition and development of feasible tsunami-related scenarios. However, KOERI's most important input focuses on testing and evaluating the TRIDEC system according to specified evaluation and validation criteria. The TRIDEC system will be implemented in three phases, each with a demonstrator. Successively, the demonstrators are addressing challenges, such as the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources with accelerated generation of large volumes of data. These include sensor systems, geo-information repositories, simulation tools and data fusion tools

  11. Solar winds surfs waves in the Sun's atmosphere!

    Science.gov (United States)

    1999-07-01

    opposite ends after threading it through an object, like a ring. If one person wiggles the string rapidly up and down, waves form in the string that move toward the person at the other end. The ring will "surf" these waves and move toward the other person as well. Try it! "Even with this major discovery, there are questions left to answer. The observations have made it abundantly clear that heavy particles like oxygen 'surf' on the waves, and there is also mounting evidence that waves are responsible for accelerating the hydrogen atoms, the most common constituent of the solar wind. Future observations are needed to establish this fact. Many other kinds of particles, such as helium (second most common) have never been observed in the accelerating part of the corona, and new observations are also needed to refine our understanding of how the waves interact with the solar wind as a whole," said Dr. Steven Cranmer of the Harvard-Smithsonian Center for Astrophysics, lead author of the research to be published in the Astrophysical Journal*. Nevertheless, SOHO has again been able to reveal another of the Sun's mysteries: "This is another triumph for SOHO, stealing a long-held secret from our Sun", said Dr Martin Huber, Head of ESA Space Science Department and co-investigator for UVCS. *Ref. Article by S.Cranmer, G.B. Field and J.L. Kohl on Astrophysical Journal ( June 20, Vol 518, p. 937-947) available on the web at: http://www.journals.uchicago.edu/ApJ/journal/issues/ApJ/v518n2/39802/sc0.html

  12. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  13. Port San Luis, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port San Luis, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. Introduction to "Global Tsunami Science: Past and Future, Volume II"

    Science.gov (United States)

    Rabinovich, Alexander B.; Fritz, Hermann M.; Tanioka, Yuichiro; Geist, Eric L.

    2017-08-01

    Twenty-two papers on the study of tsunamis are included in Volume II of the PAGEOPH topical issue "Global Tsunami Science: Past and Future". Volume I of this topical issue was published as PAGEOPH, vol. 173, No. 12, 2016 (Eds., E. L. Geist, H. M. Fritz, A. B. Rabinovich, and Y. Tanioka). Three papers in Volume II focus on details of the 2011 and 2016 tsunami-generating earthquakes offshore of Tohoku, Japan. The next six papers describe important case studies and observations of recent and historical events. Four papers related to tsunami hazard assessment are followed by three papers on tsunami hydrodynamics and numerical modelling. Three papers discuss problems of tsunami warning and real-time forecasting. The final set of three papers importantly investigates tsunamis generated by non-seismic sources: volcanic explosions, landslides, and meteorological disturbances. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.

  15. Tsunamis: stochastic models of occurrence and generation mechanisms

    Science.gov (United States)

    Geist, Eric L.; Oglesby, David D.

    2014-01-01

    The devastating consequences of the 2004 Indian Ocean and 2011 Japan tsunamis have led to increased research into many different aspects of the tsunami phenomenon. In this entry, we review research related to the observed complexity and uncertainty associated with tsunami generation, propagation, and occurrence described and analyzed using a variety of stochastic methods. In each case, seismogenic tsunamis are primarily considered. Stochastic models are developed from the physical theories that govern tsunami evolution combined with empirical models fitted to seismic and tsunami observations, as well as tsunami catalogs. These stochastic methods are key to providing probabilistic forecasts and hazard assessments for tsunamis. The stochastic methods described here are similar to those described for earthquakes (Vere-Jones 2013) and volcanoes (Bebbington 2013) in this encyclopedia.

  16. Evaluation of tsunami risk in the Lesser Antilles

    Directory of Open Access Journals (Sweden)

    N. Zahibo

    2001-01-01

    Full Text Available The main goal of this study is to give the preliminary estimates of the tsunami risks for the Lesser Antilles. We investigated the available data of the tsunamis in the French West Indies using the historical data and catalogue of the tsunamis in the Lesser Antilles. In total, twenty-four (24 tsunamis were recorded in this area for last 400 years; sixteen (16 events of the seismic origin, five (5 events of volcanic origin and three (3 events of unknown source. Most of the tsunamigenic earthquakes (13 occurred in the Caribbean, and three tsunamis were generated during far away earthquakes (near the coasts of Portugal and Costa Rica. The estimates of tsunami risk are based on a preliminary analysis of the seismicity of the Caribbean area and the historical data of tsunamis. In particular, we investigate the occurrence of historical extreme runup tsunami data on Guadeloupe, and these data are revised after a survey in Guadeloupe.

  17. Palm Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Palm Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Haleiwa, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Haleiwa, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Charlotte Amalie, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Charlotte Amalie, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  20. Key West, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Key West, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  2. Monterey, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monterey, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  3. Pago Pago, American Samoa Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pago Pago, American Samoa Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  4. Ponce, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ponce, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  5. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  6. Point Reyes, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Point Reyes, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  7. Port Orford, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Orford, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  8. Seward, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  9. CO-OPS 1-minute Raw Tsunami Water Level Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CO-OPS has been involved with tsunami warning and mitigation since the Coast & Geodetic Survey started the Tsunami Warning System in 1948 to provide warnings to...

  10. Nawiliwili, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nawiliwili, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  11. Montauk, New York Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Montauk, New York Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  12. San Juan, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Juan, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  13. Morehead City, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Morehead City, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. Arecibo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arecibo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  15. Toke Point, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Toke Point, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  16. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  17. Hilo, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hilo, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  18. Craig, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Craig, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  19. Ocean City, Maryland Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean City, Maryland Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  20. Virginia Beach Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virginia Beach, Virginia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  1. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  2. Deep-ocean Assessment and Reporting of Tsunamis (DART) Stations

    Data.gov (United States)

    Department of Homeland Security — As part of the U.S. National Tsunami Hazard Mitigation Program (NTHMP), the Deep Ocean Assessment and Reporting of Tsunamis (DART(R)) Project is an ongoing effort to...

  3. Keauhou, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Keauhou, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  4. Honolulu, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Honolulu, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  5. San Diego, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Diego, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  6. Adak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Adak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  7. Santa Barbara, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Santa Barbara, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  8. Garibaldi, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Garibaldi, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  9. Kihei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kihei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  10. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  11. Los Angeles, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Los Angeles, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  12. Kahului, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kahului, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  13. British Columbia, Canada Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Columbia, Canada Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. Daytona Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Daytona Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  15. Mayaguez, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mayaguez, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  16. Cape Hatteras, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cape Hatteras, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  17. Savannah, Georgia Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Savannah, Georgia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Myrtle Beach, South Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Myrtle Beach, South Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  19. San Francisco, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Francisco, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  20. Homer, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Homer, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  1. Santa Monica, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Santa Monica, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  2. King Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The King Cove, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  3. Portland, Maine Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Portland, Maine Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  4. La Push, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The La Push, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  5. Atlantic City, New Jersey Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic City, New Jersey Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  6. Seaside, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seaside, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Atka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atka, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  8. Fajardo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Fajardo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  9. Nantucket, Massachusetts Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nantucket, Massachusetts Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  10. Crescent City, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crescent City, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  11. Chignik, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Chignik, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  12. Kawaihae, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kawaihae, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  13. Port Angeles, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Angeles, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. Nikolski, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nikolski, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  15. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  16. Sand Point, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sand Point, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  17. Pearl Harbor, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pearl Harbor, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Christiansted, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Christiansted, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  19. Florence, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florence, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  20. Hanalei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hanalei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Lahaina, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Lahaina, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  2. Wake Island Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  3. Kailua-Kona, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kailua-Kona, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  4. Eureka, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Eureka, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  5. Apra Harbor, Guam Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apra Harbor, Guam Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  6. Westport, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Westport, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  7. Neah Bay, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Neah Bay, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  8. SURF'S UP! – Protein classification by surface comparisons

    Indian Academy of Sciences (India)

    Joanna M Sasin; Adam Godzik; Janusz M Bujnicki

    2007-01-01

    Large-scale genome sequencing and structural genomics projects generate numerous sequences and structures for ‘hypothetical’ proteins without functional characterizations. Detection of homology to experimentally characterized proteins can provide functional clues, but the accuracy of homology-based predictions is limited by the paucity of tools for quantitative comparison of diverging residues responsible for the functional divergence. SURF’S UP! is a web server for analysis of functional relationships in protein families, as inferred from protein surface maps comparison according to the algorithm. It assigns a numerical score to the similarity between patterns of physicochemical features (charge, hydrophobicity) on compared protein surfaces. It allows recognizing clusters of proteins that have similar surfaces, hence presumably similar functions. The server takes as an input a set of protein coordinates and returns files with ``spherical coordinates” of proteins in a PDB format and their graphical presentation, a matrix with values of mutual similarities between the surfaces, and the unrooted tree that represents the clustering of similar surfaces, calculated by the neighbor-joining method. SURF’S UP! facilitates the comparative analysis of physicochemical features of the surface, which are the key determinants of the protein function. By concentrating on coarse surface features, SURF’S UP! can work with models obtained from comparative modelling. Although it is designed to analyse the conservation among homologs, it can also be used to compare surfaces of non-homologous proteins with different three-dimensional folds, as long as a functionally meaningful structural superposition is supplied by the user. Another valuable characteristic of our method is the lack of initial assumptions about the functional features to be compared. SURF’S UP! is freely available for academic researchers at http://asia.genesilico.pl/surfs_up/.

  9. Scaled photographs of surf over the full range of breaker sizes on the north shore of Oahu and Jaws, Maui, Hawaiian Islands (NODC Accession 0001753)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital surf photographs were scaled using surfers as height benchmarks to estimate the size of the breakers. Historical databases for surf height in Hawaii are...

  10. Synthetic tsunami waveform catalogs with kinematic constraints

    Science.gov (United States)

    Baptista, Maria Ana; Miranda, Jorge Miguel; Matias, Luis; Omira, Rachid

    2017-07-01

    In this study we present a comprehensive methodology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability of earthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green's functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores-Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.

  11. TWO DECADES OF GLOBAL TSUNAMIS - 1982-2002

    Directory of Open Access Journals (Sweden)

    Patricia A. Lockridge

    2003-01-01

    Full Text Available The principal purpose of this catalog is to extend the cataloging of tsunami occurrences and effects begun in 1988 by Soloviev, Go, and Kim (Catalog of Tsunamis in the Pacific 1969 to 1982 to the period extending from 1982 through 2001, and to provide a convenient source of tsunami data and a reference list for tsunamis in this period. While the earlier catalogs by Soloviev were restricted to the Pacific region including Indonesia, this catalog reports on known tsunamis worldwide. The year 1982 was included in this catalog because the data in the Soloviev and Go catalog for that year was incomplete.The Pacific is by far the most active zone for tsunami generation but tsunamis have been generated in many other bodies of water including the Caribbean and Mediterranean Seas, and Indian and Atlantic Oceans and other bodies of water. There were no known tsunamis generated in the Atlantic Ocean in the period from 1982 to 2001 but they have occurred there historically. North Atlantic tsunamis include the tsunami associated with the 1755 Lisbon earthquake that caused up to 60,000 fatalities in Portugal, Spain, and North Africa. This tsunami generated waves of up to seven meters in height into the Caribbean. Since 1498 the Caribbean has had 37 verified tsunamis (local and remote sourced plus an additional 52 events that may have resulted in tsunamis. The death toll from these events is about 9,500 fatalities. In 1929, the Grand Banks tsunami off the coast of Labrador generated waves of up to 15 meters in Newfoundland, Canada, killing 26 people, and the waves were recorded along the New Jersey coast. Smaller Atlantic coast tsunamis have been generated in the Norwegian fjords, Iceland, and off the coast of the New England states of the United States. Major tsunamis have also occurred in the Marmara Sea in Turkey associated with the Izmit earthquake of August 17, 1999.

  12. Streamlining Tsunami Messages (e.g., Warnings) of the US National Tsunami Warning Center, Palmer, Alaska

    Science.gov (United States)

    Gregg, C. E.; Sorensen, J. H.; Vogt Sorensen, B.; Whitmore, P.; Johnston, D. M.

    2016-12-01

    Spurred in part by world-wide interest in improving warning messaging for and response to tsunamis in the wake of several catastrophic tsunamis since 2004 and growing interest at the US National Weather Service (NWS) to integrate social science into their Tsunami Program, the NWS Tsunami Warning Centers in Alaska and Hawaii have made great progress toward enhancing tsunami messages. These include numerous products, among them being Tsunami Warnings, Tsunami Advisories and Tsunami Watches. Beginning in 2010 we have worked with US National Tsunami Hazard Mitigation Program (NTHMP) Warning Coordination and Mitigation and Education Subcommittee members; Tsunami Program administrators; and NWS Weather Forecast Officers to conduct a series of focus group meetings with stakeholders in coastal areas of Alaska, American Samoa, California, Hawaii, North Carolina, Oregon, US Virgin Islands and Washington to understand end-user perceptions of existing messages and their existing needs in message products. We also reviewed research literature on behavioral response to warnings to develop a Tsunami Warning Message Metric that could be used to guide revisions to tsunami warning messages of both warning centers. The message metric is divided into categories of Message Content, Style, Order, Formatting, and Receiver Characteristics. A sample message is evaluated by cross-referencing the message with the operational definitions of metric factors. Findings are then used to guide revisions of the message until the characteristics of each factor are met, whether the message is a full length or short message. Incrementally, this work contributed to revisions in the format, content and style of message products issued by the National Tsunami Warning Center (NTWC). Since that time, interest in short warning messages has continued to increase and in May 2016 the NTWC began efforts to revise message products to take advantage of recent NWS policy changes allowing use of mixed-case text

  13. Three factors to enlarge tsunami disaster in Indonesia after the 2004 Indian Ocean tsunami

    Science.gov (United States)

    Sugimoto, M.; Satake, K.

    2010-12-01

    The 2004 Indian Ocean Tsunami revealed Indonesia’s vulnerability for natural hazards to the international society. Various education programs of disaster risk reduction have been supported by many international agencies, and both students and community have gradually learned about natural hazards in Indonesia. After five years have passed, it is entering into a new phase. We started a three-year (2009-2011) multi-disciplinary cooperative research project as a part of ‘Science and Technology Research Partnership for Sustainable Development (SATREPS)’ supported by the Japanese government. The project title is ‘Multi-disciplinary hazard reduction from earthquake and volcanoes in Indonesia’. Three factors contributing to earthquake and tsunami disasters in Indonesia are revealed through our research. Firstly, tsunami hazard is still high in Indonesia. Earthquakes have frequently occurred in West Sumatra after the 2004 Indian Ocean Tsunami. In Padang, our research field, a possibility of a great interplate earthquake with tsunami in the near future has been pointed out. Secondly, social infrastructure is very vulnerable. During the recent earthquakes such as the 2009 Padang earthquake, many people were killed by collapse of non-resistance buildings. For the future tsunami hazard, many building had been identified for vertical evacuation, but many candidate evacuation buildings were collapsed during the 2009 earthquake. The last factor is people’s incorrect knowledge about natural hazards. People misunderstand that tsunami comes with initial receding waves through the fact of the 2004 Indian Ocean Tsunami in Indonesia. Every time large earthquake occurs, people go to seaside to check the low tide, especially in the 2004 tsunami disaster area such as Aceh. Our counterpart NGO has patiently struggled with such misunderstanding in Padang and succeeded to educate people. Because of the buildings’ vulnerability, the NGO put priority on horizontal evacuation. The

  14. Community exposure to tsunami hazards in California

    Science.gov (United States)

    Wood, Nathan J.; Ratliff, Jamie; Peters, Jeff

    2013-01-01

    Evidence of past events and modeling of potential events suggest that tsunamis are significant threats to low-lying communities on the California coast. To reduce potential impacts of future tsunamis, officials need to understand how communities are vulnerable to tsunamis and where targeted outreach, preparedness, and mitigation efforts may be warranted. Although a maximum tsunami-inundation zone based on multiple sources has been developed for the California coast, the populations and businesses in this zone have not been documented in a comprehensive way. To support tsunami preparedness and risk-reduction planning in California, this study documents the variations among coastal communities in the amounts, types, and percentages of developed land, human populations, and businesses in the maximum tsunami-inundation zone. The tsunami-inundation zone includes land in 94 incorporated cities, 83 unincorporated communities, and 20 counties on the California coast. According to 2010 U.S. Census Bureau data, this tsunami-inundation zone contains 267,347 residents (1 percent of the 20-county resident population), of which 13 percent identify themselves as Hispanic or Latino, 14 percent identify themselves as Asian, 16 percent are more than 65 years in age, 12 percent live in unincorporated areas, and 51 percent of the households are renter occupied. Demographic attributes related to age, race, ethnicity, and household status of residents in tsunami-prone areas demonstrate substantial range among communities that exceed these regional averages. The tsunami-inundation zone in several communities also has high numbers of residents in institutionalized and noninstitutionalized group quarters (for example, correctional facilities and military housing, respectively). Communities with relatively high values in the various demographic categories are identified throughout the report. The tsunami-inundation zone contains significant nonresidential populations based on 2011 economic

  15. A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF.

    Directory of Open Access Journals (Sweden)

    Nouman Ali

    Full Text Available With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR, high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT and Speeded-Up Robust Features (SURF. The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.

