WorldWideScience

Sample records for surae muscles maintain

  1. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat

    DEFF Research Database (Denmark)

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob

    2016-01-01

    received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the non-injected contralateral side in all rats. Acute experiments were performed 1, 2, 4 and 8 weeks following injection. The triceps surae muscle was dissected free, the Achilles tendon was cut...

  2. The functional role of the triceps surae muscle during human locomotion.

    Directory of Open Access Journals (Sweden)

    Jean-Louis Honeine

    Full Text Available AIM: Despite numerous studies addressing the issue, it remains unclear whether the triceps surae muscle group generates forward propulsive force during gait, commonly identified as 'push-off'. In order to challenge the push-off postulate, one must probe the effect of varying the propulsive force while annulling the effect of the progression velocity. This can be obtained by adding a load to the subject while maintaining the same progression velocity. METHODS: Ten healthy subjects initiated gait in both unloaded and loaded conditions (about 30% of body weight attached at abdominal level, for two walking velocities, spontaneous and fast. Ground reaction force and EMG activity of soleus and gastrocnemius medialis and lateralis muscles of the stance leg were recorded. Centre of mass velocity and position, centre of pressure position, and disequilibrium torque were calculated. RESULTS: At spontaneous velocity, adding the load increased disequilibrium torque and propulsive force. However, load had no effect on the vertical braking force or amplitude of triceps activity. At fast progression velocity, disequilibrium torque, vertical braking force and triceps EMG increased with respect to spontaneous velocity. Still, adding the load did not further increase braking force or EMG. CONCLUSIONS: Triceps surae is not responsible for the generation of propulsive force but is merely supporting the body during walking and restraining it from falling. By controlling the disequilibrium torque, however, triceps can affect the propulsive force through the exchange of potential into kinetic energy.

  3. Three-Dimensional Ankle Moments and Nonlinear Summation of Rat Triceps Surae Muscles

    NARCIS (Netherlands)

    Tijs, C.; van Dieen, J.H.; Baan, G.C.; Maas, H.

    2014-01-01

    The Achilles tendon and epimuscular connective tissues mechanically link the triceps surae muscles. These pathways may cause joint moments exerted by each muscle individually not to sum linearly, both in magnitude and direction. The aims were (i) to assess effects of sagittal plane ankle angle

  4. In vivo measurements of the triceps surae complex architecture in man: implications for muscle function

    NARCIS (Netherlands)

    Maganaris, C.N.; Baltzopoulos, V.; Sargeant, A.J.

    1998-01-01

    1. The objectives of this study were to (1) quantify experimentally in vivo changes in pennation angle, fibre length and muscle thickness in the triceps surae complex in man in response to changes in ankle position and isometric plantarflexion moment and (2) compare changes in the above muscle

  5. A model of the human triceps surae muscle-tendon complex applied to jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; Huijing, Peter A.; van Ingen Schenau, Gerrit Jan

    1986-01-01

    The purpose of this study was to gain more insight into the behavior of the muscle-tendon complex of human m. triceps surae in jumping. During one-legged vertical jumps of ten subjects ground reaction forces as well as cinematographic data were registered, and electromyograms were recorded from m.

  6. Function of the triceps surae muscle group in low and high arched feet: an exploratory study.

    Science.gov (United States)

    Branthwaite, Helen; Pandyan, Anand; Chockalingam, Nachiappan

    2012-06-01

    The Achilles tendon has been shown to be comprised of segmental components of tendon arising from the tricpes surae muscle group. Motion of the foot joints in low and high arched feet may induce a change in behaviour of the triceps surae muscle group due to altered strain on the tendon. Surface electromyogram of the medial and lateral gastrocnemius and the soleus muscle from 12 subjects (with 6 low arched and 6 high arched feet) (1:1) was recorded whilst walking at a self selected speed along a 10m walkway. The results showed a high variability in muscle activity between groups with patterns emerging within groups. Soleus was more active in 50% of the low arch feet at forefoot loading and there was a crescendo of activity towards heel lift in 58% of all subjects. This observed variability between groups and foot types emphasises the need for further work on individual anatomical variation and foot function to help in the understanding and management of Achilles tendon pathologies and triceps surae dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Electromyographic Analysis of the Triceps Surae Muscle Complex During Achilles Tendon Rehabilitation Program Exercises

    OpenAIRE

    Mullaney, Michael; Tyler, Timothy F.; McHugh, Malachy; Orishimo, Karl; Kremenic, Ian; Caggiano, Jessica; Ramsey, Abi

    2011-01-01

    Background: Specific guidelines for therapeutic exercises following an Achilles tendon repair are lacking. Hypothesis: A hierarchical progression of triceps surae exercises can be determined on the basis of electromyographic (EMG) activity. Study Design: Randomized laboratory trial. Methods: Bipolar surface electrodes were applied over the medial and lateral heads of the gastrocnemius as well as the soleus on 20 healthy lower extremities (10 participants, 27 ± 5 years old). Muscle activity wa...

  8. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching.

    Science.gov (United States)

    Hirata, Kosuke; Miyamoto-Mikami, Eri; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2016-05-01

    It remains unclear whether the acute effect of stretching on passive muscle stiffness differs among the synergists. We examined the muscle stiffness responses of the medial (MG) and lateral gastrocnemii (LG), and soleus (Sol) during passive dorsiflexion before and after a static stretching by using ultrasound shear wave elastography. Before and after a 5-min static stretching by passive dorsiflexion, shear modulus of the triceps surae and the Achilles tendon (AT) during passive dorsiflexion in the knee extended position were measured in 12 healthy subjects. Before the static stretching, shear modulus was the greatest in MG and smallest in Sol. The stretching induced significant reductions in shear modulus of MG, but not in shear modulus of LG and Sol. The slack angle was observed at more plantar flexed position in the following order: AT, MG, LG, and Sol. After the stretching, the slack angles of each muscle and AT were significantly shifted to more dorsiflexed positions with a similar extent. When considering the shift in slack angle, the change in MG shear modulus became smaller. The present study indicates that passive muscle stiffness differs among the triceps surae, and that the acute effect of a static stretching is observed only in the stiff muscle. However, a large part of the reduction of passive muscle stiffness at a given joint angle could be due to an increase in the slack length.

  9. Effect of triceps surae and quadriceps muscle fatigue on the mechanics of landing in stepping down in ongoing gait

    NARCIS (Netherlands)

    Barbieri, F.A.; Gobbi, L.T.; Lee, Y.J.; Pijnappels, M.A.G.M.; van Dieen, J.H.

    2014-01-01

    The aim of this study was to evaluate the effects of muscle fatigue of triceps surae and quadriceps muscles in stepping down in ongoing gait. We expected that the subjects would compensate for muscle fatigue to prevent potential loss of balance in stepping down. A total of 10 young participants

  10. Electromyographic Analysis of the Triceps Surae Muscle Complex During Achilles Tendon Rehabilitation Program Exercises

    Science.gov (United States)

    Mullaney, Michael; Tyler, Timothy F.; McHugh, Malachy; Orishimo, Karl; Kremenic, Ian; Caggiano, Jessica; Ramsey, Abi

    2011-01-01

    Background: Specific guidelines for therapeutic exercises following an Achilles tendon repair are lacking. Hypothesis: A hierarchical progression of triceps surae exercises can be determined on the basis of electromyographic (EMG) activity. Study Design: Randomized laboratory trial. Methods: Bipolar surface electrodes were applied over the medial and lateral heads of the gastrocnemius as well as the soleus on 20 healthy lower extremities (10 participants, 27 ± 5 years old). Muscle activity was recorded during 8 therapeutic exercises commonly used following an Achilles repair. Maximal voluntary isometric contractions (MVICs) were also performed on an isokinetic device. The effect of exercise on EMG activity (% MVIC) was assessed using repeated measures analysis of variance with Bonferroni corrections for planned pairwise comparisons. Results: Seated toe raises (11% MVIC) had the least amount of activity compared with all other exercises (P < 0.01), followed by single-leg balance on wobble board (25% MVIC), prone ankle pumps (38% MVIC), supine plantarflexion with red elastic resistance (45% MVIC), normal gait (47% MVIC), lateral step-ups (60% MVIC), single-leg heel raises (112% MVIC), and single-leg jumping (129% MVIC). Conclusion: There is an increasing progression of EMG activity for exercises that target the triceps surae muscle complex during common exercises prescribed in an Achilles tendon rehabilitation program. Seated toe raises offer relatively low EMG activity and can be utilized as an early rehabilitative exercise. In contrast, the single-leg heel raise and single-leg jumping should be utilized only during later-stage rehabilitation. Clinical Relevance: EMG activity in the triceps surae is variable with common rehab exercises. PMID:23016056

  11. Three-Dimensional Ankle Moments and Nonlinear Summation of Rat Triceps Surae Muscles

    Science.gov (United States)

    Tijs, Chris; van Dieën, Jaap H.; Baan, Guus C.; Maas, Huub

    2014-01-01

    The Achilles tendon and epimuscular connective tissues mechanically link the triceps surae muscles. These pathways may cause joint moments exerted by each muscle individually not to sum linearly, both in magnitude and direction. The aims were (i) to assess effects of sagittal plane ankle angle (varied between 150° and 70°) on isometric ankle moments, in both magnitude and direction, exerted by active rat triceps surae muscles, (ii) to assess ankle moment summation between those muscles for a range of ankle angles and (iii) to assess effects of sagittal plane ankle angle and muscle activation on Achilles tendon length. At each ankle angle, soleus (SO) and gastrocnemius (GA) muscles were first excited separately to assess ankle-angle moment characteristics and subsequently both muscles were excited simultaneously to investigate moment summation. The magnitude of ankle moment exerted by SO and GA, the SO direction in the transverse and sagittal planes, and the GA direction in the transverse plane were significantly affected by ankle angle. SO moment direction in the frontal and sagittal planes were significantly different from that of GA. Nonlinear magnitude summation varied between 0.6±2.9% and −3.6±2.9%, while the nonlinear direction summation varied between 0.3±0.4° and −0.4±0.7° in the transverse plane, between 0.5±0.4° and 0.1±0.4° in the frontal plane, and between 3.0±7.9° and 0.3±2.3° in the sagittal plane. Changes in tendon length caused by SO contraction were significantly lower than those during contraction of GA and GA+SO simultaneously. Thus, moments exerted by GA and SO sum nonlinearly both in the magnitude and direction. The limited degree of nonlinear summation may be explained by different mechanisms acting in opposite directions. PMID:25360524

  12. [Stretching the triceps surae muscle after 40 degrees C warming in patients with cerebral palsy].

    Science.gov (United States)

    Lespargot, A; Robert, M; Khouri, N

    2000-11-01

    Equinus in patients with cerebral palsy results from at least two factors: excessive contracture of the triceps surae and muscle retraction. Tendon surgery and progressive lengthening techniques using plaster walking boots can provide variable improvement in retraction. We compared the effect of this technique when applied with or without prior 40 degrees C warming in the same patients. We also assessed the efficacy of this treatment method in terms or degree of retraction, patient age, puberty maturity, and sex. This series included 70 muscles in 52 patients with cerebral palsy aged 2 years 11 months to 21 years (mean 8 years 3 months). Common features in these patients were: - equinus mainly explained by triceps retraction, - no history of prior surgery on the triceps tendon, - knee flexion less than 15 degrees in the upright position, - easily reduced lateral deformation of the foot, - absence of mediotarsal dislocation, - triceps stretching could be achieved without triggering unacceptably intense contracture. The retraction of the triceps surae was measured from the maximal passive dorsal flexion angle of the foot, before and after applying each stretching boot. The difference between these measurements gave the gain obtained with the plaster boot. Protocol R- (stretching with plaster boot) consisted in a series of slow stretchings for 10 minutes before making the boot which was worn 7 days. Recurrent retraction in these same patients warranted another treatment within a delay of 3 to 17 months (mean delay 8.7 months). The same treatment then followed protocol R+ where the stretching was preceded by immersion of the segment in a 40 degrees C water bath for 10 minutes. Mean gain obtained with protocol R+ (warming) was 6.8 degrees knee extended and 7.1 degrees knee flexed. These differences were highly significant in both cases (p knee extended and for 32 muscles, knee flexed. The gain was not related to age, sex or puberty maturity. It was not related to the

  13. Influence of the parameters of a human triceps surae muscle model on the isometric torque-angle relationship

    NARCIS (Netherlands)

    Out, Lia; Vrijkotte, Tanja G M; Van Soest, Arthur J.; Bobbert, Maarten F.

    This study investigates the influence of parameter values of the human triceps surae muscle on the torque-angle relationship. The model used consisted of three units, each containing a contractile, a series elastic and a parallel elastic element. Parameter values were based on morphological

  14. Influence of the parameters of a human triceps surae muscle model on the isometric torque-angle relationship

    NARCIS (Netherlands)

    Out, L.; Vrijkotte, T. G.; van Soest, A. J.; Bobbert, M. F.

    1996-01-01

    This study investigates the influence of parameter values of the human triceps surae muscle on the torque-angle relationship. The model used consisted of three units, each containing a contractile, a series elastic and a parallel elastic element. Parameter values were based on morphological

  15. Heterogeneity of muscle activation in relation to force direction: a multi-channel surface electromyography study on the triceps surae muscle.

    NARCIS (Netherlands)

    Staudenmann, D.; Kingma, I.; Daffertshofer, A.; Stegeman, D.F.; Dieën, J.H. van

    2009-01-01

    Several skeletal muscles can be divided into sub-modules, called neuromuscular compartments (NMCs), which are thought to be controlled independently and to have distinct biomechanical functions. We looked for distinct muscle activation patterns in the triceps surae muscle (TS) using surface

  16. Heterogeneity of muscle activation in relation to force direction: a multi-channel surface electromyography study on the triceps surae muscle

    NARCIS (Netherlands)

    Staudenmann, D.; Kingma, I.; Daffertshofer, A.; Stegeman, D.F.; van Dieen, J.H.

    2009-01-01

    Several skeletal muscles can be divided into sub-modules, called neuromuscular compartments (NMCs), which are thought to be controlled independently and to have distinct biomechanical functions. We looked for distinct muscle activation patterns in the triceps surae muscle (TS) using surface

  17. Dynamic versus fixed equinus deformity in children with cerebral palsy: how does the triceps surae muscle work?

    Science.gov (United States)

    Svehlík, Martin; Zwick, Ernst B; Steinwender, Gerhard; Kraus, Tanja; Linhart, Wolfgang E

    2010-12-01

    To detect outcome measures that could help differentiate between dynamic and fixed equinus (FEQ) deformities in children with cerebral palsy, and secondary, to describe the function of the gastrocnemius and soleus (SOL) muscles when either dynamic triceps surae tightness or FEQ contracture is present. A group-comparison study. Gait analysis laboratory. Children (N=23; 31 limbs) with cerebral palsy; 12 limbs showed a fixed contracture (FEQ group) and 19 limbs showed dynamic tightness of the triceps muscle (dynamic equinus group). Healthy children (N=12) without a neurologic or orthopedic disorder served as the control group. Not applicable. Time-distance, kinematic and kinetic gait variables, muscle-tendon length, and velocity parameters. Maximal ankle dorsiflexion angles were decreased in both equinus groups compared with the control group. Ankle range of motion, maximal power generation of the plantar flexors, and its timing during the gait cycle were different among groups. The ankle slope parameter showed substantial differences among groups. Muscle-tendon length parameters for the SOL and the medial (MGAC) and lateral gastrocnemius muscles were abnormal in both equinus groups compared with the control group. Maximal muscle lengths of the MGAC and SOL were longer in the dynamic equinus than FEQ group. Peak lengthening velocity of the triceps surae muscle was significantly slower for all triceps surae muscles in the FEQ group than in the dynamic equinus group and occurred in the early swing phase. The presented results indicate that peak lengthening velocity of the triceps surae muscle might be one of the discriminating factors between FEQ and dynamic equinus deformity in children with cerebral palsy. This could help clinical decision making for treatment of an equinus gait pattern. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. The effect of medial arch support over the plantar pressure and triceps surae muscle strength after prolonged standing

    Directory of Open Access Journals (Sweden)

    Hindun Saadah

    2015-11-01

    Full Text Available Background: The activity with prolonged standing position is one of the causes of abnormalities in the lower leg and foot. The aim of this study is to discover the effect of medial arch support over the distribution of plantar pressure when standing and walking.Methods: This was an experimental study with pre- and post-design the strength of triceps surae muscle after prolonged standing, was also evaluated in an experimental study with pre- and post-design. Variables of plantar pressure measurement are the contact area and pressure peak were measured by using the Mat-scan tool. The measurement of the triceps surae muscle strength was done with a hand-held dynamometer, before and after using the medial arch support. Measurement was performed before and after working with prolonged standing position which took place about seven hours using the medial arch support inserted in the shoes. Data was analyzed using paired T-test.Results: There was a significant difference of peak pressure between standing (p = 0.041 and walking (p = 0.001. Whereas the contact area showed a significant decrease in the width of the contact area when standing (104.12 ± 12.42 vs 99.08 ± 10.21 p = 0.023. Whereas, the triceps surae muscle strength pre- and post-standing prolonged did not indicate a significant difference.Conclusion: There was decrease in peak pressure when standing and walking and decrease in contact area when standing on plantar after used of the medial arch support after prolonged standing.

  19. The effect of medial arch support over the plantar pressure and triceps surae muscle strength after prolonged standing

    OpenAIRE

    Hindun Saadah; Deswaty Furqonita; Angela Tulaar

    2015-01-01

    Background: The activity with prolonged standing position is one of the causes of abnormalities in the lower leg and foot. The aim of this study is to discover the effect of medial arch support over the distribution of plantar pressure when standing and walking.Methods: This was an experimental study with pre- and post-design the strength of triceps surae muscle after prolonged standing, was also evaluated in an experimental study with pre- and post-design. Variables of plantar pressure measu...

  20. Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans.

    Science.gov (United States)

    Albracht, Kirsten; Arampatzis, Adamantios

    2013-06-01

    The purpose of the present study was to investigate whether increased tendon-aponeurosis stiffness and contractile strength of the triceps surae (TS) muscle-tendon units induced by resistance training would affect running economy. Therefore, an exercise group (EG, n = 13) performed a 14-week exercise program, while the control group (CG, n = 13) did not change their training. Maximum isometric voluntary contractile strength and TS tendon-aponeurosis stiffness, running kinematics and fascicle length of the gastrocnemius medialis (GM) muscle during running were analyzed. Furthermore, running economy was determined by measuring the rate of oxygen consumption at two running velocities (3.0, 3.5 ms(-1)). The intervention resulted in a ∼7 % increase in maximum plantarflexion muscle strength and a ∼16 % increase in TS tendon-aponeurosis stiffness. The EG showed a significant ∼4 % reduction in the rate of oxygen consumption and energy cost, indicating a significant increase in running economy, while the CG showed no changes. Neither kinematics nor fascicle length and elongation of the series-elastic element (SEE) during running were affected by the intervention. The unaffected SEE elongation of the GM during the stance phase of running, in spite of a higher tendon-aponeurosis stiffness, is indicative of greater energy storage and return and a redistribution of muscular output within the lower extremities while running after the intervention, which might explain the improved running economy.

  1. Series elasticity of the human triceps surae muscle : Measurement by controlled-release vs. resonance methods.

    NARCIS (Netherlands)

    Hof, AL; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H

    1997-01-01

    With a newly developed Controlled-Release Ergometer the complete characteristic of the series elastic component can be measured in human muscles. Previous estimates were based on the resonance method: muscle elasticity was assessed from the resonance frequency of the muscle elasticity connected to a

  2. Evidence of adaptations of locomotor neural drive in response to enhanced intermuscular connectivity between the triceps surae muscles of the rat.

    Science.gov (United States)

    Bernabei, Michel; van Dieën, Jaap H; Maas, Huub

    2017-09-01

    The aims of this study were to investigate changes 1 ) in the coordination of activation of the triceps surae muscle group, and 2 ) in muscle belly length of soleus (SO) and lateral gastrocnemius (LG) during locomotion (trotting) in response to increased stiffness of intermuscular connective tissues in the rat. We measured muscle activation and muscle belly lengths, as well as hindlimb kinematics, before and after an artificial enhancement of the connectivity between SO and LG muscles obtained by implanting a tissue-integrating surgical mesh at the muscles' interface. We found that SO muscle activation decreased to 62%, while activation of LG and medial gastrocnemius muscles increased to 134 and 125%, respectively, compared with the levels measured preintervention. Although secondary additional or amplified activation bursts were observed with enhanced connectivity, the primary pattern of activation over the stride and the burst duration were not affected by the intervention. Similar muscle length changes after manipulation were observed, suggesting that length feedback from spindle receptors within SO and LG was not affected by the connectivity enhancement. We conclude that peripheral mechanical constraints given by morphological (re)organization of connective tissues linking synergists are taken into account by the central nervous system. The observed shift in activity toward the gastrocnemius muscles after the intervention suggests that these larger muscles are preferentially recruited when the soleus has a similar mechanical disadvantage in that it produces an unwanted flexion moment around the knee. NEW & NOTEWORTHY Connective tissue linkages between muscle-tendon units may act as an additional mechanical constraint on the musculoskeletal system, thereby reducing the spectrum of solutions for performing a motor task. We found that intermuscular coordination changes following intermuscular connectivity enhancement. Besides showing that the extent of such

  3. Afferent contribution to locomotor muscle activity during unconstrained overground human walking: an analysis of triceps surae muscle fascicles

    DEFF Research Database (Denmark)

    Klint, Richard af; Cronin, Neil J.; Ishikawa, Masaki

    2010-01-01

    Plantar flexor series elasticity can be used to dissociate muscle fascicle and muscle tendon behaviour and, therefore, afferent feedback during human walking. We used electromyography (EMG) and high speed ultrasonography concomitantly to monitor muscle activity and muscle fascicle behaviour in ni...

  4. From twitch to tetanus for human muscle : experimental data and model predictions for m-triceps surae

    NARCIS (Netherlands)

    van Zandwijk, JP; Bobbert, MF; Harlaar, J; Hof, AL

    In models describing the excitation of muscle by the central nervous system, it is often assumed that excitation during a tetanic contraction can be obtained by the linear summation of responses to individual stimuli, from which the active state of the muscle is calculated. We investigate here the

  5. Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles

    NARCIS (Netherlands)

    Huijing, P.A.J.B.M.; Yaman, A.; Ozturk, C.; Yucesoy, C.A.

    2011-01-01

    Purpose Mechanical interactions between muscles have been shown for in situ conditions. In vivo data for humans is unavailable. Global and local length changes of calf muscles were studied to test the hypothesis that local strains may occur also within muscle for which global strain equals zero.

  6. Comparative Triceps Surae Morphology in Primates: A Review

    Directory of Open Access Journals (Sweden)

    Jandy B. Hanna

    2011-01-01

    Full Text Available Primate locomotor evolution, particularly the evolution of bipedalism, is often examined through morphological studies. Many of these studies have examined the uniqueness of the primate forelimb, and others have examined the primate hip and thigh. Few data exist, however, regarding the myology and function of the leg muscles, even though the ankle plantar flexors are highly important during human bipedalism. In this paper, we draw together data on the fiber type and muscle mass variation in the ankle plantar flexors of primates and make comparisons to other mammals. The data suggest that great apes, atelines, and lorisines exhibit similarity in the mass distribution of the triceps surae. We conclude that variation in triceps surae may be related to the shared locomotor mode exhibited by these groups and that triceps surae morphology, which approaches that of humans, may be related to frequent use of semiplantigrade locomotion and vertical climbing.

  7. Comparison of Agonist vs. Antagonist Stimulation on Triceps Surae Spasticity in Spinal Cord

    Directory of Open Access Journals (Sweden)

    Sneha Khanna

    2017-06-01

    Discussion: This study provides evidence that both agonist electrical stimulation and antagonist electrical stimulations are equally effective in reducing spasticity in triceps surae muscle in patients with spinal cord injury.

  8. Effect of long-term exercise-induced changes of the triceps surae muscle-tendon unit properties on maximal walking velocity in the elderly

    OpenAIRE

    Epro, G; Mierau, A; Brüggemann, G-P; Karamanidis, K

    2017-01-01

    Introduction Deterioration in muscle strength and tendon stiffness in the elderly has been associated with modified motor task execution and reduced walking performance (Beijersbergen et al. 2013, Ageing Res Rev 12: 618-627; Reeves et al. 2009, J Electromyogr Kinesiol 19: 57-68). Using resistance training to counteract these degradations improves muscle function, and results in more effective and safer gait in the elderly (Karamanidis et al. 2014, PLoS One 9, e99330). In particular, the trice...

  9. Triceps surae short latency stretch reflexes contribute to ankle stiffness regulation during human running.

    Directory of Open Access Journals (Sweden)

    Neil J Cronin

    Full Text Available During human running, short latency stretch reflexes (SLRs are elicited in the triceps surae muscles, but the function of these responses is still a matter of controversy. As the SLR is primarily mediated by Ia afferent nerve fibres, various methods have been used to examine SLR function by selectively blocking the Ia pathway in seated, standing and walking paradigms, but stretch reflex function has not been examined in detail during running. The purpose of this study was to examine triceps surae SLR function at different running speeds using Achilles tendon vibration to modify SLR size. Ten healthy participants ran on an instrumented treadmill at speeds between 7 and 15 km/h under 2 Achilles tendon vibration conditions: no vibration and 90 Hz vibration. Surface EMG from the triceps surae and tibialis anterior muscles, and 3D lower limb kinematics and ground reaction forces were simultaneously collected. In response to vibration, the SLR was depressed in the triceps surae muscles at all speeds. This coincided with short-lasting yielding at the ankle joint at speeds between 7 and 12 km/h, suggesting that the SLR contributes to muscle stiffness regulation by minimising ankle yielding during the early contact phase of running. Furthermore, at the fastest speed of 15 km/h, the SLR was still depressed by vibration in all muscles but yielding was no longer evident. This finding suggests that the SLR has greater functional importance at slow to intermediate running speeds than at faster speeds.

  10. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

    OpenAIRE

    Yoon, Mee-Sup

    2017-01-01

    Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrop...

  11. Muscle progenitor cells proliferation doesn't sufficiently contribute to maintaining stretched soleus muscle mass during gravitational unloading

    Science.gov (United States)

    Tarakina, M. V.; Turtikova, O. V.; Nemirovskaya, T. L.; Kokontcev, A. A.; Shenkman, B. S.

    Skeletal muscle work hypertrophy is usually connected with muscle progenitor satellite cells (SC) activation with subsequent incorporation of their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and is accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by γ-irradiation would partly avert stretched muscle fiber capability to maintain their size under the conditions of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposing to ionized radiation (2500 rad), subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myonuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We conclude that SC did not make essential contribution to passive stretch preventive action under the conditions of simulated weightlessness.

  12. Vliv délky klik jízdního kola na změnu svalového napětí m. triceps surae

    OpenAIRE

    Stránský, Vojtěch

    2016-01-01

    Title: Influence of crank arm length on change of muscle tone of musculus triceps surae Objectives: The aim of this thesis is to conclude the theoretical knowledge of this issue. The experiment is to uncover via the objective results, if the change of the crank arm length can influence the muscle tone of m.triceps surae and additionaly how much. Methods: The measurement for this thesis was processed at Charles University at the Faculty of Physical Activity and Sports, measuring 8 volunteers. ...

  13. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2017-10-01

    Full Text Available Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

  14. Muscle RING‐finger 2 and 3 maintain striated‐muscle structure and function

    Science.gov (United States)

    Lodka, Dörte; Pahuja, Aanchal; Geers‐Knörr, Cornelia; Scheibe, Renate J.; Nowak, Marcel; Hamati, Jida; Köhncke, Clemens; Purfürst, Bettina; Kanashova, Tamara; Schmidt, Sibylle; Glass, David J.; Morano, Ingo; Heuser, Arnd; Kraft, Theresia; Bassel‐Duby, Rhonda; Olson, Eric N.; Dittmar, Gunnar; Sommer, Thomas

    2015-01-01

    Abstract Background The Muscle‐specific RING‐finger (MuRF) protein family of E3 ubiquitin ligases is important for maintenance of muscular structure and function. MuRF proteins mediate adaptation of striated muscles to stress. MuRF2 and MuRF3 bind to microtubules and are implicated in sarcomere formation with noticeable functional redundancy. However, if this redundancy is important for muscle function in vivo is unknown. Our objective was to investigate cooperative function of MuRF2 and MuRF3 in the skeletal muscle and the heart in vivo. Methods MuRF2 and MuRF3 double knockout mice (DKO) were generated and phenotypically characterized. Skeletal muscle and the heart were investigated by morphological measurements, histological analyses, electron microscopy, immunoblotting, and real‐time PCR. Isolated muscles were subjected to in vitro force measurements. Cardiac function was determined by echocardiography and working heart preparations. Function of cardiomyocytes was measured in vitro. Cell culture experiments and mass‐spectrometry were used for mechanistic analyses. Results DKO mice showed a protein aggregate myopathy in skeletal muscle. Maximal force development was reduced in DKO soleus and extensor digitorum longus. Additionally, a fibre type shift towards slow/type I fibres occurred in DKO soleus and extensor digitorum longus. MuRF2 and MuRF3‐deficient hearts showed decreased systolic and diastolic function. Further analyses revealed an increased expression of the myosin heavy chain isoform beta/slow and disturbed calcium handling as potential causes for the phenotype in DKO hearts. Conclusions The redundant function of MuRF2 and MuRF3 is important for maintenance of skeletal muscle and cardiac structure and function in vivo. PMID:27493870

  15. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy

    Science.gov (United States)

    Bongers, Kale S.; Fox, Daniel K.; Kunkel, Steven D.; Stebounova, Larissa V.; Murry, Daryl J.; Pufall, Miles A.; Ebert, Scott M.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.

    2014-01-01

    Skeletal muscle atrophy is a common and debilitating condition that remains poorly understood at the molecular level. To better understand the mechanisms of muscle atrophy, we used mouse models to search for a skeletal muscle protein that helps to maintain muscle mass and is specifically lost during muscle atrophy. We discovered that diverse causes of muscle atrophy (limb immobilization, fasting, muscle denervation, and aging) strongly reduced expression of the enzyme spermine oxidase. Importantly, a reduction in spermine oxidase was sufficient to induce muscle fiber atrophy. Conversely, forced expression of spermine oxidase increased muscle fiber size in multiple models of muscle atrophy (immobilization, fasting, and denervation). Interestingly, the reduction of spermine oxidase during muscle atrophy was mediated by p21, a protein that is highly induced during muscle atrophy and actively promotes muscle atrophy. In addition, we found that spermine oxidase decreased skeletal muscle mRNAs that promote muscle atrophy (e.g., myogenin) and increased mRNAs that help to maintain muscle mass (e.g., mitofusin-2). Thus, in healthy skeletal muscle, a relatively low level of p21 permits expression of spermine oxidase, which helps to maintain basal muscle gene expression and fiber size; conversely, during conditions that cause muscle atrophy, p21 expression rises, leading to reduced spermine oxidase expression, disruption of basal muscle gene expression, and muscle fiber atrophy. Collectively, these results identify spermine oxidase as an important positive regulator of muscle gene expression and fiber size, and elucidate p21-mediated repression of spermine oxidase as a key step in the pathogenesis of skeletal muscle atrophy. PMID:25406264

  16. The myonuclear domain is not maintained in skeletal muscle during either atrophy or programmed cell death.

    Science.gov (United States)

    Schwartz, Lawrence M; Brown, Christine; McLaughlin, Kevin; Smith, Wendy; Bigelow, Carol

    2016-10-01

    Skeletal muscle mass can increase during hypertrophy or decline dramatically in response to normal or pathological signals that trigger atrophy. Many reports have documented that the number of nuclei within these cells is also plastic. It has been proposed that a yet-to-be-defined regulatory mechanism functions to maintain a relatively stable relationship between the cytoplasmic volume and nuclear number within the cell, a phenomenon known as the "myonuclear domain" hypothesis. While it is accepted that hypertrophy is typically associated with the addition of new nuclei to the muscle fiber from stem cells such as satellite cells, the loss of myonuclei during atrophy has been controversial. The intersegmental muscles from the tobacco hawkmoth Manduca sexta are composed of giant syncytial cells that undergo sequential developmental programs of atrophy and programmed cell death at the end of metamorphosis. Since the intersegmental muscles lack satellite cells or regenerative capacity, the tissue is not "contaminated" by these nonmuscle nuclei. Consequently, we monitored muscle mass, cross-sectional area, nuclear number, and cellular DNA content during atrophy and the early phases of cell death. Despite a ∼75-80% decline in muscle mass and cross-sectional area during the period under investigation, there were no reductions in nuclear number or DNA content, and the myonuclear domain was reduced by ∼85%. These data suggest that the myonuclear domain is not an intrinsic property of skeletal muscle and that nuclei persist through atrophy and programmed cell death. Copyright © 2016 the American Physiological Society.

  17. Intermuscular force transmission between human plantarflexor muscles in vivo

    DEFF Research Database (Denmark)

    Bojsen-Møller, Jens; Schwartz, Sidse; Kalliokoski, Kari K

    2010-01-01

    surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited...

  18. Naked mole-rats maintain healthy skeletal muscle and Complex IV mitochondrial enzyme function into old age.

    Science.gov (United States)

    Stoll, Elizabeth A; Karapavlovic, Nevena; Rosa, Hannah; Woodmass, Michael; Rygiel, Karolina; White, Kathryn; Turnbull, Douglass M; Faulkes, Chris G

    2016-12-19

    The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades.

  19. Interleukin-6 maintains glucose homeostasis to support strenuous masseter muscle activity in mice.

    Science.gov (United States)

    Tsuchiya, Masahiro; Kiyama, Tomomi; Tsuchiya, Shinobu; Takano, Hirohisa; Nemoto, Eiji; Sasaki, Keiichi; Watanabe, Makoto; Sugawara, Shunji; Endo, Yasuo

    2012-06-01

    The cytokine interleukin-6 (IL-6) is released from working skeletal muscles and reportedly plays key roles in their glucose homeostasis. However, it is unclear whether IL-6 plays such roles in the masseter muscle (MM), which is important in normal and pathological chewing behaviors, such as bruxism and/or prolonged clenching. When restrained (R+) in a narrow cylinder blocked at the front end with a thin plastic strip, a mouse gnaws away (G+) the strip to escape. The absolute weight of plastic gnawed away serves as an index of MM activity. Using this model, we examined the roles of IL-6 in MM with the following results. R+G+ increased the expression levels of IL-6 and glucose transporter 4 (Glut4) mRNAs in MM and the serum level of IL-6 protein. IL-6-deficient mice exhibited about 60% less gnawing activity than wild-type mice at 3-4 h after the start of R+G+, slower recovery of glycogen levels (indicating poorer glucose supply) in MM after R+G+, and no significant change in Glut4 mRNA in MM upon R+G+. During an R+G+ test conducted after "training" (repeated R+G+ sessions), wild-type mice exhibited greater gnawing activity than untrained controls, but no increase in IL-6 mRNA in MM. IL-6 mRNA increased in MM when hard food was eaten by mice raised on soft food for 3 weeks from weaning, but not in those raised on (accustomed to) hard food. Thus, IL-6 may maintain glucose homeostasis in MM in support of unusually strenuous activity, but not of accustomed activity levels.

  20. Demarcating SurA Activities Required for Outer Membrane Targeting of Yersinia pseudotuberculosis Adhesins

    Science.gov (United States)

    Obi, Ikenna R.

    2013-01-01

    SurA is a periplasmic protein folding factor involved in chaperoning and trafficking of outer membrane proteins across the Gram-negative bacterial periplasm. In addition, SurA also possesses peptidyl-prolyl cis/trans isomerase activity. We have previously reported that in enteropathogenic Yersinia pseudotuberculosis, SurA is needed for bacterial virulence and envelope integrity. In this study, we investigated the role of SurA in the assembly of important Yersinia adhesins. Using genetic mutation, biochemical characterization, and an in vitro-based bacterial host cell association assay, we confirmed that surface localization of the invasin adhesin is dependent on SurA. As a surA deletion also has some impact on the levels of individual components of the BAM complex in the Yersinia outer membrane, abolished invasin surface assembly could reflect both a direct loss of SurA-dependent periplasmic targeting and a potentially compromised BAM complex assembly platform in the outer membrane. To various degrees, the assembly of two other adhesins, Ail and the pH 6 antigen fibrillum PsaA, also depends on SurA. Consequently, loss of SurA leads to a dramatic reduction in Yersinia attachment to eukaryotic host cells. Genetic complementation of surA deletion mutants indicated a prominent role for SurA chaperone function in outer membrane protein assembly. Significantly, the N terminus of SurA contributed most of this SurA chaperone function. Despite a dominant chaperoning role, it was also evident that SurA isomerization activity did make a modest contribution to this assembly process. PMID:23589578

  1. An Integrated Low-Volume Nutritional Countermeasure to Maintain Muscle Mass and Function During Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — Mechanical unloading, an inherent characteristic of spaceflight, results in a loss of muscle mass and muscle strength. These losses threaten the integrity of space...

  2. Muscle and motor neuron ciliary neurotrophic factor receptor α together maintain adult motor neuron axons in vivo.

    Science.gov (United States)

    Lee, Nancy; Serbinski, Carolyn R; Braunlin, Makayla R; Rasch, Matthew S; Rydyznski, Carolyn E; MacLennan, A John

    2016-12-01

    The molecular mechanisms maintaining adult motor innervation are comparatively unexplored relative to those involved during development. In addition to the fundamental neuroscience question, this area has important clinical ramifications given that loss of neuromuscular contact is thought to underlie several adult onset human neuromuscular diseases including amyotrophic lateral sclerosis. Indirect evidence suggests that ciliary neurotrophic factor (CNTF) receptors may contribute to adult motor neuron axon maintenance. To directly address this in vivo, we used adult onset mouse genetic disruption techniques to deplete motor neuron and muscle CNTF receptor α (CNTFRα), the essential ligand binding subunit of the receptor, and incorporated reporters labelling affected motor neuron axons and terminals. The combined depletion of motor neuron and muscle CNTFRα produced a large loss of motor neuron terminals and retrograde labelling of motor neurons with FluoroGold indicated axon die-back well beyond muscle, together revealing an essential role for CNTFRα in adult motor axon maintenance. In contrast, selective depletion of motor neuron CNTFRα did not affect motor innervation. These data, along with our previous work indicating no effect of muscle specific CNTFRα depletion on motor innervation, suggest that motor neuron and muscle CNTFRα function in concert to maintain motor neuron axons. The data also raise the possibility of motor neuron and/or muscle CNTFRα as therapeutic targets for adult neuromuscular denervating diseases. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.

    Science.gov (United States)

    Yavuz, Utku Şükrü; Negro, Francesco; Diedrichs, Robin; Farina, Dario

    2018-01-31

    Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs in order to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools in order to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol) and medial gastrocnemius (GM) muscles during isometric dorsi- and plantar-flexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated in order to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was a 4-fold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of non-reciprocal inhibitory pathways.

  4. High-density lipoprotein maintains skeletal muscle function by modulating cellular respiration in mice.

    Science.gov (United States)

    Lehti, Maarit; Donelan, Elizabeth; Abplanalp, William; Al-Massadi, Omar; Habegger, Kirk M; Weber, Jon; Ress, Chandler; Mansfeld, Johannes; Somvanshi, Sonal; Trivedi, Chitrang; Keuper, Michaela; Ograjsek, Teja; Striese, Cynthia; Cucuruz, Sebastian; Pfluger, Paul T; Krishna, Radhakrishna; Gordon, Scott M; Silva, R A Gangani D; Luquet, Serge; Castel, Julien; Martinez, Sarah; D'Alessio, David; Davidson, W Sean; Hofmann, Susanna M

    2013-11-26

    Abnormal glucose metabolism is a central feature of disorders with increased rates of cardiovascular disease. Low levels of high-density lipoprotein (HDL) are a key predictor for cardiovascular disease. We used genetic mouse models with increased HDL levels (apolipoprotein A-I transgenic [apoA-I tg]) and reduced HDL levels (apoA-I-deficient [apoA-I ko]) to investigate whether HDL modulates mitochondrial bioenergetics in skeletal muscle. ApoA-I ko mice exhibited fasting hyperglycemia and impaired glucose tolerance test compared with wild-type mice. Mitochondria isolated from gastrocnemius muscle of apoA-I ko mice displayed markedly blunted ATP synthesis. Endurance capacity during exercise exhaustion test was impaired in apoA-I ko mice. HDL directly enhanced glucose oxidation by increasing glycolysis and mitochondrial respiration rate in C2C12 muscle cells. ApoA-I tg mice exhibited lower fasting glucose levels, improved glucose tolerance test, increased lactate levels, reduced fat mass, associated with protection against age-induced decline of endurance capacity compared with wild-type mice. Circulating levels of fibroblast growth factor 21, a novel biomarker for mitochondrial respiratory chain deficiencies and inhibitor of white adipose lipolysis, were significantly reduced in apoA-I tg mice. Consistent with an increase in glucose utilization of skeletal muscle, genetically increased HDL and apoA-I levels in mice prevented high-fat diet-induced impairment of glucose homeostasis. In view of impaired mitochondrial function and decreased HDL levels in type 2 diabetes mellitus, our findings indicate that HDL-raising therapies may preserve muscle mitochondrial function and address key aspects of type 2 diabetes mellitus beyond cardiovascular disease.

  5. Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress.

    Science.gov (United States)

    McGee, Sean L; Swinton, Courtney; Morrison, Shona; Gaur, Vidhi; Campbell, Duncan E; Jorgensen, Sebastian B; Kemp, Bruce E; Baar, Keith; Steinberg, Gregory R; Hargreaves, M

    2014-08-01

    Some gene deletions or mutations have little effect on metabolism and metabolic adaptation because of redundancy and/or compensation in metabolic pathways. The mechanisms for redundancy and/or compensation in metabolic adaptation in mammalian cells are unidentified. Here, we show that in mouse muscle and myogenic cells, compensatory regulation of the histone deacetylase (HDAC5) transcriptional repressor maintains metabolic integrity. HDAC5 phosphorylation regulated the expression of diverse metabolic genes and glucose metabolism in mouse C2C12 myogenic cells. However, loss of AMP-activated protein kinase (AMPK), a HDAC5 kinase, in muscle did not affect HDAC5 phosphorylation in mouse skeletal muscle during exercise, but resulted in a compensatory increase (32.6%) in the activation of protein kinase D (PKD), an alternate HDAC5 kinase. Constitutive PKD activation in mouse C2C12 myogenic cells regulated metabolic genes and glucose metabolism. Although aspects of this response were HDAC5 phosphorylation dependent, blocking HDAC5 phosphorylation when PKD was active engaged an alternative compensatory adaptive mechanism, which involved post-transcriptional reductions in HDAC5 mRNA (-93.1%) and protein. This enhanced the expression of a specific subset of metabolic genes and mitochondrial metabolism. These data show that compensatory regulation of HDAC5 maintains metabolic integrity in mammalian cells and reinforces the importance of preserving the cellular metabolic adaptive response. © FASEB.

  6. Active stretching for lower extremity muscle tightness in pediatric patients with lumbar spondylolysis.

    Science.gov (United States)

    Sato, Masahiro; Mase, Yasuyoshi; Sairyo, Koichi

    2017-01-01

    It was reported that hamstring muscle tightness may increase mechanical loading on the lumbar spine. Therefore, we attempt to decrease tightness in the leg muscles in pediatric patients. Forty-six pediatric patients with spondylolysis underwent rehabilitation. We applied active stretching to the hamstrings, quadriceps, and triceps surae. Tightness in each muscle was graded as good, fair, or poor. We educated each patient on how to perform active stretching at home. They were re-evaluated for muscle tightness 2 months later. Tightness at baseline and after 2 months was as follows: for the hamstrings, good in 3 patients, fair in 9, and poor in 34 and significant improved after 2 months (p<0.05), with improvement by least 1 grade seen in 86% of patients with fair or poor at baseline; for the quadriceps, 7, 3, and 30 patients had good, fair and poor, with significant improvements in 72% (p<0.05). For the triceps surae, 6, 3 and 10 patients had good, fair and poor, which improved significantly (p<0.05). Home-based active stretching was effective for relieving muscle tightness in the leg in a pediatric population. Adolescent athletes should perform such exercise to maintain flexibility and prevent lumbar disorders. J. Med. Invest. 64: 136-139, February, 2017.

  7. The effect of lower limb cast immobilization on calf muscle pump function: a simple strategy of exercises can maintain flow.

    Science.gov (United States)

    Hickey, Ben A; Morgan, Amy; Pugh, Neil; Perera, Anthony

    2014-05-01

    We have investigated the role of the calf muscle pump in casted patients. An audit of venous thromboembolism (VTE) in casted patients showed that the thrombosis occurred in the casted leg; this has not been previously assessed. We postulated that local factors play a major role, and we set out to assess the calf muscle pump in casted patients and to determine whether this can be optimized despite below-knee cast immobilization. We measured the flow in the popliteal vein using a validated method of Doppler ultrasound measurement of peak velocity with and without a below-knee plaster cast. We demonstrated that a simple strategy of toe and ankle exercises can maintain venous return despite below-knee cast immobilization. This is the first study to examine the effect of the calf muscle pump in the presence of a plaster cast. Major muscle groups such as the flexor hallucis longus and gastrocsoleus extend beyond the field of control of the cast and can still be recruited. We recommend that all patients treated with a below-knee cast be given a program of exercises that can be comfortably performed with the cast; this could provide a useful, inexpensive, and safe thromboprophylaxis strategy acting at the site of greatest risk and targeting a major cause of VTE.

  8. EFFECTS OF CYCLIC STATIC STRETCH ON FATIGUE RECOVERY OF TRICEPS SURAE IN FEMALE BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Mehri Ghasemia

    2013-04-01

    Full Text Available Static stretch is a safe and feasible method which usually is used before exercise to avoid muscle injury and to improve muscle performance. The purpose of this study was to determine the effects of cyclic static stretch (CSS on fatigue recovery of triceps surae (TS in female basketball players.Nine athlete volunteers between 20 and 30 years participated in this study containing two sessions. After warm-up a pressure cuff was fastened above the knee joint and its pressure was increased to 140 mmHg. The subjects were asked to perform one maximum voluntary contraction (MVC followed by a fatigue test including maximum isometric fatiguing contraction of TS. These steps were similar in both sessions. Then, a two-minute rest was included in the first session while 4 static stretches were performed to TS in the second session. After interventions, one MVC was done and the pressure cuff was released. During these steps, peak torque (PT and electromyography (EMG were recorded. The amount of lower leg pain was determined by the visual analogue scale (VAS. The value of PT increased significantly after CSS but its increase was not significant after rest. It seems that the effects of rest and CSS on the EMG parameters, PT and pain are similar.

  9. MECHANISMS FOR TRICEPS SURAE INJURY IN HIGH PERFORMANCE FRONT ROW RUGBY UNION PLAYERS: A KINEMATIC ANALYSIS OF SCRUMMAGING DRILLS

    Directory of Open Access Journals (Sweden)

    Carol A. Flavell

    2013-03-01

    Full Text Available The front row of a rugby union scrum consists of three players. The loose head prop, hooker and tight head prop. The objective of this study was to determine if known biomechanical risk factors for triceps surae muscle injury are exhibited in the lower limb of front row players during contested scrummaging. Eleven high performance front row rugby union players were landmarked bilaterally at the posterior superior iliac spine (PSIS, greater trochanter, lateral femoral epicondyle, midline of the calcaneus above the plantar aspect of the heel, midline lower leg 5cm and 20cm proximal to the lateral malleolus, at the axis of subtalar joint, lateral malleolus, and head of the fifth metatarsal. Players were video recorded during a series of 2 on 1 live scrummaging drills. Biomechanical three dimensional analysis identified large angular displacements, and increased peak velocities and accelerations at the ankle joint during attacking scrummaging drill techniques when in the stance phase of gait. This places the triceps surae as increased risk of injury and provides valuable information for training staff regarding injury prevention and scrum training practices for front row players

  10. Effect of increased and maintained frequency of speed endurance training on performance and muscle adaptations in runners

    DEFF Research Database (Denmark)

    Skovgaard, Casper; Almquist, Nicki Winfield; Bangsbo, Jens

    2017-01-01

    The aim of the study was, in runners accustomed to speed endurance training (SET), to examine the effect of increased and maintained frequency of SET on performance and muscular adaptations. After familiarization (FAM) to SET, eighteen male (n=14) and female (n=4) runners (VO2-max: 57.3±3.4 ml...... was collected. 10-km performance improved (PVO2-max was 15% and 22% longer (P... activity of CS and PFK increased (PVO2-max was unchanged. During INT both HF and LF increased (PVO2-max were unchanged. Furthermore, during INT, muscle expression of FXYD1...

  11. Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kristin M Watts

    2008-10-01

    Full Text Available SurA is a periplasmic peptidyl-prolyl isomerase (PPIase and chaperone of Escherichia coli and other Gram-negative bacteria. In contrast to other PPIases, SurA appears to have a distinct role in chaperoning newly synthesized porins destined for insertion into the outer membrane. Previous studies have indicated that the chaperone activity of SurA rests in its "core module" (the N- plus C-terminal domains, based on in vivo envelope phenotypes and in vitro binding and protection of non-native substrates.In this study, we determined the components of SurA required for chaperone activity using in vivo phenotypes relevant to disease causation by uropathogenic E. coli (UPEC, namely membrane resistance to permeation by antimicrobials and maturation of the type 1 pilus usher FimD. FimD is a SurA-dependent, integral outer membrane protein through which heteropolymeric type 1 pili, which confer bladder epithelial binding and invasion capacity upon uropathogenic E. coli, are assembled and extruded. Consistent with prior results, the in vivo chaperone activity of SurA in UPEC rested primarily in the core module. However, the PPIase domains I and II were not expendable for wild-type resistance to novobiocin in broth culture. Steady-state levels of FimD were substantially restored in the UPEC surA mutant complemented with the SurA N- plus C-terminal domains. The addition of PPIase domain I augmented FimD maturation into the outer membrane, consistent with a model in which domain I enhances stability of and/or substrate binding by the core module.Our results confirm the core module of E. coli SurA as a potential target for novel anti-infective development.

  12. Mechanisms for triceps surae injury in high performance front row rugby union players: a kinematic analysis of scrummaging drills.

    Science.gov (United States)

    Flavell, Carol A; Sayers, Mark G L; Gordon, Susan J; Lee, James B

    2013-01-01

    The front row of a rugby union scrum consists of three players. The loose head prop, hooker and tight head prop. The objective of this study was to determine if known biomechanical risk factors for triceps surae muscle injury are exhibited in the lower limb of front row players during contested scrummaging. Eleven high performance front row rugby union players were landmarked bilaterally at the posterior superior iliac spine (PSIS), greater trochanter, lateral femoral epicondyle, midline of the calcaneus above the plantar aspect of the heel, midline lower leg 5cm and 20cm proximal to the lateral malleolus, at the axis of subtalar joint, lateral malleolus, and head of the fifth metatarsal. Players were video recorded during a series of 2 on 1 live scrummaging drills. Biomechanical three dimensional analysis identified large angular displacements, and increased peak velocities and accelerations at the ankle joint during attacking scrummaging drill techniques when in the stance phase of gait. This places the triceps surae as increased risk of injury and provides valuable information for training staff regarding injury prevention and scrum training practices for front row players. Key pointsFront rowers exhibited patterns of single leg weight bearing, in a position of greater ankle plantar flexion and knee extension at toe off during scrummaging, which is a risk position for TS injury.Front rowers also exhibited greater acceleration at the ankle, knee, and hip joints, and greater changes in ankle ROM from toe strike to toe off during attacking scrum drills.These reported accelerations and joint displacements may be risk factors for TS injury, as the ankle is accelerating into plantar flexion at final push off and the muscle is shortening from an elongated state.

  13. Potential mechanisms of carbon monoxide and high oxygen packaging in maintaining color stability of different bovine muscles.

    Science.gov (United States)

    Liu, Chenglong; Zhang, Yimin; Yang, Xiaoyin; Liang, Rongrong; Mao, Yanwei; Hou, Xu; Lu, Xiao; Luo, Xin

    2014-06-01

    The objectives were to compare the effects of packaging methods on color stability, metmyoglobin-reducing-activity (MRA), total-reducing-activity and NADH concentration of different bovine muscles and to explore potential mechanisms in the enhanced color stability by carbon monoxide modified atmosphere packaging (CO-MAP, 0.4% CO/30% CO2/69.6% N2). Steaks from longissimus lumborum (LL), psoas major (PM) and longissimus thoracis (LT) packaged in CO-MAP, high-oxygen modified atmosphere packaging (HiOx-MAP, 80% O2/20% CO2) or vacuum packaging were stored for 0day, 4days, 9days, and 14days or stored for 9days then displayed in air for 0day, 1day, or 3days. The CO-MAP significantly increased red color stability of all muscles, and especially for PM. The PM and LT were more red than LL in CO-MAP, whereas PM had lowest redness in HiOx-MAP. The content of MetMb in CO-MAP was lower than in HiOx-MAP. Steaks in CO-MAP maintained a higher MRA compared with those in HiOx-MAP during storage. After opening packages, the red color of steaks in CO-MAP deteriorated more slowly compared with that of steaks in HiOx-MAP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Zooplankton and zoobenthos of the Mokra Sura river

    Directory of Open Access Journals (Sweden)

    V. Yakovenko

    2017-12-01

    Full Text Available Purpose. To study the spatial distribution of structural and functional indicators of zooplankton and zoobenthos during the period of maximum development of hydrobiocenosis in the contaminated and conditionally clean sites of the Mokra Sura river being under antropogenic pressure. Methodology. During the collection and subsequent laboratory processing of zooplankton and zoobenthos samples, we used the standard conventional hydrobiological methods. In order to rank the studied river sites, we used the combined index of the community state (CICS based on the structural-functional indicators of zoobenthos. Findings. The research results have shown that the species composition of zoobenthos and zooplankton of the Mokra Sura river included many saprobiontic species such as oligochaetes, chironomids and rotifers, which were developed significantly in some sites under the effect of eutrophication and silt accumulation in the presence of anthropogenic pollution. The above-mentioned processes cause inhibition of the life activity of such filter feeders as mollusks and crustaceans being the most powerful zooplanktonic and zoobenthic agents of self-cleaning. The highest numbers of zooplankton and zoobenthos development were recorded in front of the point of the emergency discharge of right-bank sewage water (stimulating effect of organic pollution while the lowest numbers were registered near the tire plant (combined effect of both chemical sewage pollution and silt accumulation. In the «Dnipro - Zaporizhzhia highway» site, low numbers of zooplankton development were the result of silt accumulation, whereas the zoobenthos biomass turned out to be the highest due to the intensive development of oligochaetes. Planktonic saprobiontic rotifers dominated in the site located in front of the sewage discharge whereas bdelloid rotifers dominated in the upstream sites of the river. The dominance of planktonic and benthic saprobiontic rotifers caused the highest

  15. Effect of increased and maintained frequency of speed endurance training on performance and muscle adaptations in runners.