  16. A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF.

    Science.gov (United States)

    Ali, Nouman; Bajwa, Khalid Bashir; Sablatnig, Robert; Chatzichristofis, Savvas A; Iqbal, Zeshan; Rashid, Muhammad; Habib, Hafiz Adnan

    2016-01-01

    With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.

  17. Environmental Awareness of Surf Tourists: A Case Study in the Algarve

    Directory of Open Access Journals (Sweden)

    Fabia Frank

    2015-06-01

    Full Text Available Even though surf tourism in Portugal is an economic activity with a steady growth rate, there are not many assessment studies available. Using a survey undertaken in surf camps located in the Vila do Bispo County, this study aims to analyse the environmental awareness of surf tourists in the Algarve. Through the New Environmental Paradigm (NEP scale it is shown that the environmental attitudes of respondents are strongly pro-ecological but also reveal some anthropocentric aspects. Tourists were asked about their willingness to pay for an accommodation tax earmarked for environmental protection in the Algarve. The results show that the large majority (86% would be willing to pay, which indicates a high environmental awareness. It is also found that the willingness to pay is related to the nationality, with respondents from Germany, Austria and Switzerland showing a higher willingness to pay.

  18. Loss-of-function mutations of SURF-1 are specifically associated with Leigh syndrome with cytochrome c oxidase deficiency.

    Science.gov (United States)

    Tiranti, V; Jaksch, M; Hofmann, S; Galimberti, C; Hoertnagel, K; Lulli, L; Freisinger, P; Bindoff, L; Gerbitz, K D; Comi, G P; Uziel, G; Zeviani, M; Meitinger, T

    1999-08-01

    Mutations of SURF-1, a gene located on chromosome 9q34, have recently been identified in patients affected by Leigh syndrome (LS), associated with deficiency of cytochrome c oxidase (COX), the terminal component of the mitochondrial respiratory chain. To investigate to what extent SURF-1 is responsible for human disorders because of COX deficiency, we undertook sequence analysis of the SURF-1 gene in 46 unrelated patients. We analyzed 24 COX-defective patients classified as having typical Leigh syndrome (LS(COX)), 6 patients classified as Leigh-like (LL(COX)) cases, and 16 patients classified as non-LS(COX) cases. Frameshift, stop, and splice mutations of SURF-1 were detected in 18 of 24 (75%) of the LS(COX) cases. No mutations were found in the LL(COX) and non-LS(COX) group of patients. Rescue of the COX phenotype was observed in transfected cells from patients harboring SURF-1 mutations, but not in transfected cell lines from 2 patients in whom no mutations were detected by sequence analysis. Loss of function of SURF-1 protein is specifically associated with LS(COX), although a proportion of LS(COX) cases must be the result of abnormalities in genes other than SURF-1. SURF-1 is the first nuclear gene to be consistently mutated in a major category of respiratory chain defects. DNA analysis can now be used to accurately diagnose LS(COX), a common subtype of Leigh syndrome.

  19. Heart Rate Responses of High School Students Participating in Surfing Physical Education.

    Science.gov (United States)

    Bravo, Michelle M; Cummins, Kevin M; Nessler, Jeff A; Newcomer, Sean C

    2016-06-01

    Despite the nation's rising epidemic of childhood obesity and diabetes, schools struggle to promote physical activities that help reduce risks for cardiovascular disease. Emerging data suggest that adopting novel activities into physical education (PE) curriculum may serve as an effective strategy for increasing physical activity in children. The purpose of this investigation was to characterize activity in the water and heart rates (HRs) of high school students participating in surf PE courses. Twenty-four male (n = 20) and female (n = 4) high school students (mean age = 16.7 ± 1.0 years) who were enrolled in surf PE courses at 2 high schools participated in this investigation. Daily measurements of surfing durations, average HR, and maximum HR were made on the students with HR monitors (PolarFT1) over an 8-week period. In addition, HR and activity in the water was evaluated during a single session in a subset of students (n = 11) using a HR monitor (PolarRCX5) and a video camera (Canon HD). Activity and HR were synchronized and evaluated in 5-second intervals during data analyses. The average duration that PE students participated in surfing during class was 61.7 ± 1.0 minutes. Stationary, paddling, wave riding, and miscellaneous activities comprised 42.7 ± 9.5, 36.7 ± 7.9, 2.9 ± 1.4, and 17.8 ± 11.4 percent of the surf session, respectively. The average and maximum HRs during these activities were 131.1 ± 0.9 and 177.2 ± 1.0 b·min, respectively. These data suggest that high school students participating in surf PE attained HRs and durations that are consistent with recommendations with cardiovascular fitness and health. In the future, PE programs should consider incorporating other action sports into their curriculum to enhance cardiovascular health.

  20. Forecasting scenarios of collision catastrophes produced by celestial body falls

    Science.gov (United States)

    Shor, V.; Kochetova, O.; Chernetenko, Y.; Zheleznov, N.; Deryugin, V.; Zaitsev, A.

    2014-07-01

    The subject under discussion arose in the course of developing a computer program, which gives the possibility for numerical and graphical modeling of the scenarios of catastrophes caused by collisions of cosmic bodies with the Earth. It is expected that this program can be used for computer-assisted training of the personnel of units of the Ministry for Emergency Situations in the case of a situation caused by the fall of a celestial body on the Earth. Also, it is anticipated that the program can be used in real situations when a dangerous body is discovered on an orbit leading to an imminent collision with the Earth. From the scientific point of view, both variants of use require solving of analogous tasks. In what follows, we discuss both variants. 1. The computation of the circumstances for a fall on the Earth (or approach within short distance) of a real body begins with the determination of its orbit from the observations available using the least-squares method. The mean square error of the representation of the observations on the base of the initial values of the coordinates and the velocities is computed, as well as their covariance matrix. Then, the trajectory of the body's motion is followed by numerical integration starting from the osculating epoch to the collision with the Earth or to its flyby. The computer program takes into account the various cases: at the initial moment, the body can move away from or approach the Earth, it can be outside the sphere of action or inside it. At the moment, when the body enters the sphere of action, the coordinates of the center of the dispersion ellipse on the target plane are computed as well as the dimensions of its axes. Using these data, the probability of collision with the Earth is calculated. Then, the point of penetration of the body into the Earth's atmosphere at a given height above the level of the Earth geoid is determined. In case the body is passing by the Earth, the minimum distance of the body from

  1. Development of Real-time Tsunami Inundation Forecast Using Ocean Bottom Tsunami Networks along the Japan Trench

    Science.gov (United States)

    Aoi, S.; Yamamoto, N.; Suzuki, W.; Hirata, K.; Nakamura, H.; Kunugi, T.; Kubo, T.; Maeda, T.

    2015-12-01

    In the 2011 Tohoku earthquake, in which huge tsunami claimed a great deal of lives, the initial tsunami forecast based on hypocenter information estimated using seismic data on land were greatly underestimated. From this lesson, NIED is now constructing S-net (Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench) which consists of 150 ocean bottom observatories with seismometers and pressure gauges (tsunamimeters) linked by fiber optic cables. To take full advantage of S-net, we develop a new methodology of real-time tsunami inundation forecast using ocean bottom observation data and construct a prototype system that implements the developed forecasting method for the Pacific coast of Chiba prefecture (Sotobo area). We employ a database-based approach because inundation is a strongly non-linear phenomenon and its calculation costs are rather heavy. We prepare tsunami scenario bank in advance, by constructing the possible tsunami sources, and calculating the tsunami waveforms at S-net stations, coastal tsunami heights and tsunami inundation on land. To calculate the inundation for target Sotobo area, we construct the 10-m-mesh precise elevation model with coastal structures. Based on the sensitivities analyses, we construct the tsunami scenario bank that efficiently covers possible tsunami scenarios affecting the Sotobo area. A real-time forecast is carried out by selecting several possible scenarios which can well explain real-time tsunami data observed at S-net from tsunami scenario bank. An advantage of our method is that tsunami inundations are estimated directly from the actual tsunami data without any source information, which may have large estimation errors. In addition to the forecast system, we develop Web services, APIs, and smartphone applications and brush them up through social experiments to provide the real-time tsunami observation and forecast information in easy way to understand toward urging people to evacuate.

  2. Hunting for Ancient Tsunamis in the Tropics

    Science.gov (United States)

    Atwater, B. F.

    2007-05-01

    Paleotsunami deposits may prove harder to find in tidal wetlands and beach-ridge plains around the tropical Indian Ocean than in temperate but otherwise comparable settings on the Pacific Rim. The reasons for this challenge are probably unrelated to tsunami size or recurrence. Estuarine marshes and grassy beach-ridge plains provide widespread opportunities for tsunamis to lay down preservable sand sheets in northeastern Japan, Kamchatka, the northwestern United States, and south-central Chile. The small plants of these lowlands offered little resistance to tsunami flow. Coseismic subsidence and net late Holocene submergence provided caps of tidal mud that help preserve the sand. By contrast in tidal wetlands overrun by the 2004 Indian Ocean tsunami, mangrove swamps and their inhibit the formation and preservation of tsunami sand sheets. For example, in mangrove swamps along tidal inlets near Ban Nam Kem and Tab Lamu, Thailand, sandy deposits of the 2004 tsunami were probably limited to feather- shaped channel-margin areas where the tsunami lost much of its momentum to the toppling of leafy trees. When these deposits were examined in July 2006, deposit-feeding crabs were busily mixing the sand into muddy, peaty mangrove soils. Such limitations of mangrove swamps as paleotsunami recorders may help explain why a reconnaissance in May 2006 turned up no sand sheets in the soils of mangroves near Cilacap, on the south coast of Java. Thus far it is unclear whether this coast, which faces the Sunda Trench, lacks potential for tsunamis as enormous as Aceh's in 2004, or whether it has a history of enormous tsunamis that simply failed to leave a long-lasting record in the Cilacap mangroves. Disturbance by humans limits the paleotsunami targets on beach-ridge plains facing the Indian Ocean. Thai coastal plains, though apparently grassy where undisturbed, have been extensively modified by placer mining for tin. In Java and southeastern India, most coastal plains have been under

  3. Tsunami waveform inversion by adjoint methods

    Science.gov (United States)

    Pires, Carlos; Miranda, Pedro M. A.

    2001-09-01

    An adjoint method for tsunami waveform inversion is proposed, as an alternative to the technique based on Green's functions of the linear long wave model. The method has the advantage of being able to use the nonlinear shallow water equations, or other appropriate equation sets, and to optimize an initial state given as a linear or nonlinear function of any set of free parameters. This last facility is used to perform explicit optimization of the focal fault parameters, characterizing the initial sea surface displacement of tsunamigenic earthquakes. The proposed methodology is validated with experiments using synthetic data, showing the possibility of recovering all relevant details of a tsunami source from tide gauge observations, providing that the adjoint method is constrained in an appropriate manner. It is found, as in other methods, that the inversion skill of tsunami sources increases with the azimuthal and temporal coverage of assimilated tide gauge stations; furthermore, it is shown that the eigenvalue analysis of the Hessian matrix of the cost function provides a consistent and useful methodology to choose the subset of independent parameters that can be inverted with a given dataset of observations and to evaluate the error of the inversion process. The method is also applied to real tide gauge series, from the tsunami of the February 28, 1969, Gorringe Bank earthquake, suggesting some reasonable changes to the assumed focal parameters of that event. It is suggested that the method proposed may be able to deal with transient tsunami sources such as those generated by submarine landslides.

  4. Tsunami-tendenko and morality in disasters.

    Science.gov (United States)

    Kodama, Satoshi

    2015-05-01

    Disaster planning challenges our morality. Everyday rules of action may need to be suspended during large-scale disasters in favour of maxims that that may make prudential or practical sense and may even be morally preferable but emotionally hard to accept, such as tsunami-tendenko. This maxim dictates that the individual not stay and help others but run and preserve his or her life instead. Tsunami-tendenko became well known after the great East Japan earthquake on 11 March 2011, when almost all the elementary and junior high school students in one city survived the tsunami because they acted on this maxim that had been taught for several years. While tsunami-tendenko has been praised, two criticisms of it merit careful consideration: one, that the maxim is selfish and immoral; and two, that it goes against the natural tendency to try to save others in dire need. In this paper, I will explain the concept of tsunami-tendenko and then respond to these criticisms. Such ethical analysis is essential for dispelling confusion and doubts about evacuation policies in a disaster. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Can Asteroid Airbursts Cause Dangerous Tsunami?.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    I have performed a series of high-resolution hydrocode simulations to generate “source functions” for tsunami simulations as part of a proof-of-principle effort to determine whether or not the downward momentum from an asteroid airburst can couple energy into a dangerous tsunami in deep water. My new CTH simulations show enhanced momentum multiplication relative to a nuclear explosion of the same yield. Extensive sensitivity and convergence analyses demonstrate that results are robust and repeatable for simulations with sufficiently high resolution using adaptive mesh refinement. I have provided surface overpressure and wind velocity fields to tsunami modelers to use as time-dependent boundary conditions and to test the hypothesis that this mechanism can enhance the strength of the resulting shallow-water wave. The enhanced momentum result suggests that coupling from an over-water plume-forming airburst could be a more efficient tsunami source mechanism than a collapsing impact cavity or direct air blast alone, but not necessarily due to the originally-proposed mechanism. This result has significant implications for asteroid impact risk assessment and airburst-generated tsunami will be the focus of a NASA-sponsored workshop at the Ames Research Center next summer, with follow-on funding expected.

  6. SURF: Taking Sustainable Remediation from Concept to Standard Operating Procedure (Invited)

    Science.gov (United States)

    Smith, L. M.; Wice, R. B.; Torrens, J.

    2013-12-01

    Over the last decade, many sectors of industrialized society have been rethinking behavior and re-engineering practices to reduce consumption of energy and natural resources. During this time, green and sustainable remediation (GSR) has evolved from conceptual discussions to standard operating procedure for many environmental remediation practitioners. Government agencies and private sector entities have incorporated GSR metrics into their performance criteria and contracting documents. One of the early think tanks for the development of GSR was the Sustainable Remediation Forum (SURF). SURF brings together representatives of government, industry, consultancy, and academia to parse the means and ends of incorporating societal and economic considerations into environmental cleanup projects. Faced with decades-old treatment programs with high energy outputs and no endpoints in sight, a small group of individuals published the institutional knowledge gathered in two years of ad hoc meetings into a 2009 White Paper on sustainable remediation drivers, practices, objectives, and case studies. Since then, SURF has expanded on those introductory topics, publishing its Framework for Integrating Sustainability into Remediation Projects, Guidance for Performing Footprint Analyses and Life-Cycle Assessments for the Remediation Industry, a compendium of metrics, and a call to improve the integration of land remediation and reuse. SURF's research and members have also been instrumental in the development of additional guidance through ASTM International and the Interstate Technology and Regulatory Council. SURF's current efforts focus on water reuse, the international perspective on GSR (continuing the conversations that were the basis of SURF's December 2012 meeting at the National Academy of Sciences in Washington, DC), and ways to capture and evaluate the societal benefits of site remediation. SURF also promotes and supports student chapters at universities across the US

  7. Determination of the observation conditions of celestial bodies with the aid of the DISPO system

    Science.gov (United States)

    Kazakov, R. K.; Krivov, A. V.

    1984-01-01

    The interactive system for determining the observation conditions of celestial bodies is described. A system of programs was created containing a part of the DISPO Display Interative System of Orbit Planning. The system was used for calculating the observatiion characteristics of Halley's comet during its approach to Earth in 1985-86.

  8. Illustrating the phaenomena celestial cartography in antiquity and the Middle Ages

    CERN Document Server

    Dekker, Elly

    2013-01-01

    In this volume all extant celestial maps and globes made before 1500 are described and analysed. It also discusses the astronomical sources involved in making these artefacts in antiquity, the Middle Ages, the Islamic world and the European Renaissance before 1500.

  9. The Gravitational Effects of a Celestial Body with Magnetic Charge and Moment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gravitational effects (precession of charge-less particles and deflection of light) in the gravitational field of a celestial body with magnetic charge and moment (CM)are investigated. We found that the magnetic charge always weakens the pure Schwarzschild effects, while the magnetic dipole moment deforms the effects in a more complicated way.

  10. Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic of GPS data: application to the Tohoku 2011 tsunami

    Science.gov (United States)

    Yong, Wei; Newman, Andrew V.; Hayes, Gavin P.; Titov, Vasily V.; Tang, Liujuan

    2014-01-01

    Correctly characterizing tsunami source generation is the most critical component of modern tsunami forecasting. Although difficult to quantify directly, a tsunami source can be modeled via different methods using a variety of measurements from deep-ocean tsunameters, seismometers, GPS, and other advanced instruments, some of which in or near real time. Here we assess the performance of different source models for the destructive 11 March 2011 Japan tsunami using model–data comparison for the generation, propagation, and inundation in the near field of Japan. This comparative study of tsunami source models addresses the advantages and limitations of different real-time measurements with potential use in early tsunami warning in the near and far field. The study highlights the critical role of deep-ocean tsunami measurements and rapid validation of the approximate tsunami source for high-quality forecasting. We show that these tsunami measurements are compatible with other real-time geodetic data, and may provide more insightful understanding of tsunami generation from earthquakes, as well as from nonseismic processes such as submarine landslide failures.

  11. Strategies for casualty mitigation programs by using advanced tsunami computation

    Science.gov (United States)

    IMAI, K.; Imamura, F.

    2012-12-01

    1. Purpose of the study In this study, based on the scenario of great earthquakes along the Nankai trough, we aim on the estimation of the run up and high accuracy inundation process of tsunami in coastal areas including rivers. Here, using a practical method of tsunami analytical model, and taking into account characteristics of detail topography, land use and climate change in a realistic present and expected future environment, we examined the run up and tsunami inundation process. Using these results we estimated the damage due to tsunami and obtained information for the mitigation of human casualties. Considering the time series from the occurrence of the earthquake and the risk of tsunami damage, in order to mitigate casualties we provide contents of disaster risk information displayed in a tsunami hazard and risk map. 2. Creating a tsunami hazard and risk map From the analytical and practical tsunami model (a long wave approximated model) and the high resolution topography (5 m) including detailed data of shoreline, rivers, building and houses, we present a advanced analysis of tsunami inundation considering the land use. Based on the results of tsunami inundation and its analysis; it is possible to draw a tsunami hazard and risk map with information of human casualty, building damage estimation, drift of vehicles, etc. 3. Contents of disaster prevention information To improve the hazard, risk and evacuation information distribution, it is necessary to follow three steps. (1) Provide basic information such as tsunami attack info, areas and routes for evacuation and location of tsunami evacuation facilities. (2) Provide as additional information the time when inundation starts, the actual results of inundation, location of facilities with hazard materials, presence or absence of public facilities and areas underground that required evacuation. (3) Provide information to support disaster response such as infrastructure and traffic network damage prediction

  12. Tsunami Speed Variations in Density-stratified Compressible Global Oceans

    Science.gov (United States)

    Watada, S.

    2013-12-01

    Recent tsunami observations in the deep ocean have accumulated unequivocal evidence that tsunami traveltime delays compared with the linear long-wave tsunami simulations occur during tsunami propagation in the deep ocean. The delay is up to 2% of the tsunami traveltime. Watada et al. [2013] investigated the cause of the delay using the normal mode theory of tsunamis and attributed the delay to the compressibility of seawater, the elasticity of the solid earth, and the gravitational potential change associated with mass motion during the passage of tsunamis. Tsunami speed variations in the deep ocean caused by seawater density stratification is investigated using a newly developed propagator matrix method that is applicable to seawater with depth-variable sound speeds and density gradients. For a 4-km deep ocean, the total tsunami speed reduction is 0.45% compared with incompressible homogeneous seawater; two thirds of the reduction is due to elastic energy stored in the water and one third is due to water density stratification mainly by hydrostatic compression. Tsunami speeds are computed for global ocean density and sound speed profiles and characteristic structures are discussed. Tsunami speed reductions are proportional to ocean depth with small variations, except for in warm Mediterranean seas. The impacts of seawater compressibility and the elasticity effect of the solid earth on tsunami traveltime should be included for precise modeling of trans-oceanic tsunamis. Data locations where a vertical ocean profile deeper than 2500 m is available in World Ocean Atlas 2009. The dark gray area indicates the Pacific Ocean defined in WOA09. a) Tsunami speed variations. Red, gray and black bars represent global, Pacific, and Mediterranean Sea, respectively. b) Regression lines of the tsunami velocity reduction for all oceans. c)Vertical ocean profiles at grid points indicated by the stars in Figure 1.

  13. Changes in Tsunami Risk Perception in Northern Chile After the April 1 2014 Tsunami

    Science.gov (United States)

    Carvalho, L.; Lagos, M.

    2016-12-01

    Tsunamis are a permanent risk in the coast of Chile. Apart from that, the coastal settlements and the Chilean State, historically, have underestimated the danger of tsunamis. On April 1 2014, a magnitude Mw 8.2 earthquake and a minor tsunami occurred off the coast of northern Chile. Considering that over decades this region has been awaiting an earthquake that would generate a large tsunami, in this study we inquired if the familiarity with the subject tsunami and the lack of frequent tsunamis or occurrence of non-hazardous tsunamis for people could lead to adaptive responses to underestimate the danger. The purpose of this study was to evaluate the perceived risk of tsunami in the city of Arica, before and after the April 1 2014 event. A questionnaire was designed and applied in two time periods to 547 people living in low coastal areas in Arica. In the first step, the survey was applied in March 2014. While in step 2, new questions were included and the survey was reapplied, a year after the minor tsunami. A descriptive analysis of data was performed, followed by a comparison between means. We identified illusion of invulnerability, especially regarding to assessment that preparedness and education actions are enough. Answers about lack of belief in the occurrence of future tsunamis were also reported. At the same time, there were learning elements identified. After April 1, a larger number of participants described self-protection actions for emergency, as well as performing of preventive actions. In addition, we mapped answers about the tsunami danger degree in different locations in the city, where we observed a high knowledge of it. When compared with other hazards, the concern about tsunamis were very high, lower than earthquakes hazard, but higher than pollution, crime and rain. Moreover, we identified place attachment in answers about sense of security and affective bonds with home and their location. We discussed the relationship between risk perception

  14. Tsunami Evidence in South Coast Java, Case Study: Tsunami Deposit along South Coast of Cilacap

    Science.gov (United States)

    Rizal, Yan; Aswan; Zaim, Yahdi; Dwijo Santoso, Wahyu; Rochim, Nur; Daryono; Dewi Anugrah, Suci; Wijayanto; Gunawan, Indra; Yatimantoro, Tatok; Hidayanti; Herdiyani Rahayu, Resti; Priyobudi

    2017-06-01

    Cilacap Area is situated in coastal area of Southern Java and directly affected by tsunami hazard in 2006. This event was triggered by active subduction in Java Trench which active since long time ago. To detect tsunami and active tectonic in Southern Java, paleo-tsunami study is performed which is targeted paleo-tsunami deposit older than fifty years ago. During 2011 - 2016, 16 locations which suspected as paleo-tsunami location were visited and the test-pits were performed to obtain characteristic and stratigraphy of paleo-tsunami layers. Paleo-tsunami layer was identified by the presence of light-sand in the upper part of paleo-soil, liquefaction fine grain sandstone, and many rip-up clast of mudstone. The systematic samples were taken and analysis (micro-fauna, grainsize and dating analysis). Micro-fauna result shows that paleo-tsunami layer consist of benthonic foraminifera assemblages from different bathymetry and mixing in one layer. Moreover, grainsize shows random grain distribution which characterized as turbulence and strong wave deposit. Paleo-tsunami layers in Cilacap area are correlated using paleo-soil as marker. There are three paleo-tsunami layers and the distribution can be identified as PS-A, PS-B and PS-C. The samples which were taken in Glempang Pasir layer are being dated using Pb - Zn (Lead-Zinc) method. The result of Pb - Zn (Lead-Zinc) dating shows that PS-A was deposited in 139 years ago, PS-B in 21 years ago, and PS C in 10 years ago. This result indicates that PS -1 occurred in 1883 earthquake activity while PS B formed in 1982 earthquake and PS-C was formed by 2006 earthquake. For ongoing research, the older paleo-tsunami layers were determined in the Gua Nagaraja, close to Selok location and 6 layers of Paleo-tsunami suspect found which shown a similar characteristic with the layers from another location. The three layers deeper approximately have an older age than another location in Cilacap.

  15. Real-time tsunami inundation forecasting and damage mapping towards enhancing tsunami disaster resiliency

    Science.gov (United States)

    Koshimura, S.; Hino, R.; Ohta, Y.; Kobayashi, H.; Musa, A.; Murashima, Y.

    2014-12-01

    With use of modern computing power and advanced sensor networks, a project is underway to establish a new system of real-time tsunami inundation forecasting, damage estimation and mapping to enhance society's resilience in the aftermath of major tsunami disaster. The system consists of fusion of real-time crustal deformation monitoring/fault model estimation by Ohta et al. (2012), high-performance real-time tsunami propagation/inundation modeling with NEC's vector supercomputer SX-ACE, damage/loss estimation models (Koshimura et al., 2013), and geo-informatics. After a major (near field) earthquake is triggered, the first response of the system is to identify the tsunami source model by applying RAPiD Algorithm (Ohta et al., 2012) to observed RTK-GPS time series at GEONET sites in Japan. As performed in the data obtained during the 2011 Tohoku event, we assume less than 10 minutes as the acquisition time of the source model. Given the tsunami source, the system moves on to running tsunami propagation and inundation model which was optimized on the vector supercomputer SX-ACE to acquire the estimation of time series of tsunami at offshore/coastal tide gauges to determine tsunami travel and arrival time, extent of inundation zone, maximum flow depth distribution. The implemented tsunami numerical model is based on the non-linear shallow-water equations discretized by finite difference method. The merged bathymetry and topography grids are prepared with 10 m resolution to better estimate the tsunami inland penetration. Given the maximum flow depth distribution, the system performs GIS analysis to determine the numbers of exposed population and structures using census data, then estimates the numbers of potential death and damaged structures by applying tsunami fragility curve (Koshimura et al., 2013). Since the tsunami source model is determined, the model is supposed to complete the estimation within 10 minutes. The results are disseminated as mapping products to

  16. The meteorite impact-induced tsunami hazard.

    Science.gov (United States)

    Wünnemann, K; Weiss, R

    2015-10-28

    When a cosmic object strikes the Earth, it most probably falls into an ocean. Depending on the impact energy and the depth of the ocean, a large amount of water is displaced, forming a temporary crater in the water column. Large tsunami-like waves originate from the collapse of the cavity in the water and the ejecta splash. Because of the far-reaching destructive consequences of such waves, an oceanic impact has been suggested to be more severe than a similar-sized impact on land; in other words, oceanic impacts may punch over their weight. This review paper summarizes the process of impact-induced wave generation and subsequent propagation, whether the wave characteristic differs from tsunamis generated by other classical mechanisms, and what methods have been applied to quantify the consequences of an oceanic impact. Finally, the impact-induced tsunami hazard will be evaluated by means of the Eltanin impact event.

  17. Will oscillating wave surge converters survive tsunamis?

    Directory of Open Access Journals (Sweden)

    L. O’Brien

    2015-07-01

    Full Text Available With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground!

  18. Tsunamis: bridging science, engineering and society.

    Science.gov (United States)

    Kânoğlu, U; Titov, V; Bernard, E; Synolakis, C

    2015-10-28

    Tsunamis are high-impact, long-duration disasters that in most cases allow for only minutes of warning before impact. Since the 2004 Boxing Day tsunami, there have been significant advancements in warning methodology, pre-disaster preparedness and basic understanding of related phenomena. Yet, the trail of destruction of the 2011 Japan tsunami, broadcast live to a stunned world audience, underscored the difficulties of implementing advances in applied hazard mitigation. We describe state of the art methodologies, standards for warnings and summarize recent advances in basic understanding, and identify cross-disciplinary challenges. The stage is set to bridge science, engineering and society to help build up coastal resilience and reduce losses.

  19. Field survey of the 16 September 2015 Chile tsunami

    Science.gov (United States)

    Lagos, Marcelo; Fritz, Hermann M.

    2016-04-01

    On the evening of 16 September, 2015 a magnitude Mw 8.3 earthquake occurred off the coast of central Chile's Coquimbo region. The ensuing tsunami caused significant inundation and damage in the Coquimbo or 4th region and mostly minor effects in neighbouring 3rd and 5th regions. Fortunately, ancestral knowledge from the past 1922 and 1943 tsunamis in the region along with the catastrophic 2010 Maule and recent 2014 tsunamis, as well as tsunami education and evacuation exercises prompted most coastal residents to spontaneously evacuate to high ground after the earthquake. There were a few tsunami victims; while a handful of fatalities were associated to earthquake induced building collapses and the physical stress of tsunami evacuation. The international scientist joined the local effort from September 20 to 26, 2015. The international tsunami survey team (ITST) interviewed numerous eyewitnesses and documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns, performance of the navigation infrastructure and impact on the natural environment. The ITST covered a 500 km stretch of coastline from Caleta Chañaral de Aceituno (28.8° S) south of Huasco down to Llolleo near San Antonio (33.6° S). We surveyed more than 40 locations and recorded more than 100 tsunami and runup heights with differential GPS and integrated laser range finders. The tsunami impact peaked at Caleta Totoral near Punta Aldea with both tsunami and runup heights exceeding 10 m as surveyed on September 22 and broadcasted nationwide that evening. Runup exceeded 10 m at a second uninhabited location some 15 km south of Caleta Totoral. A significant variation in tsunami impact was observed along the coastlines of central Chile at local and regional scales. The tsunami occurred in the evening hours limiting the availability of eyewitness video footages. Observations from the 2015 Chile tsunami are compared against the 1922, 1943, 2010 and 2014 Chile tsunamis. The

  20. Tsunami probability in the Caribbean region

    Science.gov (United States)

    Parsons, T.; Geist, E. L.

    2008-12-01

    We calculated tsunami runup probability at coastal sites throughout the Caribbean region. We applied a Poissonian probability model because of the variety of uncorrelated tsunami sources in the region. Coastlines were discretized into 20km by 20km cells, and the mean tsunami runup rate was determined for each cell. A remarkable ~500-year empirical record was used to calculate an empirical tsunami probability map, the first of three constructed for this study. However, it's unclear whether the 500-year record is complete, so we conducted a seismic moment-balance exercise using a finite element model of the Caribbean-North American plate boundaries and the earthquake catalog, and found that moment could be balanced if the seismic coupling coefficient is c=0.32. Modeled moment release was therefore used to generate synthetic earthquake sequences to calculate 50 tsunami runup scenarios for 500-year periods. We made a second probability map from numerically-calculated runup rates in each cell. Differences between the first two probability maps based on empirical and numerical-modeled rates suggest that each captured different aspects of tsunami generation; the empirical model may be deficient in primary plate-boundary events, whereas numerical model rates lack back-arc fault and landslide sources. We thus prepared a third probability map using Bayesian likelihood functions derived from the empirical and numerical rate models and their attendant uncertainty to weight a range of rates at each 20km by 20km coastal cell. Our best-estimate map gives a range of 30-year runup probability from 0-30 percent regionally.

  1. Treatment of Uncertainties in Probabilistic Tsunami Hazard

    Science.gov (United States)

    Thio, H. K.

    2012-12-01

    Over the last few years, we have developed a framework for developing probabilistic tsunami inundation maps, which includes comprehensive quantification of earthquake recurrence as well as uncertainties, and applied it to the development of a tsunami hazard map of California. The various uncertainties in tsunami source and propagation models are an integral part of a comprehensive probabilistic tsunami hazard analysis (PTHA), and often drive the hazard at low probability levels (i.e. long return periods). There is no unique manner in which uncertainties are included in the analysis although in general, we distinguish between "natural" or aleatory variability, such as slip distribution and event magnitude, and uncertainties due to an incomplete understanding of the behavior of the earth, called epistemic uncertainties, such as scaling relations and rupture segmentation. Aleatory uncertainties are typically included through integration over distribution functions based on regression analyses, whereas epistemic uncertainties are included using logic trees. We will discuss how the different uncertainties were included in our recent probabilistic tsunami inundation maps for California, and their relative importance on the final results. Including these uncertainties in offshore exceedance waveheights is straightforward, but the problem becomes more complicated once the non-linearity of near-shore propagation and inundation are encountered. By using the probabilistic off-shore waveheights as input level for the inundation models, the uncertainties up to that point can be included in the final maps. PTHA provides a consistent analysis of tsunami hazard and will become an important tool in diverse areas such as coastal engineering and land use planning. The inclusive nature of the analysis, where few assumptions are made a-priori as to which sources are significant, means that a single analysis can provide a comprehensive view of the hazard and its dominant sources

  2. Tsunami Hazards From Strike-Slip Earthquakes

    Science.gov (United States)

    Legg, M. R.; Borrero, J. C.; Synolakis, C. E.

    2003-12-01

    Strike-slip faulting is often considered unfavorable for tsunami generation during large earthquakes. Although large strike-slip earthquakes triggering landslides and then generating substantial tsunamis are now recognized hazards, many continue to ignore the threat from submarine tectonic displacement during strike-slip earthquakes. Historical data record the occurrence of tsunamis from strike-slip earthquakes, for example, 1906 San Francisco, California, 1994 Mindoro, Philippines, and 1999 Izmit, Turkey. Recognizing that strike-slip fault zones are often curved and comprise numerous en echelon step-overs, we model tsunami generation from realistic strike-slip faulting scenarios. We find that tectonic seafloor uplift, at a restraining bend or"pop-up" structure, provides an efficient mechanism to generate destructive local tsunamis; likewise for subsidence at divergent pull-apart basin structures. Large earthquakes on complex strike-slip fault systems may involve both types of structures. The California Continental Borderland is a high-relief submarine part of the active Pacific-North America transform plate boundary. Natural harbors and bays created by long term vertical motion associated with strike-slip structural irregularities are now sites of burgeoning population and major coastal infrastructure. Significant local tsunamis generated by large strike-slip earthquakes pose a serious, and previously unrecognized threat. We model several restraining bend pop-up structures offshore southern California to quantify the local tsunami hazard. Maximum runup derived in our scenarios ranges from one to several meters, similar to runup observed from the 1994 Mindoro, Philippines, (M=7.1) earthquake. The runup pattern is highly variable, with local extremes along the coast. We only model the static displacement field for the strike-slip earthquake source; dynamic effects of moving large island or submerged banks laterally during strike-slip events remains to be examined

  3. Understanding the tsunami with a simple model

    CERN Document Server

    Helene, O

    2006-01-01

    In this paper, we use the approximation of shallow water waves (Margaritondo G 2005 Eur. J. Phys. 26 401) to understand the behaviour of a tsunami in a variable depth. We deduce the shallow water wave equation and the continuity equation that must be satisfied when a wave encounters a discontinuity in the sea depth. A short explanation about how the tsunami hit the west coast of India is given based on the refraction phenomenon. Our procedure also includes a simple numerical calculation suitable for undergraduate students in physics and engineering.