    Science.gov (United States)

    Skovgaard, Casper; Almquist, Nicki Winfield; Bangsbo, Jens

    2017-01-01

    The aim of the study was, in runners accustomed to speed endurance training (SET), to examine the effect of increased and maintained frequency of SET on performance and muscular adaptations. After familiarization (FAM) to SET, 18 male (n = 14) and female (n = 4) runners (V̇o 2max : 57.3 ± 3.4 ml/min; means ± SD) completed 20 sessions of maintained low-frequency (LF; every fourth day; n = 7) or high-frequency (HF; every second day; n = 11) SET. Before FAM as well as before and after an intervention period (INT), subjects completed a series of running tests and a biopsy from m. vastus lateralis was collected. Ten-kilometer performance improved (P speed endurance training (SET) sessions improved short-term exercise capacity and 10-km performance, which was followed by further improved short-term exercise capacity, but unchanged 10-km performance after 20 SET sessions performed with either high frequency (4 per 8 days) or continued low frequency (2 per 8 days) in trained runners. The further gain in short-term exercise capacity was associated with changes in muscle expression of proteins of importance for the development of fatigue. Copyright © 2017 the American Physiological Society.

  16. Muscle mechanics and neuromuscular control

    NARCIS (Netherlands)

    Hof, AL

    The purpose of this paper is to demonstrate that the properties of the mechanical system, especially muscle elasticity and limb mass, to a large degree determine force output and movement. This makes the control demands of the central nervous system simpler and more robust. In human triceps surae, a

  17. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    Science.gov (United States)

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  18. Glycine enhances muscle protein mass associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing TLR4 and NOD2 signaling in piglets challenged with LPS.

    Science.gov (United States)

    Liu, Yulan; Wang, Xiuying; Wu, Huanting; Chen, Shaokui; Zhu, Huiling; Zhang, Jing; Hou, Yongqing; Hu, Chien-An Andy; Zhang, Guolong

    2016-08-01

    Pro-inflammatory cytokines play a critical role in the pathophysiology of muscle atrophy. We hypothesized that glycine exerted an anti-inflammatory effect and alleviated lipopolysaccharide (LPS)-induced muscle atrophy in piglets. Pigs were assigned to four treatments including the following: 1) nonchallenged control, 2) LPS-challenged control, 3) LPS+1.0% glycine, and 4) LPS+2.0% glycine. After receiving the control, 1.0 or 2.0% glycine-supplemented diets, piglets were treated with either saline or LPS. At 4 h after treatment with saline or LPS, blood and muscle samples were harvested. We found that 1.0 or 2.0% glycine increased protein/DNA ratio, protein content, and RNA/DNA ratio in gastrocnemius or longissimus dorsi (LD) muscles. Glycine also resulted in decreased mRNA expression of muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1) in gastrocnemius muscle. In addition, glycine restored the phosphorylation of Akt, mammalian target of rapamycin (mTOR), eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and Forkhead Box O 1 (FOXO1) in gastrocnemius or LD muscles. Furthermore, glycine resulted in decreased plasma tumor necrosis factor-α (TNF-α) concentration and muscle TNF-α mRNA abundance. Moreover, glycine resulted in decreased mRNA expresson of Toll-like receptor 4 (TLR4), nucleotide-binding oligomerization domain protein 2 (NOD2), and their respective downstream molecules in gastrocnemius or LD muscles. These results indicate glycine enhances muscle protein mass under an inflammatory condition. The beneficial roles of glycine on the muscle are closely associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing the activation of TLR4 and/or NOD2 signaling pathways. Copyright © 2016 the American Physiological Society.

  19. The role of Pitx2 in maintaining the phenotype of myogenic precursor cells in the extraocular muscles.

    Science.gov (United States)

    Hebert, Sadie L; Daniel, Mark L; McLoon, Linda K

    2013-01-01

    Many differences exist between extraocular muscles (EOM) and non-cranial skeletal muscles. One striking difference is the sparing of EOM in various muscular dystrophies compared to non-cranial skeletal muscles. EOM undergo continuous myonuclear remodeling in normal, uninjured adults, and distinct transcription factors are required for the early determination, development, and maintenance of EOM compared to limb skeletal muscle. Pitx2, a bicoid-like homeobox transcription factor, is required for the development of EOM and the maintenance of characteristic properties of the adult EOM phenotype, but is not required for the development of limb muscle. We hypothesize that these unique properties of EOM contribute to the constitutive differences between EOM and non-craniofacial skeletal muscles. Using flow cytometry, CD34(+)/Sca1(-/)CD45(-/)CD31(-) cells (EECD34 cells) were isolated from extraocular and limb skeletal muscle and in vitro, EOM EECD34 cells proliferated faster than limb muscle EECD34 cells. To further define these myogenic precursor cells from EOM and limb skeletal muscle, they were analyzed for their expression of Pitx2. Western blotting and immunohistochemical data demonstrated that EOM express higher levels of Pitx2 than limb muscle, and 80% of the EECD34 cells expressed Pitx2. siRNA knockdown of Pitx2 expression in EECD34 cells in vitro decreased proliferation rates and impaired the ability of EECD34 cells to fuse into multinucleated myotubes. High levels of Pitx2 were retained in dystrophic and aging mouse EOM and the EOM EECD34 cells compared to limb muscle. The differential expression of Pitx2 between EOM and limb skeletal muscle along with the functional changes in response to lower levels of Pitx2 expression in the myogenic precursor cells suggest a role for Pitx2 in the maintenance of constitutive differences between EOM and limb skeletal muscle that may contribute to the sparing of EOM in muscular dystrophies.

  20. The role of Pitx2 in maintaining the phenotype of myogenic precursor cells in the extraocular muscles.

    Directory of Open Access Journals (Sweden)

    Sadie L Hebert

    Full Text Available Many differences exist between extraocular muscles (EOM and non-cranial skeletal muscles. One striking difference is the sparing of EOM in various muscular dystrophies compared to non-cranial skeletal muscles. EOM undergo continuous myonuclear remodeling in normal, uninjured adults, and distinct transcription factors are required for the early determination, development, and maintenance of EOM compared to limb skeletal muscle. Pitx2, a bicoid-like homeobox transcription factor, is required for the development of EOM and the maintenance of characteristic properties of the adult EOM phenotype, but is not required for the development of limb muscle. We hypothesize that these unique properties of EOM contribute to the constitutive differences between EOM and non-craniofacial skeletal muscles. Using flow cytometry, CD34(+/Sca1(-/CD45(-/CD31(- cells (EECD34 cells were isolated from extraocular and limb skeletal muscle and in vitro, EOM EECD34 cells proliferated faster than limb muscle EECD34 cells. To further define these myogenic precursor cells from EOM and limb skeletal muscle, they were analyzed for their expression of Pitx2. Western blotting and immunohistochemical data demonstrated that EOM express higher levels of Pitx2 than limb muscle, and 80% of the EECD34 cells expressed Pitx2. siRNA knockdown of Pitx2 expression in EECD34 cells in vitro decreased proliferation rates and impaired the ability of EECD34 cells to fuse into multinucleated myotubes. High levels of Pitx2 were retained in dystrophic and aging mouse EOM and the EOM EECD34 cells compared to limb muscle. The differential expression of Pitx2 between EOM and limb skeletal muscle along with the functional changes in response to lower levels of Pitx2 expression in the myogenic precursor cells suggest a role for Pitx2 in the maintenance of constitutive differences between EOM and limb skeletal muscle that may contribute to the sparing of EOM in muscular dystrophies.

  1. AMP-activated protein kinase (AMPK) {beta}1{beta}2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise

    DEFF Research Database (Denmark)

    O'Neill, Hayley M; Maarbjerg, Stine Just; Crane, Justin D

    2011-01-01

    of AMPK subunits in whole-body AMPK a2, ß2, and ¿3 null mice has made it difficult to determine the physiological importance of AMPK in regulating muscle metabolism, because these models have normal mitochondrial content, contraction-stimulated glucose uptake, and insulin sensitivity. In the current study......, we generated mice lacking both AMPK ß1 and ß2 isoforms in skeletal muscle (ß1ß2M-KO). ß1ß2M-KO mice are physically inactive and have a drastically impaired capacity for treadmill running that is associated with reductions in skeletal muscle mitochondrial content but not a fiber-type switch....... Interestingly, young ß1ß2M-KO mice fed a control chow diet are not obese or insulin resistant but do have impaired contraction-stimulated glucose uptake. These data demonstrate an obligatory role for skeletal muscle AMPK in maintaining mitochondrial capacity and contraction-stimulated glucose uptake, findings...

  2. linguistic Stylistic miracles in the Holy Quran (The study of system theory in Ghafir Sura

    Directory of Open Access Journals (Sweden)

    2014-12-01

    The results of the study revealed that compatibility is clear in Sura in its different levels such as Words, compositions, and meaning. And there is Complete Harmony in Using different Styles As Well As The presence of Eloquence imagery Combined with the exact Expressions

  3. Energy consumption in static muscle contraction

    NARCIS (Netherlands)

    Koerhuis, CL; Hof, AL; van der Heide, F.M.

    Energy consumption during static contraction of the human triceps surae muscles was studied in 11 healthy subjects. The subjects had to stand intermittently on the left and then right foot at different frequencies (for periods of 15 s, 10 s or 5 s), first on the whole foot and then on the forefoot.

  4. Progressive Structural Defects in Canine Centronuclear Myopathy Indicate a Role for HACD1 in Maintaining Skeletal Muscle Membrane Systems.

    Science.gov (United States)

    Walmsley, Gemma L; Blot, Stéphane; Venner, Kerrie; Sewry, Caroline; Laporte, Jocelyn; Blondelle, Jordan; Barthélémy, Inès; Maurer, Marie; Blanchard-Gutton, Nicolas; Pilot-Storck, Fanny; Tiret, Laurent; Piercy, Richard J

    2017-02-01

    Mutations in HACD1/PTPLA cause recessive congenital myopathies in humans and dogs. Hydroxyacyl-coA dehydratases are required for elongation of very long chain fatty acids, and HACD1 has a role in early myogenesis, but the functions of this striated muscle-specific enzyme in more differentiated skeletal muscle remain unknown. Canine HACD1 deficiency is histopathologically classified as a centronuclear myopathy (CNM). We investigated the hypothesis that muscle from HACD1-deficient dogs has membrane abnormalities in common with CNMs with different genetic causes. We found progressive changes in tubuloreticular and sarcolemmal membranes and mislocalized triads and mitochondria in skeletal muscle from animals deficient in HACD1. Furthermore, comparable membranous abnormalities in cultured HACD1-deficient myotubes provide additional evidence that these defects are a primary consequence of altered HACD1 expression. Our novel findings, including T-tubule dilatation and disorganization, associated with defects in this additional CNM-associated gene provide a definitive pathophysiologic link with these disorders, confirm that dogs deficient in HACD1 are relevant models, and strengthen the evidence for a unifying pathogenesis in CNMs via defective membrane trafficking and excitation-contraction coupling in muscle. These results build on previous work by determining further functional roles of HACD1 in muscle and provide new insight into the pathology and pathogenetic mechanisms of HACD1 CNM. Consequently, alterations in membrane properties associated with HACD1 mutations should be investigated in humans with related phenotypes. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles - CDK4 maintains the myogenic population

    Directory of Open Access Journals (Sweden)

    Stadler Guido

    2011-03-01

    Full Text Available Abstract Background A hallmark of muscular dystrophies is the replacement of muscle by connective tissue. Muscle biopsies from patients severely affected with facioscapulohumeral muscular dystrophy (FSHD may contain few myogenic cells. Because the chromosomal contraction at 4q35 linked to FSHD is thought to cause a defect within myogenic cells, it is important to study this particular cell type, rather than the fibroblasts and adipocytes of the endomysial fibrosis, to understand the mechanism leading to myopathy. Results We present a protocol to establish clonal myogenic cell lines from even severely dystrophic muscle that has been replaced mostly by fat, using overexpression of CDK4 and the catalytic component of telomerase (human telomerase reverse transcriptase; hTERT, and a subsequent cloning step. hTERT is necessary to compensate for telomere loss during in vitro cultivation, while CDK4 prevents a telomere-independent growth arrest affecting CD56+ myogenic cells, but not their CD56- counterpart, in vitro. Conclusions These immortal cell lines are valuable tools to reproducibly study the effect of the FSHD mutation within myoblasts isolated from muscles that have been severely affected by the disease, without the confounding influence of variable amounts of contaminating connective-tissue cells.

  6. Integrated Resistance and Aerobic Training Maintains Cardiovascular and Skeletal Muscle Fitness During 14 Days of Bed Rest

    Science.gov (United States)

    Ploutz-Snyder, Lori; Goetchius, Elizabeth; Crowell, Brent; Hackney, Kyle; Wickwire, Jason; Ploutz-Snyder, Robert; Snyder, Scott

    2012-01-01

    Background: Known incompatibilities exist between resistance and aerobic training. Of particular importance are findings that concurrent resistance and aerobic training reduces the effectiveness of the resistance training and limits skeletal muscle adaptations (example: Dudley & Djamil, 1985). Numerous unloading studies have documented the effectiveness of resistance training alone for the maintenance of skeletal muscle size and strength. However the practical applications of those studies are limited because long ]duration crew members perform both aerobic and resistance exercise throughout missions/spaceflight. To date, such integrated training on the International Space Station (ISS) has not been fully effective in the maintenance of skeletal muscle function. Purpose: The purpose of this study was to evaluate the efficacy of high intensity concurrent resistance and aerobic training for the maintenance of cardiovascular fitness and skeletal muscle strength, power and endurance over 14 days of strict bed rest. Methods: 9 subjects (8 male and 1 female; 34.5 +/- 8.2 years) underwent 14 days of bed rest with concurrent training. Resistance and aerobic training were integrated as shown in table 1. Days that included 2 exercise sessions had a 4-8 hour rest between exercise bouts. The resistance training consisted of 3 sets of 12 repetitions of squat, heel raise, leg press and hamstring curl exercise. Aerobic exercise consisted of periodized interval training that included 30 sec, 2 min and 4 min intervals alternating by day with continuous aerobic exercise.

  7. Characterization of surface antigen protein 1 (SurA1) from Acinetobacter baumannii and its role in virulence and fitness.

    Science.gov (United States)

    Liu, Dong; Liu, Zeng-Shan; Hu, Pan; Cai, Ling; Fu, Bao-Quan; Li, Yan-Song; Lu, Shi-Ying; Liu, Nan-Nan; Ma, Xiao-Long; Chi, Dan; Chang, Jiang; Shui, Yi-Ming; Li, Zhao-Hui; Ahmad, Waqas; Zhou, Yu; Ren, Hong-Lin

    2016-04-15

    Acinetobacter baumannii is a Gram-negative bacillus that causes nosocomial infections, such as bacteremia, pneumonia, and meningitis and urinary tract and wound infections. In the present study, the surface antigen protein 1 (SurA1) gene of A. baumannii strain CCGGD201101 was identified, cloned and expressed, and then its roles in fitness and virulence were investigated. Virulence was observed in the human lung cancer cell lines A549 and HEp-2 at one week after treatment with recombinant SurA1. One isogenic SurA1 knock-out strain, GR0015, which was derived from the A. baumannii strain CCGGD201101 isolated from diseased chicks in a previous study, highlighted the effect of SurA1 on fitness and growth. Its growth rate in LB broth and killing activity in human sera were significantly decreased compared with strain CCGGD201101. In the Galleria mellonella insect model, the isogenic SurA1 knock-out strain exhibited a lower survival rate and decreased dissemination. These results suggest that SurA1 plays an important role in the fitness and virulence of A. baumannii. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity

    DEFF Research Database (Denmark)

    Boushel, Robert; Gnaiger, E.; Larsen, F. J.

    2015-01-01

    of the vastus lateralis in healthy volunteers (7 male, 2 female) before and after 42 days of skiing at 60% HR max. Peak pulmonary VO2 (3.52 ± 0.18 L.min-1 pre vs 3.52 ± 0.19 post) and VO2 across the leg (2.8 ± 0.4L.min-1 pre vs 3.0 ± 0.2 post) were unchanged after the ski journey. Peak leg O2 delivery (3.6 ± 0...... at a higher mitochondrial p50. These findings support the concept that muscle mitochondrial respiration is submaximal at VO2max , and that mitochondrial volume can be downregulated by chronic energy demand.......We recently reported the circulatory and muscle oxidative capacities of the arm after prolonged low-intensity skiing in the arctic (Boushel et al., 2014). In the present study, leg VO2 was measured by the Fick method during leg cycling while muscle mitochondrial capacity was examined on a biopsy...

  9. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    Science.gov (United States)

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  10. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume.

    Science.gov (United States)

    Iaia, F Marcello; Hellsten, Ylva; Nielsen, Jens Jung; Fernström, Maria; Sahlin, Kent; Bangsbo, Jens

    2009-01-01

    We studied the effect of an alteration from regular endurance to speed endurance training on muscle oxidative capacity, capillarization, as well as energy expenditure during submaximal exercise and its relationship to mitochondrial uncoupling protein 3 (UCP3) in humans. Seventeen endurance-trained runners were assigned to either a speed endurance training (SET; n = 9) or a control (Con; n = 8) group. For a 4-wk intervention (IT) period, SET replaced the ordinary training ( approximately 45 km/wk) with frequent high-intensity sessions each consisting of 8-12 30-s sprint runs separated by 3 min of rest (5.7 +/- 0.1 km/wk) with additional 9.9 +/- 0.3 km/wk at low running speed, whereas Con continued the endurance training. After the IT period, oxygen uptake was 6.6, 7.6, 5.7, and 6.4% lower (P speeds of 11, 13, 14.5, and 16 km/h, respectively, in SET, whereas remained the same in Con. No changes in blood lactate during submaximal running were observed. After the IT period, the protein expression of skeletal muscle UCP3 tended to be higher in SET (34 +/- 6 vs. 47 +/- 7 arbitrary units; P = 0.06). Activity of muscle citrate synthase and 3-hydroxyacyl-CoA dehydrogenase, as well as maximal oxygen uptake and 10-km performance time, remained unaltered in both groups. In SET, the capillary-to-fiber ratio was the same before and after the IT period. The present study showed that speed endurance training reduces energy expenditure during submaximal exercise, which is not mediated by lowered mitochondrial UCP3 expression. Furthermore, speed endurance training can maintain muscle oxidative capacity, capillarization, and endurance performance in already trained individuals despite significant reduction in the amount of training.

  11. The properties of ULF/VLF signals generated by the SURA facility without ionospheric currents modulation

    Science.gov (United States)

    Kotik, D. S.; Raybov, A. V.; Ermakova, E. N.

    2012-12-01

    During the last three years the comprehensive study of ionospheric generation of the artificial signals in ULF/VLF band was carried out at SURA facility. This research was stimulated by successive HAARP experiments on detection the low frequency signals genreated due the action of the ponderomotive forces. Two experimental campaigns under different ionospheric, geomagnetic and facility operation mode conditions was undertaken every year from 2010 to 2012. Here we are summarizing the main features of the artificial ULF/VLF signals observed in vicinity the SURA site. The signals in the 2-20 Hz band were observed in the small area around the facility with the radius approximately 15 km. It was not signal detection at the 30 km distance. The maximum of the amplitude was detected in the nearest receiving point about 3 km away from the transmitting array. The amplitude increased about 3 times when the beam was inclined on16 degrees to the south so the footprint of the geomagnetic field line comes close to the point of observation. The ULF signals increased slightly when the SURA operating frequency overlaps the critical foF2 frequency. As a rule the daytime signals are smaller then nighttime one. No any correlation was observed with geomagnetic disturbances. The time delay of the ionospheric ULF signals measured by phase method was estimated as 300-400 ms. Polarization of the ULF signals has a pronounced elliptical character. Sometimes it was linear. The part of measurements in June 2012 was coincide with magnetic storm (June 16-18, Kp=6). It was observed broadening of the signal line at frequencies of 11 and 17 Hz up to 0.2 Hz at the recovery stage of the storm at June 18 (see the figure). This fact can be interpreted as the result of the signal interaction with the radiation belt protons appeared over there during the storm time. In 2012 campaigns it was firstly observed at SURA signals on frequencies of several kilohertz at nightime which could not be explained by

  12. The influence of training status on the drop in muscle strength after acute exercise

    DEFF Research Database (Denmark)

    Pingel, Jessica; Moerch, L; Kjaer, M

    2009-01-01

    to running exercise immediately after immobilization, the muscle strength of the triceps-surae muscles dropped even further, but just in the immobilized leg (41%; P importance of determining the muscle endurance when evaluating the effect of immobilization on muscle......Skeletal muscles fatigue after exercise, and reductions in maximal force appear. A difference in training status between the legs was introduced by unilateral immobilization of the calf muscles for 2 weeks in young men, who were randomly assigned to two groups, either a RUN group (n = 8......) that was exposed to prolonged exercise (1-h running: individual pace) or a REST group (n = 12) that did no exercise after immobilization. Cross-sectional area (CSA) of the triceps-surae muscles was calculated by magnetic resonance imaging (MRI), and maximal voluntary contraction (MVC) force of the plantar flexors...

  13. Acute effects of static stretching on muscle-tendon mechanics of quadriceps and plantar flexor muscles.

    Science.gov (United States)

    Bouvier, Tom; Opplert, Jules; Cometti, Carole; Babault, Nicolas

    2017-07-01

    This study aimed to determine the acute effects of static stretching on stiffness indexes of two muscle groups with a contrasting difference in muscle-tendon proportion. Eleven active males were tested on an isokinetic dynamometer during four sessions randomly presented. Two sessions were dedicated to quadriceps and the two others to triceps surae muscles. Before and immediately after the stretching procedure (5 × 30 s), gastrocnemius medialis and rectus femoris fascicle length and myotendinous junction elongation were determined using ultrasonography. Passive and maximal voluntary torques were measured. Fascicle and myotendinous junction stiffness indexes were calculated. After stretching, maximal voluntary torque similarly decreased for both muscle groups. Passive torque significantly decreased on triceps surae and remained unchanged on quadriceps muscles. Fascicle length increased similarly for both muscles. However, myotendinous junction elongation remained unchanged for gastrocnemius medialis and increased significantly for rectus femoris muscle. Fascicle stiffness index significantly decreased on medial gastrocnemius and remained unchanged on rectus femoris muscle. In contrast, myotendinous junction stiffness index similarly decreased on both muscles. Depending on the muscle considered, the present results revealed different acute stretching effects. This muscle dependency appeared to affect primarily fascicle stiffness index rather than the myotendinous junction.

  14. Activation of AMPKα2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity.

    Directory of Open Access Journals (Sweden)

    Mario Ost

    Full Text Available Transgenic (UCP1-TG mice with ectopic expression of UCP1 in skeletal muscle (SM show a phenotype of increased energy expenditure, improved glucose tolerance and increase substrate metabolism in SM. To investigate the potential role of skeletal muscle AMPKα2 activation in the metabolic phenotype of UCP1-TG mice we generated double transgenic (DTG mice, by crossing of UCP1-TG mice with DN-AMPKα2 mice overexpressing a dominant negative α2 subunit of AMPK in SM which resulted in an impaired AMPKα2 activity by 90±9% in SM of DTG mice. Biometric analysis of young male mice showed decreased body weight, lean and fat mass for both UCP1-TG and DTG compared to WT and DN-AMPKα2 mice. Energy intake and weight-specific total energy expenditure were increased, both in UCP1-TG and DTG mice. Moreover, glucose tolerance, insulin sensitivity and fatty acid oxidation were not altered in DTG compared to UCP1-TG. Also uncoupling induced induction and secretion of fibroblast growth factor 21 (FGF21 from SM was preserved in DTG mice. However, voluntary physical cage activity as well as ad libitum running wheel access during night uncovered a severe activity intolerance of DTG mice. Histological analysis showed a progressive degenerative morphology in SM of DTG mice which was not observed in SM of UCP1-TG mice. Moreover, ATP-depletion related cellular stress response via heat shock protein 70 was highly induced, whereas capillarization regulator VEGF was suppressed in DTG muscle. In addition, AMPKα2-mediated induction of mitophagy regulator ULK1 was suppressed in DTG mice, as well as mitochondrial respiratory capacity and content. In conclusion, we demonstrate that AMPKα2 is dispensable for SM mitochondrial uncoupling induced metabolic effects on whole body energy balance, glucose homeostasis and insulin sensitivity. But strikingly, activation of AMPKα2 seems crucial for maintaining SM function, integrity and the ability to compensate chronic metabolic stress

  15. Myofascial trigger point therapy for triceps surae dysfunction: a case series.

    Science.gov (United States)

    Grieve, Rob; Barnett, Sue; Coghill, Nikki; Cramp, Fiona

    2013-12-01

    The main aim of the case series was to inform further experimental research to determine the effectiveness of myofascial trigger point (MTrP) therapy for the treatment of triceps surae dysfunction. Ten participants with triceps surae dysfunction were recruited (4 females and 6 males); mean age±standard deviation=43±7.1 years. Participants were screened for inclusion/exclusion criteria and the following outcomes measures were assessed at baseline and discharge; lower extremity functional scale (LEFS), verbal numerical rating scale (NRS), MTrP prevalence, ankle dorsiflexion range of movement (ROM) and pressure pain threshold (PPT). Intervention involved trigger point (TrP) pressure release, self MTrP release and a home stretching programme. There was a high prevalence of active/latent MTrPs and possible myofascial pain syndrome (MPS) for all 10 participants at baseline. Active MTrP prevalence decreased to 0%, while latent MTrPs were still present at discharge. There were positive changes in most outcome measures (LEFS, NRS, ROM and PPT) for all 10 participants. Short term to medium term treatment outcomes (6 week post discharge) showed an overall mean LEFS increase of 11 points from 61/80 at baseline to 72/80 at discharge. This case series suggests that a brief course of multimodal MTrP therapy would be helpful for some patients with sub-acute or chronic calf pain. Important preliminary data was gathered, that will inform more rigorous research in this under investigated area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Muscle injuries of the lower extremity: a comparison between young and old male elite soccer players.

    Science.gov (United States)

    Svensson, Kjell; Alricsson, Marie; Karnebäck, Gustav; Magounakis, Theo; Werner, Suzanne

    2016-07-01

    The aim of this study was to make a comparison between players in two age groups in an elite male soccer team regarding injury localisation within the muscle-tendon unit, injury size and muscle group in terms of muscle injuries of the lower extremity. Cohort study based on data collected from a Swedish elite male soccer team during the seasons 2007-2012. In total, 145 muscle injuries were included. Injury localisation to the tendon or muscle, the size of haematoma and the affected muscle group were assessed using ultrasound. Age comparison was made between younger players (≤23 years) and older players (>23 years). No difference regarding injury localisation to either the tendon or the muscle, or the size of haematoma between the two age groups was found. However, the older group of players suffered a significantly higher number of injuries to the triceps surae than the younger players (p = 0.012). In a Swedish team of male soccer players at elite level, there was no difference between players 23 years or younger and players older than 23 years, in terms of injury distribution to muscles or tendons. Players older than 23 years sustained more injuries to triceps surae when compared with players 23 years or younger. The clinical relevance is to pay attention to muscle function of triceps surae in older players and to screen those players who may need an injury prevention programme. II.

  17. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats

    Science.gov (United States)

    Fortes, Marco A. S.; Scervino, Maria V. M.; Marzuca-Nassr, Gabriel N.; Vitzel, Kaio F.; da Justa Pinheiro, Carlos H.; Curi, Rui

    2017-01-01

    Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group. PMID:29123487

  18. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Marco A. S. Fortes

    2017-10-01

    Full Text Available Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus or glycolytic (EDL muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK, Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1, mechano-growth factor (MGF and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group.

  19. Precise coding of ankle angle and velocity by human calf muscle spindles.

    Science.gov (United States)

    Peters, Ryan M; Dalton, Brian H; Blouin, Jean-Sébastien; Inglis, J Timothy

    2017-05-04

    Human standing balance control requires the integration of sensory feedback to produce anticipatory, stabilizing ankle torques. However, the ability of human triceps surae muscle spindles to provide reliable sensory feedback regarding the small, slow ankle movements that occur during upright standing has recently come under question. We performed microneurography to directly record axon potentials from single muscle spindle afferents in the human triceps surae during servo-controlled movement of the ankle joint. To simulate movements of the ankle while standing, we delivered random 90-s dorsiflexion/plantar flexion oscillations of the ankle joint, with a peak-to-peak amplitude of 0.7° and frequency content below 0.5Hz. In roughly half of the trials (46%), participants held a low-level, near-isometric contraction of the triceps surae muscles. We demonstrate that afferent activity in a population of muscle spindles closely reflects ankle movements at frequencies and amplitudes characteristic of human standing. Four out of five soleus spindles, and three out of seven gastrocnemius spindles coded for at least a single frequency component of anteroposterior ankle rotation. Concatenating within muscles, coherence was significantly greater for soleus spindles at all stimulus frequencies. Voluntary contraction of the parent muscle reduced spindle sensitivity, but only significantly near the mean power frequency of the stimulus (∼0.3Hz). In conclusion, these results provide direct evidence that triceps surae muscle spindles are potentially capable of providing important sensory feedback for the control of human standing balance. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat-Fed Mice.

    Science.gov (United States)

    Lantier, Louise; Williams, Ashley S; Williams, Ian M; Yang, Karen K; Bracy, Deanna P; Goelzer, Mickael; James, Freyja D; Gius, David; Wasserman, David H

    2015-09-01

    Protein hyperacetylation is associated with glucose intolerance and insulin resistance, suggesting that the enzymes regulating the acetylome play a role in this pathological process. Sirtuin 3 (SIRT3), the primary mitochondrial deacetylase, has been linked to energy homeostasis. Thus, it is hypothesized that the dysregulation of the mitochondrial acetylation state, via genetic deletion of SIRT3, will amplify the deleterious effects of a high-fat diet (HFD). Hyperinsulinemic-euglycemic clamp experiments show, for the first time, that mice lacking SIRT3 exhibit increased insulin resistance due to defects in skeletal muscle glucose uptake. Permeabilized muscle fibers from HFD-fed SIRT3 knockout (KO) mice showed that tricarboxylic acid cycle substrate-based respiration is decreased while fatty acid-based respiration is increased, reflecting a fuel switch from glucose to fatty acids. Consistent with reduced muscle glucose uptake, hexokinase II (HKII) binding to the mitochondria is decreased in muscle from HFD-fed SIRT3 KO mice, suggesting decreased HKII activity. These results show that the absence of SIRT3 in HFD-fed mice causes profound impairments in insulin-stimulated muscle glucose uptake, creating an increased reliance on fatty acids. Insulin action was not impaired in the lean SIRT3 KO mice. This suggests that SIRT3 protects against dietary insulin resistance by facilitating glucose disposal and mitochondrial function. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. The SURA Coastal Ocean Observing and Prediction (SCOOP) Program: Adapting Web 2.0 technologies to power next generation science

    Science.gov (United States)

    Bogden, P.; Partners, S.

    2008-12-01

    The Web 2.0 has helped globalize the economy and change social interactions, but the full impact on coastal sciences has yet to be realized. The SCOOP program (www.OpenIOOS.org/about/sura.html), an initiative of the Coastal Research Committee of the Southeastern Universities Research Association (SURA), has been using Web 2.0 technologies to create infrastructure for a multi-disciplinary Distributed Coastal Laboratory (DCL). In the spirit of the Web 2.0, SCOOP strives to provide an open-access virtual facility where "virtual visiting" scientists can log in, perform experiments (e.g., evaluate new wetting/drying algorithms in several different inundation models), potentially contribute to the assembly of resources (e.g., leave their algorithms for others), and then move on. The SCOOP prototype has focused on storm surge and waves (the initial science focus), and integrates a real-time data network to evaluate the predictions. The multi-purpose SCOOP components support a sensor-web initiative (www.OOSTethys.org) that is co-led by SURA. SCOOP also includes portals with real-time visualization, workflow configuration and decision-tool prototypes (www.OpenIOOS.org), powered by distributed computing resources from multiple universities across the nation (www.sura.org/SURAgrid). Based on our experience, we propose three key ingredients for initiatives to have the biggest impact on coastal science: (1) standards, (2) working prototypes and (3) communities of interest. We strongly endorse the Open Geospatial Consortium - a geospatial analog of the World Wide Web consortium - and other international consensus-standards bodies that engage government, private sector and academic involvement. But these standards are often highly complex, which can be an impediment to their use. We have overcome such hurdles with the second key ingredient: a focused working prototype. The prototype should include guides and resources that make it easy for others to apply, test, and revise the

  2. 'Pharyngocise': Randomized Controlled Trial of Preventative Exercises to Maintain Muscle Structure and Swallowing Function During Head-and-Neck Chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Carnaby-Mann, Giselle, E-mail: gmann@phhp.ufl.edu [Department of Behavioral Science and Community Health, University of Florida, Gainesville, FL (United States); Crary, Michael A. [Department of Speech Language and Hearing Sciences, University of Florida, Gainesville, FL (United States); Schmalfuss, Ilona [Department of Radiology, North Florida/South Georgia Veterans Health System, Gainesville, FL (Georgia); Amdur, Robert [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2012-05-01

    Purpose: Dysphagia after chemoradiotherapy is common. The present randomized clinical trial studied the effectiveness of preventative behavioral intervention for dysphagia compared with the 'usual care.' Methods and Materials: A total of 58 head-and-neck cancer patients treated with chemoradiotherapy were randomly assigned to usual care, sham swallowing intervention, or active swallowing exercises (pharyngocise). The intervention arms were treated daily during chemoradiotherapy. The primary outcome measure was muscle size and composition (determined by T{sub 2}-weighted magnetic resonance imaging). The secondary outcomes included functional swallowing ability, dietary intake, chemosensory function, salivation, nutritional status, and the occurrence of dysphagia-related complications. Results: The swallowing musculature (genioglossus, hyoglossuss, and mylohyoid) demonstrated less structural deterioration in the active treatment arm. The functional swallowing, mouth opening, chemosensory acuity, and salivation rate deteriorated less in the pharyngocise group. Conclusion: Patients completing a program of swallowing exercises during cancer treatment demonstrated superior muscle maintenance and functional swallowing ability.

  3. Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles

    Directory of Open Access Journals (Sweden)

    Kohn André F

    2010-06-01

    Full Text Available Abstract Background High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons. This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. Methods Subjects (n = 6 were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise applied to the triceps surae muscle group. In an additional investigation, Mmax and F-waves were elicited at different times before or after the vibratory stimulation. Results The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. Conclusions These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC due to the spinal recruitment of motoneurons. The association of vibration and electrical

  4. Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy.

    Science.gov (United States)

    Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E

    2014-05-01

    The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume

    DEFF Research Database (Denmark)

    Iaia, F. Marcello; Hellsten, Ylva; Nielsen, Jens Jung

    2009-01-01

    as maximal oxygen uptake and 10-km performance time, remained unaltered in both groups. In SET, the capillary-to-fiber ratio was the same before and after the IT period. The present study showed that speed endurance training reduces energy expenditure during submaximal exercise, which is not mediated......We studied the effect of an alteration from regular endurance to speed endurance training on muscle oxidative capacity, capillarization, as well as energy expenditure during submaximal exercise and its relationship to mitochondrial uncoupling protein 3 (UCP3) in humans. Seventeen endurance......-trained runners were assigned to either a speed endurance training (SET; n = 9) or a control (Con; n = 8) group. For a 4-wk intervention (IT) period, SET replaced the ordinary training ( approximately 45 km/wk) with frequent high-intensity sessions each consisting of 8-12 30-s sprint runs separated by 3 min...

  6. Muscle disuse caused by botulinum toxin injection leads to increased central gain of the stretch reflex in the rat

    DEFF Research Database (Denmark)

    Pingel, Jessica; Hultborn, Hans; Naslund-Koch, Lui

    2017-01-01

    Botulinum toxin (Btx) is used in children with cerebral palsy and other neurological patients to diminish spasticity and reduce the risk of development of contractures. Here, we investigated changes in the central gain of the stretch reflex circuitry in response to botulinum toxin injection...... in the triceps surae muscle in rats. Experiments were performed in 21 rats. 8 rats were in a control group and 13 rats were injected with 6 IU of Btx in the left triceps surae muscle. Two weeks after Btx injection larger monosynaptic reflexes (MSR) were recorded from the left (injected) than the right (non....... However, significant changes were also observed in post-activation depression of the MSR suggesting that plastic changes in transmission from Ia afferent to the motor neurons may also be involved. The data demonstrate that muscle paralysis induced by Btx injection is accompanied by plastic adaptations...

  7. Nicotinamide Phosphoribosyltransferase in Smooth Muscle Cells Maintains Genome Integrity, Resists Aortic Medial Degeneration, and Is Suppressed in Human Thoracic Aortic Aneurysm Disease.

    Science.gov (United States)

    Watson, Alanna; Nong, Zengxuan; Yin, Hao; O'Neil, Caroline; Fox, Stephanie; Balint, Brittany; Guo, Linrui; Leo, Oberdan; Chu, Michael W A; Gros, Robert; Pickering, J Geoffrey

    2017-06-09

    The thoracic aortic wall can degenerate over time with catastrophic consequences. Vascular smooth muscle cells (SMCs) can resist and repair artery damage, but their capacities decline with age and stress. Recently, cellular production of nicotinamide adenine dinucleotide (NAD + ) via nicotinamide phosphoribosyltransferase (Nampt) has emerged as a mediator of cell vitality. However, a role for Nampt in aortic SMCs in vivo is unknown. To determine whether a Nampt-NAD + control system exists within the aortic media and is required for aortic health. Ascending aortas from patients with dilated aortopathy were immunostained for NAMPT, revealing an inverse relationship between SMC NAMPT content and aortic diameter. To determine whether a Nampt-NAD + control system in SMCs impacts aortic integrity, mice with Nampt -deficient SMCs were generated. SMC- Nampt knockout mice were viable but with mildly dilated aortas that had a 43% reduction in NAD + in the media. Infusion of angiotensin II led to aortic medial hemorrhage and dissection. SMCs were not apoptotic but displayed senescence associated-ß-galactosidase activity and upregulated p16, indicating premature senescence. Furthermore, there was evidence for oxidized DNA lesions, double-strand DNA strand breaks, and pronounced susceptibility to single-strand breakage. This was linked to suppressed poly(ADP-ribose) polymerase-1 activity and was reversible on resupplying NAD + with nicotinamide riboside. Remarkably, we discovered unrepaired DNA strand breaks in SMCs within the human ascending aorta, which were specifically enriched in SMCs with low NAMPT. NAMPT promoter analysis revealed CpG hypermethylation within the dilated human thoracic aorta and in SMCs cultured from these tissues, which inversely correlated with NAMPT expression. The aortic media depends on an intrinsic NAD + fueling system to protect against DNA damage and premature SMC senescence, with relevance to human thoracic aortopathy. © 2017 American Heart

  8. Different doses of supplemental vitamin D maintain interleukin-5 without altering skeletal muscle strength: a randomized, double-blind, placebo-controlled study in vitamin D sufficient adults

    Directory of Open Access Journals (Sweden)

    Barker Tyler

    2012-03-01

    Full Text Available Abstract Background Supplemental vitamin D modulates inflammatory cytokines and skeletal muscle function, but results are inconsistent. It is unknown if these inconsistencies are dependent on the supplemental dose of vitamin D. Therefore, the purpose of this study was to identify the influence of different doses of supplemental vitamin D on inflammatory cytokines and muscular strength in young adults. Methods Men (n = 15 and women (n = 15 received a daily placebo or vitamin D supplement (200 or 4000 IU for 28-d during the winter. Serum 25-hydroxyvitamin D (25(OHD, cytokine concentrations and muscular (leg strength measurements were performed prior to and during supplementation. Statistical significance of data were assessed with a two-way (time, treatment analysis of variance (ANOVA with repeated measures, followed by a Tukey's Honestly Significant Difference to test multiple pairwise comparisons. Results Upon enrollment, 63% of the subjects were vitamin D sufficient (serum 25(OHD ≥ 30 ng/ml. Serum 25(OHD and interleukin (IL-5 decreased (P P P P Conclusion In young adults who were vitamin D sufficient prior to supplementation, we conclude that a low-daily dose of supplemental vitamin D prevents serum 25(OHD and IL-5 concentration decreases, and that muscular strength does not parallel the 25(OHD increase induced by a high-daily dose of supplemental vitamin D. Considering that IL-5 protects against viruses and bacterial infections, these findings could have a broad physiological importance regarding the ability of vitamin D sufficiency to mediate the immune systems protection against infection.

  9. Magnetic resonance imaging findings of the skeletal muscle of a patient with nemaline myopathy.

    Science.gov (United States)

    Oishi, M; Mochizuki, Y

    1998-09-01

    This is the first magnetic resonance imaging (MRI) report of nemaline myopathy in which muscle atrophy was not apparent clinically in the lower extremities because of subcutaneous fat. The patient is a 38-year-old woman who was admitted to our hospital because of muscle weakness of the four extremities. Until the age of 17 years, she was asymptomatic except that her running speed was slow. The T1-weighted image of muscle MRI at the mid-thigh level showed hyperintensity of the quadriceps femoris muscle and relatively spared hamstring muscle. The T2-weighted image of muscle MRI at the maximum diameter of the lower leg showed hyperintensity of the tibialis anterior muscle and a relatively spared triceps surae muscle. The biopsy specimen of the right deltoid muscle showed nemaline bodies and type II fiber deficiency.

  10. Event-related brain potential and postural muscle activity during standing on an oscillating table while the knee, hip, and trunk are fixed.

    Science.gov (United States)

    Fujiwara, Katsuo; Irei, Mariko; Kiyota, Naoe; Yaguchi, Chie; Maeda, Kaoru

    2016-02-18

    In this study, a cast brace was used to immobilize the knee, hip, and trunk, and relations between the event-related brain potential (ERP) and postural muscle activity were investigated while standing on an oscillating table. Twelve healthy young adults maintained a standing posture for 1 min per trial while oscillating in the anteroposterior direction at 0.5 Hz with a 2.5-cm amplitude. Trials were performed without and with the cast brace (no-fixation and fixation condition, respectively) until the subject had adapted to the floor oscillation. The ERP from the Cz electrode, postural muscle activity, and joint movement range were analyzed for the first and last two trials (before and after adaptation, respectively). Movement range of the hip and knee was lower in the fixation condition than in the no-fixation condition, and postural control was achieved by pivoting at the ankle. Peak muscle activity was largest in the gastrocnemius (GcM) in both conditions. GcM activity significantly increased after fixation and then decreased with adaptation. The time of peak erector spinae (ES) activity in the fixation condition was significantly earlier than in the no-fixation condition and was not significantly different from the time of the anterior reversal and peak of triceps surae activity. The negative ERP peaked approximately 80 ms after the anterior reversal. Significant correlations between the time of the peak negative ERP and the peak GcM, soleus, and ES activity were observed only after the adaptation, and were greater in the fixation condition (r = 0.83, 0.84, and 0.83, respectively) than in the no-fixation condition (r = 0.62, 0.73, and 0.51, respectively). All joints of the leg and trunk except for the ankle were rigidly fixed by the cast brace, and the phase differences between body segments were very small in the fixation condition. High correlations between the time of the peak negative ERP and the peak GcM, soleus, and ES activity after adaptation in

  11. Noninvasive Cu-64-ATSM and PET/CT Assessment of Hypoxia in Rat Skeletal Muscles and Tendons During Muscle Contractions

    DEFF Research Database (Denmark)

    Skovgaard, D.; Kjaer, M.; Madsen, J.

    2009-01-01

    expression of 2 hypoxia-related genes, hypoxia-inducible factor 1 alpha (HIF1 alpha) and carbonic anhydrase III (CAIII). Methods: Two groups of Wistar rats performed 1-leg contractions of the calf muscle by electrostimulation of the sciatic nerve. After 10 min of muscle contractions, Cu-64-ATSM was injected...... and contractions were continued for 20 min. PET/CT of both hind limbs was performed immediately and 1 h after the contractions. The exercise group (n = 8) performed only muscle contractions as described, whereas the other group, exercise plus cuff (n = 8), in addition underwent cuff-induced hypoxia during...... the first PET/CT scan. Standardized uptake values (SUVs) were calculated for the Achilles tendons and triceps surae muscles and were correlated to gene expression of HIF1 alpha and CAIII using real-time polymerase chain reaction. Results: Immediately after the contractions, uptake of Cu-64-ATSM...

  12. Infrared thermography applied to lower limb muscles in elite soccer players with functional ankle equinus and non-equinus condition.

    Science.gov (United States)

    Rodríguez-Sanz, David; Losa-Iglesias, Marta Elena; López-López, Daniel; Calvo-Lobo, César; Palomo-López, Patricia; Becerro-de-Bengoa-Vallejo, Ricardo

    2017-01-01

    Gastrocnemius-soleus equinus (GSE) is a foot-ankle complaint in which the extensibility of the gastrocnemius (G) and soleus muscles (triceps surae) and ankle are limited to a dorsiflexion beyond a neutral ankle position. The asymmetric forces of leg muscles and the associated asymmetric loading forces might promote major activation of the triceps surae, tibialis anterior, transverses abdominal and multifidus muscles. Here, we made infrared recordings of 21 sportsmen (elite professional soccer players) before activity and after 30 min of running. These recordings were used to assess temperature modifications on the gastrocnemius, tibialis anterior, and Achilles tendon in GSE and non-GSE participants. We identified significant temperature modifications among GSE and non-GSE participants for the tibialis anterior muscle (mean, minimum, and maximum temperature values). The cutaneous temperature increased as a direct consequence of muscle activity in GSE participants. IR imaging capture was reliable to muscle pattern activation for lower limb. Based on our findings, we propose that non-invasive IR evaluation is suitable for clinical evaluation of the status of these muscles.

  13. Infrared thermography applied to lower limb muscles in elite soccer players with functional ankle equinus and non-equinus condition

    Directory of Open Access Journals (Sweden)

    David Rodríguez-Sanz

    2017-05-01

    Full Text Available Gastrocnemius-soleus equinus (GSE is a foot-ankle complaint in which the extensibility of the gastrocnemius (G and soleus muscles (triceps surae and ankle are limited to a dorsiflexion beyond a neutral ankle position. The asymmetric forces of leg muscles and the associated asymmetric loading forces might promote major activation of the triceps surae, tibialis anterior, transverses abdominal and multifidus muscles. Here, we made infrared recordings of 21 sportsmen (elite professional soccer players before activity and after 30 min of running. These recordings were used to assess temperature modifications on the gastrocnemius, tibialis anterior, and Achilles tendon in GSE and non-GSE participants. We identified significant temperature modifications among GSE and non-GSE participants for the tibialis anterior muscle (mean, minimum, and maximum temperature values. The cutaneous temperature increased as a direct consequence of muscle activity in GSE participants. IR imaging capture was reliable to muscle pattern activation for lower limb. Based on our findings, we propose that non-invasive IR evaluation is suitable for clinical evaluation of the status of these muscles.

  14. Repeated bouts of fast velocity eccentric contractions induce atrophy of gastrocnemius muscle in rats.

    Science.gov (United States)

    Ochi, Eisuke; Nosaka, Kazunori; Tsutaki, Arata; Kouzaki, Karina; Nakazato, Koichi

    2015-10-01

    One bout of exercise consisting of fast velocity eccentric contractions has been shown to increase muscle protein degradation in rats. The present study tested the hypothesis that muscle atrophy would be induced after four bouts of fast velocity eccentric contractions, but not after four bouts of slow velocity eccentric contractions. Male Wistar rats were randomly placed into 3 groups; fast (180°/s) velocity (180EC, n = 7), slow (30°/s) velocity eccentric exercise (30EC, n = 7), or sham-treatment group (control, n = 7). The 180EC and 30EC groups received 4 sessions of 4 sets of 5 eccentric contractions of triceps surae muscles by extending the ankle joint during evoked electrical stimulation of the muscles, and the control group had torque measures, every 2 days, and all rats were sacrificed 1 day after the fourth session. Medial and lateral gastrocnemius wet mass were 4-6 % smaller, cross-sectional area of medial gastrocnemius was 6-7% smaller, and isometric tetanic torque of triceps surae muscles was 36 % smaller (p eccentric contractions.

  15. Handgrip strength, quadriceps muscle power, and optimal shortening velocity roles in maintaining functional abilities in older adults living in a long-term care home: a 1-year follow-up study

    Directory of Open Access Journals (Sweden)

    Kozicka I

    2016-05-01

    Full Text Available Izabela Kozicka, Tomasz Kostka Department of Geriatrics, Medical University of Lodz, Lodz, Poland Purpose: To assess the relative role of handgrip strength (HGS, quadriceps muscle power (Pmax, and optimal shortening velocity (υopt in maintaining functional abilities (FAs in older adults living in a long-term care home over a 1-year follow-up. Subjects and methods: Forty-one inactive older institutionalized adults aged 69.8±9.0 years participated in this study. HGS, Pmax, υopt, cognitive function using the Mini-Mental State Examination, depressive symptoms using the Geriatric Depression Scale, nutritional status using the Mini Nutritional Assessment (MNA, and physical activity (PA using the Seven-Day Physical Activity Recall Questionnaire were assessed at baseline and at 1-year follow-up. FAs were assessed with activities of daily living (ADL, instrumental ADL, and Timed Up & Go test. Results: Both at baseline and at follow-up, FAs were related to age, HGS, Pmax/kg, υopt, MNA, and PA. These associations were generally similar in both sexes. As revealed in multiple regression analysis, υopt was the strongest predictor of FA, followed by Pmax/kg, PA, and MNA. FA deteriorated after 1 year as measured by ADL and Timed Up & Go test. Pmax and υopt, but not HGS, also decreased significantly after 1 year. Nevertheless, 1-year changes in FAs were not related to changes in HGS, Pmax, υopt, or PA. Conclusion: The 1-year period of physical inactivity among older institutionalized adults was found to have a negative effect on their FAs, Pmax, and υopt. The present study demonstrates that Pmax and, especially, υopt correlated with FAs of older adults more than HGS, both at baseline and at follow-up. Despite this, 1-year natural fluctuations of PA, Pmax, and υopt are not significant enough to influence FAs in inactive institutionalized older adults. Keywords: aging, handgrip strength, institutionalization, functional status, physical activity

  16. Computed tomographic findings of skeletal muscles in amyotrophic lateral sclerosis (ALS)

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Imai, Terukuni; Sadashima, Hiromichi; Matsumoto, Sadayuki; Yamamoto, Toru; Kusaka, Hirobumi; Yamasaki, Masahiro; Maya, Kiyomi; Tanabe, Masaya (Kitano Hospital, Osaka (Japan))

    1989-04-01

    We evaluated the Computed Tomographic (CT) findings of skeletal muscles in 12 cases of amyotrophic lateral sclerosis (ALS), 1 case of spinal progressive muscular atrophy (SPMA), and 1 case of Kugelberg-Welander disease. CT examination was performed in the neck, shoulders, abdomen, pelvis, thighs, and lower legs, 15 muscles were selected for evaluation. The following muscles tended to be affected: m. transversospinalis (12 cases were abnormal), m. deltoideus (10), m. subscapularis (10), m. infraspinatus (10), mm. dorsi (12), hamstring muscles (14), m. tibialis anterior (14), and m. triceps surae (14). On the contrary, the following muscles tended to be preserved: m. sternocleidomastoideus (only 7 cases were abnormal), m. psoas major (7), m. gluteus maximus (7), m. rectus femoris (7), m. sartorius (7) and m. gracilis (6). The distribution of the muscles affected showed neither proximal nor distal dominancy. As the disease advanced, however, all the muscles became affected without any severity. CT findings of skeletal muscles in ALS were characterized by muscle atrophy and fat infiltration, which showed a patchy, linear, or moth-eaten appearance. In mildly affected cases, there was muscle atrophy without internal architectual changes. In moderately affected cases, muscle atrophy advanced and internal architectural changes (patchy, linear, and moth-eaten fat infiltration) became evident. In most advanced cases, every muscle showed a ragged appearance because of severe muscle atrophy and internal architectural changes. These findings were well distinguished from those of SPMA, which resembled the CT pattern of primary muscle diseases. (author).

  17. Effects of strenuous exercise with eccentric muscle contraction: physiological and functional aspects of human skeletal muscle.

    Science.gov (United States)

    Yanagisawa, Osamu; Kurihara, Toshiyuki; Okumura, Koji; Fukubayashi, Toru

    2010-01-01

    we used magnetic resonance (MR) imaging and ultrasonography in combination with a dynamometer to assess physiological and functional aspects of the skeletal muscles after strenuous exercise that included eccentric contraction. seven male subjects (mean age, 21.7 years) performed ankle plantar flexion that included eccentric contraction and underwent diffusion-weighted MR imaging for calculation of the apparent diffusion coefficient (ADC) of the triceps surae muscles. We used ultrasonography combined with a dynamometer to measure the displacement of the myotendinous junction (MTJ) of the medial gastrocnemius and maximal isometric force during ankle plantar flexion. We also assessed the level of muscle soreness of the calf using a visual analogue scale. We measured these parameters before exercise and one, 2, 3, 5, and 8 days after exercise and examined significant changes from the pre-exercise value using repeated-measures analysis of variance with Dunnett's test for each measurement parameter. one day after exercise, we observed increased muscle soreness (Peccentric contraction manifests as muscle soreness and dysfunction early after exercise and later increases water diffusion within damaged muscle.