  4. Tsunamis detection, monitoring, and early-warning technologies

    CERN Document Server

    Joseph, Antony

    2011-01-01

    The devastating impacts of tsunamis have received increased focus since the Indian Ocean tsunami of 2004, the most devastating tsunami in over 400 years of recorded history. This professional reference is the first of its kind: it provides a globally inclusive review of the current state of tsunami detection technology and will be a much-needed resource for oceanographers and marine engineers working to upgrade and integrate their tsunami warning systems. It focuses on the two main tsunami warning systems (TWS): International and Regional. Featured are comparative assessments of detection, monitoring, and real-time reporting technologies. The challenges of detection through remote measuring stations are also addressed, as well as the historical and scientific aspects of tsunamis.

  5. Simulation of Andaman 2004 tsunami for assessing impact on Malaysia

    Science.gov (United States)

    Koh, Hock Lye; Teh, Su Yean; Liu, Philip Li-Fan; Ismail, Ahmad Izani Md.; Lee, Hooi Ling

    2009-09-01

    Mistakenly perceived as safe from the hazards of tsunami, Malaysia faced a rude awakening by the 26 December 2004 Andaman tsunami. Since the event, Malaysia has started active research on some aspects of tsunami, including numerical simulations of tsunami and the role of mangrove as a mitigation measure against tsunami hazards. An in-house tsunami numerical simulation model TUNA has been developed and applied to the 26 December 2004 Andaman tsunami to simulate the generation, propagation and inundation processes along affected beaches in Malaysia. Mildly nonlinear bottom friction term in the deeper ocean is excluded, as it is insignificant to the simulation results, consistent with theoretical expectation. On the other hand, in regions with shallow depth near the beaches, friction and nonlinearity are significant and are included in TUNA. Simulation results with TUNA indicate satisfactory performance when compared with COMCOT and on-site survey results.

  6. Introduction to "Global Tsunami Science: Past and Future, Volume I"

    Science.gov (United States)

    Geist, Eric L.; Fritz, Hermann M.; Rabinovich, Alexander B.; Tanioka, Yuichiro

    2016-12-01

    Twenty-five papers on the study of tsunamis are included in Volume I of the PAGEOPH topical issue "Global Tsunami Science: Past and Future". Six papers examine various aspects of tsunami probability and uncertainty analysis related to hazard assessment. Three papers relate to deterministic hazard and risk assessment. Five more papers present new methods for tsunami warning and detection. Six papers describe new methods for modeling tsunami hydrodynamics. Two papers investigate tsunamis generated by non-seismic sources: landslides and meteorological disturbances. The final three papers describe important case studies of recent and historical events. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.

  7. Probabilistic Tsunami Hazard Assessment - Application to the Mediterranean Sea

    Science.gov (United States)

    Sorensen, M. B.; Spada, M.; Babeyko, A.; Wiemer, S.; Grünthal, G.

    2009-12-01

    Following several large tsunami events around the world in the recent years, the tsunami hazard is becoming an increasing concern. The traditional way of assessing tsunami hazard has been through deterministic scenario calculations which provide the expected wave heights due to a given tsunami source, usually a worst-case scenario. For quantitative hazard and risk assessment, however, it is necessary to move towards a probabilistic framework. In this study we focus on earthquake generated tsunamis and present a scheme for probabilistic tsunami hazard assessment (PTHA). Our PTHA methodology is based on the use of Monte-Carlo simulations and follows probabilistic seismic hazard assessment methodologies closely. The PTHA is performed in four steps. First, earthquake and tsunami catalogues are analyzed in order to define a number of potential tsunami sources in the study area. For each of these sources, activity rates, maximum earthquake magnitude and uncertainties are assigned. Following, a synthetic earthquake catalogue is established, based on the information about the sources. The third step is to calculate multiple synthetic tsunami scenarios for all potentially tsunamigenic earthquakes in the synthetic catalogue. The tsunami scenarios are then combined at the fourth step to generate hazard curves and maps. We implement the PTHA methodology in the Mediterranean Sea, where numerous tsunami events have been reported in history. We derive a 100000 year-long catalog of potentially tsunamigenic earthquakes and calculate tsunami propagation scenarios for ca. 85000 M6.5+ earthquakes from the synthetic catalog. Results show that the highest tsunami hazard is attributed to the Eastern Mediterranean region, but that also the Western Mediterranean can experience significant tsunami waves for long return periods. Hazard maps will be presented for a range of probability levels together with hazard curves for selected critical locations.

  8. The Ocean as a Unique Therapeutic Environment: Developing a Surfing Program

    Science.gov (United States)

    Clapham, Emily D.; Armitano, Cortney N.; Lamont, Linda S.; Audette, Jennifer G.

    2014-01-01

    Educational aquatic programming offers necessary physical activity opportunities to children with disabilities and the benefits of aquatic activities are more pronounced for children with disabilities than for their able-bodied peers. Similar benefits could potentially be derived from surfing in the ocean. This article describes an adapted surfing…

  9. Modelling Vertical Variation of Turbulent Flow Across a Surf Zone Using SWASH

    NARCIS (Netherlands)

    Zijlema, M.

    2014-01-01

    This paper presents the application of the open source non-hydrostatic wave-flow model SWASH to propagation of irregular waves in a barred surf zone, and the model results are discussed by comparing against an extensive laboratory data set. This study focus not only on wave transformation in the sur

  10. Post-Processing Enhancement of Reverberation-Noise Suppression in Dual-Frequency SURF Imaging

    CERN Document Server

    Nasholm, Sven Peter; Angelsen, Bjørn A J; 10.1109/TUFFC.2011.1811

    2013-01-01

    A post-processing adjustment technique which aims for enhancement of dual-frequency SURF (Second order UltRasound Field) reverberation-noise suppression imaging in medical ultrasound is analyzed. Two variant methods are investigated through numerical simulations. They both solely involve post-processing of the propagated high-frequency (HF) imaging wave fields, which in real-time imaging corresponds to post-processing of the beamformed receive radio-frequency signals. Hence the transmit pulse complexes are the same as for the previously published SURF reverberation-suppression imaging method. The adjustment technique is tested on simulated data from propagation of SURF pulse complexes consisting of a 3.5 MHz HF imaging pulse added to a 0.5 low-frequency sound-speed manipulation pulse. Imaging transmit beams are constructed with and without adjustment. The post-processing involves filtering, e.g., by a time-shift, in order to equalize the two SURF HF pulses at a chosen depth. This depth is typically chosen to ...

  11. The Ocean as a Unique Therapeutic Environment: Developing a Surfing Program

    Science.gov (United States)

    Clapham, Emily D.; Armitano, Cortney N.; Lamont, Linda S.; Audette, Jennifer G.

    2014-01-01

    Educational aquatic programming offers necessary physical activity opportunities to children with disabilities and the benefits of aquatic activities are more pronounced for children with disabilities than for their able-bodied peers. Similar benefits could potentially be derived from surfing in the ocean. This article describes an adapted surfing…

  12. Implementing CHC to Counter Shoulder Surfing Attack in PassPoint – Style Graphical Passwords

    Directory of Open Access Journals (Sweden)

    M. Joshuva

    2011-05-01

    Full Text Available Graphical passwords are an alternative to existing alphanumeric passwords. In Graphical passwords users click on images than type a long, complex password. Passpoints scheme is one of the Graphical user authentication techniques. In this method the password is represented by multiple clicks on a single image. One of the advantages with Passpoints scheme is that, a user can click on any place in the image as a click point. Graphical authentication suffers a major drawback of Shoulder-surfing. Shoulder-surfing refers to someone observing the user’s action as the user enters a password. Due to this, the user’s action can be monitored by the attacker or it can be captured using recording devices such as camera. Sobrado and Birget suggested Convex Hull Click (CHC scheme to counter shoulder-surfing using PassIcons which is different from PassPoint scheme. In this paper, we described how CHC is implemented in Passpoint-sheme to counter Shoulder Surfing Attack.

  13. Performance differences between sexes in the pop-up phase of surfing.

    Science.gov (United States)

    Eurich, Alea D; Brown, Lee E; Coburn, Jared W; Noffal, Guillermo J; Nguyen, Diamond; Khamoui, Andy V; Uribe, Brandon P

    2010-10-01

    Surfing is a dynamic sport that is multidirectional in nature and requires peak performance in variable ocean conditions. Its growing popularity among the female population has stirred curiosity as to whether women can and will 1 day face their male counterparts in head-to-head competition at the top levels. The purpose of this study was to examine male and female differences in performance of a simulated surfing pop-up movement. Forty recreationally trained surfers (20 men and 20 women) were instructed to lie prone on a force plate, in the pop-up position (similar to a push-up), with only their hands in contact with the plate. A velocity transducer was attached to their back via an adjustable strap around their upper trunk. They completed 3 pop-ups as explosively as possible by pushing forcefully with their hands and jumping to their feet. Absolute and relative force and power were measured. Results demonstrated that men exhibited significantly (p pop-up movement. It appears that women may be at a disadvantage in regards to peak performance when compared to their male counterparts in the surfing pop-up movement. Therefore, women should train for both maximum and explosive upper-body strength in addition to their time spent surfing.

  14. Robust Object-Based Watermarking Using SURF Feature Matching and DFT Domain

    Directory of Open Access Journals (Sweden)

    M. Cedillo-Hernandez

    2013-12-01

    Full Text Available In this paper we propose a robust object-based watermarking method, in which the watermark is embedded into the middle frequencies band of the Discrete Fourier Transform (DFT magnitude of the selected object region, altogether with the Speeded Up Robust Feature (SURF algorithm to allow the correct watermark detection, even if the watermarked image has been distorted. To recognize the selected object region after geometric distortions, during the embedding process the SURF features are estimated and stored in advance to be used during the detection process. In the detection stage, the SURF features of the distorted image are estimated and match them with the stored ones. From the matching result, SURF features are used to compute the Affine-transformation parameters and the object region is recovered. The quality of the watermarked image is measured using the Peak Signal to Noise Ratio (PSNR, Structural Similarity Index (SSIM and the Visual Information Fidelity (VIF. The experimental results show the proposed method provides robustness against several geometric distortions, signal processing operations and combined distortions. The receiver operating characteristics (ROC curves also show the desirable detection performance of the proposed method. The comparison with a previously reported methods based on different techniques is also provided.

  15. Baseline Measurements of Shoulder Surfing Analysis and Comparability for Smartphone Unlock Authentication

    Science.gov (United States)

    2017-05-22

    lines, and graphical patterns without lines) in a controlled setting . These videos are designed to simulate shoulder surfing settings under varied attack...than triple the success rate with a single view at 72.44 . The goal of this research is to identify more effective guidance for mobile device users to

  16. Tsunami Data Assimilation and Waveform Inversion Applied to a Possible Future Scenario of Nankai Trough Tsunami

    Science.gov (United States)

    Mulia, I. E.; Inazu, D.; Waseda, T.; Gusman, A. R.

    2016-12-01

    The currently operating offshore tsunami observational systems around the Nankai Trough consist of Ocean Bottom Pressure (OBP) gauges and Global Positioning System (GPS) buoys. Their performance in producing rapid tsunami forecasts based on a tsunami waveform inversion (WI) (Tsushima et al., 2012, JGR) is analyzed. Furthermore, additional tsunami data from ships (Inazu et al., 2016, GL) are incorporated through a tsunami data assimilation (DA) (Maeda et al., 2015, GRL). Because the OBP gauges are located inside the source region, the recorded tsunami signals exhibit significant offsets with respect to surface measurements caused by coseismic seafloor deformation effects. Such biased data are not applicable to the DA, but can be taken into account in the WI. On the other hand, the use of WI for the ship data may not be practical as we need to store considerable precomputed tsunami database due to the spontaneous ship locations. The combined approach of DA and WI, however, allows us to concurrently make use of all observational resources to produce more accurate forecasts. The true state of the tsunami wave field is obtained by a 60 min forward simulation of a hypothetical tsunami source using a linear shallow-water model. Synthetic pressures at OBP gauges and synthetic elevations at ship and GPS buoys locations are extracted from the true state. Subsequently, noises obtained from real data (Inazu et al., 2016, GL) are injected to the respective observational system. We use maximum coastal tsunami heights of the true state to validate the forecasts, and a statistical measure based on percentage of accuracy (Gusman, et al, 2016, GRL) to assess the forecasts performance. Forecasts accuracies at 5, 10, and 20 min based on the existing observational systems (OBP and GPS) using WI are 62%, 68%, and 75% respectively. In the next model, we use the resulted tsunami source by WI as a first guess for the DA background state, and the ships data are successively assimilated

  17. Microtextural analysis of quartz grains of tsunami and non-tsunami deposits - A case study from Tirúa (Chile)

    Science.gov (United States)

    Bellanova, Piero; Bahlburg, Heinrich; Nentwig, Vanessa; Spiske, Michaela

    2016-08-01

    In order to estimate the tsunami hazard it is essential to reliably identify and differentiate tsunami deposits from other high-energy events like storms. Recently, the microtextural analysis of quartz grain surfaces was introduced as a method to differentiate between tsunami and other deposits. Using tsunami deposits sampled from a bank profile of the Tirúa river (central Chile), an area that was significantly affected by the 2010 and 1960 Chile tsunamis, we tested the microtextural analysis method for its capability to identify tsunami deposits. A total of 815 quartz grain surfaces of two tsunami layers, two non-tsunami marsh sediment samples, and three reference samples from nearby beach, dune and river were analyzed using scanning electron microscopy (SEM). We grouped the detected microtexture features into five microtextural families: angularity, fresh surfaces, percussion marks, adhering particles and dissolution features. Both the tsunami deposits and reference samples reveal high numbers of fresh surfaces and percussion marks. Thus, there are no statistically significant differences between tsunami, beach, dune and river deposits in characteristics and abundances in all microtextural families. Our study indicates that the microtextural analysis of quartz grains may not be a suitable method to identify tsunami deposits in Tirúa (Chile), due to local factors such as high numbers of inherited microtextures and the possible effects of the high amount of heavy minerals.

  18. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami

    Science.gov (United States)

    Rubin, Charles M.; Horton, Benjamin P.; Sieh, Kerry; Pilarczyk, Jessica E.; Daly, Patrick; Ismail, Nazli; Parnell, Andrew C.

    2017-07-01

    The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here we present an extraordinary 7,400 year stratigraphic sequence of prehistoric tsunami deposits from a coastal cave in Aceh, Indonesia. This record demonstrates that at least 11 prehistoric tsunamis struck the Aceh coast between 7,400 and 2,900 years ago. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda megathrust ruptures as large as that of the 2004 Indian Ocean tsunami.

  19. A tsunami wave propagation analysis for the Ulchin Nuclear Power Plant considering the tsunami sources of western part of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Hyun Me; Kim, Min Kyu; Sheen, Dong Hoon; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The accident which was caused by a tsunami and the Great East-Japan earthquake in 2011 occurred at the Fukushima Nuclear Power Plant (NPP) site. It is obvious that the NPP accident could be incurred by the tsunami. Therefore a Probabilistic Tsunami Hazard Analysis (PTHA) for an NPP site should be required in Korea. The PTHA methodology is developed on the PSHA (Probabilistic Seismic Hazard Analysis) method which is performed by using various tsunami sources and their weights. In this study, the fault sources of northwestern part of Japan were used to analyze as the tsunami sources. These fault sources were suggested by the Atomic Energy Society of Japan (AESJ). To perform the PTHA, the calculations of maximum and minimum wave elevations from the result of tsunami simulations are required. Thus, in this study, tsunami wave propagation analysis were performed for developing the future study of the PTHA.

  20. Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake

    Science.gov (United States)

    Gusman, Aditya Riadi; Mulia, Iyan Eka; Satake, Kenji; Watada, Shingo; Heidarzadeh, Mohammad; Sheehan, Anne F.

    2016-09-01

    We apply a genetic algorithm to find the optimized unit sources using dispersive tsunami synthetics to estimate the tsunami source of the 2012 Haida Gwaii earthquake. The optimal number and distribution of unit sources gives the sea surface elevation similar to that from our previous slip distribution on a fault using tsunami data, but different from that using seismic data. The difference is possibly due to submarine mass failure in the source region. Dispersion effects during tsunami propagation reduce the maximum amplitudes by up to 20% of conventional linear longwave propagation model. Dispersion effects also increase tsunami travel time by approximately 1 min per 1300 km on average. The dispersion effects on amplitudes depend on the azimuth from the tsunami source reflecting the directivity of tsunami source, while the effects on travel times depend only on the distance from the source.

  1. Estimation of Tsunami Arrival Time and Maximum Tsunami Wave Amplitude for Rakhine Coast, Myanmar using the TUNAMI F1 Model

    Science.gov (United States)

    MIN Htwe, Y. M.

    2016-12-01

    Myanmar has suffered many times from earthquake disasters and four times from tsunamis according to historical data. The purpose of this study is to estimate the tsunami arrival time and maximum tsunami wave amplitude for the Rakhine coast of Myanmar using the TUNAMI F1 model. In this study I calculate the tsunami arrival time and maximum tsunami wave amplitude based on a tsunamigenic earthquake source of moment magnitude 8.5 in the Arakan subduction zone off the west-coast of Myanmar, using the TUNAMI F1 model, selecting eight points on Rakhine coast. The model result indicates that the tsunami waves would first hit Kyaukpyu on the Rakhine coast about 0.05 minutes after the onset of a magnitude 8.5 earthquake, and the maximum tsunami wave amplitude would be 2.37 meters.

  2. Constitutive knockout of Surf1 is associated with high embryonic lethality, mitochondrial disease and cytochrome c oxidase deficiency in mice.

    Science.gov (United States)

    Agostino, Alessandro; Invernizzi, Federica; Tiveron, Cecilia; Fagiolari, Gigliola; Prelle, Alessandro; Lamantea, Eleonora; Giavazzi, Alessio; Battaglia, Giorgio; Tatangelo, Laura; Tiranti, Valeria; Zeviani, Massimo

    2003-02-15

    We report here the creation of a constitutive knockout mouse for SURF1, a gene encoding one of the assembly proteins involved in the formation of cytochrome c oxidase (COX). Loss-of-function mutations of SURF1 cause Leigh syndrome associated with an isolated and generalized COX deficiency in humans. The murine phenotype is characterized by the following hallmarks: (1) high post-implantation embryonic lethality, affecting approximately 90% of the Surf1(-/-) individuals; (2) early-onset mortality of post-natal individuals; (3) highly significant deficit in muscle strength and motor performance; (4) profound and isolated defect of COX activity in skeletal muscle and liver, and, to a lesser extent, heart and brain; (5) morphological abnormalities of skeletal muscle, characterized by reduced histochemical reaction to COX and mitochondrial proliferation; (6) no obvious abnormalities in brain morphology, reflecting the virtual absence of overt neurological symptoms. These results indicate a function for murine Surf1 protein (Surf1p) specifically related to COX and recapitulate, at least in part, the human phenotype. This is the first mammalian model for a nuclear disease gene of a human mitochondrial disorder. Our model constitutes a useful tool to investigate the function of Surf1p, help understand the pathogenesis of Surf1p deficiency in vivo, and evaluate the efficacy of treatment.

  3. Measuring and modeling suspended sediment concentration profiles in the surf zone

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-10-01

    Full Text Available Time-averaged suspended sediment concentration profiles across the surf zone were measured in a large-scale three-dimensional movable bed laboratory facility (LSTF: Large-scale Sediment Transport Facility. Sediment suspension under two different types of breaking waves, spilling and plunging breakers, was investigated. The magnitudes and shapes of the concentration profiles varied substantially at different locations across the surf zone, reflecting the different intensities of breaking-induced turbulence. Sediment suspension at the energetic plunging breaker-line was much more active, resulting in nearly homogeneous concentration profiles throughout most of the water column, as compared to the reminder of the surf zone and at the spilling breaker-line. Four suspended sediment concentration models were examined based on the LSTF data, including the mixing turbulence length approach, segment eddy viscosity model, breaking-induced wave-energy dissipation approach, and a combined breaking and turbulence length model developed by this study. Neglecting the breaking-induced turbulence and subsequent sediment mixing, suspended sediment concentration models failed to predict the across-shore variations of the sediment suspension, especially at the plunging breaker-line. Wave-energy dissipation rate provided an accurate method for estimating the intensity of turbulence generated by wave breaking. By incorporating the breaking-induced turbulence, the combined breaking and turbulence length model reproduced the across-shore variation of sediment suspension in the surf zone. The combined model reproduced the measured time-averaged suspended sediment concentration profiles reasonably well across the surf zone.

  4. Assessments Of Different Speeded Up Robust Features (SURF Algorithm Resolution For Pose Estimation Of UAV

    Directory of Open Access Journals (Sweden)

    Bassem Sheta

    2012-11-01

    Full Text Available The UAV industry is growing rapidly in an attempt to serve both military and commercial applications. A crucial aspect in the development of UAVs is the reduction of navigational sensor costs while maintaining accurate navigation. Advances in visual sensor solutions with traditional navigation sensors are proving to be significantly promising in replacing traditional IMU or GPS systems for many mission scenarios. The basic concept behind Vision Based Navigation (VBN is to find the matches between a set of features in real-time captured images taken by the imaging sensor on the UAV and database images. A scale and rotation invariant image matching algorithm is a key element for VBN of aerial vehicles. Matches between the geo-referenced database images and the new real-time captured ones are determined by employing the fast Speeded Up Robust Features (SURF algorithm. The SURF algorithm consists mainly of two steps: the first is the detection of points of interest and the second is the creation of descriptors for each of these points. In this research paper, two major factors are investigated and tested to efficiently create the descriptors for each point of interest. The first factor is the dimension of the descriptor for a given point of interest. The dimension is affected by the number of descriptor sub-regions which consequently affects the matching time and the accuracy. SURF performance has been investigated and tested using different dimensions of the descriptor. The second factor is the number of sample points in each sub-region which are used to build the descriptor of the point of interest. SURF performance has been investigated and tested by changing thenumber of sample points in each sub-region where the matching accuracy is affected. Assessments of the SURF performance and consequently on UAV VBN are investigated.

  5. Scientific Animations for Tsunami Hazard Mitigation: The Pacific Tsunami Warning Center's YouTube Channel

    Science.gov (United States)

    Becker, N. C.; Wang, D.; Shiro, B.; Ward, B.

    2013-12-01

    Outreach and education save lives, and the Pacific Tsunami Warning Center (PTWC) has a new tool--a YouTube Channel--to advance its mission to protect lives and property from dangerous tsunamis. Such outreach and education is critical for coastal populations nearest an earthquake since they may not get an official warning before a tsunami reaches them and will need to know what to do when they feel strong shaking. Those who live far enough away to receive useful official warnings and react to them, however, can also benefit from PTWC's education and outreach efforts. They can better understand a tsunami warning message when they receive one, can better understand the danger facing them, and can better anticipate how events will unfold while the warning is in effect. The same holds true for emergency managers, who have the authority to evacuate the public they serve, and for the news media, critical partners in disseminating tsunami hazard information. PTWC's YouTube channel supplements its formal outreach and education efforts by making its computer animations available 24/7 to anyone with an Internet connection. Though the YouTube channel is only a month old (as of August 2013), it should rapidly develop a large global audience since similar videos on PTWC's Facebook page have reached over 70,000 viewers during organized media events, while PTWC's official web page has received tens of millions of hits during damaging tsunamis. These animations are not mere cartoons but use scientific data and calculations to render graphical depictions of real-world phenomena as accurately as possible. This practice holds true whether the animation is a simple comparison of historic earthquake magnitudes or a complex simulation cycling through thousands of high-resolution data grids to render tsunami waves propagating across an entire ocean basin. PTWC's animations fall into two broad categories. The first group illustrates concepts about seismology and how it is critical to

  6. Revision of the Portuguese catalog of tsunamis

    Directory of Open Access Journals (Sweden)

    M. A. Baptista

    2009-01-01

    Full Text Available Catastrophic tsunamis are described in historical sources for all regions around the Gulf of Cadiz, at least since 60 BC. Most of the known events are associated with moderate to large earthquakes and among them the better studied is 1 November 1755. We present here a review of the events which effects, on the coasts of the Portuguese mainland and Madeira Island, are well described in historical documents or have been measured by tide gauges since the installation of these instruments. For a few we include new relevant information for the assessment of the tsunami generation or effects, and we discard events that are included in existing compilations but are not supported by quality historical sources or instrumental records. We quote the most relevant quantitative descriptions of tsunami effects on the Portuguese coast, including in all pertinent cases a critical review of the coeval sources, to establish a homogenous event list. When available, instrumental information is presented. We complement all this information with a summary of the conclusions established by paleo-tsunami research.

  7. Tsunami: Hope in the Midst of Disaster

    Science.gov (United States)

    Thirumurthy, Vidya; Uma, V.; Muthuram, R. N.

    2008-01-01

    The lives of many were changed forever when a tsunami struck on the morning of December 26, 2004, as a result of an earthquake off the coast of Indonesia registering 9.0 on the Richter scale. Aftershocks in the nearby Andaman and Nicobar Islands sent waves of fear among the survivors, further debilitating their spirits. The aim of this article is…

  8. Modeling tsunami damage in Aceh: a reply

    Science.gov (United States)

    Louis R. Iverson; Anantha M. Prasad

    2008-01-01

    In reply to the critique of Baird and Kerr, we emphasize that our model is a generalized vulnerability model, built from easily acquired data from anywhere in the world, to identify areas with probable susceptibility to large tsunamis--and discuss their other criticisms in detail. We also show that a rejection of the role of trees in helping protect vulnerable areas is...

  9. A conceptual framework for evaluating tsunami resilience

    Science.gov (United States)

    Pushpalal, Dinil

    2017-02-01

    As many coastal towns in the northeast coast of Japan were destroyed by tsunami accompanied with the Great East Japan Earthquake, a few of them were survived or little damaged with no or less casualties due to some reasons. Yoshihama in Iwate prefecture is one of such little damaged communities and is known as “Lucky Beach.” There were such “lucky” and “unlucky” regions in Indonesia and Sri Lanka too, which were affected by Indian Ocean Tsunami. Identification of reasons for vulnerability or resilience is the primary consideration of this article. It presents pragmatic conceptual framework for evaluating resilience, based on author’s firsthand experience on above both tsunamis. Integral resilience of a given area has been considered after dividing into three phases namely, onsite resilience, instantaneous survivability, and recovery potentiality of the area. The author assumes that capacity of each phase depends on socioeconomic, infrastructural and geographical factors of the area considered. The paper moves forward, arguing appropriateness of the framework by giving examples collected from Japan, Indonesia and Sri Lanka. The framework will be useful for evaluating resilience of coastal townships and also planning resilient townships, specifically focusing on tsunami.

  10. Major Tsunamis of 1992 - Nicaragua and Indonesia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — At 7:16 p.m. on September 1, 1992, an earthquake with a magnitude of 7.0 generated a tsunami with waves between eight and fifteen meters high that struck twenty-six...

  11. Asteroid-Generated Tsunami and Impact Risk

    Science.gov (United States)

    Boslough, M.; Aftosmis, M.; Berger, M. J.; Ezzedine, S. M.; Gisler, G.; Jennings, B.; LeVeque, R. J.; Mathias, D.; McCoy, C.; Robertson, D.; Titov, V. V.; Wheeler, L.

    2016-12-01

    The justification for planetary defense comes from a cost/benefit analysis, which includes risk assessment. The contribution from ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall risk. Our group is currently working toward improved understanding of impact scenarios that can generate dangerous tsunami. The importance of asteroid-generated tsunami research has increased because a new Science Definition Team, at the behest of NASA's Planetary Defense Coordinating Office, is now updating the results of a 2003 study on which our current planetary defense policy is based Our group was formed to address this question on many fronts, including asteroid entry modeling, tsunami generation and propagation simulations, modeling of coastal run-ups, inundation, and consequences, infrastructure damage estimates, and physics-based probabilistic impact risk assessment. We also organized the Second International Workshop on Asteroid Threat Assessment, focused on asteroid-generated tsunami and associated risk (Aug. 23-24, 2016). We will summarize our progress and present the highlights of our workshop, emphasizing its relevance to earth and planetary science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  12. Tsunami: Hope in the Midst of Disaster

    Science.gov (United States)

    Thirumurthy, Vidya; Uma, V.; Muthuram, R. N.

    2008-01-01

    The lives of many were changed forever when a tsunami struck on the morning of December 26, 2004, as a result of an earthquake off the coast of Indonesia registering 9.0 on the Richter scale. Aftershocks in the nearby Andaman and Nicobar Islands sent waves of fear among the survivors, further debilitating their spirits. The aim of this article is…

  13. Inversion method for initial tsunami waveform reconstruction

    Directory of Open Access Journals (Sweden)

    V. V. Voronin

    2014-12-01

    Full Text Available This paper deals with the application of r-solution method to recover the initial tsunami waveform in a tsunami source area by remote water-level measurements. Wave propagation is considered within the scope of a linear shallow-water theory. An ill-posed inverse problem is regularized by means of least square inversion using a truncated SVD approach. The properties of obtained solution are determined to a large extent by the properties of an inverse operator, which were numerically investigated. The method presented allows one to control instability of the numerical solution and to obtain an acceptable result in spite of ill-posedness of the problem. It is shown that the accuracy of tsunami source reconstruction strongly depends on the signal-to-noise ratio, the azimuthal coverage of recording stations with respect to the source area and bathymetric features along the wave path. The numerical experiments were carried out with synthetic data and various computational domains including a real bathymetry. The method proposed allows us to make a preliminary prediction of the efficiency of the inversion with a given set of the recording stations and to find out the most informative part of the existing observation system. This essential property of the method can prove to be useful in designing a monitoring system for tsunamis.

  14. Analyses of Tsunami Events using Simple Propagation Models

    Science.gov (United States)

    Chilvery, Ashwith Kumar; Tan, Arjun; Aggarwal, Mohan

    2012-03-01

    Tsunamis exhibit the characteristics of ``canal waves'' or ``gravity waves'' which belong to the class of ``long ocean waves on shallow water.'' The memorable tsunami events including the 2004 Indian Ocean tsunami and the 2011 Pacific Ocean tsunami off the coast of Japan are analyzed by constructing simple tsunami propagation models including the following: (1) One-dimensional propagation model; (2) Two-dimensional propagation model on flat surface; (3) Two-dimensional propagation model on spherical surface; and (4) A finite line-source model on two-dimensional surface. It is shown that Model 1 explains the basic features of the tsunami including the propagation speed, depth of the ocean, dispersion-less propagation and bending of tsunamis around obstacles. Models 2 and 3 explain the observed amplitude variations for long-distance tsunami propagation across the Pacific Ocean, including the effect of the equatorial ocean current on the arrival times. Model 3 further explains the enhancement effect on the amplitude due to the curvature of the Earth past the equatorial distance. Finally, Model 4 explains the devastating effect of superposition of tsunamis from two subduction event, which struck the Phuket region during the 2004 Indian Ocean tsunami.

  15. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-12-01

    Tsunami concerns have increased in the world after the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Consequently, tsunami models have been developed rapidly in the last few years. One of the advanced tsunami models is the GeoClaw tsunami model introduced by LeVeque (2011). This model is adaptive and consistent. Because of different sources of uncertainties in the model, observations are needed to improve model prediction through a data assimilation framework. Model inputs are earthquake parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while the smoother operates smoothing to estimate the earthquake parameters. This method reduces the error produced by uncertain inputs. In addition, state-parameter EnKF is implemented to estimate earthquake parameters. Although number of observations is small, estimated parameters generates a better tsunami prediction than the model. Methods and results of prediction experiments in the Red Sea are presented and the prospect of developing an operational tsunami prediction system in the Red Sea is discussed.

  16. Field survey of the 2009 tsunami in American Samoa

    Science.gov (United States)

    Koshimura, S.; Nishimura, Y.; Nakamura, Y.; Namegaya, Y.; Fryer, G. J.; Akapo, A.; Kong, L. S.; Vargo, D.

    2009-12-01

    We conducted a post-tsunami field survey of the 2009 tsunami in Tutuila island, American Samoa from 5 to 8 Oct., 2009, focusing on the measurements of tsunami run-up height, flow depth, extent of inundation zone, coastal erosion/sedimentation, structural damage inspection, and collecting eyewitness accounts. In total, we measured tsunami heights at 50 points in the island using the total station, hand-held GPS and survey rods. Throughout the survey, we found that the tsunami devastated the villages along the western coast with the highest run-up of 16.3 m (above the sea level at tsunami arrival) at Poloa where almost all the houses were washed-away or collapsed, and 12.4 m inundation height at Amanave where the tsunami penetrated approximately 200 m inland. Also, severe damage were found at Leone (south western coast ; 6 m as inundation height), Pago Pago harbor (central coast; 5m as inundation height, 2 m as flow depth and approximately 500 m inland tsunami penetration), and Tula (eastern coast ; less than 6m as inundation height). We also surveyed the structural damage in Pago Pago harbor, by the interpretation of high-resolution satellite images (QuickBird) and on-site inspection with GPS measurement, which leads to the understanding of relations between the tsunami hazard and structural vulnerability. Measured tsunami inundation heights after tide correction.

  17. Re-thinking the Distant Tsunami Hazard to Alaska

    Science.gov (United States)

    Preller, C. C.; Petty, E. A.; Knight, W. R.; Curtis, J. C.; Albanese, S. P.

    2012-12-01

    The science of tsunami has created as many questions as it has answers for vulnerable areas like those in Alaska's coastal communities. How a tsunami might inundate is determined by a variety of event-unique factors that are difficult to accurately prepare for; near shore dynamics and local bathymetry guarantee a distinctive experience at every locality. The island of St. Paul, located in the middle of the Bering Sea, measured a significant tsunami during the Japanese event in 2011. Believing that the Aleutian Chain would minimize tsunami energy into the Bering Sea, this was an eye-opening observation. Real science gives us real answers. The only way to accurately understand the effect of a tsunami is to have a tsunami; a completely unpredictable event without a season. Over the last few years, there have been several large events. Assessing impacts from the Chilean tsunami of 2010 and the Japanese tsunami of 2011, as well as other events such as Samoa and Haiti, has offered a fine-tuning to tsunami understanding and modeling. Using observed amplitudes, tsunami history, oral stories, and improved static modeling techniques, the ability to access threat by community is becoming possible. Communities previously ranked on broad generalizations are now assessed more specifically with data and modeling, providing new insights to their threat ranking. The critical though complex task of preparedness for Alaska, the state with the most coast-line and the least road system, is expensive and difficult. Translating the potential effects to emergency managers is a vague undertaking depending on the possible scenarios considered. Our understanding, with fine tuning, is proving to be essential in our approach. The reanalysis of the distance tsunami threat determined by updated tsunami science gives local officials the opportunity to improve community preparedness and allow communities to allocate scarce resources wisely.; Japanese Tsunami measured at Saint Paul Island showing

  18. Assessing historical rate changes in global tsunami occurrence

    Science.gov (United States)

    Geist, E.L.; Parsons, T.