  18. Noninvasive 64Cu-ATSM and PET/CT Assessment of Hypoxia in Rat Skeletal Muscles and Tendons During Muscle Contractions

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Kjaer, Michael; Madsen, Jacob

    2009-01-01

    expression of 2 hypoxia-related genes, hypoxia-inducible factor 1alpha (HIF1alpha) and carbonic anhydrase III (CAIII). METHODS: Two groups of Wistar rats performed 1-leg contractions of the calf muscle by electrostimulation of the sciatic nerve. After 10 min of muscle contractions, (64)Cu-ATSM was injected...... and contractions were continued for 20 min. PET/CT of both hind limbs was performed immediately and 1 h after the contractions. The exercise group (n = 8) performed only muscle contractions as described, whereas the other group, exercise plus cuff (n = 8), in addition underwent cuff-induced hypoxia during...... the first PET/CT scan. Standardized uptake values (SUVs) were calculated for the Achilles tendons and triceps surae muscles and were correlated to gene expression of HIF1alpha and CAIII using real-time polymerase chain reaction. RESULTS: Immediately after the contractions, uptake of (64)Cu...

  19. Relationship between tightness of the posterior muscles of the lower limb and plantar fasciitis.

    Science.gov (United States)

    Bolívar, Yolanda Aranda; Munuera, Pedro V; Padillo, Juan Polo

    2013-01-01

    The aim of this study was to determine whether tightness of the posterior muscles of the lower extremity was associated with plantar fasciitis. A total of 100 lower limbs of 100 subjects, 50 with plantar fasciitis and 50 matching controls were recruited. Hamstring and calf muscles were evaluated through the straight leg elevation test, popliteal angle test, and ankle dorsiflexion (knee extended and with the knee flexed). All variables were compared between the 2 groups. In addition, ROC curves, sensitivity, and specificity of the muscle contraction tests were also calculated to determine their potential predictive powers. Differences between the 2 groups for the tests used to assess muscular shortening were significant (P muscles of the lower limb was present in the plantar fasciitis patients, but not in the unaffected participants. The results of this study suggest that therapists who are going to employ a stretching protocol for treatment of plantar fasciitis should look for both hamstring as well as triceps surae tightness. Stretching exercise programs could be recommended for treatment of plantar fasciitis, focusing on stretching the triceps surae and hamstrings, apart from an adequate tissue-specific plantar fascia-stretching protocol. Level III, case control study.

  20. Effect of the Kinesio tape to muscle activity and vertical jump performance in healthy inactive people.

    Science.gov (United States)

    Huang, Chen-Yu; Hsieh, Tsung-Hsun; Lu, Szu-Ching; Su, Fong-Chin

    2011-08-11

    Elastic taping applied on the triceps surae has been commonly used to improve the performance of lower extremities. However, little objective evidence has been documented. The purpose of this study was to investigate the effect of elastic taping on the triceps surae during a maximal vertical jump. It was hypothesized that elastic taping to the triceps surae would increase muscle activity and cause positive effect to jump height. Thirty-one healthy adults (19 males and 12 females with mean age, body weight and height for 25.3 ± 3.8 years old, 64.1 ± 6.2 kg, and 169.4 ± 7.3 cm, respectively) were recruited. All participants performed vertical jump tests prior to (without taping) and during elastic taping. Two elastic tapes, Kinesio tape and Mplacebo tape from two different manufacturers, were applied to the participants, respectively. The results showed that the vertical ground reaction force increased when Kinesio tape was applied even when the height of jump remained about constant. However, the height of the jump decreased, and there was no difference on the vertical ground reaction force in Mplacebo taping group. Although the EMG activity of medial gastrocnemius tended to increase in Kinesio taping group, we did not see differences in EMG activity for the medial gastrocnemius, tibialis anterior and soleus muscles in either group. Based on the varied effects of Kinesio tape and Mplacebo tape, different intervention technique was suggested for specific purpose during vertical jump movement. Mplacebo tape was demanded for the benefits of stabilization, protection, and the restriction of motion at the ankle joint. On the other hand, the findings may implicate benefits for medial gastrocnemius muscle strength and push-off force when using Kinesio tape.

  1. Effect of the Kinesio tape to muscle activity and vertical jump performance in healthy inactive people

    Directory of Open Access Journals (Sweden)

    Lu Szu-Ching

    2011-08-01

    Full Text Available Abstract Background Elastic taping applied on the triceps surae has been commonly used to improve the performance of lower extremities. However, little objective evidence has been documented. The purpose of this study was to investigate the effect of elastic taping on the triceps surae during a maximal vertical jump. It was hypothesized that elastic taping to the triceps surae would increase muscle activity and cause positive effect to jump height. Methods Thirty-one healthy adults (19 males and 12 females with mean age, body weight and height for 25.3 ± 3.8 years old, 64.1 ± 6.2 kg, and 169.4 ± 7.3 cm, respectively were recruited. All participants performed vertical jump tests prior to (without taping and during elastic taping. Two elastic tapes, Kinesio tape and Mplacebo tape from two different manufacturers, were applied to the participants, respectively. Results The results showed that the vertical ground reaction force increased when Kinesio tape was applied even when the height of jump remained about constant. However, the height of the jump decreased, and there was no difference on the vertical ground reaction force in Mplacebo taping group. Although the EMG activity of medial gastrocnemius tended to increase in Kinesio taping group, we did not see differences in EMG activity for the medial gastrocnemius, tibialis anterior and soleus muscles in either group. Conclusions Based on the varied effects of Kinesio tape and Mplacebo tape, different intervention technique was suggested for specific purpose during vertical jump movement. Mplacebo tape was demanded for the benefits of stabilization, protection, and the restriction of motion at the ankle joint. On the other hand, the findings may implicate benefits for medial gastrocnemius muscle strength and push-off force when using Kinesio tape.

  2. Is the soleus a sentinel muscle for impaired aerobic capacity in heart failure?

    Science.gov (United States)

    Panizzolo, Fausto A; Maiorana, Andrew J; Naylor, Louise H; Lichtwark, Glen A; Dembo, Lawrence; Lloyd, David G; Green, Daniel J; Rubenson, Jonas

    2015-03-01

    Skeletal muscle wasting is well documented in chronic heart failure (CHF). This article provides a more detailed understanding of the morphology behind this muscle wasting and the relation between muscle morphology, strength, and exercise capacity in CHF. We investigated the effect of CHF on lower limb lean mass, detailed muscle-tendon architecture of the individual triceps surae muscles (soleus (SOL), medial gastrocnemius, and lateral gastrocnemius) and how these parameters relate to exercise capacity and strength. Eleven patients with CHF and 15 age-matched controls were recruited. Lower limb lean mass was assessed by dual energy x-ray absorptiometry and the architecture of skeletal muscle and tendon properties by ultrasound. Plantarflexor strength was assessed by dynamometry. Patients with CHF exhibited approximately 25% lower combined triceps surae volume and physiological cross-sectional area (PCSA) compared with those of control subjects (P < 0.05), driven in large part by reductions in the SOL. Only the SOL volume and the SOL and medial gastrocnemius physiological cross-sectional area were statistically different between groups after normalizing to lean body mass and body surface area, respectively. Total lower limb lean mass did not differ between CHF and control subjects, further highlighting the SOL specificity of muscle wasting in CHF. Moreover, the volume of the SOL and plantarflexor strength correlated strongly with peak oxygen uptake (V˙O2peak) in patients with CHF. These findings suggest that the SOL may be a sentinel skeletal muscle in CHF and provide a rationale for including plantarflexor muscle training in CHF care.

  3. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.; Catterall, W.A.

    1982-01-01

    Specific binding of 3 H-saxitoxin (STX) was used to quantitate the density of voltage-sensitive sodium channels in developing rat skeletal muscle. In adult triceps surae, a single class of sites with a KD . 2.9 nM and a density of 21 fmol/mg wet wt was detected. The density of these high-affinity sites increased from 2.0 fmol/mg wet wt to the adult value in linear fashion during days 2-25 after birth. Denervation of the triceps surae at day 11 or 17 reduced final saxitoxin receptor site density to 10.4 or 9.2 fmol/mg wet wt, respectively, without changing KD. Denervation of the triceps surae at day 5 did not alter the subsequent development of saxitoxin receptor sites during days 5-9 and accelerated the increase of saxitoxin receptor sites during days 9-13. After day 13, saxitoxin receptor development abruptly ceased and the density of saxitoxin receptor sites declined to 11 fmol/wg wet wt. These results show that the regulation of high-affinity saxitoxin receptor site density by innervation is biphasic. During the first phase, which is independent of continuing innervation, the saxitoxin receptor density increases to 47-57% of the adult level. After day 11, the second phase of development, which is dependent on continuing innervation, gives rise to the adult density of saxitoxin receptors

  4. Muscle lesion comparing of imaging procedures (sonography and MRT) -experimental and clinical study

    International Nuclear Information System (INIS)

    Mellerowicz, H.; Lubasch, A.; Dulce, M.; Wagner, S.; Paul, B.

    1993-01-01

    Muscle injuries in sports are more common now. Diagnosis and follow up of muscle injuries is nowadays achieved by sonography and MRT. In order to assess the two imagine procedures, a direct test for comparison of sonography and MRT was performed in an experimental study: A standardised disconnection of m. triceps surae in rats was either sutured and glued or not treated. Clinical studies were performed in 26 patients suffering from muscle trauma. Sonography was proved to be a reliable procedure especially in follow up control until full weight bearing and should be used first. Negative or doubtfull findings require further investigation by MRT. Especially contrast medium (Gd-DTPA) assisted examinations enables a long term follow up and may even show small (muscle strain) and deep lying injuries. (orig.) [de

  5. Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults.

    Science.gov (United States)

    Behringer, M; Moser, M; Montag, J; McCourt, M; Tenner, D; Mester, J

    2015-06-01

    Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.

  6. Nutritional interventions to preserve skeletal muscle mass

    NARCIS (Netherlands)

    Backx, Evelien M.P.

    2016-01-01

    Muscle mass is the main predictor for muscle strength and physical function. The amount of muscle mass can decline rapidly during periods of reduced physical activity or during periods of energy intake restriction. For athletes, it is important to maintain muscle mass, since the loss of muscle is

  7. Proportions of myosin heavy chain mRNAs, protein isoforms and fiber types in the slow and fast skeletal muscles are maintained after alterations of thyroid status in rats

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš; Diallo, Michael

    2015-01-01

    Roč. 64, č. 1 (2015), s. 111-118 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/08/0256; GA MŠk(CZ) 7AMB12SK158; GA MŠk(CZ) 7AMB14SK123; GA MŠk(CZ) EE2.3.30.0025 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional support: RVO:67985823 Keywords : thyroid hormones * muscle gene expression * MyHC isoforms and muscle fiber types * quantitative real time RT-PCR * SDS - PAGE and 2-D Stereological analysis Subject RIV: EA - Cell Biology Impact factor: 1.643, year: 2015

  8. 18F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Kjaer, Michael; El-Ali, Henrik

    2009-01-01

    unilateral isometric contractions of the calf muscle. (18)F-Fluorodeoxyglucose was administered and a PET/CT scan of the hindlimbs was performed. SUVs were calculated in both Achilles tendons and the triceps surae muscles. To exclude a spill-over effect the tendons and muscles from an ex vivo group of eight......PURPOSE: To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). METHODS: The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause...... rats were cut out and scanned separately (distance>or=1 cm). RESULTS: Muscle contractions increased glucose uptake approximately sevenfold in muscles (p

  9. Muscle disuse caused by botulinum toxin injection leads to increased central gain of the stretch reflex in the rat.

    Science.gov (United States)

    Pingel, Jessica; Hultborn, Hans; Näslund-Koch, Lui; Jensen, Dennis B; Wienecke, Jacob; Nielsen, Jens Bo

    2017-10-01

    Botulinum toxin (Btx) is used in children with cerebral palsy and in other neurological patients to diminish spasticity and reduce the risk of development of contractures. We investigated changes in the central gain of the stretch reflex circuitry in response to Btx injection in the triceps surae muscle in rats. Experiments were performed in 21 rats. Eight rats were a control group, and 13 rats were injected with 6 IU of Btx in the left triceps surae muscle. Two weeks after Btx injection, larger monosynaptic reflexes (MSR) were recorded from the left (injected) than the right (noninjected) L4 + L5 ventral roots following stimulation of the corresponding dorsal roots. A similar increase on the left side was observed in response to stimulation of descending motor tracts, suggesting that increased excitability of spinal motor neurons may at least partly explain the increased reflexes. However, significant changes were also observed in postactivation depression of the MSR, suggesting that plastic changes in transmission from Ia afferent to the motor neurons also may be involved. The data demonstrate that muscle paralysis induced by Btx injection is accompanied by plastic adaptations in the central stretch reflex circuitry, which counteract the antispastic effect of Btx. NEW & NOTEWORTHY Injection of botulinum toxin into ankle muscles causes increased gain of stretch reflex. This is caused by adaptive changes in regulation of transmitter release from Ia afferents and increased excitability of spinal motor neurons. Copyright © 2017 the American Physiological Society.

  10. Skeletal muscle CT of lower extremities in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Imai, Terukuni; Sadashima, Hiromichi; Matsumoto, Sadayuki; Yamamoto, Toru; Kusaka, Hirofumi; Yamasaki, Masahiro; Maya, Kiyomi; Tanabe, Masaya

    1988-02-01

    We evaluated the leg and thigh muscles of 4 control subjects and 10 patients with myotonic dystrophy using computed tomography. Taking previous reports about the skeletal muscle CT of myotonic dystrophy into account, we concluded that the following 5 features are characteristic of myotonic dystrophy: 1. The main change is the appearance of low-density areas in muscles; these areas reflect fat tissue. In addition, the muscle mass decreases in size. 2. The leg is more severely affected than the thigh. 3. In the thigh, although the m. quadriceps femoris, especially the vastus muscles, tends to be affected, the m. adductor longus and magnus tend to be preserved. 4. In the leg, although the m. tibialis anterior and m. triceps surae tend to be affected, the m. peroneus longus, brevis, and m. tibialis posterior tend to be preserved. 5. Compensatory hypertrophy is often observed in the m. rectus femoris, m. adductor longus, m. adductor magnus, m. peroneus longus, and m. peroneus brevis, accompanied by the involvement of their agonist muscles.

  11. Ergonomics Contribution in Maintainability

    Science.gov (United States)

    Teymourian, Kiumars; Seneviratne, Dammika; Galar, Diego

    2017-09-01

    The objective of this paper is to describe an ergonomics contribution in maintainability. The economical designs, inputs and training helps to increase the maintainability indicators for industrial devices. This analysis can be helpful, among other cases, to compare systems, to achieve a better design regarding maintainability requirements, to improve this maintainability under specific industrial environment and to foresee maintainability problems due to eventual changes in a device operation conditions. With this purpose, this work first introduces the notion of ergonomics and human factors, maintainability and the implementation of assessment of human postures, including some important postures to perform maintenance activities. A simulation approach is used to identify the critical posture of the maintenance personnel and implements the defined postures with minimal loads on the personnel who use the equipment in a practical scenario. The simulation inputs are given to the designers to improve the workplace/equipment in order to high level of maintainability. Finally, the work concludes summarizing the more significant aspects and suggesting future research.

  12. C60fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue.

    Science.gov (United States)

    Prylutskyy, Yurij I; Vereshchaka, Inna V; Maznychenko, Andriy V; Bulgakova, Nataliya V; Gonchar, Olga O; Kyzyma, Olena A; Ritter, Uwe; Scharff, Peter; Tomiak, Tomasz; Nozdrenko, Dmytro M; Mishchenko, Iryna V; Kostyukov, Alexander I

    2017-01-13

    Bioactive soluble carbon nanostructures, such as the C 60 fullerene can bond with up to six electrons, thus serving by a powerful scavenger of reactive oxygen species similarly to many natural antioxidants, widely used to decrease the muscle fatigue effects. The aim of the study is to define action of the pristine C 60 fullerene aqueous colloid solution (C 60 FAS), on the post-fatigue recovering of m. triceps surae in anaesthetized rats. During fatigue development, we observed decrease in the muscle effort level before C 60 FAS administration. After the application of C 60 FAS, a slower effort decrease, followed by the prolonged retention of a certain level, was recorded. An analysis of the metabolic process changes accompanying muscle fatigue showed an increase in the oxidative stress markers H 2 O 2 (hydrogen peroxide) and TBARS (thiobarbituric acid reactive substances) in relation to the intact muscles. After C 60 FAS administration, the TBARS content and H 2 O 2 level were decreased. The endogenous antioxidant system demonstrated a similar effect because the GSH (reduced glutathione) in the muscles and the CAT (catalase) enzyme activity were increased during fatigue. C 60 FAS leads to reduction in the recovery time of the muscle contraction force and to increase in the time of active muscle functioning before appearance of steady fatigue effects. Therefore, it is possible that C 60 FAS affects the prooxidant-antioxidant muscle tissue homeostasis, subsequently increasing muscle endurance.

  13. The influence of aging on the isometric torque sharing patterns among the plantar flexor muscles.

    Science.gov (United States)

    Oliveira, Liliam F; Verneque, Debora; Menegaldo, Luciano L

    2017-01-01

    Physiological cross-sectional area (PCSA) reduction of the triceps surae (TS) muscles during aging suggests a proportional loss of torque among its components: soleus, medial and lateral gastrocnemii. However, direct measurements of muscle forces in vivo are not feasible. The purpose of this paper was to compare, between older and young women, isometric ankle joint torque sharing patterns among TS muscles and tibialis anterior (TA). An EMG-driven model was used for estimating individual muscle torque contributions to the total plantar flexor torque, during sustained contractions of 10% and 40% of maximum voluntary contraction (MVC). Relative individual muscle contributions to the total plantar flexion torque were similar between older and young women groups, for both intensities, increasing from LG, MG to SOL. Muscle strength (muscle torque/body mass) was significantly greater for all TS components in 40% MVC contractions. Increased TA activation was observed in 10% of MVC for older people. Despite the reduced maximum isometric torque and muscle strength, the results suggest small variations of ankle muscle synergies during the aging process.

  14. Muscle Cramps

    Science.gov (United States)

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after ... It is a very common muscle problem. Muscle cramps can be caused by nerves that malfunction. Sometimes ...

  15. Modulation of Stretch-Shortening-Cycle Behavior With Eccentric Loading of Triceps Surae: A Possible Therapeutic Mechanism.

    Science.gov (United States)

    Debenham, James R; Gibson, William I; Travers, Mervyn J; Campbell, Amity C; Allison, Garry T

    2017-04-01

    Eccentric exercises are increasingly being used to treat lower-limb musculoskeletal conditions such as Achilles tendinopathy. Despite widespread clinical application and documented efficacy, mechanisms underpinning clinical benefit remain unclear. Positive adaptations in motor performance are a potential mechanism. To investigate how an eccentric loading intervention influences measures of stretch-shortening-cycle (SSC) behavior during a hopping task. Within-subjects repeated-measures observational study. University motion-analysis laboratory. Healthy adults. A single intervention of 5 sets of 10 eccentric plantar-flexion contractions at 6 repetitions maximum using a commercial seated calf-raise machine. Lower-limb stiffness, sagittal-plane ankle kinematics, and temporal muscle activity of the agonist (soleus) and antagonist (tibialis anterior) muscles, measured during submaximal hopping on a custom-built sledge-jump system. Eccentric loading altered ankle kinematics during submaximal hopping; peak angle shifted to a less dorsiflexed position by 2.9° and ankle angle precontact shifted by 4.4° (P eccentric loading alters SSC behavior in a manner reflective of improved motor performance. Decreased ankle excursion, increased lower-limb stiffness, and alterations in motor control may represent a positive adaptive response to eccentric loading. These findings support the theory that mechanisms underpinning eccentric loading for tendinopathy may in part be due to improved "buffering" of the tendon by the neuromuscular system.

  16. The immediate effect of triceps surae myofascial trigger point therapy on restricted active ankle joint dorsiflexion in recreational runners: a crossover randomised controlled trial.

    Science.gov (United States)

    Grieve, Rob; Cranston, Amy; Henderson, Andrew; John, Rachel; Malone, George; Mayall, Christopher

    2013-10-01

    To investigate the immediate effect on restricted active ankle joint dorsiflexion range of motion (ROM), after a single intervention of myofascial trigger point (MTrP) therapy on latent triceps surae MTrPs in recreational runners. A crossover randomised controlled trial. Twenty-two recreational runners (11 men and 11 women; mean age 24.57; ±8.7 years) with a restricted active ankle joint dorsiflexion and presence of latent MTrPs. Participants were screened for a restriction in active ankle dorsiflexion in either knee flexion (soleus) or knee extension (gastrocnemius) and the presence of latent MTrPs. Participants were randomly allocated a week apart to both the intervention (combined pressure release and 10 s passive stretch) and the control condition. A clinically meaningful (large effect size) and statistically significant increase in ankle ROM in the intervention compared to the control group was achieved, for the soleus (p = 0.004) and the gastrocnemius (p = 0.026). Apart from the statistical significance (p < 0.05), these results are clinically relevant due to the immediate increase in ankle dorsiflexion. These results must be viewed in caution due to the carry-over effect in the RCT crossover design and the combined MTrP therapy approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Improved Lipid Profile Associated with Daily Consumption of Tri-Sura-Phon in Healthy Overweight Volunteers: An Open-Label, Randomized Controlled Trial.

    Science.gov (United States)

    Kuamsub, Sirigoon; Singthong, Pariyaphat; Chanthasri, Wipawee; Chobngam, Nicharee; Sangkaew, Warissara; Hemdecho, Sasithorn; Kaewmanee, Thammarat; Chusri, Sasitorn

    2017-01-01

    Tri-Sura-Phon (TSP), a traditional Thai polyherbal formula renowned for its rejuvenating properties, is commonly used as a blood tonic. It comprises Cinnamomum bejolghota , Cinnamomum parthenoxylon , and Aquilaria crassna . The aim of this study is to evaluate the beneficial properties of TSP tea consumption on blood glucose regulation and serum lipid profiles of healthy overweight volunteers. This open-label, randomized controlled trial was conducted in 70 healthy overweight adults. Two groups of 35 subjects took a TSP infusion or a placebo (cornstarch) twice daily for 8 weeks. The blood glucose regulation, serum lipid profiles, BMI, and liver function tests of the subjects were determined at the baseline, 4th week, and endpoint (8th week). Significant decreases in the average fasting levels of total cholesterol ( p = 0.013), triglyceride ( p = 0.001), and low-density lipoprotein (LDL, p = 0.017) were observed in the TSP group at the 8th week compared to those at the baseline. The average HDL level in the TSP group at the beginning of the study was 65.2 mg/dL, and it increased significantly ( p = 0.005) to 72.4 mg/dL after 8 weeks of TSP intake. This study showed that the intake of TSP tea as an antioxidant-rich beverage might be safe and improve lipid profiles in overweight adults.

  18. Alterations in Leg Extensor Muscle-Tendon Unit Biomechanical Properties With Ageing and Mechanical Loading

    Directory of Open Access Journals (Sweden)

    Christopher McCrum

    2018-02-01

    Full Text Available Tendons transfer forces produced by muscle to the skeletal system and can therefore have a large influence on movement effectiveness and safety. Tendons are mechanosensitive, meaning that they adapt their material, morphological and hence their mechanical properties in response to mechanical loading. Therefore, unloading due to immobilization or inactivity could lead to changes in tendon mechanical properties. Additionally, ageing may influence tendon biomechanical properties directly, as a result of biological changes in the tendon, and indirectly, due to reduced muscle strength and physical activity. This review aimed to examine age-related differences in human leg extensor (triceps surae and quadriceps femoris muscle-tendon unit biomechanical properties. Additionally, this review aimed to assess if, and to what extent mechanical loading interventions could counteract these changes in older adults. There appear to be consistent reductions in human triceps surae and quadriceps femoris muscle strength, accompanied by similar reductions in tendon stiffness and elastic modulus with ageing, whereas the effect on tendon cross sectional area is unclear. Therefore, the observed age-related changes in tendon stiffness are predominantly due to changes in tendon material rather than size with age. However, human tendons appear to retain their mechanosensitivity with age, as intervention studies report alterations in tendon biomechanical properties in older adults of similar magnitudes to younger adults over 12–14 weeks of training. Interventions should implement tendon strains corresponding to high mechanical loads (i.e., 80–90% MVC with repetitive loading for up to 3–4 months to successfully counteract age-related changes in leg extensor muscle-tendon unit biomechanical properties.

  19. Diversity & Community: Maintaining Allegiances.

    Science.gov (United States)

    Pena, Devon G.

    1990-01-01

    The quest for diversity must overcome the resistance of traditional White, male faculty to redefining the mission and curriculum of the liberal arts college. Change will be difficult, but it must occur if liberal arts colleges are to survive and maintain a central and relevant place in multicultural America. (MSE)

  20. Maintaining dignity in vulnerability

    DEFF Research Database (Denmark)

    Høy, Bente

    2016-01-01

    Background. Older people, living in nursing homes, are exposed to diverse situations, which may be associated with loss of dignity. To help them maintain their dignity, it is important to explore, how dignity is preserved in such context. Views of dignity and factors influencing dignity have been...... studied from both the residents´ and the care pro-viders´ perspective. However, most of these studies pertain to experiences in the dying or the illness context. Knowledge is scarce about how older people experience their dig-nity within their everyday lives in nursing homes. Aim To illuminate the meaning...... of maintaining dignity from the perspective of older people living in nursing homes Method. This qualitative study is based on individual interviews. Twenty-eight nursing home residents were included from six nursing homes in Scandinavia. A phenomenolog-ical-hermeneutic approach, inspired by Ricoeur was used...

  1. Constructability and maintainability

    International Nuclear Information System (INIS)

    Hart, R.S.

    1985-01-01

    A set of principles for minimizing the construction schedule was established at the outset of the CANDU 300 programme. Consideration of these principles and other factors led to the development of the unique CANDU 300 station layout. The paper discusses the CANDU 300 station layout and construction methods. In summary, the station layout provides 360 deg. construction access to all buildings, separation of nuclear and non-nuclear systems, precise and minimal physical interfaces between buildings, accommodation of many contractors and construction activities without interference, and maximum flexibility in terms of constructional, financial and supply arrangements. The CANDU 300 further employs modularization, shop fabrication and advanced instrumentation (multiplexers, remote processors, data highways) to minimize construction time. Many of the CANDU 300 features that enhance constructability also contribute to maintainability. These include the 360 deg. access to all principal buildings, the uncluttered and spacious building layouts, the simplification of systems and the high level of modularization. The CANDU 300 has also been designed to facilitate the replacement of all key components, thereby offering an essentially unlimited station life. A prime example is a reduction in the fuel channel inlet end-fitting diameter such that the fuel channels can be shop assembled and easily replaced after the initial 40 years of operation, without an extended unit outage. Maintainability within the reactor building has been given particular attention in the CANDU 300 design; key features of other CANDU reactors (the ability to replace a heat transport system pump motor at power, for example) have been incorporated, while accessibility and maintainability of all systems and components have been enhanced. These and other aspects of maintainability are discussed. (author)

  2. Plantarflexor muscle function in healthy and chronic Achilles tendon pain subjects evaluated by the use of EMG and PET imaging

    DEFF Research Database (Denmark)

    Masood, Tahir; Kalliokoski, Kari; Bojsen-Møller, Jens

    2014-01-01

    BACKGROUND: Achilles tendon pathologies may alter the coordinative strategies of synergistic calf muscles. We hypothesized that both surface electromyography and positron emission tomography would reveal differences between symptomatic and asymptomatic legs in Achilles tendinopathy patients...... and between healthy controls. METHODS: Eleven subjects with unilateral chronic Achilles tendon pain (28 years) and eleven matched controls (28 years) were studied for triceps surae and flexor hallucis longus muscle activity in response to repetitive isometric plantarflexion tasks performed at 30% of maximal...... the electromyography showed greater relative amplitude in the symptomatic leg, the results based on muscle glucose uptake suggested relatively similar behavior of both legs in the patient group. Higher glucose uptake in the symptomatic Achilles tendon suggests a higher metabolic demand....

  3. Engineered Muscle Actuators: Cells and Tissues

    National Research Council Canada - National Science Library

    Dennis, Robert G; Herr, Hugh; Parker, Kevin K; Larkin, Lisa; Arruda, Ellen; Baar, Keith

    2007-01-01

    .... Our primary objectives were to engineer living skeletal muscle actuators in culture using integrated bioreactors to guide tissue development and to maintain tissue contractility, to achieve 50...

  4. Maintainability design guide

    International Nuclear Information System (INIS)

    Pack, R.W.

    1985-01-01

    The Human Factors Design Guide for Maintainability provides guidance for systematically incorporating good human factors techniques into the design of power plants. The guide describes a means of developing a comprehensive program plan to ensure compliance with the human factors approaches specified by the utility. The guide also provides specific recommendations for design practices, with examples, bases, and references. The recommendations are formatted for easy use by nuclear power plant design teams and by utility personnel involved in specification and design review. The guide was developed under EPRI research project RP2166-4 and is currently being published

  5. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  6. Torque prediction using stimulus evoked EMG and its identification for different muscle fatigue states in SCI subjects.

    Science.gov (United States)

    Zhang, Qin; Hayashibe, Mitsuhiro; Papaiordanidou, Maria; Fraisse, Philippe; Fattal, Charles; Guiraud, David

    2010-01-01

    Muscle fatigue is an unavoidable problem when electrical stimulation is applied to paralyzed muscles. The detection and compensation of muscle fatigue is essential to avoid movement failure and achieve desired trajectory. This work aims to predict ankle plantar-flexion torque using stimulus evoked EMG (eEMG) during different muscle fatigue states. Five spinal cord injured patients were recruited for this study. An intermittent fatigue protocol was delivered to triceps surae muscle to induce muscle fatigue. A hammerstein model was used to capture the muscle contraction dynamics to represent eEMG-torque relationship. The prediction of ankle torque was based on measured eEMG and past measured or past predicted torque. The latter approach makes it possible to use eEMG as a synthetic force sensor when force measurement is not available in daily use. Some previous researches suggested to use eEMG information directly to detect and predict muscle force during fatigue assuming a fixed relationship between eEMG and generated force. However, we found that the prediction became less precise with the increase of muscle fatigue when fixed parameter model was used. Therefore, we carried out the torque prediction with an adaptive parameters using the latest measurement. The prediction of adapted model was improved with 16.7%-50.8% comparing to the fixed model.

  7. Maintaining Relationship Based Procurement

    Directory of Open Access Journals (Sweden)

    Peter Davis

    2012-11-01

    Full Text Available Alliance and relationship projects are increasingin number and represent a large pool of work. Tobe successful relationship style contracts dependon soft-dollar factors, particularly the participants'ability to work together within an agreedframework, generally they are not based on lowbid tendering. Participants should be prepared todo business in an open environment based ontrust and mutually agreed governance. Theresearch evaluates relationship maintenance inthe implementation phase of constructionalliances - a particular derivative of relationshipstyle contracts. To determine the factors thatcontribute to relationship maintenance forty-nineexperienced Australian alliance projectmanagers were interviewed. The main findingswere; the development of relationships early inthe project form building blocks of success fromwhich relationships are maintained and projectvalue added; quality facilitation plays animportant part in relationship maintenance and ahybrid organisation created as a result of alliancedevelopment overcomes destructiveorganisational boundaries. Relationshipmaintenance is integral to alliance project controland failure to formalise it and pay attention toprocess and past outcomes will undermine analliance project's potential for success.

  8. Ischemia causes muscle fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P muscle oxygenation (r = 0.78, P muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  9. Maintaining plant safety margins

    International Nuclear Information System (INIS)

    Bergeron, P.A.

    1989-01-01

    The Final Safety Analysis Report Forms the basis of demonstrating that the plant can operate safely and meet all applicable acceptance criteria. In order to assure that this continues through each operating cycle, the safety analysis is reexamined for each reload core. Operating limits are set for each reload core to assure that safety limits and applicable acceptance criteria are not exceeded for postulated events within the design basis. These operating limits form the basis for plant operation, providing barriers on various measurable parameters. The barriers are refereed to as limiting conditions for operation (LCO). The operating limits, being influenced by many factors, can change significantly from cycle to cycle. In order to be successful in demonstrating safe operation for each reload core (with adequate operating margin), it is necessary to continue to focus on ways to maintain/improve existing safety margins. Existing safety margins are a function of the plant type [boiling water reactor/pressurized water reactor (BWR/PWR)], nuclear system supply (NSSS) vendor, operating license date, core design features, plant design features, licensing history, and analytical methods used in the safety analysis. This paper summarizes the experience at Yankee Atomic Electric Company (YAEC) in its efforts to provide adequate operating margin for the plants that it supports

  10. Maintaining Web Cache Coherency

    Directory of Open Access Journals (Sweden)

    2000-01-01

    Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.

  11. ADAS Update and Maintainability

    Science.gov (United States)

    Watson, Leela R.

    2010-01-01

    Since 2000, both the National Weather Service Melbourne (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LOIS) as part of their forecast and warning operations. The original LOIS was developed by the Applied Meteorology Unit (AMU) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (AD AS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features. Over the years, the LDIS has become problematic to maintain since it depends on AMU-developed shell scripts that were written for an earlier version of the ADAS software. The goals of this task were to update the NWS MLB/SMG LDIS with the latest version of ADAS, incorporate new sources of observational data, and upgrade and modify the AMU-developed shell scripts written to govern the system. In addition, the previously developed ADAS graphical user interface (GUI) was updated. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting (WRF) model used by both groups.

  12. Muscle pain

    African Journals Online (AJOL)

    Key Summary Points. • Muscle pain, known as myalgia, can be in one targeted area or across many muscles, occurring with overexertion or overuse of these muscles. • Pain can be classified as acute or chronic pain and further categorized as nociceptive or neuropathic. • Causes of muscle pain include stress, physical ...

  13. Rat diaphragm mitochondria have lower intrinsic respiratory rates than mitochondria in limb muscles.

    Science.gov (United States)

    Garcia-Cazarin, Mary L; Gamboa, Jorge L; Andrade, Francisco H

    2011-06-01

    The mitochondrial content of skeletal muscles is proportional to activity level, with the assumption that intrinsic mitochondrial function is the same in all muscles. This may not hold true for all muscles. For example, the diaphragm is a constantly active muscle; it is possible that its mitochondria are intrinsically different compared with other muscles. This study tested the hypothesis that mitochondrial respiration rates are greater in the diaphragm compared with triceps surae (TS, a limb muscle). We isolated mitochondria from diaphragm and TS of adult male Sprague Dawley rats. Mitochondrial respiration was measured by polarography. The contents of respiratory complexes, uncoupling proteins 1, 2, and 3 (UCP1, UCP2, and UCP3), and voltage-dependent anion channel 1 (VDAC1) were determined by immunoblotting. Complex IV activity was measured by spectrophotometry. Mitochondrial respiration states 3 (substrate and ADP driven) and 5 (uncoupled) were 27 ± 8% and 24 ± 10%, respectively, lower in diaphragm than in TS (P respire at lower rates, despite a higher content of respiratory complexes. The results invalidate our initial hypothesis and indicate that mitochondrial content is not the only determinant of aerobic capacity in the diaphragm. We propose that UCP1 and VDAC1 play a role in regulating diaphragm aerobic capacity.

  14. Functional effects of botulinum toxin type-A treatment and subsequent stretching of spastic calf muscles: a study in patients with hereditary spastic paraplegia.

    Science.gov (United States)

    de Niet, Mark; de Bot, Susanne T; van de Warrenburg, Bart P C; Weerdesteyn, Vivian; Geurts, Alexander C

    2015-02-01

    Although calf muscle spasticity is often treated with botulinum toxin type-A, the effects on balance and gait are ambiguous. Hereditary spastic paraplegia is characterized by progressive spasticity and relatively mild muscle weakness of the lower limbs. It is therefore a good model to evaluate the functional effects of botulinum toxin type-A. Explorative pre-post intervention study. Fifteen subjects with pure hereditary spastic paraplegia. Patients with symptomatic calf muscle spasticity and preserved calf muscle strength received botulinum toxin type-A injections in each triceps surae (Dysport®, 500-750 MU) followed by daily stretching exercises (18 weeks). Before intervention (T0), and 4 (T1) and 18 (T2) weeks thereafter, gait, balance, motor selectivity, calf muscle tone and strength were tested. Mean comfortable gait velocity increased from T0 (0.90 m/s (standard deviation (SD) 0.18)) to T1 (0.98 m/s (SD 0.20)), which effect persisted at T2, whereas balance and other functional measures remained unchanged. Calf muscle tone declined from T0 (median 2; range 1-2) to T1 (median 0; range 0-1), which effect partially persisted at T2 (median 1; range 0-2). Calf muscle strength did not change. Botulinum toxin type-A treatment and subsequent muscle stretching of the calves improved comfortable gait velocity and reduced muscle tone in patients with hereditary spastic paraplegia, while preserving muscle strength. Balance remained unaffected.

  15. Respiratory Muscle Plasticity

    Science.gov (United States)

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  16. Assessing optimal software architecture maintainability

    NARCIS (Netherlands)

    Bosch, Jan; Bengtsson, P.O.; Smedinga, Rein; Sousa, P; Ebert, J

    2000-01-01

    Over the last decade, several authors have studied the maintainability of software architectures. In particular, the assessment of maintainability has received attention. However, even when one has a quantitative assessment of the maintainability of a software architecture, one still does not have

  17. Effects of repeated ankle stretching on calf muscle-tendon and ankle biomechanical properties in stroke survivors.

    Science.gov (United States)

    Gao, Fan; Ren, Yupeng; Roth, Elliot J; Harvey, Richard; Zhang, Li-Qun

    2011-06-01

    The objective of this study was to investigate changes in active and passive biomechanical properties of the calf muscle-tendon unit induced by controlled ankle stretching in stroke survivors. Ten stroke survivors with ankle spasticity/contracture and ten healthy control subjects received intervention of 60-min ankle stretching. Joint biomechanical properties including resistance torque, stiffness and index of hysteresis were evaluated pre- and post-intervention. Achilles tendon length was measured using ultrasonography. The force output of the triceps surae muscles was characterized via the torque-angle relationship, by stimulating the calf muscles at a controlled intensity across different ankle positions. Compared to healthy controls, the ankle position corresponding to the peak torque of the stroke survivors was shifted towards plantar flexion (Pcalf muscles in stroke survivors under matched stimulations (Pmuscle-tendon level, repeated stretching improved calf muscle force output, which might be associated with decreased muscle fascicle stiffness, increased fascicle length and shortening of the Achilles tendon. The study provided evidence of improvement in muscle tendon properties through stretching intervention. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. {sup 18}F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    Energy Technology Data Exchange (ETDEWEB)

    Skovgaard, Dorthe [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen, NV (Denmark); Kjaer, Michael [Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen, NV (Denmark); El-Ali, Henrik [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Kjaer, Andreas [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Rigshospitalet, Department Clinical Physiology, Nuclear Medicine and PET, Center of Diagnostic Investigations, Copenhagen (Denmark)

    2009-05-15

    To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause unilateral isometric contractions of the calf muscle. {sup 18}F-Fluorodeoxyglucose was administered and a PET/CT scan of the hindlimbs was performed. SUVs were calculated in both Achilles tendons and the triceps surae muscles. To exclude a spill-over effect the tendons and muscles from an ex vivo group of eight rats were cut out and scanned separately (distance{>=}1 cm). Muscle contractions increased glucose uptake approximately sevenfold in muscles (p<0.001) and 36% in tendons (p<0.01). The ex vivo group confirmed the increase in glucose uptake in intact animals. GLUT1 and GLUT4 were expressed in both skeletal muscle and tendon, but no changes in mRNA levels could be detected. PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1 and GLUT4. (orig.)

  19. Reviewing the upper Pleistocene human footprints from the 'Sala dei Misteri' in the Grotta della Bàsura (Toirano, northern Italy) cave: An integrated morphometric and morpho-classificatory approach

    Science.gov (United States)

    Paolo Citton; Romano, Marco; Salvador, Isabella; Avanzini, Marco

    2017-08-01

    About thirty human footprints made approximately 12,000 years B.P. inside the 'Sala dei Misteri' Cave of Básura near Toirano, Liguria, northern Italy, were studied by standard ichnological analysis. Eleven of the best-preserved tracks were examined further using morpho-classificatory and morphometric approaches, in order to estimate the minimum number of trackmakers; biometric measurements were also used to tentatively determine their physical characteristics (e.g., height and age). Results indicate at least three different producers, two youths and the third of tender age. Analysis of the data demonstrate the power of 3D, of landmark-based morphometrics, and the utility of methods of forensic anthropology in the determination of human footprints. The study of the number of trackmakers using the principal component analysis (PCA) on 'multi-trampling' surfaces could represent a model in the ichnological study of cave sites.

  20. Assessment of diffusion tensor imaging indices in calf muscles following postural change from standing to supine position.

    Science.gov (United States)

    Elzibak, Alyaa H; Noseworthy, Michael D

    2014-10-01

    To investigate whether postural change from erect to recumbent position affects calf muscle water diffusivity. Ten healthy adults (27.2 ± 4.9 years, 3 females) were imaged at baseline (following assumption of recumbent position), and after 34 min (session 2) and 64 min (session 3) of laying supine within a 3T MRI scanner. Diffusion tensor imaging (DTI) eigenvalues, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were evaluated in five calf muscles (anterior and posterior tibialis and triceps surae) during each of the three imaging sessions. Significant decreases were observed in all of the eigenvalues and ADC in each of the muscles with postural change. These reductions ranged from 3.2 to 6.7% and 3.4 to 7.5% for the various DTI metrics, following 34 and 64 min of supine rest, respectively (P muscle. FA did not change significantly with postural manipulation in any muscle compartment. Diffusion tensor imaging indices were altered with postural change. As differences were not apparent between the latter two imaging sessions, we suggest that a short supine resting period (~34 min) is sufficient for muscle diffusivity to stabilize prior to quantitative MR imaging in healthy young adults.

  1. AECL's reliability and maintainability program

    International Nuclear Information System (INIS)

    Wolfe, W.A.; Nieuwhof, G.W.E.

    1976-05-01

    AECL's reliability and maintainability program for nuclear generating stations is described. How the various resources of the company are organized to design and construct stations that operate reliably and safely is shown. Reliability and maintainability includes not only special mathematically oriented techniques, but also the technical skills and organizational abilities of the company. (author)

  2. Ingestion of transient receptor potential channel agonists attenuates exercise-induced muscle cramps.

    Science.gov (United States)

    Craighead, Daniel H; Shank, Sean W; Gottschall, Jinger S; Passe, Dennis H; Murray, Bob; Alexander, Lacy M; Kenney, W Larry

    2017-09-01

    Exercise-associated muscle cramping (EAMC) is a poorly understood problem that is neuromuscular in origin. Ingestion of transient receptor potential (TRP) channel agonists has been efficacious in attenuating electrically induced muscle cramps. This study examines the effect of TRP agonist ingestion on voluntarily induced EAMC and motor function. Study 1: Thirty-nine participants completed 2 trials after ingesting TRP agonist-containing active treatment (A), or vehicle (V) control. Cramping in the triceps surae muscle was induced via voluntary isometric contraction. Study 2: After ingesting A or V, 31 participants performed kinematic and psychomotor tests of manual dexterity. A increased precramp contraction duration (A, 36.9 ± 4.1 s; V, 27.8 ± 3.1 s), decreased cramp EMG area under the curve (A, 37.3 ± 7.7 %EMG max ·s; V, 77.2 ± 17.7 %EMG max ·s), increased contraction force to produce the cramp (A, 13.8 ± 1.8 kg; V, 9.9 ± 1.6 kg), and decreased postcramp soreness (A, 4.1 ± 0.3 arbitrary units (a.u.); V, 4.7 ± 0.3 a.u.). Kinematic and psychomotor tests were not affected. TRP agonist ingestion attenuated EAMC characteristics without affecting motor function. Muscle Nerve 56: 379-385, 2017. © 2017 Wiley Periodicals, Inc.

  3. Developmental regulation of voltage-sensitive sodium channels in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.

    1985-01-01

    The developmental regulation of the voltage-sensitive Na + channel in rat skeletal muscle was studied in vivo and in vitro. In triceps surae muscle developing in vivo the development of TTX-sensitive Na + channel occurred primarily during the first three postnatal weeks as determined by the specific binding of [ 3 H]saxitoxin. This development proceeded in two separate phases. The first phase occurs independently of continuing motor neuron innervation and accounts for 60% of the adult density of TTX-sensitive Na + channels. The second phase, which begins about day 11, requires innervation. Muscle cells in primary culture were found to have both TTX-sensitive and insensitive Na + channels. The development of the TTX-sensitive channel, in vitro, paralleled the initial innervation-independent phase of development observed in vivo. The density of TTX-sensitive Na + channels in cultured muscle cells was regulated by electrical activity and cytosolic Ca ++ levels. Pharmacological blockade of the spontaneous electrical activity present in these cells lead to a nearly 2-fold increase in the surface density of TTX-sensitive channels. The turnover time of the TTX-sensitive Na + channel was measured by blocking the incorporation of newly synthesized channels with tunicamycin, an inhibitor of N-linked protein glycosylation. The regulation of channel density by electrical activity, cytosolic Ca ++ levels, and agents affecting cyclic neucleotide levels had no effect on the turnover time of the TTX-sensitive Na + channel, indicating that these regulatory agents instead affect the synthesis of the channel

  4. Role of microRNAs in skeletal muscle hypertrophy

    OpenAIRE

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2014-01-01

    Skeletal muscle comprises approximately 40% of body weight, and is important for locomotion, as well as for metabolic homeostasis. Adult skeletal muscle mass is maintained by a fine balance between muscle protein synthesis and degradation. In response to cytokines, nutrients, and mechanical stimuli, skeletal muscle mass is increased (hypertrophy), whereas skeletal muscle mass is decreased (atrophy) in a variety of conditions, including cancer cachexia, starvation, immobilization, aging, and n...

  5. Effects of long-term immobilization and recovery on human triceps surae and collagen turnover in the Achilles tendon in patients with healing ankle fracture

    DEFF Research Database (Denmark)

    Christensen, Britt; Dyrberg, Eva; Aagaard, Per

    2008-01-01

    The aim of the present study was to analyze how human tendon connective tissue responds to an approximately 7-wk period of immobilization and a remobilization period of a similar length, in patients with unilateral ankle fracture, which is currently unknown. Calf muscle cross-sectional area (CSA)...

  6. Muscle biopsy.

    Science.gov (United States)

    Meola, G; Bugiardini, E; Cardani, R

    2012-04-01

    Muscle biopsy is required to provide a definitive diagnosis in many neuromuscular disorders. It can be performed through an open or needle technique under local anesthesia. The major limitations of the needle biopsy technique are the sample size, which is smaller than that obtained with open biopsy, and the impossibility of direct visualization of the sampling site. However, needle biopsy is a less invasive procedure than open biopsy and is particularly indicated for diagnosis of neuromuscular disease in infancy and childhood. The biopsied muscle should be one affected by the disease but not be too weak or too atrophic. Usually, in case of proximal muscle involvement, the quadriceps and the biceps are biopsied, while under suspicion of mitochondrial disorder, the deltoid is preferred. The samples must be immediately frozen or fixed after excision to prevent loss of enzymatic reactivity, DNA depletion or RNA degradation. A battery of stainings is performed on muscle sections from every frozen muscle biopsy arriving in the pathology laboratory. Histological, histochemical, and histoenzymatic stainings are performed to evaluate fiber atrophy, morphological, and structural changes and metabolic disorders. Moreover, immunohistochemistry and Western blotting analysis may be used for expression analysis of muscle proteins to obtain a specific diagnosis. There are myopathies that do not need muscle biopsy since a genetic test performed on a blood sample is enough for definitive diagnosis. Muscle biopsy is a useful technique which can make an enormous contribution in the field of neuromuscular disorders but should be considered and interpreted together with the patient's family and clinical history.

  7. [Autocontrol of muscle relaxation with vecuronium].

    Science.gov (United States)

    Sibilla, C; Zatelli, R; Marchi, M; Zago, M

    1990-01-01

    The optimal conditions for maintaining desired levels of muscle relaxation with vecuronium are obtained by means of the continuous infusion (I.V.) technique. A frequent correction of the infusion flow is required, since it is impossible to predict the exact amount for the muscle relaxant in single case. In order to overcome such limits the authors propose a very feasible infusion system for the self-control of muscle relaxation; furthermore they positively consider its possible daily clinical application.

  8. Study on the findings of muscle CT in patients with Fukuyama type congenital muscular dystrophy (FCMD)

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Sawako; Osawa, Makiko; Okada, Noriko and others

    1988-11-01

    This study was carried out to investigate the process of muscle involvement according to age in patients with FCMD (Brain Dev 1981 ; 3:1 - 29) by CT scans. Fourteen patients with FCMD I (age: 5 months-12 years) and two patients with FCMD III or IV (age: 3, 4 years) were studied. The midcalf, midthigh, L3 and shoulder girdle level were the sites chosen. Two types of change were found in FCMD I. One of them was the attenuation of the density in muscle and the other one was decreased area of muscle as a result of low density which started from periphery of the muscle. The latter was found in m. psoas major after age 9, whilst the former was found in other muscles to some degree. The severity of the changes was related to age. In the case which was examined twice, the changes extended even better motor function had been attained. The changes in midcalf preceded those in midthigh, L3, shoulder girdle. The attenuation of density was found early and severely in m. triceps surae, m. adductor magnus, paravertebral muscles and m. subscapularis, whilst those in m. tibialis anterior and posterior, m. gracilis, m. sartorius, m. quadratus lumborum appeared later and relatively mild. The relationship between the process of extension of low density in muscle and joint contractures were also discussed. The changes in CT scan in FCMD III or IV were milder than those of FCMD I and there was no tendency that the change in midcalf preceded those of other scanned level.

  9. Real-time muscle state estimation from EMG signals during isometric contractions using Kalman filters.

    Science.gov (United States)

    Menegaldo, Luciano L

    2017-12-01

    State-space control of myoelectric devices and real-time visualization of muscle forces in virtual rehabilitation require measuring or estimating muscle dynamic states: neuromuscular activation, tendon force and muscle length. This paper investigates whether regular (KF) and extended Kalman filters (eKF), derived directly from Hill-type muscle mechanics equations, can be used as real-time muscle state estimators for isometric contractions using raw electromyography signals (EMG) as the only available measurement. The estimators' amplitude error, computational cost, filtering lags and smoothness are compared with usual EMG-driven analysis, performed offline, by integrating the nonlinear Hill-type muscle model differential equations (offline simulations-OS). EMG activity of the three triceps surae components (soleus, gastrocnemius medialis and gastrocnemius lateralis), in three torque levels, was collected for ten subjects. The actualization interval (AI) between two updates of the KF and eKF was also varied. The results show that computational costs are significantly reduced (70x for KF and 17[Formula: see text] for eKF). The filtering lags presented sharp linear relationships with the AI (0-300 ms), depending on the state and activation level. Under maximum excitation, amplitude errors varied in the range 10-24% for activation, 5-8% for tendon force and 1.4-1.8% for muscle length, reducing linearly with the excitation level. Smoothness, measured by the ratio between the average standard variations of KF/eKF and OS estimations, was greatly reduced for activation but converged exponentially to 1 for the other states by increasing AI. Compared to regular KF, extended KF does not seem to improve estimation accuracy significantly. Depending on the particular application requirements, the most appropriate KF actualization interval can be selected.

  10. Maintaining oral health after stroke.

    Science.gov (United States)

    Dickinson, Hazel

    Oral care is essential to maintain oral health and prevent complications such as tooth loss, gingivitis and periodontitis. Poor oral hygiene in dependent, hospitalised patients could lead to serious complications such as chest infection, pneumonia, poor nutritional intake and increased length of hospital stay. Patients who have had a stroke may have physical and cognitive problems that make them dependent on others for their personal care, including oral care. It is essential that nurses and carers understand why maintaining oral hygiene is important following stroke and the consequences of poor oral care.

  11. DYNAMICALLY MAINTAINING THE VISIBILITY GRAPH

    NARCIS (Netherlands)

    VEGTER, G

    1991-01-01

    An algorithm is presented to maintain the visibility graph of a set of N line segments in the plane in O(log2 N + K log N) time, where K is the total number of arcs of the visibility graph that are destroyed or created upon insertion or deletion of a line segment. The line segments should be

  12. Developing and maintaining nuclear competencies

    International Nuclear Information System (INIS)

    Gobert, C.