    2011-01-01

    The global catalogue of tsunami events is examined to determine if transient variations in tsunami rates are consistent with a Poisson process commonly assumed for tsunami hazard assessments. The primary data analyzed are tsunamis with maximum sizes >1m. The record of these tsunamis appears to be complete since approximately 1890. A secondary data set of tsunamis >0.1m is also analyzed that appears to be complete since approximately 1960. Various kernel density estimates used to determine the rate distribution with time indicate a prominent rate change in global tsunamis during the mid-1990s. Less prominent rate changes occur in the early- and mid-20th century. To determine whether these rate fluctuations are anomalous, the distribution of annual event numbers for the tsunami catalogue is compared to Poisson and negative binomial distributions, the latter of which includes the effects of temporal clustering. Compared to a Poisson distribution, the negative binomial distribution model provides a consistent fit to tsunami event numbers for the >1m data set, but the Poisson null hypothesis cannot be falsified for the shorter duration >0.1m data set. Temporal clustering of tsunami sources is also indicated by the distribution of interevent times for both data sets. Tsunami event clusters consist only of two to four events, in contrast to protracted sequences of earthquakes that make up foreshock-main shock-aftershock sequences. From past studies of seismicity, it is likely that there is a physical triggering mechanism responsible for events within the tsunami source 'mini-clusters'. In conclusion, prominent transient rate increases in the occurrence of global tsunamis appear to be caused by temporal grouping of geographically distinct mini-clusters, in addition to the random preferential location of global M >7 earthquakes along offshore fault zones.

  19. Tsunami hazard in the Black Sea and the Azov Sea: a new tsunami catalogue

    Directory of Open Access Journals (Sweden)

    G. A. Papadopoulos

    2011-03-01

    Full Text Available Data on tsunamis occurring in the Black Sea and the Azov Sea from antiquity up to the present were updated, critically evaluated and compiled in the standard format developed since the 90's for the New European Tsunami Catalogue. Twenty nine events were examined but three of them, supposedly occurring in 557 AD, 815 AD and 1341 or 1343, were very likely falsely reported. Most of the remaining 26 events were generated in Crimea, offshore Bulgaria as well as offshore North Anatolia. For each of the 26 events examined, 22 events were classified as reliable ones receiving a score of 3 or 4 on a 4-grade reliability scale. Most of them were caused by earthquakes, such as the key event 544/545 of offshore Varna, but a few others were attributed either to aseismic earth slumps or to unknown causes. The tsunami intensity was estimated using the traditional 6-grade scale and the new 12-grade scale introduced by Papadopoulos and Imamura (2001. From 544/545 up to now, only two reliable events of high intensity K ≥ 7 have been reported, which very roughly indicates that the mean repeat time is ∼ 750 years. Five reliable tsunamis of moderate intensity 4 ≤ K < 7 have been observed from 1650 up to the present, which implies a recurrence of 72 years on the average. Although these calculations were based on a very small statistical sample of tsunami events, the repeat times found are consistent with the theoretical expectations from size-frequency relations. However, in the Black Sea there is no evidence of tsunamis of very high intensity (K ∼ 10 such as the AD 365, 1303 and 1956 ones associated with large earthquakes occurring along the Hellenic arc and trench, Greece, or the 1908 one in Messina strait, Italy. This observation, along with the relatively low tsunami frequency, indicates that the tsunami hazard in the Black Sea is low to moderate but not negligible. The tsunami hazard in the Azov Sea is very low because of the very low

  20. Mexican Earthquakes and Tsunamis Catalog Reviewed

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Castillo-Aja, R.

    2015-12-01

    Today the availability of information on the internet makes online catalogs very easy to access by both scholars and the public in general. The catalog in the "Significant Earthquake Database", managed by the National Center for Environmental Information (NCEI formerly NCDC), NOAA, allows access by deploying tabular and cartographic data related to earthquakes and tsunamis contained in the database. The NCEI catalog is the product of compiling previously existing catalogs, historical sources, newspapers, and scientific articles. Because NCEI catalog has a global coverage the information is not homogeneous. Existence of historical information depends on the presence of people in places where the disaster occurred, and that the permanence of the description is preserved in documents and oral tradition. In the case of instrumental data, their availability depends on the distribution and quality of seismic stations. Therefore, the availability of information for the first half of 20th century can be improved by careful analysis of the available information and by searching and resolving inconsistencies. This study shows the advances we made in upgrading and refining data for the earthquake and tsunami catalog of Mexico since 1500 CE until today, presented in the format of table and map. Data analysis allowed us to identify the following sources of error in the location of the epicenters in existing catalogs: • Incorrect coordinate entry • Place name erroneous or mistaken • Too general data that makes difficult to locate the epicenter, mainly for older earthquakes • Inconsistency of earthquakes and the tsunami occurrence: earthquake's epicenter located too far inland reported as tsunamigenic. The process of completing the catalogs directly depends on the availability of information; as new archives are opened for inspection, there are more opportunities to complete the history of large earthquakes and tsunamis in Mexico. Here, we also present new earthquake and

  1. CAT: the INGV Tsunami Alert Center

    Science.gov (United States)

    Michelini, A.

    2014-12-01

    After the big 2004 Sumatra earthquake, the tsunami threat posed by large earthquakes occurring in the Mediterranean sea was formally taken into account by many countries around the Mediterranean basin. In the past, large earthquakes that originated significant tsunamis occurred nearly once per century (Maramai et al., 2014, Annals of Geophysics). The Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO) received a mandate from the international community to coordinate the establishment of the ICG/NEAMTWS (http://neamtic.ioc-unesco.org) through Resolution IOC-XXIII-14. Since then, several countries (France, Turkey, Greece) have started operating as candidate Tsunami Watch Provider (cTWP) in the Mediterranean. Italy started operating as cTWP on October 1st, 2014. The Italian cTWP is formed by INGV ("Istituto Nazionale di Geofisica e Vulcanologia)", DPC ("Dipartimento di Protezione Civile") and ISPRA ("Istituto Superiore per la Protezione e la Ricerca Ambientale"). INGV is in charge of issuing the alert for potentially tsunamigenic earthquakes, ISPRA provides the sea level recordings and DPC is in charge of disseminating the alert. INGV established the tsunami alert center (CAT, "Centro di Allerta Tsunami") at the end of 2013. CAT is co-located with the INGV national seismic surveillance center operated since many years. In this work, we show the technical and personnel organization of CAT, its response to recent earthquakes, and the new procedures under development for implementation. (*) INGV-CAT WG: Amato A., Basili R., Bernardi F., Bono A., Danecek P., De Martini P.M., Govoni A., Graziani L., Lauciani V., Lomax, A., Lorito S., Maramai A., Mele F., Melini D., Molinari I., Nostro C., Piatanesi A., Pintore S., Quintiliani M., Romano F., Selva J., Selvaggi G., Sorrentino D., Tonini R.

  2. The Great 1787 Corralero, Oaxaca, Tsunami Uncovered

    Science.gov (United States)

    Ramirez-Herrera, M.; Lagos, M.; Goguitchaichrili, A.; Aguilar, B.; Machain-Castillo, M. L.; Caballero, M.; Ruíz-Fernández, A. C.; Suarez, G.; Ortuño, M.

    2013-05-01

    In 28th March 1787, more than two centuries ago, a deadly tsunami (related to the the San Sixto earthquake) poured over the coast of Oaxaca, Guerrero, and Chiapas, along more than 500 km of the Mexican Pacific coast and up to 6 km inland, the tsunami destroyed mostly farmlands, and livestock and few villages since the density of population was sparse at the time, according to known historical accounts. We report the first geological evidence from the Corralero (Alotengo) lagoon coastal area to support these historical accounts. A transect was made with coring and test pits every 100 m from the coastline and up to 1.6 km inland. The test pits showed an anomalous sand layer that had been deposited in a single event in the swales of a series of beach ridges. The anomalous layer is continuous along the transect, about a 1000 m-long, and is formed of coarse to medium sand, at about 36 to 64 cm depth. It thickness varies, averaging 28 cm in the middle of a swale. Based on the accounts of the 1787 earthquake (M 8.6) and tsunami, we deduced that this might be the evidence of its existence. As the only major tsunami described at that time, the San Sixto earthquake-triggered tsunami. We used the stratigraphy, grain size, microfossils (foraminifera and diatoms), magnetic properties such as magnetic susceptibility, remanent magnetization analyses to reveal the nature of this anomalous sand layer. These proxies support a sudden and rapid event, consisting of sands transported by an extreme sea-wave inland. Further analysis will confirm the estimated age of this event.

  3. Recovery of an estuary in the southwest coast of India from tsunami impacts

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Kesavadas, V.; Balachandran, K.K.; Gerson, V.J.; Martin, G.D.; Shaiju, P.; Revichandran, C.; Joseph, T.; Nair, M.

    inflicted by the energy transferred through the tsunami, which disturbed the entire estuarine embayment. However, the post tsunami water quality showed normal levels indicating that the region has recovered from the tsunami impacts....

  4. The impact of celestial pole offset modelling on VLBI UT1 Intensive results

    CERN Document Server

    Malkin, Zinovy

    2011-01-01

    Very Long Baseline Interferometry (VLBI) Intensive sessions are scheduled to provide operational Universal Time (UT1) determinations with low latency. UT1 estimates obtained from these observations heavily depend on the model of the celestial pole motion used during data processing. However, even the most accurate precession-nutation model, IAU 2000/2006, is not accurate enough to realize the full potential of VLBI observations. To achieve the highest possible accuracy in UT1 estimates, a celestial pole offset (CPO), which is the difference between the actual and modelled precession-nutation angles, should be applied. Three CPO models are currently available for users. In this paper, these models have been tested and the differences between UT1 estimates obtained with those models are investigated. It has been shown that neglecting CPO modelling during VLBI UT1 Intensive processing causes systematic errors in UT1 series of up to 20 microarcseconds. It has been also found that using different CPO models causes...

  5. Heavenly Networks. Celestial Maps and Globes in Circulation between Artisans, Mathematicians, and Noblemen in Renaissance Europe.

    Science.gov (United States)

    Gessner, Samuel

    2015-01-01

    The aim of this paper is to examine the iconography on a set of star charts by Albrecht Dürer (1515), and celestial globes by Caspar Vopel (1536) and Christoph Schissler (1575). The iconography on these instruments is conditioned by strong traditions which include not only the imagery on globes and planispheres (star charts), but also ancient literature about the constellations. Where this iconography departs from those traditions, the change had to do with humanism in the sixteenth century. This "humanistic" dimension is interwoven with other concerns that involve both "social" and "technical" motivations. The interplay of these three dimensions illustrates how the iconography on celestial charts and globes expresses some features of the shared knowledge and shared culture between artisans, mathematicians, and nobles in Renaissance Europe.

  6. Infrared radiation scene generation of stars and planets in celestial background

    Science.gov (United States)

    Guo, Feng; Hong, Yaohui; Xu, Xiaojian

    2014-10-01

    An infrared (IR) radiation generation model of stars and planets in celestial background is proposed in this paper. Cohen's spectral template1 is modified for high spectral resolution and accuracy. Based on the improved spectral template for stars and the blackbody assumption for planets, an IR radiation model is developed which is able to generate the celestial IR background for stars and planets appearing in sensor's field of view (FOV) for specified observing date and time, location, viewpoint and spectral band over 1.2μm ~ 35μm. In the current model, the initial locations of stars are calculated based on midcourse space experiment (MSX) IR astronomical catalogue (MSX-IRAC) 2 , while the initial locations of planets are calculated using secular variations of the planetary orbits (VSOP) theory. Simulation results show that the new IR radiation model has higher resolution and accuracy than common model.

  7. UBVRI Photometric Standard Stars Around the Celestial Equator: Updates and Additions

    CERN Document Server

    Landolt, Arlo U

    2009-01-01

    New broadband UBVRI photoelectric observations on the Johnson-Kron-Cousins photometric system have been made of 202 stars around the sky, and centered at the celestial equator. These stars constitute both an update of and additions to a previously published list of equatorial photometric standard stars. The list is capable of providing, for both celestial hemispheres, an internally consistent homogeneous broadband standard photometric system around the sky. When these new measurements are included with those previously published by Landolt (1992), the entire list of standard stars in this paper encompasses the magnitude range 8.90 < V < 16.30, and the color index range -0.35 < (B - V) < +2.30.

  8. IN-FLIGHT ALIGNMENT OF INERTIAL NAVIGATION SYSTEM BY CELESTIAL OBSERVATION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    ALlJamshaid; FANGJian-cheng

    2005-01-01

    This paper presents an in-flight alignment technique for a strapdown inertial navigation system (SINS) and employs a star pattern recognition procedure for identifying stars sensed by a CCD electrooptical star sensor.Collinearity equations are used to estimate sensor frame star coordinates and the conventional least square differential correction method is used to estimate the unknown orientation angles. A comparison of this attitude with the attitude estimated by the SINS provides axis misalignment angles. Simulations using a Kalman filter are carried out for an SINS and the system employs a local level navigation frame. The space stabilized SINS is discussed in conjunction with the celestial aiding. Based on the observation of the Kalman filter, the estimating and compensating gyro errors, as well as the position and velocity errors caused by the SINS misalignments are calibrated by celestial attitute information.

  9. Real-time forecasting of near-field tsunamis based on source estimation from offshore tsunami data (Invited)

    Science.gov (United States)

    Tsushima, H.; Hayashi, Y.; Maeda, K.; Yokota, T.

    2013-12-01

    Near-field tsunamis in areas close to subduction zones can reach the coast in a few tens of minutes or less, and cause loss of life as well as severe damage to houses and infrastructures in coastal communities. Real-time tsunami forecasting is one of the effective ways to mitigate tsunami disasters. Transmission of a tsunami warning based on rapid and accurate tsunami forecasting to coastal communities helps the residents to make the decisions about their evacuation behaviors. Offshore tsunami data take an important role in tsunami forecasting. Tsunamis can be detected at offshore stations earlier than at coastal sites, and the data provide direct information about the impending tsunamis. In this paper, we present a method to forecast near-field tsunamis from offshore tsunami data using inversion and tsunami amplification factor techniques. We also introduce a prototype of tsunami forecasting system in which our forecasting method is installed. Our tsunami forecasting algorithm is based on a source estimation. For the algorithm, offshore tsunami waveform data are inverted for spatial distribution of an initial sea-surface displacement, and then tsunami waveforms are synthesized from the estimated source and pre-computed Green's functions by a linear superposition to forecast tsunamis at an offshore point near a coastal site. The predicted tsunami heights at the offshore points are amplified to obtain those at coastal sites using the amplification factors derived from actual tsunami observations empirically. No assumptions concerning the fault geometry and the size of an earthquake are required in the algorithm. An empirical amplification factor includes the effect of actual topography on tsunami heights that should be difficult to be modeled by the linear combination of the Green's functions. The predictions are repeated by progressively updating the offshore tsunami waveform data. Because individual predictions can be calculated within a few minutes, tsunami

  10. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  11. A new method of single celestial-body sun positioning based on theory of mechanisms

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Xu Xiaofeng; Wu Yuanzhe

    2016-01-01

    Considering defects of current single celestial-body positioning methods such as discon-tinuity and long period, a new sun positioning algorithm is herein put forward. Instead of tradi-tional astronomical spherical trigonometry and celestial coordinate system, the proposed new positioning algorithm is built by theory of mechanisms. Based on previously derived solar vector equations (from a C1R2P2 series mechanism), a further global positioning method is developed by inverse kinematics. The longitude and latitude coordinates expressed by Greenwich mean time (GMT) and solar vector in local coordinate system are formulated. Meanwhile, elimination method of multiple solutions, errors of longitude and latitude calculation are given. In addition, this algo-rithm has been integrated successfully into a mobile phone application to visualize sun positioning process. Results of theoretical verification and smart phone’s test demonstrate the validity of pre-sented coordinate’s expressions. Precision is shown as equivalent to current works and is acceptable to civil aviation requirement. This new method solves long-period problem in sun sight running fix-ing and improves applicability of sun positioning. Its methodology can inspire development of new sun positioning device. It would be more applicable to be combined with inertial navigation systems for overcoming discontinuity of celestial navigation systems and accumulative errors of inertial nav-igation systems.

  12. A new method of single celestial-body sun positioning based on theory of mechanisms

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2016-02-01

    Full Text Available Considering defects of current single celestial-body positioning methods such as discontinuity and long period, a new sun positioning algorithm is herein put forward. Instead of traditional astronomical spherical trigonometry and celestial coordinate system, the proposed new positioning algorithm is built by theory of mechanisms. Based on previously derived solar vector equations (from a C1R2P2 series mechanism, a further global positioning method is developed by inverse kinematics. The longitude and latitude coordinates expressed by Greenwich mean time (GMT and solar vector in local coordinate system are formulated. Meanwhile, elimination method of multiple solutions, errors of longitude and latitude calculation are given. In addition, this algorithm has been integrated successfully into a mobile phone application to visualize sun positioning process. Results of theoretical verification and smart phone’s test demonstrate the validity of presented coordinate’s expressions. Precision is shown as equivalent to current works and is acceptable to civil aviation requirement. This new method solves long-period problem in sun sight running fixing and improves applicability of sun positioning. Its methodology can inspire development of new sun positioning device. It would be more applicable to be combined with inertial navigation systems for overcoming discontinuity of celestial navigation systems and accumulative errors of inertial navigation systems.