    2004-01-01

    The paper discusses the following aspects on the nuclear knowledge management: assimilation of knowledge management, recognition of the nuclear specificity, attracting young talents. Another feature which, possibly, differentiates nuclear from other high-tech industries is that time constraints in some nuclear development may very well exceed the duration of a generation of professionals. That means, not only maintaining scientific and technical knowledge, which, as a minimum, leads to maintain: a rigorous supervision of human resources in quality and quantity; anticipatory planning of human resources, with a special focus on succession planning concerning expertise positions; a steady and continuous effort in training and retraining programs. Maintaining the safety culture is also one of the major managerial duties. Taking full account of the nuclear specificity in knowledge maintenance and development in the AREVA group, requests a multifunctional approach, which combines efforts of Research and Innovation, and Human Resources departments, plus the group Nuclear inspectorate. It is acknowledged that the industry, basically, would readily rely on the capabilities of the academic world and research centers in ensuring that training and education in nuclear science and technologies are attuned to the evolving needs of the industry, in maintaining the proper educational programs and in fostering fruitful cooperations between them

  13. Maintaining standing balance by handrail grasping.

    Science.gov (United States)

    Sarraf, Thiago A; Marigold, Daniel S; Robinovitch, Stephen N

    2014-01-01

    Maintaining balance while standing on a moving bus or subway is challenging, and falls among passengers are a significant source of morbidity. Standing passengers often rely on handrail grasping to resist perturbations to balance. We conducted experiments that simulated vehicle starts, to examine how handrail location (overhead or shoulder-height), perturbation direction (forward, backward, left or right), and perturbation magnitude (1 or 2m/s(2)) affected the biomechanical effort (peak centre-of-pressure (COP) excursion and hand force) and muscle activations (onset and integrated EMG activity) involved in balance maintenance. COP excursions, hand forces and muscle activations were altered in a functional manner based on task constraints and perturbation characteristics. Handrail position affected normalized values of peak COP and hand force during forward and backward, but not sideways perturbations. During backward perturbations, COP excursion was greater when grasping overhead than shoulder-height. During forward perturbations, hand force was greater when grasping shoulder-height than overhead. Biceps activations were earlier during shoulder-height than overhead grasping, while tibialis anterior activity was higher during overhead than shoulder-height grasping. Our results indicate that, when facing forward or backward to the direction of vehicle motion, overhead grasping minimizes hand force, while shoulder-height grasping minimizes COP excursion. In contrast, grasping with a sideways stance eliminates the effect of handrail location, and was associated with equal or lower biomechanical effort. This suggests that, at least for vehicle starts, the most reasonable strategy may be to stand sideways to the direction of the vehicle movement, and grasp either at shoulder-height or overhead. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Getting Muscles

    Science.gov (United States)

    ... re thinking about aren't possible for kids. Superheroes, of course, aren't real, and professional athletes ... can make you stronger. Why? Because you're using your muscles when you do it. Eat Strong ...

  15. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  16. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    Skeletal muscle is well known to exhibit a high degree of plasticity depending on environmental changes, such as various oxygen concentrations. Studies of the oxygen-sensitive subunit alpha of hypoxia-inducible factor-1 (HIF-1) are difficult owing to the large variety of functionally diverse muscle......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...... here, support a key role for HIF-1alpha for maintaining muscle homeostasis in non-hypoxic conditions....

  17. Building Muscles, Keeping Muscles: Protein Turnover During Space Flight

    Science.gov (United States)

    Ferrando, Arny; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    As we age we lose muscle mass and strength. The problem is a matter of use it or lose it and more - a fact to which any active senior can attest. An imbalance in the natural cycle of protein turnover may be a contributing factor to decreased muscle mass. But the answer is not so simple, since aging is associated with changes in hormones, activity levels, nutrition, and often, disease. The human body constantly uses amino acids to build muscle protein, which then breaks down and must be replaced. When protein turnover gets out of balance, so that more protein breaks down than the body can replace, the result is muscle loss. This is not just the bane of aging, however. Severely burned people may have difficulty building new muscle long after the burned skin has been repaired. Answers to why we lose muscle mass and strength - and how doctors can fix it - may come from space. Astronauts usually eat a well-balanced diet and maintain an exercise routine to stay in top health. During long-duration flight, they exercise regularly to reduce the muscle loss that results from being in a near-weightless environment. Despite these precautions, astronauts lose muscle mass and strength during most missions. They quickly recover after returning to Earth - this is a temporary condition in an otherwise healthy population. Members of the STS-107 crew are participating in a study of the effects of space flight, hormone levels, and stress on protein turnover. When we are under stress, the body responds with a change in hormone levels. Researchers hypothesize that this stress-induced change in hormones along with the near-weightlessness might result in the body synthesizing less muscle protein, causing muscles to lose their strength and size. Astronauts, who must perform numerous duties in a confined and unusual environment, experience some stress during their flight, making them excellent candidates for testing the researchers' hypothesis.

  18. Factors related to skeletal muscle mass in the frail elderly.

    Science.gov (United States)

    Sagawa, Keiichiro; Kikutani, Takeshi; Tamura, Fumiyo; Yoshida, Mitsuyoshi

    2017-01-01

    It is important for the elderly to maintain their skeletal muscle mass, which in turn helps to maintain physical functions. This study aimed to clarify factors related to skeletal muscle mass maintenance. Home-bound elderly (94 men and 216 women), at least 75 years of age, attending a day-care center in Tokyo, were enrolled in this study. Dentists specializing in dysphagia rehabilitation evaluated skeletal muscle mass, occlusal status and swallowing function. Physical function, cognitive function and nutritional status were also evaluated by interviewing caregivers. Correlations of skeletal muscle mass with various factors were determined in each gender group. Multiple regression analysis revealed that skeletal muscle mass was significantly related to nutritional status in both men and women. In men, there was a significant difference in skeletal muscle mass between those with and without occlusion of the natural teeth. Our results suggest that dental treatments and dentures would be useful for maintaining skeletal muscle mass, especially in men.

  19. Influence of different degrees of bilateral emulated contractures at the triceps surae on gait kinematics: The difference between gastrocnemius and soleus.

    Science.gov (United States)

    Attias, M; Bonnefoy-Mazure, A; De Coulon, G; Cheze, L; Armand, S

    2017-10-01

    Ankle plantarflexion contracture results from a permanent shortening of the muscle-tendon complex. It often leads to gait alterations. The objective of this study was to compare the kinematic adaptations of different degrees of contractures and between isolated bilateral gastrocnemius and soleus emulated contractures using an exoskeleton. Eight combinations of contractures were emulated bilaterally on 10 asymptomatic participants using an exoskeleton that was able to emulate different degrees of contracture of gastrocnemius (biarticular muscle) and soleus (monoarticular muscle), corresponding at 0°, 10°, 20°, and 30° ankle plantarflexion contracture (knee-flexed and knee-extended). Range of motion was limited by ropes attached for soleus on heel and below the knee and for gastrocnemius on heel and above the knee. A gait analysis session was performed to evaluate the effect of these different emulated contractures on the Gait Profile Score, walking speed and gait kinematics. Gastrocnemius and soleus contractures influence gait kinematics, with an increase of the Gait Profile Score. Significant differences were found in the kinematics of the ankles, knees and hips. Contractures of soleus cause a more important decrease in the range of motion at the ankle than the same degree of gastrocnemius contractures. Gastrocnemius contractures cause greater knee flexion (during the stance phase) and hip flexion (during all the gait cycle) than the same level of soleus contractures. These results can support the interpretation of the Clinical Gait Analysis data by providing a better understanding of the effect of isolate contracture of soleus and gastrocnemius on gait kinematics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Disturbance maintains alternative biome states.

    Science.gov (United States)

    Dantas, Vinícius de L; Hirota, Marina; Oliveira, Rafael S; Pausas, Juli G

    2016-01-01

    Understanding the mechanisms controlling the distribution of biomes remains a challenge. Although tropical biome distribution has traditionally been explained by climate and soil, contrasting vegetation types often occur as mosaics with sharp boundaries under very similar environmental conditions. While evidence suggests that these biomes are alternative states, empirical broad-scale support to this hypothesis is still lacking. Using community-level field data and a novel resource-niche overlap approach, we show that, for a wide range of environmental conditions, fire feedbacks maintain savannas and forests as alternative biome states in both the Neotropics and the Afrotropics. In addition, wooded grasslands and savannas occurred as alternative grassy states in the Afrotropics, depending on the relative importance of fire and herbivory feedbacks. These results are consistent with landscape scale evidence and suggest that disturbance is a general factor driving and maintaining alternative biome states and vegetation mosaics in the tropics. © 2015 John Wiley & Sons Ltd/CNRS.

  1. Age-related differences in lower-limb muscle cross-sectional area and torque production in boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Mathur, Sunita; Lott, Donovan J; Senesac, Claudia; Germain, Sean A; Vohra, Ravneet S; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2010-07-01

    To examine the relationship between lower-extremity muscle cross-sectional area, muscle strength, specific torque, and age in ambulatory boys with Duchenne muscular dystrophy (DMD) compared with controls. Observational cross-sectional study. University research setting. Volunteer sample of boys with DMD (n=22) and healthy control boys (n=10), ages 5 through 14 years. Not applicable. Maximal muscle cross-sectional area (CSA(max)) assessed by magnetic resonance imaging of quadriceps, plantarflexors (PFs) and dorsiflexors (DFs), peak isometric torque from dynamometry, and timed functional tests. The average CSA(max) of the triceps surae muscle group was approximately 60% higher in boys with DMD compared with controls (39.1+/-13.6 cm(2) vs 24.5+/-9.3 cm(2); P=.002), while the tibialis anterior muscle showed age-appropriate increases in CSA(max). The increase in quadriceps CSA(max) was also distinctly different in boys with DMD compared with controls. Specific torque (ie, peak torque/CSA(max)) was impaired in all 3 muscles groups, with the knee extensor (KE) and PF muscles showing 4-fold, and the DF muscles 2-fold, higher values in controls compared with boys with DMD. Large age-related gains in specific torque were observed in all 3 muscle groups of control subjects, which were absent in ambulatory boys with DMD. Correlations were observed between performance on functional tasks and quadriceps and PF torque production (r=-.45 to -.57, Pmuscle cross-sectional area and specific torque production in lower-extremity muscles showed distinctly different patterns in the KE, PF, and DF muscles of boys with DMD compared with controls. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. NMG documentation, part 3: maintainer`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, F.N.; Dickinson, R.P. Jr.

    1996-07-01

    This is the third of a three-part report documenting NMG, the Numerical Mathematics Guide. Part I is aimed at the user of the systenL It contains an introduction, with an out- line of the complete report, and Chapter 1, User`s Point of View. Part II is aimed at the programmer and contains Chapter 2, How It Works. Part III is aimed at the maintainer of NMG and contains Chapter 3, Maintenance, and Chapter 4, Validation. Because its contents are so specialized, Part III will receive only limited distribution. Note that each chapter has its own page numbering and table of contents.

  3. Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy.

    Science.gov (United States)

    Barber, Lee; Barrett, Rod; Lichtwark, Glen

    2012-10-11

    Individuals with spastic cerebral palsy (CP) typically experience muscle weakness. The mechanisms responsible for muscle weakness in spastic CP are complex and may be influenced by the intrinsic mechanical properties of the muscle and tendon. The purpose of this study was to investigate the medial gastrocnemius (MG) muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic CP. Nine relatively high functioning young adults with spastic CP (GMFCS I, 17±2 years) and 10 typically developing individuals (18±2 years) participated in the study. Active MG torque-length and Achilles tendon properties were assessed under controlled conditions on a dynamometer. EMG was recorded from leg muscles and ultrasound was used to measure MG fascicle length and Achilles tendon length during maximal isometric contractions at five ankle angles throughout the available range of motion and during passive rotations imposed by the dynamometer. Compared to the typically developing group, the spastic CP group had 33% lower active ankle plantarflexion torque across the available range of ankle joint motion, partially explained by 37% smaller MG muscle and 4% greater antagonistic co-contraction. The Achilles tendon slack length was also 10% longer in the spastic CP group. This study confirms young adults with mild spastic CP have altered muscle-tendon mechanical properties. The adaptation of a longer Achilles tendon may facilitate a greater storage and recovery of elastic energy and partially compensate for decreased force and work production by the small muscles of the triceps surae during activities such as locomotion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Developing and maintaining instructor capabilities

    International Nuclear Information System (INIS)

    Flynn, W.P.; Smith, G.

    1985-01-01

    The New York Power Authority, after surveying available courses, decided to develop an in-house instructor training program. Following the principles of the Systems Approach to Training the course embodied the results of a job analysis resulting in a program containing instruction in Educational Philosophy, the Systems Approach to Training, Methods and Media, and Testing. The course content is covered through classroom instruction, on-the-job training, instructor evaluations, and assignments. Instructors completing the program continue to maintain skills with inservice training

  6. Hot-Pack and 1-MHz Ultrasound Treatments Have an Additive Effect on Muscle Temperature Increase.

    Science.gov (United States)

    Draper, D O; Harris, S T; Schulthies, S; Durrant, E; Knight, K L; Ricard, M

    1998-01-01

    Therapeutic ultrasound is an effective deep heating modality commonly applied alone or after cooling or heating of the treatment area. The purpose of this study was to examine the tissue temperature rise in the human triceps surae muscle group after ultrasound with prior heating via a silicate gel hot pack. This study was designed as a 2 x 2 x 3 factorial with repeated measures on two factors (depth and time). Independent variables were temperature of pack (hot and room temperature), depth of measurement (1 cm and 3 cm), and time (beginning, after pack application, and after ultrasound). The dependent variable was tissue temperature. Subjects were assigned to one of two treatment groups: ultrasound preceded by a 15-minute hot pack treatment or ultrasound preceded by a 15-minute application with a silicate gel pack at room temperature. Measurements were taken while subjects were treated in a university training room. Twenty-one uninjured male and female college student volunteers were randomly assigned to one of the two pack groups. The hot packs were stored in 75 degrees C water. A 1-MHz ultrasound treatment was administered for 10 minutes at an intensity of 1.5 W/cm(2). Tissue temperature was measured every 30 seconds using 23-gauge hypodermic microprobes interfaced with a telethermometer and inserted 1 and 3 cm below the surface of anesthetized triceps surae muscle. At both tissue depths, there was a 0.8 degrees C greater increase in tissue temperature with hot packs and ultrasound. At 1 cm, ultrasound increased temperature 3.5 degrees C after a 0.5 degrees C rise during the room temperature-pack application, but only 0.6 degrees C after a 3.8 degrees C increase during hot-pack application. At 3 cm, ultrasound increased temperature 3.85 degrees C following a slight (-0.26 degrees C) decrease during the room temperature-pack application and 3.68 degrees C after a 0.74 degrees C increase during hot-pack application. Vigorous increases in deep muscle temperature

  7. Mechanisms of exertional fatigue in muscle glycogenoses

    DEFF Research Database (Denmark)

    Vissing, John; Haller, Ronald G

    2012-01-01

    Exertional fatigue early in exercise is a clinical hallmark of muscle glycogenoses, which is often coupled with painful muscle contractures and episodes of myoglobinuria. A fundamental biochemical problem in these conditions is the impaired generation of ATP to fuel muscle contractions, which...... relates directly to the metabolic defect, but also to substrate-limited energy deficiency, as exemplified by the "second wind" phenomenon in McArdle disease. A number of secondary events may also play a role in inducing premature fatigue in glycogenoses, including (1) absent or blunted muscle acidosis......, which may be important for maintaining muscle membrane excitability by decreasing chloride permeability, (2) loss of the osmotic effect related to lactate accumulation, which may account for absence of the normal increase in water content of exercised muscle, and thus promote higher than normal...

  8. FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension

    Directory of Open Access Journals (Sweden)

    Gerrard Dave

    2007-04-01

    Full Text Available Abstract Background Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of musculoskeletal research. While the fibroblast growth factors (FGFs and their receptors are synthesized by, and intimately involved in, embryonic skeletal muscle growth and repair, their role maintaining adult muscle status has not been examined. Methods We examined the effects of ectopic expression of FGFR1 during disuse-mediated skeletal muscle atrophy, utilizing hindlimb suspension and DNA electroporation in mice. Results We found skeletal muscle FGF4 and FGFR1 mRNA expression to be modified by hind limb suspension,. In addition, we found FGFR1 protein localized in muscle fibers within atrophying mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression of FGFR1 significantly inhibited the decrease in muscle fiber area within skeletal muscles of mice undergoing suspension induced muscle atrophy. Ectopic FGFR1 expression in muscle also significantly stimulated protein synthesis in muscle fibers, and increased protein degradation in weight bearing muscle fibers. Conclusion These results support the theory that FGF signaling can play a role in regulation of postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic options for attenuating muscle atrophy during aging, illness and spaceflight.

  9. Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging

    Directory of Open Access Journals (Sweden)

    Marta Murgia

    2017-06-01

    Full Text Available Skeletal muscle is a key tissue in human aging, which affects different muscle fiber types unequally. We developed a highly sensitive single muscle fiber proteomics workflow to study human aging and show that the senescence of slow and fast muscle fibers is characterized by diverging metabolic and protein quality control adaptations. Whereas mitochondrial content declines with aging in both fiber types, glycolysis and glycogen metabolism are upregulated in slow but downregulated in fast muscle fibers. Aging mitochondria decrease expression of the redox enzyme monoamine oxidase A. Slow fibers upregulate a subset of actin and myosin chaperones, whereas an opposite change happens in fast fibers. These changes in metabolism and sarcomere quality control may be related to the ability of slow, but not fast, muscle fibers to maintain their mass during aging. We conclude that single muscle fiber analysis by proteomics can elucidate pathophysiology in a sub-type-specific manner.

  10. Maintaining consistency in distributed systems

    Science.gov (United States)

    Birman, Kenneth P.

    1991-01-01

    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.

  11. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    Science.gov (United States)

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. Copyright © 2015 the American Physiological Society.

  12. Muscle-Specific Effective Mechanical Advantage and Joint Impulse in Weightlifting.

    Science.gov (United States)

    Kipp, Kristof; Harris, Chad

    2017-07-01

    Kipp, K, and Harris, C. Muscle-specific effective mechanical advantage and joint impulse in weightlifting. J Strength Cond Res 31(7): 1905-1910, 2017-Lifting greater loads during weightlifting exercises may theoretically be achieved through increasing the magnitudes of net joint impulses or manipulating the joints' effective mechanical advantage (EMA). The purpose of this study was to investigate muscle-specific EMA and joint impulse as well as impulse-momentum characteristics of the lifter-barbell system across a range of external loads during the execution of the clean. Collegiate-level weightlifters performed submaximal cleans at 65, 75, and 85% of their 1-repetition maximum (1-RM), whereas data from a motion analysis system and a force plate were used to calculate lifter-barbell system impulse and velocity, as well as net extensor impulse generated at the hip, knee, and ankle joints and the EMA of the gluteus maximus, hamstrings, quadriceps, and triceps surae muscles. The results indicated that the lifter-barbell system impulse did not change as load increased, whereas the velocity of the lifter-barbell system decreased with greater load. In addition, the net extensor impulse at all joints increased as load increased. The EMA of all muscles did not, however, change as load increased. The load-dependent effects on the impulse-velocity characteristics of the lifter-barbell system may reflect musculoskeletal force-velocity behaviors, and may further indicate that the weightlifting performance is limited by the magnitude of ground reaction force impulse. In turn, the load-dependent effects observed at the joint level indicated that lifting greater loads were due to greater net extensor impulses generated at the joints of the lower extremity and not greater EMAs of the respective extensor muscles. In combination, these results suggest that lifting greater external loads during the clean is due to the ability to generate large extensor joint impulses, rather than

  13. Effects of Contract-Relax, Static Stretching, and Isometric Contractions on Muscle-Tendon Mechanics.

    Science.gov (United States)

    Kay, Anthony D; Husbands-Beasley, Jade; Blazevich, Anthony J

    2015-10-01

    Loading characteristics of stretching techniques likely influence the specific mechanisms responsible for acute increases in range of motion (ROM). Therefore, the effects of a version of contract-relax (CR) proprioceptive neuromuscular facilitation stretching, static stretching (SS), and maximal isometric contraction (Iso) interventions were studied in 17 healthy human volunteers. Passive ankle moment was recorded on an isokinetic dynamometer, with EMG recording from the triceps surae, simultaneous real-time motion analysis, and ultrasound-imaging-recorded gastrocnemius medialis muscle and Achilles tendon elongation. Subjects then performed each intervention randomly on separate days before reassessment. Significant increases in dorsiflexion ROM (2.5°-5.3°; P muscle-tendon stiffness (10.1%-21.0%; P stretching (P stretching and Iso (17.7%-22.1%; P 0.05), whereas significant reductions in muscle stiffness occurred after CR stretching and SS (16.0%-20.5%; P 0.05). Increases in peak passive moment (stretch tolerance) occurred after Iso (6.8%; P stretching (10.6%; P = 0.08), and SS (5.2%; P = 0.08); no difference in changes between conditions was found (P > 0.05). Significant correlations (rs = 0.69-0.82; P muscle and tendon stiffness are distinct. Concomitant reductions in muscle and tendon stiffness after CR stretching suggest a broader adaptive response that likely explains its superior efficacy in acutely increasing ROM. Although mechanical changes appear tissue-specific between interventions, similar increases in stretch tolerance after all interventions are strongly correlated with changes in ROM.

  14. Muscle Synergy-Driven Robust Motion Control.

    Science.gov (United States)

    Min, Kyuengbo; Iwamoto, Masami; Kakei, Shinji; Kimpara, Hideyuki

    2018-04-01

    Humans are able to robustly maintain desired motion and posture under dynamically changing circumstances, including novel conditions. To accomplish this, the brain needs to optimize the synergistic control between muscles against external dynamic factors. However, previous related studies have usually simplified the control of multiple muscles using two opposing muscles, which are minimum actuators to simulate linear feedback control. As a result, they have been unable to analyze how muscle synergy contributes to motion control robustness in a biological system. To address this issue, we considered a new muscle synergy concept used to optimize the synergy between muscle units against external dynamic conditions, including novel conditions. We propose that two main muscle control policies synergistically control muscle units to maintain the desired motion against external dynamic conditions. Our assumption is based on biological evidence regarding the control of multiple muscles via the corticospinal tract. One of the policies is the group control policy (GCP), which is used to control muscle group units classified based on functional similarities in joint control. This policy is used to effectively resist external dynamic circumstances, such as disturbances. The individual control policy (ICP) assists the GCP in precisely controlling motion by controlling individual muscle units. To validate this hypothesis, we simulated the reinforcement of the synergistic actions of the two control policies during the reinforcement learning of feedback motion control. Using this learning paradigm, the two control policies were synergistically combined to result in robust feedback control under novel transient and sustained disturbances that did not involve learning. Further, by comparing our data to experimental data generated by human subjects under the same conditions as those of the simulation, we showed that the proposed synergy concept may be used to analyze muscle synergy

  15. A study on the findings of muscle CT in patients with Fukuyama type congenital muscular dystrophy (FCMD)

    International Nuclear Information System (INIS)

    Sumida, Sawako; Osawa, Makiko; Okada, Noriko

    1988-01-01

    This study was carried out to investigate the process of muscle involvement according to age in patients with FCMD (Brain Dev 1981 ; 3:1 - 29) by CT scans. Fourteen patients with FCMD I (age: 5 months-12 years) and two patients with FCMD III or IV (age: 3, 4 years) were studied. The midcalf, midthigh, L3 and shoulder girdle level were the sites chosen. Two types of change were found in FCMD I. One of them was the attenuation of the density in muscle and the other one was decreased area of muscle as a result of low density which started from periphery of the muscle. The latter was found in m. psoas major after age 9, whilst the former was found in other muscles to some degree. The severity of the changes was related to age. In the case which was examined twice, the changes extended even better motor function had been attained. The changes in midcalf preceded those in midthigh, L3, shoulder girdle. The attenuation of density was found early and severely in m. triceps surae, m. adductor magnus, paravertebral muscles and m. subscapularis, whilst those in m. tibialis anterior and posterior, m. gracilis, m. sartorius, m. quadratus lumborum appeared later and relatively mild. The relationship between the process of extension of low density in muscle and joint contractures were also discussed. The changes in CT scan in FCMD III or IV were milder than those of FCMD I and there was no tendency that the change in midcalf preceded those of other scanned level. (author)

  16. Building and maintaining media contacts

    International Nuclear Information System (INIS)

    Fenton, Bob

    2000-01-01

    This presentation is answering the question: 'how does British Energy build and maintain its relationships with journalists in so many areas', not only the basic industrial correspondents that you would expect to have to deal with an industry British Energy, but those dealing with science and technology, the environment, personnel and training, city and financial, political, and on and on, and that is just the national press. Then add the local and regional media around power station sites - literally hundreds of contacts and you start to get an idea about the size of our media contact database. But it is managed it rather well. Every six months British Energy takes part in a survey run by one of the UK's leading market research companies who conducts a poll among journalists and then rate each company's performance. In the last three years British Energy has not been outside the top five in most categories, and in the top two in several. The answer is a lot of work over a long period of time. You cannot expect to build trusting relationships with a journalist overnight. At British Energy the key is being open and honest, and always available. Of course good media relations is not a one-way street, and there has to be some element of compromise if you are to achieve a relationship based on mutual trust

  17. [A 54-year-old man with progressive proximal muscle atrophy and gynecomastia].

    Science.gov (United States)

    Anno, M; Gotoh, K; Hirasawa, E; Mori, H; Nakajima, Y; Mizuno, Y

    1995-01-01

    We report a 54-year-old man with progressive proximal muscle atrophy and gynecomastia. The patient had an insidious onset of weakness in his lower extremities at age 14, in that he noted a difficulty in standing up from a chair. Soon after he noted some difficulty in climbing up stairs. At age 35, he noted weakness in his arms; his weakness slowly progressed in that he became unable to walk or stand alone before 40 years of age. He also noted gynecomastia at that age. He was admitted to our hospital for the work up on September 16, 1993, when he was 54-year-old. On admission, he was alert and oriented; his BP was 150/70 mmHg; he had bilateral gynecomastia, however, no other skeletal deformities were found. On neurologic examination, he was mentally sound without dementia, and his higher cerebral functions were normal. Cranial nerves also appeared intact without facial atrophy, dysarthria, or dysphagia; no atrophy was noted in the tongue. He had marked muscle atrophy in both upper and lower extremities more marked in the proximal portions; muscle strength was approximately in the range of 2/5 to 3/5 in the proximal parts, and 4/5 in the distal parts in both upper and lower extremities. No fasciculation was noted; muscle tone was flaccid; no ataxia was present. Deep reflexes were either lost or markedly diminished. No Babinski sign was noted. Sensation was intact. Laboratory examination revealed normal blood counts; serum CK was slightly increased to 131 IU/l; ECG showed complete right bundle branch block; EMG revealed no active units in the right biceps brachii, deltoid, quadriceps femoris, and triceps surae muscles; in other muscles tested, motor unit potentials of low amplitude and short duration were seen; in the right tibialis anterior muscle, however, motor unit potentials with an amplitude up to 6 m V were also seen. Nerve conduction velocities were normal. A diagnostic procedure was performed. He was discussed in the neurological CPC, and the chief discussant

  18. Association of muscle hardness with muscle tension dynamics: a physiological property.

    Science.gov (United States)

    Murayama, Mitsuyoshi; Watanabe, Kotaro; Kato, Ryoko; Uchiyama, Takanori; Yoneda, Tsugutake

    2012-01-01

    This study aimed to investigate the relationship between muscle hardness and muscle tension in terms of length-tension relationship. A frog gastrocnemius muscle sample was horizontally mounted on the base plate inside a chamber and was stretched from 100 to 150% of the pre-length, in 5% increments. After each step of muscle lengthening, electrical field stimulation for induction of tetanus was applied using platinum-plate electrodes positioned on either side of the muscle submerged in Ringer's solution. The measurement of muscle hardness, i.e., applying perpendicular distortion, was performed whilst maintaining the plateau of passive and tetanic tension. The relationship between normalised tension and normalised muscle hardness was evaluated. The length-hardness diagram could be created from the modification with the length-tension diagram. It is noteworthy that muscle hardness was proportional to passive and total tension. Regression analysis revealed a significant correlation between muscle hardness and passive and total tension, with a significant positive slope (passive tension: r = 0.986, P hardness depends on muscle tension in most ranges of muscle length in the length-tension diagram.

  19. Does long-term passive stretching alter muscle-tendon unit mechanics in children with spastic cerebral palsy?

    Science.gov (United States)

    Theis, Nicola; Korff, Thomas; Mohagheghi, Amir A

    2015-12-01

    Cerebral palsy causes motor impairments during development and many children may experience excessive neural and mechanical muscle stiffness. The clinical assumption is that excessive stiffness is thought to be one of the main reasons for functional impairments in cerebral palsy. As such, passive stretching is widely used to reduce stiffness, with a view to improving function. However, current research evidence on passive stretching in cerebral palsy is not adequate to support or refute the effectiveness of stretching as a management strategy to reduce stiffness and/or improve function. The purpose was to identify the effect of six weeks passive ankle stretching on muscle-tendon unit parameters in children with spastic cerebral palsy. Thirteen children (8-14 y) with quadriplegic/diplegic cerebral palsy were randomly assigned to either an experimental group (n=7) or a control group (n=6). The experimental group underwent an additional six weeks of passive ankle dorsiflexion stretching for 15 min (per leg), four days per week, whilst the control group continued with their normal routine, which was similar for the two groups. Measures of muscle and tendon stiffness, strain and resting length were acquired pre- and post-intervention. The experimental group demonstrated a 3° increase in maximum ankle dorsiflexion. This was accompanied by a 13% reduction in triceps surae muscle stiffness, with no change in tendon stiffness. Additionally, there was an increase in fascicle strain with no changes in resting length, suggesting muscle stiffness reductions were a result of alterations in intra/extra-muscular connective tissue. The results demonstrate that stretching can reduce muscle stiffness by altering fascicle strain but not resting fascicle length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Building and maintaining media relations

    International Nuclear Information System (INIS)

    Oesterberg, Anders

    2000-01-01

    Full text: In my opinion good media relations are among the most valuable investments regarding the communications and Public Relations operations within an Organisation. This means, that all the work you put up in building and maintaining media relations, is worth all the efforts. It can mean the difference between success or failure. Although a reporter never would admit that he or she is easily influenced, the fact is that you would get better press in an emergency case if you have a positive personal relation to the reporter. So, in my opinion there is nothing more important, in building and maintaining media relations, than the face-to-face-contact. My experience of good personal relations to reporters is also that you're not only getting better press in emergency cases. You are more successful in getting published when you have something positive to say, too. Honesty and openness are two key-words in this context. I have never tried to manipulate and delude a reporter, since that definitely would ruin the relationship. I always try to be as straight forward as possible and underline what I can say and what I can't. That instead of presenting some forced lies. For me, it is also very important to create some kind of mid-field ground, where the reporter and I can meet unprejudiced. Sense of humour and distance, both to yourself and your organisation, are two main characteristics that are invaluable in order to create a good personal relationship with a reporter. But, I'm very accurate in emphasizing when I enter my role as a company representative. All in order to be regarded as correct, yet obliging. To be quick when it comes to returning calls is another vital component that gives the reporter a feeling that he or she is important enough to be contacted as soon as possible. This service-minded attitude is of course good for the relationship. Besides the more personal relation it's important to have a business-like relation, where you show a great deal of

  1. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life.

    Science.gov (United States)

    McGregor, Robin A; Cameron-Smith, David; Poppitt, Sally D

    2014-01-01

    Worldwide estimates predict 2 billion people will be aged over 65 years by 2050. A major current challenge is maintaining mobility and quality of life into old age. Impaired mobility is often a precursor of functional decline, disability and loss of independence. Sarcopenia which represents the age-related decline in muscle mass is a well-established factor associated with mobility limitations in older adults. However, there is now evidence that not only changes in muscle mass but other factors underpinning muscle quality including composition, metabolism, aerobic capacity, insulin resistance, fat infiltration, fibrosis and neural activation may also play a role in the decline in muscle function and impaired mobility associated with ageing. Importantly, changes in muscle quality may precede loss of muscle mass and therefore provide new opportunities for the assessment of muscle quality particularly in middle-aged adults who could benefit from interventions to improve muscle function. This review will discuss the accumulating evidence that in addition to muscle mass, factors underpinning muscle quality influence muscle function and mobility with age. Further development of tools to assess muscle quality in community settings is needed. Preventative diet, exercise or treatment interventions particularly in middle-aged adults at the low end of the spectrum of muscle function may help preserve mobility in later years and improve healthspan.

  2. Cellular and molecular mechanisms of muscle atrophy

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2013-01-01

    Full Text Available Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

  3. Extracellular matrix components direct porcine muscle stem cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wilschut, Karlijn J. [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Haagsman, Henk P. [Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht (Netherlands); Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands)

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  4. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  5. Extracellular matrix components direct porcine muscle stem cell behavior

    International Nuclear Information System (INIS)

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J.

    2010-01-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  6. Muscle channelopathies.

    Science.gov (United States)

    Statland, Jeffrey; Phillips, Lauren; Trivedi, Jaya R

    2014-08-01

    Skeletal muscle channelopathies are rare heterogeneous diseases with marked genotypic and phenotypic variability. Despite advances in understanding of the molecular pathology of these disorders, the diverse phenotypic manifestations remain a challenge in diagnosis and therapeutics. These disorders can cause lifetime disability and affect quality of life. There is no treatment of these disorders approved by the US Food and Drug Administration at this time. Recognition and treatment of symptoms might reduce morbidity and improve quality of life. This article summarizes the clinical manifestations, diagnostic studies, pathophysiology, and treatment options in nondystrophic myotonia, congenital myasthenic syndrome, and periodic paralyses. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. maintainability of manpower system with restricted recruitment

    African Journals Online (AJOL)

    JERRY

    remain the same at the mth future accounting periods, Batholomew (1982). It is regarded as one-step maintainability if m = 1 or r–step maintainability if m = r. Manpower structures are maintained by management control over the factors of control, usually promotion flow and recruitment flow. Hence, in the literature, it is ...

  8. Changes in lower extremity muscle mass and muscle strength after weight loss in obese men: A prospective study.

    Science.gov (United States)

    Kim, Bokun; Tsujimoto, Takehiko; So, Rina; Tanaka, Kiyoji

    2015-01-01

    Obesity is not only associated with internal diseases but also with surgical problems. Surgical diseases related to obesity frequently occur in the load bearing joints of the lower limbs. To decrease the occurrence of surgical diseases related to obesity, weight loss has been recommended. It is important for obese men to maintain muscle mass and muscle strength after weight loss because low muscle mass and muscle strength are also related to the occurrence of surgical diseases. To date, the importance of muscle mass and muscle strength after weight loss in obese men has been underappreciated. The purpose of this study was to investigate changes in lower extremity muscle mass and muscle strength resulting from a weight loss programme consisting of caloric restriction and exercise. All participants concurrently attended a 12-week diet class 1day/week and a 12-week exercise class 3days/week. Body weight and body composition by dual-energy X-ray absorptiometry and knee extensor strength by dynamometry were assessed. The weight loss programme led to a 14.1% weight loss accompanied by significant loss of leg muscle mass, static maximal muscle strength, dynamic maximal muscle strength and dynamic muscle endurance but not with significant loss of dynamic muscle power. Decline of muscle strength was related to a decrease in muscle mass, but not completely dependent on a decrease in muscle mass. Body weight-normalised muscle strength increased significantly. We recommend utilising resistance exercise to restore muscle mass and muscle strength in the legs after substantial weight loss. Copyright © 2015. Published by Elsevier Ltd.

  9. Myoblast replication is reduced in the IUGR fetus despite maintained proliferative capacity in vitro.

    Science.gov (United States)

    Soto, Susan M; Blake, Amy C; Wesolowski, Stephanie R; Rozance, Paul J; Barthel, Kristen B; Gao, Bifeng; Hetrick, Byron; McCurdy, Carrie E; Garza, Natalia G; Hay, William W; Leinwand, Leslie A; Friedman, Jacob E; Brown, Laura D

    2017-03-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass and insulin resistance, suggesting muscle growth may be restricted by molecular events that occur during fetal development. To explore the basis of restricted fetal muscle growth, we used a sheep model of progressive placental insufficiency-induced IUGR to assess myoblast proliferation within intact skeletal muscle in vivo and isolated myoblasts stimulated with insulin in vitro Gastrocnemius and soleus muscle weights were reduced by 25% in IUGR fetuses compared to those in controls (CON). The ratio of PAX7+ nuclei (a marker of myoblasts) to total nuclei was maintained in IUGR muscle compared to CON, but the fraction of PAX7+ myoblasts that also expressed Ki-67 (a marker of cellular proliferation) was reduced by 23%. Despite reduced proliferation in vivo, fetal myoblasts isolated from IUGR biceps femoris and cultured in enriched media in vitro responded robustly to insulin in a dose- and time-dependent manner to increase proliferation. Similarly, insulin stimulation of IUGR myoblasts upregulated key cell cycle genes and DNA replication. There were no differences in the expression of myogenic regulatory transcription factors that drive commitment to muscle differentiation between CON and IUGR groups. These results demonstrate that the molecular machinery necessary for transcriptional control of proliferation remains intact in IUGR fetal myoblasts, indicating that in vivo factors such as reduced insulin and IGF1, hypoxia and/or elevated counter-regulatory hormones may be inhibiting muscle growth in IUGR fetuses. © 2017 Society for Endocrinology.

  10. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    Science.gov (United States)

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  11. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats

    Science.gov (United States)

    Bennett, Brian T.; Wilson, Joseph C.; Sperringer, Justin; Mohamed, Junaith S.; Edens, Neile K.; Pereira, Suzette L.

    2014-01-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (−24.8% vs. −10.7%, P muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (−25.2% vs. −16.0%, P muscle fiber cross-sectional area loss in both plantaris (−39.9% vs. −23.9%, P muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (−45.6% vs. −21.5%, P muscle fiber cross-sectional area (−38.7% vs. −10.9%, P muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to improve muscle recovery following a period of atrophy in old rats. PMID:25414242

  12. Muscle Synergy Analysis in Transtibial Amputee during Ramp Ascending Activity

    OpenAIRE

    Mehryar, P; Shourijeh, MS; Maqbool, HF; Torabi, M; Dehghani-Sanij, AA

    2016-01-01

    In developed countries, the highest number of amputees are elderly with transtibial amputation. Walking on inclined surfaces is difficult for amputees due to loss of muscle volume and strength thereby transtibial amputees (TA) rely on the intact limb to maintain stability. The aim of this study was to use the concatenated non-negative matrix factorization (CNMF) technique to calculate muscle synergy components and compare the difference in muscle synergies and their associated activation prof...

  13. Evolution of maintainability in France since 1971

    International Nuclear Information System (INIS)

    Guyot, Christian.

    1975-01-01

    The purpose of the paper is to make the point of maintainability in France since 1971. The importance of maintainability is recalled. Publications in France from 1971 to 1975 show the interest arose by maintainability; their analysis permits to make clear the general plan followed by the studies and gives indications on the directions of actual efforts. Conclusion is drawn on the orientation of work at short, medium and long term [fr

  14. Load Bearing Equipment for Bone and Muscle

    Science.gov (United States)

    Shackelford, Linda; Griffith, Bryan

    2015-01-01

    Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.

  15. Bilateral increase in expression and concentration of tachykinin in a unilateral rabbit muscle overuse model that leads to myositis.

    Science.gov (United States)

    Song, Yafeng; Stål, Per S; Yu, Ji-Guo; Forsgren, Sture

    2013-04-12

    Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation. The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1-6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied. Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides. The observations show an up-regulation of the tachykinin

  16. Abba is an essential TRIM/RBCC protein to maintain the integrity of sarcomeric cytoarchitecture.

    Science.gov (United States)

    Domsch, Katrin; Ezzeddine, Nader; Nguyen, Hanh T

    2013-08-01

    Organized sarcomeric striations are an evolutionarily conserved hallmark of functional skeletal muscles. Here, we demonstrate that the Drosophila Abba protein, a member of the TRIM/RBCC superfamily, has a pivotal regulatory role in maintaining proper sarcomeric cytoarchitecture during development and muscle usage. abba mutant embryos initially form muscles, but F-actin and Myosin striations become progressively disrupted when the muscles undergo growth and endure increased contractile forces during larval development. Abnormal Myosin aggregates and myofiber atrophy are also notable in the abba mutants. The larval defects result in compromised muscle function, and hence important morphogenetic events do not occur properly during pupation, leading to lethality. Abba is localized at larval Z-discs, and genetic evidence indicates that abba interacts with α-actinin, kettin/D-titin and mlp84B, genes that encode important Z-disc proteins for stable myofibrillar organization and optimal muscle function. RNAi experiments and ultrastructural analysis reveal that Abba has an additional crucial role in sarcomere maintenance in adult muscles. Abba is required to ensure the integrity and function of Z-discs and M-lines. Rescue experiments further show that Abba function is dependent upon its B-box/coiled-coil domain, NHL repeats and RING finger domain. The importance of these presumed protein-protein interactions and ubiquitin ligase-associated domains supports our hypothesis that Abba is needed for specific protein complex formation and stabilization at Z-discs and M-lines.

  17. Deletion of Drosophila muscle LIM protein decreases flight muscle stiffness and power generation

    OpenAIRE

    Clark, Kathleen A.; Lesage-Horton, Heather; Zhao, Cuiping; Beckerle, Mary C.; Swank, Douglas M.

    2011-01-01

    Muscle LIM protein (MLP) can be found at the Z-disk of sarcomeres where it is hypothesized to be involved in sensing muscle stretch. Loss of murine MLP results in dilated cardiomyopathy, and mutations in human MLP lead to cardiac hypertrophy, indicating a critical role for MLP in maintaining normal cardiac function. Loss of MLP in Drosophila (mlp84B) also leads to muscle dysfunction, providing a model system to examine MLP's mechanism of action. Mlp84B-null flies that survive to adulthood are...

  18. The effect of bridge exercise method on the strength of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels.

    Science.gov (United States)

    Kang, Taewook; Lee, Jaeseok; Seo, Junghoon; Han, Dongwook

    2017-04-01

    [Purpose] The purpose of this research is to investigate the effect of the method of bridge exercise on the change of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels. [Subjects and Methods] The subjects of this research are healthy female students consisting of 10 persons performing bridge exercises in a supine group, 10 persons performing bridge exercises in a prone group, and 10 persons in a control group while in S university in Busan. Bridge exercise in supine position is performed in hook lying position. Bridge exercise in prone position is plank exercise in prostrate position. To measure the strength of rectus abdominis muscle, maintaining times of the posture was used. To measure the muscle activity of paraspinal muscles, EMG (4D-MT & EMD-11, Relive, Korea) was used. [Results] The strength of rectus abdominis muscle of both bridge exercises in the supine group and bridge exercises in the prone group increases significantly after exercise. The muscle activity of paraspinal muscle such as thoracic parts and lumbar parts in bridge exercises in the prone group decreases statistically while walking on a treadmill with high heels. Muscle activity of thoracic parts paraspinal muscle and bridge exercises in the supine group decreased significantly. [Conclusion] According to this study, we noticed that bridge exercise in a prone position is desirable for women who prefer wearing high heels as a back pain prevention exercise method.

  19. Imaging of muscle injuries

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, G.Y. [Iowa Univ., Iowa City, IA (United States). Dept. of Radiology; Brandser, E.A. [Iowa Univ., Iowa City, IA (United States). Dept. of Radiology; Kathol, M.H. [Iowa Univ., Iowa City, IA (United States). Dept. of Radiology; Tearse, D.S. [Iowa Univ., Iowa City, IA (United States). Dept. of Orthopaedic Surgery; Callaghan, J.J. [Iowa Univ., Iowa City, IA (United States). Dept. of Orthopaedic Surgery

    1996-01-01

    Although skeletal muscle is the single largest tissue in the body, there is little written about it in the radiologic literature. Indirect muscle injuries, also called strains or tears, are common in athletics, and knowing the morphology and physiology of the muscle-tendon unit is the key to the understanding of these injuries. Eccentric muscle activation produces more tension within the muscle tan when it is activated concentrically, making it more susceptible to tearing. Injuries involving the muscle belly tend to occur near the myotendinous junction. In adolescents, the weakest link in the muscle-tendon-bone complex is the apophysis. Traditionally, plain radiography has been the main diagnostic modality for evaluation of these injuries; however, with the advent of MRI it has become much easier to diagnose injuries primarily affecting the soft tissues. This article reviews the anatomy and physiology of the muscle-tendon unit as they relate to indirect muscle injuries. Examples of common muscle injuries are illustrated. (orig.)

  20. Engineering Skeletal Muscle Repair

    OpenAIRE

    Juhas, Mark; Bursac, Nenad

    2013-01-01

    Healthy skeletal muscle has a remarkable capacity for regeneration. Even at a mature age, muscle tissue can undergo a robust rebuilding process that involves the formation of new muscle cells and extracellular matrix and the re-establishment of vascular and neural networks. Understanding and reverse-engineering components of this process is essential for our ability to restore loss of muscle mass and function in cases where the natural ability of muscle for self-repair is exhausted or impaire...

  1. 7 CFR 784.12 - Maintaining records.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Maintaining records. 784.12 Section 784.12 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS 2004 EWE LAMB REPLACEMENT AND RETENTION PAYMENT PROGRAM § 784.12 Maintaining records...

  2. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    Science.gov (United States)

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.

  3. CEBAF/SURA 1984 summer workshop: Proceedings

    International Nuclear Information System (INIS)

    Gross, F.; Whitney, R.R.

    1984-11-01

    This report discusses the following topics: Summary: Magnetic Spectrometer Working Group; Workshop Report: Internal Targets and Tagged Photons; Nucleon Physics with Chromodynamics: From High Q 2 to Baryon Spectroscopy to Nuclear Physics; Quark Signatures in Nuclear Physics; What Can We Learn About the Three-Nucleon Wave Functions from High Energy Electrons; Coincidence and Polarization Measurements with High-Energy Electrons; NPAS -- a Program of Nuclear Physics at SLAC; Spectrometers; Polarized Gas Targets in Electron Rings; Photonuclear Experiments Using Large Acceptance Detectors; 4 π Detectors; Magnetic Spectrometer Working Group Report; Workshop Report: Tagged Photons - Low Current Electron Beams and Large Acceptance - 4 π Detectors; Positron Beams at CEBAF; Lampshade Magnet for a Large-Aperture Detector; Meson Exchange in Relativistic Quark Models; Electron Scattering from Discrete Low-Lying Levels of 13 C at High Momentum Transfer; NN Potential With a Six Quark Core from the Constituent Quark Model; A Study of (e,e'N) Reactions from Nuclear Targets; Study of Complex Nuclei Using Internal Targets at CEBAF; The Kaon-Nucleon Interaction in a Quark Potential Model; and Current Conservation and Magnetic Form Factors of 3 He, 3 H

  4. Effects of regular heel-raise training aimed at the soleus muscle on dynamic balance associated with arm movement in elderly women.

    Science.gov (United States)

    Fujiwara, Katsuo; Toyama, Hiroshi; Asai, Hitoshi; Yaguchi, Chie; Irei, Mariko; Naka, Masami; Kaida, Chizuru

    2011-09-01

    The effects of low-intensity muscle training with heel-raises on dynamic balance associated with bilateral arm flexion were investigated in postmenopausal elderly women. Twenty-six elderly women were evenly grouped into training and control groups. Training group subjects performed 100 heel raises per day for 2 months. The training was aimed at hypertrophy of the soleus muscle, which has a relatively high proportion (ca. 90%) of slow-twitch muscle fibers and is one of the main postural muscles. Dynamic balance was measured while arm flexion was performed in response to a visual stimulus (simple-reaction condition) or at the subjects' own pace (own-timing condition). The following parameters were compared before and after the training period: plantar flexion strength, thicknesses of the gastrocnemius and soleus (by ultrasound), reaction time of the anterior deltoid in the simple-reaction condition, activation onset timing of postural muscles with respect to the deltoid, movement angles of ankle and hip joints, and postural fluctuation. In the training group only, the following training-related effects were demonstrated: (a) increase in plantar flexor strength and thickness of the soleus, (b) shortening of the deltoid reaction time, (c) earlier activation of the erector spinae in the simple-reaction condition and the soleus in the own-timing condition, and (d) increase in ankle movement in the own-timing condition and a decrease in postural fluctuation. This heel-raise training in the elderly can increase soleus thickness within the triceps surae and improve postural control modality and stability that are effectively contributed to by the leg muscle. This training consists of a low-intensity exercise that requires neither special machines nor a specific environment and can be performed safely for all old-aged groups.

  5. Endocrine alterations from concentric vs. eccentric muscle actions: a brief review.

    Science.gov (United States)

    Kraemer, Robert R; Castracane, V Daniel

    2015-02-01

    Resistance exercise has a positive effect on many tissues, including heart, bone, skeletal muscle, and nervous tissue. Eccentric muscle actions offer a unique and a potentially beneficial form of exercise for maintaining and improving health. During resistance exercise, the effects of gravity, and mechanical properties of the sarcomere and connective tissue in skeletal muscle allow a greater muscle load during an eccentric (lengthening) muscle contraction than a concentric (shortening) muscle contraction. Consequently, older patients, patients with muscle or limb movement limitations or injuries, as well as cancer patients may be able to benefit from isolated eccentric muscle actions. There are specific physiological responses to eccentric muscle contractions. This review will describe the effects of different eccentric muscle contraction protocols on endocrine responses that could have positive effects on different tissues and recommend direction for future research. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Kana Ishii

    2018-02-01

    Full Text Available Summary: Satellite cells function as precursor cells in mature skeletal muscle homeostasis and regeneration. In healthy tissue, these cells are maintained in a state of quiescence by a microenvironment formed by myofibers and basement membrane in which LAMININs (LMs form a major component. In the present study, we evaluated the satellite cell microenvironment in vivo and found that these cells are encapsulated by LMα2–5. We sought to recapitulate this satellite cell niche in vitro by culturing satellite cells in the presence of recombinant LM-E8 fragments. We show that treatment with LM-E8 promotes proliferation of satellite cells in an undifferentiated state, through reduced phosphorylation of JNK and p38. On transplantation into injured muscle tissue, satellite cells cultured with LM-E8 promoted the regeneration of skeletal muscle. These findings represent an efficient method of culturing satellite cells for use in transplantation through the recapitulation of the satellite cell niche using recombinant LM-E8 fragments. : In this study, examination of the satellite cell microenvironment in vivo revealed that these cells are encapsulated by LMα2–5. We find that reconstitution of the satellite cell niche with recombinant LM-E8 fragments promotes the proliferation and maintains satellite cells in an undifferentiated state. Keywords: Laminin, muscle stem cell, cell transplantation therapy, regeneration, muscle satellite cell, LM-E8

  7. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    Previous studies have investigated if cryopreservation is a viable approach for functional mitochondrial analysis. Different tissues have been studied, and conflicting results have been published. The aim of the present study was to investigate if mitochondria in human skeletal muscle maintain...... functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...... of oxidative phosphorylation was significantly (P cryopreserved human skeletal muscle samples. Cryopreservation impaired respiration with substrates linked to Complex I more than for Complex II (P

  8. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    Previous studies have investigated if cryopreservation is a viable approach for functional mitochondrial analysis. Different tissues have been studied, and conflicting results have been published. The aim of the present study was to investigate if mitochondria in human skeletal muscle maintain...... functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...... of oxidative phosphorylation was significantly (P skeletal muscle samples. Cryopreservation impaired respiration with substrates linked to Complex I more than for Complex II (P

  9. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    Science.gov (United States)

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and

  10. In vivo myograph measurement of muscle contraction at optimal length

    Directory of Open Access Journals (Sweden)

    Ahmed Aminul

    2007-01-01

    Full Text Available Abstract Background Current devices for measuring muscle contraction in vivo have limited accuracy in establishing and re-establishing the optimum muscle length. They are variable in the reproducibility to determine the muscle contraction at this length, and often do not maintain precise conditions during the examination. Consequently, for clinical testing only semi-quantitative methods have been used. Methods We present a newly developed myograph, an accurate measuring device for muscle contraction, consisting of three elements. Firstly, an element for adjusting the axle of the device and the physiological axis of muscle contraction; secondly, an element to accurately position and reposition the extremity of the muscle; and thirdly, an element for the progressive pre-stretching and isometric locking of the target muscle. Thus it is possible to examine individual in vivo muscles in every pre-stretched, specified position, to maintain constant muscle-length conditions, and to accurately re-establish the conditions of the measurement process at later sessions. Results In a sequence of experiments the force of contraction of the muscle at differing stretching lengths were recorded and the forces determined. The optimum muscle length for maximal force of contraction was established. In a following sequence of experiments with smaller graduations around this optimal stretching length an increasingly accurate optimum muscle length for maximal force of contraction was determined. This optimum length was also accurately re-established at later sessions. Conclusion We have introduced a new technical solution for valid, reproducible in vivo force measurements on every possible point of the stretching curve. Thus it should be possible to study the muscle contraction in vivo to the same level of accuracy as is achieved in tests with in vitro organ preparations.

  11. Can we reduce the effort of maintaining a neutral sitting posture? A pilot study.

    Science.gov (United States)

    O'Sullivan, Kieran; McCarthy, Raymond; White, Alison; O'Sullivan, Leonard; Dankaerts, Wim

    2012-12-01

    Neutral sitting postures encouraging lumbar lordosis have been recommended in the management of sitting-related low back pain (LBP). However, prolonged lordotic sitting postures can be associated with increased fatigue and discomfort. This pilot study investigated whether changing the type of chair used in sitting can reduce the effort of maintaining a neutral sitting posture. The muscle activation of six trunk muscles was recorded using surface electromyography in 12 painfree participants. Participants were facilitated into a neutral sitting posture for 1 min on both a standard backless office chair and a dynamic, forward-inclined chair (Back App). Lumbar multifidus activity was significantly lower on the Back App chair (p=0.013). None of the other five trunk muscles measured demonstrated a significant difference in activity between the chairs. There was no significant difference (p=0.108) in the perceived effort of maintaining the neutral sitting posture on the two chairs. This study suggests that the lumbar multifidus activation required to maintain a neutral sitting posture can be reduced by considering the type of chair used. The mechanism through which the Back App chair reduces lumbar multifidus activation is unclear, but the greatest difference between chairs is the degree of hip flexion. The ability to maintain a neutral lumbar posture with less lumbar multifidus activation is potentially advantageous during prolonged sitting. Further investigations of the effects of chair design on longer duration sitting, and among LBP subjects, are warranted. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  13. Quercetin inhibits adipogenesis of muscle progenitor cells in vitro

    Directory of Open Access Journals (Sweden)

    Tomoko Funakoshi

    2018-03-01

    Full Text Available Muscle satellite cells are committed myogenic progenitors capable of contributing to myogenesis to maintain adult muscle mass and function. Several experiments have demonstrated that muscle satellite cells can differentiate into adipocytes in vitro, supporting the mesenchymal differentiation potential of these cells. Moreover, muscle satellite cells may be a source of ectopic muscle adipocytes, explaining the lipid accumulation often observed in aged skeletal muscle (sarcopenia and in muscles of patients` with diabetes. Quercetin, a polyphenol, is one of the most abundant flavonoids distributed in edible plants, such as onions and apples, and possesses antioxidant, anticancer, and anti-inflammatory properties. In this study, we examined whether quercetin inhibited the adipogenesis of muscle satellite cells in vitro with primary cells from rat limbs by culture in the presence of quercetin under adipogenic conditions. Morphological observations, Oil Red-O staining results, triglyceride content analysis, and quantitative reverse transcription polymerase chain reaction revealed that quercetin was capable of inhibiting the adipogenic induction of muscle satellite cells into adipocytes in a dose-dependent manner by suppressing the transcript levels of adipogenic markers, such as peroxisome proliferator-activated receptor-γ and fatty acid binding protein 4. Our results suggested that quercetin inhibited the adipogenesis of muscle satellite cells in vitro by suppressing the transcription of adipogenic markers. Keywords: Quercetin, Muscle satellite cell, Differentiation, Intramuscular lipid

  14. Coastal Maintained Channels in US waters

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This layer shows coastal channels and waterways that are maintained and surveyed by the U.S. Army Corps of Engineers (USACE). These channels are necessary...