  13. Probabilistic Tsunami Hazard Assessment for Nuclear Power Plants in Japan

    Science.gov (United States)

    Satake, K.

    2012-12-01

    Tsunami hazard assessments for nuclear power stations (NPS) in Japan had been conducted by a deterministic method, but probabilistic methods are being adopted following the accident of Fukushima Daiichi NPS. The deterministic tsunami hazard assessment (DTHA), proposed by Japan Society of Civil Engineers in 2002 (Yanagisawa et al., 2007, Pageoph) considers various uncertainties by parameter studies. The design tsunami height at Fukushima NPS was set as 6.1 m, based on parameter studies by varying location, depth, and strike, dip and slip angles of the 1938 off-Fukushima earthquake (M 7.4). The maximum tsunami height for a hypothetical "tsunami earthquake" off Fukushima, similar to the 1896 Sanriku earthquake (Mt 8.2), and that for the 869 Jogan earthquake model (Mw 8.4) were estimated as 15.7 m and 8.9 m, respectively, before the 2011 accident (TEPCO report, 2012). The actual tsunami height at the Fukushima NPS on March 11, 2011 was 12 to 16 m. A probabilistic tsunami hazard assessment (PTHA) has been also proposed by JSCE (An'naka et al., 2007, Pageoph), and recently adopted in "Implementation Standard of Tsunami Probabilistic Risk Assessment (PRA) of NPPs" published in 2012 by Atomic Energy Society of Japan. In PTHA, tsunami hazard curves, or probability of exeedance for tsunami heights, are constructed by integrating over aleatory uncertainties. The epistemic uncertainties are treated as branches of logic trees. The logic-tree branches for the earthquake source include the earthquake type, magnitude range, recurrence interval and the parameters of BPT distribution for the recurrent earthquakes. Because no "tsunami earthquake" was recorded off the Fukushima NPS, whether or not a "tsunami earthquake" occurs along the Japan trench off Fukushima, was a one of logic-tree branches, and the weight was determined by experts' opinions. Possibilities for multi-segment earthquakes are now added as logic-tree branches, after the 2011 Tohoku earthquake, which is considered as

  14. Tsunami Run-up Heights at Imwon Port, Korea

    Science.gov (United States)

    Cho, Yong-Sik; Cho, Jeong-Seon

    2015-04-01

    Tsunami Run-up Heights at Imwon Port, Korea Yong-Sik Cho and Jeong-Seon Cho Department of Civil and Environmental Engineering, Hanyang University 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea. The Eastern Coast of the Korean Peninsula has been attacked frequently by a number of tsunamis causing severe damages during this century. Among them, 1983 Central East Sea and 1993 Hokkaido Tsunami events were recorded as the most devastating events in Korea. More recently, the Great East Japan Tsunami had also attacked the Korean Peninsula. The Eastern Coast of the Korean Peninsula is the terminal place where tsunamis climb up inland after it generated along the western coast of Japan. The central part of the coast, in special, is worried as a tsunami danger zone because much tsunami energy is concentrated on by a topographic condition of this region. Recently, several coastal facilities including harbors and breakwaters are built and operated along the Eastern Coast of the Korean Peninsula. Furthermore, several nuclear power plants are already operating and several more units are now under construction. Residents who lived alongside the coast want free from unexpected danger, so the tsunami hazard mitigation becomes an important issue of coastal problems in Korea. Through the historical tsunami events, the Imwon Port is known as the place where most severe damage occurred, especially in 1983. An effective and economic way for the tsunami hazard mitigation planning is to construct inundation maps along the coast vulnerable to tsunami flooding. These maps should be built based on the historical tsunami events and the projected scenarios. For this purpose, an accurate estimation of tsunami run-up height and inundation process through the numerical model is needed. As a first step to tsunami mitigation program, the maximum run-up heights at the Imwon Port are computed and compared with field observed data. For this, tsunami run-up heights in this region were filed

  15. "Do outside": corpo e natureza, medo e gênero no surfe universitário paulistano "From the outside": body and nature, fear and gender in surfing

    Directory of Open Access Journals (Sweden)

    Marília Martins Bandeira

    2011-03-01

    Full Text Available Ao objetivo primeiro desta pesquisa, descrever as dinâmicas do surfe e os significados de sua prática, em especial a relação ser humano/natureza estabelecida por meio do esporte, somaram-se outros objetivos: problematizar a aproximação do pesquisador de seu campo de investigação, a possibilidade de um pesquisador realizar uma investigação através de seu próprio corpo e discutir a questão de gênero no surfe. Sobre o objetivo primeiro desta pesquisa, vivendo e descrevendo as dinâmicas do surfe encontrou-se os significados da relação do surfista com o mar nas sensações corporais experimentadas nas técnicas do remar, sentar, dar o joelhinho e dropar a onda. Que ser capaz de passar a rebentação é associado a um retorno bem sucedido à comunhão do homem com a natureza, sendo as cores, formas e sensações do "outside" o privilégio daquele que vence as dificuldades do tornar-se e ser surfista. Mas, que estas sensações são tidas como possibilidades de corpos corajosos e hábeis, "a priori", entendidos como corpos masculinos. O surfe como campo em que o feminino é visto ainda como exceção dá a pensar que os esportes na natureza e a educação ao ar livre, embora tenham potencial de promover novas condutas políticas e a virtuosa sensibilidade ambiental, não estão livres de reproduzir outros padrões de dominação.The main goal of this research is to describe the dynamics of surfing and its meanings, mainly the human/nature relation established through the sport. Meanwhile, other goals were added: discussing the approach to the field by the researcher, the possibility this researcher could investigate through her own body and the gender matter in the sport. About the main aim of the research, living and experiencing the sport itself, meaning, to the relation between the surfer and the sea, was found in the body sensations experienced through techniques such as paddling, sitting, duck diving and dropping a wave. Being

  16. The Hands of the Pleiades: The Celestial Clock in the Classical Arabic Poetry of Dhū al-Rumma

    Science.gov (United States)

    Adams, W. B.

    2011-06-01

    In the desert poetry of Dhū al-Rumma (d. 117 AH/735 CE), astronomical phenomena sometimes function as familiar celestial timepieces that indicate the poetic timeframe literally and accurately. The literary, lexical, floral and astronomical analyses of a selection from this poetry illustrate the role of the Pleiades star cluster as a celestial clock and illuminate the utility of naked-eye astronomy in interpreting Arabic poetry of the early Islamic period.

  17. Spatially Uniform ReliefF (SURF for computationally-efficient filtering of gene-gene interactions

    Directory of Open Access Journals (Sweden)

    Greene Casey S

    2009-09-01

    Full Text Available Abstract Background Genome-wide association studies are becoming the de facto standard in the genetic analysis of common human diseases. Given the complexity and robustness of biological networks such diseases are unlikely to be the result of single points of failure but instead likely arise from the joint failure of two or more interacting components. The hope in genome-wide screens is that these points of failure can be linked to single nucleotide polymorphisms (SNPs which confer disease susceptibility. Detecting interacting variants that lead to disease in the absence of single-gene effects is difficult however, and methods to exhaustively analyze sets of these variants for interactions are combinatorial in nature thus making them computationally infeasible. Efficient algorithms which can detect interacting SNPs are needed. ReliefF is one such promising algorithm, although it has low success rate for noisy datasets when the interaction effect is small. ReliefF has been paired with an iterative approach, Tuned ReliefF (TuRF, which improves the estimation of weights in noisy data but does not fundamentally change the underlying ReliefF algorithm. To improve the sensitivity of studies using these methods to detect small effects we introduce Spatially Uniform ReliefF (SURF. Results SURF's ability to detect interactions in this domain is significantly greater than that of ReliefF. Similarly SURF, in combination with the TuRF strategy significantly outperforms TuRF alone for SNP selection under an epistasis model. It is important to note that this success rate increase does not require an increase in algorithmic complexity and allows for increased success rate, even with the removal of a nuisance parameter from the algorithm. Conclusion Researchers performing genetic association studies and aiming to discover gene-gene interactions associated with increased disease susceptibility should use SURF in place of ReliefF. For instance, SURF should be

  18. Drones at the Beach - Surf Zone Monitoring Using Rotary Wing Unmanned Aerial Vehicles

    Science.gov (United States)

    Rynne, P.; Brouwer, R.; de Schipper, M. A.; Graham, F.; Reniers, A.; MacMahan, J. H.

    2014-12-01

    We investigate the potential of rotary wing Unmanned Aerial Vehicles (UAVs) to monitor the surf zone. In recent years, the arrival of lightweight, high-capacity batteries, low-power electronics and compact high-definition cameras has driven the development of commercially available UAVs for hobbyists. Moreover, the low operation costs have increased their potential for scientific research as these UAVs are extremely flexible surveying platforms. The UAVs can fly for ~12 min with a mean loiter radius of 1 - 3.5 m and a mean loiter error of 0.75 - 4.5 m, depending on the environmental conditions, flying style, battery type and vehicle type. Our experiments using multiple, alternating UAVs show that it is possible to have near continuous imagery data with similar Fields Of View. The images obtained from the UAVs (Fig. 1a), and in combination with surveyed Ground Control Points (GCPs) (Fig. 1b, red squares and white circles), can be geo-rectified (Fig. 1c) to pixel resolution between 0.01 - 1 m and a reprojection error, i.e. the difference between the surveyed GPS location of a GCP and the location of the GCP obtained from the geo-rectified image, of O(1 m). These geo-rectified images provide data on a variety of coastal aspects, such as beach width (Wb(x,t)), surf zone width (Wsf(x,t)), wave breaking location (rectangle B), beach usage (circle C) and location of dune vegegation (rectangle D), amongst others. Additionally, the possibility to have consecutive, high frequency (up to 2 Hz) rectified images makes the UAVs a great data instrument for spatially and temporally variable systems, such as the surf zone. Our first observations with the UAVs reveal the potential to quickly obtain surf zone and beach characteristics in response to storms or for day to day beach information, as well as the scientific pursuits of surf zone kinematics on different spatial and temporal scales, and dispersion and advection estimates of pollutants/dye. A selection of findings from

  19. Tsunami focusing and leading wave height

    Science.gov (United States)

    Kanoglu, Utku

    2016-04-01

    Field observations from tsunami events show that sometimes the maximum tsunami amplitude might not occur for the first wave, such as the maximum wave from the 2011 Japan tsunami reaching to Papeete, Tahiti as a fourth wave 72 min later after the first wave. This might mislead local authorities and give a wrong sense of security to the public. Recently, Okal and Synolakis (2016, Geophys. J. Int. 204, 719-735) discussed "the factors contributing to the sequencing of tsunami waves in the far field." They consider two different generation mechanisms through an axial symmetric source -circular plug; one, Le Mehaute and Wang's (1995, World Scientific, 367 pp.) formalism where irritational wave propagation is formulated in the framework of investigating tsunamis generated by underwater explosions and two, Hammack's formulation (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) which introduces deformation at the ocean bottom and does not represent an immediate deformation of the ocean surface, i.e. time dependent ocean surface deformation. They identify the critical distance for transition from the first wave being largest to the second wave being largest. To verify sequencing for a finite length source, Okal and Synolakis (2016) is then used NOAA's validated and verified real time forecasting numerical model MOST (Titov and Synolakis, 1998, J. Waterw. Port Coast. Ocean Eng., 124, 157-171) through Synolakis et al. (2008, Pure Appl. Geophys. 165, 2197-2228). As a reference, they used the parameters of the 1 April 2014 Iquique, Chile earthquake over real bathymetry, variants of this source (small, big, wide, thin, and long) over a flat bathymetry, and 2010 Chile and 211 Japan tsunamis over both real and flat bathymetries to explore the influence of the fault parameters on sequencing. They identified that sequencing more influenced by the source width rather than the length. We extend Okal and Synolakis (2016)'s analysis to an initial N-wave form (Tadepalli

  20. Modelling of Charles Darwin's tsunami reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great 1835 earthquake. He described his impressions and results of the earthquake-induced natural catastrophe in The Voyage of the Beagle. His description of the tsunami could easily be read as a report from Indonesia or Sri Lanka, after the catastrophic tsunami of 26 December 2004. In particular, Darwin emphasised the dependence of earthquake-induced waves on a form of the coast and the coastal depth: ‘… Talcuhano and Callao are situated at the head of great shoaling bays, and they have always suffered from this phenomenon; whereas, the town of Valparaiso, which is seated close on the border of a profound ocean... has never been overwhelmed by one of these terrific deluges…' . He reports also, that ‘… the whole body of the sea retires from the coast, and then returns in great waves of overwhelming force ...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). The coastal evolution of a tsunami was analytically studied in many publications (see, for example, Synolakis, C.E., Bernard, E.N., 2006. Philos. Trans. R. Soc., Ser. A, 364, 2231-2265; Tinti, S., Tonini, R. 205. J.Fluid Mech., 535, 11-21). However, the Darwin's reports and the influence of the coastal depth on the formation and the evolution of the steep front and the profile of tsunami did not practically discuss. Recently, a mathematical theory of these phenomena was presented in researchspace. auckland. ac. nz/handle/2292/4474. The theory describes the waves which are excited due to nonlinear effects within a shallow coastal zone. The tsunami elevation is described by two components: . Here is the linear (prime) component. It describes the wave coming from the deep ocean. is the nonlinear component. This component may become very important near the coastal line. After that the theory of the shallow waves is used. This theory yields the linear equation for and the weakly

  1. Surf observations from the South Shore of Oahu, Hawaii from 01 March 1972 to 20 November 1987 (NODC Accession 0000274)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Heights of breaking surf were collected by using visual observations from swimmers or divers at the South Shore of Oahu, Hawaii from March 1, 1972 to November 20,...

  2. Linking Oceanic Tsunamis and Geodetic Gravity Changes of Large Earthquakes

    Science.gov (United States)

    Fu, Yuning; Song, Y. Tony; Gross, Richard S.

    2017-08-01

    Large earthquakes at subduction zones usually generate tsunamis and coseismic gravity changes. These two independent oceanic and geodetic signatures of earthquakes can be observed individually by modern geophysical observational networks. The Gravity Recovery and Climate Experiment twin satellites can detect gravity changes induced by large earthquakes, while altimetry satellites and Deep-Ocean Assessment and Reporting of Tsunamis buoys can observe resultant tsunamis. In this study, we introduce a method to connect the oceanic tsunami measurements with the geodetic gravity observations, and apply it to the 2004 Sumatra Mw 9.2 earthquake, the 2010 Maule Mw 8.8 earthquake and the 2011 Tohoku Mw 9.0 earthquake. Our results indicate consistent agreement between these two independent measurements. Since seafloor displacement is still the largest puzzle in assessing tsunami hazards and its formation mechanism, our study demonstrates a new approach to utilizing these two kinds of measurements for better understanding of large earthquakes and tsunamis.

  3. Earthquake mechanism and seafloor deformation for tsunami generation

    Science.gov (United States)

    Geist, Eric L.; Oglesby, David D.; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Tsunamis are generated in the ocean by rapidly displacing the entire water column over a significant area. The potential energy resulting from this disturbance is balanced with the kinetic energy of the waves during propagation. Only a handful of submarine geologic phenomena can generate tsunamis: large-magnitude earthquakes, large landslides, and volcanic processes. Asteroid and subaerial landslide impacts can generate tsunami waves from above the water. Earthquakes are by far the most common generator of tsunamis. Generally, earthquakes greater than magnitude (M) 6.5–7 can generate tsunamis if they occur beneath an ocean and if they result in predominantly vertical displacement. One of the greatest uncertainties in both deterministic and probabilistic hazard assessments of tsunamis is computing seafloor deformation for earthquakes of a given magnitude.

  4. Theoretical analysis of tsunami generation by pyroclastic flows

    Science.gov (United States)

    Watts, P.; Waythomas, C.F.

    2003-01-01

    Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.

  5. Composition, Shell Strength, and Metabolizable Energy of Mulinia lateralis and Ischadium recurvum as Food for Wintering Surf Scoters (Melanitta perspicillata.

    Directory of Open Access Journals (Sweden)

    Alicia M Wells-Berlin

    Full Text Available Decline in surf scoter (Melanitta perspicillata waterfowl populations wintering in the Chesapeake Bay has been associated with changes in the availability of benthic bivalves. The Bay has become more eutrophic, causing changes in the benthos available to surf scoters. The subsequent decline in oyster beds (Crassostrea virginica has reduced the hard substrate needed by the hooked mussel (Ischadium recurvum, one of the primary prey items for surf scoters, causing the surf scoter to switch to a more opportune species, the dwarf surfclam (Mulinia lateralis. The composition (macronutrients, minerals, and amino acids, shell strength (N, and metabolizable energy (kJ of these prey items were quantified to determine the relative foraging values for wintering scoters. Pooled samples of each prey item were analyzed to determine composition. Shell strength (N was measured using a shell crack compression test. Total collection digestibility trials were conducted on eight captive surf scoters. For the prey size range commonly consumed by surf scoters (6-12 mm for M. lateralis and 18-24 mm for I. recurvum, I. recurvum contained higher ash, protein, lipid, and energy per individual organism than M. lateralis. I. recurvum required significantly greater force to crack the shell relative to M. lateralis. No difference in metabolized energy was observed for these prey items in wintering surf scoters, despite I. recurvum's higher ash content and harder shell than M. lateralis. Therefore, wintering surf scoters were able to obtain the same amount of energy from each prey item, implying that they can sustain themselves if forced to switch prey.