  15. Control system maintains compartment at constant temperature

    Science.gov (United States)

    Lindberg, J. G.

    1966-01-01

    Gas-filled permeable insulating material maintains an enclosed compartment at a uniform temperature. The material is interposed between the two walls of a double-walled enclosure surrounding the compartment.

  16. Marshal: Maintaining Evolving Models, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SIFT proposes to design and develop the Marshal system, a mixed-initiative tool for maintaining task models over the course of evolving missions. Marshal-enabled...

  17. Marshal: Maintaining Evolving Models, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SIFT proposes to design and develop the Marshal system, a mixed-initiative tool for maintaining task models over the course of evolving missions. SIFT will...

  18. Pervasive satellite cell contribution to uninjured adult muscle fibers.

    Science.gov (United States)

    Pawlikowski, Bradley; Pulliam, Crystal; Betta, Nicole Dalla; Kardon, Gabrielle; Olwin, Bradley B

    2015-01-01

    Adult skeletal muscle adapts to functional needs, maintaining consistent numbers of myonuclei and stem cells. Although resident muscle stem cells or satellite cells are required for muscle growth and repair, in uninjured muscle, these cells appear quiescent and metabolically inactive. To investigate the satellite cell contribution to myofibers in adult uninjured skeletal muscle, we labeled satellite cells by inducing a recombination of LSL-tdTomato in Pax7(CreER) mice and scoring tdTomato+ myofibers as an indicator of satellite cell fusion. Satellite cell fusion into myofibers plateaus postnatally between 8 and 12 weeks of age, reaching a steady state in hindlimb muscles, but in extra ocular or diaphragm muscles, satellite cell fusion is maintained at postnatal levels irrespective of the age assayed. Upon recombination and following a 2-week chase in 6-month-old mice, tdTomato-labeled satellite cells fused into myofibers as 20, 50, and 80 % of hindlimb, extra ocular, and diaphragm myofibers, respectively, were tdTomato+. Satellite cells contribute to uninjured myofibers either following a cell division or directly without an intervening cell division. The frequency of satellite cell fusion into the skeletal muscle fibers is greater than previously estimated, suggesting an important functional role for satellite cell fusion into adult myofibers and a requirement for active maintenance of satellite cell numbers in uninjured skeletal muscle.

  19. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    Science.gov (United States)

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  20. Resolving shifting patterns of muscle energy use in swimming fish.

    Directory of Open Access Journals (Sweden)

    Shannon P Gerry

    Full Text Available Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.

  1. Effects of strength training and detraining on knee extensor strength, muscle volume and muscle quality in elderly women.

    Science.gov (United States)

    Correa, Cleiton Silva; Baroni, Bruno Manfredini; Radaelli, Régis; Lanferdini, Fábio Juner; Cunha, Giovani dos Santos; Reischak-Oliveira, Álvaro; Vaz, Marco Aurélio; Pinto, Ronei Silveira

    2013-10-01

    Strength training seems to be an interesting approach to counteract decreases that affect knee extensor strength, muscle mass and muscle quality (force per unit of muscle mass) associated with ageing. However, there is no consensus regarding the changes in muscle mass and their contribution to strength during periods of training and detraining in the elderly. Therefore, this study aimed at verifying the behaviour of knee extensor muscle strength, muscle volume and muscle quality in elderly women in response to a 12-week strength training programme followed by a similar period of detraining. Statistical analysis showed no effect of time on muscle quality. However, strength and muscle volume increased from baseline to post-training (33 and 26 %, respectively). After detraining, the knee extensor strength remained 12 % superior to the baseline values, while the gains in muscle mass were almost completely lost. In conclusion, strength gains and losses due to strength training and detraining, respectively, could not be exclusively associated with muscle mass increases. Training-induced strength gains were partially maintained after 3 months of detraining in elderly subjects.

  2. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So-Ichiro; Okano, Hideyuki; Takeda, Shin'ichi; Akazawa, Chihiro

    2015-10-01

    Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  4. Healthy Muscles Matter

    Science.gov (United States)

    ... do. Exercising, getting enough rest, and eating a balanced diet will help to keep your muscles healthy for ... keep your muscles in good health. Eating a balanced diet will help manage your weight and provide a ...

  5. Regulation of PDH, GS and insulin signalling in skeletal muscle

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup

    of inflammation on resting and exercise-induced PDH regulation in human skeletal muscle and 4) The effect of IL-6 on PDH regulation in mouse skeletal muscle. Study I demonstrated that bed rest–induced insulin resistance was associated with reduced insulinstimulated GS activity and Akt signaling as well......The aims of the present thesis were to investigate 1) The impact of physical inactivity on insulinstimulated Akt, TBC1D4 and GS regulation in human skeletal muscle, 2) The impact of exercise training on glucose-mediated regulation of PDH and GS in skeletal muscle in elderly men, 3) The impact...... as decreased protein level of HKII and GLUT4 in skeletal muscle. Iαn addition, the ability of acute exercise to increase insulin-stimulated glucose extraction was maintained after 7 days of bed rest. However, acute exercise after bed rest did not fully normalize the ability of skeletal muscle to extract...

  6. Obturator internus muscle strains

    Directory of Open Access Journals (Sweden)

    Caoimhe Byrne, MB BCh, BAO

    2017-03-01

    Full Text Available We report 2 cases of obturator internus muscle strains. The injuries occurred in young male athletes involved in kicking sports. Case 1 details an acute obturator internus muscle strain with associated adductor longus strain. Case 2 details an overuse injury of the bilateral obturator internus muscles. In each case, magnetic resonance imaging played a crucial role in accurate diagnosis.

  7. the sternalis muscle

    African Journals Online (AJOL)

    2009-08-17

    Aug 17, 2009 ... scan of the chest wall was performed to gain clarity of the mam- mographic findings (Figs 1a, 1b and 2). The CT scan demonstrated a flattened band of muscle density lying anterior to the medial margin of the pectoralis muscle. This structure was separated from the underlying pectoralis muscle by a thin ...

  8. Electrical stimulation attenuates denervation and age-related atrophy in extensor digitorum longus muscles of old rats.

    Science.gov (United States)

    Dow, Douglas E; Dennis, Robert G; Faulkner, John A

    2005-04-01

    Skeletal muscles of old rats and elderly humans lose muscle mass and maximum force. Denervation is a major cause of age-related muscle atrophy and weakness, because denervated fibers do not contract, and undergo atrophy. At any age, surgical denervation causes even more dramatic muscle atrophy and loss in force than aging does. Electrical stimulation that generates tetanic contractions of denervated muscles reduces the denervation-induced declines. We investigated whether a stimulation protocol that maintains mass and force of denervated extensor digitorum longus muscles of adult rats would also maintain these properties in denervated muscles of old rats during a 2-month period of age-induced declines in these properties. Contractile activity generated by the electrical stimulation eliminated age-related losses in muscle mass and reduced the deficit in force by 50%. These data provide support for the hypothesis that during aging, lack of contractile activity in fibers contributes to muscle atrophy and weakness.

  9. Maintaining Contour Trees of Dynamic Terrains

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Arge, Lars; Mølhave, Thomas

    We consider maintaining the contour tree T of a piecewise-linear triangulation M that is the graph of a time varying height function h:R2→R. We carefully describe the combinatorial change in T that happen as h varies over time and how these changes relate to topological changes in M. We present...... a kinetic data structure that maintains the contour tree of h over time. Our data structure maintains certificates that fail only when h(v)=h(u) for two adjacent vertices v and u in M, or when two saddle vertices lie on the same contour of M. A certificate failure is handled in O(log(n)) time. We also show...

  10. The randomized complexity of maintaining the minimum

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Chaudhuri, Shiva; Radhakrishnan, Jaikumar

    1996-01-01

    The complexity of maintaining a set under the operations Insert, Delete and FindMin is considered. In the comparison model it is shown that any randomized algorithm with expected amortized cost t comparisons per Insert and Delete has expected cost at least n/(e22t)-1 comparisons for FindMin. If F......The complexity of maintaining a set under the operations Insert, Delete and FindMin is considered. In the comparison model it is shown that any randomized algorithm with expected amortized cost t comparisons per Insert and Delete has expected cost at least n/(e22t)-1 comparisons for Find...

  11. Maintaining collections with a flat budget

    Directory of Open Access Journals (Sweden)

    Sara E Morris

    2017-03-01

    Full Text Available This paper focuses on the various processes, methods and tough decisions made by the University of Kansas Libraries to provide library materials while maintaining a flat collections budget for over eight years. During this period, those responsible for the Libraries’ collections have implemented quick stop- gap measures, picked all the ‘low-hanging fruit’, and eventually canceled a large journal package. This case study will help other librarians facing the reality of maintaining collections at a time when budgets, changing formats and publication practices are all obstacles to providing patrons with what they need.

  12. Vibration sensitivity of human muscle spindles and Golgi tendon organs.

    Science.gov (United States)

    Fallon, James B; Macefield, Vaughan G

    2007-07-01

    The responses of the various muscle receptors to vibration are more complicated than a naïve categorization into stretch (muscle spindle primary ending), length (muscle spindle secondary endings), and tension (Golgi tendon organs) receptors. To emphasize the similarity of responses to small length changes, we recorded from 58 individual muscle afferents subserving receptors in the ankle or toe dorsiflexors of awake human subjects (32 primary endings, 20 secondary endings, and six Golgi tendon organs). Transverse sinusoidal vibration was applied to the distal tendon of the receptor-bearing muscle, while subjects either remained completely relaxed or maintained a weak isometric contraction of the appropriate muscle. In relaxed muscle, few units responded in a 1:1 manner to vibration, and there was no evidence of a preferred frequency of activation. In active muscle the response profiles of all three receptor types overlapped, with no significant difference in threshold between receptor types. These results emphasize that when intramuscular tension increases during a voluntary contraction, Golgi tendon organs and muscle spindle secondary endings, not just muscle spindle primary endings, can effectively encode small imposed length changes.

  13. Role of microRNAs in skeletal muscle hypertrophy

    Directory of Open Access Journals (Sweden)

    Keisuke eHitachi

    2014-01-01

    Full Text Available Skeletal muscle comprises approximately 40% of body weight, and is important for locomotion, as well as for metabolic homeostasis. Adult skeletal muscle mass is maintained by a fine balance between muscle protein synthesis and degradation. In response to cytokines, nutrients, and mechanical stimuli, skeletal muscle mass is increased (hypertrophy, whereas skeletal muscle mass is decreased (atrophy in a variety of conditions, including cancer cachexia, starvation, immobilization, aging, and neuromuscular disorders. Recent studies have determined two important signaling pathways involved in skeletal muscle mass. The insulin-like growth factor-1 (IGF-1/Akt pathway increases skeletal muscle mass via stimulation of protein synthesis and inhibition of protein degradation. By contrast, myostatin signaling negatively regulates skeletal muscle mass by reducing protein synthesis. In addition, the discovery of microRNAs as novel regulators of gene expression has provided new insights into a multitude of biological processes, especially in skeletal muscle physiology. We summarize here the current knowledge of microRNAs in the regulation of skeletal muscle hypertrophy, focusing on the IGF-1/Akt pathway and myostatin signaling.

  14. Protein Intake and Muscle Health in Old Age: From Biological Plausibility to Clinical Evidence

    Directory of Open Access Journals (Sweden)

    Francesco Landi

    2016-05-01

    Full Text Available The provision of sufficient amounts of dietary proteins is central to muscle health as it ensures the supply of essential amino acids and stimulates protein synthesis. Older persons, in particular, are at high risk of insufficient protein ingestion. Furthermore, the current recommended dietary allowance for protein (0.8 g/kg/day might be inadequate for maintaining muscle health in older adults, probably as a consequence of “anabolic resistance” in aged muscle. Older individuals therefore need to ingest a greater quantity of protein to maintain muscle function. The quality of protein ingested is also essential to promoting muscle health. Given the role of leucine as the master dietary regulator of muscle protein turnover, the ingestion of protein sources enriched with this essential amino acid, or its metabolite β-hydroxy β-methylbutyrate, is thought to offer the greatest benefit in terms of preservation of muscle mass and function in old age.

  15. Quantitative Effects of Repeated Muscle Vibrations on Gait Pattern in a 5-Year-Old Child with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Filippo Camerota

    2011-01-01

    Full Text Available Objective. To investigate quantitatively and objectively the effects of repeated muscle vibration (rMV of triceps surae on the gait pattern in a 5-year-old patient with Cerebral Palsy with equinus foot deformity due to calf spasticity. Methods. The patient was assessed before and one month after the rMV treatment using Gait Analysis. Results. rMV had positive effects on the patient's gait pattern, as for spatio-temporal parameters (the stance duration and the step length increased their values after the treatment and kinematics. The pelvic tilt reduced its anteversion and the hip reduced the high flexion evidenced at baseline; the knee and the ankle gained a more physiological pattern bilaterally. The Gillette Gait Index showed a significant reduction of its value bilaterally, representing a global improvement of the child's gait pattern. Conclusions. The rMV technique seems to be an effective option for the gait pattern improvement in CP, which can be used also in very young patient. Significant improvements were displayed in terms of kinematics at all lower limb joints, not only at the joint directly involved by the treatment (i.e., ankle and knee joints but also at proximal joints (i.e., pelvis and hip joint.

  16. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    of AMPK in regulation of lipid handling and lipolysis in the basal non-contracting state and during muscle contractions in skeletal muscle. To evaluate the role of AMPK, we measured protein expression and phosphorylation as well as gene expression of proteins important for regulation of lipid handling...... and lipolysis in skeletal muscle from wildtype mice and mice overexpressing a kinase dead AMPKα2 construct (AMPKα2 KD) in the basal non-contracting state and during in situ stimulated muscle contractions. We found, that IMTG levels were ~50% lower in AMPKα2 KD in the basal resting state, explained by a lower....... IMTG was in wildtype mice reduced with ~50% after muscle contractions with no effect of contractions in AMPKα2 KD mice. Concomitantly, ATGL was phosphorylated at ser406 and HSL on ser565 with muscle contractions in an AMPK dependent manner, suggesting that these sites actives lipolysis during muscle...

  17. Coping under pressure: Strategies for maintaining confidence ...

    African Journals Online (AJOL)

    2010-08-11

    Aug 11, 2010 ... Coping under pressure: Strategies for maintaining confidence amongst South African soccer coaches. Authors: Jhalukpreya Surujlal1. Sheila Nguyen2. Affiliations: 1Faculty of Management. Sciences, Vaal University of. Technology, South Africa. 2Faculty of Business and Law, School of. Management and.

  18. How Do Positive Views Maintain Life Satisfaction?

    Science.gov (United States)

    Wu, Chia-Huei; Tsai, Ying-Mei; Chen, Lung Hung

    2009-01-01

    This study proposes three mediation pathways to explain how the positive views (perceived control, optimism and self-enhancement) proposed by Cummins and Nistico (Journal of Happiness Studies 3:37-69 2002) maintain life satisfaction. The three pathways were enhancing self-esteem, reducing have-want discrepancy and changing importance perceptions.…

  19. Seed zones for maintaining adapted plant populations

    Science.gov (United States)

    J. Bradley St. Clair; G. Randy Johnson; Vicky J. Erickson; Richard C. Johnson; Nancy L. Shaw

    2007-01-01

    Seed zones delineate areas within which plant materials can be transferred with little risk that they will be poorly adapted to their new location. They ensure successful restoration and revegetation, and help maintain the integrity of natural genetic structure. The value of seed zones is recognized in numerous policy statements from federal and state agencies. Results...

  20. maintainability of manpower system with restricted recruitment

    African Journals Online (AJOL)

    JERRY

    Maintainability is an aspect of manpower control that has to do with making a desired manpower structure to remain the ... when the promotion flow is controlled to induce the required change in manpower structure, or recruitment control when the ..... In this case, using MATLAB with w as given above, P satisfies. ′. ′. ′.

  1. Maintaining Discipline and Orderliness in Secondary Education ...

    African Journals Online (AJOL)

    This study, a descriptive survey research design investigated startegies for maintaining discipline and orderliness in secondary schools in awkaEducation zone, Anambra State. Population was all the 68 principals and2085 teachers in secondary schools in Awka Education zone. Two research questions and two null ...

  2. Sustainability Of The 21M Missile Maintainer

    Science.gov (United States)

    2016-02-16

    PROFESSIONAL STUDIES PAPER: SUSTAINABILITY OF THE 21M MISSILE MAINTAINER LIEUTENANT COLONEL DAVID S. MILLER AIR...of the health and sustainability of the ICBM maintenance officer career field will reveal conclusions and recommendations that could assist the...maintenance career field as healthy and sustainable , and ready to flourish. However, the evidence presented in this paper will show otherwise. To

  3. Maintainability of manpower system with restricted recruitment ...

    African Journals Online (AJOL)

    The maintainability of a manpower system is studied under a Markov framework. The classical method of controlling only one factor of flow is extended to highlight the case in which two factors are under control simultaneously. One special case of this extension, where recruitment of units faces partial embargo, is given, ...

  4. Maintaining Contour Trees of Dynamic Terrains

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Mølhave, Thomas; Revsbæk, Morten

    2015-01-01

    We study the problem of maintaining the contour tree T of a terrain Sigma, represented as a triangulated xy-monotone surface, as the heights of its vertices vary continuously with time. We characterize the combinatorial changes in T and how they relate to topological changes in Sigma. We present ...

  5. Maintaining ideal body weight counseling sessions

    Energy Technology Data Exchange (ETDEWEB)

    Brammer, S.H.

    1980-10-09

    The purpose of this program is to provide employees with the motivation, knowledge and skills necessary to maintain ideal body weight throughout life. The target audience for this program, which is conducted in an industrial setting, is the employee 40 years of age or younger who is at or near his/her ideal body weight.

  6. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Directory of Open Access Journals (Sweden)

    Matthew Emerson Randolph

    2015-10-01

    Full Text Available The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies, such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some muscular dystrophies. The biology of muscle stem cells varies depending on their embryologic origins and the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.

  7. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  8. Skeletal muscle PGC-1a is required for maintaining an acute LPS-induced TNFa response

    DEFF Research Database (Denmark)

    Olesen, Jesper; Larsson, Signe; Iversen, Ninna

    2012-01-01

    Many lifestyle-related diseases are associated with low-grade inflammation and peroxisome proliferator activated receptor ¿ coactivator (PGC)-1a has been suggested to be protective against low-grade inflammation. However, whether these anti-inflammatory properties affect acute inflammation is not...

  9. Racemic ketamine decreases muscle sympathetic activity but maintains the neural response to hypotensive challenges in humans

    NARCIS (Netherlands)

    Kienbaum, P.; Heuter, T.; Michel, M. C.; Peters, J.

    2000-01-01

    BACKGROUND: Cardiovascular stimulation and increased catecholamine plasma concentrations during ketamine anesthesia have been attributed to increased central sympathetic activity as well as catecholamine reuptake inhibition in various experimental models. However, direct recordings of efferent

  10. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  11. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential

    OpenAIRE

    Murray, IR; Baily, JE; Chen, WCW; Dar, A; Gonzalez, ZN; Jensen, AR; Petrigliano, FA; Deb, A; Henderson, NC

    2017-01-01

    Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. I...

  12. Breeding and maintaining high-quality insects

    DEFF Research Database (Denmark)

    Jensen, Kim; Kristensen, Torsten Nygård; Heckmann, Lars-Henrik

    2017-01-01

    Insects have a large potential for sustainably enhancing global food and feed production, and commercial insect production is a rising industry of high economic value. Insects suitable for production typically have fast growth, short generation time, efficient nutrient utilization, high...... reproductive potential, and thrive at high density. Insects may cost-efficiently convert agricultural and industrial food by-products into valuable protein once the technology is finetuned. However, since insect mass production is a new industry, the technology needed to efficiently farm these animals is still...... in a starting phase. Here, we discuss the challenges and precautions that need to be considered when breeding and maintaining high-quality insect populations for food and feed. This involves techniques typically used in domestic animal breeding programs including maintaining genetically healthy populations...

  13. Effect of exercise-induced enhancement of the leg-extensor muscle-tendon unit capacities on ambulatory mechanics and knee osteoarthritis markers in the elderly.

    Directory of Open Access Journals (Sweden)

    Kiros Karamanidis

    Full Text Available Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS and quadriceps femoris (QF muscle-tendon unit (MTU capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly.Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry.Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention.This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable to change in the elderly

  14. Alleviation of Motor Impairments in Patients with Cerebral Palsy: Acute Effects of Whole-body Vibration on Stretch Reflex Response, Voluntary Muscle Activation and Mobility

    Directory of Open Access Journals (Sweden)

    Anne Krause

    2017-08-01

    Full Text Available IntroductionIndividuals suffering from cerebral palsy (CP often have involuntary, reflex-evoked muscle activity resulting in spastic hyperreflexia. Whole-body vibration (WBV has been demonstrated to reduce reflex activity in healthy subjects, but evidence in CP patients is still limited. Therefore, this study aimed to establish the acute neuromuscular and kinematic effects of WBV in subjects with spastic CP.Methods44 children with spastic CP were tested on neuromuscular activation and kinematics before and immediately after a 1-min bout of WBV (16–25 Hz, 1.5–3 mm. Assessment included (1 recordings of stretch reflex (SR activity of the triceps surae, (2 electromyography (EMG measurements of maximal voluntary muscle activation of lower limb muscles, and (3 neuromuscular activation during active range of motion (aROM. We recorded EMG of m. soleus (SOL, m. gastrocnemius medialis (GM, m. tibialis anterior, m. vastus medialis, m. rectus femoris, and m. biceps femoris. Angular excursion was recorded by goniometry of the ankle and knee joint.ResultsAfter WBV, (1 SOL SRs were decreased (p < 0.01 while (2 maximal voluntary activation (p < 0.05 and (3 angular excursion in the knee joint (p < 0.01 were significantly increased. No changes could be observed for GM SR amplitudes or ankle joint excursion. Neuromuscular coordination expressed by greater agonist–antagonist ratios during aROM was significantly enhanced (p < 0.05.DiscussionThe findings point toward acute neuromuscular and kinematic effects following one bout of WBV. Protocols demonstrate that pathological reflex responses are reduced (spinal level, while the execution of voluntary movement (supraspinal level is improved in regards to kinematic and neuromuscular control. This facilitation of muscle and joint control is probably due to a reduction of spasticity-associated spinal excitability in favor of giving access for greater supraspinal input during voluntary motor

  15. A long-term cohort study of the muscle apparatus of female volleyball players after the application of a compensatory programme

    Directory of Open Access Journals (Sweden)

    Tamara Čučková

    2017-11-01

    Full Text Available Volleyball is a sport with great unilateral load that can have a negative impact on a postural system. The aim of the study was to perform a detailed examination of posture and muscle imbalance in elite female volleyball athletes and, according to the results of the examination, to put together compensatory exercises and to assess their effect. A group of elite junior female volleyball players (n = 12 was examined by an experienced physiotherapist using a complex kinesiological analysis especially focused on body posture (from frontal, sagittal and dorsal plane, shortened muscles and performance of basic movement patterns (hip extension, hip abduction, sit-up, cervical flexion, shoulder abduction, push-up. The preliminary examination showed that every tested player had some kind of posture deficiency. The compensatory programme, consisting of breathing techniques, stretching exercises, strengthening exercises with an elastic band, and balance exercises with a Bosu balance trainer, was applied at the end of every training session over the competitive parts of two volleyball seasons. Before the application of the exercise programme we found flat back in 92% subjects, whereas 33% of subjects exhibited it after compensation. Improvement was noted in the intensified lumbar lordosis (from 50% subjects to 42%, and scoliotic body posture (from 50% to 17%. The biggest improvement in shortened muscles in the upper body was observed on the m. levator scapulae (from 83% subjects to 8% and the m. trapezius (from 42% subjects to 8%; and in the lower body m. triceps surae (from 75% subjects to 33% and hip abductors (from 83% subjects to 25%. The study suggests that balance exercises with a Bosu balance trainer and exercises with an exercise elastic band seem to be useful for volleyball since we noted improvement in body posture, movement patterns and muscle shortness. We therefore highly recommend this compensatory programme.

  16. The hamstring muscle complex.

    Science.gov (United States)

    van der Made, A D; Wieldraaijer, T; Kerkhoffs, G M; Kleipool, R P; Engebretsen, L; van Dijk, C N; Golanó, P

    2015-07-01

    The anatomical appearance of the hamstring muscle complex was studied to provide hypotheses for the hamstring injury pattern and to provide reference values of origin dimensions, muscle length, tendon length, musculotendinous junction (MTJ) length as well as width and length of a tendinous inscription in the semitendinosus muscle known as the raphe. Fifty-six hamstring muscle groups were dissected in prone position from 29 human cadaveric specimens with a median age of 71.5 (range 45-98). Data pertaining to origin dimensions, muscle length, tendon length, MTJ length and length as well as width of the raphe were collected. Besides these data, we also encountered interesting findings that might lead to a better understanding of the hamstring injury pattern. These include overlapping proximal and distal tendons of both the long head of the biceps femoris muscle and the semimembranosus muscle (SM), a twist in the proximal SM tendon and a tendinous inscription (raphe) in the semitendinosus muscle present in 96 % of specimens. No obvious hypothesis can be provided purely based on either muscle length, tendon length or MTJ length. However, it is possible that overlapping proximal and distal tendons as well as muscle architecture leading to a resultant force not in line with the tendon predispose to muscle injury, whereas the presence of a raphe might plays a role in protecting the muscle against gross injury. Apart from these architectural characteristics that may contribute to a better understanding of the hamstring injury pattern, the provided reference values complement current knowledge on surgically relevant hamstring anatomy. IV.

  17. MUSCLE INJURIES IN ATHLETES.

    Science.gov (United States)

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2011-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best "treatment".

  18. An artificial muscle computer

    Science.gov (United States)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  19. Accessory piriformis muscle

    Directory of Open Access Journals (Sweden)

    Sedat Develi

    2017-03-01

    Full Text Available Piriformis muscle originates from facies pelvica of sacrum and inserts on the trochanter major. It is one of the lateral rotator muscles of the hip and a landmark point in the gluteal region since n. ischiadicus descends to the thigh by passing close to the muscle. This contiguity may be associated with the irritation of the nerve which is known as piriformis syndrome. A rare anatomic variation of the muscle which observed on 74 years old male cadaver is discussed in this case report. [Cukurova Med J 2017; 42(1.000: 182-183

  20. Inhibitors of endopeptidase and angiotensin-converting enzyme lead to an amplification of the morphological changes and an upregulation of the substance P system in a muscle overuse model.

    Science.gov (United States)

    Song, Yafeng; Stål, Per S; Yu, Ji-Guo; Lorentzon, Ronny; Backman, Clas; Forsgren, Sture

    2014-04-11

    We have previously observed, in studies on an experimental overuse model, that the tachykinin system may be involved in the processes of muscle inflammation (myositis) and other muscle tissue alterations. To further evaluate the significance of tachykinins in these processes, we have used inhibitors of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE), substances which are known to terminate the activity of various endogenously produced substances, including tachykinins. Injections of inhibitors of NEP and ACE, as well as the tachykinin substance P (SP), were given locally outside the tendon of the triceps surae muscle of rabbits subjected to marked overuse of this muscle. A control group was given NaCl injections. Evaluations were made at 1 week, a timepoint of overuse when only mild inflammation and limited changes in the muscle structure are noted in animals not treated with inhibitors. Both the soleus and gastrocnemius muscles were examined morphologically and with immunohistochemistry and enzyme immunoassay (EIA). A pronounced inflammation (myositis) and changes in the muscle fiber morphology, including muscle fiber necrosis, occurred in the overused muscles of animals given NEP and ACE inhibitors. The morphological changes were clearly more prominent than for animals subjected to overuse and NaCl injections (NaCl group). A marked SP-like expression, as well as a marked expression of the neurokinin-1 receptor (NK-1R) was found in the affected muscle tissue in response to injections of NEP and ACE inhibitors. The concentration of SP in the muscles was also higher than that for the NaCl group. The observations show that the local injections of NEP and ACE inhibitors led to marked SP-like and NK-1R immunoreactions, increased SP concentrations, and an amplification of the morphological changes in the tissue. The injections of the inhibitors thus led to a more marked myositis process and an upregulation of the SP system. Endogenously produced

  1. Understanding Muscle Dysfunction in Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Gina Rutherford

    2016-01-01

    Full Text Available Introduction. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME is a debilitating disorder of unknown aetiology, characterised by severe disabling fatigue in the absence of alternative diagnosis. Historically, there has been a tendency to draw psychological explanations for the origin of fatigue; however, this model is at odds with findings that fatigue and accompanying symptoms may be explained by central and peripheral pathophysiological mechanisms, including effects of the immune, oxidative, mitochondrial, and neuronal pathways. For example, patient descriptions of their fatigue regularly cite difficulty in maintaining muscle activity due to perceived lack of energy. This narrative review examined the literature for evidence of biochemical dysfunction in CFS/ME at the skeletal muscle level. Methods. Literature was examined following searches of PUB MED, MEDLINE, and Google Scholar, using key words such as CFS/ME, immune, autoimmune, mitochondria, muscle, and acidosis. Results. Studies show evidence for skeletal muscle biochemical abnormality in CFS/ME patients, particularly in relation to bioenergetic dysfunction. Discussion. Bioenergetic muscle dysfunction is evident in CFS/ME, with a tendency towards an overutilisation of the lactate dehydrogenase pathway following low-level exercise, in addition to slowed acid clearance after exercise. Potentially, these abnormalities may lead to the perception of severe fatigue in CFS/ME.

  2. Muscle conserving free gracilis transfer (mini-gracilis free flap

    Directory of Open Access Journals (Sweden)

    Bibhuti Bhusan Nayak

    2012-01-01

    Full Text Available Gracilis is a commonly used muscle for free tissue transfer. It is also split into two based on its pedicles and used as two units. Use of distal part as a free flap in isolation has never been described in literature. We describe a technique of harvesting a small unit of gracilis based on its minor pedicle and maintaining the continuity and conserving the major bulk of muscle. Thus, the function of the muscle is preserved and the same is also available for transfer on its major pedicle later, if required.

  3. Task, muscle and frequency dependent vestibular control of posture

    Science.gov (United States)

    Forbes, Patrick A.; Siegmund, Gunter P.; Schouten, Alfred C.; Blouin, Jean-Sébastien

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0–20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls. PMID:25620919

  4. Discriminant analysis of maintaining a vertical position in the water

    Directory of Open Access Journals (Sweden)

    Bratuša Zoran

    2015-01-01

    Full Text Available Water polo is the only sports game that takes place in the water. During the outplay, a vertical body position with the two basic mechanisms of the leg work - a breaststroke leg kick and an eggbeater leg kick, prevails. Starting from the significance of a vertical position during the game play, the methods of assessing physical preparedness of the athletes of all the categories also include the evaluation of maintaining a vertical position and consequently the load of the leg muscles. The measurements are performed during the maintenance of a vertical position (swimming in place through one of the specified mechanisms of leg work, i.e. a vertical position technique. The aim of this paper was to determine the application of different mechanisms of the leg kicks in maintaining a vertical position with young water polo players in relation to their position. The study included 29 selected junior water polo players (age_15.8 ± 0.8 years; BH_185.2 ± 5.3cm and BW_81.7 ± 7.7kg. The measurements were performed during the tests of swimming in place at the maximum intensity lasting 10 seconds, by the breaststroke and eggbeater leg kicks. The isometric tensiometry tests were used for the measurements. The results were analysed by the application of descriptive statistics, and the kinetic selection characteristic was defined by the application of discriminant analysis. Higher average values were achieved with the breaststroke leg kick technique Fmax, ImpF and RFD (avgFmaxLEGGBK =157.46±19.93N; avgImpF_LEGGBK =45.43±10.64Ns; avgRFD_LEGGBK=337.85±80.73N/s; avgFmaxLBKICK=227.18±49.17N; avgImpF_LBKICK=55.99±14.59Ns; avgRFD_LBKICK=545.47±159.15N/s. After discriminant analysis, the results have shown that the eggbeater leg kick is a selection technique, whereas the force - Fmax is a kinetic selection variable. Based on the obtained results and the analyses performed it may be concluded that a training factor dominant for maintaining a vertical position by

  5. Identifying crucial parameter correlations maintaining bursting activity.

    Directory of Open Access Journals (Sweden)

    Anca Doloc-Mihu

    2014-06-01

    Full Text Available Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA to each of these four groups. PCA identified a set of three maximal conductances (leak current, [Formula: see text]Leak; a persistent K current, [Formula: see text]K2; and of a persistent Na+ current, [Formula: see text]P that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of [Formula: see text]Leak, [Formula: see text]K2, and [Formula: see text]P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained.

  6. Patients' lived experiences regarding maintaining dignity.

    Science.gov (United States)

    Cheraghi, Mohammad Ali; Manookian, Arpi; Nikbakht Nasrabadi, Alireza

    2015-01-01

    Preservation of dignity is frequently emphasized as a basic patient's right in national and international nursing codes of ethics and is indeed the essence and core of nursing care. It is therefore essential to explore the concept based on patients' lived experiences in order to maintain and respect their dignity and consequently improve the quality of health services and patient satisfaction. The present study aimed to discover the lived experiences of Iranian patients regarding maintaining their dignity at the bedside. This qualitative study was conducted using an interpretive phenomenological approach. A total of 14 participants (9 women and 5 men) were purposefully selected, and data were collected through individual, semi-structured and deep interviews. The recorded interviews were transcribed and analyzed by the Diekelman, Allen and Tanner approach. The findings of this study revealed three main themes and related subthemes regarding the meaning of preserving patients' dignity. The first main theme was "exigency of preserving the innate human dignity" and comprised two subthemes: "respect for the intrinsic equality of all humans" and "treating the patient as a valued person, not an object". The second theme was "service based on love and kindness" and included two subthemes: 'being with the patient" and "inspiring the sense of being accepted and loved". The third main theme emerged as "dignifying and transcendental professional service" and consisted of two subthemes: "professional commitment to uphold patients' rights" and "enlightened practice". This study revealed that the concept of maintaining patients' dignity is related to health providers' duty to preserve patients' dignity and also their moral obligation to manifest the human love that is in their own as well as their patients' nature. In conclusion, if nurses reflect on the transcendental nature of nursing care, they will value and prize their everyday bedside nursing practice and will utilize their

  7. Methods for the Organogenesis of Skeletal Muscle in Tissue Culture

    Science.gov (United States)

    Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph

    1997-01-01

    Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.

  8. Maintaining Consistency of Data on the Web

    OpenAIRE

    Bernauer, Martin

    2005-01-01

    Increasingly more data is becoming available on the Web, estimates speaking of 1 billion documents in 2002. Most of the documents are Web pages whose data is considered to be in XML format, expecting it to eventually replace HTML. A common problem in designing and maintaining a Web site is that data on a Web page often replicates or derives from other data, the so-called base data, that is usually not contained in the deriving or replicating page. Consequently, replicas and derivations become...

  9. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-09-12

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  10. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-08-01

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  11. Take Control of Maintaining Your Mac

    CERN Document Server

    Kissell, Joe

    2009-01-01

    Keep your Mac running smoothly with our easy maintenance program! Regular maintenance is necessary to avoid problems and to ensure your Mac runs at peak performance, but it's hard to know what to do and when to do it. Best-selling author Joe Kissell has now applied his commonsense approach to the task of maintaining your Mac, whether you use Tiger or Leopard! Learn how to start on the right foot; what you should do daily, weekly, monthly, and yearly; and how to prepare for Mac OS X updates. Joe even explains how to monitor your Mac's health and debunks common panaceas. Read this book to lea

  12. Physical Rehabilitation Improves Muscle Function Following Volumetric Muscle Loss Injury

    Science.gov (United States)

    2014-12-19

    muscle , but it did so without significant morphological adaptations (e.g., no hypertrophy and hyperplasia). Wheel running up-regulated metabolic genes...been shown to foster regeneration of injured muscle [5,32,33] and promote hypertrophy (i.e., increased protein synthesis or muscle weight) in muscle ...remaining muscle tissue. Strengthening of synergist muscles can partially compensate for the loss of function due to VML injury. Compensatory hypertrophy

  13. Maintaining ancient organelles: mitochondrial biogenesis and maturation.

    Science.gov (United States)

    Vega, Rick B; Horton, Julie L; Kelly, Daniel P

    2015-05-22

    The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart. © 2015 American Heart Association, Inc.

  14. Maintaining Intergenerational Solidarity in Mexican Transnational Families

    Directory of Open Access Journals (Sweden)

    Catherine A. Solheim

    2016-02-01

    Full Text Available This study explored how Mexican transnational families maintain intergenerational relationships, using five of the dimensions of the intergenerational solidarity framework. Interview data from 13 adult migrant children who lived in the U.S. and their parents who lived in Mexico were analyzed. Structural solidarity was challenged by great distance between families. Families maintained associational solidarity by making contact frequently, though visiting was often restricted by lack of documentation. Functional solidarity was expressed through financial support to parents. This involved remittances sent to parents. However, it should be noted that it was often migrants’ siblings in Mexico who managed these remittances. Affectual solidarity was expressed through statements of love and concern for one another. Normative solidarity and consensual solidarity reflected the value of familismo through financial support and the desire to live together. Several dimensions of intergenerational solidarity are interconnected. This study provides evidence for the relevance of the intergenerational solidarity framework in transnational families and suggests that geographic context is relevant when studying intergenerational relationships.

  15. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    Science.gov (United States)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  16. Muscles, exercise and obesity

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Febbraio, Mark A

    2012-01-01

    of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential...

  17. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of m...

  18. The hamstring muscle complex

    NARCIS (Netherlands)

    van der Made, A. D.; Wieldraaijer, T.; Kerkhoffs, G. M.; Kleipool, R. P.; Engebretsen, L.; van Dijk, C. N.; Golanó, P.

    2015-01-01

    The anatomical appearance of the hamstring muscle complex was studied to provide hypotheses for the hamstring injury pattern and to provide reference values of origin dimensions, muscle length, tendon length, musculotendinous junction (MTJ) length as well as width and length of a tendinous

  19. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  20. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.

    Science.gov (United States)

    Ushiyama, Junichi; Takahashi, Yuji; Ushiba, Junichi

    2010-10-01

    It has been well documented that the 15- to 35-Hz oscillatory activity of the sensorimotor cortex shows coherence with the muscle activity during weak to moderate steady contraction. To investigate the muscle dependency of the corticomuscular coherence and its training-related alterations, we quantified the coherence between electroencephalogram (EEG) from the sensorimotor cortex and rectified electromyogram (EMG) from five upper limb (first dorsal interosseous, flexor carpi radialis, extensor carpi radialis, biceps brachii, triceps brachii) and four lower limb muscles (soleus, tibialis anterior, biceps femoris, rectus femoris), while maintaining a constant force level at 30% of maximal voluntary contraction of each muscle, in 24 untrained, 12 skill-trained (ballet dancers), and 10 strength-trained (weightlifters) individuals. Data from untrained subjects demonstrated the muscle dependency of corticomuscular coherence. The magnitude of the EEG-EMG coherence was significantly greater in the distally located lower limb muscles, such as the soleus and tibialis anterior, than in the upper or other lower limb muscles in untrained subjects (P muscles, according to the functional role of each muscle. In addition, the ballet dancers and weightlifters showed smaller EEG-EMG coherences than the untrained subjects, especially in the lower limb muscles (P muscles and that this neural adaptation may lead to finer control of muscle force during steady contraction.

  1. Estrogen replacement, muscle composition, and physical function: the Health ABC Study

    NARCIS (Netherlands)

    Taaffe, D.R.; Newman, A.B.; Haggerty, C.L.; Colbert, L.H.; de Rekeneire, N.; Visser, M.; Goodpaster, B.H.; Nevitt, M.C.; Tylavsky, F.A.; Harris, T.B.

    2005-01-01

    PURPOSE: Although the beneficial effects of estrogen use on cardiovascular and cognitive function in postmenopausal women have been recently discredited, controversy remains regarding its usefulness for maintaining skeletal muscle mass or strength. Therefore, the purpose of this study was to

  2. Estrogen replacement, muscle composition, and physical function : The Health ABC Study

    NARCIS (Netherlands)

    Taaffe, Dennis R; Newman, Anne B; Haggerty, Catherine L; Colbert, Lisa H; de Rekeneire, Nathalie; Visser, Marjolein; Goodpaster, Bret H; Nevitt, Michael C; Tylavsky, Frances A; Harris, Tamara B

    2005-01-01

    PURPOSE: Although the beneficial effects of estrogen use on cardiovascular and cognitive function in postmenopausal women have been recently discredited, controversy remains regarding its usefulness for maintaining skeletal muscle mass or strength. Therefore, the purpose of this study was to

  3. Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism

    DEFF Research Database (Denmark)

    Mandrup, Camilla M; Egelund, Jon; Nyberg, Michael

    2018-01-01

    To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause. Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n...

  4. [Diabetic muscle infarction].

    Science.gov (United States)

    ter Bals, Edske; van der Woude, Henk-Jan; Smets, Yves F C

    2013-01-01

    Diabetic muscle infarction is a rare complication of diabetes mellitus that typically presents in the thigh; microvascular abnormalities may play a role. A 32-year-old female presented at the outpatient clinic with a painful, swollen thigh. She had suffered from type 1 diabetes for 22 years. The patient was admitted to the nephrology ward for further evaluation. Deep-venous thrombosis and abscess were excluded with echography. After additional investigations - MRI and a biopsy of skin, muscle and fascia - the diagnosis diabetic muscle infarction was made. The patient was treated with bed rest and analgesics. With hindsight, the muscle biopsy was not actually required in reaching a diagnosis. The diagnosis 'diabetic muscle infarction' is made on the basis of clinical presentation in combination with MRI findings. The treatment consists of bed rest and analgesics.

  5. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping.

    Science.gov (United States)

    Robertson, Benjamin D; Sawicki, Gregory S

    2014-07-21

    We present a simplified Hill-type model of the human triceps surae-Achilles tendon complex working on a gravitational-inertial load during cyclic contractions (i.e. vertical hopping). Our goal was to determine the role that neural control plays in governing muscle, or contractile element (CE), and tendon, or series elastic element (SEE), mechanics and energetics within a compliant muscle-tendon unit (MTU). We constructed a 2D parameter space consisting of many combinations of stimulation frequency and magnitude (i.e. neural control strategies). We compared the performance of each control strategy by evaluating peak force and average positive mechanical power output for the system (MTU) and its respective components (CE, SEE), force-length (F-L) and -velocity (F-V) operating point of the CE during active force production, average metabolic rate for the CE, and both MTU and CE apparent efficiency. Our results suggest that frequency of stimulation plays a primary role in governing whole-MTU mechanics. These include the phasing of both activation and peak force relative to minimum MTU length, average positive power, and apparent efficiency. Stimulation amplitude was primarily responsible for governing average metabolic rate and within MTU mechanics, including peak force generation and elastic energy storage and return in the SEE. Frequency and amplitude of stimulation both played integral roles in determining CE F-L operating point, with both higher frequency and amplitude generally corresponding to lower CE strains, reduced injury risk, and elimination of the need for passive force generation in the CE parallel elastic element (PEE). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  7. Heartwarming memories: Nostalgia maintains physiological comfort.

    Science.gov (United States)

    Zhou, Xinyue; Wildschut, Tim; Sedikides, Constantine; Chen, Xiaoxi; Vingerhoets, Ad J J M

    2012-08-01

    Nostalgia, a sentimental longing or wistful affection for the past, is a predominantly positive and social emotion. Recent evidence suggests that nostalgia maintains psychological comfort. Here, we propose, and document in five methodologically diverse studies, a broader homeostatic function for nostalgia that also encompasses the maintenance of physiological comfort. We show that nostalgia--an emotion with a strong connotation of warmth--is triggered by coldness. Participants reported stronger nostalgia on colder (vs. warmer) days and in a cold (vs. neutral or warm) room. Nostalgia, in turn, modulates the interoceptive feeling of temperature. Higher levels of music-evoked nostalgia predicted increased physical warmth, and participants who recalled a nostalgic (vs. ordinary autobiographical) event perceived ambient temperature as higher. Finally, and consistent with the close central nervous system integration of temperature and pain sensations, participants who recalled a nostalgic (vs. ordinary autobiographical) event evinced greater tolerance to noxious cold.

  8. [Maintaining solidarity: is mutuality the solution?].

    Science.gov (United States)

    Gevers, J K M; Ploem, M C

    2013-01-01

    Solidarity is essentially the willingness to contribute to the community and its demands, which may even involve contributing more than one is expecting to receive. Another principle is mutuality: this refers to a balance between rights and obligations or between mutual obligations. In its advisory document 'The importance of mutuality......solidarity takes work!', The Dutch Council for Public Health and Health Care underlines the importance of ensuring solidarity within the Dutch health care system, e.g. by encouraging patients to take responsibility for their own health, possibly by introducing elements of mutuality. In our contribution, we comment on the Council's advice. Although we fully agree with the overall conclusion that solidarity should be maintained within the system, we do not see how the introduction of increased mutuality will contribute to this goal.

  9. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  10. Lack of skeletal muscle IL-6 influences hepatic glucose metabolism in mice during prolonged exercise

    DEFF Research Database (Denmark)

    Bertholdt, Lærke; Gudiksen, Anders; Schwartz, Camilla Lindgren

    2017-01-01

    The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscl...

  11. Fatigue-associated changes in the electromyogram of the human first dorsal interosseous muscle

    NARCIS (Netherlands)

    Zijdewind, Inge; Zwarts, MJ; Kernell, D

    1999-01-01

    Muscle fatigue is a clinically important symptom, often analyzed using electromyography (EMG). We analyzed fatigue reactions of the first dorsal interosseous muscle (FDI) during a maintained contraction at half-maximal force (1/2-MVC test). EMGs were recorded with large surface electrodes and,

  12. Ballistic tongue projection in chameleons maintains high performance at low temperature.

    Science.gov (United States)

    Anderson, Christopher V; Deban, Stephen M

    2010-03-23

    Environmental temperature impacts the physical activity and ecology of ectothermic animals through its effects on muscle contractile physiology. Sprinting, swimming, and jumping performance of ectotherms decreases by at least 33% over a 10 degrees C drop, accompanied by a similar decline in muscle power. We propose that ballistic movements that are powered by recoil of elastic tissues are less thermally dependent than movements that rely on direct muscular power. We found that an elastically powered movement, ballistic tongue projection in chameleons, maintains high performance over a 20 degrees C range. Peak velocity and power decline by only 10%-19% with a 10 degrees C drop, compared to >42% for nonelastic, muscle-powered tongue retraction. These results indicate that the elastic recoil mechanism circumvents the constraints that low temperature imposes on muscle rate properties and thereby reduces the thermal dependence of tongue projection. We propose that organisms that use elastic recoil mechanisms for ecologically important movements such as feeding and locomotion may benefit from an expanded thermal niche.

  13. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  14. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  15. Integration core exercises elicit greater muscle activation than isolation exercises.

    Science.gov (United States)

    Gottschall, Jinger S; Mills, Jackie; Hastings, Bryce

    2013-03-01

    The American College of Sports Medicine and the United States Department of Health and Human Services advocate core training as a means to improve stability, reduce injury, and maintain mobility. There are countless exercises that target the primary core trunk muscles (abdominal and lumbar) with the aim of providing these benefits. However, it is unknown as to which exercises elicit the greatest activation thereby maximizing functional gains and peak performance. Thus, our purpose was to determine whether integration core exercises that require activation of the distal trunk muscles (deltoid and gluteal) elicit greater activation of primary trunk muscles in comparison with isolation core exercises that only require activation of the proximal trunk muscles. Twenty participants, 10 men and 10 women, completed 16 randomly assigned exercises (e.g., crunch, upper body extension, and hover variations). We measured muscle activity with surface electromyography of the anterior deltoid, rectus abdominus, external abdominal oblique, lumbar erector spinae, thoracic erector spinae, and gluteus maximus. Our results indicate that the activation of the abdominal and lumbar muscles was the greatest during the exercises that required deltoid and gluteal recruitment. In conclusion, when completing the core strength guidelines, an integrated routine that incorporates the activation of distal trunk musculature would be optimal in terms of maximizing strength, improving endurance, enhancing stability, reducing injury, and maintaining mobility.

  16. Detecting destabilizing wheelchair conditions for maintaining seated posture.

    Science.gov (United States)

    Crawford, Anna; Armstrong, Kiley; Loparo, Kenneth; Audu, Musa; Triolo, Ronald

    2018-02-01

    The purpose of this study was to detect and classify potentially destabilizing conditions encountered by manual wheelchair users with spinal cord injuries (SCI) to dynamically increase stability and prevent falls. A volunteer with motor complete T11 paraplegia repeatedly propelled his manual wheelchair over level ground and simulated destabilizing conditions including sudden stops, bumps and rough terrain. Wireless inertial measurement units attached to the wheelchair frame and his sternum recorded associated accelerations and angular velocities. Algorithms based on mean, standard deviation and minimum Mahalanobis distance between conditions were constructed and applied to the data off-line to discriminate between events. Classification accuracy was computed to assess effects of sensor position and potential for automatically selecting a dynamic intervention to best stabilize the wheelchair user. The decision algorithm based on acceleration signals successfully differentiated destabilizing conditions and level over-ground propulsion with classification accuracies of 95.8, 58.3 and 91.7% for the chest, wheelchair and both sensors, respectively. Mahalanobis distance classification based on trunk accelerations is a feasible method for detecting destabilizing events encountered by wheelchair users and may serve as an effective trigger for protective interventions. Incorporating data from wheelchair-mounted sensors decreases the false negative rate. Implications for Rehabilitation SCI has a significant impact on quality of life, compromising the ability to participate in social or leisure activities, and complete other activities of daily living for an independent lifestyle. Using inertial measurement units to build an event classifier for control the actions of a neuroprosthetic device for maintaining seated posture in wheelchair users. Varying muscle activation increases user stability reducing the risk of injury.

  17. CDC20 maintains tumor initiating cells

    Science.gov (United States)

    Xie, Qi; Wu, Qiulian; Mack, Stephen C.; Yang, Kailin; Kim, Leo; Hubert, Christopher G.; Flavahan, William A.; Chu, Chengwei; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention. PMID:25938542

  18. How RNA viruses maintain their genome integrity.

    Science.gov (United States)

    Barr, John N; Fearns, Rachel

    2010-06-01

    RNA genomes are vulnerable to corruption by a range of activities, including inaccurate replication by the error-prone replicase, damage from environmental factors, and attack by nucleases and other RNA-modifying enzymes that comprise the cellular intrinsic or innate immune response. Damage to coding regions and loss of critical cis-acting signals inevitably impair genome fitness; as a consequence, RNA viruses have evolved a variety of mechanisms to protect their genome integrity. These include mechanisms to promote replicase fidelity, recombination activities that allow exchange of sequences between different RNA templates, and mechanisms to repair the genome termini. In this article, we review examples of these processes from a range of RNA viruses to showcase the diverse approaches that viruses have evolved to maintain their genome sequence integrity, focusing first on mechanisms that viruses use to protect their entire genome, and then concentrating on mechanisms that allow protection of the genome termini, which are especially vulnerable. In addition, we discuss examples in which it might be beneficial for a virus to 'lose' its genomic termini and reduce its replication efficiency.

  19. Sociable Robots Through Self-Maintained Energy

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2006-12-01

    Full Text Available Research of autonomous mobile robots has mostly emphasized interaction and coordination that are natually inspired from biological behavior of birds, insects, and fish: flocking, foraging, collecting, and sharing. However, most research has been only focused on autonomous behaviors in order to perform robots like animals, whereas it is lacked of determinant to those behaviours: energy. Approaching to clusted amimal and the higher, collective and sharing food among individuals are major activity to keep society being. This paper issues an approach to sociable robots using self-maintained energy in cooperative mobile robots, which is dominantly inspired from swarm behavior of collecting and sharing food of honey-bee and ant. Autonomous mobile robots are usually equipped with a finite energy, thus they can operate in a finite time. To overcome the finitude, we describe practical deployment of mobile robots that are capable of carrying and exchanging fuel to other robots. Mechanism implementation including modular hardware and control architecture to demonstrate the capabicities of the approach is presented. Subsequently, the battery exchange algorithm basically based on probabilistic modeling of total energy on each robot located in its local vicinity is described. The paper is concluded with challenging works of chain of mobile robots, rescue, repair, and relation of heterogeneous robots.

  20. Sociable Robots through Self-maintained Energy

    Directory of Open Access Journals (Sweden)

    Henrik Schioler

    2008-11-01

    Full Text Available Research of autonomous mobile robots has mostly emphasized interaction and coordination that are natually inspired from biological behavior of birds, insects, and fish: flocking, foraging, collecting, and sharing. However, most research has been only focused on autonomous behaviors in order to perform robots like animals, whereas it is lacked of determinant to those behaviours: energy. Approaching to clusted amimal and the higher, collective and sharing food among individuals are major activity to keep society being. This paper issues an approach to sociable robots using self-maintained energy in cooperative mobile robots, which is dominantly inspired from swarm behavior of collecting and sharing food of honey-bee and ant. Autonomous mobile robots are usually equipped with a finite energy, thus they can operate in a finite time. To overcome the finitude, we describe practical deployment of mobile robots that are capable of carrying and exchanging fuel to other robots. Mechanism implementation including modular hardware and control architecture to demonstrate the capabicities of the approach is presented. Subsequently, the battery exchange algorithm basically based on probabilistic modeling of total energy on each robot located in its local vicinity is described. The paper is concluded with challenging works of chain of mobile robots, rescue, repair, and relation of heterogeneous robots.

  1. Muscle Disorders - Multiple Languages

    Science.gov (United States)

    ... Health Information Translations Spanish (español) Expand Section Muscle Disorders: MedlinePlus Health Topic - English ... Health Information Translations Characters not displaying correctly on this page? See language display issues . Return to the MedlinePlus Health Information ...

  2. Neurogenic muscle cramps.

    Science.gov (United States)

    Katzberg, Hans D

    2015-08-01

    Muscle cramps are sustained, painful contractions of muscle and are prevalent in patients with and without medical conditions. The objective of this review is to present updates on the mechanism, investigation and treatment of neurogenic muscle cramps. PubMed and Embase databases were queried between January 1980 and July 2014 for English-language human studies. The American Academy of Neurology classification of studies (classes I-IV) was used to assess levels of evidence. Mechanical disruption, ephaptic transmission, disruption of sensory afferents and persistent inward currents have been implicated in the pathogenesis of neurogenic cramps. Investigations are directed toward identifying physiological triggers or medical conditions predisposing to cramps. Although cramps can be self-limiting, disabling or sustained muscle cramps should prompt investigation for underlying medical conditions. Lifestyle modifications, treatment of underlying conditions, stretching, B-complex vitamins, diltiezam, mexiletine, carbamazepine, tetrahydrocannabinoid, leveteracitam and quinine sulfate have shown evidence for treatment.

  3. Human airway smooth muscle

    NARCIS (Netherlands)

    J.C. de Jongste (Johan)

    1987-01-01

    textabstractThe function of airway smooth muscle in normal subjects is not evident. Possible physiological roles include maintenance of optimal regional ventilation/perfusion ratios, reduction of anatomic dead space, stabilisation of cartilaginous bronchi, defense against impurities and, less

  4. Water and Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Enrico Grazi

    2008-08-01

    Full Text Available The interaction between water and the protein of the contractile machinery as well as the tendency of these proteins to form geometrically ordered structures provide a link between water and muscle contraction. Protein osmotic pressure is strictly related to the chemical potential of the contractile proteins, to the stiffness of muscle structures and to the viscosity of the sliding of the thin over the thick filaments. Muscle power output and the steady rate of contraction are linked by modulating a single parameter, a viscosity coefficient. Muscle operation is characterized by working strokes of much shorter length and much quicker than in the classical model. As a consequence the force delivered and the stiffness attained by attached cross-bridges is much larger than usually believed.

  5. Muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Gavras, H

    1982-01-01

    glycogenolysis during exercise: contractions principally stimulate glycogenolysis early in exercise, and a direct effect of epinephrine on muscle is needed for continued glycogenolysis. In addition, epinephrine increased oxygen consumption and glucose uptake in both resting and electrically stimulated...

  6. Pneumatic Muscle Actuator Control

    National Research Council Canada - National Science Library

    Lilly, John

    2000-01-01

    This research is relevant to the Air Fore mission because pneumatic muscle actuation devices arc advantageous for certain types of robotics as well as for strength and/or mobility assistance for humans...

  7. Muscle power failure in mobility-limited older adults: preserved single fiber function despite lower whole muscle size, quality and rate of neuromuscular activation.

    Science.gov (United States)

    Reid, Kieran F; Doros, Gheorghe; Clark, David J; Patten, Carolynn; Carabello, Robert J; Cloutier, Gregory J; Phillips, Edward M; Krivickas, Lisa S; Frontera, Walter R; Fielding, Roger A

    2012-06-01

    This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40-55 years), 28 healthy older adults (70-85 years) and 34 mobility-limited older adults (70-85 years). We hypothesized that leg extensor muscle power would be significantly lower in mobility-limited elders relative to both healthy groups and sought to characterize the physiological mechanisms associated with the reduction of muscle power with aging. Computed tomography was utilized to assess mid-thigh body composition and calculate specific muscle power and strength. Surface electromyography was used to assess rate of neuromuscular activation and muscle biopsies were taken to evaluate single muscle fiber contractile properties. Peak muscle power, strength, muscle cross-sectional area, specific muscle power and rate of neuromuscular activation were significantly lower among mobility-limited elders compared to both healthy groups (P ≤ 0.05). Mobility-limited older participants had greater deposits of intermuscular adipose tissue (P mobility-limited elders relative to both healthy groups. Male gender was associated with greater decrements in peak and specific muscle power among mobility-limited participants. Impairments in the rate of neuromuscular activation and concomitant reductions in muscle quality are important physiological mechanisms contributing to muscle power deficits and mobility limitations. The dissociation between age-related changes at the whole muscle and single fiber level suggest that, even among older adults with overt mobility problems, contractile properties of surviving muscle fibers are preserved in an attempt to maintain overall muscle function.

  8. Reference values of maximum isometric muscle force obtained in 270 children aged 4-16 years by hand-held dynamometry

    NARCIS (Netherlands)

    Beenakker, E A; van der Hoeven, J H; Fock, J M; Maurits, N M

    Since muscle force and functional ability are not related linearly; maximum force can be reduced while functional ability is still maintained. For diagnostic and therapeutic reasons loss of muscle force should be detected as early and accurately as possible. Because of growth factors, maximum muscle

  9. Human airway smooth muscle

    OpenAIRE

    Jongste, Johan

    1987-01-01

    textabstractThe function of airway smooth muscle in normal subjects is not evident. Possible physiological roles include maintenance of optimal regional ventilation/perfusion ratios, reduction of anatomic dead space, stabilisation of cartilaginous bronchi, defense against impurities and, less likely, squeezing mucus out of mucous glands and pulling open the alveoli next to the airways1 . Any role of airway smooth muscle is necessarily limited, because an important degree of contraction will l...

  10. Mapping of electrical muscle stimulation using MRI

    Science.gov (United States)

    Adams, Gregory R.; Harris, Robert T.; Woodard, Daniel; Dudley, Gary A.

    1993-01-01

    The pattern of muscle contractile activity elicited by electromyostimulation (EMS) was mapped and compared to the contractile-activity pattern produced by voluntary effort. This was done by examining the patterns and the extent of contrast shift, as indicated by T2 values, im magnetic resonance (MR) images after isometric activity of the left m. quadriceps of human subjects was elicited by EMS (1-sec train of 500-microsec sine wave pulses at 50 Hz) or voluntary effort. The results suggest that, whereas EMS stimulates the same fibers repeatedly, thereby increasing the metabolic demand and T2 values, the voluntary efforts are performed by more diffuse asynchronous activation of skeletal muscle even at forces up to 75 percent of maximal to maintain performance.

  11. Muscle Strength and Poststroke Hemiplegia

    DEFF Research Database (Denmark)

    Kristensen, Otto H; Stenager, Egon; Dalgas, Ulrik

    2017-01-01

    OBJECTIVES: To systematically review (1) psychometric properties of criterion isokinetic dynamometry testing of muscle strength in persons with poststroke hemiplegia (PPSH); and (2) literature that compares muscle strength in patients poststroke with that in healthy controls assessed by criterion...... test in persons with stroke, generally showing marked reductions in muscle strength of paretic and, to a lesser degree, nonparetic muscles when compared with healthy controls, independent of muscle group, contraction mode, and contraction velocity....

  12. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    . Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular......Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans...

  13. Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration

    Directory of Open Access Journals (Sweden)

    Miyabara E.H.

    2005-01-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA, on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001 and CsA significantly reduced the body weight gain (15.5%; P = 0.01 during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05. CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001. Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.

  14. EFFECT OF STATIC STRETCHING ON STRENGTH OF HAMSTRING MUSCLE

    Directory of Open Access Journals (Sweden)

    Shweta P Pachpute

    2016-04-01

    Full Text Available Background: Flexibility is an indisputable component of fitness defined as the ability to move a single joint or series of joints through an unrestricted pain free range of motion. Static stretching consists of stretching a muscle or group of muscle to its farthest point and then maintaining or holding that position. The literature supports that muscles are capable of exerting their greatest strength when they are fully lengthen. Hence this study was conducted to find the effect of static stretching on hamstring muscle. Methods: The study was experimental study design. 40 samples were selected by purposive sampling method. Flexibility of the hamstring muscle unilaterally right side (arbitrarily chosen was measured by active knee extension test of all the subjects who met the inclusion criteria of the study. After measuring the flexibility of hamstring muscle, strength was measured by 1RM for the same side (right hamstring muscle. Static Stretching Protocol was given for 5 days per week for 6 weeks to all the participants. After the 6 weeks of training, knee extension deficiency and 1RM was documented. Result: Statistical analysis using Paired t-test was done. The t-test showed that there was significant effect of static stretching on 1RM of hamstring muscle (p<0.05 & active knee extension test (p=0.000. Conclusion: Static stretching showed significant change in pre and post 1RM of hamstring muscle and active knee extension test. There was significant improvement of hamstring muscles flexibility and strength after giving static stretching in female population. So it is possible that females who are unable to participate in traditional strength training activities may be able to experience gains through static stretching.

  15. Effect of wobble board training on movement strategies to maintain equilibrium on unstable surfaces

    DEFF Research Database (Denmark)

    Silva, Priscila de Brito; Mrachacz-Kersting, Natalie; Oliveira, Anderson Souza

    2018-01-01

    Standing on unstable surfaces requires more complex motor control mechanisms to sustain balance when compared to firm surfaces. Surface instability enhances the demand to maintain equilibrium and is often used to challenge balance, but little is known about how balance training affects movement...... strategies to control posture while standing on unstable surfaces. This study aimed at assessing the effects of isolated wobble board (WB) training on movement strategies to maintain balance during single-leg standing on a WB. Twenty healthy men were randomly assigned to either a control or a training group....... The training group took part in four weeks of WB training and both groups were tested pre and post the intervention. Electromyography from the supporting lower limb muscles, full-body kinematics and ground reaction forces were recorded during firm surface (FS) and WB single-leg standing. WB training did...

  16. Use It or Lose It: Skeletal Muscle Function and Performance Results from Space Shuttle

    Science.gov (United States)

    Ryder, Jeffrey

    2011-01-01

    The Space Shuttle Program provided a wealth of valuable information regarding the adaptations of skeletal muscle to weightlessness. Studies conducted during the Extended Duration Orbiter Medical Project (EDOMP) represented ground breaking work on the effects of spaceflight on muscle form and function from applied human research to cellular adaptations. Results from detailed supplementary objective (DSO) 477 demonstrated that muscle strength losses could occur rapidly in response to short-duration spaceflight. The effects of spaceflight-induced unloading were primarily restricted to postural muscles such as those of the back as well as the knee extensors. DSO 606 provided evidence from MRI that the observed strength losses were partially accounted for by a reduction in the size of the individual muscles. Muscle biopsy studies conducted during DSO 475 were able to show muscle atrophy in individual muscle fibers from the quadriceps muscles. Reduced quadriceps muscle size and strength was also observed during the 17-d Life and Microgravity Spacelab mission aboard STS-78. Multiple maximal strength tests were conducted in flight on the calf muscles and it has been hypothesized that these high force contractions may have acted as a countermeasure. Muscle fiber mechanics were studied on calf muscle samples pre- and postflight. While some responses were crewmember specific, the general trend was that muscle fiber force production dropped and shortening velocity increased. The increased shortening velocity helped to maintain muscle fiber power. Numerous rodent studies performed during Shuttle missions suggest that many of the effects reported in Shuttle crewmembers could be due to lesions in the cellular signaling pathways that stimulate protein synthesis as well as an increase in the mechanisms that up-regulate protein breakdown. The results have important implications regarding the overall health and performance capabilities of future crewmembers that will venture beyond

  17. Analysis of muscle activation in lower extremity for static balance.

    Science.gov (United States)

    Chakravarty, Kingshuk; Chatterjee, Debatri; Das, Rajat Kumar; Tripathy, Soumya Ranjan; Sinha, Aniruddha

    2017-07-01

    Balance plays an important role for human bipedal locomotion. Degeneration of balance control is prominent in stroke patients, elderly adults and even for majority of obese people. Design of personalized balance training program, in order to strengthen muscles, requires the analysis of muscle activation during an activity. In this paper we have proposed an affordable and portable approach to analyze the relationship between the static balance strategy and activation of various lower extremity muscles. To do that we have considered Microsoft Kinect XBox 360 as a motion sensing device and Wii balance board for measuring external force information. For analyzing the muscle activation pattern related to static balance, participants are asked to do the single limb stance (SLS) exercise on the balance board and in front of the Kinect. Static optimization to minimize the overall muscle activation pattern is carried out using OpenSim, which is an open-source musculoskeletal simulation software. The study is done on ten normal and ten obese people, grouped according to body mass index (BMI). Results suggest that the lower extremity muscles like biceps femoris, psoas major, sartorius, iliacus play the major role for both maintaining the balance using one limb as well as maintaining the flexion of the other limb during SLS. Further investigations reveal that the higher muscle activations of the flexed leg for normal group demonstrate higher strength. Moreover, the lower muscle activation of the standing leg for normal group demonstrate more headroom for the biceps femoris-short-head and psoas major to withstand the load and hence have better static balance control.

  18. Muscle synergy analysis in transtibial amputee during ramp ascending activity.

    Science.gov (United States)

    Mehryar, P; Shourijeh, M S; Maqbool, H F; Torabi, M; Dehghani-Sanij, A A

    2016-08-01

    In developed countries, the highest number of amputees are elderly with transtibial amputation. Walking on inclined surfaces is difficult for amputees due to loss of muscle volume and strength thereby transtibial amputees (TA) rely on the intact limb to maintain stability. The aim of this study was to use the concatenated non-negative matrix factorization (CNMF) technique to calculate muscle synergy components and compare the difference in muscle synergies and their associated activation profiles in the healthy and amputee groups during ramp ascending (RA) activity. Healthy subjects' dominant leg and amputee's intact leg (IL) were considered for recording surface electromyography (sEMG). The muscle synergies comparison showed a reasonable correlation between the healthy and amputee groups. This suggests the central nervous system (CNS) activates the same group of muscles synergistically. However, the activation coefficient profile (C) results indicated statistically significant difference (p amputee groups. The difference exhibited in activation profiles of amputee's IL could be due to the instability of the prosthetic leg during the GC which resulted in alteration of the IL muscles activations. This information will be useful in rehabilitation and in the future development of prosthetic devices by using the IL muscles information to control the prostheses.

  19. Satellite Cells and the Muscle Stem Cell Niche

    Science.gov (United States)

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  20. A metabolic link to skeletal muscle wasting and regeneration

    Directory of Open Access Journals (Sweden)

    René eKoopman

    2014-02-01

    Full Text Available Due to its essential role in movement, insulating the internal organs, generating heat to maintain core body temperature, and acting as a major energy storage depot, any impairment to skeletal muscle structure and function may lead to an increase in both morbidity and mortality. In the context of skeletal muscle, altered metabolism is directly associated with numerous pathologies and disorders, including diabetes, and obesity, while many skeletal muscle pathologies have secondary changes in metabolism, including cancer cachexia, sarcopenia and the muscular dystrophies. Furthermore, the importance of cellular metabolism in the regulation of skeletal muscle stem cells is beginning to receive significant attention. Thus, it is clear that skeletal muscle metabolism is intricately linked to the regulation of skeletal muscle mass and regeneration. The aim of this review is to discuss some of the recent findings linking a change in metabolism to changes in skeletal muscle mass, as well as describing some of the recent studies in developmental, cancer and stem-cell biology that have identified a role for cellular metabolism in the regulation of stem cell function, a process termed ‘metabolic reprogramming’.

  1. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  2. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  3. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  4. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance.

    Science.gov (United States)

    Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa

    2015-03-01

    Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.

  5. Muscle as a secretory organ

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2013-01-01

    Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent...... evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists...... of several hundred secreted peptides. This finding provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs such as adipose tissue, liver, pancreas, bones, and brain. In addition, several myokines exert their effects within the muscle itself. Many...

  6. Hydraulically actuated artificial muscles

    Science.gov (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  7. Foot muscles strengthener

    Directory of Open Access Journals (Sweden)

    Boris T. Glavač

    2012-04-01

    Full Text Available Previous experience in the correction of flat feet consisted of the use of insoles for shoes and exercises with toys, balls, rollers, inclined planes, etc. A device for strengthening foot muscles is designed for the correction of flat feet in children and, as its name suggests, for strengthening foot muscles in adults. The device is made of wood and metal, with a mechanism and technical solutions, enabling the implementation of specific exercises to activate muscles responsible for the formation of the foot arch. It is suitable for home use with controlled load quantities since it has calibrated springs. The device is patented with the Intellectual Property Office, Republic of Serbia, as a petty patent.

  8. Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro.

    Science.gov (United States)

    Ishii, Kana; Sakurai, Hidetoshi; Suzuki, Nobuharu; Mabuchi, Yo; Sekiya, Ichiro; Sekiguchi, Kiyotoshi; Akazawa, Chihiro

    2018-02-13

    Satellite cells function as precursor cells in mature skeletal muscle homeostasis and regeneration. In healthy tissue, these cells are maintained in a state of quiescence by a microenvironment formed by myofibers and basement membrane in which LAMININs (LMs) form a major component. In the present study, we evaluated the satellite cell microenvironment in vivo and found that these cells are encapsulated by LMα2-5. We sought to recapitulate this satellite cell niche in vitro by culturing satellite cells in the presence of recombinant LM-E8 fragments. We show that treatment with LM-E8 promotes proliferation of satellite cells in an undifferentiated state, through reduced phosphorylation of JNK and p38. On transplantation into injured muscle tissue, satellite cells cultured with LM-E8 promoted the regeneration of skeletal muscle. These findings represent an efficient method of culturing satellite cells for use in transplantation through the recapitulation of the satellite cell niche using recombinant LM-E8 fragments. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Impaired Muscle Regeneration in Ob/ob and Db/db Mice

    Directory of Open Access Journals (Sweden)

    Mai-Huong Nguyen

    2011-01-01

    Full Text Available In obesity and type 2 diabetes, efficient skeletal muscle repair following injury may be required, not only for restoring muscle structure and function, but also for maintaining exercise capacity and insulin sensitivity. The hypothesis of this study was that muscle regeneration would be impaired in ob/ob and db/db mice, which are common mouse models of obesity and type 2 diabetes. Muscle injury was produced by cardiotoxin injection, and regeneration was assessed by morphological and immunostaining techniques. Muscle regeneration was delayed in ob/ob and db/db mice, but not in a less severe model of insulin resistance – feeding a high-fat diet to wild-type mice. Angiogenesis, cell proliferation, and myoblast accumulation were also impaired in ob/ob and db/db mice, but not the high-fat diet mice. The impairments in muscle regeneration were associated with impaired macrophage accumulation; macrophages have been shown previously to be required for efficient muscle regeneration. Impaired regeneration in ob/ob and db/db mice could be due partly to the lack of leptin signaling, since leptin is expressed both in damaged muscle and in cultured muscle cells. In summary, impaired muscle regeneration in ob/ob and db/db mice was associated with reduced macrophage accumulation, angiogenesis, and myoblast activity, and could have implications for insulin sensitivity in the skeletal muscle of obese and type 2 diabetic patients.

  10. A Mathematical Model of Oxygen Transport in Skeletal Muscle During Hindlimb Unloading

    Science.gov (United States)

    Causey, Laura; Lewandowski, Beth E.; Weinbaum, Sheldon

    2014-01-01

    During hindlimb unloading (HU) dramatic fluid shifts occur within minutes of the suspension, leading to a less precise matching of blood flow to O2 demands of skeletal muscle. Vascular resistance directs blood away from certain muscles, such as the soleus (SOL). The muscle volume gradually reduces in these muscles so that eventually the relative blood flow returns to normal. It is generally believed that muscle volume change is not due to O2 depletion, but a consequence of disuse. However, the volume of the unloaded rat muscle declines over the course of weeks, whereas the redistribution of blood flow occurs immediately. Using a Krogh Cylinder Model, the distribution of O2 was predicted in two skeletal muscles: SOL and gastrocnemius (GAS). Effects of the muscle blood flow, volume, capillary density, and O2 uptake, are included to calculate the pO2 at rest and after 10 min and 15 days of unloading. The model predicts that 32 percent of the SOL muscle tissue has a pO2 1.25 mm Hg within 10 min, whereas the GAS maintains normal O2 levels, and that equilibrium is reached only as the SOL muscle cells degenerate. The results provide evidence that there is an inadequate O2 supply to the mitochondria in the SOL muscle after 10 min HU.

  11. Differential activity of Drosophila Hox genes induces myosin expression and can maintain compartment boundaries.

    Directory of Open Access Journals (Sweden)

    Jesús R Curt

    Full Text Available Compartments are units of cell lineage that subdivide territories with different developmental potential. In Drosophila, the wing and haltere discs are subdivided into anterior and posterior (A/P compartments, which require the activity of Hedgehog, and into dorsal and ventral (D/V compartments, needing Notch signaling. There is enrichment in actomyosin proteins at the compartment boundaries, suggesting a role for these proteins in their maintenance. Compartments also develop in the mouse hindbrain rhombomeres, which are characterized by the expression of different Hox genes, a group of genes specifying different structures along their main axis of bilaterians. We show here that the Drosophila Hox gene Ultrabithorax can maintain the A/P and D/V compartment boundaries when Hedgehog or Notch signaling is compromised, and that the interaction of cells with and without Ultrabithorax expression induces high levels of non-muscle myosin II. In the absence of Ultrabithorax there is occasional mixing of cells from different segments. We also show a similar role in cell segregation for the Abdominal-B Hox gene. Our results suggest that the juxtaposition of cells with different Hox gene expression leads to their sorting out, probably through the accumulation of non-muscle myosin II at the boundary of the different cell territories. The increase in myosin expression seems to be a general mechanism used by Hox genes or signaling pathways to maintain the segregation of different groups of cells.

  12. CREB is activated by muscle injury and promotes muscle regeneration.

    Science.gov (United States)

    Stewart, Randi; Flechner, Lawrence; Montminy, Marc; Berdeaux, Rebecca

    2011-01-01

    The cAMP response element binding protein (CREB) plays key roles in differentiation of embryonic skeletal muscle progenitors and survival of adult skeletal muscle. However, little is known about the physiologic signals that activate CREB in normal muscle. Here we show that CREB phosphorylation and target genes are induced after acute muscle injury and during regeneration due to genetic mutation. Activated CREB localizes to both myogenic precursor cells and newly regenerating myofibers within regenerating areas. Moreover, we found that signals from damaged skeletal muscle tissue induce CREB phosphorylation and target gene expression in primary mouse myoblasts. An activated CREB mutant (CREBY134F) potentiates myoblast proliferation as well as expression of early myogenic transcription factors in cultured primary myocytes. Consistently, activated CREB-YF promotes myoblast proliferation after acute muscle injury in vivo and enhances muscle regeneration in dystrophic mdx mice. Our findings reveal a new physiologic function for CREB in contributing to skeletal muscle regeneration.

  13. Rectus abdominis muscle endometriosis

    International Nuclear Information System (INIS)

    Goker, A.

    2014-01-01

    Endometriosis is characterized by an abnormal existence of functional endometrial tissue outside the uterine cavity, typically occuring within the pelvis of women in reproductive age. We report two cases with endometriosis of the abdominal wall; the first one in the rectus abdominis muscle and the second one in the surgical scar of previous caesarean incision along with the rectus abdominis muscle. Pre-operative evaluation included magnetic resonance imaging. The masses were dissected free from the surrounding tissue and excised with clear margins. Diagnosis of the excised lesions were verified by histopathology. (author)

  14. Shifting gears: dynamic muscle shape changes and force-velocity behavior in the medial gastrocnemius.

    Science.gov (United States)

    Dick, Taylor J M; Wakeling, James M

    2017-12-01

    When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling. Copyright © 2017 the American Physiological Society.

  15. Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity.

    Science.gov (United States)

    Talis, V L; Kazennikov, O V; Castellote, J M; Grishin, A A; Ioffe, M E

    2014-03-01

    Motor evoked potentials (MEPs) in the right first dorsal interosseous (FDI) muscle elicited by transcranial magnetic stimulation of left motor cortex were assessed in ten healthy subjects during maintenance of a fixed FDI contraction level. Subjects maintained an integrated EMG (IEMG) level with visual feedback and reproduced this level by memory afterwards in the following tasks: stationary FDI muscle contraction at the level of 40 ± 5 % of its maximum voluntary contraction (MVC; 40 % task), at the level of 20 ± 5 % MVC (20 % task), and also when 20 % MVC was preceded by either no contraction (0-20 task), by stronger muscle contraction (40-20 task) or by no contraction with a previous strong contraction (40-0-20 task). The results show that the IEMG level was within the prescribed limits when 20 and 40 % stationary tasks were executed with and without visual feedback. In 0-20, 40-20, and 40-0-20 tasks, 20 % IEMG level was precisely controlled in the presence of visual feedback, but without visual feedback the IEMG and force during 20 % IEMG maintenance were significantly higher in the 40-0-20 task than those in 0-20 and 40-20 tasks. That is, without visual feedback, there were significant variations in muscle activity due to different prehistory of contraction. In stationary tasks, MEP amplitudes in 40 % task were higher than in 20 % task. MEPs did not differ significantly during maintenance of the 20 % level in tasks with different prehistory of muscle contraction with and without visual feedback. Thus, in spite of variations in muscle background activity due to different prehistory of contraction MEPs did not vary significantly. This dissociation suggests that the voluntary maintenance of IEMG level is determined not only by cortical mechanisms, as reflected by corticospinal excitability, but also by lower levels of CNS, where afferent signals and influences from other brain structures and spinal cord are convergent.

  16. Valve maintainability in CANDU-PHW nuclear generating stations

    International Nuclear Information System (INIS)

    Pothier, N.E.; Crago, W.A.

    1977-09-01

    Design, application, layout and administrative factors which affect valve maintainability in CANDU-PHW power reactors are identified and discussed. Some of these are illustrated by examples based on prototype reactor operation experience. Valve maintainability improvements resulting from laboratory development and maintainability analysis, have been incorporated in commercial CANDU-PHW nuclear generating stations. These, also, are discussed and illustrated. (author)

  17. Electrophysiology of Muscle Fatigue in Cardiopulmonary Resuscitation on Manikin Model.

    Science.gov (United States)

    Cobo-Vázquez, Carlos; De Blas, Gemma; García-Canas, Pablo; Del Carmen Gasco-García, María

    2018-01-01

    Cardiopulmonary resuscitation requires the provider to adopt positions that could be dangerous for his or her spine, specifically affecting the muscles and ligaments in the lumbar zone and the scapular spinal muscles. Increased fatigue caused by muscular activity during the resuscitation could produce a loss of quality and efficacy, resulting in compromising resuscitation. The aim of this study was to evaluate the maximum time a rescuer can perform uninterrupted chest compressions correctly without muscle fatigue. This pilot study was performed at Universidad Complutense de Madrid (Spain) with the population recruited following CONSORT 2010 guidelines. From the 25 volunteers, a total of 14 students were excluded because of kyphoscoliosis (4), lumbar muscle pain (1), anti-inflammatory treatment (3), or not reaching 80% of effective chest compressions during the test (6). Muscle activity at the high spinal and lumbar (L5) muscles was assessed using electromyography while students performed continuous chest compressions on a ResusciAnne manikin. The data from force exerted were analyzed according to side and muscle groups using Student's t test for paired samples. The influence of time, muscle group, and side was analyzed by multivariate analyses ( p ≤ .05). At 2 minutes, high spinal muscle activity (right: 50.82 ± 9.95; left: 57.27 ± 20.85 μV/ms) reached the highest values. Activity decreased at 5 and 15 minutes. At 2 minutes, L5 activity (right: 45.82 ± 9.09; left: 48.91 ± 10.02 μV/ms) reached the highest values. After 5 minutes and at 15 minutes, activity decreased. Fatigue occurred bilaterally and time was the most important factor. Fatigue began at 2 minutes. Rescuers exert muscular countervailing forces in order to maintain effective compressions. This imbalance of forces could determine the onset of poor posture, musculoskeletal pain, and long-term injuries in the rescuer.

  18. A murine model of muscle training by neuromuscular electrical stimulation.

    Science.gov (United States)

    Ambrosio, Fabrisia; Fitzgerald, G Kelley; Ferrari, Ricardo; Distefano, Giovanna; Carvell, George

    2012-05-09

    Neuromuscular electrical stimulation (NMES) is a common clinical modality that is widely used to restore (1), maintain (2) or enhance (3-5) muscle functional capacity. Transcutaneous surface stimulation of skeletal muscle involves a current flow between a cathode and an anode, thereby inducing excitement of the motor unit and the surrounding muscle fibers. NMES is an attractive modality to evaluate skeletal muscle adaptive responses for several reasons. First, it provides a reproducible experimental model in which physiological adaptations, such as myofiber hypertophy and muscle strengthening (6), angiogenesis (7-9), growth factor secretion (9-11), and muscle precursor cell activation (12) are well documented. Such physiological responses may be carefully titrated using different parameters of stimulation (for Cochrane review, see (13)). In addition, NMES recruits motor units non-selectively, and in a spatially fixed and temporally synchronous manner (14), offering the advantage of exerting a treatment effect on all fibers, regardless of fiber type. Although there are specified contraindications to NMES in clinical populations, including peripheral venous disorders or malignancy, for example, NMES is safe and feasible, even for those who are ill and/or bedridden and for populations in which rigorous exercise may be challenging. Here, we demonstrate the protocol for adapting commercially available electrodes and performing a NMES protocol using a murine model. This animal model has the advantage of utilizing a clinically available device and providing instant feedback regarding positioning of the electrode to elicit the desired muscle contractile effect. For the purpose of this manuscript, we will describe the protocol for muscle stimulation of the anterior compartment muscles of a mouse hindlimb.

  19. Effects of oblique muscle surgery on the rectus muscle pulley

    International Nuclear Information System (INIS)

    Okanobu, Hirotaka; Kono, Reika; Ohtsuki, Hiroshi

    2011-01-01

    The purpose of this study was to determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys. Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated. The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p=0.0234), but weakly correlated with that of the horizontal rectus muscles. The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery. (author)

  20. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Rachel S. Fletcher

    2017-08-01

    Conclusions: These results identify skeletal muscle cells as requiring NAMPT to maintain NAD+ availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD+ availability.

  2. CALF MUSCLE WORK AND SEGMENT ENERGY CHANGES IN HUMAN TREADMILL WALKING

    NARCIS (Netherlands)

    HOF, AL; NAUTA, J; VANDERKNAAP, ER; SCHALLIG, MAA; STRUWE, DP

    1992-01-01

    The relation between changes in potential and kinetic energy in a seven-segment model of the human body and the work of m. triceps surae was investigated in four subjects walking on a treadmill at speeds between 0.5 and 2.0 m/s. Segment energy levels were determined by means of tachometers attached

  3. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  4. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  5. Pelvic floor muscle training exercises

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003975.htm Pelvic floor muscle training exercises To use the sharing features on this page, please enable JavaScript. Pelvic floor muscle training exercises are a series of exercises ...

  6. MRI appearance of muscle denervation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, S. [University Hospital of Wales, Department of Radiology, Cardiff (United Kingdom); Venkatanarasimha, N.; Walsh, M.A.; Hughes, P.M. [Derriford Hospital, Department of Radiology, Plymouth (United Kingdom)

    2008-05-15

    Muscle denervation results from a variety of causes including trauma, neoplasia, neuropathies, infections, autoimmune processes and vasculitis. Traditionally, the diagnosis of muscle denervation was based on clinical examination and electromyography. Magnetic resonance imaging (MRI) offers a distinct advantage over electromyography, not only in diagnosing muscle denervation, but also in determining its aetiology. MRI demonstrates characteristic signal intensity patterns depending on the stage of muscle denervation. The acute and subacutely denervated muscle shows a high signal intensity pattern on fluid sensitive sequences and normal signal intensity on T1-weighted MRI images. In chronic denervation, muscle atrophy and fatty infiltration demonstrate high signal changes on T1-weighted sequences in association with volume loss. The purpose of this review is to summarise the MRI appearance of denervated muscle, with special emphasis on the signal intensity patterns in acute and subacute muscle denervation. (orig.)

  7. Role of Exercise Therapy in Prevention of Decline in Aging Muscle Function: Glucocorticoid Myopathy and Unloading

    Directory of Open Access Journals (Sweden)

    Teet Seene

    2012-01-01

    Full Text Available Changes in skeletal muscle quantity and quality lead to disability in the aging population. Physiological changes in aging skeletal muscle are associated with a decline in mass, strength, and inability to maintain balance. Glucocorticoids, which are in wide exploitation in various clinical scenarios, lead to the loss of the myofibrillar apparatus, changes in the extracellular matrix, and a decrease in muscle strength and motor activity, particularly in the elderly. Exercise therapy has shown to be a useful tool for the prevention of different diseases, including glucocorticoid myopathy and muscle unloading in the elderly. The purpose of the paper is to discuss the possibilities of using exercise therapy in the prevention of glucocorticoid caused myopathy and unloading in the elderly and to describe relationships between the muscle contractile apparatus and the extracellular matrix in different types of aging muscles.

  8. Pre-mRNA Processing Is Partially Impaired in Satellite Cell Nuclei from Aged Muscles

    Directory of Open Access Journals (Sweden)

    Manuela Malatesta

    2010-01-01

    Full Text Available Satellite cells are responsible for the capacity of mature mammalian skeletal muscles to repair and maintain mass. During aging, skeletal muscle mass as well as the muscle strength and endurance progressively decrease, leading to a condition termed sarcopenia. The causes of sarcopenia are manifold and remain to be completely elucidated. One of them could be the remarkable decline in the efficiency of muscle regeneration; this has been associated with decreasing amounts of satellite cells, but also to alterations in their activation, proliferation, and/or differentiation. In this study, we investigated the satellite cell nuclei of biceps and quadriceps muscles from adult and old rats; morphometry and immunocytochemistry at light and electron microscopy have been combined to assess the organization of the nuclear RNP structural constituents involved in different steps of mRNA formation. We demonstrated that in satellite cells the RNA pathways undergo alterations during aging, possibly hampering their responsiveness to muscle damage.

  9. Curto período de imobilização provoca alterações morfométricas e mecânicas no músculo de rato Short-term immobilization causes morphometric and mechanical alterations in rat muscles

    Directory of Open Access Journals (Sweden)

    SC Lima

    2007-08-01

    Full Text Available OBJETIVO: Analisar as características morfométricas e mecânicas dos músculos sóleo e gastrocnêmio após imobilização na posição de encurtamento. MÉTODO: 20 ratos Wistar (250 ± 20g foram distribuídos igualmente em grupos imobilizado e controle. A imobilização foi realizada no membro posterior esquerdo por meio de órtese de resina acrílica, com a articulação do tornozelo em flexão plantar máxima. Após 7 dias da imobilização, a massa muscular, número e comprimento de sarcômeros em série, área das fibras musculares, densidade de área de tecido conjuntivo intramuscular e força máxima de ruptura do tríceps sural foram avaliados. Os dados foram analisados pela ANOVA e teste de Tukey (pOBJECTIVE: to analyze the morphometric and mechanical characteristics of the soleus and gastrocnemius muscles after immobilization in a shortened position. METHODS: 20 Wistar rats (250 ± 20g were divided equally into immobilized and control groups. The left hind limb was immobilized by means of an acrylic resin orthosis, with the ankle joint at maximum plantar flexion. After seven days of immobilization, the muscle mass, number and length of sarcomeres in series, muscle fiber cross-sectional area, density of the intramuscular connective tissue area and tensile strength of the triceps surae muscle were evaluated. The data were analyzed by the ANOVA and Tukey tests (p< 0.05. RESULTS: The immobilized soleus muscle presented changes in all the morphometric variables analyzed, while some of these changes were not observed in the gastrocnemius muscle. Analysis of the traction test showed that the immobilized group presented a 20% decrease in the maximum tensile muscle strength. CONCLUSION: The results from this study showed that short-term immobilization causes changes to the morphometric parameters of the muscle fibers, with repercussions on muscle mechanics. These results suggest the need for rehabilitation of muscles subjected to

  10. Muscle contraction and force

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Risbo, Jens; Pierzynowski, Stefan G.

    2008-01-01

    of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen "wires". This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable...

  11. Making more heart muscle

    NARCIS (Netherlands)

    van den Hoff, Maurice J. B.; Kruithof, Boudewijn P. T.; Moorman, Antoon F. M.

    2004-01-01

    Postnatally, heart muscle cells almost completely lose their ability to divide, which makes their loss after trauma irreversible. Potential repair by cell grafting or mobilizing endogenous cells is of particular interest for possible treatments for heart disease, where the poor capacity for

  12. Preserved skeletal muscle protein anabolic response to acute exercise and protein intake in well-treated rheumatoid arthritis patients

    DEFF Research Database (Denmark)

    Mikkelsen, Ulla Ramer; Dideriksen, Kasper; Andersen, Mads Bisgaard

    2015-01-01

    INTRODUCTION: Rheumatoid arthritis (RA) is often associated with diminished muscle mass, reflecting an imbalance between protein synthesis and protein breakdown. To investigate the anabolic potential of both exercise and nutritional protein intake we investigated the muscle protein synthesis rate...... and in combination with physical exercise in patients with well-treated RA to a similar extent as in healthy individuals. This indicates that moderately inflamed RA patients have maintained their muscle anabolic responsiveness to physical activity and protein intake....

  13. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal

    Science.gov (United States)

    Vermillion, Katie L.; Anderson, Kyle J.; Hampton, Marshall

    2015-01-01

    Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation. PMID:25572546

  14. Trunk muscle activation during sub-maximal extension efforts.

    Science.gov (United States)

    Olson, Michael W

    2010-02-01

    Neuromuscular fatigue of the trunk musculature, particularly lumbar paraspinal and abdominal muscles, is important in when evaluating motor control of the trunk. Activation of agonists and antagonists trunk muscles was hypothesized to change during sub-maximal isometric trunk extension efforts. Thirteen women were positioned in 30 degrees of trunk flexion and performed maximal voluntary isometric contraction in trunk extension against an isokinetic dynamometer. One of two sub-maximal efforts (50% and 70%) was performed to induce neuromuscular fatigue on two different days. Surface electromyography of the lumbar paraspinal (LP), rectus abdominis, and external oblique muscles was recorded during each session. Torque output, median frequency of the power density spectrum, and normalized integrated electromyography were analyzed using repeated measures analysis of variance to evaluate trends in the data over time. Paraspinal muscles showed signs of fatigue in both conditions (pAbdominal activity did not increase during the 70% condition, but showed a non-significant trend (p=0.07), coinciding with the reduced median frequency of LP muscles. The neuromuscular system modulates its motor control strategy to identify the muscle activation levels necessary to maintain force output. This information is necessary in the evaluation of contributing mechanisms to trunk stability in furthering preventative and rehabilitative treatments.

  15. Terrestrial applications of bone and muscle research in microgravity

    Science.gov (United States)

    Booth, F. W.

    1994-08-01

    Major applications to people on Earth are possible from NASA-sponsored research on bone and muscle which is conducted either in microgravity or on Earth using models mimicking microgravity. In microgravity bone and muscle mass are lost. Humans experience a similar loss under certain conditions on Earth. Bone and muscle loss exist on Earth as humans age from adulthood to senescence, during limb immobilization for healing of orthopedic injuries, during wheelchair confinement because of certain diseases, and during chronic bed rest prescribed for curing of diseases. NASA-sponsored research is dedicated to learning both what cause bone and muscle loss as well as finding out how to prevent this loss. The health ramifications of these discoveries will have major impact. Objective 1.6 of Healthy People 2000, a report from the U.S. Department of Health and Human Services, states that the performance of physical activities that improve muscular strength, muscular endurance, and flexibility is particularly important to maintaining functional independence and social integration in older adults /1/. This objective further states that these types of physical activities are important because they may protect against disability, an event which costs the U.S. economy hugh sums of money. Thus NASA research related to bone and muscle loss has potential major impact on the quality of life in the U.S. Relative to its potential health benefits, NASA and Congressional support of bone and muscle research is funded is a very low level.

  16. Exercise and obesity-induced insulin resistance in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Hyo-Bum Kwak

    2013-12-01

    Full Text Available The skeletal muscle in our body is a major site for bioenergetics and metabolism during exercise. Carbohydrates and fats are the primary nutrients that provide the necessary energy required to maintain cellular activities during exercise. The metabolic responses to exercise in glucose and lipid regulation depend on the intensity and duration of exercise. Because of the increasing prevalence of obesity, recent studies have focused on the cellular and molecular mechanisms of obesity-induced insulin resistance in skeletal muscle. Accumulation of intramyocellular lipid may lead to insulin resistance in skeletal muscle. In addition, lipid intermediates (e.g., fatty acyl-coenzyme A, diacylglycerol, and ceramide impair insulin signaling in skeletal muscle. Recently, emerging evidence linking obesity-induced insulin resistance to excessive lipid oxidation, mitochondrial overload, and mitochondrial oxidative stress have been provided with mitochondrial function. This review will provide a brief comprehensive summary on exercise and skeletal muscle metabolism, and discuss the potential mechanisms of obesity-induced insulin resistance in skeletal muscle.

  17. Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Hasumura, Takahiro; Meguro, Shinichi

    2016-07-01

    Exercise is very important for maintaining and increasing skeletal muscle mass, and is particularly important to prevent and care for sarcopenia and muscle disuse atrophy. However, the dose-response relationship between exercise quantity, duration/day, and overall duration and muscle mass is poorly understood. Therefore, we investigated the effect of exercise duration on skeletal muscle to reveal the relationship between exercise quantity and muscle hypertrophy in zebrafish forced to exercise. Adult male zebrafish were exercised 6 h/day for 4 weeks, 6 h/day for 2 weeks, or 3 h/day for 2 weeks. Flow velocity was adjusted to maximum velocity during continual swimming (initial 43 cm/s). High-speed consecutive photographs revealed that zebrafish mainly drove the caudal part. Additionally, X-ray micro computed tomography measurements indicated muscle hypertrophy of the mid-caudal half compared with the mid-cranial half part. The cross-sectional analysis of the mid-caudal half muscle revealed that skeletal muscle (red, white, or total) mass increased with increasing exercise quantity, whereas that of white muscle and total muscle increased only under the maximum exercise load condition of 6 h/day for 4 weeks. Additionally, the muscle fiver size distributions of exercised fish were larger than those from non-exercised fish. We revealed that exercise quantity, duration/day, and overall duration were correlated with skeletal muscle hypertrophy. The forced exercise model enabled us to investigate the relationship between exercise quantity and skeletal muscle mass. These results open up the possibility for further investigations on the effects of exercise on skeletal muscle in adult zebrafish.

  18. Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration

    Science.gov (United States)

    Lee, Bora; Lee, Seung-Min; Bahn, Young Jae; Lee, Kwang-Pyo; Kang, Moonkyung; Kim, Yeon-Soo; Woo, Sun-Hee; Lim, Jae-Young; Kim, Eunhee; Kwon, Ki-Sun

    2016-01-01

    Skeletal muscle mass and power decrease with age, leading to impairment of mobility and metabolism in the elderly. Ca2+ signaling is crucial for myoblast differentiation as well as muscle contraction through activation of transcription factors and Ca2+-dependent kinases and phosphatases. Ca2+ channels, such as dihydropyridine receptor (DHPR), two-pore channel (TPC) and inositol 1,4,5-triphosphate receptor (ITPR), function to maintain Ca2+ homeostasis in myoblasts. Here, we observed a significant decrease in expression of type 1 IP3 receptor (ITPR1), but not types 2 and 3, in aged mice skeletal muscle and isolated myoblasts, compared with those of young mice. ITPR1 knockdown using shRNA-expressing viruses in C2C12 myoblasts and tibialis anterior muscle of mice inhibited myotube formation and muscle regeneration after injury, respectively, a typical phenotype of aged muscle. This aging phenotype was associated with repression of muscle-specific genes and activation of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. ERK inhibition by U0126 not only induced recovery of myotube formation in old myoblasts but also facilitated muscle regeneration after injury in aged muscle. The conserved decline in ITPR1 expression in aged human skeletal muscle suggests utility as a potential therapeutic target for sarcopenia, which can be treated using ERK inhibition strategies. PMID:27658230

  19. Masseter Muscle Activity in Track and Field Athletes: A Pilot Study.

    Science.gov (United States)

    Nukaga, Hideyuki; Takeda, Tomotaka; Nakajima, Kazunori; Narimatsu, Keishiro; Ozawa, Takamitsu; Ishigami, Keiichi; Funato, Kazuo

    2016-01-01

    Teeth clenching has been shown to improve remote muscle activity (by augmentation of the Hoffmann reflex), and joint fixation (by decreased reciprocal inhibition) in the entire body. Clenching could help maintain balance, improve systemic function, and enhance safety. Teeth clenching from a sports dentistry viewpoint was thought to be important and challenging. Therefore, it is quite important to investigate mastication muscles' activity and function during sports events for clarifying a physiological role of the mastication muscle itself and involvement of mastication muscle function in whole body movement. Running is a basic motion of a lot of sports; however, a mastication muscles activity during this motion was not clarified. Throwing and jumping operation were in a same situation. The purpose of this study was to investigate the presence or absence of masseter muscle activity during track and field events. In total, 28 track and field athletes took part in the study. The Multichannel Telemetry system was used to monitor muscle activity, and the electromyograms obtained were synchronized with digital video imaging. The masseter muscle activity threshold was set 15% of maximum voluntary clenching. As results, with few exceptions, masseter muscle activity were observed during all analyzed phases of the 5 activities, and that phases in which most participants showed masseter muscle activity were characterized by initial acceleration, such as in the short sprint, from the commencement of throwing to release in both the javelin throw and shot put, and at the take-off and landing phases in both jumps.

  20. Avian pectoral muscle size rapidly tracks body mass changes during flight, fasting and fuelling.

    Science.gov (United States)

    Lindström, A; Kvist, A; Piersma, T; Dekinga, A; Dietz, M W

    2000-03-01

    We used ultrasonic imaging to monitor short-term changes in the pectoral muscle size of captive red knots Calidris canutus. Pectoral muscle thickness changed rapidly and consistently in parallel with body mass changes caused by flight, fasting and fuelling. Four knots flew repeatedly for 10 h periods in a wind tunnel. Over this period, pectoral muscle thickness decreased in parallel with the decrease in body mass. The change in pectoral muscle thickness during flight was indistinguishable from that during periods of natural and experimental fasting and fuelling. The body-mass-related variation in pectoral muscle thickness between and within individuals was not related to the amount of flight, indicating that changes in avian muscle do not require power-training as in mammals. Our study suggests that it is possible for birds to consume and replace their flight muscles on a time scale short enough to allow these muscles to be used as part of the energy supply for migratory flight. The adaptive significance of the changes in pectoral muscle mass cannot be explained by reproductive needs since our knots were in the early winter phase of their annual cycle. Instead, pectoral muscle mass changes may reflect (i) the breakdown of protein during heavy exercise and its subsequent restoration, (ii) the regulation of flight capacity to maintain optimal flight performance when body mass varies, or (iii) the need for a particular protein:fat ratio in winter survival stores.

  1. Supplemental protein in support of muscle mass and health: advantage whey.

    Science.gov (United States)

    Devries, Michaela C; Phillips, Stuart M

    2015-03-01

    Skeletal muscle is an integral body tissue playing key roles in strength, performance, physical function, and metabolic regulation. It is essential for athletes to ensure that they have optimal amounts of muscle mass to ensure peak performance in their given sport. However, the role of maintaining muscle mass during weight loss and as we age is an emerging concept, having implications in chronic disease prevention, functional capacity, and quality of life. Higher-protein diets have been shown to: (1) promote gains in muscle mass, especially when paired with resistance training; (2) spare muscle mass loss during caloric restriction; and (3) attenuate the natural loss of muscle mass that accompanies aging. Protein quality is important to the gain and maintenance of muscle mass. Protein quality is a function of protein digestibility, amino acid content, and the resulting amino acid availability to support metabolic function. Whey protein is one of the highest-quality proteins given its amino acid content (high essential, branched-chain, and leucine amino acid content) and rapid digestibility. Consumption of whey protein has a robust ability to stimulate muscle protein synthesis. In fact, whey protein has been found to stimulate muscle protein synthesis to a greater degree than other proteins such as casein and soy. This review examines the existing data supporting the role for protein consumption, with an emphasis on whey protein, in the regulation of muscle mass and body composition in response to resistance training, caloric restriction, and aging. © 2015 Institute of Food Technologists®

  2. Nutrient modulation in the management of disease-induced muscle wasting: evidence from human studies.

    Science.gov (United States)

    Brook, Matthew S; Wilkinson, Daniel J; Atherton, Philip J

    2017-11-01

    In addition to being essential for movement, skeletal muscles act as both a store and source of key macronutrients. As such, muscle is an important tissue for whole body homeostasis, undergoing muscle wasting in times of starvation, disease, and stress, for example, to provide energy substrates for other tissues. Yet, muscle wasting is also associated with disability, comorbidities, and mortality. As nutrition is so crucial to maintaining muscle homeostasis 'in health', it has been postulated that muscle wasting in cachexia syndromes may be alleviated by nutritional interventions. This review will highlight recent work in this area in relation to muscle kinetics, the acute metabolic (e.g. dietary protein), and longer-term effects of dietary interventions. Whole body and skeletal muscle protein synthesis invariably exhibit deranged kinetics (favouring catabolism) in wasting states; further, many of these conditions harbour blunted anabolic responses to protein nutrition compared with healthy controls. These derangements underlie muscle wasting. Recent trials of essential amino acid and protein-based nutrition have shown some potential for therapeutic benefit. Nutritional modulation, particularly of dietary amino acids, may have benefits to prevent or attenuate disease-induced muscle wasting. Nonetheless, there remains a lack of recent studies exploring these key concepts to make conclusive recommendations.

  3. Change detection technique for muscle tone during static stretching by continuous muscle viscoelasticity monitoring using wearable indentation tester.

    Science.gov (United States)

    Okamura, Naomi; Kobayashi, Yo; Sugano, Shigeki; Fujie, Masakatsu G

    2017-07-01

    Static stretching is widely performed to decrease muscle tone as a part of rehabilitation protocols. Finding out the optimal duration of static stretching is important to minimize the time required for rehabilitation therapy and it would be helpful for maintaining the patient's motivation towards daily rehabilitation tasks. Several studies have been conducted for the evaluation of static stretching; however, the recommended duration of static stretching varies widely between 15-30 s in general, because the traditional methods for the assessment of muscle tone do not monitor the continuous change in the target muscle's state. We have developed a method to monitor the viscoelasticity of one muscle continuously during static stretching, using a wearable indentation tester. In this study, we investigated a suitable signal processing method to detect the time required to change the muscle tone, utilizing the data collected using a wearable indentation tester. By calculating a viscoelastic index with a certain time window, we confirmed that the stretching duration required to bring about a decrease in muscle tone could be obtained with an accuracy in the order of 1 s.

  4. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    Science.gov (United States)

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  5. An analysis of the activity and muscle fatigue of the muscles around the neck under the three most frequent postures while using a smartphone.

    Science.gov (United States)

    Choi, Jung-Hyun; Jung, Min-Ho; Yoo, Kyung-Tae

    2016-05-01

    [Purpose] The purpose of this study was to identify changes in the activity and fatigue of the splenius capitis and upper trapezius muscles, which are agonists to the muscles supporting the head, under the three postures most frequently adopted while using a smartphone. [Subjects and Methods] The subjects were 15 college students in their 20s. They formed a single group and had to adopt three different postures (maximum bending, middle bending, and neutral). While the 15 subjects maintained the postures, muscle activity and fatigue were measured using surface electromyography. [Results] Comparison of the muscle fatigue caused by each posture showed statistically significant differences for the right splenius capitis, left splenius capitis, and left upper trapezius muscles. In addition, maintaining the maximum bending posture while using a smartphone resulted in higher levels of fatigue in the right splenius capitis, left splenius capitis, and left upper trapezius muscles compared with those for the middle bending posture. [Conclusion] Therefore, this study suggests that individuals should bend their neck slightly when using a smartphone, rather than bending it too much, or keep their neck straight to reduce fatigue of the cervical erector muscles.

  6. The effects of prostaglandins on guinea-pig isolated intestine and their possible contribution to muscle activity and tone

    Science.gov (United States)

    Bennett, A.; Eley, K.G.; Stockley, Helen L.

    1975-01-01

    1 Prostaglandins F1α and F2α caused contraction of the longitudinal muscle of both guinea-pig isolated ileum and colon, apparently by acting directly on the muscle and on cholinergic nerves. They had little effect on ileal circular muscle. 2 Prostaglandins E1 and E2 caused contraction of the longitudinal muscle of guinea-pig isolated colon, apparently by acting directly on the muscle and on excitatory nerves which are non-cholinergic. Prostaglandin E1 seems more effective than E2 in stimulating these nerves. 3 It seems likely that prostaglandin release in vitro maintains the tone of the longitudinal muscle of guinea-pig colon, whereas release of a prostaglandin E compound inhibits circular muscle tone. PMID:1148509

  7. Muscles and their myokines

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund

    2011-01-01

    that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular diseases, cancer, dementia and even depression. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an 'exercise factor', which could......In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence......-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases....

  8. [Primary muscle cramps].

    Science.gov (United States)

    Serratrice, G

    2008-05-01

    Primary muscle cramps, without known cause, are very frequent especially in the elderly and during the night. They are different from secondary cramps. Likewise they are to be separated from several syndromes erroneously quoted as cramps. The pathophysiological mechanism seems due to result from an initial dysfunction in the distal part of the motoneuron. When the cramps are severe, differential diagnosis with amyotrophic lateral sclerosis may be difficult. Quinine is the best empiric treatment largely used in spite of moderate side effects.