  6. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic). SURF CLAM

    Science.gov (United States)

    1983-10-01

    invisible, outer, jellylike layer and mine surf clam gender (Ropes et al. the germinal vesicle (Ropes 1980). 1969). Male and female surf clams Longo...Jacobsen, M. K., and W. E. Old, Jr. Lindley, M. G., and R. S. Shallen- 1966. On the identity of Spisula berger. 1976, Purification and similis. Am...1966. A quantitative Masse, H. 1975. Feeding biotogy of .3-year-survey on the meiofauna Astropecten aranciacus. Cah , of known macrofauna communities

  7. Composition, shell strength, and metabolizable energy of Mulinia lateralis and Ischadium recurvum as food for wintering surf scoters (Melanitta perspicillata)

    Science.gov (United States)

    Berlin, Alicia; Perry, Matthew; Kohn, R.A.; Paynter, K.T.; Ottinger, Mary Ann

    2015-01-01

    Decline in surf scoter (Melanitta perspicillata) waterfowl populations wintering in the Chesapeake Bay has been associated with changes in the availability of benthic bivalves. The Bay has become more eutrophic, causing changes in the benthos available to surf scoters. The subsequent decline in oyster beds (Crassostrea virginica) has reduced the hard substrate needed by the hooked mussel (Ischadium recurvum), one of the primary prey items for surf scoters, causing the surf scoter to switch to a more opportune species, the dwarf surfclam (Mulinia lateralis). The composition (macronutrients, minerals, and amino acids), shell strength (N), and metabolizable energy (kJ) of these prey items were quantified to determine the relative foraging values for wintering scoters. Pooled samples of each prey item were analyzed to determine composition. Shell strength (N) was measured using a shell crack compression test. Total collection digestibility trials were conducted on eight captive surf scoters. For the prey size range commonly consumed by surf scoters (6-12 mm for M. lateralis and 18-24 mm for I. recurvum), I. recurvum contained higher ash, protein, lipid, and energy per individual organism than M. lateralis. I. recurvum required significantly greater force to crack the shell relative to M. lateralis. No difference in metabolized energy was observed for these prey items in wintering surf scoters, despite I. recurvum's higher ash content and harder shell than M. lateralis. Therefore, wintering surf scoters were able to obtain the same amount of energy from each prey item, implying that they can sustain themselves if forced to switch prey.

  8. Validation of the JRC Tsunami Propagation and Inundation Codes

    OpenAIRE

    2014-01-01

    In the last years several numerical codes have been developed to analyse tsunami waves. Most of these codes use a finite difference numerical approach giving good results for tsunami wave propagation, but with limitations in modelling inundation processes. The HyFlux2 model has been developed to simulate inundation scenario due to dam break, flash flood and tsunami-wave run-up. The model solves the conservative form of the two-dimensional shallow water equations using a finite volume method. ...

  9. Tsunami Newsletter, Volume 26, Number 1, July 1994

    Science.gov (United States)

    1994-07-01

    Seismological and Tsunami Hazards in the Pacific, IASPEI 󈨢 Workshop 17 Tsunami Session, Seismological Society of America 17 Eastern Asia Hazards...the Geological Survey of Japan. View of the Pacifico Conference Centerfrom the Landmark Tower Building; Yokohama Bay is in the background 6 0C - ICG...progress meeting to discuss the Eastern Asia Tsunami Session, Seismological Society Hazards Mapping Project was convened by the Geological of America Survey

  10. PEMETAAN KERAWANAN TSUNAMI DI KECAMATAN PELABUHANRATU KABUPATEN SUKABUMI

    OpenAIRE

    Bayu Surya Pramana

    2015-01-01

    Pelabuhanratu sub-district located in the southern part of West Java has the tsunami disaster vulnerability is high, because the South region of West Java directly adjacent to the zone plate’s movement and in the Indian Ocean. So that this region is very vulnerable to an earthquake that occurred under the sea, earthquake phenomenon is largely a high potential for the occurrence of the tsunami disaster. This article will explain the vulnerability of the tsunami in the District Pelabuhanratu, t...

  11. SEDIMENTOLOGICAL PROPERTIES OF THE 2010 MENTAWAI TSUNAMI DEPOSIT

    Directory of Open Access Journals (Sweden)

    Yudhicara Yudhicara

    2017-07-01

    Full Text Available Post tsunami survey of the October 25, 2010, Mentawai tsunami, has been carried out by a collaboration team of Indonesian-German scientists from 20 to 28 November 2010. One activity of the researches were investigation on tsunami deposits along the coast following the event that devastated the islands of Sipora, North Pagai and South Pagai. Sedimentological properties of Mentawai tsunami deposit were explained by this study, from both megascopic and laboratory result. In general, beaches along the study area are underlying by a stretch of reef limestone, sediments mostly composed of white sand while grey sand was found only at Malakopa. Tsunami sediments were taken from 20 locations, start from Betumonga at Sipora Island until Sibaru-baru Island at the southern tip of the study area. The thickness of tsunami deposits are ranged between 1.5 and 22 cm, which are generally composed of fine to coarse sand in irregular boundaries with the underlying soil. Based on grain size analysis, variation of sedimentological properties of tsunami deposits range between phi=-0,5793 and phi=3,3180 or very coarse to very fine sand. Tsunami deposits mostly have multiple layers which described their transport processes, run up at the bottom and back wash at the top. Structural sediments such as graded bedding of fining upward, parallel lamination and soil clast were found. The grain size distribution curves show two types of mode peak, unimodal and multimodal which are indication of different sorting condition representing the source materials. While segment grain size accumulative plot generally shows domination of dilatation and traction transport mechanism rather than suspension. In general, very rare fossils were found from Mentawai tsunami deposit, but those findings gave information on how depth tsunami start to scour the seafloor and transport it landward, such as an abundance of Sponge spicule was found which indicate shallow water environments (20-100 m

  12. Far-Field Tsunami Hazard in New Zealand Ports

    Science.gov (United States)

    Borrero, Jose C.; Goring, Derek G.; Greer, S. Dougal; Power, William L.

    2015-03-01

    We present the results of a numerical modeling study investigating the effects of far-field tsunamis in New Zealand ports. Four sites (Marsden Point, Tauranga, Harbor, Port Taranaki and Lyttelton Harbor) were selected based on a combination of factors such as economic importance and the availability of historical and/or instrumental data. Numerical models were created using the ComMIT tsunami modeling tool and the Method Of Splitting Tsunami (MOST) hydrodynamic model. Comparison of model results to measured data from recent historical events showed that, for particular sites and events, the model correlated well with the timing and amplitude of the observed tsunami, and, in most cases, there was generally good agreement between the and modeled tsunami heights and current speeds. A sensitivity analysis for tsunami heights and current speeds was conducted using a suite of large ( M W 9) tsunamigenic earthquake sources situated at regular 15° intervals in azimuth along the Pacific Rim while another set of scenarios focused on regional tsunami sources in the Southwest Pacific. Model results were analyzed for tsunami heights and current speeds as a function of the source region. In terms of currents, the analysis identified where speeds were greatest and which source was responsible. Results suggested that tsunamis originating from Central America produced the strongest response in New Zealand. The modeling was also used to determine the timing and duration of potentially dangerous current speeds as well as minimum `safe depths' for vessel evacuation offshore. This study was motivated by the desire to reduce damage and operational losses via improved forecasting of far-field tsunamis at New Zealand ports. It is important that forecasts are accurate since tsunami damage to ships and facilities is expensive and can be mitigated given timely warnings and because preventable false alarms are also costly in terms of lost productivity. The modeling presented here will

  13. Tsunami Hazard in the Algerian Coastline

    Science.gov (United States)

    Amir, L. A.

    2008-05-01

    The Algerian coastline is located at the border between the African and the Eurasian tectonic plates. The collision between these two plates is approximately 4 to 7 mm/yr. The Alps and the tellian Atlas result from this convergence. Historical and present day data show the occurrence of earthquakes with magnitude up to 7 degrees on Richter scale in the northern part of the country. Cities were destroyed and the number of victims reached millions of people. Recently, small seismic waves generated by a destructive earthquake (Epicenter: 36.90N, 3.71E; Mw=6.8; Algeria, 2003, NEIC) were recorded in the French and Spanish coasts. This event raised again the issue of tsunami hazard in western Mediterranean region. For the Algerian study case, the assessment of seismic and tsunami hazard is a matter of great interest because of fast urban development of cities like Algiers. This study aims to provide scientific arguments to help in the elaboration of the Mediterranean tsunami alert program. This is a real complex issue because (1) the western part of the sea is narrow, (2) constructions on the Algerian coastline do not respect safety standards and (3) the seismic hazard is important. The present work is based on a numerical modeling approach. Firstly, a database is created to gather and list information related to seismology, tectonic, abnormal sea level's variations recorded/observed, submarine and coastal topographic data for the western part of the Mediterranean margin. This database helped to propose series of scenario that could trigger tsunami in the Mediterranean sea. Seismic moment, rake and focal depth are the major parameters that constrain the modeling input seismic data. Then, the undersea earthquakes modeling and the seabed deformations are computed with a program adapted from the rngchn code based on Okada's analytic equations. The last task of this work consisted to calculate the initial water surface displacement and simulate the triggered tsunami

  14. Effects of rupture complexity on local tsunami inundation: Implications for probabilistic tsunami hazard assessment by example

    Science.gov (United States)

    Mueller, Christof; Power, William; Fraser, Stuart; Wang, Xiaoming

    2015-01-01

    We investigated the influence of earthquake source complexity on the extent of inundation caused by the resulting tsunami. We simulated 100 scenarios with collocated sources of variable slip on the Hikurangi subduction interface in the vicinity of Hawke's Bay and Poverty Bay in New Zealand and investigated the tsunami effects on the cities of Napier and Gisborne. Rupture complexity was found to have a first-order effect on flow depth and inundation extent for local tsunami sources. The position of individual asperities in the slip distribution on the rupture interface control to some extent how severe inundation will be. However, predicting inundation extent in detail from investigating the distribution of slip on the rupture interface proves difficult. Assuming uniform slip on the rupture interface in tsunami models can underestimate the potential impact and extent of inundation. For example, simulation of an Mw 8.7 to Mw 8.8 earthquake with uniform slip reproduced the area that could potentially be inundated by equivalent nonuniform slip events of Mw 8.4. Deaggregation, to establish the contribution of different sources with different slip distributions to the probabilistic hazard, cannot be performed based on magnitude considerations alone. We propose two predictors for inundation severity based on the offshore tsunami wavefield using the linear wave equations in an attempt to keep costly simulations of full inundation to a minimum.

  15. The 11 March 2011 East Japan Earthquake and Tsunami: Tsunami Effects on Coastal Infrastructure and Buildings

    Science.gov (United States)

    Yeh, Harry; Sato, Shinji; Tajima, Yoshimitsu

    2013-06-01

    The 11 March 2011 East Japan Earthquake and Tsunami caused unprecedented damage to well-engineered buildings and coastal structures. This report presents some notable field observations of structural damage based on our surveys conducted along the Sanriku coast in April and June 2011. Engineered reinforced concrete buildings failed by rotation due to the high-velocity and deep tsunami inundation: entrapped air in the buildings and soil liquefaction by ground shaking could have contributed to the failure. The spatial distribution pattern of destroyed and survived buildings indicates that the strength of tsunami was affected significantly by the locations of well-engineered sturdy buildings: weaker buildings in the shadow zone tended to survive while jet and wake formations behind the sturdy buildings enhanced the tsunami forces. We also found that buildings with breakaway walls or breakaway windows/doors remained standing even if the surrounding buildings were washed away or destroyed. Several failure patterns of coastal structures (seawalls) were observed. Flow-induced suction pressure near the seawall crown could have caused the failure of concrete panels that covered the infill. Remarkable destruction of upright solid-concrete type seawalls was closely related with the tsunami induced scour and soil instability. The rapid decrease in inundation depth during the return-flow phase caused soil fluidization down to a substantial depth. This mechanism explains severely undermined roads and foundations observed in the area of low flow velocities.

  16. Risk of Adverse Health and Performance Effects of Celestial Dust Exposure

    Science.gov (United States)

    Scully, Robert R.; Meyers, Valerie E.

    2015-01-01

    Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline

  17. Validating Velocities in the GeoClaw Tsunami Model using Observations Near Hawaii from the 2011 Tohoku Tsunami

    CERN Document Server

    Arcos, M E M

    2014-01-01

    The ability to measure, predict, and compute tsunami flow velocities is of importance in risk assessment and hazard mitigation. Substantial damage can be done by high velocity flows, particularly in harbors and bays, even when the wave height is small. Moreover, advancing the study of sediment transport and tsunami deposits depends on the accurate interpretation and modeling of tsunami flow velocities and accelerations. Until recently, few direct measurements of tsunami velocities existed to compare with model results. During the 11 March 2011 Tohoku Tsunami 328 current meters were in place around the Hawaiian Islands, USA, that captured time series of water velocity in 18 locations, in both harbors and deep channels, at a series of depths. We compare several of these velocity records against numerical simulations performed using the GeoClaw numerical tsunami model, based on solving the depth-averaged shallow water equations with adaptive mesh refinement, to confirm that this model can accurately predict velo...

  18. Landslide tsunami hazard in the Indonesian Sunda Arc

    Directory of Open Access Journals (Sweden)

    S. Brune

    2010-03-01

    Full Text Available The Indonesian archipelago is known for the occurrence of catastrophic earthquake-generated tsunamis along the Sunda Arc. The tsunami hazard associated with submarine landslides however has not been fully addressed. In this paper, we compile the known tsunamigenic events where landslide involvement is certain and summarize the properties of published landslides that were identified with geophysical methods. We depict novel mass movements, found in newly available bathymetry, and determine their key parameters. Using numerical modeling, we compute possible tsunami scenarios. Furthermore, we propose a way of identifying landslide tsunamis using an array of few buoys with bottom pressure units.

  19. Is the rate of global tsunami occurrence increasing?

    Science.gov (United States)

    Geist, E. L.; Parsons, T.

    2010-12-01

    Statistical analysis of the global tsunami catalog reveals several transient periods of rate increases in tsunami occurrence. The tsunami catalog appears to be complete for tsunamis detected by tide-gauge stations with maximum amplitudes > 0.1 m, starting soon after the April 1, 1946 Aleutian tsunami when tsunami-reporting procedures became more systematic. The long-term rate of global tsunami occurrence is approximately 7.4 events/year over this period of the catalog. This rate fluctuates, however, with a prominent rate increase in the mid-1990s for a period of about 3 years, when as many as 18 tsunamis occurred in a one-year period. Another rate increase began in 2005 and is continuing to the present day at approximately 11 events/year averaged over the 6-year time period. These rate changes persist with different minimum threshold amplitudes and are unlikely to be associated with statistical fluctuations from a stationary Poisson process. Similar apparent rate changes are evident in the global earthquake catalog (without declustering) for minimum magnitude thresholds of 6.5-8.0. Secondary sources such as landslides are noted in the tsunami catalog, though earthquakes most often trigger these sources. Evidence of temporal clustering of tsunami source inter-event times has been established in a previous study [Geist and Parsons, 2008]. However, it is unclear whether static and dynamic triggering among tsunamigenic earthquakes accounts for a large proportion of the temporally clustered events. Results from Parsons and Velasco [in press] indicate that static and dynamic triggering among earthquakes of tsunamigenic magnitude occurs within a radius of approximately 1,000 km. Based on this distance criterion for triggered events, the periods of increased rates can be explained by regional triggering, even though tsunamis from classically defined aftershock sequences are not that apparent in the tsunami catalog. Although the current rate of tsunami occurrence is higher

  20. Non-Poissonian Distribution of Tsunami Waiting Times

    Science.gov (United States)

    Geist, E. L.; Parsons, T.

    2007-12-01

    Analysis of the global tsunami catalog indicates that tsunami waiting times deviate from an exponential distribution one would expect from a Poisson process. Empirical density distributions of tsunami waiting times were determined using both global tsunami origin times and tsunami arrival times at a particular site with a sufficient catalog: Hilo, Hawai'i. Most sources for the tsunamis in the catalog are earthquakes; other sources include landslides and volcanogenic processes. Both datasets indicate an over-abundance of short waiting times in comparison to an exponential distribution. Two types of probability models are investigated to explain this observation. Model (1) is a universal scaling law that describes long-term clustering of sources with a gamma distribution. The shape parameter (γ) for the global tsunami distribution is similar to that of the global earthquake catalog γ=0.63-0.67 [Corral, 2004]. For the Hilo catalog, γ is slightly greater (0.75-0.82) and closer to an exponential distribution. This is explained by the fact that tsunamis from smaller triggered earthquakes or landslides are less likely to be recorded at a far-field station such as Hilo in comparison to the global catalog, which includes a greater proportion of local tsunamis. Model (2) is based on two distributions derived from Omori's law for the temporal decay of triggered sources (aftershocks). The first is the ETAS distribution derived by Saichev and Sornette [2007], which is shown to fit the distribution of observed tsunami waiting times. The second is a simpler two-parameter distribution that is the exponential distribution augmented by a linear decay in aftershocks multiplied by a time constant Ta. Examination of the sources associated with short tsunami waiting times indicate that triggered events include both earthquake and landslide tsunamis that begin in the vicinity of the primary source. Triggered seismogenic tsunamis do not necessarily originate from the same fault zone