  9. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P......) of the total ankle dorsiflexor muscle volume, which was 267 +/- 10 cm. Relative cross-sectional areas occupied by Type I, IIA, and IIB fibers in the tibialis anterior were 69.3 +/- 2.2, 27.4 +/- 2.76, and 3.2 +/- 1.0%, respectively. ATP economy of force maintenance did not change significantly during the 60-s...... contraction. It averaged at 4.81 +/- 0.42 N.s.micromol-1, and correlated with the relative cross-sectional area of the muscle occupied by Type I fiber (r = 0.73, P economy compared with those maintaining the force (3...

  10. MUSCLE TENSION DYSPHONIA

    Directory of Open Access Journals (Sweden)

    Irena Hočevar Boltežar

    2004-07-01

    Full Text Available Background. Muscle tension dysphonia (MTD is the cause of hoarseness in almost one half of the patients with voice disorders. The otorhinolaryngologic examination discovers no evident organic lesions in the larynx at least in the beginning of the voice problems. The reason for the hoarse voice is a disordered and maladjusted activity of the muscles taking part in phonation and/or articulation. In some patients, the irregular function of the larynx results in mucosal lesions on vocal folds. The factors participating in the development of MTD, directly or indirectly influence the quality of laryngeal mucosa, the activity of the phonatory muscles and/or increase of the vocal load. In the diagnostics and treatment of the MTD a phoniatrician, a speech and language therapist and a psychologist closely cooperate with the patient who must take an active role. The treatment is a long-lasting one but resulted in a high percentage of clinical success.Conclusions. Most likely, MTD is not a special disease but only a reflection of any disorder in the complicated system of regulation and realization of phonation. The prognosis of treatment is good when all unfavourable factors participating in development of MTD are eliminated and a proper professional voice- and psychotherapy started.

  11. Dismorfia muscular Muscle dysmorphia

    Directory of Open Access Journals (Sweden)

    Sheila Seleri Marques Assunção

    2002-12-01

    Full Text Available Preocupações mórbidas com a imagem corporal eram tidas até recentemente como problemas eminentemente femininos. Atualmente estas preocupações também têm sido encontradas no sexo masculino. A dismorfia muscular é um subtipo do transtorno dismórfico corporal que ocorre principalmente em homens que, apesar da grande hipertrofia muscular, consideram-se pequenos e fracos. Além de estar associada a prejuízos sociais, ocupacionais, recreativos e em outras áreas do funcionamento do indivíduo, a dismorfia muscular é também um fator de risco para o abuso de esteróides anabolizantes. Este artigo aborda aspectos epidemiológicos, etiológicos e padrões clínicos da dismorfia muscular, além de tecer comentários sobre estratégias de tratamento para este transtorno.Morbid concern over body image was considered, until recently, a female issue. Nowadays, it has been viewed as a common male disorder. Muscle dysmorphia, a subtype of a body dysmorphic disorder, affects men who, despite having clear muscular hypertroph,y see themselves as frail and small. Besides being associated to major social, leisure and occupational dysfunction, muscle dysmorphia is also a risk factor for the abuse of steroids. This article describes epidemiological, etiological and clinical characteristics of muscle dysmorphia and comments on its treatment strategy.

  12. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (pVIH (pVIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Reinnervation of Paralyzed Muscle by Nerve Muscle Endplate Band Grafting

    Science.gov (United States)

    2016-10-01

    x 3 mm), a nerve branch, intramuscular nerve terminals, and a motor endplate (MEP) band with numerous neuromuscular junctions. The superficial ...when muscle was stretched at optimal tension of 0.8 N. Maximal muscle force was calculated as average muscle contraction to 5 stimulation currents...force during the 200-millisecond contraction was identified, as well as initial passive tension before stimulation. The difference between themaximal

  14. Nuclear Positioning in Muscle Development and Disease

    OpenAIRE

    Eric eFolker; Mary eBaylies

    2013-01-01

    Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, th...

  15. 34 CFR 85.510 - Who maintains the EPLS?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Who maintains the EPLS? 85.510 Section 85.510 Education Office of the Secretary, Department of Education GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Excluded Parties List System § 85.510 Who maintains the EPLS? In accordance with the OMB guidelines, the...

  16. Polarization maintaining large-mode area photonic crystal fibre

    DEFF Research Database (Denmark)

    Folkenberg, Jacob Riis; Nielsen, Martin Dybendal; Mortensen, N.A.

    2004-01-01

    We report on a polarization maintaining large mode area photonic crystal fiber. Unlike, previous work on polarization maintaining photonic crystal fibers, birefringence is introduced using stress applying parts. This has allowed us to realize fibers, which are both single mode at any wavelength a...

  17. Patients with coronary artery disease – Maintaining planned lifestyle ...

    African Journals Online (AJOL)

    The purpose of this study was to describe how patients with coronary artery disease, who have had one or more cardiac interventions, were maintaining their planned lifestyle adaptations at four months after the intervention. Furthermore, the study aimed to develop guidelines to further assist patients in maintaining lifestyle ...

  18. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  19. Frontal lobe oxygenation is maintained during hypotension following propofol-fentanyl anesthesia

    DEFF Research Database (Denmark)

    Nissen, P.; Lieshout, J.J. van; Nielsen, H.B.

    2009-01-01

    Near-infrared spectroscopy (NIRS) assesses cerebral oxygen saturation (Sco2) as a balance between cerebral oxygen delivery and consumption. In 71 patients, we evaluated whether marked reduction in mean arterial pressure (MAP) during propofol-fentanyl anesthesia induction affects frontal lobe Sco2....... The NIRS-determined arm muscle oxygenation (Smo2), heart rate (HR), and cardiac output (CO) were monitored, endtidal carbon dioxide tension was controlled at 3.5 to 4.5 kPa, and central blood volume was maintained. Before anesthesia, the median (range) MAP, HR, and CO were 93 mm Hg (61-126 mm Hg), 76 beats......, the median (range) NIRS-determined Smo2 also decreased (73% [54%-94%] to 71% [52%-87%]), whereas Sco2 increased from 67% (46%-93%) to 74% (48%-95%) (P anesthesia induction, variables recovered and remained at preanesthetic levels during surgery. The findings...

  20. Transplantation of Devitalized Muscle Scaffolds is Insufficient for Appreciable De Novo Muscle Fiber Regeneration After Volumetric Muscle Loss Injury

    Science.gov (United States)

    2014-10-10

    minced muscle grafts were shown to support de novo skeletal muscle regeneration. For instance, devitalized whole extensor digitorum longus (EDL) muscle...antero- lateral aspect of the ankle, and the distal EDL muscle tendon and extensor hallicus longus (EHL) muscle was isolated and severed above the

  1. Exercising with blocked muscle glycogenolysis

    DEFF Research Database (Denmark)

    Nielsen, Tue L; Pinós, Tomàs; Brull, Astrid

    2018-01-01

    of expression and activation of proteins involved in glycolytic flux revealed that in glycolytic, but not oxidative muscle from exercised McArdle mice, the glycolytic flux had changed compared to that in wild-type mice. Specifically, exercise triggered in glycolytic muscle a differentiated activation of insulin......BACKGROUND: McArdle disease (glycogen storage disease type V) is an inborn error of skeletal muscle metabolism, which affects glycogen phosphorylase (myophosphorylase) activity leading to an inability to break down glycogen. Patients with McArdle disease are exercise intolerant, as muscle glycogen......-derived glucose is unavailable during exercise. Metabolic adaptation to blocked muscle glycogenolysis occurs at rest in the McArdle mouse model, but only in highly glycolytic muscle. However, it is unknown what compensatory metabolic adaptations occur during exercise in McArdle disease. METHODS: In this study, 8...

  2. Muscle strength in myasthenia gravis

    DEFF Research Database (Denmark)

    Cejvanovic, S; Vissing, J

    2014-01-01

    is related to disease duration or gender. The aim of this study was to quantify the strength of patients with MG and investigate whether it is related to disease duration. METHODS: Eight muscle groups were tested by manual muscle testing and with a hand-held dynamometer in 38 patients with generalized MG...... and 37 healthy age- and gender-matched controls. The disease duration was recorded and compared with strength measures. RESULTS: On average, muscle strength was decreased by 28% compared with controls (Pstrength measures in individual patients did not differ, suggesting that the muscle...... force reported was not subject to fatigue, but reflected fixed weakness. The male patients showed a greater reduction in muscle force in all eight muscle groups than women with MG (60% vs 77% of normal, Pstrength in shoulder abductors was most affected (51% vs 62...

  3. PDH regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian

    is determined by the overall content / activity of the regulatory proteins PDH kinase (PDK), of which there are 4 isoforms, and PDH phosphatase (PDP), of which there are 2 isoforms. The overall aim of the PhD project was to elucidate 4 issues. 1: Role of muscle type in resting and exercise-induced PDH...... in arm than leg muscles during exercise in humans may be the result of lower PDH-E1? content and not a muscle type dependent difference in PDH regulation. Both low muscle glycogen and increased plasma FFA are associated with upregulation of PDK4 protein and less exercise-induced increase in PDHa activity...... in human skeletal muscle. It may be noted that the increased PDK4 protein associated with elevated plasma FFA occurs already 2 hours after different dietary intake. A week of physical inactivity (bed rest), leading to whole body glucose intolerance, does not affect muscle PDH-E1? content, or the exercise...

  4. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells.

    Science.gov (United States)

    Tamaki, Tetsuro; Okada, Yoshinori; Uchiyama, Yoshiyasu; Tono, Kayoko; Masuda, Maki; Wada, Mika; Hoshi, Akio; Akatsuka, Akira

    2007-10-01

    In order to establish the practical isolation and usage of skeletal muscle-derived stem cells (MDSCs), we determined reconstitution capacity of CD34(-)/CD45(-) (Sk-DN) cells as a candidate somatic stem cell source for transplantation. Sk-DN cells were enzymatically isolated from GFP transgenic mice (C57/BL6N) skeletal muscle and sorted using fluorescence activated cell sorting (FACS), and expanded by collagen gel-based cell culture with bFGF and EGF. The number of Sk-DN cells was small after sorting (2-8 x 10(4)); however, the number increased 10-20 fold (2-16 x 10(5)) after 6 days of expansion culture, and the cells maintained immature state and multipotency, expressing mRNAs for mesodermal and ectodermal cell lineages. Transplantation of expanded Sk-DN cells into the severe muscle damage model (C57/BL6N wild-type) resulted in the synchronized reconstitution of blood vessels, peripheral nerves and muscle fibers following significant recovery of total muscle mass (57%) and contractile function (55%), whereas the non-cell-transplanted control group showed around 20% recovery in both factors. These reconstitution capacities were supported by the intrinsic plasticity of Sk-DN cells that can differentiate into muscular (skeletal muscle), vascular (pericyte, endothelial cell and smooth muscle) and peripheral nerve (Schwann cells and perineurium) cell lineages that was revealed by transplantation to non-muscle tissue (beneath renal capsule) and fluorescence in situ hybridization (FISH) analysis.

  5. Leg stiffness can be maintained during reactive hopping despite modified acceleration conditions.

    Science.gov (United States)

    Kramer, A; Ritzmann, R; Gruber, M; Gollhofer, A

    2012-06-26

    The aim of the present study was to evaluate reactive hops under systematically modified acceleration conditions. It was hypothesized that a high preactivity of the leg extensors and phase-specific adjustments of the leg muscle activation would compensate the alterations caused by the various acceleration levels in order to maintain a high leg stiffness, thus enabling the jumper to perform truly reactive jumps with short ground contact times despite the unaccustomed acceleration conditions. Ground reaction forces (GRF), kinematic and electromyographic data of 20 healthy subjects were recorded during reactive hopping in a special sledge jump system for seven different acceleration levels: three acceleration levels with lower than normal gravity (0.7g, 0.8g, 0.9g), one with gravitational acceleration (1g) and three with higher acceleration (1.1g, 1.2g, 1.3g). The increase of the acceleration from 0.7g to 1.3g had no significant effect on the preactivity of the leg extensors, the leg stiffness and the rate of force development. However, it resulted in increased peak GRF (+15%), longer ground contact time (+10%) and increased angular excursion at the ankle and knee joints (+3°). Throughout a wide acceleration range, the subjects were able to maintain a high leg stiffness and perform reactive hops by keeping the preactivity constantly high and adjusting the muscle activity in the later phases. In consequence, it can be concluded that the neuromuscular system can cope with different acceleration levels, at least in the acceleration range used in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    Science.gov (United States)

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  7. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Science.gov (United States)

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  8. Effect of wobble board training on movement strategies to maintain equilibrium on unstable surfaces.

    Science.gov (United States)

    Silva, Priscila de Brito; Mrachacz-Kersting, Natalie; Oliveira, Anderson Souza; Kersting, Uwe Gustav

    2018-04-01

    Standing on unstable surfaces requires more complex motor control mechanisms to sustain balance when compared to firm surfaces. Surface instability enhances the demand to maintain equilibrium and is often used to challenge balance, but little is known about how balance training affects movement strategies to control posture while standing on unstable surfaces. This study aimed at assessing the effects of isolated wobble board (WB) training on movement strategies to maintain balance during single-leg standing on a WB. Twenty healthy men were randomly assigned to either a control or a training group. The training group took part in four weeks of WB training and both groups were tested pre and post the intervention. Electromyography from the supporting lower limb muscles, full-body kinematics and ground reaction forces were recorded during firm surface (FS) and WB single-leg standing. WB training did not affect FS performance (p = 0.865), but tripled WB standing time (p < 0.002). Moreover, training decreased lower leg muscle activation (29-59%), leg and trunk velocities (30% and 34%, respectively), and supporting limb angular velocity (24-47% across all planes for the ankle, knee and hip joints). Post intervention standing time was significantly correlated with angular velocities at the hip (r = 0.79) and knee (r = -0.83) for controls, while it correlated significantly with contra-lateral leg (r ∼ 0.70) and trunk velocity (r = -0.74) for trained participants. These results support the assumption that WB training enhances the ability to control counter-rotation mechanisms for balance maintenance on unstable surfaces, which may be a crucial protective factor against sports injuries. Copyright © 2018. Published by Elsevier B.V.

  9. Unorthodox angiogenesis in skeletal muscle.

    Science.gov (United States)

    Egginton, S; Zhou, A L; Brown, M D; Hudlická, O

    2001-02-16

    The morphological pattern of angiogenesis occurring in mature, differentiated skeletal muscle in response to chronically increased muscle blood flow, muscle stretch or repetitious muscle contractions was examined to determine (a) whether capillary neoformation follows the generally accepted temporal paradigm, and (b) how the growth pattern is influenced by mechanical stimuli. Adult rats were treated for a maximum of 14 days either with the vasodilator prazosin, to elevate skeletal muscle blood flow, or underwent surgical removal of one ankle flexor, to induce compensatory overload in the remaining muscles, or had muscles chronically stimulated by implanted electrodes. Extensor digitorum longus and/or extensor hallucis proprius muscles were removed at intervals and processed for electron microscopy. A systematic examination of capillaries and their ultrastructure characterised the sequence of morphological changes indicative of angiogenesis, i.e., basement membrane disruption, endothelial cell (EC) sprouting and proliferation [immunogold labelling after bromodeoxyuridine (BrdU) incorporation]. Capillary growth in response to increased blood flow occurred by luminal division without sprouting or basement membrane (BM) breakage. In stretched muscles, EC proliferation and abluminal sprouting gave rise to new capillaries, with BM loss only at sprout tips. These distinct mechanisms appear to be additive as in chronically stimulated muscles (increased blood flow with repetitive stretch and shortening during muscle contractions) both forms of capillary growth occurred. Endothelial cell numbers per capillary profile, mitotic EC nuclei, and BrdU labelling confirmed cell proliferation prior to overt angiogenesis. Physiological angiogenesis within adult skeletal muscle progresses by mechanisms that do not readily conform to the consensus view of capillary growth, derived mainly from observations made during development, pathological vessel growth, or from in vitro systems. The

  10. Immunology Guides Skeletal Muscle Regeneration

    OpenAIRE

    F. Andrea Sass; Michael Fuchs; Matthias Pumberger; Sven Geissler; Georg N. Duda; Carsten Perka; Katharina Schmidt-Bleek

    2018-01-01

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is d...

  11. Muscle necrosis - computer tomography aspects

    International Nuclear Information System (INIS)

    Franze, I.; Goebel, N.; Stuckmann, G.

    1985-01-01

    In four patients muscle necroses were observed. In two patients these were caused by intraoperative positioning, in one by having worked with a pneumatic hammer and in one possibly by alcohol. CT showed hypodense areas in the affected muscles which were - in the state of subacute necroses - surrounded by hyperaemic borders. The diagnosis was confirmed by puncture or biopsy. After six months hypodense areas were still perceptible in the atrophic muscles of two patients. (orig.) [de

  12. Respiratory muscle function and exercise limitation in patients with chronic obstructive pulmonary disease: a review.

    Science.gov (United States)

    Charususin, Noppawan; Dacha, Sauwaluk; Gosselink, Rik; Decramer, Marc; Von Leupoldt, Andreas; Reijnders, Thomas; Louvaris, Zafeiris; Langer, Daniel

    2018-01-01

    Respiratory muscle dysfunction is common and contributes to dyspnea and exercise limitation in patients with chronic obstructive pulmonary disease (COPD). Improving dynamic function of respiratory muscles during exercise might help to reduce symptoms and improve exercise capacity. Areas covered: The aims of this review are to 1) summarize physiological mechanisms linking respiratory muscle dysfunction to dyspnea and exercise limitation; 2) provide an overview of available therapeutic approaches to better maintain load-capacity balance of respiratory muscles during exercise; and 3) to summarize current knowledge on potential mechanisms explaining effects of interventions aimed at optimizing dynamic respiratory muscle function with a special focus on inspiratory muscle training. Expert commentary: Several mechanisms which are potentially linking improvements in dynamic respiratory muscle function to symptomatic and functional benefits have not been studied so far in COPD patients. Examples of underexplored areas include the study of neural processes related to the relief of acute dyspnea and the competition between respiratory and peripheral muscles for limited energy supplies during exercise. Novel methodologies are available to non-invasively study these mechanisms. Better insights into the consequences of dynamic respiratory muscle dysfunction will hopefully contribute to further refine and individualize therapeutic approaches in patients with COPD.

  13. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    Science.gov (United States)

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  14. Muscle function and hydrodynamics limit power and speed in swimming frogs.

    Science.gov (United States)

    Clemente, Christofer J; Richards, Christopher

    2013-01-01

    Studies of the muscle force-velocity relationship and its derived n-shaped power-velocity curve offer important insights into muscular limits of performance. Given the power is maximal at 1/3 V(max), geometric scaling of muscle force coupled with fluid drag force implies that this optimal muscle-shortening velocity for power cannot be maintained across the natural body-size range. Instead, muscle velocity may decrease with increasing body size, conferring a similar n-shaped power curve with body size. Here we examine swimming speed and muscle function in the aquatic frog Xenopus laevis. Swimming speed shows an n-shaped scaling relationship, peaking at 47.35 g. Further, in vitro muscle function of the ankle extensor plantaris longus also shows an optimal body mass for muscle power output (47.27 g), reflecting that of swimming speed. These findings suggest that in drag-based aquatic systems, muscle-environment interactions vary with body size, limiting both the muscle's potential to produce power and the swimming speed.

  15. Directional preference of activation of abdominal and paraspinal muscles during position-control tasks in sitting.

    Science.gov (United States)

    Eriksson Crommert, Martin; Tucker, Kylie; Holford, Christopher; Wight, Alexander; McCook, Donna; Hodges, Paul

    2017-08-01

    Controversy exists in the literature regarding antagonist activity of trunk muscles during different types of trunk loading, and the direction-specificity of activation of trunk muscles, particularly the deeper trunk muscles. This study aimed to systematically compare activation of a range of trunk muscles between directions of statically applied loads, and to consider the impact of breathing in this activation. In a semi-seated position, 13 healthy male participants resisted moderate inertial loads applied to the trunk in eight different directions. Intramuscular electromyography was recorded from eight abdominal and back muscles on the right side during 1s prior to peak inspiration/expiration. All muscles demonstrated a directional preference of activation. No muscle displayed antagonistic activation during loading conditions of an intensity that exceded that recorded in upright sitting without a load. During these moderate intensity sustained efforts, trunk muscle activation varied little between respiratory phases. Antagonistic muscle activation of amplitude equivalent to the activation recorded in upright sitting without load is sufficient to maintain control of the spine during predictable and sustained low load tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Design and Dynamic Model of a Frog-inspired Swimming Robot Powered by Pneumatic Muscles

    Science.gov (United States)

    Fan, Ji-Zhuang; Zhang, Wei; Kong, Peng-Cheng; Cai, He-Gao; Liu, Gang-Feng

    2017-09-01

    Pneumatic muscles with similar characteristics to biological muscles have been widely used in robots, and thus are promising drivers for frog inspired robots. However, the application and nonlinearity of the pneumatic system limit the advance. On the basis of the swimming mechanism of the frog, a frog-inspired robot based on pneumatic muscles is developed. To realize the independent tasks by the robot, a pneumatic system with internal chambers, micro air pump, and valves is implemented. The micro pump is used to maintain the pressure difference between the source and exhaust chambers. The pneumatic muscles are controlled by high-speed switch valves which can reduce the robot cost, volume, and mass. A dynamic model of the pneumatic system is established for the simulation to estimate the system, including the chamber, muscle, and pneumatic circuit models. The robot design is verified by the robot swimming experiments and the dynamic model is verified through the experiments and simulations of the pneumatic system. The simulation results are compared to analyze the functions of the source pressure, internal volume of the muscle, and circuit flow rate which is proved the main factor that limits the response of muscle pressure. The proposed research provides the application of the pneumatic muscles in the frog inspired robot and the pneumatic model to study muscle controller.

  17. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.

    Directory of Open Access Journals (Sweden)

    Melanie A Samuel

    Full Text Available As synapses form and mature the synaptic partners produce organizing molecules that regulate each other's differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ, these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.

  18. Muscle dysmorphia: current insights

    Directory of Open Access Journals (Sweden)

    Tod D

    2016-08-01

    Full Text Available David Tod1 Christian Edwards2 Ieuan Cranswick1 1School of Sport and Exercise Science, Faculty of Science, Liverpool John Moores University, Liverpool, Merseyside, 2Institute of Sport and Exercise Science, University of Worcester, Worcester, Worcestershire, UK Abstract: Since 1997, there has been increasing research focusing on muscle dysmorphia, a condition underpinned by people’s beliefs that they have insufficient muscularity, in both the Western and non-Western medical and scientific communities. Much of this empirical interest has surveyed nonclinical samples, and there is limited understanding of people with the condition beyond knowledge about their characteristics. Much of the existing knowledge about people with the condition is unsurprising and inherent in the definition of the disorder, such as dissatisfaction with muscularity and adherence to muscle-building activities. Only recently have investigators started to explore questions beyond these limited tautological findings that may give rise to substantial knowledge advances, such as the examination of masculine and feminine norms. There is limited understanding of additional topics such as etiology, prevalence, nosology, prognosis, and treatment. Further, the evidence is largely based on a small number of unstandardized case reports and descriptive studies (involving small samples, which are largely confined to Western (North American, British, and Australian males. Although much research has been undertaken since the term “muscle dysmorphia” entered the psychiatric lexicon in 1997, there remains tremendous scope for knowledge advancement. A primary task in the short term is for investigators to examine the extent to which the condition exists among well-defined populations to help determine the justification for research funding relative to other public health issues. A greater variety of research questions and designs may contribute to a broader and more robust knowledge base

  19. Muscle damage and muscle remodeling: no pain, no gain?

    Science.gov (United States)

    Flann, Kyle L; LaStayo, Paul C; McClain, Donald A; Hazel, Mark; Lindstedt, Stan L

    2011-02-15

    Skeletal muscle is a dynamic tissue that responds adaptively to both the nature and intensity of muscle use. This phenotypic plasticity ensures that muscle structure is linked to patterns of muscle use throughout the lifetime of an animal. The cascade of events that result in muscle restructuring - for example, in response to resistance exercise training - is often thought to be initiated by muscle damage. We designed this study to test the hypothesis that symptomatic (i.e. detectable) damage is a necessary precursor for muscle remodeling. Subjects were divided into two experimental populations: pre-trained (PT) and naive (NA). Demonstrable muscle damage was avoided in the PT group by a three-week gradual 'ramp-up' protocol. By contrast, the NA group was subjected to an initial damaging bout of exercise. Both groups participated in an eight-week high-force eccentric-cycle ergometry program (20 min, three times per week) designed to equate the total work done during training between the groups. The NA group experienced signs of damage, absent in the PT group, as indicated by greater than five times higher levels of plasma creatine kinase (CK) and self-reporting of initial perceived soreness and exertion, yet muscle size and strength gains were not different for the two groups. RT-PCR analysis revealed similar increases in levels of the growth factor IGF-1Ea mRNA in both groups. Likewise, the significant (Pmuscle volume) were equal in both groups. Finally, strength increases were identical for both groups (PT=25% and NA=26% improvement). The results of this study suggest that muscle rebuilding - for example, hypertrophy - can be initiated independent of any discernible damage to the muscle.

  20. Comparing Effective Treatments for Attention-Maintained and Escape- Maintained Behaviors in Children with Behavior Disorders: Brief Review and Analysis

    OpenAIRE

    Lauren Worcester; T. F. McLaughlin

    2013-01-01

    This literature review compares treatment for attention-maintainedversus escape maintained aberrant behavior in children with behavior disorders. Specifically, studies utilizing time out procedures, differential reinforcement procedures, noncontingent reinforcement, and functional communication training are discussed. It was found that these are effective treatments for attention-maintained behaviors; while escape extinction, positive and negative reinforcement, functional communication trai...

  1. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle.

    Science.gov (United States)

    Frederick, David W; Loro, Emanuele; Liu, Ling; Davila, Antonio; Chellappa, Karthikeyani; Silverman, Ian M; Quinn, William J; Gosai, Sager J; Tichy, Elisia D; Davis, James G; Mourkioti, Foteini; Gregory, Brian D; Dellinger, Ryan W; Redpath, Philip; Migaud, Marie E; Nakamaru-Ogiso, Eiko; Rabinowitz, Joshua D; Khurana, Tejvir S; Baur, Joseph A

    2016-08-09

    NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically depleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Pleiotropic Effect of Physical Exercise on Mitochondrial Dynamics in Aging Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Elena Barbieri

    2015-01-01

    Full Text Available Decline in human muscle mass and strength (sarcopenia is one of the principal hallmarks of the aging process. Regular physical exercise and training programs are certain powerful stimuli to attenuate the physiological skeletal muscle alterations occurring during aging and contribute to promote health and well-being. Although the series of events that led to these muscle adaptations are poorly understood, the mechanisms that regulate these processes involve the “quality” of skeletal muscle mitochondria. Aerobic/endurance exercise helps to maintain and improve cardiovascular fitness and respiratory function, whereas strength/resistance-exercise programs increase muscle strength, power development, and function. Due to the different effect of both exercises in improving mitochondrial content and quality, in terms of biogenesis, dynamics, turnover, and genotype, combined physical activity programs should be individually prescribed to maximize the antiaging effects of exercise.

  3. The pleiotropic effect of physical exercise on mitochondrial dynamics in aging skeletal muscle.

    Science.gov (United States)

    Barbieri, Elena; Agostini, Deborah; Polidori, Emanuela; Potenza, Lucia; Guescini, Michele; Lucertini, Francesco; Annibalini, Giosuè; Stocchi, Laura; De Santi, Mauro; Stocchi, Vilberto

    2015-01-01

    Decline in human muscle mass and strength (sarcopenia) is one of the principal hallmarks of the aging process. Regular physical exercise and training programs are certain powerful stimuli to attenuate the physiological skeletal muscle alterations occurring during aging and contribute to promote health and well-being. Although the series of events that led to these muscle adaptations are poorly understood, the mechanisms that regulate these processes involve the "quality" of skeletal muscle mitochondria. Aerobic/endurance exercise helps to maintain and improve cardiovascular fitness and respiratory function, whereas strength/resistance-exercise programs increase muscle strength, power development, and function. Due to the different effect of both exercises in improving mitochondrial content and quality, in terms of biogenesis, dynamics, turnover, and genotype, combined physical activity programs should be individually prescribed to maximize the antiaging effects of exercise.

  4. Motor Unit Changes Seen With Skeletal Muscle Sarcopenia in Oldest Old Rats

    Science.gov (United States)

    Kung, Theodore A.; van der Meulen, Jack H.; Urbanchek, Melanie G.; Kuzon, William M.; Faulkner, John A.

    2014-01-01

    Sarcopenia leads to many changes in skeletal muscle that contribute to atrophy, force deficits, and subsequent frailty. The purpose of this study was to characterize motor unit remodeling related to sarcopenia seen in extreme old age. Whole extensor digitorum longus muscle and motor unit contractile properties were measured in 19 adult (11–13 months) and 12 oldest old (36–37 months) Brown-Norway rats. Compared with adults, oldest old rats had significantly fewer motor units per muscle, smaller muscle cross-sectional area, and lower muscle specific force. However, mean motor unit force generation was similar between the two groups due to an increase in innervation ratio by the oldest old rats. These findings suggest that even in extreme old age both fast- and slow-twitch motor units maintain the ability to undergo motor unit remodeling that offsets some effects of sarcopenia. PMID:24077596

  5. Pelvic floor muscle strength and sexual function in women

    Directory of Open Access Journals (Sweden)

    Cinara Sacomori

    Full Text Available Abstract Introduction : Pelvic floor (PF muscles react to sexual stimuli with increased local blood circulation and involuntary contractions during orgasm. The training of the PF musculature helps in the improvement of the female sexual function. Objective : To verify the association between PF muscle strength and sexual function in women, controlling age and parity. Method : Cross-sectional study based on associations. The study included women who attended a reference center in Florianópolis, Santa Catarina, for a uterine cancer smear test. The Functional Evaluation of the Pelvic Floor and the Female Sexual Function Index questionnaire were used. Statistical procedures included Mann-Whitney U tests, Spearman correlation and Poisson Regression Analysis, with p < .05. Results : The mean age of the women (n = 177 was 39.05 years (SD = 13.3. Regarding PF function, 53.7% of participants presented weak or not palpable PF muscle function. Women with "good" muscle function (able to maintain contraction under examiner's resistance had significantly better indexes of sexual desire, excitement, lubrication and orgasm than women with weak/poor function. We identified that 52.5% of the women presented sexual dysfunction. Women with "poor" PF function and aged over 50 years had, respectively, 1.36 (CI95% 1.01 - 1.82 and 1.77 (CI95% 1.41 - 2.23 higher prevalence of sexual dysfunction than women with "good" PF function. Conclusions : Adult women with better PF muscle function also presented better sexual function.

  6. The basis for prolonged contractions in molluscan muscles.

    Science.gov (United States)

    JOHNSON, W H; TWAROG, B M

    1960-05-01

    Two basically different hypotheses have been advanced to explain the behavior of molluscan muscles in cases in which relaxation of the muscle is extraordinarily prolonged. In one hypothesis, tetanic activation due to prolonged activity in an intrinsic ganglion network is postulated; in the other, changes in the mechanical properties of the muscle capable of maintaining tension generated by the contractile system are proposed. Experiments reported here were designed to test these hypotheses. Recordings were made of electrical activity in a number of circumstances in which the muscle relaxes slowly, and this activity was absent in some cases and in others was not found to correlate well with rate of relaxation. Quick release of the muscle during and after a stimulus which induced slow relaxation showed disappearance of the active state long before decay of tension. Contractile tension decreases with length below rest length whereas passive tension due to stretch following D. C. stimuli remains approximately independent of length. The latter has the same mechanical basis as prolonged relaxation following D. C. stimuli. Thus initial contractile tension and the tension remainder during prolonged relaxation appear to originate through different mechanisms. These results lead us to favor the second hypothesis above. A means by which this could be achieved in vivo is discussed.

  7. Turning scar into muscle.

    Science.gov (United States)

    de Carvalho, Antonio Carlos Campos; Carvalho, Adriana Bastos

    2012-09-26

    After the demonstration that somatic cells could be reprogrammed to a pluripotent state, exciting new prospects were opened for the cardiac regeneration field. It did not take long for the development of strategies to convert somatic cells directly into cardiomyocytes. Despite the intrinsic difficulties of cell reprogramming, such as low efficiency, the therapeutic possibilities created by the ability to turn scar into muscle are enormous. Here, we discuss some of the major advances and strategies used in direct cardiac reprogramming and examine discrepancies and concerns that still need to be resolved in the field.

  8. Contractures and muscle disease.

    Science.gov (United States)

    Walters, R Jon

    2016-08-01

    Contractures are one of a handful of signs in muscle disease, besides weakness and its distribution, whose presence can help guide us diagnostically, a welcome star on the horizon. Contractures are associated with several myopathies, some with important cardiac manifestations, and consequently are important to recognise; their presence may also provide us with a potential satisfying 'penny dropping' diagnostic moment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Lipoxygenase in chicken muscle

    International Nuclear Information System (INIS)

    Grossman, S.; Bergman, M.; Sklan, D.

    1988-01-01

    The presence of lipoxygenase-type enzymes was demonstrated in chick muscles. Examination of the oxidation products of [ 14 C]arachidonic acid revealed the presence of 15-lipoxygenase. The enzyme was partially purified by affinity chromatography on linoleoyl-aminoethyl-Sepharose. The enzyme was stable on frozen storage, and activity was almost completely preserved after 12-month storage at -20 degree C. During this period the content of cis,cis-1,4-pentadiene fatty acids decreased slightly. It is suggested that lipoxygenase may be responsible for some of the oxidative changes occurring in fatty acids on frozen storage of chicken meat

  10. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  11. The role of the paravertebral muscles in adolescent idiopathic scoliosis evaluated by temporary paralysis

    DEFF Research Database (Denmark)

    Wong, Christian; Gosvig, Kasper; Sonne-Holm, Stig

    2017-01-01

    BACKGROUND: Muscle imbalance has been suggested as implicated in the pathology of adolescent idiopathic scoliosis (AIS). The specific "pathomechanic" role of the paravertebral muscles as being scoliogenic (inducing scoliosis) or counteracting scoliosis in the initial development and maintenance...... and Moe's classification, respectively. No serious adverse events were detected at follow-up. CONCLUSIONS: In conclusion, this study demonstrated that the psoas major muscle do play a role into the pathology in adolescent idiopathic scoliosis by maintaining the curvature of the lumbar spine and thoracic...

  12. Persistent muscle fiber regeneration in long term denervation. Past, present, future

    Directory of Open Access Journals (Sweden)

    Ugo Carraro

    2015-03-01

    Full Text Available Despite the ravages of long term denervation there is structural and ultrastructural evidence for survival of muscle fibers in mammals, with some fibers surviving at least ten months in rodents and 3-6 years in humans. Further, in rodents there is evidence that muscle fibers may regenerate even after repeated damage in the absence of the nerve, and that this potential is maintained for several months after denervation. While in animal models permanently denervated muscle sooner or later loses the ability to contract, the muscles may maintain their size and ability to function if electrically stimulated soon after denervation. Whether in mammals, humans included, this is a result of persistent de novo formation of muscle fibers is an open issue we would like to explore in this review. During the past decade, we have studied muscle biopsies from the quadriceps muscle of Spinal Cord Injury (SCI patients suffering with Conus and Cauda Equina syndrome, a condition that fully and irreversibly disconnects skeletal muscle fibers from their damaged innervating motor neurons. We have demonstrated that human denervated muscle fibers survive years of denervation and can be rescued from severe atrophy by home-based Functional Electrical Stimulation (h-bFES. Using immunohistochemistry with both non-stimulated and the h-bFES stimulated human muscle biopsies, we have observed the persistent presence of muscle fibers which are positive to labeling by an antibody which specifically recognizes the embryonic myosin heavy chain (MHCemb. Relative to the total number of fibers present, only a small percentage of these MHCemb positive fibers are detected, suggesting that they are regenerating muscle fibers and not pre-existing myofibers re-expressing embryonic isoforms. Although embryonic isoforms of acetylcholine receptors are known to be re-expressed and to spread from the end-plate to the sarcolemma of muscle fibers in early phases of muscle denervation, we suggest

  13. Maintaining subject engagement during robotic rehabilitation with a minimal assist-as-needed (mAAN) controller.

    Science.gov (United States)

    Pehlivan, Ali Utku; Losey, Dylan P; Rose, Chad G; O'Malley, Marcia K

    2017-07-01

    One challenge of robotic rehabilitation interventions is devising ways to encourage and maintain high levels of subject involvement over long duration therapy sessions. Assist-as-needed controllers have been proposed which modulate robot intervention in movements based on measurements of subject involvement. This paper presents a minimal assist-as-needed controller, which modulates allowable error bounds and robot intervention based on sensorless force measurement accomplished through a nonlinear disturbance observer. While similar algorithms have been validated using healthy subjects, this paper presents a validation of the proposed mAAN control algorithm's ability to encourage user involvement with an impaired individual. User involvement is inferred from muscle activation, measured via surface electromyography (EMG). Experimental validation shows increased EMG muscle activation when using the proposed mAAN algorithm compared to non-adaptive algorithms.

  14. Influence of passive muscle tension on electromechanical delay in humans.

    Directory of Open Access Journals (Sweden)

    Lilian Lacourpaille

    Full Text Available BACKGROUND: Electromechanical delay is the time lag between onsets of muscle activation and muscle force production and reflects both electro-chemical processes and mechanical processes. The aims of the present study were two-fold: to experimentally determine the slack length of each head of the biceps brachii using elastography and to determine the influence of the length of biceps brachii on electromechanical delay and its electro-chemical/mechanical processes using very high frame rate ultrasound. METHODS/RESULTS: First, 12 participants performed two passive stretches to evaluate the change in passive tension for each head of the biceps brachii. Then, they underwent two electrically evoked contractions from 120 to 20° of elbow flexion (0°: full extension, with the echographic probe maintained over the muscle belly and the myotendinous junction of biceps brachii. The slack length was found to occur at 95.5 ± 6.3° and 95.3 ± 8.2° of the elbow joint angle for the long and short heads of the biceps brachii, respectively. The electromechanical delay was significantly longer at 120° (16.9 ± 3.1 ms; p0.95. CONCLUSION: In contrast to previous observations on gastrocnemius medialis, the onset of muscle motion and the onset of myotendinous junction motion occurred simultaneously regardless of the length of the biceps brachii. That suggests that the between-muscles differences reported in the literature cannot be explained by different muscle passive tension but instead may be attributable to muscle architectural differences.

  15. S6K1 Is Required for Increasing Skeletal Muscle Force during Hypertrophy.

    Science.gov (United States)

    Marabita, Manuela; Baraldo, Martina; Solagna, Francesca; Ceelen, Judith Johanna Maria; Sartori, Roberta; Nolte, Hendrik; Nemazanyy, Ivan; Pyronnet, Stéphane; Kruger, Marcus; Pende, Mario; Blaauw, Bert

    2016-10-04

    Loss of skeletal muscle mass and force aggravates age-related sarcopenia and numerous pathologies, such as cancer and diabetes. The AKT-mTORC1 pathway plays a major role in stimulating adult muscle growth; however, the functional role of its downstream mediators in vivo is unknown. Here, we show that simultaneous inhibition of mTOR signaling to both S6K1 and 4E-BP1 is sufficient to reduce AKT-induced muscle growth and render it insensitive to the mTORC1-inhibitor rapamycin. Surprisingly, lack of mTOR signaling to 4E-BP1 only, or deletion of S6K1 alone, is not sufficient to reduce muscle hypertrophy or alter its sensitivity to rapamycin. However, we report that, while not required for muscle growth, S6K1 is essential for maintaining muscle structure and force production. Hypertrophy in the absence of S6K1 is characterized by compromised ribosome biogenesis and the formation of p62-positive protein aggregates. These findings identify S6K1 as a crucial player for maintaining muscle function during hypertrophy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. S-23: Sağlıklı Kişilerde Triseps Surae Kasına Uygulanan Kinesio Tape ve Rijit Tape Uygulamalarının Dikey Sıçrama ve Dinamik Denge Üzerine Anlık Etkilerinin Araştırılması

    Directory of Open Access Journals (Sweden)

    Mert Şaban Ergin

    2017-03-01

    Full Text Available Bu çalışmanın amacı; sağlıklı kişilerde triseps surae kasına uygulanan kinesio tape ve rijit tape uygulamalarının dikey sıçrama ve dinamik denge üzerine anlık etkilerini karşılaştırmaktır. Yeditepe Üniversitesi Sağlık Bilimleri Fakültesi’nde eğitime devam eden, iki yüz on beş (n: 215; K/E: 165/50 öğrenci ile başladığımız çalışmanın I. aşamasında bireylerin fiziksel özellikleri, sosyodemografik ve genel sağlık durumları, sağlık davranışları sorgulandı. Fiziksel aktivite durumlarını sorgulamak için ‘Uluslararası Fiziksel Aktivite Anketi (UFAA’nin kısa formu kullanıldı. Yapılan anket taramaları ve dışlanma kriterlerine göre yüz kırk altı (n=146; K/E:109/37 kişi çalışmadan çıkartıldı. Çalışmanın II. aşamasında, çalışmaya devam etmek istemeyen yirmi altı ve akut sakatlanma yaşayan üç, toplamda 29 birey çalışmadan çıkartıldı. Çalışmanın III. aşamasında; kırk (n=40; K/E:27/13 olgu randomize şekilde ‘I. Grup’ (n=20; K/E:13/7 ve ‘II. Grup’(n=20; K/E:14/6 olarak ayrıldılar. Tüm bireylere alt ekstremiteye yönelik esneklik değerlendirmeleri ve deri altı yağ dokusu kalınlığı ölçümleri yapıldı. I.Gruptaki olgular vertikal sıçrama testi (AP: ortalama anaerobik güç; PP: maksimum anaerobik güç 3 yönlü olarak Yıldız Dinamik Denge Testi (YDDT ile 1. gün bantsız (U1, triseps surae kasına ikinci gün sham tape (U2 ve üçüncü gün kas fasilitasyon tekniği ile kinesio tape (U3 uygulandıktan sonra değerlendirildiler. II. Gruptaki olgulara da sırasıyla, üç bantlama yöntemi, 1.gün U1, ikinci gün rijit tape (U4 uygulaması, üçüncü gün de U3 uygulamaları yapıldı. Tüm olgulara U1, U4 ve U3 den sonra AP, PP veYDDT testleri gerçekleştirildi. I. Grupta U2 ve U3 den sonra PP, AP, YDDT skorları arasında istatistiksel olarak farklılık görülmüştür. U2 sonrasında sonuçlar I.Grupta anlamlı derecede artm

  17. Trunk extensor muscle fatigue influences trunk muscle activities.

    Science.gov (United States)

    Hoseinpoor, Tahere Seyed; Kahrizi, Sedighe; Mobini, Bahram

    2015-01-01

    Trunk muscles fatigue is one of the risk factors in workplaces and daily activities. Loads would be redistributed among active and passive tissues in a non-optimal manner in fatigue conditions. Therefore, a single tissue might be overloaded with minimal loads and as a result the risk of injury would increase. The goal of this paper was to assess the electromyographic response of trunk extensor and abdominal muscles after trunk extensor muscles fatigue induced by cyclic lifting task. This was an experimental study that twenty healthy women participated. For assessing automatic response of trunk extensor and abdominal muscles before and after the fatigue task, electromyographic activities of 6 muscles: thorasic erector spine (TES), lumbar erector spine (LES), lumbar multifidus (LMF), transverse abdominis/ internal oblique (TrA/IO), rectus abdominis (RA) and external oblique (EO) were recorded in standing position with no load and symmetric axial loads equal to 25% of their body weights. Statistical analysis showed that all the abdominal muscles activity decreased with axial loads after performing fatigue task but trunk extensor activity remained constant. Results of the current study indicated that muscle recruitment strategies changed with muscle fatigue and load bearing, therefore risks of tissue injury may increase in fatigue conditions.

  18. Aspects of smooth muscle function in molluscan catch muscle.

    Science.gov (United States)

    Twarog, B M

    1976-10-01

    1) Catch in Mytilus ABRM may be a specialization of a mechanism common to all muscles that gives rise to stretch resistance in the resting state. Catch appears to be due to actin myosin interaction. Since this interaction is regulated by nerves, it provides a convenient model for studying resting stretch resistance. 2) Studies of the structure of Mytilus ABRM revela two types of intercellular connections: a) direct connections between muscle fibers [these nexal (gap) junctions interconnect the muscle cells electrically]; b) muscle fiber-collagen-muscle fiber connections [these provide mechanical connections between muscle cells via collagen fibers]. The structure of Mytilus ABRM supports speculation that smooth muscle filaments are organized into contractile units. 3) A rise in cAMP levels occurs in response to the relaxing transmitter, serotonin. It is not certain whether the cAMP system directly controls the ability of the contractile proteins to interact or whether it regulates intracellular levels of Ca2+. 4) Calcium ions in activation are derived from two sources: an internal source, probably the sarcoplasmic reticulum, and an external source, across the muscle membrane. 5) The nature of catch remains in question, although most evidence favors the linkage hypothesis.

  19. Skeletal muscle sodium channelopathies.

    Science.gov (United States)

    Nicole, Sophie; Fontaine, Bertrand

    2015-10-01

    This is an update on skeletal muscle sodium channelopathies since knowledge in the field have dramatically increased in the past years. The relationship between two phenotypes and SCN4A has been confirmed with additional cases that remain extremely rare: severe neonatal episodic laryngospasm mimicking encephalopathy, which should be actively searched for since patients respond well to sodium channel blockers; congenital myasthenic syndromes, which have the particularity to be the first recessive Nav1.4 channelopathy. Deep DNA sequencing suggests the contribution of other ion channels in the clinical expressivity of sodium channelopathies, which may be one of the factors modulating the latter. The increased knowledge of channel molecular structure, the quantity of sodium channel blockers, and the availability of preclinical models would permit a most personalized choice of medication for patients suffering from these debilitating neuromuscular diseases. Advances in the understanding of the molecular structure of voltage-gated sodium channels, as well as availability of preclinical models, would lead to improved medical care of patients suffering from skeletal muscle, as well as other sodium channelopathies.

  20. Excitation-contraction coupling and mechano-sensitivity in denervated skeletal muscles

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2010-09-01

    Full Text Available Skeletal muscle atrophy can be defined as a wasting or decrease in muscle mass and muscle force generation owing lack of use, ageing, injury or disease. Thus, the etiology of atrophy can be different. Atrophy in denervated muscle is a consequence of two factors: 1 the complete lack of motoneuron activity inducing the deficiency of neurotransmitter release and 2 the muscles disuse. The balance of the muscular functions depends on extra- and intra-muscular signals. In the balance are involved the excitation-contraction coupling (ECC, local growth factors, Ca2+-dependent and independent intracellular signals, mechano-sensitivity and mechano-transduction that activate Ca2+-dependent signaling proteins and cytoskeleton- nucleus pathways to the nucleus, that regulate the gene expression. Moreover, retrograde signal from intracellular compartments and cytoskeleton to the sarcolemma are additional factors that regulate the muscle function. Proteolytic systems that operate in atrophic muscles progressively reduce the muscle protein content and so the sarcolemma, ECC and the force generation. In this review we will focus on the more relevant changes of the sarcolemma, excitation-contraction coupling, ECC and mechano-transduction evaluated by electrophysiological methods and observed from early- to long-term denervated skeletal muscles. This review put in particular evidence that long-term denervated muscle maintain a sub-population of fibers with ECC and contractile machinery able to be activated, albeit in lesser amounts, by electrical and mechanical stimulation. Accordingly, this provides a potential molecular explanation of the muscle recovery that occurs in response to rehabilitation strategy as transcutaneous electrical stimulation and passive stretching of denervated muscles, which wre developed as a result of empirical clinical observations.

  1. Firing of antagonist small-diameter muscle afferents reduces voluntary activation and torque of elbow flexors.

    Science.gov (United States)

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2013-07-15

    During muscle fatigue, firing of small-diameter muscle afferents can decrease voluntary activation of the fatigued muscle. However, these afferents may have a more widespread effect on other muscles in the exercising limb. We examined if the firing of fatigue-sensitive afferents from elbow extensor muscles in the same arm reduces torque production and voluntary activation of elbow flexors. In nine subjects we examined voluntary activation of elbow flexors by measuring changes in superimposed twitches evoked by transcranial magnetic stimulation of the motor cortex during brief (2-3 s) maximal voluntary contractions (MVC). Inflation of a blood pressure cuff following a 2-min sustained MVC blocked blood flow to the fatigued muscle and maintained firing of small-diameter afferents. After a fatiguing elbow flexion contraction, maximal flexion torque was lower (26.0 ± 4.4% versus 67.9 ± 5.2% of initial maximal torque; means ± s.d.; P torque was also reduced (82.2 ± 4.9% versus 91.4 ± 2.3% of initial maximal torque; P = 0.007), superimposed twitches were larger (2.7 ± 0.7% versus 1.3 ± 0.2% ongoing MVC; P = 0.02) and voluntary activation lower (81.6 ± 8.2% versus 95.5 ± 6.9%; P = 0.04) with than without ischaemia. After a fatiguing contraction, voluntary drive to the fatigued muscles is reduced with continued input from small-diameter muscle afferents. Furthermore, fatigue of the elbow extensor muscles decreases voluntary drive to unfatigued elbow flexors of the same arm. Therefore, firing of small-diameter muscle afferents from one muscle can affect voluntary activation and hence torque generation of another muscle in the same limb.

  2. Muscle force compensation among synergistic muscles after fatigue of a single muscle.

    Science.gov (United States)

    Stutzig, Norman; Siebert, Tobias

    2015-08-01

    The aim of this study was to examine control strategies among synergistic muscles after fatigue of a single muscle. It was hypothesized that the compensating mechanism is specific for each fatigued muscle. The soleus (SOL), gastrocnemius lateralis (GL) and medialis (GM) were fatigued in separate sessions on different days. In each experiment, subjects (n = 11) performed maximal voluntary contractions prior to and after fatiguing a single muscle (SOL, GL or GM) while the voluntary muscle activity and torque were measured. Additionally, the maximal single twitch torque of the plantarflexors and the maximal spinal reflex activity (H-reflex) of the SOL, GL and GM were determined. Fatigue was evoked using neuromuscular stimulation. Following fatigue the single twitch torque decreased by -20.1%, -19.5%, and -23.0% when the SOL, GL, or GM, have been fatigued. The maximal voluntary torque did not decrease in any session but the synergistic voluntary muscle activity increased significantly. Moreover, we found no alterations in spinal reflex activity. It is concluded that synergistic muscles compensate each other. Furthermore, it seems that self-compensating mechanism of the fatigued muscles occurred additionally. The force compensation does not depend on the function of the fatigued muscle. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Recovery from muscle weakness by exercise and FES: lessons from Masters, active or sedentary seniors and SCI patients.

    Science.gov (United States)

    Carraro, Ugo; Kern, Helmut; Gava, Paolo; Hofer, Christian; Loefler, Stefan; Gargiulo, Paolo; Edmunds, Kyle; Árnadóttir, Íris Dröfn; Zampieri, Sandra; Ravara, Barbara; Gava, Francesco; Nori, Alessandra; Gobbo, Valerio; Masiero, Stefano; Marcante, Andrea; Baba, Alfonc; Piccione, Francesco; Schils, Sheila; Pond, Amber; Mosole, Simone

    2017-08-01

    Many factors contribute to the decline of skeletal muscle that occurs as we age. This is a reality that we may combat, but not prevent because it is written into our genome. The series of records from World Master Athletes reveals that skeletal muscle power begins to decline at the age of 30 years and continues, almost linearly, to zero at the age of 110 years. Here we discuss evidence that denervation contributes to the atrophy and slowness of aged muscle. We compared muscle from lifelong active seniors to that of sedentary elderly people and found that the sportsmen have more muscle bulk and slow fiber type groupings, providing evidence that physical activity maintains slow motoneurons which reinnervate muscle fibers. Further, accelerated muscle atrophy/degeneration occurs with irreversible Conus and Cauda Equina syndrome, a spinal cord injury in which the human leg muscles may be permanently disconnected from the nervous system with complete loss of muscle fibers within 5-8 years. We used histological morphometry and Muscle Color Computed Tomography to evaluate muscle from these peculiar persons and reveal that contraction produced by home-based Functional Electrical Stimulation (h-bFES) recovers muscle size and function which is reversed if h-bFES is discontinued. FES also reverses muscle atrophy in sedentary seniors and modulates mitochondria in horse muscles. All together these observations indicate that FES modifies muscle fibers by increasing contractions per day. Thus, FES should be considered in critical care units, rehabilitation centers and nursing facilities when patients are unable or reluctant to exercise.

  4. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.

    Science.gov (United States)

    Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A

    2016-08-01

    Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Developing maintainability for fusion power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity.

  6. A cryogenic optical feedthrough using polarization maintaining fibers.

    Science.gov (United States)

    Nelson, M J; Collins, C J; Speake, C C

    2016-03-01

    Polarization maintaining optical fibers can be used to transmit linearly polarized light over long distances but their use in cryogenic environments has been limited by their sensitivity to temperature changes and associated mechanical stress. We investigate experimentally how thermal stresses affect the polarization maintaining fibers and model the observations with Jones matrices. We describe the design, construction, and testing of a feedthrough and fiber termination assembly that uses polarization maintaining fiber to transmit light from a 633 nm HeNe laser at room temperature to a homodyne polarization-based interferometer in a cryogenic vacuum. We report on the efficiency of the polarization maintaining properties of the feedthrough assembly. We also report that, at cryogenic temperatures, the interferometer can achieve a sensitivity of 8 × 10(-10) rad/√Hz at 0.05 Hz using this feedthrough.

  7. Reliability and maintainability data acquisition in equipment development tests

    International Nuclear Information System (INIS)

    Haire, M.J.; Gift, E.H.

    1983-10-01

    The need for collection of reliability, maintainability, and availability data adds a new dimension to the data acquisition requirements of equipment development tests. This report describes the reliability and maintainability data that are considered necessary to ensure that sufficient and high quality data exist for a comprehensive, quantitative evaluation of equipment and system availability. These necessary data are presented as a set of data collection forms. Three data acquisition forms are discussed: an inventory and technical data form, which is filed by the design engineer when the design is finished or the equipment is received; an event report form, which is completed by the senior test operator at each shutdown; and a maintainability report, which is a collaborative effort between senior operators and lead engineers and is completed on restart. In addition, elements of a reliability, maintainability evaluation program are described. Emphasis is placed on the role of data, its storage, and use in such a program

  8. Developing maintainability for fusion power systems. Final report

    International Nuclear Information System (INIS)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity

  9. Guidelines for establishing and maintaining construction quality databases.

    Science.gov (United States)

    2006-11-01

    The main objective of this study was to develop and present guidelines for State highway agencies (SHAs) in establishing and maintaining database systems geared towards construction quality issues for asphalt and concrete paving projects. To accompli...

  10. Control circuit maintains unity power factor of reactive load

    Science.gov (United States)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  11. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    OpenAIRE

    Kosan, Christian; Godmann, Maren

    2015-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several trans...

  12. Skeletal muscle regeneration is modulated by inflammation

    Directory of Open Access Journals (Sweden)

    Wenjun Yang

    2018-04-01

    Full Text Available Skeletal muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we briefly summarise the functions of acute inflammation in muscle regeneration. The translational potential of this article: Immune system is closely relevant to the muscle regeneration. Understanding the mechanisms of inflammation in muscle regeneration is therefore critical for the development of effective regenerative, and therapeutic strategies in muscular disorders. This review provides information for muscle regeneration research regarding the effects of inflammation on muscle regeneration. Keywords: Chronic muscle disorders, Cytokines, Immune cells, Inflammation, Muscle regeneration, Muscle stem cells

  13. Maintaining dental records: Are we ready for forensic needs?

    Science.gov (United States)

    Astekar, Madhusudan; Saawarn, Swati; Ramesh, Gayathri; Saawarn, Nisheeth

    2011-07-01

    Dental remains are usually the last to get destroyed among body parts after death. They may be useful for personal identification in cases of mass disasters and decomposed unidentified bodies. Dental records may help in the identification of suspects in criminal investigations and in medicolegal cases. Maintenance of dental records is legally mandatory in most of the European and American countries. Unfortunately, the law is not very clear in India, and the awareness is very poor. To assess the awareness regarding the dental record maintenance among dentists in Rajasthan, to deduce the quality of average dental records kept by them and to evaluate the potential use of their maintained records, in any of forensic or medicolegal cases. A cross-sectional survey was conducted among 100 dental practitioners of different cities in Rajasthan, India. Data were collected through a structured questionnaire, which was responded by the study population in the course of a telephonic interview. The questionnaire addressed on the mode of maintaining dental records in their regular practice. The data so gathered were subjected for descriptive analysis. As for knowledge or awareness about maintaining dental records, surprisingly a very low percentile (about 38%) of surveyed dentists maintained records. Sixty-two percent of the dentists were maintaining no records at all. Nonmaintenance or poor quality of records maintained indicates that the dentists in Rajasthan are not prepared for any kind of forensic and medicolegal need if it arises.

  14. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  15. Muscle ultrasound in neuromuscular disorders.

    NARCIS (Netherlands)

    Pillen, S.; Arts, I.M.P.; Zwarts, M.J.

    2008-01-01

    Muscle ultrasound is a useful tool in the diagnosis of neuromuscular disorders, as these disorders result in muscle atrophy and intramuscular fibrosis and fatty infiltration, which can be visualized with ultrasound. Several prospective studies have reported high sensitivities and specificities in

  16. Human skeletal muscle biochemical diversity.

    Science.gov (United States)

    Tirrell, Timothy F; Cook, Mark S; Carr, J Austin; Lin, Evie; Ward, Samuel R; Lieber, Richard L

    2012-08-01

    The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy - titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to 'tune' the protein's mechanotransduction capability.

  17. Sympathetic modulation of muscle spindle afferent sensitivity to stretch in rabbit jaw closing muscles.

    Science.gov (United States)

    Roatta, S; Windhorst, U; Ljubisavljevic, M; Johansson, H; Passatore, M

    2002-04-01

    Previous reports showed that sympathetic stimulation affects the activity of muscle spindle afferents (MSAs). The aim of the present work is to study the characteristics of sympathetic modulation of MSA response to stretch: (i) on the dynamic and static components of the stretch response, and (ii) on group Ia and II MSAs to evaluate potentially different effects. In anaesthetised rabbits, the peripheral stump of the cervical sympathetic nerve (CSN) was stimulated at 10 impulses s(-1) for 45-90 s. The responses of single MSAs to trapezoidal displacement of the mandible were recorded from the mesencephalic trigeminal nucleus. The following characteristic parameters were determined from averaged trapezoidal responses: initial frequency (IF), peak frequency at the end of the ramp (PF), and static index (SI). From these, other parameters were derived: dynamic index (DI = PF - SI), dynamic difference (DD = PF - IF) and static difference (SD = SI - IF). The effects of CSN stimulation were also evaluated during changes in the state of intrafusal muscle fibre contraction induced by succinylcholine and curare. In a population of 124 MSAs, 106 units (85.4 %) were affected by sympathetic stimulation. In general, while changes in resting discharge varied among different units (Ia vs. II) and experimental conditions (curarised vs. non-curarised), ranging from enhancement to strong depression of firing, the amplitude of the response to muscle stretches consistently decreased. This was confirmed and detailed in a quantitative analysis performed on 49 muscle spindle afferents. In both the non-curarised (23 units) and curarised (26 units) condition, stimulation of the CSN reduced the response amplitude in terms of DD and SD, but hardly affected DI. The effects were equally present in both Ia and II units; they were shown to be independent from gamma drive and intrafusal muscle tone and not secondary to muscle hypoxia. Sympathetic action on the resting discharge (IF) was less

  18. The Basis of Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Antonio Musarò

    2014-01-01

    Full Text Available Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests that while stem cells represent an important determinant for tissue regeneration, a “qualified” environment is necessary to guarantee and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling, and maturation/functional repair.

  19. MR imaging of muscle diseases

    International Nuclear Information System (INIS)

    Kaiser, W.A.; Zeitler, E.; Schalke, B.C.G.

    1986-01-01

    Because of high soft-tissue contrast, MR imaging is especially suitable for the investigation of muscle diseases. Between March 1984 and March 1986, 76 patients with different types of muscle diseases were examined using a 1-T superconductive magnet (Siemens Magnetom). Studied were 14 patients with progressive muscular dystrophy (including carriers), 32 patients with myositis, four patients with myotonic dystrophy, six patients with spinal muscular atrophy, and 20 patients with other muscle diseases, including metabolic disorders. MR imaging showed typical signal patterns in affected muscle groups. These patterns can be used in the differential diagnosis, in biopsy planning, or in evaluation of response to therapy. The T1/T2 ratio especially seems to indicate very early stages of muscle disease

  20. Effects of starvation on protein synthesis and nucleic acid metabolism in the muscle of the barred sand bass Paralabrax nebulifer

    Energy Technology Data Exchange (ETDEWEB)

    Lowery, M.S.

    1987-01-01

    Starvation induced different protein synthesis responses in red and white muscle of the barred sand bass Paralabrax nebulifer. Red muscle had /sup 14/C-leucine incorporation rates into total protein which were several times higher than white muscle in both the fed and starved states. Muscle was separated into a myofibrillar fraction consisting of the structural proteins and a sarcoplasmic fraction consisting of soluble proteins. Synthesis of the myofibrillar fraction of white muscle decreased by 90%, while red muscle myofibrillar synthesis remained essentially unchanged. Changes in the labeling of several enzymes purified from the sarcoplasmic fraction were different even though the overall loss of enzyme activity was similar, suggesting that changes in synthesis rates were important in maintaining appropriate relative enzyme concentrations.

  1. Eccentric exercise-induced muscle damage impairs muscle glycogen repletion.

    Science.gov (United States)

    O'Reilly, K P; Warhol, M J; Fielding, R A; Frontera, W R; Meredith, C N; Evans, W J

    1987-07-01

    Five healthy untrained young male subjects were studied before, immediately after, and 10 days after a 45-min bout of eccentric exercise on a cycle ergometer (201 W). The subjects were sedentary at all other times and consumed a eucaloric meat-free diet. Needle biopsies of the vastus lateralis muscle were examined for intracellular damage and glycogen content. Immediately after exercise, muscle samples showed myofibrillar tearing and edema. At 10 days, there was myofibrillar necrosis, inflammatory cell infiltration, and no evidence of myofibrillar regeneration. Glycogen utilization during the exercise bout was 33 mmol glycosyl units/kg muscle, consistent with the metabolic intensity of 44% of maximal O2 uptake; however, the significant glycogen use by type II fibers contrasted with concentric exercise performed at this intensity. At 10 days after exercise, muscle glycogen was still depleted, in both type I and II fibers. It is possible that the alterations in muscle ultrastructures were related to the lack of repletion of muscle glycogen. Damage produced by eccentric exercise was more persistent than previously reported, indicating that more than 10 days may be necessary for recovery of muscle ultrastructure and carbohydrate reserves.

  2. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

      The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation...... that collagen plays a significant role in determining the tenderness of meat. What are we missing? Therefore, fundamental aspects of connective tissue research have been the centre of attention throughout this thesis. A holistic view has been applied, glancing at this complex tissue which has many facets...... in this thesis that alpha-ketoglutarate, a tricarboxylic acid cycle metabolite, has the potential to control the metabolism of this particular tissue. Finally, a new microscopic method is introduced which allows the study of thermal denaturation of fibrillar collagen and myofibers in real time without any label...

  3. Bulk muscles, loose cables.

    Science.gov (United States)

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-10-17

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. 2014 BMJ Publishing Group Ltd.

  4. Muscling out malaria

    DEFF Research Database (Denmark)

    Hughes, David Peter; Boomsma, Jacobus Jan

    2006-01-01

    ) [2] highlighted the back-to-back articles in Science 3 and 4 that demonstrated the potential biocontrol of malaria by targeting mosquitoes with entomopathogenic fungi (Metarhizium and Beauveria spp.). The wide impact of the original articles and the need to find alternatives to pesticidal control...... where malaria is endemic, humanity cannot afford shortcuts, because any failures owing to poor management or premature implementation will reduce local governmental support rather than enhance it (Andrew Read, pers. commun.). Therefore, if we are to ‘muscle out malaria', well...... of key importance, and the new focus on fungal biocontrol of malaria should therefore act as a catalyst for further research on the basic biology of fungal pathogens. Understanding morphological, biochemical or immune system-based resistance to insect pathogenic fungi will be easier if we know...

  5. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

    that collagen plays a significant role in determining the tenderness of meat. What are we missing? Therefore, fundamental aspects of connective tissue research have been the centre of attention throughout this thesis. A holistic view has been applied, glancing at this complex tissue which has many facets......  The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation....... Collagen, being the major protein in connective tissue, has been extensively investigated with regard to its relation to meat tenderness, but the results have been rather conflicting. Meat from older animals is tougher than that from younger animals, and changes in the properties of the collagen due...

  6. Functional electrical stimulation of the triceps surae during gait

    NARCIS (Netherlands)

    Monaghan, C.C.

    2009-01-01

    Every year stroke affects approximately 15 million people worldwide. It is the leading cause of disability in the western world. Gait relearning has high priority for stroke survivors. One of the most commonly treated effects of stroke gait is drop-foot (the inability to raise the toes during the

  7. Physics of muscle contraction

    Science.gov (United States)

    Caruel, M.; Truskinovsky, L.

    2018-03-01

    In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into two classes: passive and active. The main passive effect is the fast force recovery which does not require the detachment of myosin cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near equilibrium Langevin dynamics. The active force generation mechanism operates at slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system. In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response on the so called ‘descending limb’ of the isometric tetanus.

  8. Comparison of Myoelectric Activity of a Selection of Upper Extremity Muscles while Doing Bench Press in Two Training Methods of TRX and Barbell Bench Press

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Zibaei

    2016-12-01

    Conclusion: Considering these results it can be maintained that TRX bench press resistance training can be an alternative and effective practice for barbell bench press because, given the results, it can be appreciated that TRX bench press, dips low in the trunk, can lead to muscle activity close to the level of muscle activity during the barbell bench press drill.

  9. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  10. Use of muscle synergies and wavelet transforms to identify fatigue during squatting.

    Science.gov (United States)

    Smale, Kenneth B; Shourijeh, Mohammad S; Benoit, Daniel L

    2016-06-01

    The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Detecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Elham Ghoochani

    2011-03-01

    Full Text Available Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigue. Muscle fatigue in shoulders and neck is one of the most prevalent problems reported with computer users especially during typing. Surface electromyography (SEMG signals are used for detecting muscle fatigue as a non-invasive method. Material and Methods: Nine healthy females volunteered for signal recoding during typing. EMG signals were recorded from the trapezius muscle, which is subjected to muscle fatigue during typing.  After signal analysis and feature extraction, detecting and predicting muscle fatigue was performed by using the MLP artificial neural network. Results: Recorded signals were analyzed in time and frequency domains for feature extraction. Results of classification showed that the MLP neural network can detect and predict muscle fatigue during typing with 80.79 % ± 1.04% accuracy. Conclusion: Intelligent classification and prediction of muscle fatigue can have many applications in human factors engineering (ergonomics, rehabilitation engineering and biofeedback equipment for mitigating the injuries of repetitive works.

  12. Effects of training in minimalist shoes on the intrinsic and extrinsic foot muscle volume.

    Science.gov (United States)

    Chen, Tony Lin-Wei; Sze, Louis K Y; Davis, Irene S; Cheung, Roy T H

    2016-07-01

    Minimalist shoes have gained popularity recently because it is speculated to strengthen the foot muscles and foot arches, which may help to resist injuries. However, previous studies provided limited evidence supporting the link between changes in muscle size and footwear transition. Therefore, this study sought to examine the effects of minimalist shoes on the intrinsic and extrinsic foot muscle volume in habitual shod runners. The relationship between participants' compliance with the minimalist shoes and changes in muscle õvolume was also evaluated. Twenty habitual shod runners underwent a 6-month self-monitoring training program designed for minimalist shoe transition. Another 18 characteristics-matched shod runners were also introduced with the same program but they maintained running practice with standard shoes. Runners were monitored using an online surveillance platform during the program. We measured overall intrinsic and extrinsic foot muscle volume before and after the program using MRI scans. Runners in the experimental group exhibited significantly larger leg (P=0.01, Cohen's d=0.62) and foot (Pshoes and changes in leg muscle volume (r=0.51; P=0.02). Habitual shod runners who transitioned to minimalist shoes demonstrated significant increase in leg and foot muscle volume. Additionally, the increase in leg muscle volume was significantly correlated associated with the compliance of minimalist shoe use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy.

    Science.gov (United States)

    Kim, Jong-Hee; Kwak, Hyo-Bum; Thompson, LaDora V; Lawler, John M

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease that makes walking and breathing difficult. DMD is caused by an X-linked (Xp21) mutation in the dystrophin gene. Dystrophin is a scaffolding protein located in the sarcolemmal cytoskeleton, important in maintaining structural integrity and regulating muscle cell (muscle fiber) growth and repair. Dystrophin deficiency in mouse models (e.g., mdx mouse) destabilizes the interface between muscle fibers and the extracellular matrix, resulting in profound damage, inflammation, and weakness in diaphragm and limb muscles. While the link between dystrophin deficiency with inflammation and pathology is multi-factorial, elevated oxidative stress has been proposed as a central mediator. Unfortunately, the use of non-specific antioxidant scavengers in mouse and human studies has led to inconsistent results, obscuring our understanding of the importance of redox signaling in pathology of muscular dystrophy. However, recent studies with more mechanistic approaches in mdx mice suggest that NAD(P)H oxidase and nuclear factor-kappaB are important in amplifying dystrophin-deficient muscle pathology. Therefore, more targeted antioxidant therapeutics may ameliorate damage and weakness in human population, thus promoting better muscle function and quality of life. This review will focus upon the pathobiology of dystrophin deficiency in diaphragm and limb muscle primarily in mouse models, with a rationale for development of targeted therapeutic antioxidants in DMD patients.

  14. STRATEGIES OF MAINTAINING PROFICIENCY BY TEACHERS OF ENGLISH IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Junaidi Mistar, Alfan Zuhairini

    2011-10-01

    Full Text Available The objectives of the present study are four-fold: (1 to identify the types of strategies to maintain proficiency used by teachers of English in Indonesia, (2 to know the intensity of use of the obtained strategy types, (3 to measure the inter-correlation in the use of the obtained strategy types, and (4 to investigate the effect of proficiency level on the use of maintaining strategies. The subjects were 93 teachers applying for S2 degree in 2010/2011 at the postgraduate program of the Islamic University of Malang. They were given two sets of instrument, a Likert-scale questionnaire of English proficiency maintaining strategies and a TOEFL test. Then, a factor analysis identified nine strategy categories, including language focusing, metacognitive and affective developing, reading and writing activating, language resource utilizing, cognitive processing, culture learning, social communicating, text analyzing, and radio listening strategies. These strategy types explained 63.84% of variances of maintaining strategies and they were used at high level of intensity. Moreover, the use of the nine strategy types were found to be inter-correlated with one another. Finally, no significant effect of proficiency level on strategy use was found, indicating that teachers with different level of proficiency reported using the same strategies of maintaining their proficiency.

  15. Compliance evaluation of removable space maintainer or space regainer usage

    Directory of Open Access Journals (Sweden)

    Revanti Ramadhani

    2018-01-01

    Full Text Available Premature loss could cause a problem with the tooth arrangement or the dental arch size. A space left by the primary tooth loss could cause migration of the adjacent teeth. As a result, space will be narrowed and undermined the eruption of the permanent teeth. The success of the space maintainer or space regainer usage due to the premature loss marked by space for the replacement of the permanent teeth. The purpose of this research was to evaluate the compliance of children in wearing a space maintainer or space regainer after insertion at Pedodontics Installation of Faculty of Dentistry Universitas Padjadjaran Dental Hospital, Bandung, Indonesia. The research method was descriptive survey technique. The sample consisted of 30 patients selected using the total sampling technique. Data were obtained with a questionnaire and statistically analyzed. The results showed that majority of the children uses the removable space maintainer or the space regainer daily was only about 23,3% overall. Most of the children only use the removable space maintainer or the space regainer for sometimes. The research concluded that the low rate of pedodontic patients compliance at Pedodontics Installation of Faculty of Dentistry Universitas Padjadjaran Dental Hospital in the usage of the removable space maintainer or the space regainer was usually caused by pain or discomfort. This fact was evidence of a low awareness of parents in preventing malocclusion to their children.

  16. Muscle channelopathies and electrophysiological approach

    Directory of Open Access Journals (Sweden)

    Cherian Ajith

    2008-01-01

    Full Text Available Myotonic syndromes and periodic paralyses are rare disorders of skeletal muscle characterized mainly by muscle stiffness or episodic attacks of weakness. Familial forms are caused by mutation in genes coding for skeletal muscle voltage ionic channels. Familial periodic paralysis and nondystrophic myotonias are disorders of skeletal muscle excitability caused by mutations in genes coding for voltage-gated ion channels. These diseases are characterized by episodic failure of motor activity due to muscle weakness (paralysis or stiffness (myotonia. Clinical studies have identified two forms of periodic paralyses: hypokalemic periodic paralysis (hypoKPP and hyperkalemic periodic paralysis (hyperKPP, based on changes in serum potassium levels during the attacks, and three distinct forms of myotonias: paramyotonia congenita (PC, potassium-aggravated myotonia (PAM, and myotonia congenita (MC. PC and PAM have been linked to missense mutations in the SCN4A gene, which encodes α subunit of the voltage-gated sodium channel, whereas MC is caused by mutations in the chloride channel gene (CLCN1. Exercise is known to trigger, aggravate, or relieve symptoms. Therefore, exercise can be used as a functional test in electromyography to improve the diagnosis of these muscle disorders. Abnormal changes in the compound muscle action potential can be disclosed using different exercise tests. Five electromyographic (EMG patterns (I-V that may be used in clinical practice as guides for molecular diagnosis are discussed.

  17. Immunology Guides Skeletal Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    F. Andrea Sass

    2018-03-01

    Full Text Available Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  18. Immunology Guides Skeletal Muscle Regeneration.

    Science.gov (United States)

    Sass, F Andrea; Fuchs, Michael; Pumberger, Matthias; Geissler, Sven; Duda, Georg N; Perka, Carsten; Schmidt-Bleek, Katharina

    2018-03-13

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  19. Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    V. Marrocco

    2017-02-01

    Research in context: Duchenne muscular dystrophy (DMD is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a “cure” for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology, which may eventually converge, may be successful. In this context, we previously showed that genetic ablation of Protein Kinase C θ (PKCθ, an enzyme known to be involved in immune response, in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20. We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease.

  20. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia

    Directory of Open Access Journals (Sweden)

    Richard T. Jaspers

    2014-07-01

    Full Text Available Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH (10% air/90%N2 saturated water. We analyzed cross-sectional area (CSA, succinate dehydrogenase (SDH activity, capillarization, myonuclear density, myoglobin (Mb concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001. Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001. In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.

  1. Studies on the possible role of thyroid hormone in altered muscle protein turnover during sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Hasselgren, P.O.; Chen, I.W.; James, J.H.; Sperling, M.; Warner, B.W.; Fischer, J.E.

    1987-07-01

    Five days after thyroidectomy (Tx) or sham-Tx in young male Sprague-Dawley rats, sepsis was induced by cecal ligation and puncture (CLP). Control animals underwent laparotomy and manipulation of the cecum without ligation or puncture. Sixteen hours after CLP or laparotomy, protein synthesis and degradation were measured in incubated extensor digitorum longus (EDL) and soleus (SOL) muscles by determining rate of /sup 14/C-phenylalanine incorporation into protein and tyrosine release into incubation medium, respectively. Triiodothyronine (T3) was measured in serum and muscle tissue. Protein synthesis was reduced by 39% and 22% in EDL and SOL, respectively, 16 hours after CLP in sham-Tx rats. The response to sepsis of protein synthesis was abolished in Tx rats. Protein breakdown was increased by 113% and 68% in EDL and SOL, respectively, 16 hours after CLP in sham-Tx animals. The increase in muscle proteolysis during sepsis was blunted in hypothyroid animals and was 42% and 49% in EDL and SOL, respectively. T3 in serum was reduced by sepsis, both in Tx and sham-Tx rats. T3 in muscle, however, was maintained or increased during sepsis. Abolished or blunted response of muscle protein turnover after CLP in hypothyroid animals may reflect a role of thyroid hormones in altered muscle protein metabolism during sepsis. Reduced serum levels of T3, but maintained or increased muscle concentrations of the hormone, suggests that increased T3 uptake by muscle may be one mechanism of low T3 syndrome in sepsis, further supporting the concept of a role for thyroid hormone in metabolic alterations in muscle during sepsis.

  2. Studies on the possible role of thyroid hormone in altered muscle protein turnover during sepsis

    International Nuclear Information System (INIS)

    Hasselgren, P.O.; Chen, I.W.; James, J.H.; Sperling, M.; Warner, B.W.; Fischer, J.E.

    1987-01-01

    Five days after thyroidectomy (Tx) or sham-Tx in young male Sprague-Dawley rats, sepsis was induced by cecal ligation and puncture (CLP). Control animals underwent laparotomy and manipulation of the cecum without ligation or puncture. Sixteen hours after CLP or laparotomy, protein synthesis and degradation were measured in incubated extensor digitorum longus (EDL) and soleus (SOL) muscles by determining rate of 14 C-phenylalanine incorporation into protein and tyrosine release into incubation medium, respectively. Triiodothyronine (T3) was measured in serum and muscle tissue. Protein synthesis was reduced by 39% and 22% in EDL and SOL, respectively, 16 hours after CLP in sham-Tx rats. The response to sepsis of protein synthesis was abolished in Tx rats. Protein breakdown was increased by 113% and 68% in EDL and SOL, respectively, 16 hours after CLP in sham-Tx animals. The increase in muscle proteolysis during sepsis was blunted in hypothyroid animals and was 42% and 49% in EDL and SOL, respectively. T3 in serum was reduced by sepsis, both in Tx and sham-Tx rats. T3 in muscle, however, was maintained or increased during sepsis. Abolished or blunted response of muscle protein turnover after CLP in hypothyroid animals may reflect a role of thyroid hormones in altered muscle protein metabolism during sepsis. Reduced serum levels of T3, but maintained or increased muscle concentrations of the hormone, suggests that increased T3 uptake by muscle may be one mechanism of low T3 syndrome in sepsis, further supporting the concept of a role for thyroid hormone in metabolic alterations in muscle during sepsis

  3. Changes in multifidus and abdominal muscle size in response to microgravity: possible implications for low back pain research.

    Science.gov (United States)

    Hides, J A; Lambrecht, G; Stanton, W R; Damann, V

    2016-05-01

    In microgravity, muscle atrophy occurs in the intrinsic muscles of the spine, with changes also observed in the abdominal muscles. Exercises are undertaken on the International Space Station and on Earth following space flight to remediate these effects. Similar effects have been seen on Earth in prolonged bed rest studies and in people with low back pain (LBP). The aim of this case report was to examine the effects of microgravity, exercise in microgravity and post-flight rehabilitation on the size of the multifidus and antero-lateral abdominal muscles. Ultrasound imaging was used to assess size of the multifidus, transversus abdominis and internal oblique muscles at four time points: pre-flight and after daily rehabilitation on day one (R + 1), day 8 (R + 8) and day 14 (R + 14) after return to Earth (following 6 months in microgravity). Exercises in microgravity maintained multifidus size at L2-L4, however, after spaceflight, size of the multifidus muscle at L5 was reduced, size of the internal oblique muscle was increased and size of transversus abdominis was reduced. Rehabilitation post-space flight resulted in hypertrophy of the multifidus muscle to pre-mission size at the L5 vertebral level and restoration of antero-lateral abdominal muscle size. Exercise in space can prevent loss of spinal intrinsic muscle size. For the multifidus muscles, effectiveness varied at different levels of the spine. Post-mission rehabilitation targeting specific motor control restored muscle balance between the antero-lateral abdominal and multifidus muscles, similar to results from intervention trials for people with LBP. A limitation of the current investigation is that only one astronaut was studied, however, the microgravity model could be valuable as predictable effects on trunk muscles can be induced and interventions evaluated. Level of Evidence Case series.

  4. Skeletal muscle performance and ageing.

    Science.gov (United States)

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2018-02-01

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  5. The effect of transient, moderate dietary phosphorus deprivation on phosphorus metabolism, muscle content of different phosphorus-containing compounds, and muscle function in dairy cows.

    Science.gov (United States)

    Grünberg, W; Scherpenisse, P; Dobbelaar, P; Idink, M J; Wijnberg, I D

    2015-08-01

    decline in muscle tissue P content. Electromyographic examination revealed increased occurrence of pathological spontaneous activity in striated muscles after 2 wk of dietary P depletion in several cows, which could be suggestive of neuromuscular membrane instability. No effect on heart muscle activity was identified electrocardiographically. These results suggest that counter-regulatory mechanisms were sufficient to maintain normal muscle tissue P content during transient and moderate P deprivation. Muscle function was not grossly affected, although the increased occurrence of pathological spontaneous activity suggests that subclinical neuropathy or myopathy, or both, may have occurred with ongoing P deprivation. The results presented here indicate that plasma [Pi] is unsuitable for assessing muscle tissue P content in cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Neuromuscular adaptations to long-term progressive resistance training translates to improved functional capacity for people with multiple sclerosis and is maintained at follow-up

    DEFF Research Database (Denmark)

    Kjolhede, T.; Vissing, K.; de Place, L.

    2015-01-01

    BACKGROUND: Progressive resistance training (PRT) is acknowledged to effectively improve muscle strength for people with multiple sclerosis (PwMS), but diverging results exist regarding whether such improvements translates to improved functional capacity, possibly relating to insufficient duration......: This study was a randomised controlled trial, with a training group and a waitlist group undergoing supervised PRT for 24 weeks initially or after 24 weeks of habitual lifestyle, respectively. Functional capacity, isometric muscle strength of knee extensors and flexors, neural drive and thigh muscle cross......-sectional area was measured at baseline, after 24 and 48 weeks. RESULTS: The training group significantly improved neuromuscular function of the knee extensors and flexors, which translated to improvements in functional capacity. Furthermore, the improved functional capacity was maintained after 24 weeks of self...

  7. Quinine for muscle cramps.

    Science.gov (United States)

    El-Tawil, Sherif; Al Musa, Tarique; Valli, Haseeb; Lunn, Michael P T; Brassington, Ruth; El-Tawil, Tariq; Weber, Markus

    2015-04-05

    Muscle cramps can occur anywhere and for many reasons. Quinine has been used to treat cramps of all causes. However, controversy continues about its efficacy and safety. This review was first published in 2010 and searches were updated in 2014. To assess the efficacy and safety of quinine-based agents in treating muscle cramps. On 27 October 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE and EMBASE. We searched reference lists of articles up to 2014. We also searched for ongoing trials in November 2014. Randomised controlled trials of people of all ages with muscle cramps in any location and of any cause, treated with quinine or its derivatives. Three review authors independently selected trials for inclusion, assessed risk of bias and extracted data. We contacted study authors for additional information. For comparisons including more than one trial, we assessed the quality of the evidence using Grading of Recommendations Assessment, Development and Evaluation (GRADE). We identified 23 trials with a total of 1586 participants. Fifty-eight per cent of these participants were from five unpublished studies. Quinine was compared to placebo (20 trials, n = 1140), vitamin E (four trials, n = 543), a quinine-vitamin E combination (three trials, n = 510), a quinine-theophylline combination (one trial, n = 77), and xylocaine injections into the gastrocnemius muscle (one trial, n = 24). The most commonly used quinine dosage was 300 mg/day (range 200 to 500 mg). We found no new trials for inclusion when searches were updated in 2014.The risk of bias in the trials varied considerably. All 23 trials claimed to be randomised, but only a minority described randomisation and allocation concealment adequately.Compared to placebo, quinine significantly reduced cramp number over two weeks by 28%, cramp intensity by 10%, and cramp days by 20%. Cramp duration was not significantly affected.A significantly greater number of people

  8. The Influence of a Bout of Exertion on Novice Barefoot Running Dynamics

    Directory of Open Access Journals (Sweden)

    Rami Hashish, Sachithra D. Samarawickrame, Lucinda Baker, George J. Salem

    2016-06-01

    Full Text Available Barefoot, forefoot strike (FFS running has recently risen in popularity. Relative to shod, rear-foot strike (RFS running, employing a FFS is associated with heightened triceps surae muscle activation and ankle mechanical demand. Novice to this pattern, it is plausible that habitually shod RFS runners exhibit fatigue to the triceps surae when acutely transitioning to barefoot running, thereby limiting their ability to attenuate impact. Therefore, the purpose was to determine how habitually shod RFS runners respond to an exertion bout of barefoot running, operationally defined as a barefoot run 20% of mean daily running distance. Twenty-one RFS runners performed novice barefoot running, before and after exertion. Ankle peak torque, triceps surae EMG median frequency, foot-strike patterns, joint energy absorption, and loading rates were evaluated. Of the 21 runners, 6 maintained a RFS, 10 adopted a mid-foot strike (MFS, and 5 adopted a FFS during novice barefoot running. In-response to exertion, MFS and FFS runners demonstrated reductions in peak torque, median frequency, and ankle energy absorption, and an increase in loading rate. RFS runners demonstrated reductions in peak torque and loading rate. These results indicate that a short bout of running may elicit fatigue to novice barefoot runners, limiting their ability to attenuate impact.

  9. Advanced remotely maintainable force-reflecting servomanipulator concept

    International Nuclear Information System (INIS)

    Kuban, D.P.; Martin, H.L.

    1984-01-01

    A remotely maintainable force-reflecting servomanipulator concept is being developed at the Oak Ridge National Laboratory as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world. 10 references, 4 figures, 1 table

  10. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Mason, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability. The problems are both near-term, in developing maintainability for next generation engineering oriented reactors; and long range, in developing full maintainability for the more commercial concepts with their required high level of on-line time. The near-time challenge will include development of unqiue design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full mainatability required by commerical fusion

  11. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Science.gov (United States)

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  12. Elicitability of muscle cramps in different leg and foot muscles.

    Science.gov (United States)

    Minetto, Marco Alessandro; Botter, Alberto

    2009-10-01

    To explore the efficacy of muscle motor point stimulation in eliciting muscle cramps, 11 subjects underwent eight sessions of electrical stimulation of the following muscles bilaterally: abductor hallucis flexor hallucis brevis, and both heads of the gastrocnemius muscles. Bursts of 150 square wave stimuli (duration: 152 micros; current intensity: 30% supramaximal) were applied. The stimulation frequency was increased from 4 pulses per second (pps) at increments of 2 pps until a cramp was induced. The number of cramps that could be elicited was smaller in flexor hallucis brevis than in abductor hallucis (16 vs. 22 out of 22 trials each; P cramp susceptibility, and the intermuscle variability in the elicitability profile for electrically induced cramps supports the use of the proposed method for cramp research.

  13. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells.

    Science.gov (United States)

    Fletcher, Rachel S; Ratajczak, Joanna; Doig, Craig L; Oakey, Lucy A; Callingham, Rebecca; Da Silva Xavier, Gabriella; Garten, Antje; Elhassan, Yasir S; Redpath, Philip; Migaud, Marie E; Philp, Andrew; Brenner, Charles; Canto, Carles; Lavery, Gareth G

    2017-08-01

    Augmenting nicotinamide adenine dinucleotide (NAD + ) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD + precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD + . Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD + from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis. We exploited expression profiling of muscle NAD + biosynthetic pathways, single and double nicotinamide riboside kinase 1/2 (NRK1/2) loss-of-function mice, and pharmacological inhibition of muscle NAD + recycling to evaluate NMN and NR utilization. Skeletal muscle cells primarily rely on nicotinamide phosphoribosyltransferase (NAMPT), NRK1, and NRK2 for salvage biosynthesis of NAD + . NAMPT inhibition depletes muscle NAD + availability and can be rescued by NR and NMN as the preferred precursors for elevating muscle cell NAD + in a pathway that depends on NRK1 and NRK2. Nrk2 knockout mice develop normally and show subtle alterations to their NAD+ metabolome and expression of related genes. NRK1, NRK2, and double KO myotubes revealed redundancy in the NRK dependent metabolism of NR to NAD + . Significantly, these models revealed that NMN supplementation is also dependent upon NRK activity to enhance NAD + availability. These results identify skeletal muscle cells as requiring NAMPT to maintain NAD + availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD + availability.

  14. The calf muscle pump revisited.

    Science.gov (United States)

    Williams, Katherine J; Ayekoloye, Olufemi; Moore, Hayley M; Davies, Alun H

    2014-07-01

    Chronic venous disease (CVD) defines the spectrum of manifestations of venous disease that originate as a result of ambulatory venous hypertension. Thus far, the role of the calf muscle pump in the development and potentiation of CVD has been overlooked and understated in the clinical setting, with much greater emphasis placed on reflux and obstruction. The aim of this review is to explore the level of significance that calf muscle pump function or dysfunction bears on the development and potentiation of CVD. EMBASE and MEDLINE databases were searched with keywords "calf" AND "muscle" AND "pump" AND "venous" AND "insufficiency" AND ("lower limb*" OR "leg*"), screened for cross-sectional and longitudinal studies relating to chronic venous insufficiency, highlighting the role of the calf muscle pump in CVD and the extent to which the calf muscle pump is impaired in these cases. This resulted in the inclusion of 10 studies. Compared with healthy subjects, patients with CVD have a reduced ejection fraction (15.9%; P calf muscle pump ejection ability as well as poor venous competence. Calf muscle pump dysfunction is present in 55% of patients with CVD in the literature, but this did not reach significance on meta-analysis. Isotonic exercise programs in patients with active and healed ulcers have been shown to increase calf muscle pump function but not venous competence. Calf muscle pump failure is a therapeutic target in the treatment of CVD. Evidence suggests that isotonic exercise treatment may be an effective method of increasing the hemodynamic performance of the calf muscle pump. This review emphasizes the requirement for more attention to be placed on the treatment of calf muscle pump failure in cases of CVD by use of exercise treatment programs or other methods, which may be of clinical importance in managing symptomatic disease. To establish this in routine clinical practice, these results would need to be replicated in appropriate clinical trials. It would

  15. Bigorexia: bodybuilding and muscle dysmorphia.

    Science.gov (United States)

    Mosley, Philip E

    2009-05-01

    Muscle dysmorphia is an emerging condition that primarily affects male bodybuilders. Such individuals obsess about being inadequately muscular. Compulsions include spending hours in the gym, squandering excessive amounts of money on ineffectual sports supplements, abnormal eating patterns or even substance abuse. In this essay, I illustrate the features of muscle dysmorphia by employing the first-person account of a male bodybuilder afflicted by this condition. I briefly outline the history of bodybuilding and examine whether the growth of this sport is linked to a growing concern with body image amongst males. I suggest that muscle dysmorphia may be a new expression of a common pathology shared with the eating disorders.

  16. Diabetic muscle infarction: radiologic evaluation

    International Nuclear Information System (INIS)

    Chason, D.P.; Fleckenstein, J.L.; Burns, D.K.; Rojas, G.

    1996-01-01

    Four patients with severe diabetes mellitus presenting with acute thigh pain, tenderness, and swelling were evaluated by imaging techniques and biopsy. Edema in the affected muscles was seen in two patients with MRI studies. Femoral artery calcification and mild muscle swelling was present in one patient who underwent CT. Decreased echogenicity was seen in the involved muscle in a patient studied with ultrasound. Serum enzymes were normal or mildly elevated in three patients (not reported in one). Biopsy demonstrated necrosis and regenerative change in all cases. MRI, although nonspecific, is the best imaging technique to suggest the diagnosis of DMI in the appropriate clinical setting, thereby obviating biopsy. (orig./MG)

  17. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons

    NARCIS (Netherlands)

    Visser, Marjolein; Goodpaster, Bret H; Kritchevsky, Stephen B; Newman, Anne B; Nevitt, Michael; Rubin, Susan M; Simonsick, Eleanor M; Harris, Tamara B

    BACKGROUND: Lower muscle mass has been correlated with poor physical function; however, no studies have examined this relationship prospectively. This study aims to investigate whether low muscle mass, low muscle strength, and greater fat infiltration into the muscle predict incident mobility

  18. Validation Effectiveness of Develop Maintainability Allocation on Aircraft Mechanical Components

    Directory of Open Access Journals (Sweden)

    Wan Husain W.M.S.

    2016-01-01

    Full Text Available Maintainability Allocation is a process to identify the allowable maximum task time for each individual component. Consequently, this provides clear pictures to the designers to design and identify potential design improvement within allowable maintenance allocation time limits. During the design process elements such as missteps or misapplications most commonly occur. Here, the authors propose having the maximum target for each individual maintainability component. The main objective of this paper is to present the validation process of developed Maintainability Allocation to potentially eliminate previous problems. The process of validation begins with analysed all the data collected from Service Difficulty Reports (SDR for selected aircraft. This is to understand the problems from existing aircraft before a new design is proposed through the process of Maintainability Allocation prediction. The validation processes have discovered the importance of utilising historical information such as feedback information. The second area is looking at the element of quantifying the data collected from aircraft feedback information which contains various types of information that could be used for future improvement. Validation process shows that feedback information has helped to identify the critical and sensitive components that need more attention for further improvement. The study shows that the aircraft maintenance related feedback information systems analyses were very useful for deciding maintainability effectiveness; these include planning, organising maintenance and design improvement. There is no doubt that feedback information has the ability to contribute an important role in design activities. The results also show that maintainability is an important measure that can be used as a guideline for managing efforts made for the improvement of aircraft components.

  19. Muscle strength and muscle endurance: with and without creatine supplementation

    OpenAIRE

    KEBRIT, Daniel; RANI, Sangeeta

    2014-01-01

    Creatine is one of the legal ergogenic aids which are used by athletes here and there. A number of studies assured that it has a positive effect in high intensity short duration intensity exercise performances. This study tried to evaluate the effect of creatine monohydrate supplements on muscle strength and muscle endurance. Twenty subjects (CG= 10 and EG= 10) were participated in three months of exercise training. In this study complete randomized design was used. The EG consumed creatine a...

  20. DNA Catenation Maintains Structure of Human Metaphase Chromosomes

    DEFF Research Database (Denmark)

    L. V. Bauer, David; Marie, Rodolphe; Rasmussen, Kristian Hagsted

    2012-01-01

    -on-a-chip microfluidic device and fluorescence microscopy, coupled with a simple image analysis pipeline, to digest chromosomal proteins and examine the structure of the remaining DNA, which maintains the canonical ‘X’ shape. By directly staining DNA, we observe that DNA catenation between sister chromatids (separated...... by fluid flow) is composed of distinct fibres of DNA concentrated at the centromeres. Disrupting the catenation of the chromosomes with Topoisomerase IIa significantly alters overall chromosome shape, suggesting that DNA catenation must be simultaneously maintained for correct chromosome condensation...

  1. Maintaining Program Understanding - Issues, Tools, and Future Directions

    DEFF Research Database (Denmark)

    Vestdam, Thomas; Nørmark, Kurt

    2004-01-01

    The understanding of a program is a key aspect of software development. The understanding is a prerequisite for the initial development efforts. This paper is concerned with the challenge of maintaining the program understanding with the purpose of supporting later phases in the program life time....... One approach to maintaining program understanding is to document decisions and rationales behind a program as informal textual explanations---internal documentation. The starting point of this paper is a particular paradigm for program documentation called Elucidative Programming. As the first...

  2. Maintaining realism in auditory length-perception experiments

    DEFF Research Database (Denmark)

    Kirkwood, Brent Christopher

    2005-01-01

    Humans are capable of hearing the lengths of wooden rods dropped onto hard floors. In an attempt to understand the influence of the stimulus presentation method for testing this kind of everyday listening task, listener performance was compared for three presentation methods in an auditory length......-estimation experiment. A comparison of the length-estimation accuracy for the three presentation methods indicates that the choice of presentation method is important for maintaining realism and for maintaining the acoustic cues utilized by listeners in perceiving length....

  3. Maintainability design criteria for packaging of spacecraft replaceable electronic equipment.

    Science.gov (United States)

    Kappler, J. R.; Folsom, A. B.

    1972-01-01

    Maintainability must be designed into long-duration spacecraft and equipment to provide the required high probability of mission success with the least cost and weight. The ability to perform repairs quickly and easily in a space environment can be achieved by imposing specific maintainability design criteria on spacecraft equipment design and installation. A study was funded to investigate and define design criteria for electronic equipment that would permit rapid removal and replacement in a space environment. The results of the study are discussed together with subsequent simulated zero-g demonstration tests of a mockup with new concepts for packaging.

  4. Muscle soreness and delayed-onset muscle soreness.

    Science.gov (United States)

    Lewis, Paul B; Ruby, Deana; Bush-Joseph, Charles A

    2012-04-01

    Immediate and delayed-onset muscle soreness differ mainly in chronology of presentation. Both conditions share the same quality of pain, eliciting and relieving activities and a varying degree of functional deficits. There is no single mechanism for muscle soreness; instead, it is a culmination of 6 different mechanisms. The developing pathway of DOMS begins with microtrauma to muscles and then surrounding connective tissues. Microtrauma is then followed by an inflammatory process and subsequent shifts of fluid and electrolytes. Throughout the progression of these events, muscle spasms may be present, exacerbating the overall condition. There are a multitude of modalities to manage the associated symptoms of immediate soreness and DOMS. Outcomes of each modality seem to be as diverse as the modalities themselves. The judicious use of NSAIDs and continued exercise are suggested to be the most reliable methods and recommended. This review article and each study cited, however, represent just one part of the clinician's decisionmaking process. Careful affirmation of temporary deficits from muscle soreness is not to be taken lightly, nor is the advisement and medical management of muscle soreness prescribed by the clinician.

  5. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men

    DEFF Research Database (Denmark)

    Mitchell, Cameron J; Milan, Amber M; Mitchell, Sarah M

    2017-01-01

    Background: The Recommended Daily Allowance (RDA) for protein intake in the adult population is widely promoted as 0.8 g · kg-1 · d-1 Aging may increase protein requirements, particularly to maintain muscle mass.Objective: We investigated whether controlled protein consumption at the current RDA ...

  6. Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle

    DEFF Research Database (Denmark)

    Saltin, Bengt; Mortensen, Stefan P

    2012-01-01

    sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients...

  7. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Galuska, Dana; Kotova, Olga; Barres, Romain

    2009-01-01

    Skeletal muscle Na(+)-K(+)-ATPase plays a central role in the clearance of K(+) from the extracellular fluid, therefore maintaining blood [K(+)]. Na(+)-K(+)-ATPase activity in peripheral tissue is impaired in insulin resistant states. We determined effects of high-fat diet (HFD) and exercise trai...

  8. Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy.

    Science.gov (United States)

    Rahbek, Stine Klejs; Farup, Jean; Møller, Andreas Buch; Vendelbo, Mikkel Holm; Holm, Lars; Jessen, Niels; Vissing, Kristian

    2014-10-01

    Greater force produced with eccentric (ECC) compared to concentric (CONC) contractions, may comprise a stronger driver of muscle growth, which may be further augmented by protein supplementation. We investigated the effect of differentiated contraction mode with either whey protein hydrolysate and carbohydrate (WPH + CHO) or isocaloric carbohydrate (CHO) supplementation on regulation of anabolic signalling, muscle protein synthesis (MPS) and muscle hypertrophy. Twenty-four human participants performed unilateral isolated maximal ECC versus CONC contractions during exercise habituation, single-bout exercise and 12 weeks of training combined with WPH + CHO or CHO supplements. In the exercise-habituated state, p-mTOR, p-p70S6K, p-rpS6 increased by approximately 42, 206 and 213 %, respectively, at 1 h post-exercise, with resistance exercise per se; whereas, the phosphorylation was exclusively maintained with ECC at 3 and 5 h post-exercise. This acute anabolic signalling response did not differ between the isocaloric supplement types, neither did protein fractional synthesis rate differ between interventions. Twelve weeks of ECC as well as CONC resistance training augmented hypertrophy with WPH + CHO group compared to the CHO group (7.3 ± 1.0 versus 3.4 ± 0.8 %), independently of exercise contraction type. Training did not produce major changes in basal levels of Akt-mTOR pathway components. In conclusion, maximal ECC contraction mode may constitute a superior driver of acute anabolic signalling that may not be mirrored in the muscle protein synthesis rate. Furthermore, with prolonged high-volume resistance training, contraction mode seems less influential on the magnitude of muscle hypertrophy, whereas protein and carbohydrate supplementation augments muscle hypertrophy as compared to isocaloric carbohydrate supplementation .

  9. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle

    DEFF Research Database (Denmark)

    Cheng, Arthur J; Willis, Sarah J; Zinner, Christoph

    2017-01-01

    muscle fibres where we found that recovery of submaximal force and restoration of fatigue resistance was worsened by cooling (16-26°C) and improved by heating (36°C). Isolated whole mouse muscle experiments confirmed that cooling impaired muscle glycogen resynthesis. We conclude that skeletal muscle...... recovery from fatigue-induced by endurance exercise is impaired by cooling and improved by heating, due to changes in glycogen resynthesis rate. ABSTRACT: Manipulation of muscle temperature is believed to improve post-exercise recovery, with cooling being especially popular among athletes. However...... the all-out exercise was better maintained when muscles were heated during recovery, whereas cooling had the opposite effect. Mechanisms underlying the temperature-dependent effect on recovery were tested in mouse intact single muscle fibres, which were exposed to ∼12 min of glycogen-depleting fatiguing...

  10. Liver, but not muscle, has an entrainable metabolic memory.

    Directory of Open Access Journals (Sweden)

    Sheng-Song Chen

    Full Text Available Hyperglycemia in the hospitalized setting is common, especially in patients that receive nutritional support either continuously or intermittently. As the liver and muscle are the major sites of glucose disposal, we hypothesized their metabolic adaptations are sensitive to the pattern of nutrient delivery. Chronically catheterized, well-controlled depancreatized dogs were placed on one of three isocaloric diets: regular chow diet once daily (Chow or a simple nutrient diet (ND that was given either once daily (ND-4 or infused continuously (ND-C. Intraportal insulin was infused to maintain euglycemia. After 5 days net hepatic (NHGU and muscle (MGU glucose uptake and oxidation were assessed at euglycemia (120 mg/dl and hyperglycemia (200 mg/dl in the presence of basal insulin. While hyperglycemia increased both NHGU and MGU in Chow, NHGU was amplified in both groups receiving ND. The increase was associated with enhanced activation of glycogen synthase, glucose oxidation and suppression of pyruvate dehydrogenase kinase-4 (PDK-4. Accelerated glucose-dependent muscle glucose uptake was only evident with ND-C. This was associated with a decrease in PDK-4 expression and an increase in AMP-activated protein kinase (AMPK phosphorylation. Interestingly, ND-C markedly increased hepatic FGF-21 expression. Thus, augmentation of carbohydrate disposal in the liver, as opposed to the muscle, is not dependent on the pattern of nutrient delivery.

  11. Skeletal muscle mass and composition during mammalian hibernation.

    Science.gov (United States)

    Cotton, Clark J

    2016-01-01

    Hibernation is characterized by prolonged periods of inactivity with concomitantly low nutrient intake, conditions that would typically result in muscle atrophy combined with a loss of oxidative fibers. Yet, hibernators consistently emerge from winter with very little atrophy, frequently accompanied by a slight shift in fiber ratios to more oxidative fiber types. Preservation of muscle morphology is combined with down-regulation of glycolytic pathways and increased reliance on lipid metabolism instead. Furthermore, while rates of protein synthesis are reduced during hibernation, balance is maintained by correspondingly low rates of protein degradation. Proposed mechanisms include a number of signaling pathways and transcription factors that lead to increased oxidative fiber expression, enhanced protein synthesis and reduced protein degradation, ultimately resulting in minimal loss of skeletal muscle protein and oxidative capacity. The functional significance of these outcomes is maintenance of skeletal muscle strength and fatigue resistance, which enables hibernating animals to resume active behaviors such as predator avoidance, foraging and mating immediately following terminal arousal in the spring. © 2016. Published by The Company of Biologists Ltd.

  12. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Coffey

    2018-03-01

    Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.

  13. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  14. Muscle pain | Mogole | South African Family Practice

    African Journals Online (AJOL)

    Muscle pain, also known as myalgia, is most commonly associated with sprains or strains. It frequently presents as redness at the site of injury, tenderness, swelling and fever. Muscle pain may occur as a result of excitation of the muscle nociceptor due to overuse of the muscle, viral infections or trauma. The most important ...

  15. Quantitative muscle ultrasonography in amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Arts, I.M.P.; Rooij, F.G. van; Overeem, S.; Pillen, S.; Janssen, H.M.; Schelhaas, H.J.; Zwarts, M.J.

    2008-01-01

    In this study, we examined whether quantitative muscle ultrasonography can detect structural muscle changes in early-stage amyotrophic lateral sclerosis (ALS). Bilateral transverse scans were made of five muscles or muscle groups (sternocleidomastoid, biceps brachii/brachialis, forearm flexor group,

  16. Diabetic muscle infarction: atypical MR appearance

    International Nuclear Information System (INIS)

    Sharma, P.; Mangwana, S.; Kapoor, R.K.

    2000-01-01

    We describe a case of diabetic muscle infarction which had atypical features of hyperintensity of the affected muscle on T1-weighted images. Biopsy was performed which revealed diffuse extensive hemorrhage within the infarcted muscle. We believe increased signal intensity on T1-weighted images should suggest hemorrhage within the infarcted muscle. (orig.)

  17. Unconventional Functions of Muscles in Planarian Regeneration.

    Science.gov (United States)

    Cutie, Stephen; Hoang, Alison T; Payumo, Alexander Y; Huang, Guo N

    2017-12-18

    Muscles are traditionally considered in the context of force generation. Scimone et al. (2017), reporting in Nature, now examine muscles in a developmental setting and find unexpected roles for distinct planarian muscle fibers. The authors show that muscles provide patterning signals to promote regeneration and guide tissue growth after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Exercise-induced muscle modifications

    International Nuclear Information System (INIS)

    Kerviler, E. de; Willig, A.L.; Jehenson, P.; Duboc, D.; Syrota, A.

    1990-01-01

    This paper compares changes in muscle proton T2 after exercise in normal subjects and in patients with muscular glycogenoses. Four patients suffering from muscular glycogenosis and eight normal volunteers were studied. Muscle T2s were measured in forearm muscles at rest and after exercise, with a 0.5-T imager. The exercise was performed with handgrips and was evaluated by P-31 spectroscopy (end-exercise decrease in pH and phosphocreatine) performed with a 2-T magnet. In normal subjects, a relative T2 increase, ranging from 14% to 44%, was observed in the exercised muscles. In the patients, who cannot produce lactate during exercise, weak pH variation occurred, and only a slight T2 increase (7% - 9%) was observed

  19. Simvastatin effects on skeletal muscle

    DEFF Research Database (Denmark)

    Larsen, Steen; Stride, Nis; Hey-Mogensen, Martin

    2013-01-01

    Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9)....

  20. Muscle dysfunction in cancer patients

    DEFF Research Database (Denmark)

    Christensen, Jesper Frank; Jones, L W; Andersen, J L

    2014-01-01

    dysfunction in cancer patients lies in the correlation to vital clinical end points such as cancer-specific and all-cause mortality, therapy complications and quality of life (QoL). Such associations strongly emphasize the need for effective therapeutic countermeasures to be developed and implemented......BACKGROUND: Muscle dysfunction is a prevalent phenomenon in the oncology setting where patients across a wide range of diagnoses are subject to impaired muscle function regardless of tumor stage and nutritional state. Here, we review the current evidence describing the degree, causes and clinical...... dysfunction is evident across all stages of the cancer trajectory. The causes of cancer-related muscle dysfunction are complex, but may involve a wide range of tumor-, therapy- and/or lifestyle-related factors, depending on the clinical setting of the individual patient. The main importance of muscle...